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Introduction

Introduction

In this thesis we study the stochastic di�erential equation (SDE){
dx(t) = f(t, x(t)) dt+ σ dW (t)

x(0)= x0

(SDE)

in the �nite dimensional space Rd driven by a canonical d-dimensional Brownian motion W
with a bounded Borel measurable drift f , di�usion coe�cient σ ∈ R \ {0} and deterministic
initial condition x0 ∈ Rd.

SDEs have been a very active research topic in the last decades. Several approaches were
developed for example the pathwise approach where a solution x to the above equation is
interpreted as a stochastic process or the mild approach. In this thesis we consider the
so-called path-by-path approach where (SDE) is not considered as a stochastic di�erential
equation. In the path-by-path picture we �rst plug in an ω ∈ Ω into the corresponding
integral equation (IE) of (SDE)

x(ω, t) = x0 +

t∫
0

f(s, x(ω, s)) ds+ σW (ω, t) (IE)

and try to �nd a (unique) continuous function x(ω, · ) : [0, T ] −→ Rd satisfying this equa-
tion, which can now be considered as an ordinary integral equation (IE), that is perturbed
by a Brownian path W (ω). If such a function can be found for almost all ω ∈ Ω, the map
ω 7−→ x(ω) is called a path-by-path solution to the equation (SDE). Naturally the notion of
uniqueness is much stronger than in the pathwise picture. Nevertheless, we prove that the
equation (SDE) even admits a path-by-path unique solution.

The main theorem of this thesis states that there exists a unique solution to the equation
(SDE) in the path-by-path sense. With some slight variations we mainly follow A. M. Davie's
proof in [Dav07]. In [Ver81] a proof for the existence of pathwise solutions for much more
general equations than the one above has already been given.

We want to emphasize that although a pathwise solution x is not a path-by-path solution,
there is always a set N of measure 0 such that x is a path-by-path solution for all ω ∈ N c.
[Ver81] also contains a proof that the above equation has a pathwise unique solution. Path-
wise uniqueness implies that for any two solutions x and y of (SDE) a zero set N can be
found such that x and y coincide on Ω \ N . In general this zero set will depend on both
x and y. The notion of uniqueness in the path-by-path approach is much stronger. In this
thesis we show that a zero setN can be found such that all solutions coincide for all ω ∈ Ω\N .

Since we obtain a unique solution for almost all Brownian paths W (ω) this result can also
be interpreted as a uniqueness theorem for randomly perturbed ODEs, more precisely IEs.
We refer to [Fla11] for an in-depth discussion about the various notions of uniqueness for
SDEs and perturbed ODEs.
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Introduction

Structure of this thesis

In Chapter 1 we prove an estimate which will act as a substitute for the Lipschitz continuity
of f . We use the Girsanov transformation to reduce the problem to a slightly simpler one in
the �rst section. In the second section we merely prove the estimate which will later act as
a substitute for the Lipschitz condition in expectation. Based on this we obtain a version of
this estimate that holds in probability in the last section of that chapter.

The claimed uniqueness of the above SDE in the path-by-path sense is proved in the second
chapter. We split the proof in three parts. In the �rst section of that chapter we study
dyadic points in the cube [0, 1]d and using the results of Chapter 1 we prove an estimate for
dyadic points for the substitute for the Lipschitz condition. The second section contains a
technical lemma which enables us to use an approximation argument in the �nal proof. In
the last section we �nish the proof with the help of the Euler scheme and the previously
established inequalities.

We discuss an application of the main results for Euler approximations in Chapter 3 and
focus on the connection between the above SDE and randomly perturbed IEs.

Additionally, in Appendix A we give proofs of the basic estimates which are used in Chapter
1. For the sake of completeness we calculate the Fourier transform of the normal distribution
and its second derivative in Appendix B. At last, Appendix C contains an estimate which is
used in [Dav07], but not necessary for our proof in this thesis.

Outline of the proof

First, we observe that the main theorem would be trivial if f were Lipschitz continuous in
the second parameter. Let x and y be two solutions of (IE). We then have

|x(t)− y(t)| ≤
t∫

0

|f(s, x(s))− f(s, y(s))| ds ≤ Lip(f)

t∫
0

|x(s)− y(s)| ds.

So, by Gronwall's Lemma we have x = y.

In the �rst section of the �rst chapter we show that by considering u de�ned as the di�erence
of two solutions the main theorem can be reduced to the following problem: Let u be a
continuous function which ful�lls the following equation

u(t) =

t∫
0

f(s,W (s) + u(s))− f(s,W (s)) ds, ∀t ∈ [0, T ].

Showing that for almost all Brownian paths the only solution of the above equation is the
trivial solution u = 0 implies the proposed uniqueness.
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Let us again assume that f is Lipschitz continuous. Since we have already proved the theorem
in this case, it should be possible to �nd a simple proof for the reduced problem. Indeed,
consider the interval I = [a, b] ⊆ [0, T ] and choose α minimal with the property

|u(t)| ≤ α, ∀t ∈ I.

We set β := |u(a)| and using that f is assumed to be Lipschitz continuous we have

||u(t)| − β| ≤
b∫

a

|f(s,W (s) + u(s))− f(s,W (s))| ds ≤ Lip(f)|I|α,

where |I| = b − a is the Lebesgue length of the interval. With the help of the reversed
triangle inequality and by rearranging we conclude

|u(t)| ≤ β + Lip(f)|I|α, ∀t ∈ I.

But, since α was chosen minimal with this property, we obtain

|u(t)| ≤ α ≤ β

1− Lip(f)|I|
, ∀t ∈ I

as long as Lip(f)|I| < 1. So in particular, u vanishes on I if β is zero. This is clearly ful�lled
if we choose a = 0. Choosing the interval I small enough such that Lip(f)|I| < 1 holds and
repeating this argument inductively, proves that u vanishes everywhere.

In this thesis we generalize the above idea. First, we need a substitute for the Lipschitz
condition. In the �rst chapter we prove the following estimate in expectation (Theorem
1.23)

E

 1∫
0

f(t,W (t) + x)− f(t,W (t)) dt

p

≤ Cp(p/2)!|x|p2, ∀x ∈ Rd, p ∈ 2N,

where C is independent of f which is due to the fact that f is assumed to be bounded by 1.
This estimate is obtained by a careful analysis of the Gaussian kernel and its �rst and second
derivatives. Using this result, we prove versions of this estimate which hold in probability
(Corollary 1.25, 1.26 and 1.28):

P[|σa,b(x)| > λ
√
b− a|x|2|Fs] ≤ 2e−λ

2/(2C2), ∀x ∈ Rd, λ > 0,

and

E[|σa,b(x)|p|Fs] ≤ Cp|b− a|p/2(p/2)!|x|p2, ∀x ∈ Rd, λ > 0, p ∈ 2N,

where

σa,b(x) :=

b∫
a

f(t,W (t) + x)− f(t,W (t)) dt, ∀a, b ∈ R

and 0 ≤ s ≤ a < b ≤ 1. These two estimates follow from the above �in expectation� estimate
by applying the Chebychev inequality. The fact that we can take the conditional expecta-
tion (conditional probability respectively) w.r.t. Fs, as long as s ≤ a, is due to the Markov
property of W .
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In the second chapter we improve on this and show an �almost sure version� namely the
bound ∣∣∣∣∣∣∣

(k+1)2−n∫
k2−n

f(t,W (t) + x)− f(t,W (t)) dt

∣∣∣∣∣∣∣ ≤ C
√
n2−n/2 max

(
|x|∞, 2−2n

)
if x ∈ Rd is a dyadic point, n ∈ N and k ∈ {0, ..., 2n − 1} (Lemma 2.5). This estimate will
become the most important ingredient for the rest of the proof.

Next, we approximate u by step functions u` and write∫
I

f(t,W (t) + u(t))− f(t,W (t)) dt = lim
`→∞

∫
I

f(t,W (t) + u`(t))− f(t,W (t)) dt

=

∫
I

f(t,W (t) + um(t))− f(t,W (t)) dt+
∞∑
`=m

∫
I

f(t,W (t) + u`+1(t))− f(t,W (t) + u`(t)) dt.

These step functions are constant on the interval I and hence we are able to use the above
bound (Lemma 2.5). Moreover, we prove a technical lemma (Lemma 2.9) to be able to
approximate u by step functions (Lemma 2.10) in order to make the above argument rigorous.
Furthermore, since we want to estimate terms of the form

∞∑
`=m

∫
I

f(t,W (t) + u`+1(t))− f(t,W (t) + u`(t)) dt

we need better bounds than the ones described above. In Lemma 2.14 we use the Euler
approximation scheme to obtain a bound for the term

r∑
q=1

∫
I

f(t,W (t) + xq−1)− f(t,W (t) + xq) dt

where xq+1 = xq + σq2−n,(q+1)2−n(xq) is the Euler approximation for the point xq+1 given the
previous one xq. Comparing arbitrary points y0, ..., yr with the Euler approximation (Lemma
2.15) yields an estimate for

r∑
q=1

∫
I

f(t,W (t) + yq−1)− f(t,W (t) + yq) dt.

With this, the analog of the above proof is carried out in Lemma 2.16. Instead of |u(t)| ≤ α
we have the more complicated condition (2.16.2). Since our estimates are weaker than
in the Lipschitz case we will not be able to immediately conclude that u vanishes, but if
|u(j2−m)| ≤ β is �small� we have

|u((j + 1)2−m)| ≤ β
(
1 +K2−m log2(1/β)

)
with some constant K. By letting m go to in�nity, this is enough to conclude the main
result as shown in Theorem 2.17.
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Di�erences between Davie's proof and this thesis

In this thesis we give an extended and more detailed version of Davie's proof in [Dav07].
Nevertheless, for the sake of simplicity and clarity we made some slight changes.

Proposition 1.9, Theorem 1.23 and the subsequent corollaries are extended to the case p = 1
(cf. [Dav07] Proposition 2.1 and 2.2). In addition, we give a simple generalization of Davie's
Corollary 2.6 in our Corollary 1.28.

In the second chapter we skip Davie's Lemma 3.1. For a detailed proof of this estimate
we refer to Appendix C (Lemma C.2). As a substitute we extend Lemma 2.5 (cf. [Dav07,
Lemma 3.2]) in Corollary 2.6. This replacement has some marginal in�uence on the proof
of Lemma 2.9. Furthermore, we were not able to obtain the factor 2−n/4 in front of the
error term in Lemma 2.15, as Davie did in Lemma 3.6. This is partially because of our
replacement of Davie's Lemma 3.1. Nonetheless, we still obtain the factor 2−n/8 to control
the error term. It turns out that this is su�cient to complete the proof of the main theorem.

- 9 -



Chapter 1.1: Preliminaries � Reduction via Girsanov transformation

1 Preliminaries

In this chapter we reduce the main theorem (Theorem 1.5) to a slightly simpler problem using
the Girsanov transformation (Lemma 1.8). In the second section we obtain an estimate,
which will later act as a substitute for the Lipschitz condition (Theorem 1.23). In the last
section we prove di�erent versions of this estimate which hold in probability. These estimates
play a crucial role in the proof of the main theorem.

1.1 Reduction via Girsanov transformation

Let d be a positive integer, T > 0 and Ω := C([0, T ],Rd). Let P be the classical Wiener
measure on Ω. Note that π(ω, t) = ω(t) is a d dimensional Brownian motion with π(0) = 0
P-a.s.. De�ne Px[A] := P[A − x] then (Px)x∈Rd are measures such that ((π)t∈[0,T ], (Px)x∈Rd)
is a universal Markov process (cf. [Bau96] De�nition 42.15). Let Ft be the natural �ltration
of (πt)t∈[0,T ] i.e. Ft is P-complete (in the sense that every zero set of FT is in F0) and
right-continuous. In this thesis we consider the following stochastic di�erential equation{

dx(t) = f(t, x(t)) dt+ σ dπ(t)

x(0) = x0

(1.0)

where f : [0, T ]× Rd −→ Rd is a bounded Borel function, x0 ∈ Rd and σ ∈ R \ {0}.

De�nition 1.1 (path-by-path solution)

A map x : Ω −→ Ω is called a path-by-path solution to equation (1.0) if there exists Nx ⊆ Ω
with P[Nx] = 0 such that x ful�lls the corresponding integral equation

x(ω, t) = x0 +

∫ t

0

f(s, x(ω, s)) ds+ σω(t) (1.1)

for every t ∈ [0, T ] and ω ∈ Ω \ Nx. Notation: x ∈ S(C([0, T ],Rd), f, σ, x0), where
S(C([0, T ],Rd), f, σ, x0) denotes the set of path-by-path solutions to equation (1.0).

Proposition 1.2 (Existence of path-by-path solutions)

Let f : [0, T ] × Rd −→ Rd be a bounded Borel function, σ ∈ R \ {0}, x0 ∈ Rd and π a
canonical Brownian motion. Then there exists a map x : Ω −→ Ω and a set Nx ⊆ Ω with
P[Nx] = 0 such that x is a path-by-path solution of (1.0) in the sense of De�nition 1.1
i.e. x ∈ S(Ω, f, σ, x0).
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Chapter 1.1: Preliminaries � Reduction via Girsanov transformation

Proof

De�ne W : Ω −→ Ω by

W (ω, t) := π(ω, t)− σ−1

t∫
0

f(s, x0 + σπ(ω, s)) ds, ∀ω ∈ Ω, t ∈ [0, T ].

Then for all ω ∈ Ω and t ∈ [0, T ] set

x(W (ω), t) := x0 + σπ(ω, t) = x0 +

t∫
0

f(s, x0 + σπ(ω, s)) ds+ σW (ω, t)

= x0 +

t∫
0

f(s, x(W (ω, s))) ds+ σW (ω, t).

Now by Girsanov's Theorem (cf. [Shr04], Theorem 5.2.3) for

φT (ω) := exp

 T∫
0

〈
σ−1f(s, x0 + σπ(ω, s)), dπ(s)

〉
Rd −

1

2

T∫
0

σ−2f(s, x0 + σπ(ω, s))2 ds


we have (φT ·P) ◦W−1 = P and φT ·P ≈ P. De�ning Nx := Ω \W (Ω), we have

P[Nx] = P[Ω]− P[W (Ω)]

= P[Ω]− (φT ·P)[Ω] = 0

and for all ω ∈ Ω \Nx and t ∈ [0, T ]

x(ω, t) = x0 +

t∫
0

f(s, x(ω, s)) ds+ σω(t).

Hence x (with Nx as above) is a path-by-path solution.

�

Proposition 1.3 (Scaling invariance)

Let f : [0, T ]×Rd −→ Rd be a bounded Borel function with |f |∞ 6= 0, σ ∈ R \ {0}, x0 ∈ Rd.
De�ne

f̃ : [0, T ]× Rd −→ Rd, (t, u) 7−→ |f |−1
∞ f(|f |−2

∞ σ
2t, x0 + |f |−1

∞ σ
2u).

Let x̃ (with Nx̃) be a path-by-path solution to equation (1.1) with f , σ and x0 replaced by
f̃ , 1 and 0, i.e. x̃ ∈ S(C([0, T ],Rd), f̃ , 1, 0). De�ne

y : Ω = C([0, T ],Rd) −→ C([0, |f |−2
∞ σ

2T ],Rd) =: Ω|f |−2
∞ σ2T

y(ω, t) := x0 + |f |−1
∞ σ

2x̃(ω, |f |2∞σ−2t), ∀ω ∈ Ω, t ∈ [0, |f |−2
∞ σ

2T ]
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Chapter 1.1: Preliminaries � Reduction via Girsanov transformation

and

ϕ|f |∞,σ : Ω = C([0, T ],Rd) −→ C([0, |f |−2
∞ σ

2T ],Rd) = Ω|f |−2
∞ σ2T

(t 7−→ ω(t)) 7−→
(
t 7−→ |f |−1

∞ σω(|f |2∞σ−2t)
)

which is a homomorphism from Ω to Ω|f |−2
∞ σ2T . Then x : Ω|f |−2

∞ σ2T −→ Ω|f |−2
∞ σ2T de�ned by

x(ω, t) := y(ϕ−1
|f |∞,σ(ω), t), ∀ω ∈ Ω, t ∈ [0, |f |−2

∞ σ
2T ]

is a path-by-path solution of equation (1.1) with Nx := ϕ|f |∞,σ(Nx̃). This means we have a
one to one correspondence between the sets

S(C([0, T ],Rd), f̃ , 1, 0)←→ S(C([0, |f |−2
∞ σ

2T ],Rd), f, σ, x0)

Proof

Observe that

y(ω, t) = x0 + |f |−1
∞ σ

2

|f |2∞σ−2t∫
0

f̃(s, x̃(ω, s)) ds+ |f |−1
∞ σ

2ω(|f |2∞σ−2t)

= x0 + |f |−1
∞ σ

2

|f |2∞σ−2t∫
0

|f |−1
∞ f(|f |−2

∞ σ
2s, x0 + |f |−1

∞ σ
2x̃(ω, s)) ds+ |f |−1

∞ σ
2ω(|f |2∞σ−2t)

= x0 +

t∫
0

f(s, x0 + |f |−1
∞ σ

2x̃(ω, |f |2∞σ−2s)) ds+ |f |−1
∞ σ

2ω(|f |2∞σ−2t)

= x0 +

t∫
0

f(s, y(ω, s)) ds+ σϕ|f |∞,σ(ω)(t).

Hence for all ω ∈ ϕ|f |∞,σ(Ω \Nx̃) and all t ∈ [0, |f |−2
∞ σ

2T ]

x(ω, t) = x0 +

t∫
0

f(s, x(ω, s)) ds+ σω(t).

But P ◦ ϕ−1
|f |∞,σ = P, hence setting Nx := ϕ|f |∞,σ(Nx̃) we have P[Nx] = 0. Hence x with Nx

is a path-by-path solution of equation (1.1).

�

Remark 1.4

Since T > 0 was arbitrary, as a result of this scaling property its su�cient to consider the
SDE (1.0) in the case where x0 = 0, σ = 1 and f is bounded by 1 or 1/2.
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Chapter 1.1: Preliminaries � Reduction via Girsanov transformation

Theorem 1.5 (Main result)

There exists N ⊆ Ω with P[N ] = 0 such that all path-by-path solutions of (1.0) in the sense
of De�nition 1.1 coincide for every ω ∈ Ω \N . In particular if x and y are two path-by-path
solutions then x(ω) = y(ω) in the sense of continuous functions for every ω ∈ Ω\(Nx∪Ny∪N).

Corollary 1.6

There exists a path-by-path solution x with Nx ⊆ Ω such that every other path-by-path
solution y with Ny ⊆ Ω coincides with x on Ω \ (Nx ∪Ny).

Proof

By Proposition 1.2 there exists a path-by-path solution x (with Nx ⊆ Ω) to equation (1.0).
Invoking Theorem 1.5 and replacing Nx with the set Nx ∪N implies that x with Nx ∪N is
the unique (in the sense of Theorem 1.5) path-by-path solution of equation (1.0).

�

Lemma 1.7

Fix an ω ∈ Ω. Let x(ω) be a function that ful�lls equation (1.1) with x0 = 0, σ = 1 and
|f |∞ ≤ 1. If the only solution of

u(t) =

t∫
0

f(s, x(ω, s) + u(s))− f(s, x(ω, s)) ds, ∀t ∈ [0, T ]

is u = 0, then x(ω) is the only solution to (1.1).

Proof

Let ω ∈ Ω. Let x′(ω) be another solution of (1.1) for the path ω. Subtracting x(ω) from
x′(ω) results in

x′(ω, t)− x(ω, t) =

t∫
0

f(s, x′(ω, s))− f(s, x(ω, s)) ds.

We set u(t) := x′(ω, t)− x(ω, t) and obtain

u(t) =

t∫
0

f(s, x(ω, s) + u(s))− f(s, x(ω, s)) ds.

By assumption we deduce u = 0 and therefore x(ω) = x′(ω).
�
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Chapter 1.1: Preliminaries � Reduction via Girsanov transformation

Lemma 1.8

Suppose there exists a set Ñ ⊆ Ω with P[Ñ ] = 0 such that for every ω ∈ Ω \ Ñ and every
function u : [0, T ] −→ Rd satisfying

u(t) =

t∫
0

f(s, ω(s) + u(s))− f(s, ω(s)) ds, ∀t ∈ [0, T ] (1.8)

we have u = 0.
Then the conclusion of Theorem 1.5 holds.

Proof

We de�ne

φT := exp

 T∫
0

〈f(s, π(s)), dπ(s)〉Rd −
1

2

T∫
0

f(s, π(s))2 ds


and set µ := φT ·P. Note that µ ≈ P. By Girsanov's Theorem (cf. [Shr04], Theorem 5.2.3)
for

W (ω, t) := π(ω, t)−
t∫

0

f(s, π(ω, s)) ds, ∀ω ∈ Ω, ∀t ∈ [0, T ]

we have µ ◦W−1 = P. Furthermore

x(W (ω, · ), t) := π(ω, t) =

t∫
0

f(s, π(ω, s)) ds+W (ω, t), ∀ω ∈ Ω, ∀t ∈ [0, T ].

Let ω ∈ Ω \ Ñ . Then by assumption and the above the condition in Lemma 1.8 is ful�lled
for the �input� path W (ω, · ) and the corresponding solution π(ω) (�output path�). Hence
for the set

W (Ω \ Ñ) ⊆ C([0, T ],Rd)

we have for all z ∈ W (Ω \ Ñ) that the corresponding solution π(ω) = x(z) is unique. To see
that then Theorem 1.5 holds for N := Ω \W (Ω \ Ñ) it remains to be shown that

P[W (Ω \ Ñ)] = 1.

But
1 ≥ P[W (Ω \ Ñ)] = (µ ◦W−1)[W (Ω \ Ñ)] ≥ µ[Ω \ Ñ ] = 1.

�
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Chapter 1.2: Preliminaries � Substitute for Lipschitz condition

1.2 Substitute for Lipschitz condition

The aim of this section is to prove Theorem 1.23 below, which is the essential ingredient of
the main proof. The main objective of this section is Proposition 1.9. The proof of Theorem
1.23 will be an application of Proposition 1.9. For the rest of this thesis letW be a Brownian
motion on P and (Px)x∈Rd measures such that the universal Markov property (cf. [Bau96]
equation 42.18) holds.

Proposition 1.9

There exists C ∈ R such that for all compactly supported, smooth, real-valued functions
g on [0, 1] × R with |g| ≤ 1 everywhere and g′ is bounded, where g′ denotes the derivative
w.r.t. the second variable, and every n ∈ N, we have

E

 1∫
0

g′(t,W (t)) dt

n  ≤ CnΓ
(n

2
+ 1
)
.

Where W is a one-dimensional continuous Brownian motion with W (0) = 0 P-a.s. and Γ
the gamma function.

Proof

Expanding the integral of the left-hand side of the inequality leads to

E

 1∫
0

g′(t,W (t)) dt

n  = E
n∏
j=1

1∫
0

g′(tj,W (tj)) dtj

= E
1∫

0

...

1∫
0

n∏
j=1

g′(tj,W (tj)) dt1...dtn.

Changing the set of integration from [0, 1]n to {0 < tσ(1) < ... < tσ(n) < 1} for every
σ ∈ Per(n), where Per(n) denotes the set of all permutations of {0, ..., n}, yields

= E
∑

σ∈Per(n)

∫
0<tσ(1)<...<tσ(n)<1

n∏
j=1

g′(tσ(j),W (tσ(j))) dtσ(1)...dtσ(n).

Since
n∏
j=1

g′(tj,W (tj)) is a symmetric function, we have

= n! E
∫

0<t1<...<tn<1

n∏
j=1

g′(tj,W (tj)) dt1...dtn.
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Using Fubini's Theorem and the joint distribution ofW (t1), ...,W (tn) we rewrite the integral
as

= n!

∫
0<t1<...<tn<1

∫
Rn

n∏
j=1

g′(tj, zj) E(tj − tj−1, zj − zj−1) dz1...dzn dt1...dtn

where t0 := 0, z0 := 0 and

E(t, z) := (2πt)−1/2e−z
2/2t, ∀t > 0.

For 1 ≤ k ≤ n we de�ne

J (k)
n (tk−1, zk−1) :=

∫
tk−1<tk<...<tn<1

∫
Rn−k+1

n∏
j=k

g′(tj, zj) E(tj − tj−1, zj − zj−1) dzk...dzn dtk...dtn.

Observe that the left-hand side of the proposed inequality is therefore n!J
(1)
n (0, 0). We stop

the proof at this point in order to introduce some useful de�nitions and notations. We
continue this proof on page 17.

De�nition 1.10

Let E(t, z) := (2πt)−1/2e−z
2/2t for all t > 0. We set B and D as the �rst and second derivative

of E w.r.t. the second variable.

B(t, z) := ∂z E(t, z) = −(2πt)−1/2 z

t
e−z

2/2t,

D(t, z) := ∂2
z E(t, z) = (2πt)−1/2 z

2 − t
t2

e−z
2/2t.

De�nition 1.11

We set

Sk := {E,B,D}k, ∀k ∈ N.

We call S a string if there exists a (unique) k ∈ N such that S ∈ Sk. We say S has length k.
Notation: # S := k. Observe that ∅ is also a string (of length 0).

De�nition 1.12

Let k and ` be positive integers. We de�ne the composition of two strings via concatenation.

◦ : Sk × S` −→ Sk+`, (S0, ..., Sk−1) ◦ (S′0, ..., S
′
`−1) := (S0, ..., Sk−1, S

′
0, ..., S

′
`−1)

and set S ◦ ∅ := S, ∅ ◦ S := S for every string S. We often write S1S2 instead of S1 ◦ S2. In
the same way i.e. by repeated concatenation we de�ne the expressions Sk where we again set
S0 := ∅. We additionally de�ne S · 1 := S and S · 0 = ∅ with 0, 1 ∈ N.
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De�nition 1.13

We de�ne the reduction map R as

R :
∞⋃
k=0

Sk −→
∞⋃
k=0

Sk, (S0, ..., Sk−1) 7−→
k−1∏
i=0

Si 1{E,D}(Si).

R is the map that removes all Bs from a string.

De�nition 1.14

Let S be a string. We call S valid if there exists r ∈ N such that

R(S) = (ED)r.

Again 0 is a valid choice for r.

Example 1.15

The valid strings of length three are

BBB, EDB, EBD, BED .

Also note that there are exactly 2n−1 valid strings of length n, but this will not be of any
importance for the proof.

Proof (continued)

Let n, k ∈ N with 1 ≤ k ≤ n and S = (S0, ..., S# S−1) a string of length at least n − k + 1.
We de�ne

I
(k,n)
S (tk−1, zk−1) :=

∫
tk−1<tk<...<tn<1

∫
Rn−k+1

n∏
j=k

g(tj, zj) Sj−k(tj − tj−1, zj − zj−1) dzk...dzn dtk...dtn

and

IS(t0, z0) := I
(1,# S)
S (t0, z0).

Claim:

J (k)
n (tk−1, zk−1) =

2n−k∑
`=1

±I(k,n)

S(`) (tk−1, zk−1), ∀1 ≤ k ≤ n, tk−1 ∈ [0, 1], zk−1 ∈ Rd (1.9.1)

where S(`) is for every ` a valid string of length n− k+ 1. Fix some n ∈ N. We prove (1.9.1)
by induction on k. Let k = n we then have

- 17 -
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J (n)
n (tn−1, zn−1) =

1∫
tn−1

dtn

∫
R

g′(tn, zn) E(tn − tn−1, zn − zn−1) dzn.

By integration by parts and since g is compactly supported, we obtain

= −
1∫

tn−1

dtn

∫
R

g(tn, zn) B(tn − tn−1, zn − zn−1) dzn.

Observe that B is a valid string, so (1.9.1) is true for k = n. Now, assuming (1.9.1) for some
k > 1, we have

J (k−1)
n (tk−2, zk−2) =

1∫
tk−2

dtk−1

∫
R

g′(tk−1, zk−1) E(tk−1 − tk−2, zk−1 − zk−2)J (k)
n (tk−1, zk−1) dzk−1.

Again, integration by parts yields

= −
1∫

tk−2

dtk−1

∫
R

g(tk−1, zk−1) B(tk−1 − tk−2, zk−1 − zk−2)J (k)
n (tk−1, zk−1) dzk−1

−
1∫

tk−2

dtk−1

∫
R

g(tk−1, zk−1) E(tk−1 − tk−2, zk−1 − zk−2)∂zk−1
J (k)
n (tk−1, zk−1) dzk−1.

Where the last partial derivative can be easily calculated using the induction hypothesis

∂zk−1
J (k)
n (tk−1, zk−1)

(1.9.1)
=

2n−k∑
`=1

±∂zk−1
I

(k,n)

S(`) (tk−1, zk−1).

Since g, E, B and D are all smooth functions we can di�erentiate inside the integral.

=
2n−k∑
`=1

±
∫

tk−1<tk<...<tn<1

∫
Rn−k+1

n∏
j=k

g(tj, zj)∂zk−1
S

(`)
j−k(tj − tj−1, zj − zj−1) dzk...dzn dtk...dtn

=
2n−k∑
`=1

∓
∫

tk−1<tk<...<tn<1

∫
Rn−k+1

n∏
j=k

g(tj, zj) S̃
(`)

j−k(tj − tj−1, zj − zj−1) dzk...dzn dtk...dtn

=
2n−k∑
`=1

∓I(k,n)

S̃
(`) (tk−1, zk−1),
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where S̃ is de�ned as

S̃ =

{
BS*, if S = ES*

DS*, if S = BS*

Because S is a valid string S̃ is well-de�ned. Also observe that S̃ is no longer a valid string,
but ES̃ is again valid. Applying this to the above equation results in

J (k−1)
n (tk−2, zk−2) =

2n−k∑
`=1

∓I(k−1,n)

BS(`) (tk−2, zk−2) +
2n−k∑
`=1

±I(k−1,n)

ES̃
(`) (tk−2, zk−2).

This proves claim (1.9.1). We still need to prove that n!J
(1)
n (0, 0) ≤ CnΓ (n/2 + 1). To this

end we use (1.9.1) and estimate terms of the form I
(k,n)
S where S is a valid string. Our strategy

will be the following: First we proof a rather general estimate in Proposition 1.16 using a
discretization argument and Fourier transformation. We apply this inequality to obtain
estimates for the strings ED and BD (Corollary 1.17). These estimates will be improved in
Proposition 1.19 to enable us to use an induction argument over the length of the string.
The induction is carried out in Proposition 1.22, which yields estimate (1.22.1) thus enabling
us to �nish the proof of this proposition on page 37.

Proposition 1.16

There exists a constant C ∈ R such that for all real-valued Borel functions φ and h on
[0, 1]× R with |φ(s, z)| ≤ e−z

2/3s for all (s, z) ∈ [1/4, 1]× R and |h(t, y)| ≤ 1 everywhere the
estimate

1∫
1/2

dt

t∫
t/2

ds

∫
R

∫
R

φ(s, z)h(t, y) D(t− s, y − z) dy dz ≤ C

holds.

Proof

Let I denote the above integral. For `, m ∈ Z de�ne

φ`(s, z) := 1[`,`+1[(z)φ(s, z),

hm(t, y) := 1[m,m+1[(y)h(t, y).

With I`,m we denote the integral I where φ, h is replaced by φ`, hm, respectively. We then
have I =

∑
`,m∈Z

I`,m as long as the sum converges absolutely. We show the convergence of the

sum in two steps.
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Case 1: |`−m| =: k ≥ 2

If |`−m| =: k ≥ 2 we have

1 ≤ k − 1 ≤ |y − z| ≤ k + 1, ∀z ∈ [`, `+ 1[, y ∈ [m,m+ 1[. (1.16.1)

With this we obtain the following bound on D

|D(t− s, y − z)| 1.10
=

∣∣∣∣ 1√
2π

(y − z)2 − (t− s)
(t− s)5/2

e−(y−z)2/2(t−s)
∣∣∣∣ .

For t ∈ [1/2, 1], s ∈ [t/2, t[ we have t− s ∈]0, 1/2]. Since (y − z)2 ≥ 1 by (1.16.1) we have

=
1√
2π

(y − z)2 − (t− s)
(t− s)5/2

e−(y−z)2/2(t−s).

And because of the fact that k − 1 ≤ |y − z| ≤ k + 1 we get

≤ 1√
2π

(k + 1)2 − (t− s)
(t− s)5/2

e−(k−1)2/2(t−s).

Invoking Proposition A.2 with x := t− s ∈]0, 1/2] leads us to

A.2

≤ C1e
(k−3/2)/(t−s)e−(k−1)2/2(t−s) = C1e

−(k−2)2/2(t−s) ≤ C1e
−(k−2)2

with C1 = C(2π)−1/2 where C is the constant from Proposition A.2. Using this estimate we
deduce the following bound on I`,m

I`,m ≤
1∫

1/2

dt

t∫
t/2

ds

∫
R

∫
R

|φ`(s, z)hm(t, y) D(t− s, y − z)| dy dz

≤ C1

1∫
1/2

dt

t∫
t/2

ds

`+1∫
`

dz

m+1∫
m

dy e−z
2/3se−(k−2)2 ≤ C1

1∫
1/2

dt

t∫
t/2

ds e−`
2/3se−(k−2)2

≤ C1

1∫
1/2

dt
t

2
e−`

2/3te−(k−2)2 ≤ C1

4
e−`

2/3e−(k−2)2

.

And hence∑
|`−m|≥2

I`,m =
∞∑
k=2

∑
`∈Z

∑
m∈{`−k,k−`}

I`,m ≤ C1

2

∞∑
k=2

∑
`∈Z

e−`
2/3e−(k−2)2

=
C1

2

∞∑
k=2

e−(k−2)2
∑
`∈Z

e−`
2/3 ≤ C2.

For some C2 ∈ R since both sums converge.
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Case 2: |`−m| ≤ 1

Let F denote the Fourier transformation. We de�ne

φ̂`(s, ξ) := F [φ`(s, · )](ξ),
ĥm(t, ξ) := F [hm(t, · )](ξ),
D̂(t, ξ) := F [D(t, · )](ξ).

Since φ`(s, · ), φ̂`(s, · ), hm(t, · ), ĥm(t, · ) ∈ L2(R) w.r.t. the second variable for s ∈ [1/4, 1]
and t ∈ [0, 1] we can use the Plancherel Theorem to obtain

∫
R

φ̂`(s, ξ)
2 dξ =

∫
R

φ`(s, z)
2 dz ≤

`+1∫
`

e−2z2/3s dz ≤ e−2`2/3, ∀s ∈ [1/4, 1] (1.16.2)

∫
R

ĥm(t,−ξ)2 dξ =

∫
R

hm(t,−z)2 dz ≤ 1, ∀t ∈ [0, 1]. (1.16.3)

Using these estimates we will now prove the boundedness of I`,m. Observe that the innermost
integration can be written as the convolution of hm with D.

I`,m =

1∫
1/2

dt

t∫
t/2

ds

∫
R

∫
R

φ`(s, z)hm(t, y) D(t− s, y − z) dy dz

=

1∫
1/2

dt

t∫
t/2

ds

∫
R

φ`(s, z)

∫
R

hm(t, y) D(t− s, z − y) dy dz

=

1∫
1/2

dt

t∫
t/2

ds

∫
R

φ`(s, z)(hm(t, · ) ∗D(t− s, · ))(z) dz.

Since D, D̂ ∈ L2(R) using Parseval's Theorem together with the convolution theorem yields

=

1∫
1/2

dt

t∫
t/2

ds

∫
R

φ̂`(s, ξ)ĥm(t, ξ)D̂(t− s, ξ) dξ.

Calculating the Fourier transformation of D (see Proposition B.2 for details) yields

=

1∫
1/2

dt

t∫
t/2

ds

∫
R

φ̂`(s, ξ)ĥm(t,−ξ)(−4π2ξ2)e−2π2(t−s)ξ2

dξ.

- 21 -



Chapter 1.2: Preliminaries � Substitute for Lipschitz condition

Using the Young inequality ab ≤ 1
2
(a2c + b2c−1) with a = |φ̂l(s, ξ)|, b = |ĥm(t,−ξ)| and

c = e`
2/3 we get

I`,m ≤ 2π2

1∫
1/2

dt

t∫
t/2

ds

∫
R

φ̂`(s, ξ)
2e`

2/3ξ2e−2π2(t−s)ξ2

dξ

︸ ︷︷ ︸
=:A1

+ 2π2

1∫
1/2

dt

t∫
t/2

ds

∫
R

ĥm(t,−ξ)2e−`
2/3ξ2e−2π2(t−s)ξ2

dξ

︸ ︷︷ ︸
=:A2

.

We estimate A1 and A2 separately. Let us �rst consider A1. Using Fubini's Theorem we can
switch the t with the s integration.

A1 = 2π2

1∫
1/4

ds

2s∧1∫
1/2∨s

dt

∫
R

dξ φ̂`(s, ξ)
2e`

2/3ξ2e−2π2(t−s)ξ2

To estimate this integral we �rst integrate w.r.t. t.

= 2π2

1∫
1/4

ds

∫
R

dξ φ̂`(s, ξ)
2e`

2/3ξ2e2π2sξ2

2s∧1∫
1/2∨s

dt e−2π2tξ2

=

1∫
1/4

ds

∫
R

dξ φ̂`(s, ξ)
2e`

2/3e2π2sξ2
[
e−2π2(1/2∨s)ξ2 −e−2π2(2s∧1)ξ2︸ ︷︷ ︸

≤0

]

≤
1∫

1/4

ds

∫
R

dξ φ̂`(s, ξ)
2e`

2/3e2π2(s−1/2∨s)ξ2

Since s− (1/2 ∨ s) ≤ 0 for s ∈ [1/4, 1] the last factor can be estimated by 1. Using the above
estimate (1.16.2) results in

≤ e`
2/3

1∫
1/4

ds

∫
R

φ̂`(s, ξ)
2 dξ ≤ e`

2/3e−2`2/3 = e−`
2/3.
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Let us now consider the second summand A2. Integrating �rst w.r.t. s yields

A2 = 2π2

1∫
1/2

dt

∫
R

dξ ĥm(t,−ξ)2e−`
2/3ξ2e−2π2tξ2

t∫
t/2

ds e2π2sξ2

=

1∫
1/2

dt

∫
R

dξ ĥm(t,−ξ)2e−`
2/3e−2π2tξ2

[
e2π2tξ2 −eπ2tξ2︸ ︷︷ ︸

≤0

]

≤ e−`
2/3

1∫
1/2

dt

∫
R

dξ ĥm(t,−ξ)2.

By applying the estimate (1.16.3) we deduce

A2 ≤ e−`
2/3.

We therefore have

I`,m ≤ A1 + A2 ≤ 2e−`
2/3.

This implies∑
|`−m|≤1

I`,m =
∑
`∈Z

∑
m∈{`,`±1}

I`,m ≤ 6
∑
`∈Z

e−`
2/3 ≤ C3

for some C3 ∈ R which concludes the proof.

�

Below we apply this proposition to obtain estimates for the term IS where S is either ED or
BD. Note that DD can never be part of any valid string.

Corollary 1.17

Let g and h be real-valued Borel functions on [0, 1]× R bounded by 1. Then

(i)

1∫
1/2

dt

t∫
t/2

ds

∫
R2

g(s, z) E(s, z)h(t, y) D(t− s, y − z) dy dz ≤ C

(ii)

1∫
1/2

dt

t∫
t/2

ds

∫
R2

g(s, z) B(s, z)h(t, y) D(t− s, y − z) dy dz ≤ C

holds, where C is 8 times the constant from Proposition 1.16.
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Proof

(i):

Since

|g(s, z) E(s, z)|
1.10

≤ (2πs)−1/2e−z
2/2s ≤ (π/2)−1/2e−z

2/2s ≤ e−z
2/2s ≤ e−z

2/3s, ∀s ∈ [1/4, 1]

the assertion follows from Proposition 1.16 with φ(s, z) := g(s, z) E(s, z).

(ii):

With a similar calculation as in (i) we obtain

|g(s, z) B(s, z)|
1.10

≤ (2πs)−1/2(|z|/s)e−z2/2s ≤ (π/2)−1/24|z|e−z2/2s, ∀s ∈ [1/4, 1]

≤ 4|z|e−z2/2s ≤ 8ez
2/6e−z

2/2s ≤ 8ez
2/6se−z

2/2s = 8e−z
2/3s, ∀s ∈ [1/4, 1]

Again, the assertion follows from Proposition 1.16 with φ(s, z) := 1
8
g(s, z) B(s, z).

�

To be able to prove Proposition 1.9 via induction we need a much stronger estimate than the
one in Corollary 1.17. In the induction we will get terms of the form gBhD(1− t)r and we
need to control the dependence on r as precisely as possible. Also, since we are integrating
over the set {t0 < t1 < ... < tn < 1} we need an estimate that re�ects the dependence on
t0. We will obtain such an estimate in Proposition 1.19. The following lemma is needed to
prove this improved estimate.

Lemma 1.18

We have the following bounds.

(i)

∫
R

|B(s, z)| dz ≤
√

2/πs−1/2

(ii)

∫
R

|D(t, z)| dz ≤ 2t−1

Proof

(i):

Using the symmetry of the integrand we can easily calculate

∫
R

|B(s, z)| dz
1.10
= (2πs)−1/2s−1

∫
R

|z|e−z2/2s dz = (2πs)−1/22s−1

∞∫
0

ze−z
2/2s dz

︸ ︷︷ ︸
=s

=
√

2/πs−1/2.
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(ii):

Triangle inequality and integration by parts yield∫
R

|D(t, z)| dz
1.10
= (2πt)−1/2t−2

∫
R

|z2 − t|e−z2/2t dz

≤ (2πt)−1/2t−2

∫
R

z2e−z
2/2t dz + (2πt)−1/2t−1

∫
R

e−z
2/2t dz

= (2πt)−1/2t−1

∫
R

e−z
2/2t dz + t−1 = 2t−1.

�

We are now ready to prove the crucial estimate which is necessary to complete the proof of
Proposition 1.9.

Proposition 1.19

There exists C ∈ R such that for all real-valued Borel functions g, h on [0, 1] × R bounded
by 1 everywhere, t0 ∈ [0, 1] and for all r ≥ 0

(i)

1∫
t0

dt

t∫
t0

ds

∫
R2

g(s, z) E(s− t0, z)h(t, y) D(t− s, y − z)(1− t)r dy dz ≤ C
(1− t0)r+1

1 + r

(ii)

1∫
t0

dt

t∫
t0

ds

∫
R2

g(s, z) B(s− t0, z)h(t, y) D(t− s, y − z)(1− t)r dy dz ≤ C
(1− t0)r+1/2

(1 + r)1/2

holds.

Proof

For the proof we use the following strategy: First we note that by a simple transformation
we only need to prove this estimate in the case of t0 = 0 (step 3). We split the integral over
s in two parts.

For the case t/2 ≤ s ≤ t (step 1) we split the set of the t integration [0, 1] into the sets
[2−k−1, 2−k] for k ∈ N. This enables us to use Corollary 1.17. Instead of a constant we will
get a quite complicated sum on the right-hand side of the inequality. A careful analysis of
this sum is carried out in Appendix A. In part (i) of the proof this is mainly done by esti-
mating the sum by its integral (Proposition A.3). In part (ii) the sum is more complicated.
By estimating the sum by its integral we will arrive at the beta function which we estimate
using Stirling's formula (Lemma A.5, Proposition A.4).

For the case 0 ≤ s ≤ t/2 the previous Lemma 1.18 will be applied to obtain the required
bound. Again, part (ii) will be more complicated since the beta function will turn up again.

We now turn to the details of the proof.
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(i):

Step 1: Estimate for t/2 ≤ s ≤ t

We use Corollary 1.17.(i) to get

1∫
1/2

dt

t∫
t/2

ds

∫
R2

g(2−ks, 2−k/2z) E(s, z)h(2−kt, 2−k/2y) D(t− s, y − z) dy dz ≤ C1

for every k ∈ N and some C1 ∈ R. Consider the following transformation

t′ = 2−kt, s′ = 2−ks, y′ = 2−k/2y, z′ = 2−k/2z.

An easy calculation shows

E(s, z) = 2−k/2 E(s′, z′),

D(t− s, y − z) = 2−3k/2 D(t′ − s′, y′ − z′).

Applying the transformation results in

⇒
2−k∫

2−k−1

dt′
t′∫

t′/2

ds′
∫
R2

2kg(s′, z′) E(s′, z′)h(t′, y′) D(t′ − s′, y′ − z′) dy′dz′ ≤ C1.

Multiplying with 2−k and putting (1− t)r inside the integral yields

⇒
2−k∫

2−k−1

dt

t∫
t/2

ds

∫
R2

g(s, z) E(s, z)h(t, y) D(t− s, y − z)(1− t)r dy dz

≤ C12−k sup
t∈[2−k−1,2−k]

(1− t)r = C12−k(1− 2−k−1)r.

We sum over k ∈ N to obtain

1∫
0

dt

t∫
t/2

ds

∫
R2

g(s, z) E(s, z)h(t, y) D(t− s, y − z)(1− t)r dy dz ≤ C1

∞∑
k=0

2−k(1− 2−k−1)r.

Using the estimate of Proposition A.3 we get

1∫
0

dt

t∫
t/2

ds

∫
R2

g(s, z) E(s, z)h(t, y) D(t− s, y − z)(1− t)r dy dz ≤ C2(1 + r)−1

where C2 = C1C with C being the constant in Proposition A.3.
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Step 2: Estimate for 0 ≤ s ≤ t/2

Let us now turn to the case of 0 ≤ s ≤ t/2. We have

1∫
0

dt

t/2∫
0

ds

∫
R2

g(s, z) E(s, z)h(t, y) D(t− s, y − z)(1− t)r dy dz

≤
1∫

0

dt

t/2∫
0

ds (1− t)r
∫
R

E(s, z)

∫
R

|D(t− s, y − z)| dy dz.

Applying Lemma 1.18.(ii) gives us

≤ 2

1∫
0

dt

t/2∫
0

ds (1− t)r
∫
R

E(s, z)(t− s)−1 dz.

Using that E is a probability density results in

= 2

1∫
0

dt

t/2∫
0

ds (1− t)r (t− s)−1︸ ︷︷ ︸
≤(t/2)−1

≤ 2

1∫
0

(1− t)r dt = 2(1 + r)−1.

Combining the estimates of step 1 and 2 yields the required bound proving the assertion in
the case t0 = 0.

Step 3: Reduction to t0 = 0

In the case of t0 > 0 consider the following transformation

t′ =
t− t0
1− t0

, s′ =
s− t0
1− t0

, y′ = y(1− t0)−1/2, z′ = z(1− t0)−1/2.

The same calculations as in step 1 yield

(1− t)r = (1− t′)r(1− t0)r,

E(s− t0, z) = (1− t0)−1/2 E(s′, z′),

D(t− s, y − z) = (1− t0)−3/2 D(t′ − s′, y′ − z′).

We set

g̃(s′, z′) := g(s′(1− t0) + t0, z
′(1− t0)1/2),

h̃(t′, y′) := h(t′(1− t0) + t0, y
′(1− t0)1/2).
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Observe that g̃ and h̃ are still bounded by 1 everywhere. Using that, we can rewrite the
following integral to

1∫
t0

dt

t∫
t0

ds

∫
R2

g(s, z) E(s− t0, z)h(t, y) D(t− s, y − z)(1− t)r(1− t0)−r−1 dy dz

=

1∫
0

dt′
t′∫

0

ds′
∫
R2

g̃(s′, z′) E(s′, z′)h̃(t′, y′) D(t′ − s′, y′ − z′)(1− t′)r dy′dz′.

Therefore, it is su�cient to show the assertion for t0 = 0. This completes the �rst part of
the proof.

(ii):

Step 1: Estimate for t/2 ≤ s ≤ t

We use Corollary 1.17.(ii) to get

1∫
1/2

dt

t∫
t/2

ds

∫
R2

g(2−ks, 2−k/2z) E(s, z)h(2−kt, 2−k/2y) D(t− s, y − z) dy dz ≤ C1

for any k ∈ N and some C1 ∈ R. Consider the following transformation

t′ = 2−kt, s′ = 2−ks, y′ = 2−k/2y, z′ = 2−k/2z.

A similar calculation as in part (i) yields

B(s, z) = 2−k B(s′, z′),

D(t− s, y − z) = 2−3k/2 D(t′ − s′, y′ − z′).

Applying the transformation results in

⇒
2−k∫

2−k−1

dt′
t′∫

t′/2

ds′
∫
R2

2k/2g(s′, z′) B(s′, z′)h(t′, y′) D(t′ − s′, y′ − z′) dy′ dz′ ≤ C1.

Multiplying with 2−k/2 and putting (1− t)r inside the integral yields

⇒
2−k∫

2−k−1

dt

t∫
t/2

ds

∫
R2

g(s, z) B(s, z)h(t, y) D(t− s, y − z)(1− t)r dy dz

≤ C12−k/2 sup
t∈[2−k−1,2−k]

(1− t)r = C12−k/2(1− 2−k−1)r.
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We sum over k ∈ N to obtain

1∫
0

dt

t∫
t/2

ds

∫
R2

g(s, z) B(s, z)h(t, y) D(t− s, y − z)(1− t)r dy dz ≤ C1

∞∑
k=0

2−k/2(1− 2−k−1)r.

Using the estimate shown in Proposition A.5 we get

1∫
0

dt

t∫
t/2

ds

∫
R2

g(s, z) B(s, z)h(t, y) D(t− s, y − z)(1− t)r dy dz ≤ C2(1 + r)−1/2

where C2 = C1C with C being the constant from Proposition A.5.

Step 2: Estimate for 0 ≤ s ≤ t/2

Let us now turn to the case of 0 ≤ s ≤ t/2. We have

1∫
0

dt

t/2∫
0

ds

∫
R2

g(s, z) B(s, z)h(t, y) D(t− s, y − z)(1− t)r dy dz

≤
1∫

0

dt

t/2∫
0

ds (1− t)r
∫
R

|B(s, z)|
∫
R

|D(t− s, y − z)| dy dz.

Using Lemma 1.18.(ii) yields

≤ 2

1∫
0

dt

t/2∫
0

ds (1− t)r
∫
R

|B(s, z)|(t− s)−1 dz.

We apply Lemma 1.18.(i) in order to obtain

≤ 2
√

2/π

1∫
0

dt

t/2∫
0

ds (1− t)r (t− s)−1︸ ︷︷ ︸
≤2/t

s−1/2 ≤ 2
√

2/π

1∫
0

dt (1− t)r 2

t

t/2∫
0

s−1/2 ds

︸ ︷︷ ︸
=
√

2t

= 8π−1/2

1∫
0

(1− t)rt−1/2 dt = 8π−1/2β

(
1

2
, r + 1

)
= 8π−1/2 Γ(1/2)Γ(r + 1)

Γ(r + 3/2)

=
8Γ(r + 1)

Γ(r + 3/2)
.

Where β is the beta function. We use Lemma A.4 with α = 1
2
to estimate the gamma

function, leading us to

≤ 8e7/12(r + 1)−1/2.
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Combining the estimates of step 1 and 2 yield the required bound proving the assertion in
the case t0 = 0.

Step 3: Reduction to t0 = 0

In the case of t0 > 0 consider the following transformation

t′ =
t− t0
1− t0

, s′ =
s− t0
1− t0

, y′ = y(1− t0)−1/2, z′ = z(1− t0)−1/2.

The same calculations as in step 1 yield

(1− t)r = (1− t′)r(1− t0)r,

B(s− t0, z) = (1− t0)−1 B(s′, z′),

D(t− s, y − z) = (1− t0)−3/2 D(t′ − s′, y′ − z′).

We set

g̃(s′, z′) := g(s′(1− t0) + t0, z
′(1− t0)1/2),

h̃(t′, y′) := h(t′(1− t0) + t0, y
′(1− t0)1/2).

Observe that g̃ and h̃ are still bounded by 1 everywhere. Using that, we can rewrite the
following integral to

1∫
t0

dt

t∫
t0

ds

∫
R2

g(s, z) B(s− t0, z)h(t, y) D(t− s, y − z)(1− t)r(1− t0)−r−1/2 dy dz

=

1∫
0

dt′
t′∫

0

ds′
∫
R2

g̃(s′, z′) B(s′, z′)h̃(t′, y′) D(t′ − s′, y′ − z′)(1− t′)r dy′dz′.

Therefore it is su�cient to show the assertion for t0 = 0. This completes the last part of the
proof.

�

As a corollary we will trivially generalize this to the case where h is only bounded by some
constant.
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Corollary 1.20

There exists C ∈ R such that for all real-valued bounded Borel functions g, h on [0, 1] × R
with |g(s, z)| ≤ 1 everywhere, t0 ∈ [0, 1] and for all r ≥ 0

(i)

1∫
t0

dt1

1∫
t1

dt2

∫
R2

g(t1, z1) E(t1 − t0, z1)h(t2, z2) D(t2 − t1, z2 − z1)(1− t2)r dz1 dz2

≤ C‖h‖∞
(1− t0)r+1

1 + r

(ii)

1∫
t0

dt1

1∫
t1

dt2

∫
R2

g(t1, z1) B(t1 − t0, z1)h(t2, z2) D(t2 − t1, z2 − z1)(1− t2)r dz1 dz2

≤ C‖h‖∞
(1− t0)r+1/2

(1 + r)1/2

holds.

Proof

The assertion is trivial for ‖h‖∞ = 0. Assume ‖h‖∞ 6= 0. We set

h̃(t, z) := ‖h‖−1
∞ h(t, z).

Using the fact that

{(t, s) ∈ R2|t ∈ [t0, 1], s ∈ [t0, t]} = {(t2, t1) ∈ R2|t1 ∈ [t0, 1], t2 ∈ [t1, 1]}

and invoking Proposition 1.19 with h̃ instead of h concludes the proof.

�

We are now able to obtain the bounds on IS which are required to complete the proof of
Proposition 1.9. Before turning to the proof we �rst prove the following lemma which is
necessary to simplify one term in the proof of Proposition 1.22.

Lemma 1.21

Let m ∈ N with m ≥ 1, n ∈ N such that n ≥ m and t0 ∈ [0, 1]. Then the following identity
holds. ∫

t0<...<tm<1

(1− tm)(n−m−1)/2

m∏
i=2

(ti − ti−1)−1/2 dt1...dtm =
π(m−1)/2Γ

(
n−m+1

2

)
Γ
(
n
2

+ 1
) (1− t0)n/2
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Proof

We proof the assertion via induction over m.

Base case: m = 1

Since −2
n

(1− t1)n/2 is an anti-derivative of the integrand, a simple calculation shows

1∫
t0

(1− t1)(n−2)/2 dt1 =
2

n
(1− t0)n/2 =

Γ
(
n
2

)
Γ
(
n
2

)
n
2

(1− t0)n/2 =
Γ
(
n
2

)
Γ
(
n
2

+ 1
)(1− t0)n/2.

Inductive step: m −→ m+ 1

Assume the assertion holds for some m ∈ N. Rewriting the left-hand side of the asser-
tion yields ∫

t0<...<tm+1<1

(1− tm+1)(n−m−2)/2

m+1∏
i=2

(ti − ti−1)−1/2 dt1...dtm+1

=

∫
t0<...<tm<1

m∏
i=2

(ti − ti−1)−1/2

1∫
tm

(1− tm+1)(n−m−2)/2(tm+1 − tm)−1/2 dtm+1 dt1...dtm.

We use the transformation

t′m+1 =
tm+1 − tm

1− tm
.

An easy calculation shows

(1− t′m+1)(1− tm) = 1− tm+1, ∂tm+1t
′
m+1 = (1− tm)−1.

By applying the transformation we obtain

=

∫
t0<...<tm<1

(1− tm)(n−m−1)/2

m∏
i=2

(ti − ti−1)−1/2

1∫
0

(1− t′m+1)(n−m−2)/2 t
′−1/2
m+1 dt′m+1 dt1...dtm.

Using the induction hypothesis and rewriting the last integral with the help of the beta
function results in

=
π(m−1)/2Γ

(
n−m+1

2

)
Γ
(
n
2

+ 1
) β

(
1

2
,
n−m

2

)
(1− t0)n/2 =

π(m−1)/2Γ
(
n−m+1

2

)
Γ
(
n
2

+ 1
) √

πΓ
(
n−m

2

)
Γ
(
n−m+1

2

) (1− t0)n/2

=
πm/2Γ

(
n−m

2

)
Γ
(
n
2

+ 1
) (1− t0)n/2.

�

We will estimate terms of the form IS and �nish the proof of Proposition 1.9.
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Proposition 1.22

There exists M ∈ R such that for every n ∈ N and for every valid string S of length n

|IS(t0, z0)| ≤ Mn

Γ
(
n
2

+ 1
)(1− t0)n/2, ∀t0 ∈ [0, 1], z0 ∈ R (1.22.1)

holds.

Proof

We prove the assertion by induction on n. The case n = 1 is clear by Lemma 1.18.(i) with
M =

√
2, so let n > 1 and assume (1.22.1) holds for every valid string S of length less than

n. We split the proof in the following three cases:

Case 1: S = BS′, # S′ = n− 1

Case 2: S = EDS′, # S′ = n− 2

Case 3: S = EBm DS′, m ≥ 1, # S′ = n−m− 2

Observe that S′ is in every case a valid string.

Case 1: S = BS′

We have

|IS(t0, z0)| =

∣∣∣∣∣∣
1∫

t0

dt1

∫
R

g(t1, z1) B(t1 − t0, z1 − z0)IS′(t1, z1) dz1

∣∣∣∣∣∣ .
Using the inductive hypothesis and |g| ≤ 1 results in

≤ Mn−1

Γ
(
n+1

2

) 1∫
t0

dt1 (1− t1)(n−1)/2

∫
R

|B(t1 − t0, z1 − z0)| dz1.

And with the help of Lemma 1.18.(i) we obtain

≤ Mn−1

Γ
(
n+1

2

)√2/π

1∫
t0

(1− t1)(n−1)/2(t1 − t0)−1/2 dt1.

We use the transformation

t′1 =
t1 − t0
1− t0
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to transform the integral into

=

√
2Mn−1

√
πΓ
(
n+1

2

)(1− t0)n/2
1∫

0

t
′−1/2
1 (1− t′1)(n−1)/2 dt′1

=

√
2Mn−1

√
πΓ
(
n+1

2

)(1− t0)n/2β

(
1

2
,
n+ 1

2

)
=

√
2Mn−1

√
πΓ
(
n+1

2

)(1− t0)n/2
Γ
(

1
2

)
Γ
(
n+1

2

)
Γ
(
n
2

+ 1
) .

If M is su�ciently large we obtain

=

√
2Mn−1

Γ
(
n
2

+ 1
)(1− t0)n/2 ≤ Mn

Γ
(
n
2

+ 1
)(1− t0)n/2.

Case 2: S = EDS′

We have

|IS(t0, z0)| =

∣∣∣∣∣∣
1∫

t0

dt1

1∫
t1

dt2

∫
R2

g(t1, z1) E(t1 − t0, z1 − z0)

· g(t2, z2) D(t2 − t1, z2 − z1)IS′(t2, z2) dz1 dz2

∣∣∣∣∣∣ .
De�ne

h(t, z) := g(t, z)IS′(t, z)(1− t)−(n−2)/2.

So that by the inductive hypothesis and |g| ≤ 1 we have the following bound on h

|h(t, z)| ≤

∣∣∣∣∣Mn−2

Γ
(
n
2

) (1− t)(n−2)/2(1− t)−(n−2)/2

∣∣∣∣∣ =
Mn−2

Γ
(
n
2

) .
By de�nition of h we establish that

|IS(t0, z0)| =

∣∣∣∣∣∣
1∫

t0

dt1

1∫
t1

dt2

∫
R2

g(t1, z1) E(t1 − t0, z1 − z0)

·h(t2, z2) D(t2 − t1, z2 − z1)(1− t2)(n−2)/2 dz1 dz2

∣∣∣∣∣∣ .
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Using Corollary 1.20.(i) we deduce

≤ C
Mn−2

Γ
(
n
2

) (1− t0)n/2

n
2

= C
Mn−2

Γ
(
n
2

+ 1
)(1− t0)n/2

for some C ∈ R. If M is su�ciently large we obtain

≤ Mn

Γ
(
n
2

+ 1
)(1− t0)n/2.

Case 3: S = EBm DS′

We have

|IS(t0, z0)| =

∣∣∣∣∣∣
∫

t0<...<tm+2<1

dt1...dtm+2

∫
Rm+2

g(t1, z1) E(t1 − t0, z1 − z0)

·
m+1∏
i=2

g(ti, zi) B(ti − ti−1, zi − zi−1)

· g(tm+2, zm+2) D(tm+2 − tm+1, zm+2 − zm+1)

· IS′(tm+2, zm+2) dz1...dzm+2

∣∣∣∣∣ .
De�ne

h(t, z) := g(t, z)IS′(t, z)(1− t)−(n−m−2)/2.

So that by the inductive hypothesis and |g| ≤ 1 we have the following bound on h

|h(t, z)| ≤

∣∣∣∣∣Mn−m−2

Γ
(
n−m

2

) (1− t)(n−m−2)/2(1− t)−(n−m−2)/2

∣∣∣∣∣ =
Mn−m−2

Γ
(
n−m

2

) .
By setting

Ω(t, z) :=

1∫
t

dtm+1

1∫
tm+1

dtm+2

∫
R2

g(tm+1, zm+1) B(tm+1 − t, zm+1 − z)

·h(tm+2, zm+2)(1− tm+2)(n−m−2)/2

· D(tm+2 − tm+1, zm+2 − zm+1) dzm+1 dzm+2

we can use Corollary 1.20.(ii) to deduce

|Ω(t, z)| ≤ C
Mn−m−2

Γ
(
n−m

2

) (1− t)(n−m−1)/2(
n−m

2

)1/2
= C

√
2

n−m
Mn−m−2

Γ
(
n−m

2

) (1− t)(n−m−1)/2. (1.22.2)
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We can now rewrite IS(t0, z0) as

|IS(t0, z0)| =

∣∣∣∣∣∣
∫

t0<...<tm<1

dt1...dtm

∫
Rm

g(t1, z1) E(t1 − t0, z1 − z0)

·
m∏
i=2

g(ti, zi) B(ti − ti−1, zi − zi−1)Ω(tm, zm) dz1...dzm

∣∣∣∣∣∣ .
Using (1.22.2) and the fact that |g| ≤ 1 we get

≤ C

√
2

n−m
Mn−m−2

Γ
(
n−m

2

) ∫
t0<...<tm<1

dt1...dtm

∫
Rm

E(t1 − t0, z1 − z0)
m∏
i=2

|B(ti − ti−1, zi − zi−1)|

· (1− tm)(n−m−1)/2 dz1...dzm.

With the help of Lemma 1.18.(i) and using the fact that E is a probability density we obtain

≤ C

√
2

n−m
Mn−m−2

Γ
(
n−m

2

) (2/π)(m−1)/2

∫
t0<...<tm<1

(1− tm)(n−m−1)/2

m∏
i=2

(ti − ti−1)−1/2 dt1...dtm.

Invoking Lemma 1.21 yields

= C

√
2

n−m
Mn−m−2

Γ
(
n−m

2

) (2/π)(m−1)/2π
(m−1)/2Γ

(
n−m+1

2

)
Γ
(
n
2

+ 1
) (1− t0)n/2

= C

√
2m

n−m
Mn−m−2

Γ
(
n−m

2

) Γ
(
n−m+1

2

)
Γ
(
n
2

+ 1
) (1− t0)n/2.

Setting x := (n−m)/2 and using Stirling's formula as in the proof of Lemma A.4 we obtain

Γ
(
x+ 1

2

)
Γ (x)

≤ (x+ 1/2)xe−x−1/2e
1

12(x+1/2)

xx−1/2e−x

x≥0

≤ e−1/2e1/6
√
x

(
x+ 1/2

x

)x
= e−1/2e1/6

√
xex ln(x+1/2

x ).

Applying the basic estimate lnx ≤ x− 1 yields

≤ e1/6
√
x.

With the help of this estimate we �nally get

|IS(t0, z0)| ≤ Ce1/6

√
2m

n−m

√
n−m

2

Mn−m−2

Γ
(
n
2

+ 1
)(1− t0)n/2 = Ce1/62(m−1)/2 M

n−m−2

Γ
(
n
2

+ 1
)(1− t0)n/2.
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If M is su�ciently large we obtain

≤ Mn

Γ
(
n
2

+ 1
)(1− t0)n/2.

Looking back at these three cases, if we set M as

M := (1 + C)e1/6
√

2

where C is the constant from Corollary 1.20, M is �su�ciently large�.

�

Finally, we are able to complete the proof of Proposition 1.9.

Proof (continued)

Recall that

J (k)
n (t0, z0) =

2n−k∑
`=1

±I(k,n)

S(`) (t0, z0), ∀k ≤ n. (1.9.1)

Setting t0 = z0 = 0, k = 1 and using Proposition 1.22 results in

|J (1)
n (0, 0)| ≤

2n−1∑
`=1

|IS(`)(0, 0)| ≤ 2n−1Mn

Γ
(
n
2

+ 1
) .

Since for n ∈ N we have n! ≤ 2nΓ
(
n
2

+ 1
)2

we obtain

n!|J (1)
n (0, 0)| ≤

22n−1MnΓ
(
n
2

+ 1
)2

Γ
(
n
2

+ 1
) ≤ CnΓ

(n
2

+ 1
)

with C := 4M , completing the proof of Proposition 1.9.

�

With this bound we can now obtain our estimate which will act as a substitute for the
Lipschitz condition. We �rst prove this substitute in expectation. This is clearly not enough
to prove the main result. In the next section we will therefore use the Chebychev inequality
to get an almost sure version of this Lipschitz condition, in order to tackle the main theorem
in the next chapter.
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Theorem 1.23

There exists C ∈ R such that for every real-valued Borel function g on [0, 1]× Rd bounded
by 1 everywhere, x ∈ Rd, every even integer p ∈ N and p = 1, we have

E

 1∫
0

g(t,W (t) + x)− g(t,W (t)) dt

p

≤ CpΓ
(p

2
+ 1
)
|x|p2,

where | · |2 denotes the Euclidean norm of Rd and W standard d-dimensional Brownian
motion with W (0) = 0 P-a.s..

Proof

Step 1: d = 1

Let g be a real-valued Borel function with |g| ≤ 1 everywhere. There exists a sequence
gn : [0, 1] × R −→ R of smooth, compactly supported functions with |gn| ≤ 1 everywhere
such that gn converges to g almost everywhere, i.e.

gn(t, x)
n→∞−→ g(t, x), ∀t ∈ [0, 1] \M, ∀x ∈ R \ Ñt

where M and Nt are Lebesgue zero sets for all t ∈ [0, 1], respectively. And since the distri-
bution of W (t) is absolutely continuous w.r.t. Lebesgue measure we have

gn(t,W (t))
n→∞−→ g(t,W (t)) and gn(t,W (t) + x)

n→∞−→ g(t,W (t) + x)

for all t ∈ [0, 1] \M and ω ∈ Ω \Nt, where Nt := W (t)−1(Ñt) ∪ (W (t) + x)−1(Ñt) and x is
a point in R. We use the fundamental theorem of calculus and the transformation rule to
obtain

E

 1∫
0

gn(t,W (t) + x)− gn(t,W (t)) dt

p

= E

 1∫
0

1∫
0

xg′n(t,W (t) + ux) dudt

p

.

Here ′ again denotes the derivative w.r.t. the second variable. We swap the order of integra-
tion by Fubini's Theorem and since p is even or 1 we can apply Jensen's inequality

= xp E

 1∫
0

1∫
0

g′n(t,W (t) + ux) dtdu

p

≤ xp E
1∫

0

 1∫
0

g′n(t,W (t) + ux) dt

p

du.

We de�ne hn(t, s) := gn(t, s+ux) for every u ∈ [0, 1]. Observe that hn satis�es all conditions
of Proposition 1.9, so we deduce that

= xp E
1∫

0

 1∫
0

h′n(t,W (t)) dt

p

du ≤ |x|p
1∫

0

CpΓ
(p

2
+ 1
)

du = CpΓ
(p

2
+ 1
)
|x|p.

We now let n→∞. Using the boundedness of gn the result follows by Fatou's inequality

E

 1∫
0

g(t,W (t) + x)− g(t,W (t)) dt

p
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=

1∫
0

...

1∫
0

E
p∏
j=1

g(tj,W (tj) + x)− g(tj,W (tj)) dt1...dtp

=

1∫
0

...

1∫
0

E
p∏
j=1

1[0,1]\M(tj)1Ω\Ntj [g(tj,W (tj) + x)− g(tj,W (tj))] dt1...dtp

≤ lim inf
n→∞

1∫
0

...

1∫
0

E
p∏
j=1

1[0,1]\M(tj)1Ω\Ntj [gn(tj,W (tj) + x)− gn(tj,W (tj))] dt1...dtp

= lim inf
n→∞

E

 1∫
0

gn(t,W (t) + x)− gn(t,W (t)) dt

p

≤ CpΓ
(p

2
+ 1
)
|x|p

as in the proof of Proposition 1.9.

Step 2: Reduction to d = 1

We will prove the assertion by reducing it to the case of d = 1. Let x and g be as speci�ed in
the assertion. Let Φ be a rotation on Rd satisfying Φ(α, 0, ..., 0)> = x with α := |x|2. De�ne
Φ̃ := id[0,1]×Φ. We have

E

 1∫
0

g(t,W (t) + x)− g(t,W (t)) dt

p

.

Setting W̃ (t) = Φ−1W (t) results in

= E

 1∫
0

g(Φ̃(t, W̃ (t) + (α, 0, .., 0)>))− g(Φ̃(t, W̃ (t))) dt

p

.

Using Lebesgue's transformation rule and det DΦ̃ = 1 yields

= E

 1∫
0

g(t, W̃ (t) + (α, 0, .., 0)>)− g(t, W̃ (t)) dt

p

.

And since Brownian motion is invariant under rotations, W̃ is still a Brownian motion.
Applying the transformation formula results in

=

∫
C([0,1],Rd)

 1∫
0

g(t, f(t) + (α, 0, .., 0)>)− g(t, f(t)) dt

p

dW(f)

where W denotes the Wiener measure on C([0, 1],Rd). Since the components of W are
independent W is of product type and we have

=

∫
C([0,1],R)

...

∫
C([0,1],R)

 1∫
0

g(t, f(t) + (α, 0, .., 0)>)− g(t, f(t)) dt

p

dW1(f1)...dWd(fd)
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where f = (f1, ..., fd)
>. For �xed paths f2, ..., fd we de�ne

h(t, u) := g(t, (u, f2(t), ..., fd(t))
>), ∀t ∈ [0, 1], u ∈ R.

And step 1 yields∫
C([0,1],R)

 1∫
0

g(t, f(t) + (α, 0, .., 0)>)− g(t, f(t)) dt

p

dW1(f1)

=

∫
C([0,1],R)

 1∫
0

h(t, f1(t) + α)− h(t, f1(t)) dt

p

dW1(f1) ≤ CpΓ
(p

2
+ 1
)
|α|p

for �xed paths f2, ..., fd. Averaging over f2, ..., fd and using that |x|2 = |α| holds, completes
the proof.

�

Using Theorem 1.23 we will obtain a di�erent version of this estimate, which holds in prob-
ability instead of in expectation in the next section. This improved estimate will eventually
lead to Lemma 2.5, which acts as our substitute for the Lipschitz condition.

1.3 Lipschitz condition in probability

The aim of this section is to improve the previous estimate (Theorem 1.23) in the sense that
we get an estimate which holds in probability instead of in expectation. The main ingredient
for archiving this is the Chebychev inequality. The version we obtain here will also be local
in character i.e. we no longer restrict ourselves to integrals over the interval [0, 1]. Integrating
only over some interval [a, b] also enables us to prove the estimates in conditional expectation
w.r.t. Fs as long as s ≤ a. To this end recall that we have measures (Px)x∈Rd such that the
universal Markov property (cf. [Bau96] equation 42.18) holds.

De�nition 1.24

Let g be a bounded, real-valued Borel function on [0, 1] × Rd, 0 ≤ a < b ≤ 1 and x ∈ Rd.
We de�ne

σa,b(x; g,W ) :=

b∫
a

g(t,W (t) + x)− g(t,W (t)) dt.

If it is clear from context we drop the g and W in the notation and write σa,b(x) instead of
σa,b(x; g,W ).

Corollary 1.25

Let g be a real-valued Borel function on [0, 1]× Rd bounded by 1 everywhere. Let 0 ≤ s ≤
a < b ≤ 1, ` := b− a. We then have

P[|σa,b(x)| > λ
√
`|x|2|Fs] ≤ 2e−λ

2/(2C2), P-a.s., ∀x ∈ Rd, ∀λ > 0,

where C is the constant from Theorem 1.23.
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Proof

The assertion is trivial in the case x = 0, so we assume x 6= 0.

Step 1: s = a = 0, b = 1

De�ne α := (2C2|x|22)−1 with C being the constant from Theorem 1.23. We then have

E[eα|σ0,1(x)|2 ] = E
∞∑
k=0

αk

k!
|σ0,1(x)|2k =

∞∑
k=0

αk

k!
E
[
σ0,1(x)2k

]
.

Using Theorem 1.23 with p = 2k we deduce

1.23

≤
∞∑
k=0

αkC2k|x|2k2 =
∞∑
k=0

2−k = 2.

We can conclude the proof with the help of the Chebychev inequality.

P[|σ0,1(x)| > λ|x|2] = P[eα|σ0,1(x)|2 > eαλ
2|x|22 ] ≤ e−αλ

2|x|22E[eα|σ0,1(x)|2 ] ≤ 2e−αλ
2|x|22 = 2e−λ

2/(2C2).

Step 2: General case

Fix a version of the conditional expectation. With the help of the universal Markov property
(cf. [Bau96] equation (42.18)) we obtain

E

 b∫
a

g(t,W (t) + x)− g(t,W (t)) dt

∣∣∣∣∣∣Fa
= EW (a)

 b∫
a

g(t,W (t− a) + x)− g(t,W (t− a)) dt


where Ex denotes the expectation w.r.t. the measure Px. Consider the following transforma-
tion

t′ :=
t− a
`

, ∂tt
′ = `−1.

This leads us to

= EW (a)

` 1∫
0

g(`t′ + a,W (`t′) + x)− g(`t′ + a,W (`t′)) dt′

 .
De�ne

W̃ (t) := `−1/2W (`t)

and observe that W̃ is again a Brownian motion under Px starting in x for every x ∈ Rd.
We now have

= EW (a)

` 1∫
0

g(`t′ + a,
√
`W̃ (t′) + x)− g(`t′ + a,

√
`W̃ (t′)) dt′

 .
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Fix ω0 ∈ Ω. Set Q := PW (ω0,a) and note that W̃ −W (ω0, a) is a Brownian motion under Q
starting in 0 Q-a.s.. We de�ne

h(s, u) := g
(
`s+ a,

√
` (u+W (ω0, a))

)
, ∀s ∈ [0, 1], u ∈ Rd.

So we �nally have

E [ |σa,b(x; g,W )|| Fa] (ω0)

= EQ

`
∣∣∣∣∣∣

1∫
0

h

(
t′, W̃ (t′)−W (ω0, a) +

x√
`

)
− h

(
t′, W̃ (t′)−W (ω0, a)

)
dt′

∣∣∣∣∣∣


= EQ
[
`

∣∣∣∣σ0,1

(
x√
`
;h, W̃ −W (ω0, a)

)∣∣∣∣] ,
where EQ denotes the expectation w.r.t. the measure Q. With this calculation we express
the conditional probability as

P[|σa,b(x; g,W )| > λ
√
`|x|2|Fa](ω0) = Q

[∣∣∣∣σ0,1

(
x√
`
;h, W̃ −W (ω0, a)

)∣∣∣∣ > λ
|x|2√
`

]
.

In consequence of the fact that W̃ −W (ω0, a) is a Brownian motion starting in 0 w.r.t. Q
we are able to apply the conclusion of step 1 and deduce

P[|σa,b(x; g,W )| > λ
√
`|x|2|Fa](ω0) ≤ 2e−λ

2/(2C2), ∀ω0 ∈ Ω.

Since ω0 was arbitrary this inequality holds for all ω0 ∈ Ω. Because of the relation Fs ⊆ Fa
taking the conditional expectation w.r.t. Fs results in

P[|σa,b(x; g,W )| > λ
√
`|x|2|Fs] ≤ 2e−λ

2/(2C2).

which concludes the proof of the assertion.

�

Using the technique of the last proof we also obtain the following bound for the conditional
expectation of σpa,b.

Corollary 1.26

Let g be a real-valued Borel function on [0, 1]× Rd bounded by 1 everywhere. Let 0 ≤ s ≤
a < b ≤ 1, ` := b− a and p an even integer or p = 1. We then have

E[|σa,b(x)|p|Fs] ≤ Cp`p/2Γ
(p

2
+ 1
)
|x|p2, P-a.s. ∀x ∈ Rd.

where C is the constant from Theorem 1.23.
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Proof

Fix a version of the conditional expectation. With the same calculation as in the last proof
we have

E[|σa,b(x; g,W )|p|Fa](ω0) = EW (ω0,a)

[
`p
∣∣∣∣σ0,1

(
x√
`
;h, W̃ −W (ω0, a)

)∣∣∣∣p ]
where h and W̃ are de�ned as in the proof of Corollary 1.25. Since Fs ⊆ Fa taking the
conditional expectation w.r.t. Fs and applying Theorem 1.23 results in

E[|σa,b(x; g,W )|p|Fs]
1.23

≤ `pCpΓ
(p

2
+ 1
) ∣∣∣∣ |x|2√`

∣∣∣∣p= Cp`p/2Γ
(p

2
+ 1
)
|x|p2.

�

De�nition 1.27

Let g be a bounded, real-valued Borel function on [0, 1]× Rd, 0 ≤ a < b ≤ 1 and x, y ∈ Rd.
We de�ne

ρa,b(x, y; g,W ) := σa,b(x; g,W )− σa,b(y; g,W ) =

b∫
a

g(t,W (t) + x)− g(t,W (t) + y) dt.

If it is clear from context we drop the g and W in the notation and write ρa,b(x, y) instead
of ρa,b(x, y; g,W ).

Note that ρa,b(x, 0) = σa,b(x). Hence, it is natural to ask whether the previous estimates for
σa,b can be translated to estimates for ρa,b. The next corollary gives an a�rmative answer
to this question.

Corollary 1.28

Let g be a real-valued Borel function on [0, 1]× Rd bounded by 1 everywhere. Let 0 ≤ s ≤
a < b ≤ 1, ` := b− a and p an even integer or p = 1. We then have

(i) P[|ρa,b(x, y)| > λ
√
`|x− y|2|Fs] ≤ 2e−λ

2/(2C2), P-a.s., ∀x, y ∈ Rd, ∀λ > 0

(ii) E[|ρa,b(x, y)|p|Fs] ≤ Cp`p/2Γ
(p

2
+ 1
)
|x− y|p2, P-a.s., ∀x, y ∈ Rd

where C is the constant from Theorem 1.23.

Proof

We set

h(t, u) := g(t, u+ y), ∀t ∈ [0, 1], u ∈ Rd.

and immediately obtain

ρa,b(x, y; g,W ) = σa,b(x− y;h,W ).
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Applying Corollary 1.25 leads us to

P[|ρa,b(x, y; g,W )| > λ
√
`|x− y|2|Fs] = P[|σa,b(x− y;h,W )| > λ

√
`|x− y|2|Fs]

1.25

≤ 2e−λ
2/(2C2)

proving claim (i). With the help of Corollary 1.26 we obtain in the same way

E[|ρa,b(x, y; g,W )|p|Fs] = E[|σa,b(x− y;h,W )|p|Fs]
1.26

≤ Cp`p/2Γ
(p

2
+ 1
)
|x− y|p2.

which completes the proof.

�

Lemma 1.29

Let p > 1 + d
2
and g ∈ Lp([0, 1]× Rd) then

E
1∫

0

g(t,W (t)) dt ≤ C(p, d)‖g‖Lp([0,1]×Rd)

where W denotes standard d-dimensional Brownian motion with W (0) = 0 P-a.s., q = p
p−1

and

C(p, d) :=

(
q−d/2 · (2π)(1−q)d/2+1

(1− q)d
2

+ 1

)1/q

.

Proof

We set q := p
p−1

. Let Ed be the Lebesgue density of the d-dimensional normal distribution

Ed(t, z) := (2πt)−d/2e−|z|
2
2/(2t), ∀t > 0, z ∈ Rd.

We then have

1∫
0

∫
Rd

Ed(t, z)
q dz dt =

1∫
0

(2πt)−qd/2
∫
Rd

e−|z|
2
2/(2t/q) dz dt

=

1∫
0

(2πt)−qd/2(2πt/q)d/2 dt = q−d/2
1∫

0

(2πt)(1−q)d/2 dt.
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Since p > 1+ d
2
we have (1−q)d/2 > −1. The integrand is therefore integrable and we obtain

= q−d/2
(2π)(1−q)d/2+1

(1− q)d
2

+ 1
= C(p, d)q.

So by Fubini's Theorem and Hölder's inequality we deduce

E
1∫

0

g(t,W (t)) dt =

1∫
0

∫
Rd

g(t, z) Ed(t, z) dz dt ≤ ‖g‖Lp([0,1]×Rd) · ‖Ed ‖Lq([0,1]×Rd)

= C(p, d)‖g‖Lp([0,1]×Rd).

�
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2 Proof of the main theorem

In this chapter we will provide a proof for the main Theorem 1.5. In the �rst section we
discuss dyadic points and obtain an �almost sure version� of Theorem 1.23 (Lemma 2.5).
For the main proof it is vital to do an approximation. The question of convergence of this
particular approximation is answered in the second section. Using this, the last section
contains the proof of the main result.

2.1 Dyadic points

In this section we introduce the space of dyadic points and dyadic neighbors. Using a
quite general approximation technique (Lemma 2.4) we deduce an �almost sure version� of
Theorem 1.23. At the end of this section we generalize this estimate in Corollary 2.6.

De�nition 2.1

Let n ∈ N. For any k ∈ {0, ..., 2n − 1} we set

In,k :=

[
k

2n
,
k + 1

2n

[
.

De�nition 2.2

Let 1 ≤ d <∞ and |x|∞ := max
1≤i≤d

|xi|. We call

Q := {x ∈ Rd : |x|∞ ≤ 1, x = (x1, ..., xd)
>, ∀i : ∃k : 2kxi ∈ Z}

the space of dyadic points. We call x, y ∈ Q dyadic neighbors of order m ∈ N if

|x− y|∞ = 2−m and 2mx, 2my ∈ Zd.

Notation: x ∼m y. Additionally, we call x, y ∈ Q dyadic neighbors (Notation: x ∼ y) if
there exists some m ∈ N such that x ∼m y.

De�nition 2.3

Let g be a bounded, real-valued or Rd-valued Borel function on [0, 1] × Rd and x, y ∈ Rd.
Analog to De�nition 1.24 and 1.27 we de�ne

σn,k(x; g,W ) :=

∫
In,k

g(t,W (t) + x)− g(t,W (t)) dt,

ρn,k(x, y; g,W ) := σn,k(x; g,W )− σn,k(y; g,W ) =

∫
In,k

g(t,W (t) + x)− g(t,W (t) + y) dt.

If it is clear from the context we drop g and W in the notation and write σn,k(x) instead of
σn,k(x; g,W ) and ρn,k(x, y) instead of ρn,k(x, y; g,W ).
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Lemma 2.4

Let x, y ∈ Q with 0 < |x− y|∞ < 1. For every integer r ≥ 0 choose xr ∈ 2−rZd such that

|x− xr|∞ = min
z∈2−rZd∩Q

|x− z|∞.

We de�ne yr in the same way. Let m ≥ 0 be the largest integer such that |x − y|∞ < 2−m

holds. Then the following statements hold

(i) xm ∼m ym or xm = ym

(ii) xr+1 ∼r+1 xr or xr+1 = xr

(iii) ∃N0 ∈ N : ∀n ≥ N0 : xn+1 = xn

Proof

(i)

Assume xm 6∼m ym and xm 6= ym. Let us �rst consider the case d = 1. W.l.o.g. we have
xm < ym. We therefore have ym − xm > 2−m. The distance between x and xm (respectively
y and ym) is at most 2−m−1. This implies that x ≤ y. Since xm and ym are not dyadic
neighbors of order m there exists zm with 2mzm ∈ Z such that xm < zm < ym. Because xm
and ym are closer to x and y than zm, respectively, we have

x ≤ zm ≤ y.

Since x is closer to xm than to zm we have zm − x ≥ 2−m−1. The same holds for y, so we
have y − zm ≥ 2−m−1. See the following picture for an overview of the situation.

Hence

y − x = y − zm + zm − x ≥ 2−m.

Contradicting |x − y|∞ < 2−m. Now, consider the case d > 1. Let πi be the projection to
the i-th coordinate. There exists i ∈ {1, ..., d} such that

|πi(xm)− πi(ym)| = |xm − ym|∞ /∈ {0, 2−m}.

So we have πi(xm) 6∼m πi(ym) and πi(xm) 6= πi(ym). By the d = 1 case we get |πi(y)−πi(x)| ≥
2−m. This implies |x− y|∞ ≥ 2−m concluding the �rst part of the proof.
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(ii)

Assume xr+1 6∼r+1 xr and xr+1 6= xr. Let us again �rst consider the case d = 1. Since
xr ∈ 2−rZ we have xr = p2−r with p ∈ {−2r, ..., 2r}. W.l.o.g. xr < xr+1. Set z = (2p±1)2−r−1

such that z ∈ Q. W.l.o.g. we only consider the case xr < z i.e. z = (2p+ 1)2−r−1. Since

z − xr =
2p+ 1

2r+1
− p

2r
= 2−r−1

holds, z and xr are dyadic neighbors of order r + 1. This means that xr < z < xr+1. But
by the de�nition of xr the distance between x and xr is at most 2−r−1. We therefore have
x ≤ z < xr+1 which is a contradiction to the de�nition of xr+1. Now, consider the case
d > 1. Let πi be the projection to the i-th coordinate. There exists i ∈ {1, ..., d} such that

|πi(xr+1)− πi(xr)| = |xr+1 − xr|∞ /∈ {0, 2−r−1}.

This implies πi(xr+1) 6∼r+1 πi(xr) and πi(xr+1) 6= πi(xr). By the d = 1 case we conclude the
second part of the proof.

(iii)

Since x ∈ Q there exists N0 ∈ N such that x = 2−N0(k1, ..., kd)
> with ki ∈ {−2N0 , ..., 2N0}.

Let n ≥ N0 then xn = x since

x = 2−N0(k1, ..., kd)
> = 2−n(k12n−N0 , ..., kd2

n−N0)> ∈ 2−nZd.
�

Lemma 2.5

For every ε > 0 there exist C(ε) ∈ R and Aε ⊆ Ω with P[Aε] ≤ ε such that for every
real-valued Borel function g on [0, 1]× R bounded by 1 everywhere, we have

|σn,k(x)| ≤ C(ε)
√
n2−n/2 max

(
|x|∞, 2−2n

)
for all dyadic points x ∈ Q, n ≥ 1, k ∈ {0, ..., 2n − 1} and ω ∈ Acε.

Proof

Step 1:

For r ∈ N we de�ne Qr := {x ∈ Q : |x|∞ ≤ 2−r}. Let m be an integer with m ≥ r and x, y ∈
Qr be dyadic neighbors of order m. Applying Corollary 1.28.(i) with λ = λ′(

√
n+
√
m− r)

for some λ′ > 0, s = 0 and using that
√
d|x− y|∞ ≥ |x− y|2 yields

P[|ρn,k(x, y)| > λ′
√
d(
√
n+
√
m− r)2−m−n/2]

≤ P[|ρn,k(x, y)| > λ′(
√
n+
√
m− r)|x− y|22−n/2]

≤ 2e−λ
′2(n+m−r)/(2C2) = 2e−λ

′2n/(2C2)e−λ
′2(m−r)/(2C2).
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Choose λ′ large enough such that λ′2 ≥ 4dC2 + λ′2

2n
holds, and henceforth we get

≤ 2e
−n

(
4C2+λ′2

2n

)
/(2C2)

e−2dC2(m−r)/(2C2) = 2e−2ne−λ
′2/(4C2)e−d(m−r).

Using the above inequality we obtain

P

 ∞⋃
n=1

2n⋃
r=0

∞⋃
m=r

⋃
x,y∈Qr
x∼my

2n−1⋃
k=0

|ρn,k(x, y)| > λ′
√
d(
√
n+
√
m− r)2−m−n/2


≤

∞∑
n=1

2n∑
r=0

∞∑
m=r

∑
x,y∈Qr
x∼my

2n−1∑
k=0

2e−2ne−d(m−r)e−λ
′2/(4C2)

=
∞∑
n=1

2n∑
r=0

∞∑
m=r

#{(x, y) ∈ Q2
r|x ∼m y}︸ ︷︷ ︸

≤(2 · 2m−r+1)d3d

2 · 2ne−2ne−d(m−r)e−λ
′2/(4C2)

≤ 2
∞∑
n=1

2n∑
r=0

∞∑
m=r

(3 · 2m−r3)d
(

2

e2

)n
e−d(m−r)e−λ

′2/(4C2)

= 2 · 32d

∞∑
n=1

2n∑
r=0

∞∑
m=0

2dm
(

2

e2

)n
e−dme−λ

′2/(4C2)

≤ 32d+2

∞∑
n=1

∞∑
m=0

(
4

e2

)n(
2

e

)dm
e−λ

′2/(4C2)

≤ 32d+2

∞∑
n=1

(
4

e2

)n
︸ ︷︷ ︸

≤2

∞∑
m=0

(
2

e

)m
︸ ︷︷ ︸

≤4

e−λ
′2/(4C2)

≤ 32d+4e−λ
′2/(4C2) λ

′→∞−→ 0.

Since the left-hand side converges to zero as λ′ approaches in�nity, we have proved that

lim
λ′→∞

P

 ∞⋃
n=1

2n⋃
r=0

∞⋃
m=r

⋃
x,y∈Qr
x∼my

2n−1⋃
k=0

|ρn,k(x, y)| > λ′
√
d(
√
n+
√
m− r)2−m−n/2

 = 0.

Let ε > 0. Then there exists C(ε) > 0 such that

P

[
∞⋃
n=1

2n⋃
r=0

∞⋃
m=r

⋃
x,y∈Qr
x∼my

2n−1⋃
k=0

|ρn,k(x, y)| > C(ε)(
√
n+
√
m− r)2−m−n/2

︸ ︷︷ ︸
=:Aε

]
≤ ε.

Note that the probability of the event Acε is at least 1− ε.
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So, for r ∈ {0, ..., 2n} we have

|ρn,k(x, y)| ≤ C(ε)(
√
n+
√
m− r)2−m−n/2,

(2.5.1)
∀x, y ∈ Qr, x ∼m y, m ≥ r, n ≥ 1, k ∈ {0, ..., 2n − 1}.

as long as ω ∈ Acε.

With this inequality we will now prove the asserted inequality using an approximation ar-
gument based on Lemma 2.4.

Let x ∈ Qr with r as above. For every integer i ≥ r choose xi ∈ Qr as in Lemma 2.4 i.e.
xi ∈ Qr ∩ 2−iZd such that xi minimizes the distance to x. By the triangle inequality we
immediately get

|σn,k(x)| ≤ |ρn,k(xr, 0)|+
∞∑
i=r

|ρn,k(xi+1, xi)|.

Observe that xr ∼r 0 or xr = 0 and xi+1 ∼i+1 xi or xi+1 = xi by Lemma 2.4.(ii). The sum
converges trivially by Lemma 2.4.(iii). This enables us to use the above estimate.

(2.5.1)

≤ C(ε)
√
n2−r−n/2 +

∞∑
i=r

C(ε)(
√
n+
√
i+ 1− r)2−i−1−n/2

= C(ε)2−n/2
∞∑
i=r

(
√
n+
√
i− r)2−i

= C(ε)2−n/2

[
21−r√n+ 2−r

∞∑
i=1

√
i2−i

]

≤ C(ε)2−n/22−r

[
2
√
n+

∞∑
i=1

(
2

3

)i]

= C(ε)2−n/22−r[2
√
n+ 2]

n≥1

≤ 4C(ε)2−n/22−r
√
n.

Step 2:

For a �xed n ∈ N let x ∈ Q such that |x|∞ > 2−2n . We set

r :=
⌊
log2 |x|−1

∞
⌋
≤
⌊
log2 22n

⌋
≤ 2n.

And hence we have

2−r−1 = 2−blog2 |x|
−1
∞ c−1 ≤ 2− log2 |x|

−1
∞ = |x|∞. (2.5.2)

Additionally, we have x ∈ Qr, because of the fact that

|x|∞ = 2− log2 |x|
−1
∞ ≤ 2−r.

So we can apply step 1 to get

|σn,k(x)| ≤ 4C(ε)2−n/22−r
√
n

(2.5.2)

≤ 8C(ε)
√
n2−n/2|x|∞.
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Step 3:

Again for a �xed n ∈ N let x ∈ Q such that |x|∞ ≤ 2−2n . Then x ∈ Qr with r = 2n,
so we have

|σn,k(x)| ≤ 4C(ε)2−n/22−r
√
n = 4C(ε)

√
n2−n/22−2n .

This concludes the proof.

�

Using the relation between σn,k and ρn,k we generalize the last lemma in a similar way as
Corollary 1.28 is proved.

Corollary 2.6

For every ε > 0 there exist C(ε) ∈ R and Aε ⊆ Ω with P[Aε] ≤ ε such that for every
real-valued Borel function g on [0, 1]× R bounded by 1

|ρn,k(x, y)| ≤ C(ε)
√
n2−n/2 max

(
|x− y|∞, 2−2n

)
holds for all dyadic points x, y ∈ Q, n ≥ 1, k ∈ {0, ..., 2n − 1} and ω ∈ Acε.

Proof

Let x, y ∈ Q. We set

h(t, u) := g (t, u+ y) , r(t, u) := h

(
t, u+

x− y
2

)
, ∀t ∈ [0, 1], u ∈ Rd

and immediately obtain

ρn,k(x, y; g,W ) = ρn,k (x− y, 0;h,W ) = ρn,k

(
x− y, x− y

2
;h,W

)
+ ρn,k

(
x− y

2
, 0;h,W

)
= σn,k

(
x− y

2
; r,W

)
+ σn,k

(
x− y

2
;h,W

)
.

Using the fact that (x− y)/2 ∈ Q and invoking Lemma 2.5 readily results in

|ρn,k(x, y; g,W )| ≤
∣∣∣∣σn,k (x− y2

; r,W

)∣∣∣∣+

∣∣∣∣σn,k (x− y2
;h,W

)∣∣∣∣
≤ C(ε)

√
n2−n/2 max

(
|x− y|∞, 2−2n

)
, ∀ω ∈ Acε.

�
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2.2 Approximation via step functions

In the last section we obtained the estimate

|σn,k(x)| ≤ C(ε)
√
n2−n/2 max

(
|x|∞, 2−2n

)
for dyadic points x ∈ Q. We would like to replace x by a Lipschitz continuous function
t 7−→ u(t). To this end we approximate u by Q-valued step functions un which are constant
on the interval In,k. In this section we show that the approximants converge in the right
sense (Lemma 2.10) and use this result to generalize the above estimate (Corollary 2.12).

De�nition 2.7

De�ne

Φ := {u : [0, 1] −→ [−1, 1]d : |u(s)− u(t)|∞ ≤ |s− t|, ∀s, t ∈ [0, 1]},

Φn :=

{
u : [0, 1] −→ [−1, 1]d

∣∣∣∣ ∀0 ≤ k < 2n : ∀s, t ∈ In,k : u(s) = u(t),

∀m, ` ∈ Z ∩ [0, 2n] : |u(m2−n)− u(`2−n)|∞ ≤ |m− `|2−n

}
,

Φ∗ :=
∞⋃
n=1

Φn ∪ Φ.

Note that elements in Φ are continuous, since functions in Φ are Lipschitz continuous (with
Lipschitz constant at most 1). Φn will be used to approximate elements in Φ. Also note that
Φ and Φn are separable w.r.t. the maximum norm and hence Φ∗ is separable.

Lemma 2.8

Let u ∈ Φ∗ and n ∈ N. We then have

2n−1∑
k=0

∣∣u(k2−n)− u((k + 1)2−n)
∣∣
∞ ≤ 1.

Proof

Let u ∈ Φ∗ and n ∈ N be as in the assertion. If u ∈ Φ the inequality follows immediately
from the Lipschitz continuity of u. Let u ∈ Φm for some m ∈ N.
Case 1: m ≥ n

2n−1∑
k=0

∣∣u(k2−n)− u((k + 1)2−n)
∣∣
∞ =

2n−1∑
k=0

∣∣u(k2m−n2−m)− u((k + 1)2m−n2−m)
∣∣
∞

u∈Φm
≤

2n−1∑
k=0

2m−n2−m = 1
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Case 2: m < n

2n−1∑
k=0

∣∣u(k2−n)− u((k + 1)2−n)
∣∣
∞

Since u is constant on Im,k this sum simpli�es to

=
2m−1∑
k=0

∣∣u(k2−m)− u((k + 1)2−m)
∣∣
∞

and because of the fact that u ∈ Φm we have

≤
2m−1∑
k=0

2−m = 1.

�

The following technical lemma is needed to prove the main lemma (Lemma 2.10) of this
section.

Lemma 2.9

For every ε > 0 there exist δ > 0 and Aε ⊆ Ω with P[Aε] ≤ ε such that if U ⊆ [0, 1]× Rd is
open with |U | ≤ δ, then

1∫
0

1U(t,W (t) + u(t)) dt ≤ ε, ∀u ∈ Φ∗, ω ∈ Acε

holds, where |U | is the mass of U w.r.t. Lebesgue measure.

Proof

Let ε > 0. By Corollary 2.6 there exists C(ε) ∈ R such that∣∣∣∣∣∣∣
∫
In,k

φ(t,W (t) + x)− φ(t,W (t) + y) dt

∣∣∣∣∣∣∣ ≤ C(ε)
√
n2−n/2

(
|x− y|∞ + 2−2n

)
(2.9.1)

∀x, y ∈ Q, n ≥ 1, k ∈ {0, .., 2n − 1}.

holds for every real-valued Borel function φ on [0, 1]×Rd satisfying |φ| ≤ 1 everywhere with
probability at least 1− ε/2. Choose m ∈ N such that

5C(ε)
∞∑
n=m

√
n+ 12−n/2 ≤ ε

2
. (2.9.2)
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De�ne the �nite set

Λ := {x ∈ Q|x ∈ 2−mZd}.

Set p := 1 + d and η := ε2

4 · 22m#(Λ) ·C(p,d)
where C(p, d) is the constant from Lemma 1.29.

Then by the Chebychev inequality for every bounded, real-valued Borel function φ with
‖φ‖Lp([0,1]×Rd) ≤ η and x ∈ Λ, we have

P


∣∣∣∣∣∣∣
∫
Im,k

φ(t,W (t) + x) dt

∣∣∣∣∣∣∣ >
ε

2 · 2m

 ≤ 2 · 2m

ε
E

∣∣∣∣∣∣∣
∫
Im,k

φ(t,W (t) + x) dt

∣∣∣∣∣∣∣ .
We use Lemma 1.29 to get the estimate.

1.29

≤ 2 · 2m

ε
C(p, d)‖φ‖Lp([0,1]×Rd) ≤

ε

2 · 2m#(Λ)
.

Note that we can put the left-hand side in norms since for every φ that satis�es the conditions
of Lemma 1.29 −φ also satis�es the conditions. Therefore

P

⋃
x∈Λ

2m−1⋃
k=0

∣∣∣∣∣∣∣
∫
Im,k

φ(t,W (t) + x) dt

∣∣∣∣∣∣∣ >
ε

2 · 2m

 ≤∑
x∈Λ

2m−1∑
k=0

ε

2 · 2m#(Λ)
=
ε

2
.

In conclusion the probability that∣∣∣∣∣∣∣
∫
Im,k

φ(t,W (t) + x) dt

∣∣∣∣∣∣∣ ≤
ε

2 · 2m
, ∀x ∈ Λ, ∀k ∈ {0, ..., 2m − 1} (2.9.3)

holds for φ with ‖φ‖Lp ≤ η is at least 1 − ε/2. Let δ := ηp and U ⊆ [0, 1] × Rd be an open
set with |U | ≤ δ. We de�ne an increasing sequence of non-negative, continuous functions,
which converge pointwise to 1U by

φr(x) := (r · dist(x, U c)) ∧ 1.

Observe that

‖φr‖Lp([0,1]×Rd) ≤ ‖1U‖Lp([0,1]×Rd) = |U |1/p ≤ δ1/p = η.

For each r ∈ N we de�ne the events

Ar : (2.9.1) holds for φr instead of φ

and

Br : (2.9.3) holds for φr instead of φ.
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Note that P[Ar],P[Br] ≥ 1− ε/2 and P[Ar ∩Br] ≥ 1− ε. Let u ∈ Φ∗. For every n ∈ N de�ne

un(x) :=
2n−1∑
k=0

1In,k(x)
b2nu(k2−n)c

2n
, ∀x ∈ [0, 1],

where b · c denotes the componentwise �oor function. Observe that un is Q-valued and if
u ∈ Φm for some m ∈ N, un converges trivially on [0, 1[ since un = u for n su�ciently large.
This convergence even holds for u ∈ Φ as the following calculation shows

lim
n→∞

un(x) = lim
n→∞

b2nu(b2nxc2−n)c
2n

= lim
n→∞

2nu(b2nxc2−n)− µ(2nu(b2nxc2−n))

2n

where µ(y) := y − byc ∈ [0, 1[ for all y ∈ R. Since u ∈ Φ, u is continuous and hence

= lim
n→∞

u(b2nxc2−n)
u∈Φ
= u

(
lim
n→∞
b2nxc2−n

)
= u

(
lim
n→∞

x− µ(2nx)2−n
)

= u(x).

Now, assume that Ar and Br both hold. In this case we have∣∣∣∣∣∣
1∫

0

φr(t,W (t) + um(t)) dt

∣∣∣∣∣∣ ≤
2m−1∑
k=0

∣∣∣∣∣∣∣
∫
Im,k

φr(t,W (t) + um(t)) dt

∣∣∣∣∣∣∣
(Br)

≤
2m−1∑
k=0

ε

2 · 2m
=
ε

2
.

Observe that um is 2−mZd-valued and therefore um(t) ∈ Λ. Using (Ar) results in∣∣∣∣∣∣
1∫

0

φr(t,W (t) + un+1(t))− φr(t,W (t) + un(t)) dt

∣∣∣∣∣∣
≤

2n+1−1∑
k=0

∣∣∣∣∣∣∣
∫

In+1,k

φr(t,W (t) + un+1(t)︸ ︷︷ ︸
∈Q

)− φr(t,W (t) + un(t)︸ ︷︷ ︸
∈Q

) dt

∣∣∣∣∣∣∣
(Ar)

≤
2n+1−1∑
k=0

C(ε)
√
n+ 12−n/2 max

(
|un+1(k2−n−1)− un(k2−n−1)|∞, 2−2n

)
≤ C(ε)

√
n+ 12−n/2

2n+1−1∑
k=0

|un+1(k2−n−1)− un((k/2)2−n)|∞ + 2−2n

≤ C(ε)
√
n+ 12−n/2

[
1 +

2n+1−1∑
k=0

|un+1(k2−n−1)− un(bk/2c2−n)|∞

]

= C(ε)
√
n+ 12−n/2

[
1 +

2n+1−1∑
k=0

2−n−1
∣∣b2n+1u(k2−n−1)c − 2

⌊
2nu

(
bk/2c 2−n

)⌋∣∣
∞

]
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≤ C(ε)
√
n+ 12−n/2

[
1 +

2n+1−1∑
k=0

2−n−1
∣∣b2n+1u(k2−n−1)c − 2n+1u(k2−n−1)

∣∣
∞︸ ︷︷ ︸

≤1

+
2n+1−1∑
k=0

∣∣u(k2−n−1)− u
(
bk/2c 2−n

)∣∣
∞

+
2n+1−1∑
k=0

2−n
∣∣2nu (bk/2c 2−n

)
−
⌊
2nu

(
bk/2c 2−n

)⌋∣∣
∞︸ ︷︷ ︸

≤1

]

≤ C(ε)
√
n+ 12−n/2

4 +
2n+1−1∑
k=0
2-k

∣∣u(k2−n−1)− u
(
2 bk/2c 2−n−1

)∣∣
∞


= C(ε)

√
n+ 12−n/2

4 +
2n+1−1∑
k=0
2-k

∣∣u(k2−n−1)− u
(
(k − 1)2−n−1

)∣∣
∞


≤ C(ε)

√
n+ 12−n/2

[
4 +

2n+1−1∑
k=0

∣∣u((k + 1)2−n−1)− u
(
k2−n−1

)∣∣
∞

]
.

Using Lemma 2.8 we can estimate the sum and obtain

2.8

≤ 5C(ε)
√
n+ 12−n/2.

Therefore as long as Ar and Br both hold we have by Lebesgue's dominated convergence
Theorem and continuity of φr

1∫
0

φr(t,W (t) + u(t)) dt = lim
n→∞

1∫
0

φr(t,W (t) + un(t)) dt

=

1∫
0

φr(t,W (t) + um(t)) dt+
∞∑
n=m

1∫
0

φr(t,W (t) + un+1(t))− φr(t,W (t) + un(t)) dt

(Ar),(Br)

≤ ε

2
+ 5C(ε)

∞∑
n=m

√
n+ 12−n/2

(2.9.2)

≤ ε

2
+
ε

2
= ε.

We now de�ne the event Qr as

Qr :

1∫
0

φr(t,W (t) + u(t)) dt ≤ ε, ∀u ∈ Φ∗.

Note that Qr is measurable since Φ∗ is separable and

Qr =
⋂
u∈Φ∗


1∫

0

φr(t,W (t) + u(t)) dt ≤ ε

 =

 sup
u∈Φ∗

1∫
0

φr(t,W (t) + u(t)) dt ≤ ε

 .
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The previous arguments already showed that Ar ∩Br ⊆ Qr and hence P[Qr] ≥ 1 − ε. But
since φr ≤ φr+1 we have Qr+1 ⊆ Qr. This implies that

P

[
∞⋂
r=0

Qr

]
≥ 1− ε.

Using Lebesgue's dominated convergence Theorem again, we deduce that

1∫
0

1U(t,W (t) + u(t)) dt = lim
r→∞

1∫
0

φr(t,W (t) + u(t)) dt ≤ ε

holds with probability at least 1− ε, which concludes the proof.

�

We are now ready to prove the approximation lemma.

Lemma 2.10

Let g be a real-valued Borel function on [0, 1]× Rd bounded by 1 everywhere. There exists
N ⊆ Ω with P[N ] = 0 such that for all sequences (un)n∈N in Φ∗ converging pointwise to
u ∈ Φ∗

lim
n→∞

1∫
0

g(t,W (t) + un(t)) dt =

1∫
0

g(t,W (t) + u(t)) dt, ∀ω ∈ N c

holds.

Proof

Let g be a real-valued Borel function on [0, 1]×Rd bounded by 1 and ε > 0. Let δ and Aε be
as in Lemma 2.9. By Lusin's Theorem (cf. [Tao11] Theorem 1.3.28) there exists an open set
U ⊆ [0, 1] × Rd with |U | ≤ δ such that g|Uc is continuous. By Tietze's extension Theorem
(cf. [BvR97] Theorem 15.15) there exists a continuous function h : [0, 1]×Rd → R such that
h = g on U c and |h| ≤ |g|.

Let (un)n∈N be a sequence in Φ∗ converging pointwise to some u ∈ Φ∗. With probability at
least 1− ε the conclusion of Lemma 2.9 holds, i.e.

∣∣∣∣∣∣
1∫

0

1U(t,W (t) + un(t)) dt

∣∣∣∣∣∣ ≤ ε, ∀ω ∈ Acε, ∀n ∈ N. (2.10.1)
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And the same inequality is true if we replace un by u. Since g as well as h is bounded by 1
we have |g − h| ≤ 2 everywhere and we therefore conclude∣∣∣∣∣∣

1∫
0

g(t,W (t) + un(t))− h(t,W (t) + un(t)) dt

∣∣∣∣∣∣
≤

1∫
0

1U(t,W (t) + un(t))|g − h| dt
(2.10.1)

≤ 2ε.

Since h is continuous Lebesgue's dominated convergence Theorem implies

lim
n→∞

1∫
0

h(t,W (t) + un(t)) dt =

1∫
0

lim
n→∞

h(t,W (t) + un(t)) dt =

1∫
0

h(t,W (t) + u(t)) dt.

Choose m ∈ N su�ciently large such that∣∣∣∣∣∣
1∫

0

h(t,W (t) + un(t))− h(t,W (t) + u(t)) dt

∣∣∣∣∣∣ ≤ ε, ∀n ≥ m. (2.10.2)

All in all we have for n ≥ m and ω ∈ Acε∣∣∣∣∣∣
1∫

0

g(t,W (t) + un(t)) dt−
1∫

0

g(t,W (t) + u(t)) dt

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
1∫

0

g(t,W (t) + un(t))− h(t,W (t) + un(t)) dt

∣∣∣∣∣∣︸ ︷︷ ︸
≤2ε by (2.10.1)

+

∣∣∣∣∣∣
1∫

0

h(t,W (t) + un(t))− h(t,W (t) + u(t)) dt

∣∣∣∣∣∣︸ ︷︷ ︸
≤ε by (2.10.2)

+

∣∣∣∣∣∣
1∫

0

h(t,W (t) + u(t))− g(t,W (t) + u(t)) dt

∣∣∣∣∣∣︸ ︷︷ ︸
≤2ε by (2.10.1)

≤ 5ε.
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We de�ne

Ak :=
⋂

(un)n∈N∈Φ∗N
lim
n→∞un=u

⋃
m∈N

⋂
n≥m


∣∣∣∣∣∣

1∫
0

g(t,W (t) + un(t))− g(t,W (t) + u(t)) dt

∣∣∣∣∣∣ ≤ 5

k

 .

Note that Ak is measurable since Φ∗ is separable and

Φ∗N ∼=
∐
n∈N

Φ∗.

We obviously have

Ak+1 ⊆ Ak

which implies

P

[
∞⋂
k=1

Ak

]
= lim

k→∞
P [Ak] ≥ lim

k→∞
1− 1

k
= 1

concluding the proof.

�

Remark 2.11

Lemma 2.10 also immediately implies that σn,k and thus ρn,k are continuous. This enables us
to generalize the estimate in Lemma 2.5 from dyadic points to the entire cube [−1, 1]d. By
a simple inductive argument we can also prove the estimate for all points in Rd, which will
simplify arguments in later proofs. The following corollary is centered on these observations.

Corollary 2.12

For every ε > 0 there exist C(ε) ∈ R and Aε ⊆ Ω with P[Aε] ≤ ε such that for all real-valued
Borel functions g on [0, 1]× R bounded by 1 everywhere

|ρn,k(x, y)| ≤ C(ε)
√
n2−n/2

(
|x− y|∞ + 2−2n

)
holds for all x, y ∈ Rd, n ≥ 1, k ∈ {0, ..., 2n − 1} and ω ∈ Acε.
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Proof

Step 1:

Let ε > 0, g a real-valued Borel function with |g| ≤ 1 everywhere and x ∈ Rd such that
x = bxc + y with y ∈ Q, where b · c again denotes the componentwise �oor function. Set
r := b|x|∞c + 1, x(i) := ((i ∧ |x1|) sign(x1), ..., (i ∧ |xd|) sign(xd))

> for i ∈ {0, ..., r} where
x = (x1, ..., xd)

>. Additionally, we de�ne

τz : R× Rd −→ Rd, (t, u) 7−→ (t, u+ z).

We are now able to write

σn,k(x) =

∫
In,k

g(t,W (t) + x)− g(t,W (t)) dt

=
r−1∑
i=0

∫
In,k

g(t,W (t) + x(i+1))− g(t,W (t) + x(i)) dt

=
r−1∑
i=0

∫
In,k

g ◦ τx(i)(t,W (t) + x(i+1) − x(i))− g ◦ τx(i)(t,W (t)) dt.

Note that x(i+1) − x(i) ∈ Q. We can therefore apply Lemma 2.5

|σn,k(x)| ≤
r−1∑
i=0

|σn,k(x(i+1) − x(i); g ◦ τx(i) ,W )|

2.5

≤
r−1∑
i=0

C(ε)
√
n2−n/2 max

(
|x(i+1) − x(i)|∞, 2−2n

)
n≥1
= C(ε)

√
n2−n/2

r−2∑
i=0

|x(i+1) − x(i)|∞︸ ︷︷ ︸
=1

+C(ε)
√
n2−n/2 max

(
|x(r) − x(r−1)︸ ︷︷ ︸

=y

|∞, 2−2n
)

≤ C(ε)
√
n2−n/2(r − 1) + C(ε)

√
n2−n/2

(
|y|∞ + 2−2n

)
= C(ε)

√
n2−n/2

(
r − 1 + |y|∞ + 2−2n

)
= C(ε)

√
n2−n/2

(
|x|∞ + 2−2n

)
.

Step 2:

Let x ∈ Rd. Choose a sequence xm ∈ Q such that lim
m→∞

bxc+ xm = x. We write

lim
m→∞

σn,k(bxc+ xm) = lim
m→∞

1∫
0

1In,k(t)g(t,W (t) + bxc+ xm)− 1In,k(t)g(t,W (t)) dt

2.10
=

1∫
0

1In,k(t)g(t,W (t) + x)− 1In,k(t)g(t,W (t)) dt = σn,k(x).
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So, by step 1 we have

|σn,k(x)| = lim
m→∞

|σn,k(bxc+ xm)| ≤ lim
m→∞

C(ε)
√
n2−n/2

(
|bxc+ xm|∞ + 2−2n

)
= C(ε)

√
n2−n/2

(
|x|∞ + 2−2n

)
.

Step 3:

Let x, y ∈ Rd. With the help of the map τy we obtain

ρn,k(x, y) =

∫
In,k

g(t,W (t) + x)− g(t,W (t) + y) dt

=

∫
In,k

g ◦ τy(t,W (t) + x− y)− g ◦ τy(t,W (t)) dt = σn,k(x− y; g ◦ τy,W ).

By step 2 we have

|ρn,k(x, y)| = |σn,k(x− y; g ◦ τy,W )| ≤ C(ε)
√
n2−n/2

(
|x− y|∞ + 2−2n

)
which concludes the proof.

�

2.3 Main result

We will now prove an estimate for the term

r∑
q=1

|ρn,k+q(yq−1, yq)|∞

where yq ∈ Q. First, we obtain an estimate for the Euler approximation xq+1 := xq +
σn,k+q(xq) (Lemma 2.14). By comparing yq with the Euler approximation we get the required
bound for the above sum (Lemma 2.15), which is the last estimate that is necessary to prove
the essential lemma (Lemma 2.16) of the main theorem.

Remark 2.13

Let f be a bounded, Rd-valued Borel function on [0, 1] × Rd as in (1.0). We write f =
(g1, ..., gd)

> and note that
|σn,k(x; f,W )|∞ = max

1≤i≤d
|σn,k(x; gi,W )|.

Henceforth, the conclusions of Lemma 2.5 and 2.10 also hold for functions f which are Rd-
valued as long as the norm | · | on the left-hand side of the equations is replaced by | · |∞,
i.e.

|σn,k(x; f,W )|∞ ≤ C(ε)
√
n2−n/2 max

(
|x|∞, 2−2n

)
,

From now on we take f instead of g in the de�nition of σn,k and ρn,k.
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Lemma 2.14

Let p ∈ N be an even integer. There exists C(p) ∈ R such that for all Rd-valued Borel
functions f on [0, 1] × Rd, which are bounded by 1 everywhere, x0 ∈ Q and n, r ∈ N
satisfying r ≤ 2n/2 we have

P

[
r∑
q=1

|ρn,k+q(xq−1, xq)|∞ > 2−n

(
λ
√
r|x0|∞ + C(p)

r−1∑
q=0

|xq|∞

)]
≤ C(p)λ−p

for all k ∈ {0, ..., 2n − r − 1} and for any λ > 0. Where xq+1 = xq + σn,k+q(xq) for
q ∈ {0, ..., r − 1}.

Proof

Observe that xq is F(k+q)2−n-measurable, since σn,k+q−1 is F(k+q)2−n-measurable. We want to
use Corollary 1.28.(ii) for xq instead of some x ∈ Rd. Due to this we do a measure theoretic
induction. Let F,A ∈ F(k+q)2−n and α, β ∈ Rd. Let p be an even integer or 1. We then have∫

F

|ρn,k+q(α1A, β1A)|p∞ dP =

∫
F∩A

|ρn,k+q(α, β)|p∞ dP +

∫
F∩Ac

|ρn,k+q(0, 0)|p∞︸ ︷︷ ︸
=0

dP

=

∫
F∩A

E[|ρn,k+q(α, β)|p∞|F(k+q)2−n ] dP
1.28.(ii)

≤
∫

F∩A

CpΓ
(p

2
+ 1
)

2−np/2|α− β|p2 dP

≤
∫
F

C1(p)2−np/2|α− β|p∞1A dP

with C1(p) := CpΓ(p/2 + 1)dp/2, where C is the constant from Corollary 1.28.(ii). Let us
now consider step functions. Let Ai ∈ F(k+q)2−n be pairwise disjoint sets for i ∈ {1, ...,m}.
We then have∫

F

∣∣∣∣∣ρn,k+q

(
m∑
i=1

αi1Ai ,

m∑
j=1

βj1Aj

)∣∣∣∣∣
p

∞

dP =
m∑
i=1

∫
F

|ρn,k+q(αi1Ai , βi1Ai)|p∞ dP

≤
m∑
i=1

∫
F

C1(p)2−np/2|αi − βi|p∞1Ai dP =

∫
F

C1(p)2−np/2

∣∣∣∣∣
m∑
i=1

(αi − βi)1Ai

∣∣∣∣∣
p

∞

dP.

Let φ, ψ be non-negative F(k+q)2−n-measurable functions. We approximate φ and ψ by
increasing sequences of F(k+q)2−n-measurable step functions φi and ψi, respectively. By
continuity of ρn,k+q (Remark 2.11) we obtain

E[|ρn,k+q(φ, ψ)|p∞|F(k+q)2−n ] = E[|ρn,k+q( lim
i→∞

φi, lim
i→∞

ψi)|p∞|F(k+q)2−n ]

2.11
= E[ lim

i→∞
|ρn,k+q(φi, ψi)|p∞|F(k+q)2−n ] = lim

i→∞
E[|ρn,k+q(φi, ψi)|p∞|F(k+q)2−n ]

≤ lim
i→∞

C1(p)2−np/2|φi − ψi|p∞ = C1(p)2−np/2|φ− ψ|p∞.
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As noted above, xq is F(k+q)2−n-measurable, so we have

E[|σn,k+q(xq)|p∞|F(k+q)2−n ] = E[|ρn,k+q(xq, 0)|p∞|F(k+q)2−n ] ≤ C1(p)2−np/2|xq|p∞ (2.14.1)

E[|ρn,k+q(xq−1, xq)|p∞|F(k+q)2−n ] ≤ C1(p)2−np/2|xq−1 − xq|p∞. (2.14.2)

Taking expectation yields

E|σn,k+q(xq)|p∞ ≤ C1(p)2−np/2E|xq|p∞ (2.14.3)

E|ρn,k+q(xq−1, xq)|p∞ ≤ C1(p)2−np/2E|xq−1 − xq|p∞. (2.14.4)

As of now, let p be an even integer as stated in the assertion. Using the Minkowski inequality
we deduce that

(E|xq+1|p∞)1/p = (E|xq + σn,k+q(xq)|p∞)1/p ≤ (E|xq|p∞)1/p + (E|σn,k+q(xq)|p∞)1/p

(2.14.3)

≤ (E|xq|p∞)1/p + C1(p)1/p2−n/2 (E|xq|p∞)1/p = (1 + C1(p)1/p2−n/2) (E|xq|p∞)1/p .

Taking the p-th power results in

E|xq+1|p∞ ≤ (1 + C1(p)1/p2−n/2)pE|xq|p∞.

By induction over q ∈ {0, ..., r − 1} we obtain

E|xq|p∞ ≤ (1 + C1(p)1/p2−n/2)pq|x0|p∞, ∀q ∈ {0, ..., r}
q≤r≤2n/2

≤
(

(1 + C1(p)1/p2−n/2)2n/2
)p
|x0|p∞

≤ exp(C1(p)1/p)p|x0|p∞ = exp(pC1(p)1/p)|x0|p∞.

Finally we have

E|xq|p∞ ≤ exp(pC1(p)1/p)|x0|p∞ (2.14.5)

for all q ∈ {0, ..., r}. De�ne for q ∈ {1, ..., r}

Yq := |ρn,k+q(xq−1, xq)|∞,
Zq := E[Yq|F(k+q)2−n ],

Xq := Yq − Zq.

Observe that Xq is F(k+q+1)2−n-measurable and we have

E[Xq|F(k+q)2−n ] = E[Yq − E[Yq|F(k+q)2−n ]|F(k+q)2−n ] = 0.

We de�ne for ` ∈ N

M` :=
r∧∑̀
q=1

Xq.

And hence we have M0 = 0. Moreover, M` is a G` := F(k+`+1)2−n-martingale since

E[M`|Gm] =
r∧∑̀
q=1

E[Xq|Gm] =
r∧m∑
q=1

E[Xq|Gm]︸ ︷︷ ︸
=Xq

+
r∧∑̀

q=(r∧m)+1

E[Xq|Gm]︸ ︷︷ ︸
=0

=
r∧m∑
q=1

Xq = Mm, ∀` ≥ m
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and the quadratic variation process of M is

〈M〉` =
r∧∑̀
q=1

(Mq −Mq−1)2 =
r∧∑̀
q=1

X2
q .

So, by the discrete Burkholder inequality (cf. [Bur66], Theorem 9) we conclude

E

∣∣∣∣∣
r∑
q=1

Xq

∣∣∣∣∣
p

= E |Mr|p ≤ C2(p)E 〈M〉p/2r = C2(p)E

(
r∑
q=1

X2
q

)p/2

where C2(p) ∈ R is independent of M . By Proposition A.6 we have

A.6

≤ C2(p)rp/2−1E
r∑
q=1

Xp
q = C2(p)rp/2−1

r∑
q=1

E|Yq − E[Yq|F(k+q)2−n ]|p

Yq≥0

≤ C2(p)rp/2−1

r∑
q=1

EY p
q = C2(p)rp/2−1

r∑
q=1

E|ρn,k+q(xq−1, xq)|p∞

(2.14.4)

≤ C1(p)C2(p)rp/2−12−np/2
r∑
q=1

E|xq−1 − xq|p∞

= C1(p)C2(p)rp/2−12−np/2
r∑
q=1

E|σn,k+q−1(xq−1)|p∞

(2.14.3)

≤ C1(p)2C2(p)rp/2−12−np
r∑
q=1

E|xq−1|p∞

(2.14.5)

≤ C1(p)2C2(p) exp(pC1(p)1/p)rp/2−12−np
r∑
q=1

|x0|p∞

≤ C1(p)2C2(p) exp(pC1(p)1/p)rp/22−np|x0|p∞.

This calculation implies that

E

∣∣∣∣∣
r∑
q=1

Xq

∣∣∣∣∣
p

≤ C2(p)rp/2−1

r∑
q=1

EY p
q ≤ C1(p)2C2(p) exp(pC1(p)1/p)rp/22−np|x0|p∞. (2.14.6)

Let

Vq := E[Zq|F(k+q−1)2−n ],

Wq := Zq − Vq.

Analog to above we de�ne

M ′
` :=

r∧∑̀
q=1

Wq.

Observe that Wq is F(k+q)2−n-measurable and we have

E[Wq|F(k+q−1)2−n ] = E[Zq − E[Zq|F(k+q−1)2−n ]|F(k+q−1)2−n ] = 0.
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Note that M ′
0 = 0. Moreover M ′

` is a G ′` := F(k+`)2−n-martingale since

E[M ′
`|G ′m] =

r∧∑̀
q=1

E[Wq|G ′m] =
r∧m∑
q=1

E[Wq|G ′m]︸ ︷︷ ︸
=Wq

+
r∧∑̀

q=(r∧m)+1

E[Wq|G ′m]︸ ︷︷ ︸
=0

=
r∧m∑
q=1

Wq = M ′
m, ∀` ≥ m

and the quadratic variation process of M ′ is

〈M ′〉` =
r∧∑̀
q=1

(M ′
q −M ′

q−1)2 =
r∧∑̀
q=1

W 2
q .

We again use the Burkholder inequality (cf. [Bur66], Theorem 9) to establish

E

∣∣∣∣∣
r∑
q=1

Wq

∣∣∣∣∣
p

= E |M ′
r|
p ≤ C2(p)E 〈M ′〉p/2r = C2(p)E

(
r∑
q=1

W 2
q

)p/2

with C2(p) ∈ R as before. By Proposition A.6 we have

A.6

≤ C2(p)rp/2−1E
r∑
q=1

W p
q = C2(p)rp/2−1

r∑
q=1

E|Zq − E[Zq|F(k+q−1)2−n ]|p

Zq≥0

≤ C2(p)rp/2−1

r∑
q=1

EZp
q ≤ C2(p)rp/2−1

r∑
q=1

EY p
q .

So by inequality (2.14.6) we deduce that

E

∣∣∣∣∣
r∑
q=1

Wq

∣∣∣∣∣
p

≤ C1(p)2C2(p) exp(pC1(p)1/p)rp/22−np|x0|p∞. (2.14.7)

Let us now consider the term Vq.

Vq = E[Zq|F(k+q−1)2−n ] = E[E[Yq|F(k+q)2−n ]|F(k+q−1)2−n ]

= E[E[|ρn,k+q(xq−1, xq)|∞|F(k+q)2−n|F(k+q−1)2−n ]

(2.14.2)

≤ C1(1)2−n/2E[|xq−1 − xq|∞|F(k+q−1)2−n ]

= C1(1)2−n/2E[|σn,k+q−1(xq−1)|∞|F(k+q−1)2−n ]

(2.14.1)

≤ C1(1)22−n|xq−1|∞.

This leads us to

r∑
q=1

Vq ≤ C1(1)22−n
r∑
q=1

|xq−1|∞ = C1(1)22−n
r−1∑
q=0

|xq|∞. (2.14.8)
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Note that Yq = Xq +Wq +Vq. De�ne C(p) := max
(
2p+1C1(p)2C2(p) exp(pC1(p)1/p), C1(1)2

)
.

Using the already established estimates we deduce that

P

[
r∑
q=1

Yq > 2−n

[
λ
√
r|x0|∞ + C(p)

r−1∑
q=0

|xq|∞

]]

= P

[
r∑
q=1

Xq +Wq + Vq > 2−n

[
λ
√
r|x0|∞ + C(p)

r−1∑
q=0

|xq|∞

]]

≤ P

[
r∑
q=1

Vq > 2−nC(p)
r−1∑
q=0

|xq|∞

]
︸ ︷︷ ︸

=0 by (2.14.8)

+P

[
r∑
q=1

Xq >
λ
√
r|x0|∞

2n+1

]
+ P

[
r∑
q=1

Wq >
λ
√
r|x0|∞

2n+1

]
.

Applying the Chebychev inequality yields

≤
(

2n+1

λ
√
r|x0|∞

)p
E

[∣∣∣∣∣
r∑
q=1

Xq

∣∣∣∣∣
p

+

∣∣∣∣∣
r∑
q=1

Wq

∣∣∣∣∣
p]
.

With the help of (2.14.6) and (2.14.7) we obtain

≤
(

2n+1

λ
√
r|x0|∞

)p
2C1(p)2C2(p) exp(pC1(p)1/p)rp/22−np|x0|p∞

= λ−p2p+1C1(p)2C2(p) exp(pC1(p)1/p) ≤ C(p)λ−p.

This concludes the proof.

�

Lemma 2.15

For every ε > 0 there exist C(ε) ∈ R and Aε ⊆ Ω with P[Aε] ≤ ε such that for all Rd-valued
Borel functions f on [0, 1]×Rd which are bounded by 1, all n, r ∈ N with r ≤ b2n/4c, every
k ∈ {0, ..., 2n − r − 1} and every y0, ..., yr ∈ [−1, 1]d we have

r∑
q=1

|ρn,k+q(yq−1, yq)|∞ ≤ C(ε)

[
2−3n/4|y0|∞ + 2−n/8

r−1∑
q=0

|γq|∞ + 2−2n/2

]
, ∀ω ∈ Acε.

Where γq := yq+1 − yq − σn,k+q(yq) for q ∈ {0, ..., r − 1}.
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Proof

Let ε > 0. Set δn := 2−n/42−2n/2 . By Corollary 2.12, Remark 2.13 and Proposition A.7 with
probability 1− ε/2 there exists C1(ε) > 0 such that

|ρn,k+q(x, y)|∞
2.12

≤ 2−1C1(ε)
√
n2−n/2

(
|x− y|∞ + 2−2n

)
(2.15.1)A.7

≤ C1(ε)
(
2−3n/8|x− y|∞ + δn

)
holds for all x, y ∈ Rd. Let Q̃s := {x ∈ Rd : |x|∞ ≤ 2−s}. Then, for integers s with
0 ≤ s ≤ 2n/2 we de�ne

Qn,s := {x ∈ Q̃s|x = (x1, ..., xd)
>, ∀i ∈ {1, ..., d} : ∃k ∈ {−2n + 1, ..., 2n − 1} : xi = k2−s−n},

Qn :=

b2n/2c⋃
s=0

Qn,s.

Furthermore, let p := 8(d + 3). Then by Lemma 2.14 with λ := λ̃2n/8 there is C > 0 such
that

P

[
r∑
q=1

|ρn,k+q(xq−1, xq)|∞ > 2−n

(
λ̃2n/8

√
r|x0|∞ + C

r−1∑
q=0

|xq|∞

)]
≤ Cλ̃−p2−pn/8

holds for some n, r, k and x0 ∈ Qn as in the statement of Lemma 2.14. We deduce that

P

 ∞⋃
n=0

b2n/4c⋃
r=0

2n−r−1⋃
k=0

⋃
x0∈Qn

r∑
q=1

|ρn,k+q(xq−1, xq)|∞ > 2−n

(
λ̃2n/8

√
r|x0|∞ + C

r−1∑
q=0

|xq|∞

)
≤ C

∞∑
n=0

b2n/4c∑
r=0

2n−r∑
k=0

∑
x0∈Qn

λ̃−p2−pn/8 ≤ C
∞∑
n=0

2n/4(2n − r)#(Qn)λ̃−p2−pn/8

≤ C
∞∑
n=0

2n/42n
b2n/2c∑
s=0

#(Qn,s)︸ ︷︷ ︸
≤2d · 2nd

λ̃−p2−pn/8 ≤ C
∞∑
n=0

2n/42n
2n/2∑
s=0

2d2ndλ̃−p2−pn/8

= C2dλ̃−p
∞∑
n=0

2n+n/2+n/42nd2−(d+3)n

≤ C2dλ̃−p
∞∑
n=0

22n2nd2−(d+3)n ≤ C2dλ̃−p
∞∑
n=0

2−n = C2d+1λ̃−p.

Which converges to 0 as λ̃ → ∞. Hence with probability 1 − ε/2 there is C2(ε) > 1 such
that

r∑
q=1

|ρn,k+q(xq−1, xq)|∞ ≤ C2(ε)2−n

(
2n/8
√
r|x0|∞ +

r−1∑
q=0

|xq|∞

)
(2.15.2)

holds for all n, k, r and x0 ∈ Qn as above. So with probability 1 − ε we can assume that
both (2.15.1) and (2.15.2) hold with the same constant C(ε). Fix n, k, r, y0, ..., yr as in the
statement of this lemma. Take the largest integer s ∈ {0, ..., b2n/2c} such that y0 ∈ Q̃s.
Note that

|y0|∞ ≤ 2−s.
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Since s is maximal with this property we have

2−s−1 < |y0|∞ or |y0|∞ ≤ 2−s = 2−b2
n/2c ≤ 2 · 2−2n/2

and hence

2−s ≤ max
(

2|y0|∞, 2 · 2−2n/2
)
.

By de�nition of Qn,s we can �nd z0 ∈ Qn,s such that

|z0 − y0|∞ ≤ 2−s−n ≤ 21−n|y0|∞ + 2−2n/2 . (2.15.3)

We de�ne z1, ..., zr by the recurrence relation

zq+1 := zq + σn,k+q(zq). (2.15.4)

Using (2.15.1) we have

|zq+1|∞
(2.15.4)

= |zq + σn,k+q(zq)|∞ ≤ |zq|∞ + |ρn,k+q(zq, 0)|∞
(2.15.1)

≤ |zq|∞ + C(ε)
(
2−3n/8|zq|∞ + δn

)
≤ (1 + C(ε)2−n/4)(|zq|∞ + C(ε)δn).

By induction on q ∈ {1, ..., r − 1} we have

|zq|∞ ≤ (1 + C(ε)2−n/4)r(|z0|∞ + C(ε)rδn)
r≤2n/4

≤ exp(C(ε))C(ε)(|z0|∞ + 2n/4δn) (2.15.5)

for all q ∈ {0, ..., r}. Since z0 ∈ Qn,s ⊆ Qn we can apply (2.15.2) to obtain

r∑
q=1

|ρn,k+q(zq−1, zq)|∞
(2.15.2)

≤ C(ε)2−n

(
2n/8
√
r|z0|∞ +

r−1∑
q=0

|zq|∞

)

≤ C(ε)2−n

(
2n/4|z0|∞ +

r−1∑
q=0

|zq|∞

)
(2.15.5)

≤ C(ε)2−n

(
2n/4|z0|∞ +

r−1∑
q=0

C(ε) exp(C(ε))(|z0|∞ + 2n/4δn)

)
= C(ε)2−n

(
2n/4|z0|∞ + C(ε) exp(C(ε))r(|z0|∞ + 2n/4δn)

)
≤ 2C(ε)2 exp(C(ε))2−n

(
2n/4|z0|∞ + 2n/42n/4δn

)
= C32−3n/4

(
|z0|∞ + 2n/4δn

)
where C3 := 2C(ε)2 exp(C(ε)). So, we have

r∑
q=1

|ρn,k+q(zq−1, zq)|∞ ≤ C32−3n/4
(
|z0|∞ + 2n/4δn

)
. (2.15.6)
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We set uq := zq − yq for q ∈ {0, ..., r}. Then we get the following estimate for the di�erence

|uq+1 − uq|∞ = |zq+1 − yq+1 − zq + yq|∞
(2.15.4)

= |σn,k+q(zq)− yq+1 + yq|∞
≤ |σn,k+q(zq)− yq+1 + yq + γq|∞ + |γq|∞
= |σn,k+q(zq)− yq+1 + yq+ yq+1 − yq − σn,k+q(yq)︸ ︷︷ ︸

=γq

|∞ + |γq|∞
= |ρn,k+q(zq, yq)|∞ + |γq|∞.

We therefore deduce that

|uq+1|∞ ≤ |uq+1 − uq|∞ + |uq|∞ ≤ |ρn,k+q(zq, yq)|∞ + |γq|∞ + |uq|∞.

Using (2.15.1) we get

(2.15.1)

≤ C(ε)2−3n/8|zq − yq|∞ + C(ε)δn + |γq|∞ + |uq|∞

≤ (1 + C(ε)2−n/4)(|uq|∞ + C(ε)δn + |γq|∞).

Again by induction on q we deduce

|uq|∞ ≤ (1 + C(ε)2−n/4)r

(
|u0|∞ + C(ε)rδn +

r−1∑
q=0

|γq|∞

)

for all q ∈ {0, ..., r}. Since |u0|∞ = |z0 − y0|∞
(2.15.3)

≤ 21−n|y0|∞ + 2−2n/2 we have

|uq|∞ ≤ (1 + C(ε)2−n/4)r

(
21−n|y0|∞ + 2−2n/2 + C(ε)rδn +

r−1∑
q=0

|γq|∞

)

≤ C(ε) exp(C(ε))

(
21−n|y0|∞ + 2−2n/2 + rδn +

r−1∑
q=0

|γq|∞

)
.

And therefore

|ρn,k+q(zq, yq)|∞
(2.15.1)

≤ C(ε)2−3n/8|zq − yq|∞ + C(ε)δn = C(ε)2−3n/8|uq|∞ + C(ε)δn

≤ C(ε)2 exp(C(ε))2−3n/8

(
21−n|y0|∞ + 2−2n/2 + rδn +

r−1∑
q=0

|γq|∞

)
+ C(ε)δn

≤ C(ε)2 exp(C(ε))2−3n/8

(
21−n|y0|∞ + 2−2n/2 + r︸︷︷︸

≤23n/8

δn + 23n/8δn +
r−1∑
q=0

|γq|∞

)

≤ C32−3n/8

(
2−n|y0|∞ + 2−2n/2 + 23n/8δn +

r−1∑
q=0

|γq|∞

)
.

In conclusion we obtain

|ρn,k+q(zq, yq)|∞ ≤ C32−3n/8

(
2−n|y0|∞ + 2−2n/2 + 23n/8δn +

r−1∑
q=0

|γq|∞

)
. (2.15.7)

- 69 -



Chapter 2.3: Proof of the main theorem � Main result

Observe that a similar calculation implies that we have the same estimate for zq, yq replaced
by zq−1 and yq−1, respectively. I.e.

|ρn,k+q(zq−1, yq−1)|∞ ≤ C32−3n/8

(
2−n|y0|∞ + 2−2n/2 + 23n/8δn +

r−1∑
q=0

|γq|∞

)
. (2.15.8)

In order to complete the proof consider the following equality.

ρn,k+q(yq−1, yq) = ρn,k+q(zq−1, zq) + ρn,k+q(yq−1, zq−1) + ρn,k+q(zq, yq).

Using the above identity for all q ∈ {1, ..., r} and the triangle inequality, we obtain

r∑
q=1

|ρn,k+q(yq−1, yq)|∞ ≤
r∑
q=1

|ρn,k+q(zq−1, zq)|∞ + |ρn,k+q(yq−1, zq−1)|∞ + |ρn,k+q(zq, yq)|∞.

Applying the estimates (2.15.6), (2.15.7) and (2.15.8) yields

≤ C32−3n/4
(
|z0|∞ + 2n/4δn

)
+ 2C3

r∑
q=1

2−3n/8

(
2−n|y0|∞ + 2−2n/2 + 23n/8δn +

r−1∑
q′=0

|γq′|∞

)

= C32−3n/4
(
|z0|∞ + 2n/4δn

)
+ 2C3r2

−3n/8

(
2−n|y0|∞ + 2−2n/2 + 23n/8δn +

r−1∑
q=0

|γq|∞

)
r≤2n/4

≤ C32−3n/4
(
|z0|∞ + 2n/4δn

)
+ 2C32−n/8

(
2−n|y0|∞ + 2−2n/2 + 23n/8δn +

r−1∑
q=0

|γq|∞

)

≤ 2C3

(
2−3n/4|z0|∞ + 2−n/2δn + 2−n|y0|∞ + 2−2n/2 + 2n/4δn + 2−n/8

r−1∑
q=0

|γq|∞

)
.

Since |z0|∞ ≤ |y0|∞ + |z0 − y0|∞
(2.15.3)

≤ |y0|∞ + 21−n|y0|∞ + 2−2n/2 we have

≤ 8C3

(
2−3n/4|y0|∞ + 2−3n/4︸ ︷︷ ︸

≤1

2−2n/2 + 2−2n/2 + 2−n/2︸ ︷︷ ︸
≤1

δn + 2n/4δn︸ ︷︷ ︸
=2−2n/2

+2−n/8
r−1∑
q=0

|γq|∞

)

≤ 32C3

(
2−3n/4|y0|∞ + 2−2n/2 + 2−n/8

r−1∑
q=0

|γq|∞

)
.

Which concludes the proof.

�

Using the previous estimates we are �nally ready to prove the crucial lemma from which we
deduce that the only solution of equation (1.8) is the trivial solution u = 0.

- 70 -



Chapter 2.3: Proof of the main theorem � Main result

Lemma 2.16

Let ε > 0. Let u be a solution of equation (1.8) where f is bounded by 1 and W (ω) := ω.
Assume that u(ω) ∈ Φ for all ω ∈ Ω. Then there exist Aε ⊆ Ω, K > 0 and m0 ∈ N
with P[Aε] ≤ ε such that for all integers m with m > m0, j ∈ {0, ..., 2m − 1} and β ∈
[2−23m/4

, 2−22m/3
] satisfying |u(j2−m)|∞ ≤ β

|u((j + 1)2−m)|∞ ≤ β
(
1 +K2−m log2(1/β)

)
, ∀ω ∈ Acε

holds.

Proof

Let ε > 0. Choose Aε ⊆ Ω with P[Aε] ≤ ε such that the conclusion of Lemma 2.5 and
Corollary 2.6 hold with constant C2 ≥ 1 and the conclusion of Lemma 2.15 holds with
constant C3 ≥ 1 for all ω ∈ Acε. Let ω ∈ Acε. Fix m, j and β as in the statement and suppose
|u(j2−m)|∞ ≤ β as well as m0 ≥ 2. We set N := 4blog2(1/β)c. Observe that

22m/3+2 − 4 ≤ N ≤ 23m/4+2. (2.16.1)

Suppose u(ω) ∈ Φ satis�es equation (1.8) as stated in the assertion. De�ne for n ∈ N and
x ∈ [0, 1]

un(x) :=
2n−1∑
k=0

1In,k(x)u(k2−n).

Note that un converges pointwise to u on [0, 1[ and un ∈ Φ∗ since u ∈ Φ. Let α be the
smallest real number such that

(j+1)2n−m−1∑
k=j2n−m

|u((k + 1)2−n)− u(k2−n)|∞ ≤ α2−m
(√

n2n/2 +N
)
, ∀n ∈ {m, ..., N}. (2.16.2)

holds.
For n ≥ m de�ne

ψn :=

(j+1)2n−m−1∑
k=j2n−m

|u(k2−n)|∞.

By splitting the sum in two sums, one where k is even and one where k is odd, we can
estimate ψn by ψn−1. For this let n ∈ {m+ 1, ..., N}. We then have

ψn =

(j+1)2n−m−1∑
k=j2n−m

2|k

|u(k2−n)|∞ +

(j+1)2n−m−1∑
k=j2n−m

2-k

|u(k2−n)|∞

≤
(j+1)2n−m−1∑

k=j2n−m
2|k

|u(k2−n)|∞

+

(j+1)2n−m−1∑
k=j2n−m

2-k

|u(k2−n)− u((k − 1)2−n)|∞ + |u((k − 1)2−n)|∞ + |u((k + 1)2−n)− u(k2−n)|∞.
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Since k − 1 is even whenever k is odd, rewriting the term |u((k − 1)2−n)|∞ yields

=

(j+1)2n−m−1∑
k=j2n−m

2|k

|u(k2−n)|∞ + |u(k2−n)|∞

+

(j+1)2n−m−1∑
k=j2n−m

2-k

|u(k2−n)− u((k − 1)2−n)|∞ + |u((k + 1)2−n)− u(k2−n)|∞

= 2

(j+1)2n−m−1−1∑
k=j2n−m−1

|u(k2−n+1)|∞

+

(j+1)2n−m−1∑
k=j2n−m

2-k

|u(k2−n)− u((k − 1)2−n)|∞ + |u((k + 1)2−n)− u(k2−n)|∞

= 2

(j+1)2n−1−m−1∑
k=j2n−1−m

|u(k2−(n−1))|∞ +

(j+1)2n−m−1∑
k=j2n−m

|u((k + 1)2−n)− u(k2−n)|∞.

And by the choice of n, we have

(2.16.2)

≤ 2ψn−1 + α2−m
(√

n2n/2 +N
)
.

By induction we deduce

ψn ≤ 2n−mψm +
n∑

`=m+1

α2n−`−m
(√

`2`/2 +N
)

= 2n−m|u(j2−m)|∞ + α2n−m
n∑

`=m+1

2−`
(√

`2`/2 +N
)
, ∀n ∈ {m+ 1, ..., N}.

We use that |u(j2−m)|∞ ≤ β and
√
`2`/2 ≤ 2 · 22`/3 to get

≤ 2n−m

[
β + α

n∑
`=m+1

2−`
√
`2`/2 + αN

n∑
`=m+1

2−`

]
≤ 2n−m

[
β + 2α

n∑
`=m+1

2−`22`/3 + αN2−m

]

= 2n−m

[
β + 2α

n−m∑
`=1

2−(`+m)22(`+m)/3 + α2−mN

]

= 2n−m

[
β + 2α2−m22m/3

n−m∑
`=1

2−`/3 + α2−mN

]
(2.16.1)

≤ 2n−m

[
β + α2−mN

n−m∑
`=1

2−`/3 + α2−mN

]
≤ 2n−m

[
β + α2−mN

1

1− 2−1/3
+ α2−mN

]
.

By setting C1 := 1
1−2−1/3 + 1 we have

= 2n−m
[
β + (C1 − 1)α2−mN + α2−mN

]
≤ C12n−m

(
β + α2−mN

)
.
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In conclusion we obtain

ψn ≤ C12n−m
(
β + α2−mN

)
, ∀n ∈ {m+ 1, ..., N}. (2.16.3)

Since u solves equation (1.8) and by Lemma 2.10 we have

u((k + 1)2−n)− u(k2−n)
(1.8)
=

∫
In,k

f(t,W (t) + u(t))− f(t,W (t)) dt

2.10
= lim

`→∞

∫
In,k

f(t,W (t) + u`(t))− f(t,W (t)) dt

=

∫
In,k

f(t,W (t) + un(t))− f(t,W (t)) dt+
∞∑
`=n

∫
In,k

f(t,W (t) + u`+1(t))− f(t,W (t) + u`(t)) dt.

Since un is constant on In,k we can rewrite this as

= σn,k(u(k2−n)) +
∞∑
`=n

∫
In,k

f(t,W (t) + u`+1(t))− f(t,W (t) + u`(t)) dt

= σn,k(u(k2−n)) +
∞∑
`=n

(k+1)2`−n−1∑
r=k2`−n

(2r+2)2−`−1∫
2r2−`−1

f(t,W (t) + u`+1(t))− f(t,W (t) + u`(t)) dt

= σn,k(u(k2−n)) +
∞∑
`=n

(k+1)2`−n−1∑
r=k2`−n

(2r+1)2−`−1∫
2r2−`−1

f(t,W (t) + u(2r2−`−1))− f(t,W (t) + u(r2−`))︸ ︷︷ ︸
=0

dt

+

(2r+2)2−`−1∫
(2r+1)2−`−1

f(t,W (t) + u((2r + 1)2−`−1))− f(t,W (t) + u(r2−`)) dt

= σn,k(u(k2−n)) +
∞∑
`=n

(k+1)2`−n−1∑
r=k2`−n

ρ`+1,2r+1

(
u
(
(2r + 1)2−`−1

)
, u
(
r2−`

))
.

This leads us to
(j+1)2n−m−1∑
k=j2n−m

|u((k + 1)2−n)− u(k2−n)− σn,k(u(k2−n))|∞

≤
(j+1)2n−m−1∑
k=j2n−m

∞∑
`=n

(k+1)2`−n−1∑
r=k2`−n

∣∣ρ`+1,2r+1

(
u
(
(2r + 1)2−`−1

)
, u
(
r2−`

))∣∣
∞ .

By Fubini's Theorem we have

=
∞∑
`=n

(j+1)2n−m−1∑
k=j2n−m

(k+1)2`−n−1∑
r=k2`−n

∣∣ρ`+1,2r+1

(
u
(
(2r + 1)2−`−1

)
, u
(
r2−`

))∣∣
∞ .

We set

Ω` :=

(j+1)2`−m−1∑
r=j2`−m

∣∣ρ`+1,2r+1

(
u
(
(2r + 1)2−`−1

)
, u
(
r2−`

))∣∣
∞
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and have

(j+1)2n−m−1∑
k=j2n−m

∣∣u((k + 1)2−n)− u(k2−n)− σn,k(u(k2−n))
∣∣
∞ ≤

∞∑
`=n

Ω`. (2.16.4)

From the reversed triangle inequality we deduce

(j+1)2n−m−1∑
k=j2n−m

|u((k + 1)2−n)− u(k2−n)|∞ ≤
(j+1)2n−m−1∑
k=j2n−m

|σn,k(u(k2−n))|∞ +
∞∑
`=n

Ω`. (2.16.5)

The idea of the proof is the following: We will obtain estimates for the two sums on the
right-hand side of the above inequality. For the �rst sum we simply use Lemma 2.5 to obtain
the estimate (2.16.6). We will split the second sum in the cases n ≤ ` < N and N ≤ ` <∞.
In the �rst case we use Corollary 2.6, which will lead us to inequality (2.16.7). In the second
case we have to do a more direct computation which heavily relies on the fact that u is
Lipschitz continuous (Inequality (2.16.8)).
Unfortunately, the �nal bound for the second sum is not strong enough to prove the assertion.
For n in the range N1/6 < n < N we will use Lemma 2.15 to get the more sophisticated esti-
mate (2.16.13) for the second sum. Our old estimate estimate will be recycled (see (2.16.9))
to estimate the error term γn,k of the new estimate.
Combining the new with the old estimate will result the �nal bound (2.16.14).
Using the knowledge of the already established estimate (2.16.2) for the left-hand side and
the minimality of α we will �nally complete the proof.

We will now estimate the two sums on the right-hand side starting with the σn,k sum. We
apply Lemma 2.5 to obtain

(j+1)2n−m−1∑
k=j2n−m

|σn,k(u(k2−n))|∞
2.5

≤
(j+1)2n−m−1∑
k=j2n−m

C2

√
n2−n/2

(∣∣u(k2−n)
∣∣
∞ + 2−2n

)
and since n > m and N ≤ 2m we get

≤
(j+1)2n−m−1∑
k=j2n−m

C2

√
n2−n/2

(
|u(k2−n)|∞ + 2−N

)
= C2

√
n2−n/2

2n−m2−N +

(j+1)2n−m−1∑
k=j2n−m

|u(k2−n)|∞

 .

Again, using that n ∈ {m+ 1, ..., N} implies

= C2

√
n2−n/2

(
2n−m2−N + ψn

) (2.16.3)
≤ C2

√
n2−n/2

(
2n−m2−N + C12n−m

(
β + α2−mN

))
= C2

√
n2n/2−m

(
2−N + C1β + C1α2−mN

) 2−N≤β
≤ 2C1C2

√
n2n/2−m

(
β + α2−mN

)
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and hence for the �rst sum we obtain

(j+1)2n−m−1∑
k=j2n−m

|σn,k(u(k2−n))|∞ ≤ 2C1C2

√
n2n/2−m

(
β + α2−mN

)
,

(2.16.6)
∀n ∈ {m+ 1, ..., N}.

Next we bound Ω`. By Corollary 2.6 we have

|ρ`,k(x, y)|∞ ≤ C22−`/2
√
N(2−N + |x− y|∞), ∀` ≤ N ≤ 2`.

So, for m ≤ ` and `+ 1 ≤ N ≤ 2`+1 this leads to the following estimate

Ω` =

(j+1)2`−m−1∑
r=j2`−m

∣∣ρ`+1,2r+1

(
u((2r + 1)2−`−1), u(r2−`)

)∣∣
∞

≤
(j+1)2`−m−1∑
r=j2`−m

C22−`/2
√
N
(
2−N + |u((2r + 1)2−`−1)− u(r2−`)|∞

)

≤ C22−`/2
√
N

2−N2`−m +

(j+1)2`−m−1∑
r=j2`−m

|u((2r + 1)2−`−1)− u(r2−`)|∞


≤ C22−`/2

√
N

2−N2`−m +

(j+1)2`+1−m−1∑
r=j2`+1−m

|u((r + 1)2−`−1)− u(r2−`−1)|∞


(2.16.2)

≤ C22−`/2
√
N
(

2−N2`−m + α2−m
(√

`+ 12(`+1)/2 +N
))

≤ C22−`/2
√
N
(

2−N2`−m + α2−m
(

2
√
`2`/2 +N

))
.

Hence

Ω` ≤ C22−`/2
√
N
(

2−N2`−m + α2−m
(

2
√
`2`/2 +N

))
,

(2.16.7)
∀m ≤ `, `+ 1 ≤ N ≤ 2`+1.

This implies that

N−1∑
`=m

Ω` ≤ C2

√
N

N−1∑
`=m

2−`/2
(

2−N2`−m + α2−m
(

2
√
`2`/2 +N

))
= C2

√
N2−m

[
2−N

N−1∑
`=m

2`/2 + 2α
N−1∑
`=m

√
`+ αN

N−1∑
`=m

2−`/2

]

≤ C2

√
N2−m

[
2−N4 · 2N/2 + 2αN

√
N + 4αN

]
.

Estimating N by N
√
N yields

≤ 6C2

√
N2−m

[
2−N/2 + αN

√
N
]
≤ 6C22−m

[√
N2−N/2 + αN2

]
.
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Now consider the case ` ≥ N

∞∑
`=N

Ω` =
∞∑
`=N

(j+1)2`−m−1∑
r=j2`−m

∣∣ρ`+1,2r+1

(
u((2r + 1)2−`−1), u(r2−`)

)∣∣
∞

2.6

≤
∞∑
`=N

(j+1)2`−m−1∑
r=j2`−m

C22−`/2
√
`+ 1

(
2−` + |u((2r + 1)2−`−1)− u(r2−`)|∞

)
.

By the Lipschitz continuity of u we get

u∈Φ

≤
∞∑
`=N

(j+1)2`−m−1∑
r=j2`−m

2C22−`/2
√
`
(
2−` + |(2r + 1)2−`−1 − 2r2−`−1|

)
=

∞∑
`=N

(j+1)2`−m−1∑
r=j2`−m

2C22−`/2
√
`(2−` + 2−`−1)

=
∞∑
`=N

3C22`−m2−`/2
√
`2−` = 3C22−m

∞∑
`=N

√
`2−`/2

= 3C22−m
∞∑
`=0

√
`+N2−(`+N)/2 = 3C22−m2−N/2

∞∑
`=0

√
`+N2−`/2

≤ 3C22−m2−N/2
∞∑
`=0

(
√
`+
√
N)2−`/2 = 3C22−m2−N/2

[
∞∑
`=1

√
`2−`/2 +

√
N

∞∑
`=0

2−`/2

]
.

Using
√
`2−`/2 ≤ 2 · 2−`/3 results in

≤ 3C22−m2−N/2

[
2
∞∑
`=1

2−`/3 + 4
√
N

]

≤ 3C22−m2−N/2
[
8 + 4

√
N
]
≤ 24C2

√
N2−m−N/2.

And hence

∞∑
`=N

Ω` ≤ 24C2

√
N2−m−N/2. (2.16.8)

Combing these two estimates results in

∞∑
`=m

Ω` ≤ 6C22−m
[√

N2−N/2 + αN2
]

+ 24C2

√
N2−m−N/2

≤ 24C22−m
[√

N2−N/2 + αN2 +
√
N2−N/2

]
= 48C22−m

[√
N2−N/2 + αN2

]
.
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Our next aim is to improve the estimate for large n using Lemma 2.15. Let N1/6 ≤ n ≤ N .
We de�ne

γn,k := u((k + 1)2−n)− u(k2−n)− σn,k(u(k2−n)), ∀k ∈ {0, ..., 2n − 1}.

Therefore, we deduce

(j+1)2n−m−1∑
k=j2n−m

|γn,k|∞
(2.16.4)

≤
∞∑
`=n

Ω`

n≥m
≤ 48C22−m(

√
N2−N/2 + αN2). (2.16.9)

We also set

Λn :=

(j+1)2n−m−2∑
k=j2n−m

|ρn,k+1(u((k + 1)2−n), u(k2−n))|∞.

Comparing Ω with Λ results in

Ωn =

(j+1)2n−m−1∑
r=j2n−m

∣∣ρn+1,2r+1

(
u
(
(2r + 1)2−n−1

)
, u
(
2r2−n−1

))∣∣
∞

≤
(j+1)2n+1−m−2∑
k=j2n+1−m

∣∣ρn+1,k+1

(
u
(
(k + 1)2−n−1

)
, u
(
k2−n−1

))∣∣
∞ = Λn+1.

We set r := b2n/4c. In order to estimate Λn we will use Lemma 2.15. To this end we split
the sum into s r-sized pieces. For reader's convenience we de�ne

û(x) := 1[0,(j+1)2n−m−1](x2n)u(x), ∀x ∈ R.

û is the trivial extension of u which vanishes outside of [0, (j + 1)2−m − 2−n]. Choose
i ∈ {0, ..., r − 1} such that

br−12n−mc∑
t=0

|û((j2n−m + i+ tr)2−n)|∞ ≤
1

r

r−1∑
q=0

br−12n−mc∑
t=0

|û((j2n−m + q + tr)2−n)|∞

holds. Since we calculate the mean of
br−12n−mc∑

t=0

|û((j2n−m+q+tr)2−n)| on the right-hand side,

it is clear that such an i always exists. Set s := br−1(2n−m−i)c and note that s ≤ br−12n−mc.
Using that we have

s∑
t=0

|û((j2n−m + i+ tr)2−n)|∞
s≤br−12n−mc
≤ 1

r

r−1∑
q=0

br−12n−mc∑
t=0

|û((j2n−m + q + tr)2−n)|∞.

Since û vanishes if q + tr ≥ 2n−m this simpli�es to

=
1

r

2n−m−1∑
k=0

|û((j2n−m + k)2−n)|∞ =
1

r

(j+1)2n−m−1∑
k=j2n−m

|u(k2−n)|∞ = r−1ψn.
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So, we obtain

s∑
t=0

|û((j2n−m + i+ tr)2−n)|∞ ≤ r−1ψn. (2.16.10)

For t ∈ {0, ..., s} we de�ne kt := j2n−m + i + tr and y
(t)
q := û((kt + q)2−n) for q ∈ {0, ..., r}.

Observe that for t ≤ s− 1 we have

kt = j2n−m + i+ tr ≤ (2m − 1)2n−m + i+ (s− 1)r = 2n − 2n−m + i+ rbr−1(2n−m − i)c − r
≤ 2n − 2n−m + i+ 2n−m − i− r = 2n − r.

Therefore, we are able to apply Lemma 2.15 for every t ∈ {0, ..., s− 1}
r∑
q=1

kt+q<2n

∣∣∣ρn,kt+q(y(t)
q−1, y

(t)
q )
∣∣∣
∞

2.15

≤ C3

[
2−3n/4|y(t)

0 |∞
(2.16.11)

+2−n/8
r−1∑
q=0

|γn,j2n−m+i+tr+q|∞ + 2−2n/2

]
.

In the case t = s we also apply Lemma 2.15

2n−m−i−sr−1∑
q=1

∣∣∣ρn,ks+q(y(s)
q−1, y

(s)
q )
∣∣∣
∞

2.15

≤ C3

[
2−3n/4|y(s)

0 |∞
(2.16.12)

+2−n/8
2n−m−i−sr−2∑

q=0

|γn,j2n−m+i+sr+q|∞ + 2−2n/2

]
.

Note that the sum on the left-hand side has less than r summands and γn,kt+q = γn,j2n−m+i+tr+q.
Summing over t results in

(j+1)2n−m−2∑
k=j2n−m+i

|ρn,k+1(u(k2−n), u((k + 1)2−n))|∞

=
s−1∑
t=0

r−1∑
q=0

kt+q+1<2n

|ρn,kt+q+1(û((j2n−m + i+ tr + q)2−n)︸ ︷︷ ︸
=y

(t)
q

, û((j2n−m + i+ tr + q + 1)2−n)︸ ︷︷ ︸
=y

(t)
q+1

)|∞

+
2n−m−i−sr−2∑

q=0

|ρn,ks+q+1(û((j2n−m + i+ sr + q)2−n)︸ ︷︷ ︸
=y

(s)
q

, û((j2n−m + i+ sr + q + 1)2−n)︸ ︷︷ ︸
=y

(s)
q

)|∞

=
s−1∑
t=0

r∑
q=1

kt+q<2n

|ρn,kt+q(y
(t)
q−1, y

(t)
q )|∞ +

2n−m−i−sr−1∑
q=1

|ρn,ks+q(y
(s)
q−1, y

(s)
q )|∞

Applying inequality (2.16.11) and (2.16.12) yields

≤ C3

s∑
t=0

2−3n/4|û((j2n−m + i+ tr)2−n)|∞ + 2−n/8
r−1∑
q=0

i+tr+q≤2n−m−1

|γn,j2n−m+i+tr+q|∞ + 2−2n/2


= C3

2−3n/4

s∑
t=0

|û((j2n−m + i+ tr)2−n)|∞ + 2−n/8
(j+1)2n−m−1∑
k=j2n−m+i

|γn,k|∞ + (s+ 1)2−2n/2


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(2.16.10)

≤ C3

2−3n/4r−1ψn + 2−n/8
(j+1)2n−m−1∑
k=j2n−m+i

|γn,k|∞ + (s+ 1)2−2n/2

 .
Since i ≤ r − 1 we can use Lemma 2.15 directly to establish

j2n−m+i−1∑
k=j2n−m

|ρn,k+1(u(k2−n), u((k + 1)2−n))|∞ ≤ C3

2−3n/4|u(j2−m)|∞

+2−n/8
j2n−m+i−1∑
k=j2n−m

|γn,k|∞ + 2−2n/2

 .
Combing the last two estimates yields our desired estimate for Λn

Λn=

(j+1)2n−m−2∑
k=j2n−m+i

|ρn,k+1(u(k2−n), u((k + 1)2−n))|∞ +

j2n−m+i−1∑
k=j2n−m

|ρn,k+1(u(k2−n), u((k + 1)2−n))|∞

≤ C3

2−3n/4r−1ψn + 2−n/8
(j+1)2n−m−1∑
k=j2n−m

|γn,k|∞ + 2−3n/4|u(j2−m)|∞ + (s+ 2)2−2n/2

 .
By (2.16.3) and the assumption |u(j2−m)|∞ ≤ β we have

(2.16.3)

≤ C3

2−3n/4C1r
−12n−m(β + α2−mN) + 2−n/8

(j+1)2n−m−1∑
k=j2n−m

|γn,k|∞ + 2−3n/4β + (s+ 2)2−2n/2


(2.16.9)

≤ C3

[
2C12−m(β + α2−mN) + 48C22−m−n/8(

√
N2−N/2 + αN2) + 2−3n/4β + 2n−m2−2n/2

]
≤ 48C1C2C3

[
2−m(β + α2−mN) + 2−m−n/8(

√
N2−N/2 + αN2) + 2−m2n−2n/2

]
.

The following calculations show that the �rst term dominates the last expression.

2−n/8
√
N2−N/2 ≤

√
N2−N/2 ≤ 23

√
log2(1/β)2−2 log2(1/β) ≤ 23β−1/2β2 ≤ 23β,

2−n/8N ≤ 2−N
1/6/8N

(2.16.1)

≤ 2−2m/9/8N
(2.16.1)

≤ 2−2m/9−3

23m/4+2 ≤ 2982−m,

2n−2n/2 ≤ 2−2n/3 ≤ 2−2N
1/6/3 ≤ 2241

2−N ≤ 2241

242−4 log2(1/β) = 2241+4β4 ≤ 2241+4β.

Therefore, we get Λn ≤ 3 · 2241+8C1C2C32−m(β + α2−mN) and since the same bound holds
for Λn+1 we have

Ωn ≤ Λn+1 ≤ 2241+8C1C2C32−m(β + α2−mN), ∀N1/6 ≤ n ≤ N − 1.

We deduce

N−1∑
`=N1/6+1

Ω` ≤ C42−mN(β + α2−mN) (2.16.13)

where C4 := 2241+8C1C2C3.
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Using the old estimate we get

N1/6∑
`=m

Ω`

(2.16.7)

≤ C2

N1/6∑
`=m

2−`/2
√
N
(

2−N2`−m + α2−m
(

2
√
`2`/2 +N

))

= C2

√
N

2−N2−m
N1/6∑
`=m

2`/2 + 2α2−m
N1/6∑
`=m

√
`+ α2−mN

N1/6∑
`=m

2−`/2


≤ C2

√
N2−m

[
2−N4 · 2N1/6/2 + 2αN1/6N1/12 + αN4 · 2−m/2

]

≤ 4C2

√
N2−m

[
2−N2N

1/6/2 + αN1/4 + α2−m/2N
]
.

Combining these two estimates with our old estimate yields

∞∑
`=m

Ω` =
N1/6∑
`=m

Ω` +
N−1∑

`=N1/6+1

Ω` +
∞∑
`=N

Ω`

(2.16.13),(2.16.8)

≤ 4C2

√
N2−m

[
2−N2N

1/6/2 + αN1/4 + α2−m/2N
]

+ C42−mN(β + α2−mN) + 24C2

√
N2−m−N/2

≤ 24C2C42−m
[
N(β + α2−mN) +

√
N(αN1/4 + α2−m/2N)

+
√
N2−N2N

1/6/2 +
√
N2−N/2

]
≤ 24C2C42−m

[
N(β + α2−mN) + αN(N−1/4 + 2−m/2

√
N)

+N2−N2N
1/6/2 +N2−N/2

]
.

The last two summands can be estimated by the �rst one as the following calculations show

2−N2N
1/6/2 ≤ 24 · 2−4 log2(1/β)241/6 log2(1/β)/2 = 24 · 2

41/6−8
2

log2(1/β) ≤ 24 · 2−3 log2(1/β) = 24β3 ≤ β,

2−N/2 ≤ 4 · 2−2 log2(1/β) = 4β2 ≤ β.

So, the �rst two terms dominate. We therefore obtain

∞∑
`=m

Ω` ≤ 24C2C42−m
[
N(β + α2−mN) + αN(N−1/4 + 2−m/2

√
N)
]
. (2.16.14)

To conclude the proof we use both estimates to bound the term

(j+1)2n−m−1∑
k=j2n−m

|u((k + 1)2−n)− u(k2−n)|∞.
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With the help of (2.16.5), (2.16.6) and (2.16.14) we estimate the sum by

≤ 2C1C2

√
n2n/2−m

(
β + α2−mN

)
+ 24C2C42−m

[
N(β + α2−mN) + αN(N−1/4 + 2−m/2

√
N)
]

≤ C52−m
[√

n2n/2
(
β + α2−mN

)
+N(β + α2−mN) + αN(N−1/4 + 2−m/2

√
N)
]

≤ C52−m
[√
n2n/2 +N

]
·
[
β + α(2−mN +N−1/4 + 2−m/2

√
N)
]

with C5 := 24C1C2C4. Hence, by the minimality of α and (2.16.2) we have

α2−m
[√
n2n/2 +N

]
≤ C52−m

[√
n2n/2 +N

]
·
[
β + α(2−mN +N−1/4 + 2−m/2

√
N)
]

for all n ∈ {m+ 1, ..., N}. This implies that

α ≤ C5

[
β + α(2−mN +N−1/4 + 2−m/2

√
N)
]
.

Since 2−mN ≤ N−1/4 ≤ 2−m/2
√
N and

lim
m→∞

2−m/2
√
N

(2.16.1)

≤ lim
m→∞

2−m/223m/8+1 = lim
m→∞

2−m/8+1 = 0

we can choose m0 large enough such that

C5

(
2−mN +N−1/4 + 2−m/2

√
N
)
≤ 1

2

holds for all m ≥ m0. It now follows

α ≤ C5β + αC5(2−mN +N−1/4 + 2−m/2
√
N) ≤ C5β +

α

2
⇒ α ≤ 2C5β.

Setting n = m in (2.16.2) yields

|u((j + 1)2−m)|∞ − |u(j2−m)|∞ ≤ |u((j + 1)2−m)− u(j2−m)|∞
(2.16.2)

≤ α2−m
(√

m2m/2 +N
)

⇒ |u((j + 1)2−m)|∞ ≤ |u(j2−m)|∞ + α2−m
(√

m2m/2 +N
)

≤ β + 2C5β2−m
(√

m2m/2 +N
)

= β
(
1 + 2C5

√
m2−m/2 + 2C52−mN

)
√
m≤2−m/2N

≤ β
(
1 + 4C52−mN

)
= β

(
1 + 16C52−mblog2(1/β)c

)
≤ β

(
1 +K2−m log2(1/β)

)
,

where the constant K can be expressed as

K = 16C5 = 3 · 27C1C2C4 = 3 · 2241+15C2
1C

2
2C3 ≤ 2242

C2
2C3

which completes the proof.

�
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With this lemma we can now �nd the zero set N , which is required in Lemma 1.8 to prove
the main result Theorem 1.5.

Theorem 2.17

Let f be a Rd-valued Borel function, which is bounded by 1/2 everywhere. There exists a
set N ⊆ Ω with P[N ] = 0 such that

u(t) =

t∫
0

f(s, ω(s) + u(s))− f(s, ω(s)) ds ⇒ u = 0, ∀ω ∈ N c.

Proof

Step 1:

Let u be a solution to the above equation. For t1, t2 ∈ R we have

|u(t2)− u(t1)| =

∣∣∣∣∣∣
t2∫
t1

f(s, ω(s) + u(s))− f(s, ω(s)) ds

∣∣∣∣∣∣ ≤ |t2 − t1| · 2‖f‖ = |t2 − t1|.

Therefore u ∈ Φ. Let ε > 0. Applying Lemma 2.16 gives us a K > 0 and m0 ∈ N. For
m ∈ N and j ∈ {0, ..., 2m − 1} we de�ne

β0 := 2−23m/4

,

βj+1 := βj(1 +K2−m log2(1/βj)),

γj := log2(1/βj).

Let m be su�ciently large i.e. ln(2)−1K2−m ≤ 1. Note that γ0 ≥ 0. Assume γj ≥ 0 for some
j ∈ {0, .., 2m − 1}. We then have

γj+1 = − log2(βj+1) = γj − log2(1 +K2−mγj)
γj≥0

≥ γj (1−K ′2−m)︸ ︷︷ ︸
∈[0,1[

with K ′ := K/ ln(2). By induction this proves that γj is non-negative and decreasing. Again
by induction on j we also deduce

γj ≥ γ0(1−K ′2−m)j ≥ γ0(1−K ′2−m)2m ≥ γ0e
−K′−1 = 23m/4e−K

′−1 ≥ 22m/3,

where we again used that m is �su�ciently large�. Since βj is increasing, we obtain

2−23m/4

= β0 ≤ βj ≤ 2−22m/3

, ∀j ∈ {0, ..., 2m}.

This and the fact that u(0) = 0 implies that βj ful�lls the conditions of Lemma 2.16 for all
j ∈ {0, ..., 2m − 1} as long as m is large enough and hence we have

|u(j2−m)|∞ ≤ βj ≤ 2−22m/3

, ∀j ∈ {0, ..., 2m}.

By letting m go to in�nity, we deduce that u vanishes at all dyadic points. By continuity of
u it follows u = 0 on [0, 1] with probability at least 1− ε.
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Step 2:

Let k ∈ N. By setting ε := 1/k in step 1 we conclude that there is Ak ⊆ Ω with P[Ak] ≤ 1/k
such that u = 0 for all ω ∈ Ack. By de�ning

N :=
∞⋂
k=1

Ak

we have u = 0 on [0, 1] for all ω ∈ N c concluding the proof.

�

Proof (of Theorem 1.5)

Let f and σ be as in equation (1.0). By Proposition 1.3 and Remark 1.4 it is enough to
consider the case where f is bounded by 1/2 everywhere. Using Theorem 2.17 there exists
N ⊆ Ω with P[N ] = 0 such that N satis�es the conditions of Lemma 1.8. Invoking Lemma
1.8 yields the required result.

�
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3 Applications

As an application of the main result of this thesis we focus on Davie's Corollary 4.1 of [Dav07]
in this chapter. Furthermore, we establish a corollary which shows the connection between
path-by-path solutions and solutions of perturbed IEs.

For partitions

P = {0 = t0 < ... < tN = T}

we de�ne the mesh

mesh(P) := max
1≤n≤N

|tn − tn−1|

and the Euler approximation

xn+1 = xn +W (tn+1)−W (tn) + (tn+1 − tn)f(tn, xn)

for n ∈ {0, ..., N − 1} with x0 := 0.

Corollary 3.1

Additionally to the previous conditions in equation (1.0) let f be continuous with |f |∞ 6= 0.
For almost all Brownian paths W and every sequence of partitions

Pk =
{
t
(k)
0 , ..., t

(k)
Nk

}
with lim

k→∞
mesh(Pk) = 0 we have

lim
k→∞

sup
0≤n≤Nk

∣∣x(k)
n − x(t(k)

n )
∣∣ = 0,

where x is the unique solution from Theorem 1.5 and x
(k)
n the Euler approximation w.r.t. the

partition Pk.
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Proof

Let W be a Brownian path for which the conclusion of Theorem 1.5 holds. Suppose there is

a sequence of partitions Pk with lim
k→∞

mesh(Pk) = 0 but sup
0≤n≤Nk

∣∣∣x(k)
n − x(t

(k)
n )
∣∣∣ ≥ δ > 0. Set

u(k)
n := x(k)

n −W (t(k)
n ).

We then have∣∣∣u(k)
n+1 − u(k)

n

∣∣∣ =
∣∣∣x(k)
n+1 −W (t

(k)
n+1)− x(k)

n +W (t(k)
n )
∣∣∣

= |t(k)
n+1 − t(k)

n ||f(t(k)
n , x(k)

n )| ≤ |t(k)
n+1 − t(k)

n ||f |∞.

De�ne u(k) ∈ C([0, T ],R) as u
(k)
n at t

(k)
n and interpolate linearly at the other points. Note

that u(k) is continuous (even Lipschitz continuous) and uniformly bounded. Next, we will
prove that the family u(k) is equicontinuous. To this end let ε > 0 and set δ′ := ε

|f |∞ . Let

z1, z2 ∈ [0, T ] with |z2−z1| ≤ δ′. W.l.o.g. we assume that z1 < z2. Choose m, ` ∈ N such that

z1 ≤ t
(k)
m < ... < t

(k)
` ≤ z2. Using the triangle inequality and applying the above estimate

immediately yields

∣∣u(k)(z1)− u(k)(z2)
∣∣ ≤ `−1∑

i=m

∣∣∣u(k)
i+1 − u

(k)
i

∣∣∣+
∣∣u(k)(z1)− u(k)(t(k)

m )
∣∣+
∣∣∣u(k)(z2)− u(k)(t

(k)
` )
∣∣∣

≤ (t
(k)
` − t

(k)
m )|f |∞ + (t(k)

m − z1)|f |∞ + (z2 − t(k)
` )|f |∞ = |z2 − z1||f |∞ ≤ δ′|f |∞ = ε

proving the equicontinuity of the family u(k). So by the Arzelà-Ascoli Theorem the set {u(k)}
is compact in C([0, T ],R). By passing to a subsequence we have u ∈ C([0, T ],R) with

lim
k→∞

sup
0≤n≤Nk

∣∣u(k)
n − u(t(k)

n )
∣∣ = 0.

We de�ne y(t) := u(t) +W (t) for t ∈ [0, T ]. Using our assumption we obviously have x 6= y

lim
k→∞

sup
0≤n≤Nk

∣∣y(t(k)
n )− x(t(k)

n )
∣∣ = sup

0≤n≤Nk
lim
k→∞

∣∣u(k)
n +W (t(k)

n )− x(t(k)
n )
∣∣

= lim
k→∞

sup
0≤n≤Nk

∣∣x(k)
n − x(t(k)

n )
∣∣ ≥ δ > 0.

Nevertheless, y satis�es (1.1) since

u(t) = lim
k→∞

Nk∑
n=1

u(t(k)
n ∧ t)− u(t

(k)
n−1 ∧ t) = lim

k→∞

Nk∑
n=1

(t(k)
n ∧ t− t

(k)
n−1 ∧ t)f(t

(k)
n−1, x

(k)
n−1).

Using the continuity of f this is the same as

= lim
k→∞

Nk∑
n=1

(t(k)
n ∧ t− t

(k)
n−1 ∧ t)f(t

(k)
n−1, u

(k)
n−1 +W (t

(k)
n−1)) =

t∫
0

f(s, u(s) +W (s)) ds,

which is a contradiction to the conclusion of Theorem 1.5.

�
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Remark 3.2

Observe that Corollary 3.1 implies that the partitions in the Euler approximation can be
chosen arbitrarily i.e. t

(k)
n might depend on ω in a �non-anticipating� way. Usually one is

restricted to partition points which are stopping times. From the view point of numeric's
this corollary implies that variable step size algorithm converge to the correct solution. This
seems to be related to the simplicity of the SDE which we consider. For example the Euler
approximation for the SDE

dx(t) = W (t)dW (t)

converges to di�erent functions if the partition points are chosen in an �anticipating� way
(cf. [GL97] section 4.1).

Corollary 3.3

Let f be a bounded Borel function, σ ∈ R \ {0}, u0 ∈ Rd. For almost all Brownian paths W
the di�erential equation {

du(t) = f(t, u(t) + σW (t))dt

u(0) = u0

has a unique solution in the integral sense.

Proof

Let x be the unique solution of

x(t) = u0 +

t∫
0

f(s, x(s)) ds+ σW (t)

from Theorem 1.5. We set u(t) := x(t)− σW (t). Note that u(0) = u0 and

u(t) = u0 +

t∫
0

f(s, x(s)) ds = u0 +

t∫
0

f(s, u(s) + σW (s)) ds.

�
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Conclusion

In conclusion we have demonstrated that for almost all canonical Brownian paths W the
stochastic di�erential equation{

dx(t) = f(t, x(t))dt+ σdW (t)

x(0) = x0

in the �nite dimensional space Rd with bounded Borel measurable drift f , di�usion coe�-
cient σ ∈ R \ {0} and deterministic initial condition x0 ∈ Rd admits a unique solution in
the path-by-path sense. Hence, we con�rmed that the above equation can be solved in the
sense of randomly perturbed ordinary di�erential equations. As a consequence of this, we
have shown that the Euler approximation converges to the solution for almost all Brownian
paths even if the partition points are chosen randomly.

In this thesis we only considered the �nite dimensional case with a constant non-degenerate
di�usion term. Recently there has been some development in the case where the di�usion
term is not constant and satis�es some mild regularity properties (cf. [Dav11]). To the
author's knowledge the question whether the above equation admits a unique solution in the
path-by-path sense in in�nite dimensions remains open.
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A Some basic estimates

This appendix contains a few estimates which are used in Chapter 1. The proofs of these
bounds would have disturbed the �ow of reading and hence this appendix acts as a collection
of estimates that are used in Proposition 1.16 and Proposition 1.19.

Lemma A.1

For all x ≤ 0 the following estimate holds

ex ≤ 1

1− x+ x2/2− x3/6
.

Proof

De�ne

f(x) := ex
(

1− x+
x2

2
− x3

6

)
, ∀x ≤ 0.

An easy calculation yields

f ′(x) = −x
3

6
ex ≥ 0, ∀x ≤ 0.

Since f(0) ≤ 1 holds, f ′(x) ≥ 0 implies that f(x) ≤ 1 for all x ≤ 0 which shows the assertion.

�

Proposition A.2

There exists a constant C ∈ R such that

(k + 1)2 − x
x5/2

≤ Ce(k−3/2)/x, ∀x ∈]0, 1/2], k ≥ 2.
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Proof

Let x and k be as speci�ed in the assertion. Since (k− 3/2)/x is positive we can use Lemma
A.1 to obtain

(k + 1)2 − x
x5/2

e−(k−3/2)/x
A.1

≤ (k + 1)2 − x
x5/2

1

1 + k−3/2
x

+ 1
2

(k−3/2)2

x2 + 1
6

(k−3/2)3

x3

=
(k + 1)2 − x

x5/2 + (k − 3/2)x3/2 + 1
2
(k − 3/2)2x1/2 + 1

6
(k − 3/2)3x−1/2

x↓0−→ 0.

Therefore, there exists C ∈ R such that

(k + 1)2 − x
x5/2

e−(k−3/2)/x ≤ C, ∀x ∈]0, 1/2].

�

Proposition A.3

There exists a constant C ∈ R such that for all r ≥ 0

∞∑
k=0

2−k(1− 2−k−1)r ≤ C(1 + r)−1

holds.

Proof

For x ≥ 0 we de�ne

f(x) := 2−x(1− 2−x−1)r

⇒ f ′(x) = ln(2)2−x
(
1− 2−x−1

)r−1
[
r + 1

2x+1
− 1

]
.

An easy calculation shows

f ′(x) ≤ 0 ⇐⇒ x ≥ log2(r + 1)− 1 =: a(r).

Note that a(r) is the global maximum of f . Using this we split the sum into the increasing
and decreasing part

∞∑
k=0

f(k) =

ba(r)c−1∑
k=0

f(k) + f(ba(r)c) + f(da(r)e) +
∞∑

k=ba(r)c+2

f(k)
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and estimate the sum via its integral

≤
ba(r)c∫
0

f(x) dx+ f(ba(r)c) + f(da(r)e) +

∞∫
ba(r)c+1

f(x) dx

≤ f(ba(r)c) + f(da(r)e) +

∞∫
0

2−x(1− 2−x−1)r dx

≤ 2f(a(r)) +

∞∫
0

e−x ln 2(1− e−(x+1) ln 2)r dx

=
4

r + 1

(
1− 1

r + 1

)r
︸ ︷︷ ︸

≤1

+
1

ln 2

∞∫
0

e−y
(

1− 1

2
e−y
)r

dy.

Since 2
r+1

(
1− 1

2
e−y
)r+1

is an anti-derivative of the integrand, we obtain

≤ 4

r + 1
+

1

ln 2

2

r + 1

(
1− 1

2r+1

)
︸ ︷︷ ︸

≤1

≤ 4

r + 1
+

3

r + 1
=

7

r + 1
.

�

Lemma A.4

Let α ≥ 0. For every r ≥ 0 the following inequality holds

Γ(r + 1)

Γ(r + 1 + α)
≤ eα+1/12(r + 1)−α.

Proof

We use Stirling's formula for the gamma function

Γ(x) =
√

2πxx−1/2e−xeµ(x), ∀x > 0,

where 0 < µ(x) < 1
12x

, to estimate

Γ(r + 1)

Γ(r + 1 + α)
≤
√

2π(r + 1)r+1/2e−r−1e1/(12(r+1))

√
2π(r + 1 + α)r+1/2+αe−r−1−α

=
(r + 1)r+1/2e1/(12(r+1))

(r + 1 + α)r+1/2+αe−α

≤ e1/(12(r+1))

(r + 1)αe−α
≤ e1/12eα(r + 1)−α = eα+1/12(r + 1)−α.

�
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Proposition A.5

There exists a constant C ∈ R such that for all r ≥ 0

∞∑
k=0

2−k/2(1− 2−k−1)r ≤ C(r + 1)−1/2

holds.

Proof

For x ≥ 0 we set

f(x) := 2−x/2(1− 2−x−1)r

⇒ f ′(x) = ln(2)2−x/2
(
1− 2−x−1

)r−1
[
r + 1/2

2x+1
− 1

2

]
.

An easy calculation shows

f ′(x) ≤ 0 ⇐⇒ x ≥ log2(r + 1/2) =: a(r).

Note that a(r) is the global maximum of f . Using this we split the sum into the increasing
and decreasing part

∞∑
k=0

f(k) =

ba(r)c−1∑
k=0

f(k) + f(ba(r)c) + f(da(r)e) +
∞∑

k=ba(r)c+2

f(k).

and estimate the sum via its integral

≤
ba(r)c∫
0

f(x) dx+ f(ba(r)c) + f(da(r)e) +

∞∫
ba(r)c+1

f(x) dx

≤ f(ba(r)c) + f(da(r)e) +

∞∫
0

2−x/2
(
1− 2−x−1

)r
dx

≤ 2f(a(r)) +

∞∫
0

e−x ln(2)/2(1− e−(x+1) ln 2)r dx

=
2√
r + 1/2

(
1− 1

2r + 1

)r
︸ ︷︷ ︸

≤1

+
1

ln 2

∞∫
0

e−y/2
(

1− 1

2
e−y
)r

dy.
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Substituting 1
2
e−y with u results in

≤ 2√
r + 1/2

−
√

2

ln 2

0∫
1/2

u−1/2(1− u)r dy

=
2√
r + 1/2

+

√
2

ln 2

1/2∫
0

u−1/2(1− u)r dy

≤ 2√
r + 1/2

+

√
2

ln 2

1∫
0

u−1/2(1− u)r dy

=
2√
r + 1/2

+

√
2

ln 2
β(1/2, r + 1)

=
2√
r + 1/2

+

√
2π

ln 2

Γ(r + 1)

Γ(r + 3/2)
.

Using Lemma A.4 with α = 1
2
we can estimate the gamma function.

≤ 2√
r + 1/2

+

√
2πe7/12

ln 2
(r + 1)−1/2 ≤ 3

(r + 1)1/2
+

√
2πe7/12

ln 2︸ ︷︷ ︸
≤7

(r + 1)−1/2

≤ 3(r + 1)−1/2 + 7(r + 1)−1/2 = 10(r + 1)−1/2.

�

Proposition A.6

Let r, n ∈ N and ai non-negative numbers for every i ∈ {1, ..., r}. Then the following
inequality holds (

r∑
k=1

ak

)n

≤ rn−1

r∑
k=1

ank .

Proof

We have(
r∑

k=1

ak

)n

=
∑

k1+...+kr=n

(
n

k1, ..., kr

)
ak1

1 · · · akrr

where(
n

k1, ..., kr

)
=

n!

k1! · · · kr!

is the multinomial coe�cient. Applying Young's inequality with pi = n
ki

results in
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≤ 1

n

∑
k1+...+kr=n

r∑
j=1

(
n

k1, ..., kr

)
kja

n
j

=
r∑
j=1

∑
k1+...+kr=n

kj>0

(
n− 1

k1, ..., kj−1, kj − 1, kj+1, kr

)
anj

=
r∑
j=1

anj
∑

k1+...+kr=n−1

(
n− 1

k1, ..., kr

)
︸ ︷︷ ︸

=rn−1

= rn−1

r∑
j=1

anj .

�

Proposition A.7

For every n ∈ N the following inequality holds

√
n2−n/2 ≤ 2 · 2−3n/8.

Proof

We have

log2

(
n1/22−n/2

)
= log2

(
n1/2

)︸ ︷︷ ︸
≤n/8+1

−n
2
≤ −3n

8
+ 1

= log2 2−3n/8 + log2 2 = log2

(
2 · 2−3n/8

)
,

which concludes the proof.

�
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B Fourier transform of E and D

In this appendix we calculate the Fourier transform of E and D, which are used in Proposition
1.16 of Chapter 1.

Proposition B.1

Let t ∈ R with t > 0 then

F [E(t, · )](ξ) = e−2π2tξ2

holds.

Proof

De�ne f as

f(ξ) := F [E(t, · )](ξ) =

∞∫
−∞

e−2πiξz(2πt)−1/2e−z
2/2t dz.

By interchanging di�erentiation with integration we get

f ′(ξ) = −
∞∫

−∞

2πize−2πiξz(2πt)−1/2e−z
2/2t dz = 2πi

∞∫
−∞

e−2πiξz(2πt)−1/2∂zte
−z2/2t dz.

Using integration by parts yields

f ′(ξ) = −4π2tξ

∞∫
−∞

e−2πiξz(2πt)−1/2e−z
2/2t dz.

And since we have f(0) = 1 this results in the following initial value problem.{
f ′(ξ) = −4π2tξf(ξ)

f(0) = 1

This problem has clearly the unique solution

f(ξ) = e−2π2tξ2

.

�
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Proposition B.2

Let t ∈ R with t > 0 then

F [D(t, · )](ξ) = −4π2ξ2e−2π2tξ2

holds.

Proof

By splitting the integral in two parts we obtain

F [D(t, · )](ξ) =

∞∫
−∞

e−2πiξz(2πt)−1/2 z
2 − t
t2

e−z
2/2t dz

=
1

t2

∞∫
−∞

e−2πiξz(2πt)−1/2z2e−z
2/2t dz − 1

t

∞∫
−∞

e−2πiξz(2πt)−1/2e−z
2/2t dz

=
1

t2
−1

4π2

∞∫
−∞

∂2
ξ e
−2πiξz(2πt)−1/2e−z

2/2t dz − 1

t
F [E(t, · )](ξ).

Interchanging di�erentiation with integration yields

=
−1

4π2t2
∂2
ξF [E(t, · )](ξ)− 1

t
F [E(t, · )](ξ).

Using Proposition B.1 results in

=
−1

4π2t2
[
−4π2t+ 16π4t2ξ2

]
e−2πtξ2 − 1

t
e−2π2tξ2

=

[
1

t
− 4π2ξ2 − 1

t

]
e−2πtξ2

= −4π2ξ2e−2πtξ2

.

�
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C Davie's estimate for ρ

In this appendix we give a detailed proof of Davie's Lemma 3.1 in [Dav07] which was replaced
by Lemma 2.5 in this thesis. We also give a derivation of equation (21) in Davie's paper
(Proposition C.3) which was used to prove Lemma 2.14 in the original proof.

Lemma C.1

For all m ∈ N with m ≥ 1

∞∑
k=m+1

√
k2−k ≤ 6

√
m2−m

holds.

Proof

Since
√
k2−k is decreasing on [1,∞[. We can estimate

∞∑
k=m+1

√
k2−k ≤

∞∫
m

√
k2−k dk =

∞∫
m

k1/2e−k ln 2 dk.

Substitution with u := k ln 2 results in

=

∞∫
m ln 2

( u

ln 2

)1/2

e−u
1

ln 2
du =

(
1

ln 2

)3/2
∞∫

m ln 2

u3/2−1e−u du =

(
1

ln 2

)3/2

Γ(3/2,m ln 2).

Where Γ is the complementary incomplete gamma function. Using the estimate (2.14) in
[Olv03] page 70 results in

≤
(

1

ln 2

)3/2
e−m ln 2(m ln 2)3/2

m ln 2− 3/2 + 1
=

e−m ln 2m3/2

m ln 2− 1/2
≤ 6

2−mm3/2

m
≤ 6
√
m2−m.

�

We now turn to the proof of Davie's Lemma 3.1 in [Dav07].

Lemma C.2

For every ε > 0 there exist C(ε) ∈ R and Aε ⊆ Ω with P[Aε] ≤ ε such that for every
real-valued Borel function g on [0, 1]× R bounded by 1

|ρn,k(x, y)| ≤ C(ε)

(
√
n+

√
log+

2

1

|x− y|∞

)
2−n/2|x− y|∞, ∀ω ∈ Acε

holds for all dyadic points x, y ∈ Q, n ≥ 1, k ∈ {0, ..., 2n − 1} and ω ∈ Acε.
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Proof

Step 1: x ∼ y

Claim: For every ε > 0 there exist C(ε) ∈ R and Aε ⊆ Ω with P[Aε] ≤ ε such that

|ρn,k(x, y)| ≤ C(ε)(
√
n+
√
m)2−n/2|x− y|∞,

∀ω ∈ Acε, x, y ∈ Q, x ∼m y, n ≥ 1, m ≥ 1, k ∈ {0, ..., 2n − 1}.
Let m ∈ N and x, y ∈ Q be dyadic neighbors of order m. Applying Corollary 1.28.(i) with
λ = λ′(

√
n+
√
m) for some λ′ > 0, s = 0 and using that

√
d|x− y|∞ ≥ |x− y|2 yields

P[|ρn,k(x, y)| > λ′(
√
n+
√
m)2−m−n/2] ≤ 2e−λ

′2(
√
n+
√
m)2/(2C2) ≤ 2e−λ

′2(n+m)/(2C2).

So, we can estimate the probability that |ρn,k(x, y)| > λ′(
√
n +
√
m)2−m−n/2 holds for any

k, n and any pair of dyadic neighbors x, y by

P

 ∞⋃
n=0

∞⋃
m=0

⋃
x,y∈Q
x∼my

2n−1⋃
k=0

|ρn,k(x, y)| > λ′(
√
n+
√
m)2−m−n/2


≤

∞∑
n=0

∞∑
m=0

∑
x,y∈Q
x∼my

2n−1∑
k=0

2e−λ
′2(n+m)/(2C2)

=
∞∑
n=0

∞∑
m=0

#{(x, y) ∈ Q2|x ∼m y} · 2n+1e−λ
′2(n+m)/(2C2)

≤
∞∑
n=0

∞∑
m=0

2(m+2)d3d2n+1e−λ
′2(n+m)/(2C2)

= 2 · 3d4d
∞∑
n=0

2ne−λ
′2n/(2C2)

∞∑
m=0

2mde−λ
′2m/(2C2).

By calculating the derivative of 2mde−λ
′2m/(2C2) w.r.t. m we see easily see that the series is

decreasing as long as we choose λ′ >
√

2 ln(2)dC2. So, we can use the integral criteria to
estimate the series and hence we obtain

∞∫
0

2mde−λ
′2m/(2C2) dm ≤

∞∫
0

emd−λ
′2m/(2C2) dm =

∞∫
0

αm dm.

Where α := ed−λ
′2/(2C2)

=
−1

lnα
=

1

λ′2/(2C2)− d
λ′→∞−→ 0.

This implies that both sums convergence for λ′ >
√

2 ln(2)dC2. We therefore deduce that

lim
λ′→∞

P

 ∞⋃
n=0

∞⋃
m=0

⋃
x,y∈Q
x∼my

2n−1⋃
k=0

|ρn,k(x, y)| > λ′(
√
n+
√
m)2−m−n/2

 = 0.
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Let ε > 0. Then there exists C(ε) such that

P

 ∞⋂
n=0

∞⋂
m=0

⋂
x,y∈Q
x∼my

2n−1⋂
k=0

|ρn,k(x, y)| ≤ C(ε)(
√
n+
√
m)2−m−n/2

 ≥ 1− ε.

So, we have

|ρn,k(x, y)| ≤ C(ε)(
√
n+
√
m)2−m−n/2,

∀x, y ∈ Q, x ∼m y, n ≥ 1, m ≥ 1, k ∈ {0, ..., 2n − 1}

with probability greater than 1− ε.

Step 2: |x− y|∞ < 1/2

Let x, y ∈ Q be dyadic points with |x − y|∞ < 1/2. The claim is trivial for x = y, so
we assume x 6= y. We can now use Lemma 2.4. Let m, xr and yr be as in Lemma 2.4. This
also means that m ≥ 1 and 2−m−1 ≤ |x− y|∞ by the maximality of m.

ρn,k(x, y) = ρn,k(xm, ym) +
∞∑
r=m

ρn,k(xr+1, xr) +
∞∑
r=m

ρn,k(yr+1, yr).

Observe that both sums converge since we have xr+1 = xr for large r. We know that
xm ∼m ym or xm = ym and that xr+1 ∼r+1 xr or xr+1 = xr and that yr+1 ∼r+1 yr or
yr+1 = yr, so we can use step 1 to deduce that

|ρn,k(x, y)| ≤ C(ε)(
√
n+
√
m)2−m−n/2 + 2C(ε)

∞∑
r=m

(
√
n+
√
r + 1)2−r−1−n/2

= C(ε)(
√
n+
√
m)2−m−n/2 + 2C(ε)2−n/2

[
√
n
∞∑
r=m

2−r−1 +
∞∑
r=m

√
r + 12−r−1

]

≤ C(ε)(
√
n+
√
m)2−m−n/2 + 2C(ε)2−n/2

[
√
n2−m +

∞∑
r=m+1

√
r2−r

]
.

Since m ≥ 1 we can use Lemma C.1 to obtain

≤ C(ε)(
√
n+
√
m)2−m−n/2 + 2C(ε)2−n/2

[√
n2−m + 6

√
m2−m

]
≤ C(ε)(

√
n+
√
m)2−m−n/2 + 12C(ε)2−m2−n/2

[√
n+
√
m
]

= 13C(ε)(
√
n+
√
m)2−m−n/2 = 26C(ε)(

√
n+
√
m)2−n/2|x− y|∞

= 26C(ε)

(
√
n+

√
log+

2

1

|x− y|∞

)
2−n/2|x− y|∞.
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Step 3: |x− y|∞ ≥ 1/2

Let x, y ∈ Q be dyadic points with |x − y|∞ ≥ 1/2. The claim is trivial in this case
since

|ρn,k(x, y)| =

∣∣∣∣∣∣∣
∫
In,k

g(t,W (t) + x)− g(t,W (t) + y) dt

∣∣∣∣∣∣∣
≤
∫
In,k

2‖g‖ dt ≤ 2 · 2−n ≤ 4 · 2−n|x− y|∞ ≤ 4
√
n2−n|x− y|∞

≤ 4
√
n2−n/2|x− y|∞ ≤ 4

(
√
n+

√
log+

2

1

|x− y|∞

)
2−n/2|x− y|∞.

�

We are now ready to derive equation (21) in Davie's paper which enables the possibility to
use Lemma C.2 instead of Lemma 2.5 in the proof of Lemma 2.14.

Proposition C.3

There exists C ∈ R such that for all n, m ∈ N

C(
√
n+
√
m)2−n/22−m ≤ C2−n/42−m + 2−2n/2 .

holds.

Proof

Consider the function

f(n,m) := 2−m
[
(
√
n+
√
m)2−n/2 − 2−n/4

]
.

We will show that f(n,m) ≤ C2−2n/2 holds with some constant C ∈ R. To this end we
calculate the maximum of f(n,m) with respect to m. We calculate the �rst derivative

∂mf(n,m) =
ln 4
√
m(2n/4 −

√
n)−m ln 4 + 1

2m+n/2+1
√
m

and calculate the zeros of this function

∂mf(n,m) = 0

⇔
√
m (2n/4 −

√
n)︸ ︷︷ ︸

=:α

−m+
1

ln 4︸︷︷︸
=:β

= 0

⇔ α
√
m−m+ β = 0.
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Note that the above equation has at most one solution. If m1, m2 are two distinct solutions
we obtain

α
√
m1 −m1 = α

√
m2 −m2

⇒ α (
√
m1 −

√
m2) = m1 −m2 = (

√
m1 −

√
m2) (

√
m1 +

√
m2)

⇒ α = (
√
m1 +

√
m2) .

And hence solving for β yields

β = m1 − α
√
m1 = m1 − (

√
m1 +

√
m2)
√
m1 = −

√
m1

√
m2 ≤ 0,

which contradicts β = 1/ ln(4) > 0. Therefore, the only solution to the above equation is

m0 :=

(
α

2
+

√
α2

4
+ β

)2

.

An easy calculation shows that f(n,m0) is the global maximum, because of the fact that
lim
m→∞

f(n,m) = 0. Concerning the dependency of n we have

α ∈ Θ
(
2n/4

)
and henceforth

m0 ∈ Θ
(
2n/2

)
.

We get

f(n,m) ≤ f(n,m0) = 2−m0︸︷︷︸
∈O

(
2−2n/2

)
[

(
√
n+
√
m0)︸ ︷︷ ︸

∈Θ(2n/4)

2−n/2 − 2n/4

︸ ︷︷ ︸
∈O(1)

]
∈ O

(
2−2n/2

)
,

which concludes the proof.

�
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