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Abstract

Using the functional integral techniques homogeneous limits of the
perturbations of thermal states (describing nonrelativistic Bose Matter at
the thermal equilibrium) by bounded cocycles are constructed rigorously.
Additionally some elementary properties of these limiting states are dis-
cussed and in particular the preservation of the nonpurity in the critical
case is proved.

1 Introduction

1.1 The problem of Bose-Einstein condensate

One of the most spectacular achievements in the experimental low temperature
physics of the past few years is the laboratory realization of the Bose-Einstein
condensate (BEC) of cold atoms [1, 2, 3]. This bizarre quantum state of a Bose
Matter is formed at nanokelvin temperatures and requires also high atomic
densities. The BEC is formed when the quantum wave packets of atoms overlap
at low temperatures and the atoms condense almost motionless, into the lowest
quantum state. This means that the wave-lenght of the matter waves associated
with the cold atoms [4], the de Broglie waves, become comparable in size to the
mean atomic distances in a cold and dense sample.

The phenomenon of BEC was predicted by Bose [4] and Einstein [5] already
in 1924-25. But even for the case of simplest ideal Bose Gas the complete
mathematical proof took a long period of time ended successfully only in 70-ties
by the elaborations of the Dublin group [7, 8].

Concerning the standard, gauge-invariant many body hamiltonians with re-
alistic pair interatomic potentials the situation from the theoretical physics point



of view is still very far from being clarified. It seems that the class of models
which is closest to realistic systems and being tractable mathematically is that
described by the so called model systems with diagonal hamiltonians [8].

In a series of papers [9, 10, 11, 12] new mathematical technologies for study-
ing the nonrelativistic Bose Matter at thermal equilibrium and in nonzero tem-
perature were invented. They are based on the observation that the modular
structure of the free Bose Matter has the so called stochastic positivity prop-
erty [11]. It is this property which enables us to use certain functional inte-
gral/random field description of these genuine noncommutative structures. Ad-
ditionally those commutative analysis methods open the doors for applications
of the methods of classical statistical mechanics for studying the perturbations
of the free thermal structures by the so called thermo-field like perturbations.
Such programme was initiated in [9, 10] and developed in certain directions
[11, 12]. The present contribution continues the analysis of [9, 10] for the so
called gentle perturbations of the free Bose Matter. A new, purely commutative
strategy for studying the standard many-body hamiltonians initiated in [13] has
been extended recently in [12, 16], see also the activity [17].

1.2 The thermal structure of the Ideal Bose Gas (IBG)

Let W be a *-algebra version of the Weyl algebra over the one-particle Hilbert
space h = L?(R% dx) with generic elements denoted as Wy, f € h. The one-
particle unitary dynamics U in h is generated by hf = —A — ul1, where —A is
the (Friedrichs) Laplacean and p is the chemical potential. The natural lifting
a? of UY is defined as Wy = WU?f.

The free thermal state wg on W is given by [18§]

— 1 3
wo(Wy) :exp—1<f|coth§hgf) (1)
and the corresponding free thermal state w§" for IBG containing Bose-Einstein

condensate

W () = exp —5el FO) - <o), 2)

which is well defined, providing d > 3, and where fis the Fourier transform of
f e L*NL?(R%dx), ¢ > 0 is some constant depending on details of the ther-
modynamical passage and measuring to some extent the size of the condensed
fraction of gas. Both states, wg and w§" are invariant under the action of &Y
(@2 17 =0 in the case of wg").

Applications of the GNS construction lead to the well known Araki-Wood
thermal modules (H{™, Q4" 70 U2(“)y We define the corresponding von

Neumann algebras M, (resp. ME") as weak closures of 7°(W) ( resp. of
7% (W)). Then the systems

(Mo, a2, wo) = Ag, (M, a?’cr,wg’") =AY



form W*-KMS systems (and where o{"“") are the corresponding extensions of

U(“")). The presence of the Bose-Einstein condensate in Ag" is manifested
throughout the nonpurity of A§". The central decomposition of wg" is well
known since Araki-Wood work [19].

In the present contribution we shall study the (homogeneous limits of) per-
turbations of A((]CT) throughout the unitary cocycles perturbations [18] and in
particular the question on the preservation of the nonpurity of the limiting ther-
mal states (in the critical regime) will be settled up positively. The techniques
employed are based on the functional integral approach invoked in [9, 10, 11].

2 The main result

Let (Xe)eso0 be a net from Co(R?) (the space of continuous functions with com-
pact support), such that x. > 0 pointwise and

li =4
elﬁ)l Xe
in the weak sense. For 2 € R% ¢ > 0 and o € R we define
We(a,2) = Woy (-—a)

where Wy is now the representative of Wf in the corresponding free thermal
module. Let dp be a (complex in general) Borel measure on R, with compact
support and such that dp(—a) = dp(). For A C R¢ being bounded region we
define

HE = / dp(a) / dz W.(a, ) 3)
A

where A € R is called coupling constant, and

HRE :A/dp(a)/dp(ﬂ)/dx/dy We(a, z)l(z — y)We(B,y) (4)
A A

where I' € L'(R?) and integrals are defined in the o-weak topology of the
corresponding W*-algebras. From the simple estimates
L
=K
IHRY|

A[Var(p)[A|

<
< - IVar(p)P[IP]] - [A]

where Var(p) is the variation of p and |A| means the volume of A it follows that
the unitary cocycles perturbations theory [18] for studying the perturbed (by

Hf) free dynamics can be applied. For this goal we define:



e the unitary cocycle Ff A,

t t1 tn—1
rfh=14+> "0 / dty / dty- - / dtnoy T (HE) - ap D HE)  (5)
nzl o 0 0

where # stands for L or nL and the free dynamics af acts as

of(tf) =\ [ dp(a) [ daWarps,
A

and similarly for HRL,

e the perturbed dynamics af A,
A _ A A %
ofM4) = TN
t t1 th—1
T PRy / it / dts - / it (6)
nzl g 0 0

o (HE, - oy

for Ae AL,
e the perturbed thermal vacuum Qf:

0<s1 < <sp <5
efanonef(snfan)Ho . H{?\%Q(()CT) (7)

where H ™" is the generator of oy in H{"") and again the integrals and series

are weakly convergent in H((JCT).
Remark 1 From the Araki theorem [18, 20] it follows that there is a holomor-
phic map:

R +iTP% 5 (z1,...,20) — eiZ"HOeri(Z”fz"—l)Ho “ee HfQéﬂ) € H(()CT)

where
TP/2 = {(s1,...,80) |0 < 81 < - < sp < 3/2},
continuous on R" + iTi/Z and additionally obeying the estimate (uniformly on
=03/2
R"4+4T,'")
||eian0Hj\¢ ei(znfzn,l)Ho L H/;:#Q((JCT)H
< A*(Var(p)™ - A" for # =L
< M (Var(e)®™ - ITIIT - A" for # =nL



From the general theory [18] it follows that the systems
(er) cr — A cr
AT = g 00 - 0 w0, o ALY

form a B-KMS structures and such that the modular dynamics corresponding
to the vector states wf given by Qf are exactly equal to a# A

In the following we shall sometimes drop out the superscript # in the nota-
tion and the following abbrevations will be used:

/d(T,a,a:)? :/da:l---/dxn/dﬁ---/dTn/dp(al)---/dp(an), ete.
A A A
Now we are ready to formulate main results of this contribution.

Theorem 1 (The noncritical case) 1. There exists small Ao (depending on
B,#., T, p) such that for all |\ < g the unique thermodynamic limit

li/I\n W (A) = w? ()

exists in the sense of weak convergence. The limiting state w? (\) is faithfull on
Ao and is ergodic with respect to the (natural) action of the Fuclidean motions
on Ag. The limiting state is analytic in A and entire analytic on Ag.

2. If additionally dp(o) = dp(—a), X >0 and T > 0 (pointwise) in the case
# =nL, then the unique thermodynamic limit

w#(\) = lim wi ()

ezists for all A > 0 and is faithfull and Euclidean invariant.
Here is the main result:

Theorem 2 (The critical case) There erists Ao (depending on p,#,T,...)
such that the unique thermodynamic limit

li/r\n W) =w(N)

exists for all |]\| < Ag. The limiting state w (X\) is faithfull, Fuclidean invariant
and satisfies: there exists a Borel measure d\yen(cr,0) on [0,00) X [0,27) and a
family of faithfull and ergodic (with respect to the translations) states wy.g(X),
indezxed by [0,00) X [0,27) such that

27

W (\) = 7 / dAren(r, 0)wr.6(A)

Moreover the measure dAren (r,0) is not concentrated on a single point.



3 Proofs: the main ideas

For f,g € h such that f = f, g = g and for any 7 € [0,3/2) it follows by the
straightforward computations that [9, 10]:

cr —TH\" cr 1 cr
(0 Wye 5 W,07) = exp 385, f 9 9) (®)
where
SP Ot 9.9) =SS 9.9)+ (e [ f@)ds [ gla)da) (9)
and

—T(=A=k) 4 o= (B=T)(=A=-p)
3 - € +e
SE(r @ 9) = (N1 ma——9)n (10)

Extending S (¢")(r,-,-) to R' by reflection invariance and periodicity it follows
that S5:(c7) (1,-,-) is stochastically positive and reflection positive on Kz =
(—=3/2, 3/2) continuous kernel. Therefore, there exists a Gaussian process £%(¢")
with values in &'(R?), which is faithfull, stochastically continuous, periodic and
reflection positive, and satisfies

E(2C, ) (e, ) = 59 (7, -, -) (11)

The law of this process can be identified with the Gaussian random field ,uﬁ »(er)

on the space §'(Kg x R?) such that

E,s.cn0(r,2)p(0,y) = 53 (7,2 —y) (12)

We define the following functionals of ug A(er),

8
= )\/dr/dp(oz)/dw s elawe(ma) (13)
0

and

L\ j dr / dp(e) / dp(B) / dz A/ dye’?<TIT (1 — y)etfeev) - (14)

A

where (T, 2) = (¢ * xe)(T, 2)

The finite volume Gibbsian perturbed measures duﬂ »(er)

are defined as

A7 () = (2% exp U () dpay " ()



and their corresponding canonical correlation functions
(er

)
P (Tlaalaxla <. aTnaamxn) as

(e

. . .
N )(Tl7 Q1L T1s ey Ty Oy Ty) = )\n|EMewc1<Pe(n,w1) oo et (Tn,Tn)

Recall, that their thermodynamic limits in various ranges of couplings were
controlled rigorously in previous publications [9, 10].
Using definition of wy it follows by straitforward computations that

25~ (0107, o @)
and for f € h
1
WiWp) = QW) = exp —557(0.f © f)
n
Z[_ / d a, x H Im f|oc]Xe ity >(mJ)
n>0 J=1
n B )
H —aj (2 s ) (ry,25) 1)p§f”(7’,a,fv)7f] (16)

(where SO (er) — = (Xe ® Xe) * So cr)) for UL case, and similarly (albeit more
complicated) in the case of UL

1
Wi (Wy) = exp 5570, f @ )

1 l:/ 1 1 1I\N 1 1, 1\N
d(T ,Ot ,I )1 d(a aﬂ ay )1
N30 NIMIL!

AB
A, e P [ At )t e, 6t
A8 AB
N
. H { eXp<ilm<f‘ajl'Xe,ile ( - le>) exp(ilm<f|ﬁ}Xe,ia; ( - y]1>F(le - yjl)
j=1

[exp(—a}S&’éCT) * f(:rjl)) 1] [exp(— BlSﬂy’E(cr) * f(yjl)) — 1]}
M

11 { exp(iIm{flofxer (- — a3)) exp(Im(f| 5 X 02 (- — ¥7)T (25 = 7)

j=1

[exp(foz?Sg,’e(cr) * f(T?)) - 1]}

L
H {eXp Zlm f‘a i Xe ZT ( —Zy >)exp(z[m<f|ﬁ Xe 7,0 ( yf>F(ac§’ _y;’)

Jj=1



[exp(— 63557 x F(u2)) - 1]}

A (ol )Y <03,63,y3>5>} (a7
where
Xe,'i‘r(' - :L') = UZO-,—XG( - ‘T) (18)
and
P at 2 )Y, (0%, 850 E) =
N
\NMAL / 4 () { [] (s -3 eisontef )y
S"(RixKp) J=1

M
H (em;z_%(n‘%J;%)ei,gf(pe(rf,y] H i (73,23) ;165 we(n,yg))} (19)

Formulae (16) and (17) provide a link between the analysis on the abelian sectors

(er)

described in the earlier papers [9, 10] and the corresponding states wy ' on the

whole algebra(s) of observables Mécr). This is why we propose to call them the
reduction formula(e) for the state(s).

The essential volume dependence of w}fr) is that of the canonical correlation
functions entering in formulas (16) and (17). To control the thermodynamic

limits Tim W\ we have to divide the analysis into two parts, the first (easier)

devoted to the noncritical case and the second dealing with the critical one.

3.1 The case of noncritical IBG

The following results have been proved in [9]: There exists a small Ag (depending
on z,3,...) such that the unique thermodynamic limits

lim p* (r, @, 2)Y = 5 (7. 0, )Y

exists for all N and |A\| < Ag. The limiting correlation functions pg\nL)(T, a, )V
are Euclidean invariant, possess the cluster decomposition property and are
analytic in the disc |A| < A\g. Moreover p("L) — pg\nL) locally uniformly. See
Prop. 3.2 and Prop. 2.4 in [9].

Applying the formulated results, the proof of the first part of Theorem 1
follows whence using the reduction formulae (16) and (17). If additionaly we
assume that the measure dp is real and even, A > 0 and ' > 0 pointwise
(in the case of nL), then we can use Theorem 3.9 of [9] to controll the limit

nL nL
() _ D),

hmp Modulo the cluster decomposition property, the limiting



canonical correlation functions possess most of the properties as in the local
perturbations case and this enables us to prove the second part of Theorem 1
similarly as above.

3.2 The case of critical IBG

The main difficulty here is that Sg " has no long range decay and this is why
the high temperature/low density methods (Kirkwood-Salsburg identities, clus-
ter expansions) do not apply straightforwardly to study the limit(s) lilr\n oy

However, such an analysis is possible in the pure phases. For this goal, let Ko,
be the circle of radius 27 and let d\g be the spectral measure of the state wg”
on Ko, x (0,00) i.e.

wer = / Dolr, O)wh (20)

where w are pure states on M characterised by
wﬁre(Wf) _ eicl/2T1/2 cos G-ﬂo)e—%sg(o,f@)f) (21)

The explicite form of d\g is well known [18, 19]. It was observed in [10] that
the states w(’, are stochastically positive and the underlying periodic processes

5,(-“0) with values in &’(R?) are Gaussian processes with covariances given by
(informally):

e—ITI(=2) 4 o=(B=I71)(~A)

(770) (7",9) —
IE{T (x)go <y) - 1 — e—B(=D) (22)
and means
E<™9 (z) = /2112 cos O (23)

The corresponding random fields ,uf %+ on the space S'(Kg x R?) are Gaussian
and with second moments given by (informally):

(0, 2)(r, y)dps" (9) = S (r,2 — ) (24)
S'(Kpx R4

and means:
(o, 2)dus" () = ¢*r'/? cos (25)

S'(KsxRd)

The perturbed, finite-volume Gibbs measures duX’e) are defined as:

au" (p) = (Z37) 7 exo UR (@) () (26)



where
2%~ [ el ) (27)
S'(Kgx R%)
The thermodynamic limits

li/I\n M%’a) = ug\r’e)
were controlled rigorously in [10] and in particular the existence of the thermo-
dynamic limits of the correlation functions p, ’0)((7', o, x)7) defined as

7 (7 0, 2)7) = A" [T et i (28)
S/(KgxRd) I=1
and for small values of couplig constant A\ were proved in [10].

Similarly as in the noncritical case the following reduction formula (writtten
only for the local perturbations only) holds:

w"(W;) = similar as in (16) but with p{"® instead of py
and with S instead of 5" (29)

and where w/((’e) is the state obtained from wicg ) by the unitary cocycle(s) per-
turbations as in the noncritical case. Using the reduction formula (29) and
results of [10] the existence of the unique limits

lim w9 — 0
l[I\nwA w)\

as a weak limits on M§" and for all (r,0) € (0,00) x Kz follows. In particular

the limiting states w/(\r’a) are Fuclidean invariant, pure and faithfull. Using the
central decomposition (20) the following formula can be derived easily:

o oo 2072
WA (Wf) = d)‘O (Ta a)wrﬂ(wf) HQCT‘ |2 (30)
A

where QE\T’G), & are the corresponding vacuums given by the formula (7). From
the reduction formulae (29) and (30) it follows easily that

supwq (Wy) < oo
A

for any f € S(R?). Using this observation it follows by a similar arguments to
that presented in [10] that there exists

r,0
1240712

lim dXo(r, 0) S5 = dAren(r, 0) (31)
A 195712

10



in the sense of measures. That the measure d\,e,(r,6) is not concentrated on
a single point was proved in .
Summarizing this discussion we have obtained the following result:

SW= [ a0l (00)) (32
Kpx(0,00)

for sufficiently small A and the measure d\,.¢,, (1, 0) is not concentrated on a single
point which means that the limiting state w§" is not the pure state. Moreover

the states wE\T’O) appearing in (32) are pure states on M§".

4 Concluding remarks

From the Tomita-Takesaki theory it follows that there exists a canonical (mod-

ular) dynamics a7 on M{™) such that the constructed states w"” are KMS
states with respect to o} 7. On the other hand from the corresponding abelian
euclidean-time Green functions some (a priori) another W*-KMS structure(s)
can be constructed [9, 10]. This yields the difficult (and therefore very inter-
esting) question whether these two a priori different W*-KMS structures do
coincide. In the finite volume perturbation case it has been proved in [15] that
these W*-KMS structures coincide. Concerning the infinite volume situation
the following result has been proved in [15]:

Theorem Let 55\ be the corresponding to the infinite volume limits of the pertur-
bations considered in this contribution thermal processes. Then, these processes
are Markovian diffusions on the circle Kg providing A is sufficiently small.
From the above theorem it follows that the corresponding thermal vacuum Qj{‘
constructed from the abelian euclidean-time Green functions (see [9, 10] for de-
tails) has the following cyclicity property:

the linear hull of the vectors

. _
Wite ™ W0, f=TF.9=77€0,5/2)

in the corresponding Hilbert space H? is dense.

However, the still missing point of the identification of the canonical Tomita-
Takesaki W*-KMS structure with those obtained in [9, 10] is the question
whether the vacuum Qf is cyclic under the action of the time - 0 Weyl algebra
W(h) in HA.
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