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Introduction

Introduction

In this thesis we study the stochastic differential equation (SDE)

#(0)= 24 (SDE)

{ da(t) = f(t,2(t)) dt + o dW (1)
in the finite dimensional space R? driven by a canonical d-dimensional Brownian motion W
with a bounded Borel measurable drift f, diffusion coefficient o € R\ {0} and deterministic
initial condition z, € R

SDEs have been a very active research topic in the last decades. Several approaches were
developed for example the pathwise approach where a solution x to the above equation is
interpreted as a stochastic process or the mild approach. In this thesis we consider the
so-called path-by-path approach where (SDE) is not considered as a stochastic differential
equation. In the path-by-path picture we first plug in an w € €2 into the corresponding
integral equation (IE) of (SDE)

z(w,t) = xo + /f(s, z(w,s)) ds+ oW (w,t) (IE)

and try to find a (unique) continuous function z(w, -): [0,T] — R? satisfying this equa-
tion, which can now be considered as an ordinary integral equation (IE), that is perturbed
by a Brownian path W(w). If such a function can be found for almost all w € €2, the map
w +— z(w) is called a path-by-path solution to the equation (SDE). Naturally the notion of
uniqueness is much stronger than in the pathwise picture. Nevertheless, we prove that the
equation (SDE) even admits a path-by-path unique solution.

The main theorem of this thesis states that there exists a unique solution to the equation
(SDE) in the path-by-path sense. With some slight variations we mainly follow A. M. Davie’s
proof in [Dav07]. In [Ver81] a proof for the existence of pathwise solutions for much more
general equations than the one above has already been given.

We want to emphasize that although a pathwise solution x is not a path-by-path solution,
there is always a set NV of measure 0 such that z is a path-by-path solution for all w € N°.
[Ver81] also contains a proof that the above equation has a pathwise unique solution. Path-
wise uniqueness implies that for any two solutions z and y of (SDE) a zero set N can be
found such that z and y coincide on 2\ N. In general this zero set will depend on both
x and y. The notion of uniqueness in the path-by-path approach is much stronger. In this
thesis we show that a zero set N can be found such that all solutions coincide for all w € Q\ V.

Since we obtain a unique solution for almost all Brownian paths W (w) this result can also
be interpreted as a uniqueness theorem for randomly perturbed ODEs, more precisely TEs.
We refer to [Flall] for an in-depth discussion about the various notions of uniqueness for
SDEs and perturbed ODEs.
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Structure of this thesis

In Chapter 1 we prove an estimate which will act as a substitute for the Lipschitz continuity
of f. We use the Girsanov transformation to reduce the problem to a slightly simpler one in
the first section. In the second section we merely prove the estimate which will later act as
a substitute for the Lipschitz condition in expectation. Based on this we obtain a version of
this estimate that holds in probability in the last section of that chapter.

The claimed uniqueness of the above SDE in the path-by-path sense is proved in the second
chapter. We split the proof in three parts. In the first section of that chapter we study
dyadic points in the cube [0, 1]¢ and using the results of Chapter 1 we prove an estimate for
dyadic points for the substitute for the Lipschitz condition. The second section contains a
technical lemma which enables us to use an approximation argument in the final proof. In
the last section we finish the proof with the help of the Euler scheme and the previously
established inequalities.

We discuss an application of the main results for Euler approximations in Chapter 3 and
focus on the connection between the above SDE and randomly perturbed IEs.

Additionally, in Appendix A we give proofs of the basic estimates which are used in Chapter
1. For the sake of completeness we calculate the Fourier transform of the normal distribution

and its second derivative in Appendix B. At last, Appendix C contains an estimate which is
used in [Dav07|, but not necessary for our proof in this thesis.

Outline of the proof

First, we observe that the main theorem would be trivial if f were Lipschitz continuous in
the second parameter. Let x and y be two solutions of (IE). We then have

2(t) — gt |</|fs:c F(s,9(s))] ds < Lip(f /|x )~ y(s)| ds.

So, by Gronwall’s Lemma we have x = y.
In the first section of the first chapter we show that by considering u defined as the difference

of two solutions the main theorem can be reduced to the following problem: Let u be a
continuous function which fulfills the following equation

= [ H6 W)+ u(s)) = £ W (s) s, vt € [0,7].

Showing that for almost all Brownian paths the only solution of the above equation is the
trivial solution v = 0 implies the proposed uniqueness.
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Let us again assume that f is Lipschitz continuous. Since we have already proved the theorem
in this case, it should be possible to find a simple proof for the reduced problem. Indeed,
consider the interval I = [a,b] C [0,7] and choose a minimal with the property

lu(t)] < a, vtel.

We set 3 := |u(a)| and using that f is assumed to be Lipschitz continuous we have

b
lu()] = ] < /If(s,W(S) +ul(s)) — f(s,W(s))| ds < Lip(f)|{]e,

where |I| = b — a is the Lebesgue length of the interval. With the help of the reversed
triangle inequality and by rearranging we conclude

u(t)| < B+ Lip(f)|1]a, vtel.

But, since o was chosen minimal with this property, we obtain

B
u(l)] < o £ ——————,
R S
as long as Lip(f)|| < 1. So in particular, u vanishes on [ if § is zero. This is clearly fulfilled
if we choose a = 0. Choosing the interval I small enough such that Lip(f)|I| < 1 holds and
repeating this argument inductively, proves that u vanishes everywhere.

Vtel

In this thesis we generalize the above idea. First, we need a substitute for the Lipschitz
condition. In the first chapter we prove the following estimate in expectation (Theorem

1.23)
p

1
E /f(@W(t) +x) = f(E,W (D) dt | < CP(p/2)lxl3, Vo € RY, p € 2N,
0

where C' is independent of f which is due to the fact that f is assumed to be bounded by 1.
This estimate is obtained by a careful analysis of the Gaussian kernel and its first and second
derivatives. Using this result, we prove versions of this estimate which hold in probability

(Corollary [1.25] [L.26 and [1.28)):

Plloas(z)] > MWb — alz|y| F.] < 277/, vz e RY A >0,
and
E[|oqs(2)[”|Fs] < CP|b— al”?(p/2)!|x]5, vz eRY A >0, pe2N,
where
b
Oap(z) = /f(t, W(t)+z)— f(t, W(t)) dt, Va,b e R

and 0 < s <a < b < 1. These two estimates follow from the above “in expectation” estimate
by applying the Chebychev inequality. The fact that we can take the conditional expecta-
tion (conditional probability respectively) w.r.t. Fj, as long as s < a, is due to the Markov
property of W.
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In the second chapter we improve on this and show an “almost sure version” namely the

bound

(k+1)2-"
/ FEW(E) + ) — (6 W) dt]| < Oy max (2o, 277
k2—n

if z € R? is a dyadic point, n € N and k € {0,...,2" — 1} (Lemma . This estimate will
become the most important ingredient for the rest of the proof.

Next, we approximate u by step functions u, and write

/ P W)+ u(t) = £ W () de = T [ 7 W)+ uelt) = £6, WD) dr

= [ HEW O +un@) = FEWO) de+ 3 [ FEWO + uea(0) = FE W) + wle) d.

l=m T

These step functions are constant on the interval I and hence we are able to use the above
bound (Lemma [2.5). Moreover, we prove a technical lemma (Lemma to be able to
approximate u by step functions (Lemma in order to make the above argument rigorous.
Furthermore, since we want to estimate terms of the form

Z/f(t, W (t) + g () — f(E, W(E) + ug(t)) dt

we need better bounds than the ones described above. In Lemma we use the Euler
approximation scheme to obtain a bound for the term

S [ HW) + ) — S0 W0+ 2,)

where 2441 = T4 + 0g2-n (g+1)2-7(Z4) is the Euler approximation for the point x4, given the
previous one x,. Comparing arbitrary points yo, ..., y, with the Euler approximation (Lemma
2.15|) yields an estimate for

Z/f(t,W(t) + Y1) — f(E,W(E) +yg) dt.

With this, the analog of the above proof is carried out in Lemma [2.16] Instead of |u(t)| < «
we have the more complicated condition (2.16.2). Since our estimates are weaker than
in the Lipschitz case we will not be able to immediately conclude that u vanishes, but if
lu(j27™)|] < 5 is “small” we have

lu((j +1)27™)| < B (1 + K2 ™log,(1/B))

with some constant K. By letting m go to infinity, this is enough to conclude the main
result as shown in Theorem
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Differences between Davie’s proof and this thesis

In this thesis we give an extended and more detailed version of Davie’s proof in [Dav(7].
Nevertheless, for the sake of simplicity and clarity we made some slight changes.

Proposition [I.9] Theorem and the subsequent corollaries are extended to the case p =1
(cf. [Dav07] Proposition 2.1 and 2.2). In addition, we give a simple generalization of Davie’s
Corollary 2.6 in our Corollary [1.28]

In the second chapter we skip Davie’s Lemma 3.1. For a detailed proof of this estimate
we refer to Appendix C (Lemma [C.2)). As a substitute we extend Lemma 2.5 (cf. [Dav(7,
Lemma 3.2|) in Corollary This replacement has some marginal influence on the proof
of Lemma [2.9] Furthermore, we were not able to obtain the factor 2-"/4 in front of the
error term in Lemma [2.15, as Davie did in Lemma 3.6. This is partially because of our
replacement of Davie’s Lemma 3.1. Nonetheless, we still obtain the factor 2=/% to control
the error term. It turns out that this is sufficient to complete the proof of the main theorem.
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1 Preliminaries

In this chapter we reduce the main theorem (Theorem to a slightly simpler problem using
the Girsanov transformation (Lemma [1.8). In the second section we obtain an estimate,
which will later act as a substitute for the Lipschitz condition (Theorem [I.23)). In the last
section we prove different versions of this estimate which hold in probability. These estimates
play a crucial role in the proof of the main theorem.

1.1 Reduction via Girsanov transformation

Let d be a positive integer, T > 0 and Q := C([0,T],R?%). Let P be the classical Wiener
measure on ). Note that 7(w,t) = w(t) is a d dimensional Brownian motion with 7(0) =0
P-a.s.. Define P,[A] := P[A — 2] then (P;),cre are measures such that ((7)cpr), (Ps)rerd)
is a universal Markov process (cf. [Bau96] Definition 42.15). Let F; be the natural filtration
of (Wt)te[oj] i.e. F; is P-complete (in the sense that every zero set of Fr is in Fy) and
right-continuous. In this thesis we consider the following stochastic differential equation

{ de(t) = f(t,2(t)) dt + o dr(t)

1.0

where f:[0,T] x R — R? is a bounded Borel function, 7o € R? and o € R\ {0}.

Definition 1.1 (path-by-path solution)

A map x: Q — Q is called a path-by-path solution to equation ([1.0) if there exists N, C Q
with P[V,] = 0 such that x fulfills the corresponding integral equation

x(w,t) = xo + /0 f(s,z(w,s)) ds + ow(t) (1.1)

for every t € [0,7] and w € Q\ N,. Notation: z € S(C([0,T],R%), f,0,70), where
S(C([0,T),RY), f,0,2) denotes the set of path-by-path solutions to equation ([1.0].

Proposition 1.2 (Existence of path-by-path solutions)

Let f:[0,7] x RY — R? be a bounded Borel function, ¢ € R\ {0}, 70 € R? and 7 a
canonical Brownian motion. Then there exists a map z: 2 — €2 and a set N, C Q with
P[N,] = 0 such that x is a path-by-path solution of in the sense of Definition
ie.x e S(Q, f,o,x0).

- 10 -
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Proof
Define W: Q@ — Q by

W(w,t) :=m(w,t) — O'_l/f(S,ZL“O + om(w, s)) ds, Yw e Q, te€0,T].

Then for all w € Q and t € [0,T] set

(W (w),t) ==z + om(w,t) = zg + /f(s,a:o +om(w, s)) ds + oW (w,t)

0
t

=z + / f(s,z(W(w,s))) ds + oW (w, t).

Now by Girsanov’s Theorem (cf. [Shr04], Theorem 5.2.3) for

T T

¢r(w) == exp /<0 Yf(s,zo + om(w, s) (8))pa — /0 2f(s, 20 + om(w,s))* ds

0 0
we have (¢7-P) o W' =P and ¢7 - P =~ P. Defining N, := Q\ W(Q), we have

P[Nm]ZIP’[Q]— PIW ()]
PIQ] — (¢ P)[Q] =0

and for all w € Q\ N, and ¢ € [0, 7]
x(w,t) = x9 + / f(s,z(w,s)) ds + ow(t).

Hence x (with N, as above) is a path-by-path solution.

Proposition 1.3 (Scaling invariance)

Let f:[0,7] x R? — R? be a bounded Borel function with |f|. # 0, 0 € R\ {0}, 2o € R
Define

FOT xR RE (tu) — |FID F (1 20%, 20 + | I o).

Let # (with N3) be a path-by-path solution to equation (1.1)) with f, o and x¢ replaced by
f,1and 0, ie. 2 € S(C([0,T],R%), f,1,0). Define

y: Q=C([0,T],RY) — C([0, | [[:20°T], RY) = Q2,1
y(w,t) =z + | fI o2 (w, | fI2072t), Vw e Q, tel0,[fle*T]

- 11 -
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and

Pl flooyo - Q= C([OvT]’Rd) — C([07 |f|;o20-2TLRd) = Q|f\§0202T
(t— w(t) — (t— |fILow(|flo ™))

which is a homomorphism from € to QUEOQJQT. Then z: Q|f|g0202T — QUBO%QT defined by
2(w,) = y(p. . @), 1), Vw e Q, te0,|f 20T

is a path-by-path solution of equation (1.1)) with N, := ¢s. ~(Nz). This means we have a
one to one correspondence between the sets

S(C([0,T),RY), f,1,0) ¢— S(C([0, |20 T], RY), f, 0, 20)

Proof
Observe that

|f 1302t

Yo t) = 20 + |f]20? / F(s, 7w, 8)) ds + | fldo?w( f 0 2t)
0

|f130=2t

=20 +|f|c 0? / floe Ff1S 0% 20 + | flo 0*(w, 8)) ds + | flod o*w(| oo ™t)
0

— 2o+ / F(s, 20 + | f120%5(w, | fPao25)) ds + |flo%w(| f 202
0

t
=x+ / f(s,y(w, s)) ds 4+ 0@jf.0(W)(t).
0
Hence for all w € ¢ »(Q\ N;) and all t € [0, | f|20°T]
t
z(w,t) = zo + /f(s,x(w, s)) ds + ow(t).
0
But Po gpl_fLo,U = P, hence setting N, := ¢f|...o(Nz) we have P[N,] = 0. Hence z with IV,
is a path-by-path solution of equation (1.1)).

O

Remark 1.4

Since T' > 0 was arbitrary, as a result of this scaling property its sufficient to consider the
SDE (1.0 in the case where 2o = 0, 0 = 1 and f is bounded by 1 or 1/2.

-12 -
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Theorem 1.5 (Main result)

There exists N C Q with P[N] = 0 such that all path-by-path solutions of (1.0} in the sense
of Definition coincide for every w € Q\ N. In particular if z and y are two path-by-path
solutions then z(w) = y(w) in the sense of continuous functions for every w € Q\ (N,UN,UN).

Corollary 1.6

There exists a path-by-path solution z with N, C  such that every other path-by-path
solution y with IV, C Q coincides with z on Q\ (N, U N,).

Proof

By Proposition there exists a path-by-path solution x (with N, C Q) to equation ([1.0)).
Invoking Theorem and replacing N, with the set N, U NV implies that z with N, U N is
the unique (in the sense of Theorem path-by-path solution of equation ((1.0).

O

Lemma 1.7

Fix an w € Q. Let z(w) be a function that fulfills equation (I.1)) with zp = 0, 0 = 1 and
|floo < 1. If the only solution of

t
ut) = [ £(s,2(0,9) + u(s) ~ fls.a(0,9) ds, Ve 0.7)
0
is u = 0, then z(w) is the only solution to (L.I).

Proof

Let w € Q. Let 2/(w) be another solution of (1.1 for the path w. Subtracting z(w) from
2’ (w) results in

¥ (w,) — 2w, ) :/f(s,x’(w,s))—f(s,x(w, 5)) ds.

We set u(t) := 2/(w,t) — z(w, t) and obtain

u(t) = /f(s,x(w, s)+u(s)) — f(s,z(w,s)) ds.

By assumption we deduce u = 0 and therefore z(w) = 2/'(w).

- 13 -
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Lemma 1.8

Suppose there exists a set N C Q with P[N] = 0 such that for every w € Q\ N and every
function u: [0, 7] — RY satisfying

:/f(s,w(s)—i—u(s))—f(s,w(s)) ds,  Vtel[0,T] [3)

we have u = 0.
Then the conclusion of Theorem holds.

Proof
We define

T

¢T—eXP/ s,m(s)), dm(s) %/Tfsw
0

0

and set p := ¢r-P. Note that u ~ P. By Girsanov’s Theorem (cf. [Shr04], Theorem 5.2.3)
for

W(w,t) :=7(w,t) — /f(s,w(w,s)) ds, Vw € Q, Yt €[0,T]
we have o W~! = P. Furthermore
z(W(w, ), t) ==7m(w,t) = /f(s,ﬂ(w,s)) ds + W(w,1), Yw € Q, YVt € [0,T].

Let w € Q\ N. Then by assumption and the above the condition in Lemma is fulfilled
for the “input” path W (w, -) and the corresponding solution 7(w) (“output path”). Hence
for the set

W(Q\ N) C c([0,T],RY)

we have for all z € W(Q\ N) that the corresponding solution 7(w) = z(z) is unique. To see
that then Theorem [1.5/holds for N := Q\ W (Q\ N) it remains to be shown that

P[W(Q\ N)] = 1.

But
1> BW(Q\ N)] = (o W) [W(Q\ N)] > p[@\ N] = 1.

- 14 -
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1.2 Substitute for Lipschitz condition

The aim of this section is to prove Theorem below, which is the essential ingredient of
the main proof. The main objective of this section is Proposition [I.9} The proof of Theorem
will be an application of Proposition [I.9] For the rest of this thesis let W be a Brownian
motion on P and (P,),cre measures such that the universal Markov property (cf. [Bau96]
equation 42.18) holds.

Proposition 1.9

There exists C' € R such that for all compactly supported, smooth, real-valued functions
g on [0,1] x R with |g] < 1 everywhere and ¢’ is bounded, where ¢ denotes the derivative
w.r.t. the second variable, and every n € N, we have

1 n

E /g’(t,W(t)) a| | <crr (SH).

0

Where W is a one-dimensional continuous Brownian motion with W (0) = 0 P-a.s. and I'
the gamma function.

Proof

Expanding the integral of the left-hand side of the inequality leads to

B (| [oewma| | =] [sewe)a,

Changing the set of integration from [0,1]" to {0 < t,q) < ... < tom) < 1} for every
o € Per(n), where Per(n) denotes the set of all permutations of {0, ...,n}, yields

=k Z / Hg/(ta(j% W(ta(j))) dts ). dton)-

ocPer(n) 0<ty(1)<..<tg(n)<1 j=1

n
Since [] ¢'(t;, W (t;)) is a symmetric function, we have
j=1

=nlE / [d . wity)) dty...dt,.

0<t1<...<tn<1 J=1

- 15 -
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Using Fubini’s Theorem and the joint distribution of W(t,), ..., W(t,,) we rewrite the integral
as

=l / ﬁg’(tj, zi)E(t; —tj—1,zj — zj—1) dzp...dz, dty... d¢E,
0<t) <<ty <l Rn J=1
where t5 := 0, zp := 0 and
E(t, z) := (2mt) V212, vt > 0.
For 1 < k < n we define

JT(Lk) (tk—la Zk:—l) = / / H g/(tj, Zj) E(t] — tj—l; Zj — zj—l) de dZn dtk dtn

o1 <tp<..<tn<lRn—k+1 J=K

Observe that the left-hand side of the proposed inequality is therefore n!JéI)(O, 0). We stop
the proof at this point in order to introduce some useful definitions and notations. We
continue this proof on page |17}

Definition 1.10

Let E(t, 2) := (2nt)"/2e7**/? for all t > 0. We set B and D as the first and second derivative
of E w.r.t. the second variable.

B(t,z) := 0.E(t,2z) = _(271-t>—1/2§€—z2/21t7

_ 2’2 —1 —22
D(t, 2) := 02 E(t, z) = (2nt) I/Qt—Qe /2,

Definition 1.11
We set

Sy, := {E,B,D}", Vk € N.

We call S a string if there exists a (unique) k € N such that S € S;. We say S has length k.
Notation: # S := k. Observe that () is also a string (of length 0).

Definition 1.12

Let k£ and ¢ be positive integers. We define the composition of two strings via concatenation.
0. Sk X Sg — Sk_;,_g, (So, ceey Sk_1> o (Sg, ceey /6—1) = (So, . Sk—la SE), ceny S%—l)

and set So() : =S, h oS := S for every string S. We often write S;S, instead of S;0S,. In

the same way i.e. by repeated concatenation we define the expressions S* where we again set
S% .= (). We additionally define S -1:=S and S -0 =0 with 0,1 € N.

- 16 -
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Definition 1.13

We define the reduction map R as

9] [e%S) k—1
R: USk — USk, (SO,...,Skfl) — HSl ﬂ{E,D}(Sz>
k=0 k=0 =0

R is the map that removes all Bs from a string.

Definition 1.14

Let S be a string. We call S valid if there exists r € N such that
R(S) = (ED)".

Again 0 is a valid choice for r.

Example 1.15

The valid strings of length three are
BBB, EDB, EBD, BED.

Also note that there are exactly 2"~ valid strings of length n, but this will not be of any
importance for the proof.

Proof (continued)

Let n,k € Nwith 1 <k <nand S = (Sp,....,5%s-1) a string of length at least n — k + 1.
We define

]ékvn)(tk_l’ )= / Hg(tj’ %) Sj-k(t; — tj-1,2; — 2j—1) dzg... dz db... diy
b1 <tp<..<tp,<lRn—k+1 j=k

and

Is(to, 20) := 1§ (20, 20).

Claim:
2n7k

JE (b1, 2 1) = Z :tfé](cé;l)(tk—lyzk—l), VI<k<n, ty1€[0,1], zo_1 € RY (1.9.1)
(=1

where S\ is for every £ a valid string of length n — k + 1. Fix some n € N. We prove (1.9.1)
by induction on k. Let kK = n we then have

- 17 -
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1

Jén)(tn—la Zn—l) = /dtn /g/(tn7 zn) E(tn - tn—la Zn — Zn—l) dzn

tn—1 R

By integration by parts and since g is compactly supported, we obtain

1

= — /dtn/g(tn,zn) B(t, — tn_1,2n — 2n_1) dzn.

tn—1 R

Observe that B is a valid string, so (1.9.1)) is true for £ = n. Now, assuming (1.9.1]) for some
k > 1, we have

1
JFD (o, 2—o) :/dtk—l /g/(tkz—lazk—l)E(tk—l — tha, 21 — 2h—2) ) (b1, ze—1) Akt
ti_2 R
Again, integration by parts yields

1

=— /dtk—l /g(tk—l, 251) Bty — troo, 21 — 2k2) I (tr1, 211) dzps

th—o R

1
- /dtk—l /g(tk—lazk—l) E(tpo1 — tho, 2ot — 25—2)02 I (te—1, 26—1) dzp_y.
R

tk—2

Where the last partial derivative can be easily calculated using the induction hypothesis

2n—k
(9.1 n
O TP b1y ) B S w0, 18D (1, 2 ).
/=1

Since g, E, B and D are all smooth functions we can differentiate inside the integral.

2n7k

= Z + / / Hg(tj, Zj)azk_l Sgézk(t] - tj—17 Zj — Zj—l) de dZn dtk dtn
(=1

te_1<tp<...<tp<lRn—k+1 Jj=k
2n7k

~ ~ (L
+ / / Hg(tj’zj) S;_)k(t] _tj—lazj _Zj—l) dzkdzndtkdtn

=1 << <tn<l Rn—k+1 J=K
2n7k

_ (k,n)

- :F-[g(e) (tk—hzk—l))
=1

- 18 -
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where S is defined as
§_ BS", if S=ES"
| DS, if S=BS"

Because S is a valid string S is well-defined. Also observe that S is no longer a valid string,
but ES is again valid. Applying this to the above equation results in

2nk 2nk

T (b2, 242) Z ijéksé " (thz, 2h2) + Zil NG "tk-2, 24-2).

This proves claim (1.9:1). We still need to prove that n!lJY(0,0) < €T (7/2 + 1). To this
end we use and estimate terms of the form I( ™) where S is a valid string. Our strategy
will be the followmg First we proof a rather general estimate in Proposition [I.16] using a
discretization argument and Fourier transformation. We apply this inequality to obtain
estimates for the strings ED and BD (Corollary [L.17)). These estimates will be improved in
Proposition to enable us to use an induction argument over the length of the string.
The induction is carried out in Proposition [I.22] which yields estimate thus enabling
us to finish the proof of this proposition on page |37

Proposition 1.16

There exists a constant C' € R such that for all real-valued Borel functions ¢ and h on
[0,1] x R with |¢(s, z)| < e *°/3 for all (s,2) € [1/4,1] x R and |h(t,y)| < 1 everywhere the
estimate

1 t

/dt/ds//qﬁ(s,z)h(zﬁ,y)D(t—s,y—z) dydz < C

1/2 t/2 RR

holds.

Proof

Let I denote the above integral. For ¢, m € Z define
¢5<87 Z) = 1[47€+1[(2)¢(S7 Z)a
hm(ta y) = ]]-[m,m+1[(y)h(t7 y)

With I, we denote the integral I where ¢, h is replaced by ¢, h,,, respectively. We then

have I = > I, as long as the sum converges absolutely. We show the convergence of the
CmeZ
sum in two steps.

- 19 -
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Case 1: [{ —m|=1k>2
If |¢ —m| =: k> 2 we have
1<k-1<|y—2z|<k+1, Vze [, l+1[,y € [m,m+ 1] (1.16.1)

With this we obtain the following bound on D

2

Var (i)

For t € [1/2,1], s € [t/2,t] we have t — s €]0,1/2]. Since (y — z)* > 1 by (1.16.1]) we have

1 (y—2)°—(t— 3)67@%)2/2(#5)_

TV (t—s)pP

And because of the fact that k — 1 < |y — z| < k + 1 we get

2
< 1 (k+1)°—(t— 3)6—(k—1)2/2(t—s)'

T Vor o (t—s)

Invoking Proposition with 2 := ¢ — s €]0, /2] leads us to

Z 0] eh3/2/(t=5) g~ (k=17/2(t=5) _ (1, o~ (h=27/2(t=3) < (1 o= (k=2)?

with C} = C(27)~"/2 where C' is the constant from Proposition[A.2] Using this estimate we
deduce the following bound on I,

1 t

I < /dt/ds//](ﬁg(s,z)hm(t,y)D(t—s,y—z)| dydz

1/2 t/2 RR
1 t 41 m+l 1 ¢

<C /dt/ds /dz /dy e~ 33 (k=2)* < 01/dt/d3 o235 o= (k—2)?

/2 t/2 ¢ m /2 t/2
1

<G /dt %662/3%(’“2)2 < %e@2/3€(k2)2_

1/2
And hence
- Ch - —22/3 —(k—2)2
Do lm =223 > lm <5 D
[6—m|>2 k=2 ¢€Z me{l—kk—1} k=2 (€7
Ch - —(k—2)? —£2/3

k=2 Lel

For some (5 € R since both sums converge.
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Case 2: |[{ —m| <1

Let F denote the Fourier transformation. We define

0(5,8) = Flou(s, - )|(&),
m(t, €)= Flhm(t, -)](E),
D(t,€) = F[D(t, )](6).

Since ¢u(s, - ), du(s, - ), hm(t, ), han(t, -) € LA(R) w.r.t. the second variable for s € [/, 1]
and t € [0, 1] we can use the Plancherel Theorem to obtain

> O

l+1

/sbe d¢ = /gbg(s,z)Q dz < /6222/33 dz < e 2673, Vs € [/a,1] (1.16.2)
R

14

/h (t,—€)* d¢ _/ m(t,—2)? dz <1, vt €[0,1]. (1.16.3)

R R

Using these estimates we will now prove the boundedness of 1, ,,. Observe that the innermost
integration can be written as the convolution of h,, with D.

:/dtjds//gbg(s,z)hm(t,y)D(t—s,y—z) dydz

1/2 t/2 R R

/dt/ds/gzﬁgsz/ t,y)D(t —s,2 —y) dydz

1/2 t/2
dt | ds [ ¢e(s,2)(hn(t, - )« D(t —s, -))(z) dz.
Sl

Since D,D € L?(R) using Parseval’s Theorem together with the convolution theorem yields

/dt/cls/qsZ t,D(t —s,£) dé.

/2 t/2

Calculating the Fourier transformation of D (see Proposition for details) yields

/ dt / ds / bo(s ,—&)(—4m2e2)e 2 =9E e

/2 t/2
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Using the Young inequality ab < 1(a%c + b*c™*
c=e”/3 we get

) with @ = [¢i(s,6)], b = [hn(t, —€)| and

1 t

If,m S 27T2/dt/dS/ggg(s,€)2€£2/3€2@_27‘—2(t_5)f2 d€

/2 t/2 R

.

o
TV
—=:Aq
1 t

+27r2/dt/ds/fzm( —£)2e B2 9 g

/2 t/2 R

J/
-~

=:A9g

We estimate A; and A, separately. Let us first consider A;. Using Fubini’s Theorem we can
switch the ¢ with the s integration.

2sA1
A, =272 / ds / dt / A (s, €)% P22 t=9)¢
1/4 1/2Vs

To estimate this integral we first integrate w.r.t. ¢.

1 2s5A1

= 27 / ds / d€ (s, €)% /3¢ s / dt e~ 2™

1/4 R 1/2Vs
1

- \/dS/df ggg(s 5)2622/3€2W2s§2 |:6_27r2(1/2v5)62 _6—271'2(28/\1)§2

—_———
1/4 <0
/dS/df ¢£ 2 €2/3 2712 (s—1/2Vs)E2

1/4

Since s — (/2 s) <0 for s € [1/4,1] the last factor can be estimated by 1. Using the above

estimate ((1.16.2)) results in

<e 14 /3/ d8/¢g d§ < 622/36—242/3 26—52/3.

1/4
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Let us now consider the second summand A,. Integrating first w.r.t. s yields

t

1
A, = 27?2/dt/d§ lAzm(t, —5)26_82/3526_2”2t52/d3 e2mse?
R
1

1/2 t/2

= /dt/dg iLm(t, —§)26_£2/36_2W2t52 [627r2t§2 _€7r2t§2:|

N——
1/2 R <0
1
< e_€2/3/dt/d§ B (£, —€)2.
1/2 R

By applying the estimate ([1.16.3)) we deduce
A, < e /3,

We therefore have
Inm < Ay +Ay <2777

This implies

Z Ié,m = Z Z [Z,m < 626_22/3 < C’3

[¢—m|<1 LEZ me{Ll+1} LeZ

for some C5 € R which concludes the proof.

Below we apply this proposition to obtain estimates for the term Is where S is either ED or
BD. Note that DD can never be part of any valid string.

Corollary 1.17
Let g and h be real-valued Borel functions on [0, 1] x R bounded by 1. Then

(i) /ldt/tds/g(s,z) E(s, 2)h(t,y) D(t — s,y — 2) dydz < C

/2  t/2 R2

(ii) /ldt/tds/g(s,z)B(s,z)h(t,y)D(t—s,y—z) dydz < C

/2  t/2 R2

holds, where C is 8 times the constant from Proposition [I.16]
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Proof
(i):

Since

L.I0 —1/2 _—2%/2s —1/2 _—2%/2s —22/2s —22/3s
lg(s,z) E(s, 2)| < (2ms)™/<e < (m/2) e <e <e , Vs € [1/a,1]
the assertion follows from Proposition with ¢(s, z) := g(s, 2) E(s, 2).

(ii):

With a similar calculation as in (i) we obtain

LI0
1905, 2) B(s, 2)| 2 (2m) " V2([al )2 < (m2) VR alem 2, Vs € [y, 1
< 4‘Z|€7z2/23 < 8622/66722/23 < 86,22/636722/23 — 86722/33’ Vs € [1/4’ 1]

Again, the assertion follows from Proposition with ¢(s, z) := £g(s, ) B(s, 2).

O

To be able to prove Proposition via induction we need a much stronger estimate than the
one in Corollary In the induction we will get terms of the form ¢ BAD(1 —¢)" and we
need to control the dependence on r as precisely as possible. Also, since we are integrating
over the set {t) < t; < ... <t, < 1} we need an estimate that reflects the dependence on
to. We will obtain such an estimate in Proposition [I.19} The following lemma is needed to
prove this improved estimate.

Lemma 1.18

We have the following bounds.

) / IB(s,2)| dz < v/2/ms V2
(ii) /|D(t,z)| dz <2t7!
Proof

®:

Using the symmetry of the integrand we can easily calculate

/|B(3, 2)| 40 (2ms)~1/2s71 / |z]e=*"/% dz = (2ms) /225! /ze‘ZQ/ZS dz = \/2/ms7 V2.
R R 0
—_——

=S
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(ii):

Triangle inequality and integration by parts yield
® R

< (27Tt)1/2t2/22622/2t dz + (27Tt)1/2t1/ezz/2t dz
R

= 2mt) V2 [ e drp T =27

%\%

O

We are now ready to prove the crucial estimate which is necessary to complete the proof of
Proposition [1.9}
Proposition 1.19

There exists C' € R such that for all real-valued Borel functions g, h on [0,1] x R bounded
by 1 everywhere, t, € [0,1] and for all » > 0

(1 —t )7+1
/dt/ds/ s,z)E(s —to, 2)h(t,y) D(t — s,y — 2)(1 —t)" dydz < C—— =
r
to
( —t )7"+1/2
_ _ _ _ oLV
(ii) /dt/ds/ $,2)B(s —to, 2)h(t,y) D(t — s,y — 2)(1 —t)" dydz < C TFESLE
to
holds.
Proof

For the proof we use the following strategy: First we note that by a simple transformation
we only need to prove this estimate in the case of £y = 0 (step 3). We split the integral over
s in two parts.

For the case t/2 < s < t (step 1) we split the set of the ¢ integration [0, 1] into the sets
[27%=1 27¥] for k € N. This enables us to use Corollary [L.17 Instead of a constant we will
get a quite complicated sum on the right-hand side of the inequality. A careful analysis of
this sum is carried out in Appendix A. In part (i) of the proof this is mainly done by esti-
mating the sum by its integral (Proposition [A.3). In part (ii) the sum is more complicated.
By estimating the sum by its integral we will arrive at the beta function which we estimate
using Stirling’s formula (Lemma Proposition [A.4)).

For the case 0 < s < t/2 the previous Lemma will be applied to obtain the required
bound. Again, part (ii) will be more complicated since the beta function will turn up again.

We now turn to the details of the proof.
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(i):

Step 1: Estimate for t/2 < s <t

We use Corollary (i) to get

1 t
/dt/ds/g(ka, 272 E(s, 2)h(27Ft, 272  D(t — s,y — 2) dydz < Oy

/2 t/2 R2

for every £ € N and some C; € R. Consider the following transformation
th =27, s' =27k, y =27k, 2 =927k2,

An easy calculation shows

E(s,z) = 27"2E(s', 2),
D(t—s,y—2)=2"F2D({t — sy — ).

Applying the transformation results in

2—k t/
= / dt’ / ds’/Zkg(s’,z’) E(s', 2ty YD — &',y — 2') dy'dz’ < Cy.

2-k=1  ¢//2  R2

Multiplying with 27% and putting (1 — ¢)” inside the integral yields

2-k t
N /dt/ds/g(s,z)E(s,z)h(t,y)D(t—s,y—z)(l—t)’" dydz
9-k—1 {/2  R?

<C27% sup (1—t)"=027F1 —27F )
te[2—k—12-k]

We sum over k£ € N to obtain

/dt/ds/g(s, 2)E(s, 2)h(t,y) D(t — s,y — 2)(1 —t)" dydz < C} Z 27k (1 — 27+,
k=0

0 t/2 R2
Using the estimate of Proposition we get

/dt/ds/g(s,z) E(s, 2)h(t,y) D(t — s,y — 2)(1 — )" dydz < Co(147)7*

0 t/2 R2

where Cy = C1C with C being the constant in Proposition
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Step 2: Estimate for 0 < s <t/2

Let us now turn to the case of 0 < s <¢/2. We have

/1dtt//2ds/g(s,z) E(s, 2)h(t,y) D(t — s,y — 2)(1 — )" dydz
§/1dt72ds (1—t)T/E(s,z)/|D(t—s,y—z)| dy dz.

Applying Lemma [1.18] (ii) gives us

< 2/1 dtt/ﬂds (1 —t)’“/E(s,z)(t —5)"tdz.

Using that E is a probability density results in

1 t/2 1
=2/dt/ds (1—75)T(75—S)_1§2/(1—t)” dt =2(1+r)"L
N——
0 0 <(t/2)7! 0

Combining the estimates of step 1 and 2 yields the required bound proving the assertion in

the case ty = 0.

Step 3: Reduction to to =0
In the case of t; > 0 consider the following transformation

t—1o , 5= / ~1/2 / ~1/2
= , s , =qy(l—t , Z =z(1-t .
1— 1— y =yl 0) ( 0)

t/
The same calculations as in step 1 yield

(1—8)" =@ —=t)(1—to),
E(s —to,2) = (1 — to) V2 E(s, 7)),
D(t—s,y—2)=(1—t) 2D — 5,y — 2.

We set
G(s',2') = g(s'(1 — to) + to, /(1 — to)"/?),
h(t,y) == h(t' (1 — to) + to,y (1 — to)/?).
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Observe that § and & are still bounded by 1 everywhere. Using that, we can rewrite the
following integral to

1t
/dt/ds/g(s, 2)E(s —to, 2)h(t,y) D(t — s,y — 2)(1 — )" (1 —to) " dydz
to to R2

1 t’

= /dt’/ds’/g(s/,z’) E(s', 2)h(t',y) Dt — s,y —2)(1 —t)" dy'd.

0 0 R2

Therefore, it is sufficient to show the assertion for t; = 0. This completes the first part of
the proof.

(ii):

Step 1: Estimate for t/2 < s <t

We use Corollary (i) to get

1t
/dt/ds/g@_ks, 272 E(s, 2)h(27F, 275 %) D(t — s,y — 2) dydz < C4

/2 t/2 R?

for any k£ € N and some C € R. Consider the following transformation
=27, s =27 s, y =272y 2= 2702,

A similar calculation as in part (i) yields

B(s,z) = 27" B(s, 2),
D(t—s,y—2)=2"F2D({t — 5y — ).

Applying the transformation results in

—k t

2
= / dt’ / ds'/Zk/2g(s',z’)B(s',z’)h(t’,y’)D(t’ — sy —2") dy’d2 <.

2—k—1 25//2 R2

Multiplying with 27%/2 and putting (1 — ¢)" inside the integral yields

2~k t
= /dt/ds/g(s,z)B(s,z)h(t,y)D(t_ s,y —2)(1— 1) dydz

27k71 t/2 R2
< Cflz_k/2 sup (1 — t)r = 012_k/2(1 _ 2—k—1)r.

te[2—k—12-k]

- 98 -



Chapter 1.2: Preliminaries — Substitute for Lipschitz condition

We sum over k£ € N to obtain

/dt/ds/g(s, 2)B(s, 2)h(t,y) D(t — s,y — 2)(1 — )" dydz < C io:Q—kﬂ(l —gk=lyr,

0 t/2 R2

Using the estimate shown in Proposition we get

1 t

/dt/ds/g(S,z) B(s, 2)h(t,y) D(t — s,y — 2)(1 — )" dydz < Cy(1 + 7)1/

0 t/2 R2

where Cy = C,C with C being the constant from Proposition [A.5]

Step 2: Estimate for 0 < s <t¢/2

Let us now turn to the case of 0 < s <¢/2. We have

1 t/2

/dt/ds/g(s,z)B(s,z)h(t,y)D(t Csy— 21— 1) dyds

R2
t/2

g/ldt/ds (1—t)"/|B(s,z)\/|D(t—s,y—z)|dydz.

Using Lemma [1.18](ii) yields

< Q/Idtt/mds (1—t)r/yB(s,z)|(t—s)—1 dz.

We apply Lemma (i) in order to obtain

1 t/2 1 t/2
2
< 2\/2/7T/dt/ds (1—t)"(t—s)ts/2< 2\/2/7r/dt (1 —t)*—/s—l/’Z ds
—_—— t
0 0 <2/t 0 0
———
—Vai
1
B B B 1 1L (1/2)T(r + 1)
_ 1/2 1 — )+ 1/2 _ 1/2 - 1) = 1/2
8 /( )"t dt = 8« 6(2,7“—1— ) 8 T 13/2)
0
B 80(r+1)
CT(r+3/2)

Where (3 is the beta function. We use Lemma with a = % to estimate the gamma
function, leading us to

< 867/12(7“ + 1)71/2.
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Combining the estimates of step 1 and 2 yield the required bound proving the assertion in
the case t; = 0.

Step 3: Reduction to tg = 0

In the case of ty > 0 consider the following transformation

t—to ,  Ss—1p / ~1/2 / -1/2
1_t07 1—t0’ Yy y( 0) ) ( 0)

t/
The same calculations as in step 1 yield

(1—1)" =1 —=t)(1—to),
B(s —tg,2) = (1 —t5) ' B(s, 2'),
D(t—s,y—2)=(1—t) 2Dt — 5,y — 2.

(', 2"):= g(s' (1 = to) + to, 2'(1 — 0)"/?),
(t',y) = h(t' (1 = to) + to,y' (1 — t0)"/?).

Observe that ¢ and h are still bounded by 1 everywhere. Using that, we can rewrite the
following integral to

/dt/ds/g(s, 2)B(s — to, 2)h(t,y) D(t — s,y — 2)(1 — t)"(1 — t) "~ Y2 dy dz

to
1 ¢
= /dt'/ds’/g(s', VB(s, 2)h(t' ) D' — 'y — 2)(1 —t')" dy/dz’.
0 0 R2

Therefore it is sufficient to show the assertion for t5 = 0. This completes the last part of the
proof.

As a corollary we will trivially generalize this to the case where h is only bounded by some
constant.
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Corollary 1.20

There exists C' € R such that for all real-valued bounded Borel functions g, h on [0, 1] x R
with |g(s, z)| < 1 everywhere, t, € [0, 1] and for all » > 0

1 1
(1) /dtl/dtg/g(tl,zl) E(tl —to,Zl)h(t27Z2) D(tz —t]_,ZQ — 21)(1 —tg)r le ng
to R2

t1
(1 _ tﬁ)r—‘rl

< Cllhll 2

1 1
(11) /dtl/dtg/g(tl,zl) B(tl —tQ,Zl)h(tg,ZQ)D(tg —t1,22 — Zl)(l —tg)r le dZQ
to R2

t1
(1 _ to)r+1/2

< Clllo™ 7

holds.

Proof

The assertion is trivial for |||l = 0. Assume ||h] # 0. We set
h(t,2) = ||l A, 2).
Using the fact that
{(t,s) € R|t € [to, 1], s € [to,t]} = {(t2,t1) € R*|t; € [to, 1], to € [t1,1]}

and invoking Proposition with & instead of h concludes the proof.

We are now able to obtain the bounds on Ig which are required to complete the proof of
Proposition Before turning to the proof we first prove the following lemma which is
necessary to simplify one term in the proof of Proposition [I.22]

Lemma 1.21

Let m € N with m > 1, n € N such that n > m and ¢y € [0,1]. Then the following identity
holds.

m 7T(m—1)/2r (n—m+1)
(1 —tp) ™ D21t — tis) Y2 dty...dty, = ——~ 2 (1 —t,)"?
L1 aCE)

to<...<tm<1
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Proof

We proof the assertion via induction over m.
Base case: m =1

Since _72(1 —t1)™? is an anti-derivative of the integrand, a simple calculation shows

1

B 2 r (2)
22 g 20 e F S
/(1 th) dt, n<1 to) F(

(1 - to)n/z — 1 - to)n/z.

—
3
+ [

TG+

|3
SN—
|3
|3

to

Inductive step: m — m + 1

Assume the assertion holds for some m € N. Rewriting the left-hand side of the asser-
tion yields

m—+1
(1 =ty )22 H (ti — tiq) Y2 dty... At
to<...<tm+1<1 =2
m 1
= / [ -t /(1 — b)) T2 (g — )Y Al Aty dE .
to<...<tm<1 =2 tm

We use the transformation

t/ _ tm—l—l - tm

An easy calculation shows

(1 o t;n—l—l)(l - tm) =1- b1 atm-!—lt;n—‘rl = (1 - tm)il-
By applying the transformation we obtain

1
m

— / (1= t) "2 T [ (1 —ti_l)_m/(l — )RR gy Ay dy,.

to< o <tm <1 =2 0

Using the induction hypothesis and rewriting the last integral with the help of the beta
function results in

(m—1)/2 n—m+1 o (m—1)/2 n—m+1 n—m
_7T F( 2 >ﬁ<1n m)<1_t0)n/2_ﬂ' F( 2 )\/7_TF( 2 )(1_t0)n/2

r(g+1) 2 2 rE+1) (=)
m/2 n—m
r(2+1)

We will estimate terms of the form Ig and finish the proof of Proposition

-32-



Chapter 1.2: Preliminaries — Substitute for Lipschitz condition

Proposition 1.22

There exists M € R such that for every n € N and for every valid string S of length n

Mm
|[S(t0,20)‘ < m(l — to)n/2, Vio € [0, 1], Z0 € R (1221)

T

holds.

Proof

We prove the assertion by induction on n. The case n = 1 is clear by Lemma [1.18](i) with
M = /2, 50 let n > 1 and assume (1.22.1)) holds for every valid string S of length less than
n. We split the proof in the following three cases:

Case 1: S = BY, #S' =n-1
Case 2: S=EDY, #S' =n-2
Case 3: S=EB™DY, m>1, #S'=n—-—m-2

Observe that S’ is in every case a valid string.
Case 1: S = BY

We have

1

[ Is(to, 20)| = /dtl/g(thzl)B(tl —to, 21 — 20)Ig(t1, 21) dz |-

to R
Using the inductive hypothesis and |g| < 1 results in

1

Mn—l
S 1 /dtl (1 — tl)(nil)m / ‘ B(tl — to, Z1 — Zo)| le.
ey /

to

And with the help of Lemma [1.18](i) we obtain

1

Mnfl

S (n_Jrl) \ 2/77'/(1 — tl)(nil)/z(tl — to)il/z dtl
2

—

to

We use the transformation

t —to

t =
71— ¢
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to transform the integral into

1

\/§M”*1 n 1/2 n—
= JrrgEn e [ e
0

\/iMn—l " 1 n+1 \/§Mn—1 . T 1 T n+l

VAT (55) 2 VT (25) r(2+1
If M is sufficiently large we obtain
2Mt M™

r(z+1) L (2+1)

Case 2: S = EDY

We have

1 1
[ Is(to, 20)| = / / /9 t1,21) E(t1 — to, 21 — 20)
to

. g(tg, 22) D(tz — tl, Z9 — Zl)]s’(tQ, 22) le dZQ .

Define
h(t,z) = g(t, 2)Ig(t, 2)(1 — t)"("=2/2,
So that by the inductive hypothesis and |g| < 1 we have the following bound on h

()

By definition of h we establish that

| Is(to, 20)| /dtl/dtQ/ (t1,21) E(t1 — to, 21 — 20)

. h(tQ, 22) D(tg — tl, Z9 — Zl)<1 — t2)(n72)/2 le dZQ .

Mnf2

|h(t, 2)] < (1— ) =D/2(1 — )= (22| =
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Using Corollary (i) we deduce
M"2(1—¢ n/2 M2
L) T
2

<C =
r(2+1

for some C' € R. If M is sufficiently large we obtain

n

< (1 —t)2

Case 3: S = EB™ DY

We have
|Is(t0,2())| = / dtl...dtm+2 / g(tl,Zl)E(tl —to,Zl —Zo)
to<...<tm+2<1 RmA+2

m+1

: H g(ti,zi) B(ti — ti1, 2 — 2zi1)
i=2

9(tmr2, 2mr2) D(tmy2 =ttt Zmi2 — Zmy1)
. ]S/ (tm+27 Zm+2) le d2m+2 .

Define
h(t, z) = g(t, 2)Ig (t, 2)(1 — ) """,

So that by the inductive hypothesis and |g| < 1 we have the following bound on h

B Mn—m—?
(%)

n—m—2
M (1 o t)(n—m—?)/?(l . t)—(n—m—?)/?

h(t,2)| < |———
00:2)) |y

By setting

1 1
Q<t7 Z) = /dtm+1 dtm+2 /g(tm+17 Zerl) B(thrl - t? Zm+1 — Z)
t R2

tm+1
’ h(tm+2a Zm+2)(1 - tm+2)(n7m72)/2

D(tmi2 = tmi1s Zmi2 — Zme1) dzmi1 dzpo

we can use Corollary (i) to deduce

Mr—m—2 (1 _ t) (n—m—1)/2

Qt,2)| < C 5
2691 Opmay

n—mT (%5")

-35-
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We can now rewrite Is(tg, z9) as

|Is<t0, Zo)’ = / dtl dtm / g(tl, Zl> E(tl — to, 21 — Zo)
to<...<tm<1 R™

m

. Hg(t“ Zi) B(tz — ti—b Zi — Zi_l)Q(tm, Zm) le... dZm .

=2

Using (1.22.2) and the fact that |g| < 1 we get

2 Mrm? Hm
< C = / dtl dtm / E(tl — to, 21 — ZO) ’ B(tl — ti—l; Zi — Zi—l)‘
n—ml ( 2 )t =2
0<...<tm<1 R™

(11— tm)(”_m_l)/2 dz;...dz,.

With the help of Lemmal[l.18] (i) and using the fact that E is a probability density we obtain

m

2 Mn7m72

<C NED (2/7)m-D/2 / (1= )02 T — o)™ iy dty
n—m J
2 t0<...<tm<1 =2
Invoking Lemma yields
2 MNr—m—2 (mfl)/QF n—m+1
== C — ( /ﬂ_)(m—l)/Qﬂ- — ( 2 ) (1 . to)n/Q
n—mF(2) F(§+1)

m n—m—2T" n—m+1
=C 2 M ( 2 ) (1 o tO)n/2-

D) T3+ 1)

Setting x := (n —m)/2 and using Stirling’s formula as in the proof of Lemma, we obtain

D(z+d) _ (a+Yo)rePemmm a0 r+12\"
< 20 —1/2,1/6
r(z) — xe—1/2¢—2 =c ﬁ( x )

z+4+1/2

_ 671/261/6\/561’111(7)_

Applying the basic estimate Inx < x — 1 yields

< e'/5/r.

With the help of this estimate we finally get

/2 Mnfme

m(l — )",

2m n—m MPm2
Is(to, 2 <Cel/6\/ \/ 1 —ty)V? = Cel/b20m—1
o, ) < e[ S -
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If M is sufficiently large we obtain

o ) (1 - tO)n/z-

< -
_F(§+1

Looking back at these three cases, if we set M as

M = (1+0)e/5V/2

where C' is the constant from Corollary [1.20], M is “sufficiently large”.

Finally, we are able to complete the proof of Proposition

Proof (continued)

Recall that
on— k

to, ZO Z :t[slfg)n to, ZO Vk <n.

Setting tg = z9g = 0, k = 1 and using Proposition results in

2n—1

20,01 € 3 1o 001 < Z

(=1

Since for n € N we have n! < 2T (g + 1)2 we obtain

2201 )T (2 4 1)
| JD(0,0)] < G+ onp (9+1)
L (5+1) 2

with C' := 4M, completing the proof of Proposition

With this bound we can now obtain our estimate which will act as
Lipschitz condition. We first prove this substitute in expectation. This is clearly not enough
to prove the main result. In the next section we will therefore use the Chebychev inequality
to get an almost sure version of this Lipschitz condition, in order to tackle the main theorem

in the next chapter.

- 37 -
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Theorem 1.23

There exists C' € R such that for every real-valued Borel function g on [0, 1] x R? bounded
by 1 everywhere, x € R%, every even integer p € N and p = 1, we have
1 p

B( [ oW o) - gt we) e | <cor (5 e1)

where |- |, denotes the Euclidean norm of R? and W standard d-dimensional Brownian
motion with W (0) = 0 P-a.s..

Proof
Step 1: d =1

Let g be a real-valued Borel function with |g| < 1 everywhere. There exists a sequence
gn: [0,1] x R — R of smooth, compactly supported functions with |g,| < 1 everywhere
such that g, converges to g almost everywhere, i.e.

gn(t, ) =5 g(t, z), vt € [0,1]\ M, Yz € R\ N,

where M and N, are Lebesgue zero sets for all ¢ € [0, 1], respectively. And since the distri-
bution of W (t) is absolutely continuous w.r.t. Lebesgue measure we have

n—oo

Gt W (1)) =3 g(t, W(t)) and gn(t, W(t) +x) =3 g(t, W(t) + x)

for all t € [0,1] \ M and w € Q\ N, where N, := W (t)"'(N,) U (W (t) 4+ 2)~}(N;) and z is
a point in R. We use the fundamental theorem of calculus and the transformation rule to
obtain

1 p

E /gn(t, W(t)+ ) — gu(t, W (1) dt | =E //mg;(t,W(t)ﬂx) du dt

0

Here ' again denotes the derivative w.r.t. the second variable. We swap the order of integra-
tion by Fubini’s Theorem and since p is even or 1 we can apply Jensen’s inequality

p 1 1 p

11
=aP’E //g;l(t,W(t) +uzx) dtdu | < xpE/ /g;l(t, W(t) +uz) dt | du.
00 0 \0

We define h,(t, s) := g,(t, s+ ux) for every u € [0,1]. Observe that h,, satisfies all conditions
of Proposition [I.9] so we deduce that

1 1 p 1

— IPE/ /h;(t,W(t)) dt | du< yx|p/cpr (g + 1) du = C*T (g + 1) 2.

0 0 0

We now let n — oo. Using the boundedness of g, the result follows by Fatou’s inequality

1 p

E /g(t,W(t) ba) = g(t, W(H)) dt

0
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:/.../]E Tt W(t) +2) — gl W(t,) din. dr,

7j=1

1 1
p
= [ [ETT ot bonw, o065 W) + ) = (65 W ()] iy
0 o J=1

n—00 ,
J=1

1 1
< lim inf / / E T Toanar(t) Lo, [ga(t5, W(t) + 2) — gults, W(E))] dy .. dt,
0 0
1

p

liminfE /gn(t,W(t) )= galt, (o) dt | < 0r (B 1) Jap

n—r00
0

as in the proof of Proposition
Step 2: Reduction tod =1

We will prove the assertion by reducing it to the case of d = 1. Let z and g be as specified in
the assertion. Let ® be a rotation on R? satisfying ®(«,0,...,0)" = z with o := |z];. Define
¢ :=idjp; xP. We have

1 p

E / ot W () + ) — g(t, W(2)) dt

0

Setting W (t) = &1 (t) results in

1 p

—E /g(Cf)(t,W(t) 4 (a,0,.,00T)) — g(B(t, W (1)) dt

0

Using Lebesgue’s transformation rule and det D® =1 yields

1 p

_E /g(t,W(t) (0, 0,,0)T) — g(t, (1)) dt

0

And since Brownian motion is invariant under rotations, W is still a Brownian motion.
Applying the transformation formula results in

1 p

_ / /g<t,f<t>+<a,o,..,0f>—g(t,f<t>>dt AW (f)

C([0,1],R4) \O

where W denotes the Wiener measure on C([0,1],R%). Since the components of W are
independent W is of product type and we have

1 p

- / / / gt (5 + (0,0,.0)T) — g(t, F(1)) At | AWy (fy).. AWa(fo)

C([0,1],R) C([0,1],R) \O
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where f = (fi,..., f2)". For fixed paths fs, ..., fs we define
h(t,u) := g(t, (u, fo(t), ooy fa(t) ), vt € [0,1], ueR.
And step 1 yields

[ [ ot + @00 = gle o) ae | awi(s)
c(j0],R) \0
— / /h(t, Fit) +a) — h(t, fi() dt | dWi(fy) < CPT (g + 1) laf?
C([0,1],R) 0

for fixed paths f, ..., f4. Averaging over fs, ..., f; and using that |z|s = || holds, completes
the proof.

l

Using Theorem we will obtain a different version of this estimate, which holds in prob-
ability instead of in expectation in the next section. This improved estimate will eventually
lead to Lemma which acts as our substitute for the Lipschitz condition.

1.3 Lipschitz condition in probability

The aim of this section is to improve the previous estimate (Theorem in the sense that
we get an estimate which holds in probability instead of in expectation. The main ingredient
for archiving this is the Chebychev inequality. The version we obtain here will also be local
in character i.e. we no longer restrict ourselves to integrals over the interval [0, 1]. Integrating
only over some interval [a, b] also enables us to prove the estimates in conditional expectation
w.r.t. Fs as long as s < a. To this end recall that we have measures (P,),cgre such that the
universal Markov property (cf. [Bau96| equation 42.18) holds.

Definition 1.24

Let g be a bounded, real-valued Borel function on [0,1] x R, 0 < a < b < 1 and € R%
We define
b

Cun(; 9, W) i= / gL W (t) + ) — gt W (1)) dt.

a

If it is clear from context we drop the g and W in the notation and write o, ;(x) instead of
O-a,b(x; g, W)

Corollary 1.25

Let g be a real-valued Borel function on [0, 1] x R? bounded by 1 everywhere. Let 0 < s <
a<b<1,/l:=b—a. We then have

Pl|oas(z)] > AWE|x|o| F,] < 267/, P-a.s., Vo € R% VA >0,
where C' is the constant from Theorem [1.23]
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Proof

The assertion is trivial in the case x = 0, so we assume x # 0.
Step 1: s=a=0,b=1

Define o := (2C?|z|3)~! with C being the constant from Theorem We then have

0 lc

Ele ool $)|2 EZ |001 |2k ZFE [001( )%}-

k=0

Using Theorem with p = 2k we deduce

23 >
2 Zakc%mgk _ 22—k —9
k=0 k=0
We can conclude the proof with the help of the Chebychev inequality.

Pllog ()] > Az|s] = P[etl0a@l 5 coXl2l3) < o=aXlzBR ealooi(@)l*] < gp=aX*lzlf — 9p=V*/(2C%)
Step 2: General case

Fix a version of the conditional expectation. With the help of the universal Markov property
(cf. [Banu96| equation (42.18)) we obtain

b b

E /g(t, W) +2) — g(t, W(t)) dt| Fu| = Eyea /g(t, W(t—a)+ ) — g(t, W(t —a) dt

a a

where E, denotes the expectation w.r.t. the measure P,. Consider the following transforma-
tion

tl = att/ = E_l.

g )
This leads us to

1
e/g (0 + 0, W(EF) + 2) — g(tF + a, W) dt
0

Define
W (t) = 0712 W (0)

and observe that W is again a Brownian motion under P, starting in z for every z € R%.
We now have

1
= Ew(a e/g(&’ +a, VIW (') 4+ x) — g(tt' + a, VIW (') dt’

0
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Fix wy € Q. Set @ := Pyy(y,) and note that W — W (wo, a) is a Brownian motion under @)
starting in 0 (Q-a.s.. We define

h(s,u) :==g <€s + a, VI (u+ W (w, a))> : Vs €10,1], u € RY.
So we finally have

E{loas(; g, W)l Fa] (wo)

1

—E, |¢ /h (t’, W{t') — W(wo, a) + %) —h (t’, W{t') — W (wo, a)) at

o (G -wion)]

where Eq denotes the expectation w.r.t. the measure ). With this calculation we express
the conditional probability as

—Eq |¢

>)\@}.

Blloas(asg, W)| > WilehlZ) ) = @ 5

T ~
o —;h,W — W(wp,a
0’1(\/2 (o ))

In consequence of the fact that W — W (wo, a) is a Brownian motion starting in 0 w.r.t. Q
we are able to apply the conclusion of step 1 and deduce

Pl|oas(z; g, W)| > AW z|o| Fal(wy) < 267/, Vwy € Q.

Since wy was arbitrary this inequality holds for all wy € 2. Because of the relation F; C F,
taking the conditional expectation w.r.t. F, results in

Plloas(@; g, W)| > MWla|s|F,] < 2e7X/CC%),

which concludes the proof of the assertion.

Using the technique of the last proof we also obtain the following bound for the conditional
expectation of a7, ;.

Corollary 1.26

Let g be a real-valued Borel function on [0, 1] x R? bounded by 1 everywhere. Let 0 < s <
a<b<1, {:=b—aand p an even integer or p = 1. We then have

E[|o, (2)[P|F,] < CPe/T (g + 1) 2|, P-as. Vo € RY.

where C' is the constant from Theorem [1.23]
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Proof

Fix a version of the conditional expectation. With the same calculation as in the last proof
we have
p ]

where h and W are defined as in the proof of Corollary Since F; C F, taking the
conditional expectation w.r.t. F; and applying Theorem results in

E[0as(z: 9, W)PIFalw0) = Exwien [fp

00,1 (i h W - W(wo, a)>

|z]2

p
7| = ekl (g + 1) 2|2,

hws)
Elloas(z; 9, W)IP|F] < °C"T (g + 1)

Definition 1.27

Let g be a bounded, real-valued Borel function on [0,1] x R 0 <a <b <1 and z, y € R%
We define

b
pa,b(xa Y, 9, W) = Ua,b($; g, W) - Ua,b(y; g, W) = /g(tv W(t) + IIZ') - g(ta W(t) + y) dt

a

If it is clear from context we drop the g and W in the notation and write p,(z,y) instead
of pa,b(xa Y5 9, W)

Note that p,p(x,0) = 045(x). Hence, it is natural to ask whether the previous estimates for
04 can be translated to estimates for p,;. The next corollary gives an affirmative answer
to this question.

Corollary 1.28

Let g be a real-valued Borel function on [0, 1] x R? bounded by 1 everywhere. Let 0 < s <
a<b<1 0:=b—aand p an even integer or p = 1. We then have

@) Pllpas(e, v)] > AWela — ylo| Fo] < 27D, P-as., Vr,y € RY, YA >0
(ii)  E[|pap(z,y)|P|F] < CPePT (g + 1) |z — yl3, P-as., Vz,y € R?

where C' is the constant from Theorem [1.23]
Proof

We set
h(t,u) := g(t,u+vy), vt €10,1], u € RY

and immediately obtain

pa,b($a Y59, W) = O-a,b(x - Y ha W)

- 43 -



Chapter 1.3: Preliminaries — Lipschitz condition in probability

Applying Corollary leads us to

Pllpas(x,y: 9, W) > AWela = ylo| Fi] = Plloas(e — y; b, W) > AW a — ylo| 7]

2 g2

proving claim (i). With the help of Corollary we obtain in the same way
o (P
Elpua(w,y: 9. WPIF] = Ellous(e =y WPIE] < ¢ (£ 4 1) o= s,

which completes the proof.

Lemma 1.29
Let p > 1+ ¢ and g € LP([0,1] x RY) then

1

E/muwwwusanwmmmmm
0

where W denotes standard d-dimensional Brownian motion with W(0) =0 P-as., ¢ = 5
and

Clp.d) (-m (%r)“ff)d/?“)”q
pd) =g ——

(1—q)5+1
Proof
We set ¢ := p%l. Let E; be the Lebesgue density of the d-dimensional normal distribution
Eq(t, 2) = (2mt) =23/, Vi >0, z € R%

We then have

1

1
/ / Eq4(t, 2)? dzdt = / (2mt) 942 / e 1#13/C1) 4 q¢
0 Rd

0 Rd

D\,_.

1
(27t) 12 (2t Jq) Y2 dt = ¢~/ / (2mt)1-99/2 4t
0
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Since p > 1 +%l we have (1—¢)4/2 > —1. The integrand is therefore integrable and we obtain

(QW)(l—q)d/Q-l-l
d
(I-gq5+1

=q = C(p, d)*.

So by Fubini’s Theorem and Hélder’s inequality we deduce

1

1
E / o(t, W (1)) dt = / / 9(t, 2) Ea(t, 2) d=dt < 1lgl oo ens - || Ba llzoqocnay
0 Rd

= C(p, d)HQHLP([o,l}de)-
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2 Proof of the main theorem

In this chapter we will provide a proof for the main Theorem [I.5] In the first section we
discuss dyadic points and obtain an “almost sure version” of Theorem [1.23] (Lemma [2.5)).
For the main proof it is vital to do an approximation. The question of convergence of this
particular approximation is answered in the second section. Using this, the last section
contains the proof of the main result.

2.1 Dyadic points

In this section we introduce the space of dyadic points and dyadic neighbors. Using a
quite general approximation technique (Lemma we deduce an “almost sure version” of
Theorem [1.23] At the end of this section we generalize this estimate in Corollary [2.6]

Definition 2.1
Let n € N. For any k € {0,...,2" — 1} we set

1
Lom [k k+ [

on’ on

Definition 2.2

Let 1 <d < oo and |z]s := max |z;|. We call
1<i<d

Q={reR: |2|0w <1, = (v1,...,2q)", Vi: 3k: 2"x; € Z}
the space of dyadic points. We call z,y € @) dyadic neighbors of order m € N if
|z —Yleo=2"" and  2™x, 2™y c Z°.

Notation: = ~,, y. Additionally, we call z,y € @Q dyadic neighbors (Notation: z ~ y) if
there exists some m € N such that z ~,, y.

Definition 2.3

Let g be a bounded, real-valued or R%valued Borel function on [0,1] x R? and z, y € R%.
Analog to Definition and we define

nualaig W)= [ gt W(0)+2) — g(t. W (2) d.

In,k

Png(@,y; g, W) = 0 (29, W) — 00 i(y; 9, W) = / g(t, W(t) 4+ x) — g(t, W(t) +y) dt.

In,k

If it is clear from the context we drop g and W in the notation and write o, x(x) instead of
onk(x; 9, W) and p, (2, y) instead of p, x(x,y; g, W).
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Lemma 2.4

Let z, y € Q with 0 < | — y| < 1. For every integer r > 0 choose x, € 27"Z% such that

|t — 2o = min |z — 2|.
2€27T7Z4NQ

We define y, in the same way. Let m > 0 be the largest integer such that |x — y|, < 27™
holds. Then the following statements hold

(i) T ~m Ym or T = U

(11) Lr41 Yr41 Ty or Try1 = Ty

(111) E|N0 € N:Vn Z NQZ Tnt1 = T
Proof

(i)

Assume x,, %y Ym and x,, # y,. Let us first consider the case d = 1. W.l.o.g. we have
T < Ym. We therefore have y,,, — x,, > 27™. The distance between x and z,, (respectively
y and ¥,,) is at most 27!, This implies that x < y. Since z,, and y,, are not dyadic
neighbors of order m there exists z,, with 2™z, € Z such that x,, < z,, < y,,- Because z,,
and ¥, are closer to x and y than z,,, respectively, we have

T < zZym <.

Since x is closer to z,, than to z,, we have z, — 2 > 2 ™!, The same holds for ¥, so we
have y — z,, > 2771, See the following picture for an overview of the situation.

. \ . / .
N T : NV
| |

Hence
Y—T=Y—2Zm+2zn—xr>2"""

Contradicting |z — y|s < 27™. Now, consider the case d > 1. Let m; be the projection to
the i-th coordinate. There exists i € {1, ...,d} such that

i (2m) = mi(Ym)| = [Tm = Ymloo & {0,277}

So we have 7;(Z,,) % Ti(Ym) and m;(2,,) # 7 (ym). By the d = 1 case we get |m;(y)—m;(x)| >
27, This implies |z — y|oo > 27™ concluding the first part of the proof.
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(ii)

Assume x,.1 %,11 . and x,,1 # x,.. Let us again first consider the case d = 1. Since
r, € 27"Z we have x, = p2~" withp € {-2",...,2"}. W.lLo.g. ¥, < 2,41 Set z = (2p£1)27"!
such that z € Q. W.l.o.g. we only consider the case z, < z i.e. z = (2p+1)27""1. Since

2p+l Py
Z—ZL’T:W—§:2

holds, z and x, are dyadic neighbors of order » + 1. This means that z, < z < z,,;. But
by the definition of z, the distance between x and z, is at most 2771, We therefore have
x < z < x,41 which is a contradiction to the definition of z,,;. Now, consider the case
d > 1. Let m; be the projection to the i-th coordinate. There exists ¢ € {1,...,d} such that

[Ti(@ri1) — Ti(20)| = |Trg1 — Trfoo & {Oa 2_T_1}'

This implies 7;(z,41) %ri1 mi(x,) and m;(2,41) # m(x,.). By the d =1 case we conclude the
second part of the proof.

(iii)

Since x € Q there exists Ny € N such that z = 270 (ky, ..., k)" with k; € {=2M .. 2N},
Let n > Ny then x,, = x since

=2k, k)T =27 (R 2v N kg 2n N T e 27zl

Lemma 2.5

For every ¢ > 0 there exist C'(e) € R and A, C Q with P[A.] < e such that for every
real-valued Borel function g on [0, 1] X R bounded by 1 everywhere, we have

oni(@)] < Cle)vm2 ™ max (2], 27")

for all dyadic points z € Q, n > 1, k € {0,...,2" — 1} and w € AC.

Proof
Step 1:

For r € N we define @, := {z € Q : |z|oc < 27"}. Let m be an integer with m > r and z,y €

Q. be dyadic neighbors of order m. Applying Corollary [1.28(i) with A = X'(y/n + vm —7)
for some N > 0, s = 0 and using that v/d|z — y|s > |z — y|» yields

Pl pn(,y)| > NVd(vn + /m —r)27" /2
< Pllpni(z,y)| > N(Vn+vm—r)e—y,27"]

< 267/\’2(n+m7r)/(202) _ 267)\’211/(202)67)\/2(mfr)/(QCQ)'
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Choose X large enough such that \? > 4dC? + é—i holds, and henceforth we get

< 940437 )/(202) —2dC2(m—r)/(202) _ o,~2n,~N?/(4C?) ,~d(m—r)
Using the above inequality we obtain

co 2"

UUU U U|Pnkxy\>/\’\/c_i(\/ﬁ+m)2—m—n/2

n=1r=0m=r z,y€Qr k=
T~my

2" —1

izzi Z Z 9 2np—d(m—r) —,\’2/(402)

=0 m=r z,y€Qr k=0
T~vMmY

n

Z Z#{ X y < Q |x ~m y}g one—2n *d(m 7“)67)\’2/(402)

<(2-2m- r+1)d5d

oo 2™ oo
S 2 Z Z 2(3 . 2m*7‘3)d (%) efd(mfr)e*)\'Q/(élCQ)

n=1 r=0 m=r

co 2" o
_ 9.5 z:l z% Z()Qdm ( 2 ) - X?/(4C?)
dm

2 12 2
<32d+zzz( )’ (_) S
n=1 m=0 €
- "= (2 2 /a2
< 32d+2 =z —\2/(4C%)
;’4
< v Ko g

Since the left-hand side converges to zero as A" approaches infinity, we have proved that

co 27

lim P (U U U U lpni(@,y)| > XNVd(V/n + Vm —r)27m 2| = 0.

AN =00
n=1r=0m=r z,y€Qr k=
r~my

Let € > 0. Then there exists C(¢) > 0 such that

co 2™

U U U U U |onk(z,y)| > Cl(e )(\/ﬁ+m)2—m—n/z

n=1r=0m=r z,y€Qr k=

T~my
N

-~

e

Note that the probability of the event A¢ is at least 1 — ¢.
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So, for r € {0, ..., 2"} we have
ok (z, )] < Ce)(Vn + Vm —r)2~m /2,

Vo, y € Qp,  ~py, m>r, n>1, ke{0,..,2" —1}.

(2.5.1)

as long as w € AC.

With this inequality we will now prove the asserted inequality using an approximation ar-
gument based on Lemma [2.4]

Let © € @, with r as above. For every integer ¢ > r choose z; € ), as in Lemma ie.

z; € Q, N27°Z% such that z; minimizes the distance to z. By the triangle inequality we
immediately get

’Un,k(x)’ < ’pn,k@;m 0)‘ + Z ‘pn,k<xi+1> %)l

i=r

Observe that z, ~, 0 or , = 0 and ;41 ~;41 ; or 2341 = x; by Lemma [2.4](ii). The sum
converges trivially by Lemma (iii). This enables us to use the above estimate.

@.5.

Loz 4 3 O+ VT Ty
= S (i Vi
= C(g)27™? [2“\/5 +27" i \/521

n>1
= C(e)27"%27[2y/n + 2] < 4C(e)27%27"\/n.

IN

C(e)2 /227"

Step 2:

For a fixed n € N let z € Q such that |z, > 272". We set

= |log, |z | < [log, 2*"| < 2™
And hence we have

971 = g~ [loma el |1 < g-loma el — | (2.5.2)
Additionally, we have z € @),., because of the fact that

)00 = 27 0Bl < 277,
So we can apply step 1 to get

o k()] <4C(£)27227"/n < 8C(e)v/n2 x|
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Step 3:

Again for a fixed n € N let x € Q such that |z|, < 27%". Then x € Q, with r = 2",
so we have

|0 ()] < 4C(e)27"227"V/n = 4C(e)y/n2 /227",

This concludes the proof.

Using the relation between o, and p, , we generalize the last lemma in a similar way as
Corollary is proved.

Corollary 2.6

For every ¢ > 0 there exist C(¢) € R and A. C Q with P[A.] < € such that for every
real-valued Borel function g on [0, 1] x R bounded by 1

oni(z,y)] < C(e)yn2™? max (|7 — ylo, 27"

holds for all dyadic points x,y € Q, n > 1, k € {0,...,2" — 1} and w € A¢.

Proof
Let z, y € Q. We set

h(t,u) :== g (t,u+vy), r(t,u) :—h(t,u—l—%), vt €[0,1], u € R
and immediately obtain

xXr — T —
P2,y 0, W) = pri (. —y,0; b, W) = ppi (x -, Ty; h, W) + Pok (Ty 0; h, W)

=0Onk (m—;y;r, W) + Ok (%, h, W) .

Using the fact that (z —y)/2 € Q and invoking Lemma [2.5 readily results in

xr — xr —
|pn,k($ay;ga W)| S On,k (Ty;rv W) On,k ( 9 yahv W)‘

< C(e)v/n27"? max (]:c — y[oo,2*2n) , Yw e AS.

+
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2.2 Approximation via step functions

In the last section we obtained the estimate

0u(@)] < C(E)VR2™2 max (Jo]oe, 2°2")

for dyadic points z € ). We would like to replace x by a Lipschitz continuous function
t — u(t). To this end we approximate u by )-valued step functions w,, which are constant

on the interval I, ;. In this section we show that the approximants converge in the right
sense (Lemma [2.10)) and use this result to generalize the above estimate (Corollary [2.12)).

Definition 2.7
Define

¢ = {u: [0,1] — [-1, 1]d: lu(s) — u(t)|eo < |s—t|, Vs,t €[0,1]},

VO <k <2":Vs,t €l u(s)=u(t)
®, :=<u: [0,1 —1,1)* ’ ’
" {u 0,1] = [=1,1] Vm, 0 € ZN1[0,27]: |u(m2™") — u(l27")| < |m — 27" |’

o* = D@nuq).

Note that elements in ® are continuous, since functions in ® are Lipschitz continuous (with
Lipschitz constant at most 1). ®,, will be used to approximate elements in ®. Also note that
® and ®,, are separable w.r.t. the maximum norm and hence ®* is separable.

Lemma 2.8

Let ©w € ®* and n € N. We then have

2" —1

Zy (k27") —u((k+1)27)| < L.

Proof

Let u € ®* and n € N be as in the assertion. If u € ® the inequality follows immediately
from the Lipschitz continuity of u. Let u € ®,, for some m € N.

Case 1: m>n

2" —1 2" —1

Z lu(k27™) — u((k + 1)2 Z |u(k2mm27m) — w((k +1)2m 2™
k=
ued,, 2t1
< gm-ngTm — 1
k=0
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Case 2: m<n

2" —1

> ulk2™) = u((k+ )27

Since u is constant on I,, ; this sum simplifies to

2m—1

=) Ju(k2™™) = u((k + 1)27)]

k=0

and because of the fact that u € ®,,, we have

The following technical lemma is needed to prove the main lemma (Lemma [2.10) of this
section.

Lemma 2.9

For every € > 0 there exist § > 0 and A, C Q with P[A.] < ¢ such that if U C [0, 1] x R? is
open with |U| <4, then

1
/ILU(t, W(t)+u(t)) dt <e, Vu € %, we AS

0

holds, where |U| is the mass of U w.r.t. Lebesgue measure.

Proof
Let £ > 0. By Corollary [2.6] there exists C(¢) € R such that

[ oW ) = 6t W(o) + ) de] < V2™ (fo -yl + 27)
Ik (2.9.1)

Ve,ye @, n>1, ke {0,.,2" —1}.

holds for every real-valued Borel function ¢ on [0, 1] x R? satisfying |¢| < 1 everywhere with
probability at least 1 — /2. Choose m € N such that

5C(e) S V1272 < % (2.9.2)
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Define the finite set
A= {xr € Qlxr € 272}

2

Set p :=1+d and n := 4,22m#(€A),C(p ) where C(p,d) is the constant from Lemma |1.29]
Then by the Chebychev inequality for every bounded, real-valued Borel function ¢ with
19|l e (j0,1)xray < 1 and x € A, we have

/¢(t,W(t)+g;) at| > = | < z.gsz /¢(t,W(t)+m) dt

2.2m
Im,k

We use Lemma, to get the estimate.

2.9m e
< C(p, )|l v (o1 xre) < 2 2m#(A)

Note that we can put the left-hand side in norms since for every ¢ that satisfies the conditions
of Lemma —¢ also satisfies the conditions. Therefore

3

plUU /¢tW ) a) di] > o ZZ”m# =

€N k=0 reA k=0

In conclusion the probability that

/ o(t, W(t) + x) Ve € A, Vk € {0,...,2" — 1} (2.9.3)

-2 2’”’

holds for ¢ with ||@||r» < 7 is at least 1 — &/2. Let § := n? and U C [0, 1] x R? be an open
set with |U| < §. We define an increasing sequence of non-negative, continuous functions,
which converge pointwise to 1y by

or(x) == (r- dist(z,U°)) A1
Observe that

1601l e o, xre) < | 1ur|| Lo (o,1]xre) = U'P < 5P =
For each r € N we define the events

A, (2.9.1) holds for ¢, instead of ¢

and

B, : (2.9.3) holds for ¢, instead of ¢.
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Note that P[A,],P[B,] > 1—¢/2 and P[A, NB,] > 1 —¢. Let u € ®*. For every n € N define

— 2mu (k2™

up(z) = Z ]11%,6(:16)L o ) Vo € [0, 1],

where | - | denotes the componentwise floor function. Observe that w, is @-valued and if
u € ®,, for some m € N, u, converges trivially on [0, 1] since u,, = u for n sufficiently large.
This convergence even holds for u € ® as the following calculation shows

lim w,(z) = lim [2"u((2"2]27)] _ . 2Mu((2"2]27") — p(2tu((2"2)27T))

n—o00 n—o00 on n—00 on

where u(y) ==y — |y] € [0,1] for all y € R. Since u € ®, u is continuous and hence

= lim u([2"z|27") “EP <lim L2”xj2_"> =u < lim x — u(2”x)2_”) = u(x).

n—oo n—0o0 n—o0

Now, assume that A, and B, both hold. In this case we have

om _ 1 2m__1

[ oW +un) | < S| [ oW ey e <Y 55—

N
)
3
O ™

Observe that wu,, is 27" Z%valued and therefore u,,(t) € A. Using (A,) results in

1

/ 60 (6, TV () + s (£)) — 60 (8, W () + un(8) dt

0

< z / Do (LW 1)+t (1)) — (£, W (1) + un (1)) dlt

N~
In+1,k GQ GQ
(AT) 2n+1_1
< C(e)Vn + 127" max (|uns1 (k27" — un (k27" 1), 27")
k=0
antl_q

SCEWVRH127"2 3 Jua (k277 = un((k/2)27) |0 + 27

< C(e)vn+ 1272 11 4+ Z i1 (K277 — un(Lk/2J2”)\oo]

= Ce)Wn+ 1272 |1+ Z_ 27 |2 (k27 | = 2 (2 (k2] 27)] |oo]
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Cle)vn+ 1272 |1+ 2:_ 2—"—1M27l+1u(;€2—n—1” _ 2n+1u(k2—n—1)‘09
£ ol (L2 2
Y (/22— (20 (k22
<t 175 ) o )
! Py
= CEVn+127 4 Y fu(k2™ ™) —u (k=127
Py
Ce)vVn + 1272 |4 + Z ‘u((k +1)27" Y —u (kQ—n—l) }OO

Using Lemma we can estimate the sum and obtain

23
< 5C(e)v/n + 12772,

Therefore as long as A, and B, both hold we have by Lebesgue’s dominated convergence
Theorem and continuity of ¢,

1

/ 60 (6 W (E) + u(t)) dt = Tim | 6,(8, W (1) + un(t)) dt

n—00
0

/qﬁr (W (t) + upn(t)) dt + Z/d)r (t, W (t) + 1 (t) — G (t, W(E) + up(t)) dt

nmo

(Ar),(Br 9.2

) €
< —+5O Z\/?’L+ 12772 7 4 Z =g

€ €
2 2

We now define the event Q, as
Q,: /@(t, W(t) +u(t)) dt <z, Vu € O
Note that Q, is measurable since ®* is separable and

Q=N /@tWU+MD&<€==ﬁm/@@W®+MWﬁse

ueP* ueer
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The previous arguments already showed that A, NB, C Q, and hence P[Q,] > 1 —e. But
since ¢, < @1 we have Q,; € Q,. This implies that

P[ﬁQr] >1—c.

Using Lebesgue’s dominated convergence Theorem again, we deduce that

1 1

/ Lo (6, W() + u(t)) dt = lim [ &, (6, W(E) +u(t)) dt <

r—00
0 0

holds with probability at least 1 — ¢, which concludes the proof.

We are now ready to prove the approximation lemma.

Lemma 2.10

Let g be a real-valued Borel function on [0, 1] x R? bounded by 1 everywhere. There exists
N C Q with P[N] = 0 such that for all sequences (u,)neny in ®* converging pointwise to
u e P*

1

lim [ g(t, W(E) + un(t)) dt = / (6, W () + ult)) d, Vi € N°

n—00
0

holds.

Proof

Let g be a real-valued Borel function on [0, 1] x R? bounded by 1 and € > 0. Let § and A. be
as in Lemma By Lusin’s Theorem (cf. [Taoll] Theorem 1.3.28) there exists an open set
U C [0,1] x R? with |U| < § such that g|. is continuous. By Tietze’s extension Theorem
(cf. [BvROT| Theorem 15.15) there exists a continuous function h: [0, 1] x RY — R such that
h =g on U°and |h| <|g|.

Let (un)nen be a sequence in ®* converging pointwise to some u € ®*. With probability at
least 1 — ¢ the conclusion of Lemma holds, i.e.

1

/ILU(t, W(t) +un(t)) dt| <e, Vw € A°, Vn € N. (2.10.1)

0
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And the same inequality is true if we replace u, by u. Since g as well as h is bounded by 1
we have |g — h| < 2 everywhere and we therefore conclude

1

/ g6 W (E) + un (1)) — B, W(£) + un (1)) dt

0
1

g/]lU(t,W(t)+un(t))\g—h\ dt < 2.

0
Since h is continuous Lebesgue’s dominated convergence Theorem implies

1 1 1

lim [ h(t,W(t) + u(t)) dt = / lim A(t, W (t) + un(t)) dt = / h(t, W (t) +u(t)) dt.

n—00 n—00
0 0 0

Choose m € N sufficiently large such that

/h(z@ W(t) + un(t)) — h(t, W(t) +u(t)) dt| < e, VYn > m. (2.10.2)

All in all we have for n > m and w € A¢

/ g6 W (#) + un(8)) df — / g6, W (1) + u(t)) dt
< / (6 W () + un(8)) — h(E, W (8) + un(t)) dt

N J/

~—
<2 by ([@.10.1)

+ / h(t, W () + un(t)) — h(t, W () +u(t)) dt

[

~—
<e by (2.10.2)

h(t, W (t) +u(t)) — g(t, W(t) + u(t)) dt

+
O\H

. S/
-~

<2¢ by ([.10.1)
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We define

| ot

4= N UN /g(t,W(t)—l—un(t))—g(t,W(t)+u(t)) a| <

(U'n)nENE‘t‘*N meNn>m

lim unp=u
n—oo

Note that Ay is measurable since ®* is separable and

PN =~ ]_[ P*.

neN

We obviously have
App1 C Ay

which implies

i
k=1

concluding the proof.

1
P = lim P[Ag] > lim 1 ——-=1
k—ro0

k—o0

Remark 2.11

Lemma [2.10]also immediately implies that o, ;, and thus p,  are continuous. This enables us
to generalize the estimate in Lemma from dyadic points to the entire cube [—1,1]¢. By
a simple inductive argument we can also prove the estimate for all points in R?, which will
simplify arguments in later proofs. The following corollary is centered on these observations.

Corollary 2.12

For every € > 0 there exist C'(¢) € R and A. C Q with P[A.] < € such that for all real-valued
Borel functions g on [0, 1] x R bounded by 1 everywhere

[pu(@,9) < Cle)Vm2™2 (|7 = yloo + 27%)

holds for all z,y € RY, n > 1, k € {0,....,2" — 1} and w € AC.
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Proof
Step 1:

Let € > 0, g a real-valued Borel function with |g| < 1 everywhere and x € R? such that
x = |z] +y with y € @, where | - | again denotes the componentwise floor function. Set
roi= ||z]e] + 1, 2@ = ((i A |z1])sign(z1), ..., (i A |z4]) sign(zg))" for i € {0,...,r} where
z = (z1,...,74)". Additionally, we define

o RxRY— RY (tu) — (tu+ 2).

We are now able to write

oni(2) = / o(t, W (H) + ) — gt W (1)) dt

—Z/ (t, W(t) + 2) — g(t, W (t) + 2¥) dt
_Z g0 Ty (t, W (t) + 20 — 20y —gor o (t, W(t) d

Note that 20D — 2 € . We can therefore apply Lemma

‘O-nk | < Z‘O—n (i+1) ()790 Z),W)’

r—1

. . "
=0
% \/—2 n/2 Z |.T (i+1) (i)‘oo —i—C(E)\/ﬁQ_n/Q max( ’x(r) . x(r—l) |007 2_2n )
_/_/ ~———
=1 =y
< C(e)yn2™2(r — 1) + C(e)v/n2™""? (Jyloo + 27")

Ce)n2 ™2 (r =1+ |yl +272") = Cle)vn2 "2 (|| +27")..

Step 2:

Let z € R%. Choose a sequence x,,, € Q such that lim |x] + z,, = z. We write

m—00

1

lim o,(|z| +2,) = lm /ﬂlmk(t)g(t,W(t) + 2] + 2) — 1g,, (t)g(t, W (L)) dt

m—00 m—00
0
1

= / 1y, (Dg(t, W(t) + ) — 1y, (D)g(t, W (1) dt = 0 4(x).

0
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So, by step 1 we have

oni(@)] = lim [o i)+ 2)| < lim CEWR2™? (|2] + 2l +277")
= Cle)n2 ™2 (|z]w +2777) .

Step 3:
Let z,y € R%. With the help of the map 7, we obtain

P, 4) = / g W (E) + ) — g(t. W(H) + 1) dt

In,k

— / gor,(t, W(t)+x—y) —gor,(t, W(t)) dt = opp(x —y;g0 1), W).

In,k

By step 2 we have

k(. 9)l = lonr(z —ysg o7y, W) < Ce)Vn2 ™2 (Jz — yloe +277)

which concludes the proof.

O
2.3 Main result
We will now prove an estimate for the term
T
Z | e+ (Ya—1, Yq) oo
q=1
where y, € (. First, we obtain an estimate for the Euler approximation z,1; = x4, +

Onitq(Tq) (Lemma|2.14). By comparing y, with the Euler approximation we get the required
bound for the above sum (Lemma [2.15)), which is the last estimate that is necessary to prove
the essential lemma (Lemma [2.16) of the main theorem.

Remark 2.13

Let f be a bounded, Révalued Borel function on [0,1] x R? as in (1.0). We write f =
(g1,.--,94)" and note that

Henceforth, the conclusions of Lemma and also hold for functions f which are R
valued as long as the norm |-| on the left-hand side of the equations is replaced by ||,
ie.

’an,k(xQ f, W)’oo < 0(8)\/52771/2 max (’m‘oo’ 272”) ’

From now on we take f instead of g in the definition of o, and p, .
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Lemma 2.14

Let p € N be an even integer. There exists C(p) € R such that for all R%valued Borel
functions f on [0,1] x RY, which are bounded by 1 everywhere, 7o € Q and n,7 € N
satisfying r < 22 we have

Clp)A™*

Z |pn k+q :Eq 17xq)|oo > 2" " <>\\/—|x0|00 + C Z |xq|00)
q=1

for all k € {0,...,2" —r — 1} and for any A > 0. Where 2,41 = 2, + 0y 144(2,) for
qe{0,....,r—1}.

Proof

Observe that x, is F(4q)2-n-measurable, since o, 141 18 F(tq)2-»-measurable. We want to
use Corollary [1.28(ii) for x, instead of some z € R%. Due to this we do a measure theoretic
induction. Let F, A € Fqq2-» and a, 8 € R?. Let p be an even integer or 1. We then have

/ pussa(ada, B, dP = / Prssalc B2, AP+ / Prsa(0, 002, dP
—_———

FnA FnAe =0

B
- / Ellpusss(s Dl Frrgr] B < [ O (B41) 200 - 5l ap

FNA FNA

< / Co(p)27™]er — B L P

with Cy(p) := CPI'(p/2 + 1)dP/?, where C is the constant from Corollary (ii). Let us
now consider step functions. Let A; € F(yyq)2-n» be pairwise disjoint sets for i € {1,...,m}.
We then have

/ P k+q (Z O‘fiﬂAiy Z ﬁj]lAj>
ya i=1 j=1

dP = Z/|pnk+q az]]-Alaﬁl]]-A)

=17
m p
< Z/Cl(p)z_np/2|04i — Bilt1a, dP = /01(P)2_np/2 Z(Oéi — Bi)La,| dP.
i=1 F F i=1 [ee)

Let ¢, ¥ be non-negative F(;12-»-measurable functions. We approximate ¢ and 1 by
increasing sequences of ;4 q)2-»-measurable step functions ¢; and v, respectively. By
continuity of p, x+, (Remark [2.11)) we obtain

E[|pn,k+q(¢, ¢>|€o|f(k+q)27"} = E[|Pnk+q(zlgglo Gi, llgglo wi>|€o|f(k+q)27"}

211 . .
= E[}iglo |Pn7k+q(¢z‘awi)|€o|]:(k+q)2*"] = Z.ligloEHPn,Hq(Qbu ¢i>|£o|]:(k+q)2*"}

lim Ca(p)27"%(01 — ill, = Cu(p)2 ™10 — W,

IN
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As noted above, z, is F(;q)2-n-measurable, so we have

Ell0m (@) ol Forrgz-) = Ellpnstaltn, Ol Fiesgor] < CL(p)2 22,2y (2.14.1)

Ellonktq(Tq—1,2¢) S| Flhg2—] < Cl(p)Z_np/2|wq—1 — Zq[%- (2.14.2)
Taking expectation yields

Blowprq(w)lE < Ca(p)2 2Bz, . (2143

Elpnktq(g-1,2)[8 < Cl(p>2_np/2E|wq—1 — Zql%- (2.14.4)

As of now, let p be an even integer as stated in the assertion. Using the Minkowski inequality
we deduce that

(Elzgi1l5)""” = (Blag + onpra(@o)l5) " < (Blag2) " + (Elonrq(zq)[5)"

E113)
< (Elagl2)"? + Cr(p) /727" (Bl [2) P = (14 Ci(p)/727"/%) (Elz,[8.) "

Taking the p-th power results in
Elzgi1[% < (14 Cu(p) /7272 PEla,[2,.
By induction over g € {0,...,r — 1} we obtain

Elz 5, < (1+ Cl(p)l/’?‘”/z)”q|xo!§o, Vg €{0,...,r}

g<r<2n/?

2 (@Y
< exp(C1(p) 7)ol = exp(pCi(p)'/7) o[
Finally we have
Elzy|%, < exp(pCi(p)"/7)]xol2 (2.14.5)
for all g € {0, ...,r}. Define for q € {1,...,r}

YZ] = ‘pn,kﬂ](xqflva)’OO?
Zy = E[Y|Frg2-n],
X, =Y, - Z,

Observe that X is F(;4q+1)2-»-measurable and we have
E[Xqu:(k-ﬁ-q)?’"] = E[Yq - E[Yq|f(k+q)2’"]|]:(k+q)2*"] =0.

We define for ¢/ € N

rAL

My =" X,
q=1

And hence we have My = 0. Moreover, M, is a Gy := F(j4¢41)2-»-martingale since

rAL rAm rAL rAm

EMGn] = Y E[X,[Gn] = S EX,[Gu] + Y EXGu] =Y X,=M,, W>m
q=1 q=1T q:(r/\m)—‘rlT g=1
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and the quadratic variation process of M is

rAL AL
(M)p =) (My— M, 1)* =) X7,
qg=1 q=1

So, by the discrete Burkholder inequality (cf. [Bur66|, Theorem 9) we conclude

2 X

q=1

p

r p/2
E =E|M,[" < Co(p)E (M)?* = Co(p)E (Z X§>
q=1

where Cy(p) € R is independent of M. By Proposition we have

[Ad " T
< Go(p)r?PTE Y X2 = Co(p)r?*7t Y ENY, — E[Y| gl

q=1 q=1
Y20 p/2—1 - P p/2—1 - p
< Gy(p)r ZEYq = Ca(p)r ZE|pn,k+q(xq—1axq)|oo
q=1 q=1
©-14.4) T
Ci(p)Cap)r”> 1272 “Elwg_y — z,[2,
q=1
= Ci(p)Calp)r?* 272 B0y pg1(q-1)[%
q=1
E14.3) "
< Ci(p)’Ca(p)r?7127 Y "Bl
q=1
E.14.5) ) . o1 T
< Ci(p)*Calp) exp(pCa(p)P)rP>7127 N " g 2,

q=1
< Cy(p)2Co(p) exp(pCh (p) VP )P/ 227 |z P .

This calculation implies that

p s
< Cy(p)r?/?! ZEY;’ < C1(p)2Cy(p) exp(pCy (p)/P)rP/227 P 3P (2.14.6)

5y,
q=1 q=1
Let
Vo = E[Zg| Frg-1)2-n],
Wy= 2, -V,
Analog to above we define
rAL
M => "W,
g=1

Observe that W, is F(q)2-n-measurable and we have

E[Wq’}—(kﬂfl)?—”] = ]E[Zq - ]E[Zq|]:(k+q*1)2‘"]|f(k+qfl)2‘”] =0.
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Note that M) = 0. Moreover M is a G := F(j1)2-»-martingale since

rAL rAm rAL rAm
E[M1G,,] ZEW!Q’ =Y EWG+ > EWIG) =Y W, =M,  V=m
q=1 -, q:(rAm)—&-lT/ q=1

and the quadratic variation process of M’ is

rAL rAL
(M) = (Mg = My ) =5 W
q=1 g=1

We again use the Burkholder inequality (cf. [Bur66], Theorem 9) to establish

r p
E> W,
qg=1

with Cy(p) € R as before. By Proposition we have

p/2
=E[M" < C(p)E (M)} = Ca(p (Z W2>

[m T T
< Colp)r?PTEY WP = Colp)”?7' Y ElZy — ElZy|Frsg-on]l”

q1 ql

>0
< Cy(p)r?/* 1ZEZP<C yre/2 1ZEYP

q=1

So by inequality (2.14.6) we deduce that

Z,

< C1(p)*Ca(p) exp(pCi(p)/7)rP/227 7 | 2. (2.14.7)

Let us now consider the term V.

Va

E[Zy| Fkrq-1)2-7] = E[E[Yy| Frrqyz—]| Flrtq—1)2-7]

E[E[| pnktq(Tg-1, T¢) oo Flktqyz— [ F(k+q—-1)2-7]

E-

I/\E

)
Cl(l)Q_n/zEqu—l - xq|00|]:(k+q—1)2*"]
C

H(1)27PE ]| kg1 (€g—1) o] Fihrg—1)2-7]

)
C1(1)227" |21 |-

This leads us to

W=
=

r r—1

D V< C1)27")  [ageifoe = C1(1)°27 ) [gloe (2.14.8)
qg=1

q=1 q=0
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Note that Y; = X, + W, +V,. Define C(p) := max (22+1C1(p)*Ca(p) exp(pCi(p)'/*), C1(1)?).
Using the already established estimates we deduce that

ZY > 27" | \Wraolee + C(0) Z|xq|oo”

=P ZX + W+ V, > 27" [ AT 70le + C(p) leqloo”
Lg=1
—-n /\\/_|x0|00 - )\\/_|IO|OO
Lg=1 =1

=0 by E159)

Applying the Chebychev inequality yields

2n+1 p p
<|— | E .
N <X¢ﬂxﬂw) !

With the help of (2.14.6) and (2.14.7)) we obtain

on+l1 p
< | —] 2 2C C (p)Y/P)yP/29="P| 4 |P
< (5orm) 20 PO expluCr ) )22

= AP2PTCy (p)* Calp) exp(pCh(p)'/?) < C(p)A™”

This concludes the proof.

Lemma 2.15

For every & > 0 there exist C'(¢) € R and A. C Q with P[A.] < ¢ such that for all R%-valued
Borel functions f on [0,1] x R? which are bounded by 1, all n,r € N with r < [27/4], every
k€{0,....,2" —r — 1} and every o, ...,y € [—1,1]? we have

T r—1
—3n -n —on/ c
Z | jerq(Ya-1, Yg) loo < C() |2 ’ /4|y0|oo +27"/8 Z Vgloo + 2 2 ) Vw € AL
q=1 q=0

Where 7, := Yg41 — Yg — Onkiq(yy) for ¢ € {0, ...,r — 1}.
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Proof

Let e > 0. Set 8, := 2-"/42-2"* By Corollary [2.12] Remark and Proposition with
probability 1 — e/2 there exists C}(g) > 0 such that

|Pn k+q(x y)|oo > 101( )\/52_71/2 (|$ - y|oo + 2_2n) (2 15 1)
< Cile (2 3n/8|x—y|oo—|—(5n) o
holds for all z, y € R%L Let Q, := {x € R? : |z|, < 27°}. Then, for integers s with

0< s <2%2 we define

Qus=1{r € Q= (x1,...,00)", Vie {1,...d}: Ik € {—2"+1,...,2" — 1}: 2, = k275",

Furthermore, let p := 8(d + 3). Then by Lemma with X := X\2"/% there is C' > 0 such
that

< O \~Po—rn/8

r r—1
P Z |Prktg(Tg—1, Tg)|oo > 27" <)\2n/8\/ﬂ$0|oo + CZ ‘xCI|oo>
q=0

g=1

holds for some n,r, k and xq € @), as in the statement of Lemma We deduce that

0o [27/4] on_p_1

U U U U Z |Pneq(Tg-1, Tg)|oc > 27" (AQ”/S\/_Ixo\oo + CZ ’xq‘m)

n=0 r=0 k=0 z0€Qn, q=1

oo |27/4] 2n—p )
<Cy D AT < O 22N — (@) AP
n=0 r=0 k=0 x0€Qn n=0
00 LQ"/2J 9n/2
<O 2 N Q) NP2 < 022"/42"22‘12"‘1)\ popn/s
n=0 s=0 7—; n=0 s=0
<24 -2m
_ C2d5\—p Z 2n+n/2+n/42nd2—(d+3)n
n=0
< C2d:\—p Z 22n2nd2—(d+3)n < C2d5\—p Z 9 _ CQd—HS\_p,
n=0 n=0

Which converges to 0 as A — oo. Hence with probability 1 — /2 there is Cy(g) > 1 such
that

r r—1
D pnsra(wg1,79) |00 < Ca(e)27 (2n/8ﬁ’x0|oo +> ‘xq|oo> (2.15.2)
q=0

g=1

holds for all n,k,r and zy € @, as above. So with probability 1 — ¢ we can assume that

both (2.15.1)) and (2.15.2) hold with the same constant C'(g). Fix n, k,r, 4o, ..., y. as in the
statement of this lemma. Take the largest integer s € {0, ..., [2"/2]} such that yo € Q..

Note that

|y0‘oo S 275-
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Since s is maximal with this property we have
277 <yl or Jyolee <270 =272 <2972
and hence
975 < max (2]y0|oo, 2. 2*2”/2) .
By definition of @), s we can find 2y € @), 5 such that
20 = Yoloo < 277" < 217" |yloe + 27 (2.15.3)

We define z1, ..., 2, by the recurrence relation

Zg41 1= Zg + Onjtrq(Zq)- (2.15.4)
Using ([2.15.1)) we have
|Zq+1’oo = |Zq + Un,k—s-q(zq)’oo < ‘zq|oo + |pn,k+q(zq70)|oo
E15-1)

< |2z4leo + C(e) (2_3"/8\,2,]]00 + (5n) < (1+ 0(5)2_"/4)(]2(1\00 + C(g)n).
By induction on ¢ € {1,...,7 — 1} we have

r<on/4

2ol € L4+ CE2 (0l + Ce)r6n) < exp(CENCE) (2] +276,)  (2.15.5)

for all ¢ € {0, ...,r}. Since 2y € Qs C @, we can apply (2.15.2) to obtain
r—1

Ce)2™" <2n/8\/,7|zo|Oo + Z |zq|oo>
q=0

r—1
< Cle)2™ (2”/4|zo\oo + Z |zq|oo>

q=0

! 2152
E |Pnk+a(2g-15 Z¢) o
q=1

E15.5)

C(e)2™ (2"/4|zo\oo + i C(e) exp(C(e))(|20|00 + 2”/45n)>

= O (27120l + C0) exp(CE))r([20leo + 2746,
< 20(5)2 exp(C(g))2™™" (2”/4|ZO|OO + 2n/42n/45n) _ 032—3n/4 (|Zo|oo + 2n/45n)

where C3 := 2C(g)? exp(C(€)). So, we have

> 1pnkra(Za-1, 7)o < Cs27 (|20]0 + 27/46,,) . (2.15.6)

q=1
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We set u, = z, —y, for ¢ € {0,...,r}. Then we get the following estimate for the difference
|uq+1 - uq|oo = |Zq+1 — Yg+1 — %4 + yq|oo - |Un,k+q(zq) — Yg+1 + yq|oo
<O kra(Zg) = Ygr1 + Yg + Valoo + [Ygloo
= [onk+q(2g) = Ygr1 + Yot Yo+1 =Yg — Onet+q(Ya) loo + [ Valoo

-~

- |pn,k+q(zq7yq)|oo + ”7q|oo =Yq

We therefore deduce that

’uq—l-l‘oo < |uq+1 - uq‘oo + ’uq|oo < |Pn,k+q(quyq)|oo + "Vqloo + |Uq‘oo'

Using ((2.15.1]) we get

E15.1)
< 0(5)27371/8’2?1 - yq’oo + C(e)dn + |7q’oo + ’uqloo

< (14 C()27) (Jugloe + C(€)dn + [glo0)-
Again by induction on g we deduce
r—1
|Ugloo < (1+ C(e)27"/*y <|U0|oo + C(e)ro, + Z |7q|oo>
q=0
.
for all ¢ € {0, ...,r}. Since |ugloo = |20 — Yoloo < 27|yoloo + 272" we have

r—1
—n/4\r —n —an/
ltglos < (14 C(e)27/4) (21 [Yoloo + 272" + Ce)rd, + ) wq|oo>
q=0

r—1
< C(e) exp(C(e)) (21—”|yo\oo +27 g, + ) I'yq!oo> .

q=0
And therefore

©15.10)

‘Pn,k+q<zq7 yq)‘oo < C<€)273n/8‘2q - yq’oo +C ()0, = 0(5)273n/8‘uq|oo + C(€)0n
r—1

< O(e)? exp(C(e))2*"/8 (21_"|y0|00 +272 e, Y |7q|oo> + C(e)6,
q=0

r—1
< C(e)*exp(C(e))27%8 ( 2 yoloe + 2777+ ¢ 8, + 27785, + Z |7q|oo>

<23n/8 q=0

r—1
< 032—371,/8 (2—n|y0’00 + 9—2"/? i 23n/85n + Z ‘,quoo> ‘
q=0

In conclusion we obtain

r—1
—3n, —n —on/ n
|Pnskra(Zq Yo)loo < C32757% (2 [Woloo +2727" +25/55, + quloo) : (2.15.7)
q=0
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Observe that a similar calculation implies that we have the same estimate for z,, y, replaced
by z,-1 and y,_1, respectively. I.e.

r—1
—3n -n —on/ n
Pnkra(Zo1, Yg1)loo < C327° /8 (2 19000 + 272 P gn/ss Z |7q|oo> ) (2.15.8)

q=0

In order to complete the proof consider the following equality.
Prkta(Ya—15Ya) = Prtra(Zg-152¢) + Prkra(Yg—15 2g-1) + Prkrq(2g, Yg)-

Using the above identity for all ¢ € {1,...,r} and the triangle inequality, we obtain

Z | et (Ya—1, Yg) oo < Z |Pnea(Za-1, Zg) oo + [P seta(Ya-1, 2-1) oo + |Pnb+a(245 Yg) |-
q=1 qg=1

Applying the estimates ([2.15.6)), (2.15.7) and (2.15.8)) yields

r r—1
< 05273 (|2]o +2/%6,) +2C5 Y 275/ (leo\oo +272 oty 4N |w\oo>

q=1 q'=0

r—1
_ 032—3n/4 (|ZU|oo + 271/45”) + 203r2—3n/8 (2—n|y0|oo + 2_2n/2 i 23n/85n + Z |'7q|oo>
q=0

r<2/t —3n/4 n/4 —n/8 [ 9—n —2n/2 | 53n/8 \-
< (52 (J20]o0 + 2™6,) + 2C52 27" 90|00 + 2 + 2750, + E Vqloo
q=0

r—1
S 203 (2_3n/4|20|oo + 2—n/25n + 2_n|y0|oo + 2_2n/2 + 2n/45n + 2—n/8 Z |’7q|oo) )
q=0

, .
Since |20]0o < |Yoloo + |20 — Yoloo < [Y0loo + 27" |Y0loo + 272 " we have

r—1
—3n/4 —3n/4 o—21/2 —on/2 —n/2 n/4 —n/8
§803<2 Yoloo + 27342727 4 9722 L g2 5y on/ts 19 Zlmm)
=1 <1 :2_2n/2 q=0

r—1
< 3204 (2_3”/ yoloo + 2777 4+ 275N |vq|°°> |

q=0

Which concludes the proof.

Using the previous estimates we are finally ready to prove the crucial lemma from which we
deduce that the only solution of equation (1.8)) is the trivial solution u = 0.
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Lemma 2.16

Let ¢ > 0. Let u be a solution of equation where f is bounded by 1 and W(w) := w.
Assume that u(w) € & for all w € Q. Then there exist A. C Q, K > 0 and my € N
with P[A.] < e such that for all integers m with m > mg, j € {0,...,2" — 1} and 8 €
[2-2"" 92" gatisfying [u(j27™)|w < 3

[w((j + 1)27) ] < B (14 K2 ™ logy(1/8)) Vw € A

holds.

Proof

Let ¢ > 0. Choose A. C Q with P[A.] < e such that the conclusion of Lemma and
Corollary hold with constant C5 > 1 and the conclusion of Lemma holds with
constant C's > 1 for all w € A¢. Let w € AS. Fix m, j and 3 as in the statement and suppose
[u(j27) |0 < B as well as my > 2. We set N := 4|log,(1/5)]. Observe that

I3 _ g < N < 23m/AH2, (2.16.1)
Suppose u(w) € P satisfies equation (1.8]) as stated in the assertion. Define for n € N and
z € [0,1]

2" -1

up(x) = Z 1z, , (z)u(k27").
k=0

Note that w,, converges pointwise to w on [0,1[ and u, € ®* since u € ®. Let a be the
smallest real number such that

(F+1)2n—m—1
S Jul((k+1)27") —u(k2 )| < a2 (V2?2 + N), Vn € {m,..,N}. (2.16.2)

k=j2n—m

holds.
For n > m define
(j+1)2n—m_1
Py = Z [u(k27™)] o0 -
k=j2n—m

By splitting the sum in two sums, one where k is even and one where k is odd, we can
estimate 1, by 1,,_1. For this let n € {m + 1, ..., N}. We then have

(+1)2n 1 (12" 1

b= S0 k2 M+ S uk2

k=j2n—m k=j2n—m
2|k 2k

(j+1)2r~m—1

< 3 Julk2 )

k=j2n—m
2|k

(j+1)2n—m—1
+ > Julk2™) —u((k = 1)27)|oo + [u((k — 1)27) oo + [u((k + 1)27") — u(k2™")|.

k=jan—m
2k
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Since k — 1 is even whenever k is odd, rewriting the term |u((k — 1)27")| yields

(+1)20 =1

=Y k2 + Juk2 )

k=j2n—m
2|k

(j+1)2n—m—1

+ Z u(k27") = u((k = 1)27")|oo + [u((k + 1)27") — u(k27")|s

e

(j+1)2n—m—171

= 2 Y Juk2 )|

k_anfmfl
(j+1)2n—m—1

) ulk2™) —a((k = 127 e + Ju((k +1)277) — (k27w

k =j 27L m
2tk

(+12rtm—1 (G+1)2n~m-1
= 2 > Juk2 "N+ > Ju((k+1)27") — u(k27)| .
k:an—lfm k=j2"_m

And by the choice of n, we have

(2.16.2)
< 21 + a2 (V22 + N) .

By induction we deduce

¢n < 2n—mwm_’_ Z a2n—€—m <\/Z2€/2 —|—N)

{=m+1

= 2" [u(j27" oo + 2" D 27 (WW + N) : vn e {m+1,.., N}

l=m+1

We use that [u(j27")|e < f and 0242 < 2.220/3 to get

< 2" B ta Z 27V LaN Y 2t <o B4 20 Y 2710 +aN2m]
{=m+1 l=m+1 _ f=m+1
L =1 i

= 2" B+ 202722 "0 4 a2_mN]

L =1
[2.16.1) [ n—m 1
n—m —m —£/3 —m n—m —-m -m
< 2 B+ a2 Ne§12 + a2 N]gz {5—#&2 N—1_2_1/3+a2 N|.

By setting Cy := =75 + 1 we have

= 2" [B+4(C1 —1)a2™™N + a2 "N| < C12"™ (B + a27™N).
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In conclusion we obtain
U < C12"" (B + 27N, Vne{m+1,.., N}
Since u solves equation (1.8) and by Lemma we have

(k4 1277 — u(k2™) / FIW) +u(t)) — F(t, W (1)) dt

(2.16.3)

20 iy / FEW () +ugt)) — F(W (1)) dt

:/f(t,W(t)Jrun(t)) FEW(t dt+2/ftW )+ gt () — F(£, W (#) + ue(t)) dt.

ZnI

Since u,, is constant on I, ; we can rewrite this as

= on(uk2™) + Y / FEWE) + upa (1) — F(EW(E) + ue(t)) dt

Eznl
oo (k41)26-n_q (2r+2)27¢71

— 1YY / FETVE) + wen(8) — FE W) + uglt)) dt

l=n r=k2¢—m 9p9—t—1
oo (k1)2e-n—q @r+1)27!

= i ) + Z > / FEW () +u(2r27 7)) = (LW () +u(r2™)) dt

l=n  r=g2t-n

-

2r2—t-1 =0
(2r42)2—¢-1

+ / FEWE) +u((2r +1)2750) — fF(6, W () +u(r27)) dt
(2r+1)2-¢-1
oo (k+1)20-m—1

= 0y i ( )+ Z Z Pei1, 2r+1 (27“ + 1)24_1) , U (T2_€)) )

l=n r=k2t—n
This leads us to
(j+1)2n—m—1

> fu((k 4127 = w(k2™) = o r(u(k27))|s

k=j2n—m

(+1)2" "1 oo (k+1)20-7—1

< Z Z Z |p£+1,2r+1 (u((2r + 1)2471) U (7'24)) ‘oo

k=j2n—m —n r=k2¢{—m
By Fubini’s Theorem we have

oo (GH1)27 ™1 (k+1)2¢6"—1

=2 > X s (e(Cra ) e ()

k=j2n—m r=k2¢—n
We set
(+1)20 =1
Q= Z }p€+1,2r+1 (U ((27" + 1>2_Z_1) » U (TQ_Z)) ’oo
r=j2t—m
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and have
(j+1)2m—m—1 [e'S)
S Julk+1)27) —u(k27) — opp(u(k2)| <D (2.16.4)
k=jan-—m l=n

From the reversed triangle inequality we deduce

(]+1)2n7m71 (j+1)2n7m71 00
Y kD2 w2 e < Y o2 e + S0 (2165)
k:an—m k:an*m {=n

The idea of the proof is the following: We will obtain estimates for the two sums on the
right-hand side of the above inequality. For the first sum we simply use Lemma to obtain
the estimate (2.16.6). We will split the second sum in the cases n < ¢ < N and N < ¢ < oo.
In the first case we use Corollary which will lead us to inequality . In the second
case we have to do a more direct computation which heavily relies on the fact that u is
Lipschitz continuous (Inequality (2.16.8)).

Unfortunately, the final bound for the second sum is not strong enough to prove the assertion.
For n in the range N'/6 < n < N we will use Lemma [2.15to get the more sophisticated esti-
mate for the second sum. Our old estimate estimate will be recycled (see (2.16.9)
to estimate the error term 7, , of the new estimate.

Combining the new with the old estimate will result the final bound (2.16.14)).

Using the knowledge of the already established estimate for the left-hand side and
the minimality of a we will finally complete the proof.

We will now estimate the two sums on the right-hand side starting with the o, sum. We
apply Lemma to obtain

(F+1)2nm -1 _(j+1)2n—m—1
S ok £ S Covm2 2 (Ju(k2 )| +27)
k=jon—m k=jan—m

and since n > m and N < 2™ we get

(j+1)20-m =1

< D) Com2 (Ju(k2) | +27V)

k=jan—m
(j+1)2n—7n_1
= Cyyn2 "2 (22N g Y
k=jon—m

Again, using that n € {m + 1, ..., N} implies

= Coy/n27 "2 (27727 44, ) " 02\/‘ 272 (20m2N + 12 (B4 a27™N))

= Co/n2"*™ ™ (27N 4+ C1 8 + Clazme) < 20102\/‘ 2"/2m (3 4 a27™N)
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and hence for the first sum we obtain

(j+1)2n—m—1

> ona(u(k27) | < 2C1Coy/n2"* ™ (B + 027N
k=jonm (2.16.6)
Vne{m+1,.., N}

Next we bound €,. By Corollary [2.6) we have
100k (@, 9)oo < C227PVNE@™N + |z — ylo), VE< N <2

So, for m </ and ¢+ 1 < N < 2! this leads to the following estimate

(j+1)2 -1
Q= > |perrarn (u(@r+ 1277, u@r27)|

r=j;20—m
(j+1)2=m—1

< Y G2 YN 7N Ffu((2r+ 1277 = u(r2 7))
r=j2¢—m

(j+1)26-m—1
< C27PVN 272 > Ju((2r + 1277 = u(r27) |
r=j2L—m

g+1)2‘v’+1 m_1

Cy27*VN (2 Mot N Ju((r+ )27 — w27 |

r= 3284»1 m

IA

2

4/2\/_ (2 N2Z—m+a2—m <\/H—12(€+1)/2+N>>
< (27 U2/N (2 Not=m 4 n9=m (2\/'2ﬁ/2+N>>

Hence

O, < 272N (2—N2‘—m Fa2m (2\/523/2 + N)) ,

(2.16.7)
Vm </, (+1<N <24t

This implies that

=z

< CyV'N Nz_l 9-4/2 (Q*sz*m fa2m (2@25/ 2y N))

{=m

N-—1 N-—1 N—-1
= CyV/N2™ lz—N > 224203 VitaN Y 2—5/2]
{=m {=m {=m

T
3

< O/ N2 [2—N4 N2 L 90 NV + 4QN} .

Estimating N by Nv/N yields

< 60,/ N2 [Q*N/Q i aN\/N} < 60,27 [\/NTN/? i aN2] .
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Now consider the case £ > N

0o (GH1)26-m—1

Z Z Z ‘P€+1,2r+1 (u((2r +1)27h), u(r?‘e)) ‘OO
(=N (=N

r=j2{—m
0o (jH1)26-m—1
< Z > 2 VIFT (2 fu((2r + 1277 —u(r2 ).
_]22 m

By the Lipschitz continuity of u we get

oo (+1)2¢-m-1
Z > 2027 V(27 4 |(2r + )27 = 2r27 )
{=N r=j2t-m
0o (jH1)26-m—1

=) D> 202V 27

(=N p=j2t—m

= Z 3052072027 = 302 Z V22
— 352" mZ\/ﬁ—l— N2~ (N2 — 3¢,97m9— N/QZ\/H N2

< 30,2 Mo N/2 Z(\/Z +V/N)274% = 3C,2-mo N2 [Z Vit 4 VN 2t
/=1 =0

=0

Using NI < 2-2743 pegults in

< 30,27 M2 N/2 [2 Z 9t/3 4\/N]

/=1
< 30,2 ™2 N/2 [8 n 4\/N} < 240,/ N2 N2,

And hence

> Q< 24C, VN2 N, (2.16.8)
Combing these two estimates results in

D Q<6027 [\/N 27N 4 aNQ] +24C, VN2 N2

< 24C,27™ [\/NTN/? +aN?+ \/szN/Z] = 480,27 ™ |/ N2~ N2 L o N?| |
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Our next aim is to improve the estimate for large n using Lemma Let NY/6 <n < N.
We define

Yok = u((k+1)27") —u(k2™") — opp(u(k277)), Vk € {0,...,2" — 1}.

Therefore, we deduce

(j+1)2m—m—1 ) >
> |%k|oo == Z < 480527 (VN2TN2 1+ aN?). (2.16.9)
k=jon-m l=n
We also set
(j4+1)2n—m—2
A, = Z | pnr (w((k 4+ 1)27), u(k27™))]| o
k=jan-m

Comparing €2 with A results in

(+1)2m -1

Q, = Z ‘pn+1,2r+1 (u(@r+1)27"71) Ju(2r27"7)) ‘OO

r=j2n—m

(122

< D lpwenre (w (1277w (k2707 = Ana

k:j2”+1_m

We set r := [2"/4]. In order to estimate A, we will use Lemma m To this end we split
the sum into s r-sized pieces. For reader’s convenience we define

’IAL(Z') = ]]_[07(j+1)2n—m,1] (.TQn)U(.T), Vo € R.

@ is the trivial extension of u which vanishes outside of [0,(j + 1)27™ — 27"]. Choose
i € {0,...,r — 1} such that

[r—l2n—m| r—1 |r—l2n— mJ
> a2 i+ )27 | < Z Z (2" 4 g+ )27 |
=0
LT—IQn—mJ
holds. Since we calculate the mean of > |a((j2" ™ +¢g+tr)27")| on the right-hand side,
=0

it is clear that such an 7 always exists. Set s := [r~1(2""™—4)| and note that s < [r~1277™].
Using that we have

lon—m
SL_12nmJ1T1I'T2 J

dola(G T i )2 < Z Z L((72"™ 4+ ¢+ )27 | o

t=0

Since u vanishes if ¢ 4 tr > 2"~ this simplifies to

on—m__q1 1 (]+1)2n7m_1
=0 2 G R e =0 DD k2 e =1
k=0 k=j2n—m
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So, we obtain
D Ja((F2r " i+ )27 oo < 7. (2.16.10)
t=0

For t € {0, ..., s} we define k; := 52" ™ 4 i + tr and g = g u((ky + q)27") for ¢ € {0, ..., 7}.
Observe that for t < s — 1 we have

ke =32 " i+ tr < (27— 12" i (s—)r=2" 2" p it (20 —0) | — 1
<M 2T L g2V —— =2 — 1,

Therefore, we are able to apply Lemma for every t € {0,...,s — 1}

Z Pn,kﬁq(yét—)l?yét)) < CB 273n/4’y(()t)‘00
q=1 o 1 (2.16.11)
ki+q<2n 8 _on/2
+2 Z"Yn,j2”—m+i+tr+q|oo + 2
q=0

In the case t = s we also apply Lemma [2.15

2n—mM _—j—sr—1
213
Z pnkerq(?/é )17y155)> < C 2- 3n/4| % ’OO
g=1 onN—m_;_gn_9 (21612)
—n _9n/2
+278 Z [V jan—m fitsr+gloo + 277 ]
q=0

Note that the sum on the left-hand side has less than r summands and v, k,+4 = Vn,jor—mtitriq-
Summing over ¢ results in

(j+1)2n~m—2

> [on 1 (w(k277), u((k 4+ 1)27"))[o

k—j2"—m+i

_Z Z O ket 1 (8 (]2”’7”+i+tr+q)2’”)l,@((j2"’m+i—i—tr—l—q—l—1)2’”))|oo

kf+q+1<2n _yflt) _yt(]t_‘zl
2NTM —j—gr—2
+ Z Pt (G2 i s+ q)27") (G2 i sr g+ D2

2nTmM —j—sr—1

s—1 r
=" a1 ) e + Z Preera (U1 48 oo

t=0 g=1
kt+q<2m

Applying inequality (2.16.11]) and (2.16.12)) yields

s r—1
<G Z 27 A((j2" " 4 i A tr)27 ) oo + 277 Z [Vn,jan-mtitirqloo + 272"
=0 z‘+t'r-+qq§:2(’)“mfl
s (j+1)2n—m—1
= Cs [ 279N a2 i+ )27 oo 27 Y el + (s + 1272
t=0 k=j2n—m+i
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(j+1)2n—m—1

[£16.10) n
S G |22 S ke (s 12
k:j2n77n+i

Since ¢ < r — 1 we can use Lemma directly to establish

J2P M 4i—1

S puen k2wl + D2 oo < Ca (27 (27
k:anf’m
janTm4i—1
+27% 3" Pkleo + 277
k:j2n7'm

Combing the last two estimates yields our desired estimate for A,

(+12n7m =2 j2nTmgi—1
A= Y s (k27 u((k+ D27+ > |pnpst (w(k27), u((k +1)27"))

k=jon—m4q k=j2n—m
(j+1)2n"m—1
< Gy |27 127 3T il + 27 (27 o + (5 +2)272

k=jon—m

By (2.16.3) and the assumption |u(j27)|x < [ we have

(j+1)2r~m—1

(2.16.3) n
S 03 2—3n/401r—12n—m(6+a2—mN>+2—n/8 Z |7n,k|oo+2_3n/46+(5+2)2_2 /2
k=jon—m
169

' n
< Cs [2012‘"1(5 + a2 N + 48C52 (VN2 TN/ 4 o N?) 4 2730/ 4 gn-mo—2 /2}
S 48010203 |:27m(5 + a2*mN) + 2*m*n/8(\/ﬁ27N/2 + OéNz) + 2,m2n,2n/2i| .

The following calculations show that the first term dominates the last expression.

278NN < VNN < 28\ flogy (1/8)272 8/ < 93571282 < 9%,

/8N < NS /8 o208 2.1§6.1 2/ o 3m /442 < 998g-m

o212 g-2/3 - o aNVOB oot N 52t gan-dlog,(1/6) _ 92! +igl < 92iHdg

Therefore, we get A, < 3- 2241+8CICQC’32_"L(6 + a27™N) and since the same bound holds
for A,,.1 we have

Q, < Apyy < 227480100527 (8 + a2 ™N), YNV <n < N-1.
We deduce
N—-1
> Q< C27"N(B+ a2 "N) (2.16.13)
(=N1/641

where €y := 22" +8C,C,Cs.
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Using the old estimate we get

NZ NZ SRYN (27V2 a2 (V2 4 N ) )

=m =m
N1/6 N1/6 N1/6

— CyW/N |27 No—m Z 9t/2 4 902~ ™ Z VI+ a2 ™N Z 9-t/2
{=m l=m l=m
< CyV/N2™™ [2—N4 QNYE2 o NS N2 L N4 2-’"/2}

< 4G VN2 2NNy aNYA a2

Combining these two estimates with our old estimate yields

N1/6
ZQE ZQ€+ Z Qe—i—ZQz
(=N1/641
B S TeRA e R 272N N g a2 2N |

+ C2"N(B + a2 ™ N) + 24C, VN2 N2
< 246,027 [N(F+ a2 "N) + VN(aNV! + a2 /2 N)
FV N2 NN \/Nz—N/Q}
< 246,027 [N(ﬁ +a27™N) + aN (N4 4 27m/2/N)

L N2 NoNe/2 | N2‘N/2} .

The last two summands can be estimated by the first one as the following calculations show

0-NQNUO/2 gt g-tlogy(1/8)g8' *loes(1/8)/2 _ 91 92
2~ N/2 < 4.9° 2log,(1/8) 452 < /6

£ log, (1/8) < 94 . 9—3logy(1/8) 2463 < B,

So, the first two terms dominate. We therefore obtain

D 0 <2402 [IN(B+ a2 " N) + aN(NV4 4 272V N) | (2.16.14)

{=m
To conclude the proof we use both estimates to bound the term

(j+1)2n—rn_1

> Jul(k+1)27") = u(k27) |

k=j2n—m
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With the help of (2.16.5)), (2.16.6) and (2.16.14]) we estimate the sum by
< 201 Co/n2"*™ (B 4+ a27™N)

+ 2400277 [N (B4 a2™™N) +aN(N~"V4+ 2*m/2\/ﬁ)]

<027 [\/52”/2 (B+a2™™N) + N(B+ a2 ™N) +aN(NV* + 2—m/2\/ﬁ)]

< Cs27 [Vn2"2 4 N - |B+ (27N + N7V 4 272/
with C5 := 24C,C5Cy. Hence, by the minimality of o and we have
a2™™ [n2"? + N| < G527 [y/n2"? + N] - [5 +a(2N + N7V 4 272N
for all n € {m+ 1,..., N}. This implies that
a < Cs [6 + a2 N 4 NV 2‘m/2\/ﬁ)] .
Since 27N < N~Y/4 < 27m/2\/N and

,
lim 272N < Tim 27/208/5 = Jim 27m/SHL =

m—r0o0 m—0o0 m—ro0

we can choose mg large enough such that

1
Cs (2‘mN+ N4 +2‘m/2x/ﬁ) <3

holds for all m > mg. It now follows
a < Csf+aCs(27™N + N~V 4 97m/2/N) < 058 + %

= a< 2056
Setting n = m in (2.16.2)) yields

[u((F +1)27) oo — [u(127) oo < Ju((j +1)27") — u(jQ_m)]oooQ—m (Vm2™/? 4+ N)
= [u((G + 1)27™) oo < [u(427™)|oo + a27™ (v/m2™? + N)

< B+42C5827™ (vVm2™? + N)
= B (1 +2C5v/m2™™/? + 2C52™N)

Vym<2-m/2N
< B(144C527"N)

= 53 (1+ 160527 [logy(1/8)])

< B (1+ K2 logy(1/8))
where the constant K can be expressed as

K =16Cs = 3-27C1C,C,y = 3- 221502020, < 227020,

which completes the proof.
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With this lemma we can now find the zero set N, which is required in Lemma to prove
the main result Theorem [L.5l

Theorem 2.17

Let f be a Ré%valued Borel function, which is bounded by 1/2 everywhere. There exists a
set N C Q with P[N] = 0 such that

u(t) = /f(s,cu(s) +u(s)) — f(s,w(s)) ds = u=0, Yw € N°.

Proof
Step 1:

Let u be a solution to the above equation. For ¢1,75 € R we have
to
|u(tz) — u(ty)| = /f(s,w(S) +u(s)) = fs,w(s)) ds| < [to — ta] - 2| f]| = [t2 — ta].
t1

Therefore u € ®. Let ¢ > 0. Applying Lemma [2.16| gives us a K > 0 and my € N. For
m € Nand j € {0,...,2™ — 1} we define

93m/4

Bo =27"",

Bjr1:=B;(1 4+ K27 logy(1/5;)),

o= 1ogy(1/5;).
Let m be sufficiently large i.e. In(2)"'K27™ < 1. Note that 79 > 0. Assume ~; > 0 for some
j€{0,..,2™ —1}. We then have

~5>0

Yit1 = —1ogy(Bi41) = v; — logy(1 + K27™;) > ~; (1= K'27™™)
[0,1]
€10,

with K’ := K/In(2). By induction this proves that v; is non-negative and decreasing. Again
by induction on 5 we also deduce

7 2 01 = K277 2 (1 = K277 2 e = 9m/tem Kt > g8,

where we again used that m is “sufficiently large”. Since j3; is increasing, we obtain

93m/4 92m/3

2 = /80 S 6] S 2 ) VJ S {07 72m}

This and the fact that u(0) = 0 implies that /; fulfills the conditions of Lemma for all
j €40,...,2™ — 1} as long as m is large enough and hence we have

922m/3

u(j27") e < B; <2727, vj € {0,...,2m}.

By letting m go to infinity, we deduce that u vanishes at all dyadic points. By continuity of
w it follows u = 0 on [0, 1] with probability at least 1 — e.
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Step 2:

Let k£ € N. By setting € := 1/k in step 1 we conclude that there is A, C Q with P[A;] < 1/k
such that v = 0 for all w € Af,. By defining

N = ﬁ Ak
k=1

we have u = 0 on [0, 1] for all w € N° concluding the proof.

Proof (of Theorem (1.5

Let f and o be as in equation . By Proposition and Remark it is enough to
consider the case where f is bounded by 1/2 everywhere. Using Theorem there exists
N C Q with P[N] = 0 such that N satisfies the conditions of Lemma [1.8 Invoking Lemma
yields the required result.

O
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3 Applications

As an application of the main result of this thesis we focus on Davie’s Corollary 4.1 of [Dav(7]
in this chapter. Furthermore, we establish a corollary which shows the connection between
path-by-path solutions and solutions of perturbed IEs.

For partitions
P:{0:t0<...<tN:T}
we define the mesh

mesh(P) := max [tn — tn 1]

and the FEuler approximation
Tp41 = Tp + W(thrl) - W<tn) + (thrl - tn)f(tna xn)
for n € {0, ..., N — 1} with xy := 0.

Corollary 3.1

Additionally to the previous conditions in equation (1.0)) let f be continuous with |f| # 0.
For almost all Brownian paths W and every sequence of partitions

P = {t0,.t))

with klim mesh(Py) = 0 we have
—00

lim sup |asg‘”) —x(t k))| =0,

k—o0 OSHSNI@

where x is the unique solution from Theorem and 7% the Euler approximation w.r.t. the
partition Py.
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Proof

Let W be a Brownian path for which the conclusion of Theorem holds. Suppose there is

a sequence of partitions P;, with klim mesh(Py) = 0 but  sup P x(t%k)) >0 > 0. Set
—00

0<n<Nj,

n

We then have

Ufﬁl - Ugﬂ)

2 = W) = o+ W)

k k
= [t%), — tW|| FP, 20| < 18— 1P| fe.

Define u® € C([0,T],R) as ulf at ¢ and interpolate linearly at the other points. Note

that u® is continuous (even Lipschitz continuous) and uniformly bounded. Next, we will
prove that the family «®) is equicontinuous. To this end let ¢ > 0 and set § := ﬁ Let
21,29 € [0,T] with |2 — 21| < . W.lo.g. we assume that z; < z5. Choose m, ¢ € N such that
2 < )« < ték) < zo. Using the triangle inequality and applying the above estimate
immediately yields

-1

|u(k)(z1) _ u(k)<22)’ < Z

i=m

u®) — ugk)‘ + [u® (z1) — u® (10| + ‘u(k)(@) —u® ()

< (B = t0)| Floo + (5 = 20)| floo + (22 — t9)|Floo = |22 — 21| floo < 0| floc =€

proving the equicontinuity of the family u(®). So by the Arzela-Ascoli Theorem the set {u(®)}
is compact in C([0,7],R). By passing to a subsequence we have u € C([0,7T],R) with

lim sup ’ugf) — u(tnk))‘ = 0.
k—o0 0<n< Ny

We define y(t) := u(t) + W(t) for ¢t € [0, T]. Using our assumption we obviously have x # y

lim sup ‘y(t,(f)) - x(tn’“))‘ = sup lim ‘uff) + W (W) - x(tnk))‘
k=00 0<n< Ny, 0<n<Ny, k=00
= lim sup |x(k) - x(tnk))‘ >6>0.

n
k—o0 0<n< Ny,

Nevertheless, y satisfies ((1.1)) since

N Ny
u(t) = lim Y w(t® At) —u?) Aty = lim (1B At - A fe), ).
k—o0 — k—o0 —t

Using the continuity of f this is the same as

Ny, ¢
= lim awm—ﬁmWﬂ&w&ﬁ%w%»=/mw@+W@Ma

k—o00

n=1 0

which is a contradiction to the conclusion of Theorem [1.5l
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Remark 3.2

Observe that Corollary implies that the partitions in the Fuler approximation can be
chosen arbitrarily i.e. £ might depend on w in a “non-anticipating” way. Usually one is
restricted to partition points which are stopping times. From the view point of numeric’s
this corollary implies that variable step size algorithm converge to the correct solution. This
seems to be related to the simplicity of the SDE which we consider. For example the Euler

approximation for the SDE
dz(t) = W(t)dW(t)

converges to different functions if the partition points are chosen in an “anticipating” way
(cf. |GLIT| section 4.1).

Corollary 3.3

Let f be a bounded Borel function, o € R\ {0}, uo € R%. For almost all Brownian paths W
the differential equation

{du(t) = f(t,u(t) + oW (t))dt
u(0) = ug

has a unique solution in the integral sense.

Proof

Let x be the unique solution of
t
x(t) = ug + /f(s, x(s)) ds + oW (t)
0

from Theorem We set u(t) := z(t) — oW (t). Note that u(0) = uy and

u(t) = g +/f(s,x(s)) ds = ug + /f(s,u(s) + oW (s)) ds.
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Conclusion

In conclusion we have demonstrated that for almost all canonical Brownian paths W the
stochastic differential equation

{ de(t) = f(t, z(t))dt + cdW (¢)
z(0) = x

in the finite dimensional space R? with bounded Borel measurable drift f, diffusion coeffi-
cient o € R\ {0} and deterministic initial condition 7y € R? admits a unique solution in
the path-by-path sense. Hence, we confirmed that the above equation can be solved in the
sense of randomly perturbed ordinary differential equations. As a consequence of this, we
have shown that the Euler approximation converges to the solution for almost all Brownian
paths even if the partition points are chosen randomly.

In this thesis we only considered the finite dimensional case with a constant non-degenerate
diffusion term. Recently there has been some development in the case where the diffusion
term is not constant and satisfies some mild regularity properties (cf. [Davll]). To the
author’s knowledge the question whether the above equation admits a unique solution in the
path-by-path sense in infinite dimensions remains open.
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A Some basic estimates

This appendix contains a few estimates which are used in Chapter 1. The proofs of these
bounds would have disturbed the flow of reading and hence this appendix acts as a collection
of estimates that are used in Proposition and Proposition [1.19]

Lemma A.1

For all z < 0 the following estimate holds

1
Z‘< .
‘ “l—xz+a%/2—-123/6

Proof
Define
2 3
f(x)::ex(l—qu%—%), Vo < 0.

An easy calculation yields

fle) = —Ze" 20, Va < 0.

Since f(0) < 1 holds, f'(z) > 0 implies that f(x) < 1 for all x < 0 which shows the assertion.

O

Proposition A.2
There exists a constant C' € R such that

k+1)? —
% < Ce* 3 g €0, k> 2.
xXr
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Proof

Let z and k be as specified in the assertion. Since (k —3/2)/x is positive we can use Lemma
ATl to obtain

(k+1)* - T (k-3/2)/x [ (k+1)? - 1
x5/2 = x5/2 1+ k— 3/2 + %(ka/z)Q i %(k;3:;/2)3
(/{3 + 1)2 — X z]0

:

@2 (k= 32)23% + L(k — 3/2)221/2 + L(k — 3/2)321/2
Therefore, there exists C' € R such that

(k+1)2 -2z

5 e~ k=32 < YV €]0,1/2].
T

Proposition A.3

There exists a constant C' € R such that for all r > 0

27 k1 —27F )y <ol 4 r)7!

WE

B
Il

0

holds.

Proof

For x > 0 we define

flz):=27%(1—27*71)r

= f/(z) =227 (1 -2 [223 - 1}

An easy calculation shows

() <0 <= x>logy(r+1)—1=:a(r).

Note that a(r) is the global maximum of f. Using this we split the sum into the increasing
and decreasing part

la(r)] -1

S fk) = Y k) + f(lalr)]) + f(Ta(r) Z f

k=0 k=0 k=|a(r)]+

-89 -



Appendix A: Some basic estimates

and estimate the sum via its integral

< f(la(r)]) + f(Ta(r)]) + /2"”(1 277 da

S 2f(a(7“)) +/6—$1n2<1 . 6—($+1)1n2)r dr
0

1 1\ 1 1\
- 1 - — fev(1-Ze) ay
r—l—l( 7’—1—1) +ln2/€ ( 26) Y
— —— 0

<1

. _\THL . . . . . .
Since % (1 — %e y) is an anti-derivative of the integrand, we obtain

4 1 2 1 4 3 7
< + — 1-— < + = .
r+1 In27r+1 or+l1 r+1 r4+1 7r+1
—_——

<1

Lemma A.4

Let a > 0. For every r > 0 the following inequality holds

I'(r+1) _
< pat1/12 1)~
F(r—i—l—i—a)_e (r+1)

Proof

We use Stirling’s formula for the gamma function

[(z) = V2ra® Y2e et Vo > 0,

1

T35 b0 estimate

where 0 < p(x) <

F(T—|—1> _ \/%(T_i_1)r+1/26—r—161/(12(r+1)) (T+1)7"+1/261/(12(T‘+1))

F(r+1+a) = V2r(r+1+a)+/2taer—1-a  (r+1+4 q)rtl/2teca

o1/(12(r+1))
S i eea SO )T = T B
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Proposition A.5

There exists a constant C' € R such that for all » > 0

Z 27021 — 27k < O(r 4-1)71/2
k=0

holds.

Proof

For x > 0 we set

f(CB) — 2—9&/2(1 . 2—:(:—1)7"

= ) =)z (1 2oy [T O

An easy calculation shows

F@) <0 = a>logy(r+1/2) = a(r).

Note that a(r) is the global maximum of f. Using this we split the sum into the increasing
and decreasing part

la(r)|-1

S FE) = D k) + f(lalr)]) + £( Z F(k

k=0 k=0 =la(r)]+2
and estimate the sum via its integral

La(r)] o0
< [ @) det flat)) + a0 + /f

0 a(r)]+1

< f(lal))) + Sl + [ 272 (1= 2 do

2 1 | 1 "
= (1 - —— —I——/e_y/2 1—=e¥) dy.
T+ 12 2r +1 In2 2
Ny J/ 0

~~
<1
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Substituting %e*y with u results in

0
2 2
g——i w21 — )" dy
‘/r—|-1/2 In2
1/2
\/_1/2
2 2 ~1/2
=t — 1—u)"d
r+12+ln2 (1=w)" dy

= —m—FEﬁ(l/Q,T—Fl)
2 Vor T(r+1)

Jrets M2 T(r 1)

Using Lemma |A.4| with o = 1 we can estimate the gamma function.
g 3 g

2 2me’/12 3 2me’/12
< + (r+1)712< 7z + (r+1)71/2
T+ 12 In 2 (r+1) In 2

<7

<3+ 1)V 7(r+ )72 =10(r + 1) 72

Proposition A.6

Let r, n € N and a; non-negative numbers for every i € {1,...,r}. Then the following
inequality holds

r n r
E ap | <r"t E ap.
k=1 k=1

Proof
We have
- — n kl kr
(Su) = 5 (0 )
k=1 ki+...+kr=n
where
n B n!

kioonke ) kileeo K

is the multinomial coefficient. Applying Young’s inequality with p; = =* results in

ki
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IA

1 d n n
=D Z(kl,...,kr)kjaj

ki+...+kr=n j=1

d n—1 "
> 2 (kl,...,kj_l,kj—1,kj+1,kr)“j

j=1 ki+...+kr=n
k>0

- —1
=24 2 (k?k)
Jj=1 l€1+-.-+kr=n—1

-
—pn—1

r
_.n—1 n
=T E Clj.

Jj=1

Proposition A.7

For every n € N the following inequality holds

Vn2 T <2278,

Proof
We have
3
log, (n1/22_”/2) = log, (n1/2) . < _on +1
—_—— 2 8

<n/8+1
= log, 27%"/% + log, 2 = log, (2- 2’3”/8) :

which concludes the proof.
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B Fourier transform of E and D

In this appendix we calculate the Fourier transform of E and D, which are used in Proposition

of Chapter 1.

Proposition B.1
Let t € R with ¢ > 0 then

holds.
Proof
Define f as
&) = FIE( Q) = [ 2 mt) 2o a

By interchanging differentiation with integration we get

(&) =- / 2mize 2T (2rt) "2/ 4z = 27 / e~ 28 (2t) 20 te 7/ (.

—00 —0o0

Using integration by parts yields

(&) = —An’tg / 67%1&(27#)71/26*22/21‘/ dz.

—00

And since we have f(0) = 1 this results in the following initial value problem.

f1(&) = —4m*tE f(€)
f(0) =1

This problem has clearly the unique solution

f(&) = e
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Proposition B.2
Let t € R with ¢ > 0 then

FD(t, ))(§) = —4n*¢Pe >

holds.

Proof

By splitting the integral in two parts we obtain

o0

—2mifz - Z2 —t —22
FID(t, )I(§) = /6 TS (2mt) 1/2t—2€ /2 dz
1 —27igz -1/2_ 2 —2%/2t 1 —27i€z —1/2 _—2%/2t
= t_2 e (2mt) ™/ 2% dz — T e (2nt) ™ 7e dz

— 00

1

1 -1 / 2 —27r1§z 27Tt 1/2€_Z2/2t dz — ZF[E(t, )](5)

T 24n?
Interchanging differentiation with integration yields

e F I )€ — L FIE, ).

47T2t2

Using Proposition results in

1
_ 2 4,227 —2mtE? —2m2¢£2
=0 [—4m*t 4+ 16777 e - e
1 1
- [2 —Ar2e? — ;} o 2mtE? —4#2526_2”52,
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C Dayvie’s estimate for p

In this appendix we give a detailed proof of Davie’s Lemma 3.1 in [Dav07| which was replaced
by Lemma in this thesis. We also give a derivation of equation (21) in Davie’s paper
(Proposition |C.3)) which was used to prove Lemma in the original proof.

Lemma C.1

For all m € N with m > 1

Z VE2F < 6y/m2 ™

k=m-+1

holds.

Proof

Since k2% is decreasing on [1,00[. We can estimate

k=m+1

Z VE2F < /\/EN dk = //cl/?e’“n? dk.

m

Substitution with v := kIn 2 results in

T N2 1 1\ F \ 1\ %2
= — — — /2—1 —u _
/ <1n2) e du <ln2> / u e " du (_1n2> ['(3/2,mIn?2).

mIn2 mIn2

Where I' is the complementary incomplete gamma function. Using the estimate (2.14) in
[OIv03] page 70 results in

_ ( 1 )3/2 efman(mln2)3/2 e—min2,,3/2 9=y, 3/2

— = <6 < 6ym27™.
In2 mln2—-3/2+1 mln2-1/2 — m vim

We now turn to the proof of Davie’s Lemma 3.1 in [Dav07].

Lemma C.2

For every ¢ > 0 there exist C'(e) € R and A, C Q with P[A.] < e such that for every
real-valued Borel function g on [0, 1] x R bounded by 1

/ 1
‘pn,k(mvy)’ < C({;‘) (\/ﬁ"i_ log; W) 2771/2|m - y|007 Yw € Ag

holds for all dyadic points z,y € Q, n > 1, k € {0,...,2" — 1} and w € AC.
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Proof
Step 1: z ~y
Claim: For every € > 0 there exist C'(¢) € R and A. C Q with P[A.] < e such that
o, y)| < CE)(Vn+ Vm)2™" 2|z -yl
Vwe AL 2,y €@, x~py, n>1, m>1, ke {0,..,2" —1}.
Let m € N and x,y € @ be dyadic neighbors of order m. Applying Corollary (i) with
A = N(y/n + /m) for some N > 0, s = 0 and using that v/d|z — y|s > |z — y|2 yields

P[’pnk(xay)‘ > )\/(\/ﬁ+ \/E)27m7n/2] < 267)\’2(\/ﬁ+\/m)2/(202) < 267)\’2(n+m)/(202)'

So, we can estimate the probability that |p,x(z,y)| > N(v/n + +/m)2~™ /2 holds for any
k,n and any pair of dyadic neighbors z,y by

P U U U U |Pn,k($,y)| > )\,(\/ﬁ—|—\/ﬁ)2—m—n/2

n=0m=0 =,y€Q k=0

T~my

o [ele] 2m_1
<SID DT Y pe /ey
n=0 m=0 z,y€Q k=0
r~my
- Z Z #{(z,y) € Q*|x ~opy y} - 2" H A (1m)/(2C7)
n=0 m=0
S Z Z 2(m+2)d3d2n+16—)\’2(n+m)/(202)
n=0 m=0
= 230403 VIO N g Xm/(20%),
n=0 m=0

By calculating the derivative of gmde=*m/(20%) w1t m we see easily see that the series is
decreasing as long as we choose A > /21In(2)dC?. So, we can use the integral criteria to
estimate the series and hence we obtain

/2md€—)\’2m/(202) dm < /emd—A’Qm/(QCQ) dm = /am dm.
0 0 0

Where o := ed=?/(2C?)

L ! gt gy
Clna MN2/(2C%) —d '

This implies that both sums convergence for X > /21n(2)dC?. We therefore deduce that

im P | U U U sl o) > X/ + vz ™72| =0

N —o0
n=0m=0 z,y€Q k=0
r~Ymy
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Let € > 0. Then there exists C(¢) such that

IO N N leasten)] < O+ vmz 2| 212

n=0m=0 z,y€Q k=0

r~my

So, we have

k()| < C(e)(Vn+ Vm)2~m 2,

Ve,y e Q, x ~py, n>1, m>1, ke {0,..,2" — 1}
with probability greater than 1 — .

Step 2: |z — y|o < 1/2

Let z, y € @ be dyadic points with |z — y|.. < 1/2. The claim is trivial for z = y, so
we assume = # y. We can now use Lemma 2.4l Let m, =, and y, be as in Lemma [2.4] This
also means that m > 1 and 277! < |z — y| by the maximality of m.

pn,k(xa y) = pn,k(xnw ym) + Z pn,k(errla xr‘) + Z pn,k(errla yr‘)-

r=m r=m

Observe that both sums converge since we have z,,, = x, for large . We know that
Tm ~m Ym O Ty = Y, and that x,.,.y ~,.1 2, or 2,1 = x, and that y,.1 ~,41 v, or
Yr+1 = Yr, SO We can use step 1 to deduce that

ons(2,y)| < C(e)(vn+ vm)27™ "2 4 2C(¢) i(\/ﬁ V)2

= C(e)(Vn++vm)2~m 2 1 2C()27? |V/n i 271 4 i Vr + 12”]

< Ce)(v/m+ Vm)27™ 2 £ 2C ()27 | Vn2™™ + i ﬁz—T] :

r=m-1

Since m > 1 we can use Lemma to obtain

< C(e)(vn + v/m)27m 2 4 20(2)272 [ 2™ + 6y/m2™™]
< C(e)(vn + v/m)27m 2 1 120(2)27m27"2 [V + /m]
= 13C(e)(Vn+ vm)27" " = 260 () (Vn + vVm)2T2 |z =yl

/ 1 —-n
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Step 3: |r — yloo > 1/2

Let z,y € @ be dyadic points with |z — y|o, > 1/2. The claim is trivial in this case
since

onaleg)l = | [ ot W0 +2) — g(t.W(e) + ) de

In,k

< /2||g|| d < 2:277 <4377 — yloo < AV T — Yoo

In,k

1
< 4yn27Pr —yle < 4 <\/ﬁ+ \/logy W) 2722 — Yoo

We are now ready to derive equation (21) in Davie’s paper which enables the possibility to
use Lemma instead of Lemma [2.5]in the proof of Lemma [2.14]

Proposition C.3

There exists C' € R such that for all n, m € N

C(vn+ vm)2 22 < g2 /4gm 4 2727,

holds.

Proof

Consider the function

Flmm) = 27 (4 )22 = 27].

We will show that f(n,m) < C272" holds with some constant C' € R. To this end we
calculate the maximum of f(n,m) with respect to m. We calculate the first derivative

In4y/m(2"* — /n) —mlInd + 1
2m+n/2+1\/%

Omf(n,m) =

and calculate the zeros of this function

O f(n,m) =0
1
@\/ﬁ@nﬂl_ \/ﬁ) —-m + nd =0
— <=

& aym—m+ B =0.
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Note that the above equation has at most one solution. If my, msy are two distinct solutions
we obtain

ay/my —my = ay/mg — may
S o (Vi — Vim) = my — my = (Vi — i) (Vi + /i)
S = (/i + ).

And hence solving for g yields

B=mi —aymi =mi — (Vmi + ma) /mi = —/miy/my <0,

which contradicts f = 1/1In(4) > 0. Therefore, the only solution to the above equation is

2
«Q o?
mo = <§+ Z‘f‘ﬂ) .

An easy calculation shows that f(n,mg) is the global maximum, because of the fact that
lim f(n,m) = 0. Concerning the dependency of n we have
m—0o0

a €0 (2”/ 4)
and henceforth

mo € © (2n/2) .

We get

f(n,m) < f(n,mg) = & [ (\/ﬁ+ NG 9-n/2 _ 2n/4] co (2,271/2) |
eo(2—2"/2) co(2n/4)

(.

co(1)

which concludes the proof.
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