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Abstract

In this thesis we are concerned with the following two problems.

1. The stochastic reflection problem on an infinite dimensional convex set and
BV functions in a Gelfand triple.

We introduce a definition of BV functions in a Gelfand triple which is an exten-
sion of the definition of BV functions in [ADP10] by using Dirichlet form theory with
an underlying Gaussian measure as reference measure. By this definition, we can
consider the stochastic reflection problem associated with a self-adjoint operator A
and a cylindrical Wiener process on a convex set I' in a Hilbert space H. We prove
the existence and uniqueness of a strong solution of this problem when I' is a regular
convex set. The result is also extended to the non-symmetric case. Finally, we extend
our results to the case when I' = K,,, where K, = {f € L*(0,1)|f > —a},a > 0.

We then generalize the above to the case where the Gaussian measure is replaced
by a differentiable measure. Again we work in a Gelfand triple and use Dirichlet
form theory. By this definition, we can consider the stochastic reflected quantization
problem associated with a self-adjoint operator A and a cylindrical Wiener process
on a convex set [' in a Banach space E. We prove the existence of a martingale

solution of this problem when I' is a regular convex set.
2. The stochastic quasi-geostrophic equation.

We study the 2d stochastic quasi-geostrophic equation in T? for general parame-
ter a € (0, 1) and multiplicative noise. We prove the existence of weak solutions with
regular additive noise and the existence of martingale solutions with multiplicative
noise and pathwise uniqueness under some condition in the general case, i.e. for
all & € (0,1) . In the subcritical case v > 1/2, we prove existence and uniqueness
of (probabilistically) strong solutions and construct a Markov family of solutions.
The large deviations principle in the subcritical case with multiplicative noise is also
obtained.
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Chapter 0O

Introduction

This thesis is devoted to stochastic differential equations in infinite dimensions. The
Ito6 stochastic differential equations were introduced by It6 in the 1940s. Later the
theory of stochastic differential equations became one of the most fruitful areas in
the theory of stochastic processes. Since 1960s, motivated by a need to describe ran-
dom phenomena from physics, chemistry, biology and so on, the theory of stochastic
partial differential equations (SPDE) has made much progress. Stochastic partial
differential equations can describe processes taking values in function spaces with
random influence. Basic theoretical questions on existence and uniqueness of solu-
tions have been considered under different conditions (cf. [DZ92], [PR9I7]). In this
thesis, we will consider the existence and uniqueness of two problems: reflection

problem and the stochastic quasi-geostrophic equation.

0.1 Reflection problem

In the first part of the thesis, we consider the following stochastic differential inclu-

sion in the Hilbert space H:

{ dX (1) + (AX(t) + Np(X(1)))dt 5 dW (2), (1.1)

X(0)=zeT,

if I is regular. Here A : D(A) C H — H is a self-adjoint strictly positive definite
operator. Np(x) is the normal cone to I' at = and W (t) is a cylindrical Wiener process

in H. The precise meaning of the above inclusion will be defined in Section 2.4.2.
The solution to (1.1) is called reflected Ornslein-Uhlenbek (OU for short)-process.

(1.1) was first studied (strongly solved) in [NP92], when H = L?(0,1), A is
the Laplace operator with Dirichlet or Neumann boundary conditions and I is the
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convex set of all nonnegative functions of L?(0,1); see also [Za02]. In [BDL09] the
authors study the situation when I' is a regular convex set with nonempty interior.
They get precise information about the corresponding Kolmogorov operator, but
did not construct a strong solution to (1.1). It seems difficult to solve this problem
by using general methods in SPDE theory.

In order to solve this problem, we introduce BV functions in a Gelfand triple,
which is an extension of BV functions in a Hilbert space defined in [ADP10]. Let
us recall that a function u is called a BV functions in R™ if and only if one of the
following is satisfied:

i). there exist real finite measures pj,J =1,...,n on R" such that:

/ Ungbdl‘ = — ¢dﬂj,v¢ S Cc(Rn)a
n R”

ii).
V(w) = sup{ | udivgds : ¢ € [C.RM]", [[g]loe < 1} < o0.
Rn
The equivalence of these two conditions can be proved by using Riesz representation
theorem. But in infinite dimensions, since lack of local compactness, we cannot prove
this equivalence directly. Fortunately, M. Fukushima proved a version of the Riesz-
Markov representation theorem in infinite dimensions by using the quasi-regularity
of the Dirichlet form (see [MR92]). Then M. Fukushima in [Fu00] gave a definition
of BV functions in abstract Wiener spaces based upon Dirichlet form theory, and
later extended by M. Fukushima and M. Hino in [FHO1]. Here we introduce BV
functions in a Gelfand triple, which can be used to solve the stochastic reflection

problem.
Consider the Dirichlet form

& (uwv) = 5 [ (Du.Dop(e)n(a:)

(where p is a Gaussian measure in H and p is a BV function) and its associated
process. By using BV functions, we obtain a Skorohod-type representation for the

associated process, if p = It and I is a convex set.

In (1.1), we consider a convex set I'. If I' is a regular convex set, we show that
Ir is a BV-function and thus obtain existence and uniqueness results for (1.1). By
a modification of [Fu00] and using [BDL10], we obtain the existence of an (in the
probabilistic sense) weak solution to (1.1). Then, we prove pathwise uniqueness.
Thus, by a version of the Yamada-Watanabe Theorem (see [Ku07]), we deduce that
(1.1) has a unique strong solution. We also consider the case when I' = K,,, where
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= {f € L*0,1)|f > —a},a > 0, and prove our result about Skorohod-type
representation and that Ik, is a BV function in a Gelfand triple, if o > 0.

The solution of the reflection problem is based on an integration by parts formula.
The connection to BV functions is given in Theorem 2.2.1 below , which is a key
result of this thesis. It asserts that the integration by parts formula for p - u gives
a characterization of BV functions p, in the case where p is a Gaussian measure.
This is an extension of the characterization of BV functions in finite dimension. But
an integration by parts fomula is in fact enough for the reflection problem. This
we show in Section 2.5, exploiting the beautiful integration by parts formula for
K.,a >0, proved in [Za02|, which in case a = 0, i.e, Ky = {f € L*(0,1) : f > 0},
is with respect to a non-Gaussian measure, namely a Bessel bridge. Theorem 2.2.1
applies to prove that I, is a BV function, but only if o > 0.

Then we analogously define BV functions replacing the Gaussian measure with
a differentiable measure in a Gelfand triple. Differentiable measures form a general
class which contains more examples besides Gaussian measures (see [Bol0]). The
definition of differentiable measure, namely to have integration by parts in suffi-
ciently many directions, is essential for the definition of BV functions. We consider

the Dirichlet form
Z/ 3u a’U
8ek 8ekp Hs

(where E' is a Banach space with a Hilbert space H C E continuously and densely,
e;j is an orthonormal basis in H, p is a differentiable measure in £ and p is a BV
function) and its associated process. Using BV functions, we obtain a Skorohod-type
representation for the associated process, if p = I and ' is a convex set.

As a consequence of these results, we can consider the following stochastic dif-
ferential inclusion in the Banach space E:

X(0) = 5. (1.2)

{ AX (t) + (AX (D)4 : p(X) : +Np(X(£))dt > dW (2),
if " is regular. Here A : D(A) C H — H is a self-adjoint operator. Nrp(z) is the
normal cone to I at x and W (t) is a cylindrical Wiener process in H. The solution
to (1.2) is called reflected stochastic quantization process. We would like to stress
that our results apply to models from 2D-quantum field theory (” P(¢)s-models”)
both in finite and infinite volume. The latter is much more difficult than the first.

The stochastic quantization problem with space dimension 2(without reflection
term) was studied in [AR89] ("infinite and finite volume”), [AR91]|(”infinite and
finite volume”), [RZ92](” finite volume”), [LRI8|(” finite volume”) by using Dirichlet
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form theory. And Da Prato and Debussche in [DDO03] proved the existence and
uniqueness of a strong solution of this problem, but only in the finite volume case.
By using BV functions, we obtain martingale solutions to the reflected stochastic

quantization problem in finite and infinite volume.

0.2 Stochastic quasi-geostrophic equation

In the second part of this thesis, we are concerned with the following two dimensional
(2D) stochastic quasi-geostrophic equation in the periodic domain T? = R?/(277Z)%

%tf) = —u(t, &) - VO(t,&) — k(—AL)0(t, &) + (G(0)n)(t, &), (1.3)

with initial condition
9(07 6) = 90(5)7

where 0(t,€) is a real-valued function of £ € T> and t > 0, 0 < a < 1,k > 0 are
real numbers. u is determined by # through a stream function v via the following

relations:

u = (Ul, 'LLQ) = (—Rge, R19> = Rle (14)

Here R; is the j-th periodic Riesz transform and n(¢,€) is a Gaussian random

field, white noise in time, subject to the restrictions imposed below. The case o = 1

2
is called the critical case, the case a > % sub-critical and the case a < % super-

critical.

This equation is an important model in geophysical fluid dynamics. The case
a = 1/2 exhibits similar features (singularities) as the 3D Navier-Stokes equations
and can therefore serve as a model case for the latter. In the deterministic case this
equation has been intensively investigated because of both its mathematical impor-
tance and its background in geophysical fluid dynamics (see for instance [CV06],
[Re95], [CW99], [Ju03], [Ju04], [KNVO07] and the references therein). In the deter-
ministic case, the global existence of weak solutions has been obtained in [Re95] and
one most remarkable result in [CV06] gives the existence of a classical solution for
a = 1/2. In [KNV07] another very important result is proved, namely that solutions
for a = 1/2 with periodic C* data remain C'* for all times.

0.2.1 Existence and uniqueness of the solution

In this thesis we study the 2D stochastic quasi-geostrophic equation on T? for general
parameter o € (0,1) and for both additive as well as multiplicative noise.
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For o € (0,1): We prove the existence of weak solutions in the sense of Definition
4.2.1 (ii) with additive noise (Theorem 4.2.4). We also prove the existence of mar-
tingale solutions for multiplicative noise under two different assumptions on G (see
(G.1) and (G.2) in Section 4): under (G.1) we use Galerkin approximations and the
compactness method in [FG95] (Theorem 4.3.2) and under (G.2) we use Aldous’s cri-
terion (Theorem 4.3.5). In order to prove the existence of (probabilistically strong)
solutions in subsequent sections, we need L” norm estimates for solutions, which are
obtained by using the LP-1t6 formula proved in [Kr10]. But these LP-norm estimates
we cannot prove by Galerkin approximation, instead we use another approximation
(Theorem 4.3.3). Pathwise uniqueness is obtained under some extra condition on
the solution (Theorem 4.4.6). But, in general, we cannot prove a solution satisfies
this condition, except for very special cases (see Remark 4.4.7).

For v > 1/2: We obtain pathwise uniqueness (Theorem 4.4.1) and therefore
get a (probabilistically strong) solution (Theorem 4.4.4) by the Yamada-Watanabe
Theorem. In particular, it follows that the laws of the solutions form a Markov
process.

For a = 1/2: Using a result from the deterministic case in [KN09] and [CV06], we
also prove that there exists a unique solution of the 2D stochastic quasi-geostrophic

equation in the critical case driven by real linear multiplicative noise (Remark 4.4.7).

0.2.2 Large deviation principle

The large deviation theory concerns the asymptotic behavior of a family of random
variables {f.}. It asserts that for some tail event A, P(f. € A) converges to zero
exponentially fast as ¢ — 0. It also gives the exact rate of convergence (rate func-
tion)(cf. [DZ92, Chapter 12]). The large deviation principle was first established
by Varadhan in [Va66]. Varadhan also studied the small time asymptotic of finite
dimensional diffusion processes in [Va67]. Since then, important results about the
large deviation principle have been established. For results on the large deviation
principle for the stochastic differential equations in finite dimensional case we refer
to [FW84]. For extensions to infinite dimensional diffusions or SPDE, we refer the
reader to [DZ92, Li09, XZ09] and the references therein.

Here we will study the large deviation principle for the stochastic quasi-geostrophic
equation for small multiplicative noise (Section 4.5) and the small time large devi-
ations for this equation (Section 4.6) in the subcritical case. The large deviation
principle for small multiplicative noise (Theorem 4.5.9) asserts that the probabil-
ity of the deviation of the solution of stochastic quasi-geostrophic equation from
the solution of the deterministic quasi-geostrophic equation converges exponentially
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fast. We use stochastic control and the weak convergence approach from [BDO0O].
The main difficulty lies in dealing with the nonlinear term since the solution to the
stochastic quasi-geostrophic equation is not as regular as in the 2D Navier-Stokes
case. To estimate the nonlinear term, we use Galerkin approximations and using the
method in [GK96] we prove that these approximations converge in probability to
the solution. The small time large deviation principle (Theorem 4.6.2) describes the
behavior of # when the time is very small. We will use the approach from [XZ09].
However, since the solution is not as regular as in for 2D Navier-Stokes equation,
we cannot deal with the nonlinear term as in the 2D Navier-Stokes case. Instead,

we establish the small time large deviation principle on a larger space.



Chapter 1

Preliminaries

In this chapter, we collect some definitions and results of stochastic analysis as
preliminaries for the following chapters. All the content in chapter was included in
[MR92]. We omit the proofs of the theorem and refer the readers to [MR92] for
more details. In the first part, we recall the definition of quasi regular Dirichlet
form and the important result of quasi regular Dirichlet form corresponding to a
strong Markov process. In the second part, we recall some definitions and result in

stochastic calculus associated with Dirichlet form.

1.1 Some basic concepts for Dirichlet forms

Let us recall the definition of Dirichlet form from [MR92]. Let E be a Hausdorff
topological space and assume that its Borel o-algebra B(FE) is generated by the set
C(E) of all continuous functions on E. Let m be a o-finite measure on (E, B(E))
such that H := L?(E,m) is a separable (real) Hilbert space. Let (£, D(£)) be a
coercive closed form on #H, i.e. D(E) is a dense linear subspace of H, and & :
D(€) x D(€) — R is a positive definite bilinear map, D(€) is a Hilbert space with
inner product &(u,v) = 1(E(u,v) + E(v,u)) + (u,v)y, and & satisfies the weak
sector condition

|€1 (U, U)| < Kgl (U, u)l/le (U7 U)l/za

u,v € D(E), with sector constant K. We will always denote the corresponding norm
by || - || - Identifying H with its dual H' we obtain that £ — H = H' — &' densely

and continuously.

Definition 1.1 A coercive closed form (£, D(E)) on L*(E,m) is called a Dirichlet
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form, if for all u € D(E), one has that

utA1eDE),Eu+u" AlLu—utAl)>0and E(u—ut Al,u+u" A1) >0

In infinite dimensional spaces, to construct a strong Markov process is sometimes
difficult. However, the theory of quasi-regular Dirichlet form, which was introduced
by Z. Ma and M. Rockner, provides an useful method to construct a strong Markov
process in infinite dimensional spaces. This is an important development in the
theory of Dirichlet form and will be used in the chapter 2 and chapter 3. Let’s recall
the definition of the quasi-regular Dirichlet form here. For this reason we introduce

some useful notations.

Definition 1.2 (i) An increasing sequence (Fj),>1 of closed subset of F is called
an E-nest, if UD(E)p, is dense in D(E) (w.r.t. |- |g).

(ii) A subset N C E is called £-exceptional if there is an E-nest (Fj)g>1 such
that N C ﬂkzlE\Fk‘

(iii) A property of points in E holds £-quasi-everywhere(€ — g.e.) if the property

holds outside some £-exceptional set.

(iv) A function f defined up to some E-exceptional set N C E is called £-quasi-
continuous (€-q.c.) if there exists an E-nest (F)x>1, such that Ug>1 Fr C E\N and
flF, is continuous for all k.

Definition 1.3  The Dirichlet form (£, D(E)) is called quasi-regular if:

(i) There exists an E-nest consisting of compact sets.

(ii) There exists a dense subset of D(E) (w.r.t. || - [z ) whose elements have

£-quasi-continuous m-versions.

(iii) There exist u,, € F,n € N, having £-quasi-continuous m-versions ,,n € N,
and an £-exceptional set N C FE such that {u,|n € N} separates the points of E\N.

Now we can formulate the existence theorem.

Theorem 1.4 Let (£, D(€)) be a quasi-regular Dirichlet form on L*(E,m). Then
there exists a pair (M, M ) of m-tight special standard process which is properly
associated with (£, D(&)).

Moreover, we have the following characterization of diffusion process which will

be used in chapter 2 and chapter 3.

Definition 1.5 The quasi-regular Dirichlet form (£, D(£)) is said to have the
local property if:

E(u,v) =0, for all u,v € D(E) with supplu] N supp[v] = @.
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Theorem 1.6 A quasi-regular Dirichlet form possesses the local property if and
only if it is associated with a pair of diffusions (£, D(E)).

1.2 Stochastic calculus associated with Dirichlet

forms

In this section we assume that the Markov process X = (Q, Foo, Fi, X4, P*) is prop-
erly associated with the quasi-regular Dirichlet form (€, D(E)). Now we introduce

some definitions which will be relevant for our further investigations.

Definition 1.7 A family (A;);>0 of extended real valued functions on €2 is called
an additive functional (abbreviated AF) of X if:

(i) As(+) is Fr-measurable for all ¢ > 0.

(ii) There exists a defining set A € F, and an £-exceptional set N C E, such that
P*[A] =1for all z € E\N,6,(A) C A for all t > 0 and for each w € A, t — A;(w) is
right continuous on [0, 00) and has left limits on (0, {(w)), Ao(w) = 0, |Ai(w)| < o0
for t < ((w), Ai(w) = A¢(w) for t > ((w) and Ay s(w) = Ap(w)+ As(Ow) for s, ¢ > 0.

An AF is called a continuous additive functional (abbreviated CAF)ift — A;(w)
is continuous on [0,00) and a positive continuous additive functional (abbreviated

PCAF) if Ay(w) >0 for allt > 0,w € A.

Definition 1.8 A positive measure pon (E, B(E)) is called smooth (w.r.t. (€, D(£)))

if u(N) =0 whenever N € B(E) is £-exceptional and there exists an E-nest (Fj)r>1
of compact subsets of E such that

p(Fy) < oo for all k € N.

Theorem 1.9 There is a one to one correspondence between smooth measures p

of (£,D(€)) and PCAF’s (A;) of M which is specified by

limEm[% /0 t F(X,)dA,] = / fdu,vf € BT (E).

t—0
For an additive functional A we define its energy

e(A) := lim Em[%Af],

t—0
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if this limit exists in [0, 0o]. Define

M = {M|M is a finite additive functional, E*[M}] < oo, E*[M;] = 0
for € — gq.e.z € E and all t > 0}.

M € M is called a martingale additive functional( MAF). Furthermore, define
M ={M € M|e(M) < oo}.

The elements of M are called martingale additive functional’s (MAF) of finite en-
ergy.
Define

N, :={N|N is a finite continuous additive functional, e(N) = 0, E*[|N;|] < o0
for € — q.e.z € E and all t > 0}.

Now we recall the well-known Fukushima decomposition :

Theorem 1.8 If u € D(£), then there exists a unique M™ € M and a unique
Nl e N, such that
w(X) —u(Xy) = M + N,



Chapter 2

Reflection problem and BV
functions in a Gelfand triple

In this chapter, we introduce a definition of BV functions in a Gelfand triple by
using Dirichlet form theory. By this definition, we consider the stochastic reflection
problem associated with a self-adjoint operator A and a cylindrical Wiener process
on a convex set I' in a Hilbert space H. We prove the existence and uniqueness of
a strong solution of this problem when I' is a regular convex set. The result is also
extended to the non-symmetric case. Finally, we extend our results to the case when
I' = K,, where K, = {f € L*(0,1)|f > —a},a > 0. The result in this chapter have
been included in [RZZ11].

2.1 The Dirichlet form and the associated dis-
torted OU-process

In this section, we consider a special kind of Dirichlet form and its associated dis-
torted OU-process. Let H be a real separable Hilbert space (with scalar product
(-,-) and norm denoted by | - |). We denote its Borel o-algebra by B(H). Assume
that:

Hypothesis 2.1.1 A : D(A) C H — H is a linear self-adjoint operator on H
such that (Az,z) > §|x|? Vo € D(A) for some § > 0 and A~! is of trace class.

Since A™! is trace class, there exists an orthonormal basis {e;} in H consisting

of eigen-functions for A with corresponding eigenvalues o; € R, j € N, that is,

Aej = ozjej,j e N.
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Then o > 6 for all j € N,

Below Dy : H — H denotes the Fréchet-derivative of a function ¢ : H — R. By
C}(H) we shall denote the set of all bounded differentiable functions with continuous
and bounded derivatives. For K C H, the space C}(K) is defined as the space of
restrictions of all functions in C}(H) to the subset K. p will denote the Gaussian

measure in H with mean 0 and covariance operator

1
=-A"1
@ 2
Since A is strictly positive, p is nondegenerate and has full topological support.
Let LP(H, ), p € [1,00], denote the corresponding real LP-spaces equipped with the

usual norms || - ||,. We set

1
)\jI:—\V/jGN,

201j

so that
er = )\jej VJ < N

For p € L! (H, j1) we consider

EP(u,v) = %/H(Du,DU)p(z)u(dz),u,v € CH(F),

where F := Supplp- p] and L} (H, i) denotes the set of all non-negative elements in
LY(H, ). Let QR(H) be the set of all functions p € L (H, p1) such that (€7, Cy(F))
is closable on L?(F, p- ). Its closure is denoted by (€7, F*). We denote by F? the
extended Dirichlet space of (€7, F*), that is, u € FP if and only if |u| < co p-u—a.e.
and there exists a sequence {u,} in F? such that E°(u, — Up, Uy — u,) — 0 as

n>m—ooand u, +u p-p—ae asn— oo.

Theorem 2.1.2 Let p € QR(H). Then (€7, F?) is a quasi-regular local Dirichlet
form on L?(F;p- ) in the sense of Definition 1.3.

Proof The assertion follows from the main result in [RS92]. O

By virtue of Theorem 2.1.2 and Theorem 1.4, there exists a diffusion process
MP = (Q, M,;{M;},0;, X;, P.) on F associated with the Dirichlet form (€7, F?).
M? will be called distorted OU-process on F'. Since constant functions are in F?
and £°(1,1) = 0, M? is recurrent and conservative. We denote by A’ the set of all
positive continuous additive functionals (PCAF in abbreviation) of M”, and define
A? = A% — A, For A € A’ its total variation process is denoted by {A}. We
also define Aj) := {A € A”|E, ,({A};) < ooVt > 0}. Each element in A7 has a
corresponding positive £/-smooth measure on F' by the Revuz correspondence. The
set of all such measures will be denoted by S%. Accordingly, A; € A” corresponds
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toarv e SP = 57 — S?, the set of all £P-smooth signed measure in the sense

that A, = A} — A? for AF € A%k = 1,2 whose Revuz measures are v* k = 1,2
and v = v! — 12 is the Hahn-Jordan decomposition of v . The element of A’
corresponding to v € S will be denoted by A”.

Note that for each [ € H the function u(z) = (I,z) belongs to the extended
Dirichlet space F? and

EP(I(+),v) = %/(l, Dv(2))p(2)du(z) Yo € Cy(F). (2.1.1)

On the other hand, the AF (I, X; — Xy) of M? admits a unique decomposition
into a sum of a martingale AF (M;) of finite energy and CAF (N;) of zero energy
(Fukushima decomposition). More precisely, for every [ € H,

(I, X; — Xo) = M + N} ¥t >0 P, — a.s. (2.1.2)

for £,-q.e. z € F.

Now for p € LY(H,u) and | € H, we say that p € BV;(H) if there exists a
constant C; > 0,

I/thv@»p@ﬁhddléC%HUHm Vv € Gy (F). (2.1.3)

By the same argument as in [FHO1, Theorem 2.1], we obtain the following:

Theorem 2.1.3 Let pe L} andl € H.
(1) The following two conditions are equivalent:
(i)p € BVi(H)

(ii) There exists a (unique) signed measure v; on F' of finite total variation such
that

%/@m@mmmwaz—/m@mwmmeq@» (2.1.4)

F

In this case, v; necessarily belongs to SP*1.

Suppose further that p € QR(H). Then the following condition is also equivalent
to the above:

(iii)N' € A
In this case, v; € S”, and N! = A"

(2) M'is a martingale AF with quadratic variation process

(MY, = t|I]*,t > 0. (2.1.5)
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Remark 2.1.4  Recall that the Riesz representation theorem of positive linear
functionals on continuous functions by measures is not applicable to obtain Theorem
2.1.3, (i) = (11), because of the lack of local compactness. However, the quasi-
regularity of the Dirichlet form provides a means to circumvent this difficulty.

In the rest of this section, we shall introduce a special class of p € QR(H), which
will be used in Section 2.3 below.

A non-negative measurable function h(s) on R! is said to possess the Hamza
property if h(s) = 0 ds — a.e. on the closed set R' \ R(h) where

s+ 1
R(h) ={s€R": / mdr < oo for some ¢ > 0}.
S—¢€ r

We say that a function p € L (H, p) satisfies the ray Hamza condition in direction
l € H (p € H; in notation) if there exists a non-negative function p; such that

Py = p it — a.e. and p;(z + sl) has the Hamza property in s € R! for each z € H.

We set H := N;H,,, where ¢ is as in Hypothesis 2.1.1. A function in the family
H is simply said to satisfy the ray Hamza condition. By [AR90] H C QR(H), and
thus we always have p + 1 € QR(H), since clearly p+ 1 € H.

Next we will present some explicit description of the Dirichlet form (€7, F*) for
p € H. For e; € H as in Hypothesis 2.1.1, we set H., = {se; : s € R'}. We then
have the direct sum decomposition H = H,, @ E., given by

z=se;+x,5= (e, 2).

Let 7; be the projection onto the space E,; and e, be the image measure of y under
T H — Ee iep, =po 7Tj_1. Then we see that for any F' € L'(H, )

/H F(2)pu(dz) = / ) /R F(se; + a)p;(s)ds,, (do), (2.1.6)

where p;(s) = (1/y/27\;)e™*/?%. Thus by [AR90, Theorem3.10] for all u,v €
D(&),

EP(u,v) = Zé’p’ej(u,v), (2.1.7)
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where

1 di: (se. di. (se.
5/’76]' (’LL,’U) e —/ / u](sej + x) % U,](Sej + x>p<$€j + x)pj(5>dslue<dx)’
2 Ee; R(p(-ej+x)) ds ds j

(2.1.8)
and u,4; satisfy 4; = u pu — a.e and @;(se; + ) is absolutely continuous in s on
R(p(-e; + x)) for each x € E,,. v and 0; are related in the same way.

2.2 BYV functions in a Gelfand triple and distorted

OU-processes in F

We introduce BV functions in a Gelfand triple in this section, by which we can get
the Skorohod type representation for the OU- process.

As in [FHO1], we introduce some function spaces on H. Let

Arp(z) = / (log(1 + 5))"/*ds, x> 0,
0

and let ¢ be its complementary function, namely,

o) = [ (AW = [ ) - 1
Define
L(log L)Y*(H, p) == {f : H — R|f Borel measurable, A, »(|f|) € L'(H, 1)},

LY(H, ) = {g: H— R|g Borel measurable, ¥(c|g|) € L'(H, ) for some ¢ > 0}.

From the general theory of Orlicz spaces (cf. [RR91]), we have the following prop-

erties.

(i) L(log L)"/? and LY are Banach spaces under the norms

[ f1 £1og )72 = inf{a > 0] /HA1/2(|f|/a)d,u <1},

lgllze = inf{a > 0 /H (gl/)du < 1}.

(ii) For f € L(log L)"/? and g € LY, we have

191l < 20 f 1l gog )12 191l - (2.2.1)
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(iii) Since u is Gaussian, the function x +— (x,1) belongs to LY.

Let ¢, j € N, be a sequence in [1,00). Define

Hy :={z € H| Z(w,ej)%? < o0},

J=1

equipped with the inner product

o

(T, 9)m, = ZC?@U, ei) (Y, e

Then clearly (Hi, (,)n,) is a Hilbert space such that H; C H continuously and
densely. Identifying H with its dual we obtain the continuous and dense embeddings

H, C H=H") C H.
It follows that
m{z,v)m = (z,0)g¥z € Hy,v € H,

and that (Hy, H, HY) is a Gelfand triple. Furthermore, {Z} and {c;e;} are orthonor-
mal bases of H; and H7, respectively.

We also introduce a family of H-valued functions on H by

m

(CHpaynm = {G: G(z) = Zgj(z)lj,z € H,g; € C}(H),l” € D(A) N Hy}.

j=1

Denote by D* the adjoint of D : C}(H) C L*(H,p) — L*(H, u; H). That is
Dom(D*) :={G € L*(H,u; H)|C} > u /(G, Du)dy is continuous with respect to L*(H, u)}.
Obviously, (C})payns, € Dom(D*). Then

/H D*G(2) f(2)uldz) = /H (G(2), DF(2))u(d=) YG € (CF)ppayosin, f € CHH).
(2.2.2)
For p € L(log L)Y/*(H, ), we set

Vip) == sup /H D*G(2)p(z)p(dz).

Ge(C})p(aynmy Gl <1

A function p on H is called a BV function in the Gelfand triple (Hy, H, Hf)(p €
BV(H, Hy) in notation), if p € L(log L)"/?(H, i) and V(p) is finite. When H; =
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H = Hy, this coincides with the definition of BV functions defined in [ADP10]
and clearly BV(H,H) C BV(H, H;). We can prove the following theorem by a
modification of the proof of [Fu00, Theorem 3.1].

Remark 2.2.0 The introduction of BV functions in a Gelfand triple is natural
and originates from standard ideas when working with infinite dimensional state
spaces. The intersection of BV;(H), when [ runs through D(A) N Hy, describes
functions which are “componentwise of bounded variation” in the sense that their
weak partial derivatives are measures. In contrast to finite dimensions this does
not give rise to vector-valued measures representing their total weak derivatives
or gradients. Therefore, one introduces an appropriate “tangent space” Hi to H,
in which these total derivatives can be represented as a Hj-valued measure. This
approach substantially extends the applicability of the theory of BV functions on
Hilbert spaces. We document this by including the well-studied case of linear SPDE
with reflection, more precisely, the randomly vibrating Gaussian string, forced to
stay above a level a > 0, (see [NP92], [Za02]), which (in the case of a > 0) is then
just a special case of our general approach.

Theorem 2.2.1 (i) BV(H, Hi1) C (Ve piaynm, BVi(H).
(ii) Suppose p € BV (H, Hy)NLL (H, 1), then there exist a positive finite measure

|dp|| on H and a Borel-measurable map o, : H — Hi such that [o,(2)]
Lldpl| = ae, ||dpl|(H) = V(p),

HY —

| DGEm() = [ Gl oo ldpl(d) VG € Copar, (223)
and ||dp|| € SPT.

Furthermore, if p € QR(H), ||dp|| is £P-smooth in the sense that it charges no
set of zero E-capacity. In particular, the domain of integration H on both sides of
(2.2.3) can be replaced by F, the topological support of ppu.

Also, 0, and |[|dpl| are uniquely determined, that is, if there are o}, and ||dpl|’

satisfying relation (2.2.3), then ||dp|| = ||dp||" and o,(2) = o/,(2) for ||dp|| — a.e.z

(iii) Conversely, if Eq.(2.2.3) holds for p € L(log L)*/2(H, j1) and for some positive
finite measure ||dp|| and a map o, with the stated properties, then p € BV (H, H,)

and V(p) = ||dpl|(H).
(iv) Let WU (H) be the domain of the closure of (D, C}(H)) with norm

1l = /H (17(2)] + IDF()uld2).

Then WY (H) C BV (H, H) and Eq.(2.2.3) is satisfied for each p € W1 (H). Fur-
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thermore,

Idoll = |Dp| - 11, V(p) = / Dplu(dz),0, = —— DpIyppsoy.
H

1
| Dpl
Proof (i) Let p € BV(H, H;) and | € D(A) N Hy. Take G € (C})peaynm, of the

type
G(z) =g(2)l,z € H g € C{(H). (2.2.4)

By (2.2.2)

/H DG(2) f(:)uldz) = /H (G(2), DF(2))u(d)
_ /H (1, Dg(=)) f(2)(dz) + 2 / (AL 2)g(2) f(2)(dz) Vf € CLH);

consequently,
D*G(z) = —(l, Dg(z)) + 2g(z)(Al, z). (2.2.5)
Accordingly,
/H(Z,Dg(z)> /D G(z dz)+2/H<Al,z)g(z)p(z)u(dz).
(2.2.6)

For any g € C}(H), satisfying ||g|l < 1, by (2.2.1) the right hand side is dominated
by
Vo)l + 4ol o yr/2 (AL )l e < 00,

hence, p € BV|(H).

(ii) Suppose p € LL(H,u)(\BV(H,H;). By (i) and Theorem 2.1.3 for each
l € D(A) N Hy, there exists a finite signed measure v; on H for which Eq.(2.1.4)
holds. Define
Di*p(dz) == 2v,(dz) + 2(Al, 2)p(2) u(dz).

In view of (2.2.6), for any G of type (2.2.4), we have

/DG p(dz) = /Hg(z)DlAp(dz), (2.2.7)

which in turn implies

VDI (H) = sup /H 9(2)Dipl(dz) < V(o) ] (2.28)

9€Cy (H),llglle<1

where V(D{p) denotes the total variation measure of the signed measure D{'p
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For the orthonormal basis {<£} of Hj, we set
J

dD? p(2)
A . yo0o o9—j A o i ;
’)/p = Ej:12 JV(D%p), Uj(Z) = W,Z S H,] e N. (229)

74 is a positive finite measure with 2'(H) < V(p) and v; is Borel-measurable. Since
D, p belongs to S#*!, so does ~/ . Then for

€j

Gni=>_ g;= € (C})pwnm.n €N, (2.2.10)
= 9
by (2.2.7) the following equation holds
| D Gu@pmld) =3 [ a@uenie). (2211)

Since |v;(z)| < 2/ y3-a.e. and C}(H) is dense in L'(H,~4), we can find v;,, € Cj(H)
such that

lim v;,, = v; v — a.e.
m—oo I J 7’0 ’

Substituting
Vim(2
Gjm(2) : s 2) (2.2.12)

- \/ZZ:1 Uk,m(2)2 + 1/m’

for g;(z) in (2.2.10) and (2.2.11) we get a bound

> [ aimEuserd) < V),

because |G (2)[3, = 225 gjm(2)? <1 Vz € H. By letting m — oo, we obtain

/H Zvj(z)QVf(dZ) < V(p) Vn € N.

Now we define

ldpl| = (2.2.13)
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and o, : H — H by

oo v;i(z) . 00 2
| = Cj€j, if z € _,Uk(2)° >0
0,(2) = 21 Vw9 (ke () > 0} (2.2.14)
0 otherwise.
Then
ldpl|(H) < V(p), llop(z)|lu; =1 |ldp| —ae., (2.2.15)

|dp|| is SP**-smooth and o, is Borel-measurable. By (2.2.11) we see that the desired
equation (2.2.3) holds for G = G,, as in (2.2.10). It remains to prove (2.2.3) for any
G of type (2.2.4), ie. G =g-1l,g € C}(H),l € D(A) N Hy. In view of (2.2.6),
Eq.(2.2.3) then reads

jL%DﬂMMQMMH{LMAMww@M@ﬂ=LM@m%%@Mﬂwmw)
(2.2.16)
We set

kn:zzllej Z ' 6JG() = g(2)kn.

Thus k, — [ in H; and Ak, — Al in H as n — co. But then also

n—oo

lim [ (Dg, k‘n>pd#=/<D9,l>pdu,
H H

and

|LM@M%@MWM@—L¢@MWW@MMN
< 20glloc ol aog vl (AR — AL o

Furthermore,

lim /H 9(2) i, (ks Up(Z»Hl*

n—o0

dpl|(dz) =/HQ(Z)HJZ,%(Z)>Hf||dpll(d2)-

So letting n — oo yields (2.2.16).
If p € QR(H), we can get the claimed result by the same arguments as above.

Uniqueness follows by the same argument as [FHO1, Theorem 3.9]. Suppose that

o, and ||dp|" are another pair. Then,

/ Hl(G(Z),’)/)[{Tg(dZ) = 0 for every G € (]—"C'bl)Ql/z(H)mHl,
E

dlldpl| _
dg

where £ = ||dp|| + ||dp|" and v = o,“22 . Taking a uniformly bounded
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sequence G, € (FCy) g2 )mH1 so that p,(Gn(2), 7))y — [|7|m:€ a-e., we get v = 0§

a.e. Therefore, |0, m; de”H = |lolla; d”dp” § ae. Since ||lo,|lg: = 1 [|dp|-a.e.
/ ’
o 2l — el ¢ Slmﬂaﬂy’ HU’ I d||2l§|| _ ol ¢ g Then dldel  dldel

-a.e. which 1mplies Pl = P so it follows that o, = o’
hich i 1 d||dp|| = d||dpl|’. Al foll h P o

(iii) Suppose p € L(log)'/?(H, 1) and that Eq.(2.2.3) holds for some positive finite
measure ||dp| and some map o, with the properties stated in (ii). Then clearly

V(p) < |ldpl|(H)

and hence p € BV (H, Hy). To obtain the converse inequality, set

e .
0j(2) = (cjej,0p(2))H; =m <f70p(2)>Hf,J eN.
J

Fix an arbitrary n. As in the proof of (ii) we can find functions

U € CLH), 1 v0(2) = 0,(2) dpl| — ae.

m—ro0

Define g;,(2) by (2.2.12). Substituting G m(2) :== >, g]m(z)i—j for G(z) in (2.2.3)
then yields

5 [ ainlos@ldslaz) < V)

By letting m — oo, we get

J

We finally let n — oo to obtain ||dp||(H) < V(p).

Z%

2||dpl|(dz) < V(p) Vn € N.

(iv) Obviously the duality relation (2.2.2) extends to p € WH(H) replacing
f € CH(H). By defining ||dp|| and o,(z) in the stated way, the extended relation
(2.2.2) is exactly (2.2.3). O

Theorem 2.2.2 Let p € QR(H) N BV (H, Hy) and consider the measure ||dp||
and o, from Theorem 2.2.1(ii). Then there is an £-exceptional set S C F such
that Vz € F\S under P, there exists an M- cylindrical Wiener process W?#, such
that the sample paths of the associated distorted OU-process M? on F satisfy the
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following: for [ € D(A) N H,

t 1 t t
(l,Xt—X0>:/ <l,dW§>+§/ Hl<z,a,,(X5)>Hdede—/ (Al, X,)ds Vt > 0 P,—a.s..
0 0 0
(2.2.17)

Here L)l is the real valued PCAF associated with ||dp|| by the Revuz correspon-
dence.

In particular, if p € BV(H, H), then Vz € F\S,l € D(A)NH

t 1 t t
(l,Xt—X0>:/ (l,dW§>+§/ <l,ap(Xs)>dL!dP”_/ (Al, X,)ds Vt > 0 P,—as..
0 0 0

Proof Let {e;} be the orthonormal basis of H introduced above. Define for all
keN

1

t ¢
WE(t) = (ex, Xy — 2) — 5/0 Hl(ek,ap(Xs»Hdeﬂd"” +/O (Aeg, Xs)ds.  (2.2.18)

By (2.1.1) and (2.2.16) we get for all k € N

E(erv0) = [ ale)Aen pIn(d2)= [ o ler. o) dpl(d:) Vg € G,

H

By Theorem 2.1.3 it follows that for all k € N

1 t t
N = 5/ e (X)) e d LN — / (Aey, X,)ds. (2.2.19)
0 0
Here we get from (2.2.18), (2.2.19) and the uniqueness of decomposition (2.1.2) that
for £P-q.e. z € F,
WE(t) = M* vt >0 P.—as.,

where the £P-exceptional set and the zero measure set does not depend on ej. Indeed,
we can choose the capacity zero set S = Uj2,S;, where S; is the £P-exceptional set
for e;, and for z € F'\S, we can use the same method to get a zero measure set
independent of e;. By Dirichlet form theory we get (M®, M%), = td;;. So for
z € F\S, WZ is an M;-Wiener process under P,. Thus, with W* being an M-
cylindrical Wiener process given by W#*(t) = (Wi (t)er)ken, (2.2.17) is satisfied for
P, —a.e., where z € F'\ S. O
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2.3 Reflected OU-processes

In this section we consider the situation where p = Ir € BV (H, Hy), where I' C H
and
1 ifrel
] — Y Y
r(7) { 0 ifzel

Denote the corresponding objects o, ||dIr|| in Theorem 2.2.1(ii) by —nr, ||OL'|| re-
spectively. Then formula (2.2.3) reads

/FD*G(z)u(dz) = _/FH1<G(Z)7DF>HT Or'||(dz) VG € (Cy)p(aynm,

where the domain of integration F' on the right hand side is the topological support
of It - ju. F is contained in I, but we shall show that the domain of integration on
the right hand side can be restricted to 0I'. We need to use the associated distorted
OU-process M'™ on F, which will be called reflected OU-process on T.

First we consider a p-measurable set I' C H satisfying

Ir € BV(H, H;) N H. (2.3.1)

Remark 2.3.1 We emphasize that if [' is a convex closed set in H, then obviously
Ir € H. Indeed, for each z,l € H the set {s € R|z + sl € I'} is a closed interval
in R, whose indicator function hence trivially has the Hamza property. Hence, in
particular, It € QR(H).

By a modification of [Fu00, Theorem 4.2], we can prove the following theorem.

Theorem 2.3.2 Let I' C H be p-measurable satisfying condition (2.3.1). Then
the support of ||OT'|| is contained in the boundary OI" of I'; and the following gener-

alized Gauss formula holds:
[ DG =~ [ a6 memlord) Y6 € (Coom. (232
r ar

Proof For any G of type (2.2.4) we have from (2.1.1), (2.2.5) and (2.2.7) that

1
e10).9) - [ AL Aud) = 5 [ g@Din).  (233)
r F
Since the finite signed measure D{* I charges no set of zero & -capacity, Eq.(2.3.3)

readily extends to any £r-quasicontinuous function g € F" := Fr N L®(T, ).
Denote by I'? the interior of I'. Then I' € F' C I'. In view of the construction
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of the measure [|d/|| in Theorem 2.2.1, it suffices to show that for &£ € D(A) N H;
J

V(Dgfr)(ro) =0.

¢j

By linearity and since positive constants interchange with sup, it suffices to show
that,
A 0y _
V(Dej[p)(F ) =0. (2.3.4)

Take an arbitrary € > 0 and set
U:={z€H:d(z, H\I") > e}, V :={z € H : d(z, H\I"") > ¢},

where d is the metric distance of the Hilbert space H. Then U C V and V is a

closed set contained in the open set I'°. We define a function h by
h(z) :=1—E,(eV),z € F, (2.3.5)

where 7y denotes the first exit time of M from the set V. The nonnegative function
h is in the space ]-"blF and furthermore it is £T-quasicontinuous because it is M'T
finely continuous.

oo h(z) >0Vz €U,  h(z)=0VYze F\V. (2.3.6)
Set
v;(dz) == h(z) D I (dz) (2.3.7)
and
=& (ei().gh) ~ [ o)) ey, ) (238)

Then Eq.(2.3.3) with the £/r-quasicontinuous function gh € ]-"bl I replacing g implies

B =3 [ oG,

In order to prove (2.3.4), it is enough to show that IJ = 0 for any function g(z) of
the type

9(2) = f({ej,2),(l2, 2), oo (lmy 2) )i b2y ooy by € H, f € CL(R™), (2.3.9)

for we have then v; = 0.
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On account of (2.1.8) we have the expression

ey gh) = 7 (g = 5 [ [ AIEED, (s, (a),

(2.3.10)
where R, = R(Ir(-ej+x)), F, == {s : se;+x € F'} for v € E,; and his a Ip- p-version
of h appearing in the description of (2.1.8). For z € E,, set

Vyi={s:se; +x €V} :={s:se;+z€l}.

We then have the inclusion V, € T% C R, N F,. By (2.3.6), h(se; + x) = 0 for
any r € F,; and for any s € R, \ Vz. On the other hand, there exists a Borel set
N C E,; with p, (N) = 0 such that for each z € E. \N,

h(se; + x) = h(se; + x) ds — a.e.

Here we set h = 0 on H\F. Since iz(-ej + x) is absolutely continuous in s, we can
conclude that

h(se; +x) = 0Vr € B, \N, Vs € R, \V,.

Fix r € E.\N and let I be any connected component of the one dimensional
open set R,. Furthermore, for any function g of type (2.3.9) we denote the support
of g(-e; + x) by K, (which is a compact set) and choose a bounded open interval
J containing K,. Then I NV, N K, is a closed set contained in the bounded open
interval 7 N J and

gh(se; +x) =0Vse (INJ)\I NV, NK,).

Therefore, an integration by part gives

[ A, s~ [ Ltaise, + sy (o)

Combining this with (2.3.8) and (2.3.10), we arrive at

H

- | i b ses + 2y, () = [ g()h(z) ey, A (2utdz) =0

O
Now we state Theorem 2.2.2 for p = Ir.

Theorem 2.3.3 Suppose I' C H is a p-measurable set satisfying condition (2.3.1).
Then there is an £P-exceptional set S C F such that Vz € F\S, under P, there exists
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an M;- cylindrical Wiener process W?#, such that the sample paths of the associated
reflected OU-process M* on F with p = It satisfy the following: for [ € D(A) N H,

¢ 1 [t ¢
(I, X, — Xo) = / (I,dw?) — 5/ il nr (X)) d LI — / (Al,X,)ds P.—a.s..
0 0 0
(2.3.11)
Here, LLIBF” is the real valued PCAF associated with ||OT'|| by the Revuz correspon-
dence, which has the following additional property: Vz € F\S

Tor(X)dLITl = a9t p, — q.s.. (2.3.12)

In particular, if p € BV(H, H), then Vz € F\S,l € D(A)N H

t 1 t t
(1, X; — Xo) :/ (z,dW§>—§/ <l,np(X8))dL58F”—/ (Al, X,)ds ¥Vt >0 P, —a.s..
0 0 0

Proof All assertions except for (2.3.12) follow from Theorem 2.2.2 for p := I.
(2.3.12) follows by Theorem 2.3.2 and [FOT94, Theorem 5.1.3]. O

2.4 Stochastic reflection problem on a regular con-

vex set

In this section, we get the existence and uniqueness of the solution for (1.1) if I' is
a regular convex set. We also extend these results to the non-symmetric case. Now
we consider I satisfying [BDT09] Hypothesis 1.1 (ii) with K :=T', that is:

Hypothesis 2.4.1 There exists a convex C* function g : H — R with ¢(0) =
0,¢'(0) = 0, and D?g strictly positive definite, that is,(D?g(x)h, h) > v|h|* Vh € H
for some v > 0, such that

I'={reH:g(x)<1},0l' ={z € H:g(x) =1}

Moreover, we also suppose that D2g is bounded on I and |Q/2Dg|~! € Mo LP(H, p).

Remark 2.4.2 By [BDT09, Lemma 1.2], I' is convex and closed and there exists
some constant d > 0 such that |Dg(x)| < 0 Vz €I
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2.4.1 Reflected OU processes on regular convex sets

Under Hypothesis 2.4.1, by [BDT10, Lemma A.1] we can prove that Ir € BV (H, H)N
QR(H):

Theorem 2.4.3  Assume that Hypothesis 2.4.1 holds. Then Ir € BV(H,H) N
QR(H).

Proof We first note that trivially by Remark 2.3.1 we have that It € QR(H). Let

Thus,
lim p, = Ip.
e—0
Moreover,

2
Dp. = =—p:ligznyDglg = 1) p — a.c..
By [BDT10, Lemma A.1] we have for p € C}(H)

1 1 [Dg(y)
lim — Lige —1)(Dg(x), dx) = = 2y e ar (dY),
= | #@) w21 (9(@)=1){Dg(x), 2)pe(x)pldz) 2/8F PW) W), 2 a7 p g iy Hor ()
where n := Dg/|Dg| is the exterior normal to OI' at y and pyp is the surface

measure on OI' induced by u (cf. [BDTO09], [BDT10], [Ma97]), whereas by (2.2.2)
for any ¢ € C}(H) and z € D(A)

1

g [ ) Ly121)(9(2) ~ D{Dg(a). . (a)n(da)
~—tin5 [ (Dp.(a).pla)2) (o)
=~ 5 lim | p.@)D (p2) @)
3 | @D (@) @n(da).

Thus,

[ @D e @ntdn) = = [ plo)n(o). )G i) v € D). €

(2.4.1)
By the proof of [BDT10, Lemma A.1], we get that ¢ is a non-degenerate map. So we
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can use the co-area formula (see [Ma97, Theorem 6.3.1, Ch. V] or [BDT10, (A.4)]):

%0 1
/Hfu(dfc’)Z/O [/g:rf(y)—|Q1/2Dg(y)|uzr(dy)]dr-

By [Ma97, Theorem 6.2, Ch. V] the surface measure is defined for all r > 0, moreover
[Ma97, Theorem 1.1, Corollary 6.3.2, Ch. V] imply that r + uy, is continuous in
the topology induced by D?(H) for some p € (1,00),r € (0,00)(cf [Ma97]) on the
measures on (H,B(H)). Take f = 1 in the co-area formula, then by the continuity
property of the surface measure with respect to r we have that lQl/Q—}?g(y)l ps, (dy) is
a finite measure supported in {g = r}. By Remark 2.4.2 and since pyr = iy, we
have that —24WL_, - s a finite measure. And hence by Theorem 2.2.1 (iii), we

|Q1/2Dg(y)|
get Ir € BV(H,H).

O

Thus by Theorem 2.3.3 we immediately get the following.

Theorem 2.4.4 Assume Hypothesis 2.4.1. Then there exists an £°-exceptional
set S C F such that Vz € F\S, under P, there exists an M;- cylindrical Wiener
process W#, such that the sample paths of the associated reflected OU-process M?
on F' with p = Ir satisfy the following: for I € D(A) N H,

t 1 t t
(1, X; — Xo) :/<l,dWSZ>—§/ <l,np(XS)>dLsaF”—/ (Al, X,)ds ¥Vt >0 P, —a.e.
0 0 0

Dg - .
where nr := ID_ZI is the exterior normal to I" and

IO ldy) = iy or ).

where pgp is the surface measure induced by p (c.f [BDT09], [BDT10], [Ma97]).

Remark 2.4.5 It can be shown that for x € 9dI', np(z) = % is the exterior

normal to I', i.e the unique element in H of unit length such that

(nr(z),y —x) <0Vyel.

2.4.2 Existence and uniqueness of solutions

Let I' C H and our linear operator A satisfy Hypothesis 2.4.1 and Hypothesis 2.1.1,
respectively. Consider the following stochastic differential inclusion in the Hilbert
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space H,

{ dX(t) + (AX(t) + Np(X(t))dt > dW (1), (2.4.2)

X(0) ==,

where W (t) is a cylindrical Wiener process in H on a filtered probability space
(Q, F, Fi, P) and Np(z) is the normal cone to I' at z, i.e.

Nr(z)={z€ H:(z,y—x) <0VyeTl}.

Definition 2.4.6 A pair of continuous H x R-valued and F;-adapted processes
(X(t),L(t)),t € [0,T7, is called a solution of (2.4.2) if the following conditions hold.

(i) X(t) e forall t € [0,T] P — a.s.;

(ii) L is an increasing process with the property that
Ior(X,)dL, = dL, P — a.s.

and for any [ € D(A) we have

t t t
(X, —2) = / (L, W) — / (I np(X,))dL, — / (AL X.,)ds V¢ > 0 P — a.s.
0 0 0
where nr is the exterior normal to I'.

Remark 2.4.7 By Remark 2.4.5 we know that np(x) € Np(z) for all x € OT.
Hence by Definition 2.4.6 (ii) it follows that Definition 2.4.6 is appropriate to define
a solution for the multi-valued equation (2.4.2).

We denote the semigroup with the infinitesimal generator —A by S(t), ¢t > 0.

Definition 2.4.8 A pair of continuous H x R valued and F;-adapted processes
(X(t), L(t)),t € [0,T] is called a mild solution of (2.4.2) if

(i) X(t) eI forallt € [0,T] P —a.s.;

(ii) L is an increasing process with the property
Ior(Xs)dLs = dLg P — a.s.
and

X = S(t)r + /t S(t— s)dW, — /t S(t — s)np(Xs)dLs ¥t € [0,T] P — a.s.

where nr is the exterior normal to I'. In particular, the appearing integrals have to
be well defined.
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Lemma 2.4.9 The process given by

/t S(t — s)np(Xs)dLs

is P-a.s. continuous and adapted to F;,t € [0,T]. This especially implies that it is
predictable.

Proof As|S(t—s)nr(X;)| < Mpnp(Xs)|, s € [0, 7], the integrals f(f S(t—s)nr(Xs)dLs,t €
[0,T7], are well defined. For 0 < s <t < T,

[ st - wmexdr, ~ [ 86— ume (L
<1 1806 =0 = 50 - wine(Xira 1 [ 56— wne(6)a
< /0 11S(s — w) — S(t — w)np(Xa)|dLe + /t IS(t — wynp(X.)|dLa,
where the first summand converges to zero as s 1t or t | s, because
o (@[55 — ) — S(t — w)lne(X)| -0 assTtortls

For the second summand we have
t
/ |S(t — w)np(Xy)|dL, < Mp(L; — Lg) — 0 as s Ttort]s.

By the same arguments as in [Rol0, Lemma 5.1.9] we conclude that the integral is
adapted to Fi,t € [0,T]. O

Theorem 2.4.10 (X (¢),L;),t € [0,7], is a solution of (2.4.2) if and only if it is
a mild solution.

Proof (=) First, we prove that for arbitrary ¢ € C*([0,T], D(A)) the following
equation holds:

t t t
(60 = (ot [ (W)= [ o), et [ (X -AG+Cds vt 2 0 P-as.
’ ’ ’ (2.4.3)
If ¢, = nf, for f € C([0,T]) and n € D(A), by Itd’s formula we have the above
relation for such ¢. Then by [Ro10, Lemma G.0.10] and the same arguments as the
proof of Proposition G.0.11 we obtain the above formula for all ¢ € C*([0, T], D(A)).
As in [Ro10, Proposition G.0.11], for the resolvent R, := (n+ A)™' : H — D(A)
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and t € [0,T] choosing (, := S(t — s)nR,n,n € H, we deduce from (2.4.3) that
¢ t
(X, nR,m) =(x, S(t)nR,n) —I—/ (S(t — s)nRyn,dWs) — / (np(Xs), S(t — s)nR,n)dLs
0 0
t
+ / (X, AS(t — $)nRun) + (X, —AS(t — s)nRun)ds
0
t t
=(S(t)x + / S(t— s)dWy +/ S(t — s)np(Xs)dLs,nR,n) YVt € [0,T] P — a.s..
0 0
Letting n — oo, we conclude that (X(¢), L), t € [0,T7], is a mild solution.
(<) By Lemma 2.4.9 and [Rol0, Theorem 5.1.3], we have
¢ t
/ S(t — s)np(Xs)dLs and / S(t—s)dWs,t € 0,7,
0 0

have predictable versions. And we use the same notation for the predictable versions
of the respective processes. As (Xy, L;) is a mild solution, for all n € D(A) we get

/0 (X, Ands /0 (S (s)e, An)ds — /0 ¥ /0 " S(s — wynp(X,)dLa, Ands
+ /Ot</os S(s —u)dW,, An)ds ¥t € [0,T] P — a.s..

The assertion that (X (t), L;),t € [0,T7, is a solution of (2.4.2) now follows as in the
proof of [Ro10, Proposition G.0.9] because

/;(/OS S(s — u)np(X,)dL,, An)ds :/Ot /OS<nF(Xu), _%5(5 — w)n)dLyds
=— (/OtS(t — s)nr(X,)dLs, n) + (/Ot nr(X,)dLs, 7).

O

Below, we prove (2.4.2) has a unique solution in the sense of Definition 2.4.6.

Theorem 2.4.11 Let I' C H satisfy Hypothesis 2.4.1. Then the stochastic inclu-
sion (2.4.2) admits at most one solution in the sense of Definition 2.4.6.

Proof Let (u,L') and (v, L*) be two solutions of (2.4.2), and let {e;}ren be the
eigenbasis of A from above. We then have

(ek,u(t)—v(tD—l—/O (akek,u(s)—v(s»ds—l—/o <ek,np(u(s)))dL§—/0 {ex,nr(v(s)))dL? =0
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Setting ¢ (t) := (ex, u(t) — v(t)), we obtain

0 =2 [ 8,510
= — 2(/0 (aer, u(s) — v(s)) ek, u(s) — v(s))ds + /0 (e, nr(u(s))) (e, u(s) — v(s))dL!
—/0 {ex, np(v(s))){ex, u(s) — v(s))dL?)

t t
<2 [ enmeul))en uls) = oL +2 [ (enmelv(s))er.uls) — ()L
0 0
(2.4.4)
By dominated convergence theorem for all ¢ > 0 we have P — a.s:

Z/o {ex, np(u(s))) (ex, u(s) — v(s))dL}

k<N

— /D (nr(u(s)), u(s) — v(s))dL; as N — oo,

and

3 /D (e (v(5))) ex, u(s) — v(s))dL2

k<N

— /0 (nr(v(s)),u(s) — v(s))dL? as N — oo.

Summing over k < N in (2.4.4) and letting N — oo yield that for allt > 0 P — a.s

u(t) — o(t)? < 2 / (np(u(s)), v(s) — u(s))dL} +2 / (e (o(s)), u(s) — v(s))dL?

By Remark 2.4.5 it follows that

which implies
and thus

O

Combining Theorem 2.4.4 and 2.4.11 with the Yamada-Watanabe Theorem, we
now obtain the following:
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Theorem 2.4.12 If I' satisfies Hypothesis 2.4.1, then there exists a Borel set
M C H with

Iv-p(M) = pu(I") such that for every x € M, (2.4.2) has a pathwise unique continuous
strong solution in the sense that for every probability space ({2, F, F;, P) with an
Fi-Wiener process W, there exists a unique pair of F;-adapted processes (X, L)
satisfying Definition 2.4.6 and P(Xy, = z) = 1. Moreover X (t) € M for all t > 0
P-a.s.

Proof By Theorem 2.4.4 and Theorem 2.4.11, one sees that [Ku07, Theorem 3.14]
a) is satisfied for the solution (X, L). So, the assertion follows from [Ku07, Theorem
3.14] b). 0

Remark 2.4.13 Following the same arguments as in the proof of [RSZ08, Theo-
rem 2.1], we can give an alternative proof of Theorem 2.4.12 for a stronger notion
of strong solutions (see 2.6 Appendix). Also, because of Theorem 2.4.10, by a mod-
ification of [On04, Theorem 12.1], we can prove the Yamada Watanabe Theorem
for the mild solution in Definition 2.4.8, and then also a corresponding version of
Theorem 2.4.12 for mild solutions for (2.4.2). This will be contained in forthcoming

work.

2.4.3 The non-symmetric case

In this section, we extend our results to the non-symmetric case. For I' C H
satisfying Hypothesis 2.4.1, we consider the non-symmetric Dirichlet form,

£ (u,v) = /F(%@U(Z),Dv(z» +(B(2), Du(2))v(2))u(dz), u,v € Cy(T),

where B is a map from I' to H such that

Be L= — H,u), /(B,Du>d,u >0 for all u € Cy (T),u > 0. (2.4.5)
r

Then (€,CL(T)) is a densely defined bilinear form on L?(T; 1) which is positive
definite, since for all u € C}(T)

5F(U7U)=/F%(<DU(Z),DH(2)>+<B(2)7Du2(2)>(2))u(d2) > 0.

Furthermore, by the same argument as [MR92, I1.3.e] we have (&,C}(T)) is
closable on L*(T, u) and its closure (€', F') is a Dirichlet form on L*(T',u). We
denote the extended Dirichlet space of (€', F') by FI: Recall that u € F! if and
only if |u| < oo Ir - p — a.e. and there exists a sequence {u,} in F' such that
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EY (U — Up, Uy — Up) — 0 as n > m — oo and u, — u Iy -y —a.e. as n — oco. This

Dirichlet form satisfies the weak sector condition
€7 (u,v)| < KE (u,u)'?E (v, v)'/2.

Furthermore, we have:

Theorem 2.4.14 Suppose I' C H satisfies Hypothesis 2.4.1. Then (€', F') is a
quasi-regular local Dirichlet form on L*(T; ).

Proof The assertion follows by [MR92 IV ,4b] and [RS92]. O

By virtue of Theorem 2.4.14 and [MR92], there exists a diffusion process M =
(X;, P,) on I associated with the Dirichlet form (€', F1). Since constant functions
are in F* and £Y'(1,1) = 0, M is recurrent and conservative. We denote by Ai the
set of all positive continuous additive functionals (PCAF in abbreviation) of M,
and define Al = AE — AE. For A € A", its total variation process is denoted by
{A}. We also define Aj = {A € A"|E},. ,({A}:) < oo ¥Vt > 0}. Each element in AL
has a corresponding positive £'-smooth measure on I' by the Revuz correspondence.
The totality of such measures will be denoted by ST. Accordingly, AT corresponds to
ST = ST —ST the set of all £M-smooth signed measure in the sense that A, = A} — A?
for AF € A%k = 1,2 whose Revuz measures are v*, k = 1,2 and v = v! — 1% is the
Hahn-Jordan decomposition of v. The element of A corresponding to v € S will be
denoted by A".

Note that for each [ € H the function u(z) = (I, z) belongs to the extended
Dirichlet space F) and

EX(I(-),v) = /F(%U,Dv(z)) +(B(2), )v(2))u(dz) Yv € CH(T). (2.4.6)

On the other hand, the AF (I, X; — X;) of M" admits a decomposition into a sum of
a martingale AF (M,) of finite energy and CAF (NN;) of zero energy. More precisely,
for every | € H
(I, Xy — Xo) = M} + N/ ¥Vt >0 P, — a.s. (2.4.7)

for £,-q.e. z €T

Then we have the following:
Theorem 2.4.15 Suppose I' C H satisfies Hypothesis 2.4.1.

(1) The next three conditions are equivalent:

(i)N' € A,.

(i) (1(), v)] < Cllv]lsc Yo € Cy(T).
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(iii) There exists a finite (unique) signed measure v; on ' such that

ET(U(),v) = — / o(2)m(dz) Yo € CAT). (2.4.8)
r
In this case, v; is automatically smooth, and
N'= A,

(2) M!is a martingale AF with quadratic variation process

(MY, = t|I]*,t > 0. (2.4.9)

Proof (1) By [Os88, Theorem 5.2.7] and the same arguments as in [Fu99], we can
extend Theorem 6.2 in [Fu99] to our nonsymmetric case to prove the assertions.

(2)Since
E (u,v) = /(%(Du(z), Du(2)) + (B(z), Du(2))v(2))u(dz), u,v € F*,
r
by [Os88 Theorem 5.1.5] for u € C}(T), f € F* bounded we have

/ F (g () =267 (u, uf) — E7 (2, )
= / (5 (Du(=), D(uf)(2)) + (B(=), Du(2))u(2)f(2))n(d2)

- / (Du(z), Du(2)) f(2)u(d).

Here f denotes the £T-quasi-continuous version of f, oty 18 the Reuvz measure
for (M) and MM is the martingale additive functional in the Fukushima decom-

position for u(X;). Hence we have
putery (dz) = Ip(Du(z), Du(2)) - p(dz).
By [Os88, (5.1.3)] we also have

(') = et = [ 3t n(az)

r

where e(M!) is the energy of M'. Then (2.4.9) easily follows. O
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By Theorem 2.2.1 we can now prove the following:

Theorem 2.4.16  Suppose I' C H satisfies Hypothesis 2.4.1. Then there is an -
exceptional set S C T" such that Vz € T'\S, under P, there exists an M- cylindrical
Wiener process W#, such that the sample paths of the associated OU-process M"
on I' satisfy the following: for [ € D(A) N H,

t 1 t t t
(l,Xt—X0>:/ <l,de>—§/ Hl(l,np(Xs))Hdeﬂar—/ (Al,Xs)ds—/ (1, B(X,))ds P,—a.s.
0 0 0 0
(2.4.11)

Here, LI is the real valued PCAF associated with ||OT|| by the Revuz correspon-
dence, which has the following additional property: Vz € T'\ S

Tor(X)dLIPrl = qrIovtlh p, — g s.. (2.4.12)
Here nr := @—f]l is the exterior normal to I', and
[Dg(y)|
10V [[(dy) = =17~ Hor(dy),

= p
Q2Dg(y)|"

where s the surface measure induced by pu.

Proof By (2.4.6) and (2.2.16) we have

EN(1(), ) = / £ Du(2)) + (B(2), Du()(d:)

=[G + |

r

V(AL ldz) + 5 [ vl L ne()]T )

or
Thus, by Theorem 2.4.15
Ni = —(Al /0 X, (w)ds) — (I, /O B(X,(w))ds) — %<l, /0 np (X, (w)dLi™ ().

By Theorem 2.4.15 and the same method as in Theorem 2.2.2 one then proves the
first assertion, and the last assertion follows by Theorem 2.4.3 and 2.4.4. U

Let I' C H and our linear operator A satisfy Hypothesis 2.4.1 and Hypothesis
2.1.1, respectively. As in Section 2.4.2 we shall now prove the existence and unique-
ness of a solution of the following stochastic differential inclusion on the Hilbert
space H,

{ dX (1) + (AX(t) + B(X(t)) + Np(X(1))dt 3 dW (), (2.4.13)

(
X(0) ==,



2.4. Stochastic reflection problem on a regular convex set 37

where B satisfies condition (2.4.5), W (¢) is a cylindrical Wiener process in H on a
filtered probability space (2, F, F;, P) and Nr(x) is the normal cone to I' at z, i.e.

Nr(z)={z€ H: (z,y—x) <0VyeTl}.

Definition 2.4.17 A pair of continuous H x R-valued and F;-adapted processes
(X(t), L(t)),t € [0,T7, is called a solution of (2.4.13) if the following conditions hold.

(i) X(¢t) € I" for all t € [0,T] P-a.s;

(ii) L is an increasing process with the property that
Ior(Xs)dLs = dLs P — a.s,

and for any [ € D(A) we have

(I Xo—z) = /Ot<z,dws>—/0t<z, np(Xs))dLs—/OtU, B(Xs))ds—/otml,Xs)ds V>0 P—as..

where nr is the exterior normal to I'.

Below we prove (2.4.13) has a unique solution in the sense of Definition 2.4.17.

Theorem 2.4.18 Let I' C H satisfy Hypothesis 2.4.1 and B satisfy the mono-
tonicity condition
(B(u) — B(v),u —v) > —aju —v|? (2.4.14)

for all u,v € I', for some a € [0,00) independent of u,v. The stochastic inclusion
(2.4.13) admits at most one solution in the sense of Definition 2.4.17.

Proof Let (u,L') and (v, L?) be two solutions of (2.4.13), and let {ej}ren be the

eigenbasis of A from above. We then have

(e, u(t) —v(t)) +/0 (ager, u(s) —v(s))ds +/0 (e, B(u(s)) — B(v(s)))ds

+ [ enmetuart = [ e nelo(s)rz =0
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Setting ¢ (t) := (ex, u(t) — v(t)), and we have

/ O3 (5)dsy(s

— 3 / (s u(s) — o(s)) e, u(s) — v(s))ds
" / ek, B(u(s)) — Bo()ew, u(s) — v(s))ds
+ [ fep, e (u(5))) et () — v()L - / (e, e (0(5))) (en,uls) — v(s))dL?)
<2 lew, B(u(s)) — Bo()ew, u(s) — v(s))ds

t t
=2 [ enmelulo)) e uls) oL +2 [ (enme(v(s))er.uls) — vl)dLE
0 0
(2.4.15)
By the same argument as Theorem 2.4.11, we have the following P — a.s:

) / — B(u(s))) (ex, u(s) — v(s))ds

k<N

= /0 (B(u(s)) — B(v(s)),u(s) —v(s))ds as N — oo,
> / (e e (u(s))) e, u(s) — o(s)) L

—>/ nr(u v(s))dL! as N — oo,
and
Z/ ex, np(v(s))) {ex, u(s) — v(s))dL?
k<N

—>/ nr(v v(s))dL? as N — oo.

Summing over kK < N in (2.4.15) and letting N — oo yield that for allt > 0, P —a.s

Ju(t) —v(t)]” + 2/0 (B(u(s)) — B(v(s)), u(s) — v(s))ds
< 2/0 (nr(u(s)), v(s) —u(s)>dL;+2/0 (nr(v(s)), u(s) — v(s))dL?.
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By Remark 2.4.4 it follows that

fut) — v(t)[? + 2 / (Blu(s)) — B(u(s)), uls) — v(s))ds < 0.

By (2.4.14) and Gronwall’s Lemma it follows that

and thus
L(t) = L*(t).

O

Combining Theorem 2.4.16 and 2.4.18 with the Yamada-Watanabe Theorem, we
obtain the following:

Theorem 2.4.19 If I satisfies Hypothesis 2.4.1 and B in (2.4.13) satisfies (2.4.14),
then there exists a Borel set M C H with Ip - u(M) = p(I') such that for every
r € M, (2.4.13) has a pathwise unique continuous strong solution in the sense
that for every probability space (2, F, F;, P) with an F;-Wiener process W there
exists a unique pair of F;-adapted processes (X, L) satisfying Definition 2.4.17 and
P(Xy=x)=1. Moreover, X(t) € M for all t > 0 P-a.s.

Proof The proof is completely analogous to that of Theorem 2.4.12. 0

2.5 Reflected OU-processeses on a class of convex

sets

Below for a topological space X we denote its Borel o-algebra by B(X). In this
section, we consider the case where H := L%*(0,1),p = Ix,., where K, := {f €
H|f > —a},a>0,and A = —%% with Dirichlet boundary conditions on (0,1). So
in this case e; = V2sin(jmr), j € N, is the corresponding eigenbases. We recall that
(cf [Za02]) we have p(Cy([0,1])) = 1. In [Za02], L.Zambotti proved the following

integration by parts formulae in this situation:

For a > 0,

/K (I, D)dp = — /K () (., ") / dri(r) / o(x)0u(r,dx), Y1 € D(A), p € CL(H),



40 Chapter 2. BV functions in a Gelfand triple and the stochastic reflection problem

for a« =0,

1
/ (I, Dp)dv = —/ go(:v)(:v,l”)l/(das)—/ drl(r)/gp(as)ao(r, dz), VIl € D(A),p € CL(H),
K K 0
’ ’ (2.5.1)
where v is the law of the Bessel Bridge of dimension 3 over [0, 1] which is zero at 0
and 1, o,(r,dzx) = 04(r)p,(r,dx), and for a > 0, o, is a positive bounded function,

\/ﬁ, where p, (r,dx),a > 0, are probability kernels

from (H, B(H)) to ([0,1], B([0,1])).

and for « = 0, oo(r) =

Remark 2.5.1 Since each [ in D(A) has a second derivative in L?, its first deriva-
tive is bounded, hence [ goes faster than linear to zero at any point where [ is zero,
in particular at the boundary points » = 0 and r = 1. Hence the second integral in

the right hand side of the above equality is well-defined.

We know by (2.2.5) that for all [ € D(A)

D*(@(:)l) = —(I, D) — (1", -).

Hence for a > 0,

D*(p())du = /0 l(r)/go(:v)aa(r, dx)dr Vi € D(A),p € Cp(H).  (2.5.2)

Ko
Now take

Cj =

(2.5.3)

(jm)z e, ifa>0
(5m)?, if =0,

where ¢ € (0, %] and 3 € (g, 2] respectively, and define

Hy:={z € H| Z(:c,ej)Qc? < o0},
=1

equipped with the inner product

o0

(T, 9)m, = ZC§<% ei) Y ej).

We note that D(A) C H; continuously for all & > 0, since £ < %, £ < 2. Further-
more, (Hi, (,)n,) is a Hilbert space such that H; C H continuously and densely.
Identifying H with its dual we obtain the continuous and dense embeddings

H, C H(= H") C HY.
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It follows that
m{z,v)ar = (2,v)uVz € Hi,v € H,

and that (Hy, H, Hy) is a Gelfand triple.
The following is the main result of this section.
Theorem 2.5.2 If a > 0, then Ix, € BV(H, H;) N H.

Proof First for o, as in (2.5.2) we show that for each B € B(H) the function
r +— 04(r,B) is in Hf and that the map B +— o,(-, B) is in fact an Hj-valued

measure of bounded variation, i.e

sup{z loa(-, Bu)lla: : Bn € B(H),n e N,H = U B, } < o0,
n=1

that is,

o

o 1
sup{Z(Z ch(/O 0o(r, B,) sin(jrr)dr)®)? . B, € B(H),n € N,H = U2 | B,} < o0,

n=1 j=1

° 00 o e . .
where U, B,, means disjoint union.

For o« > 0 we have

Thus o, in (2.5.2) is of bounded variation as an H;-valued measure. Hence
by the theory of vector-valued measures (cf [AMMP10, Section 2.1]), there is a
unit vector field n, : H — Hf, such that o, = nullo,.||, where ||o,||(B) =
sup{> " loa(-, Bu)llas : Bn € B(H),n € N,B = U, B,} is a nonnegative mea-
sure, which is finite by the above proof. So (2.5.2) becomes

o.|(dx) VI € D(A),p € C}(H),

D*(p(-)1)dp = / @@, ()

Ka

which by linearity extends to all G € (C})paynm,- Thus by Theorem 2.2.1(iii), we
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get that Ix, € BV(H, Hy). Ik, € H follows by Remark 2.3.1. O

Remark 2.5.3 It has been proved by Guan Qingyang that I isnot in BV (H, H).
If we take H = H; = Hf and define B! := {x € H : infte[%’%]a:(t) = —a} for
i=1,..,n, then o,(r, B}) = [[%7%1(7’). Thus ||oo|[(H) > v/n. Letting n — oo, we
have ||o,|[(H) — oo. So Ik, is not in BV (H, H).

Theorem 2.5.4 For o = 0, then there exist a positive finite measure ||og|| on H

and a Borel-measurable map ng : H — Hj such that [[ng(z)|[z: =1 [|og|| —a.e, and
for any [ € D(A), ¢ € C}H(H)

_/KO<17D§0>dV — /Kogo(x)<x, "yv(dx) = /H1<90($)lan0($)>Hf

ool|(dx). (2.5.4)

Proof For av = 0 using that |sin(jnr)| < 2jmr(1 —r) Vr € [0,1], we have

0o 00 1

Z(Z cj_Q(/ go(r, Bn) Sin(jm*)dr)Q)l/?

n=1 j=1 0

< Z(Z cjf?(/ 0’0(7" Bn)2j7rr(1 _ T)dr)2)1/2

n=1 j=1 0

[e.9]

Thus o in (2.5.1) is of bounded variation as an H;-valued measure. Hence by the
theory of vector-valued measures (cf [AMMP10, Section 2.1]), there is a unit vector
field ng : H — Hy, such that g = ng||oa||, where [|oo||(B) := sup{d>_ ", loo(-, Bn)|la; :
B, € B(H),n € N,B = U,_B,} is a nonnegative measure, which is finite by the
above proof. So the result follows by (2.5.1). O

Since here u(Ky) = 0, we have to change the reference measure of the Dirichlet

form. Consider

EXo(u,v) = %/ (Du, Dv)dv,u,v € C{(Ky).
Ko

Since I, € H by Remark 2.3.1, the closure of (£7%0, C}(Kj)) is also a quasi-regular
local Dirichlet form on L*(F;p - v) in the sense of [MR92, IV Definition 3.1]. As
before, there exists a diffusion process M%o = (Q, M, {M,},0;, X;, P.) on F asso-
ciated with this Dirichlet form. M'%o will also be called distorted OU-process on
Ky. As before, M'%o is recurrent and conservative. As before, we also have the
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associated PCAF and the Revuz correspondence.

Combining these two cases: for o« > 0 by Theorem 2.2.2 and for « = 0 by
the same argument as Theorem 2.2.2, since we have (2.5.4), we have the following
theorem.

Theorem 2.5.5 Let p := I, ,a > 0 and consider the measure |o,| and n,
appearing in Theorem 2.5.2 and Theorem 2.5.4. Then there is an £P-exceptional
set S C F such that Vz € F\S, under P, there exists an M;- cylindrical Wiener
process W#, such that the sample paths of the associated distorted OU-process M?
on F' satisfy the following: for [ € D(A)

t 1 t t

(l,Xt—X0>:/ (l,dWs)+§/ Hl(l,na(XS)>H;dLﬂ”°‘”—/ (Al, X,)ds P, — a.e.
0 0 0

(2.5.5)

Here L,'JU“H is the real valued PCAF associated with ||, || by the Revuz correspon-
dence with respect to M?, satisfying

Iix +aroyd L7 = 0, (2.5.6)

and for [ € Hy with {(r) > 0 we have

t
/ (L na (X)) a7l > 0. (2.5.7)
0

Furthermore, for all z € F

P.[X; € Cy[0,1] for a.e. t € [0,00)] = 1. (2.5.8)

Proof For a > 0, the first part of the assertion follows by Theorem 2.2.2 and the
uniqueness part of Theorem 2.2.1 (ii). For v = 0, the assertion follows by the same
argument as in Theorem 2.2.2. (2.5.6) and (2.5.7) follow by the property of o, in
[Za02]. By [Pa67, p.135 Theorem 2.4], we have Cy[0, 1] is a Borel subset of L?[0, 1].
By [FOT94, (5.1.13)], we have

k
Ewl [ 1o (X)ds] = puF\ Colo, 1)) =0 ¥k € N,
k—1

hence .
Eﬂu[/ Lr\colo.1)(Xs)ds| = 0.
0

Since E,[ fooo L colo,1)(Xs)ds] is a 0-excessive function in x € K,, it is finely contin-
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uous with respect to the process X. Then for £ — q.e. z € F,

.| / Licnio) (X,)ds] = 0,
0

thus, for £# — q.e. z € F,

Pz[/ Lr\cofo,1(Xs)ds = 0] = 1.
0

As a consequence, we have that Ay := {X; € Cy[0, 1] for a.e. t € [0,00)} is measur-
able and for £ — q.e. z € F
PZ<A0) - 1

As Ay = NMieq.>00; ' Ag and since by [ASZ09] we have that the semigroup associated
with X; is strong Feller, by the Markov property as in [DR02, Lemma 7.1], we obtain
that for any z € Fit € Q,t > 0,

P.(0;'Ay) = 1.
Hence for any z € F' we have
P.[X; € Cy[0,1] for a.e. t € [0,00)] = 1.

O

Remark 2.5.6 'We emphasize that in the present situation it was proved in [NR92,
Theorem 1.3] that for all initial conditions x € H, there exists a unique strong
solution to (1.1). By [Za02] the solution in [NP92] is associated to our Dirichlet
form, hence satisfies (2.5.5) by Theorem 2.5.5. Hence it follows that the solution in
[NP92, Theorem 1.3] is solution to an infinite-dimensional Skorohod problem.

2.6 Appendix

Another proof of Yamada-Watanabe theorem for Theorem 2.4.12’s use
We follow the same arguments as the proof of [RSZ08|:

We use the following spaces

T
By = {w € C(R*: H),/ w(t)]dt < oo for all T € [0, 00)}
0
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equipped with the metric

planswa)i= 32 M [ lon(t) = wa®ldt + sup fen(®) —walt)) A1)

o
1 t€(0,k]

Obviously, (By, p) is a complete separable metric space. Let B;(Bp) denote the o-
algebra generated by all maps 7, : By — H, s € [0,t] where m4(w) := w(s),w € By.

T
By = {w € C(R*:R), w(0) = 0,/ w(t)|dt < oo for all T € [0,00)}
0

equipped with the metric

plansin)i= T2 [ fort) = wnlot + sup o) = n(®)) A1)

k=1 t€[0,k]
Obviously, (Bg, p) is a complete separable metric space. Let B;(Bg) denote the o-

algebra generated by all maps 7, : Bg — R, s € [0, t] where 74(w) := w(s),w € Bg.

By Theorem 2.4.3, we can choose a measurable set M, such that It - u(M) =1
and for every z € M, there exists a process W satisfying under P*, W, is a M;
cylindrical Wiener process, and any [ € D(A)

1 t t
(1 Xo(w)=Xo(w)) = (1, Wilw)— / np (X, ()AL @)) — (AL / X, (w)ds), P—a.e.
0 0
LITl is an increasing process which enjoy the property
t
/ Tor (X ()AL N(w) = L™ (w),t 2 0
0

and X(t) € M for all t > 0 P*a.s. We can choose one-to-one Hilbert-Schmidt
operator J from H into another Hilbert space (U, (,)y) and W (t) := > e Br(t) Jer,
where f3,(t) is independent M;-Brownian motions. Set

Wy :={w e C(R";U),w(0) =0}
equipped with the supremum norm and Borel o-algebra B(Wy). Let B:(Wj) be the

o-algebra generated by all maps 7, : Wy — U, s € [0, t] where m3(w) := w(s).

For fixed probability measure v on (H,B(H) with v(M) = 1, define PV :=
[ P?v(dz) and a probability measure P” on (H x By x Bg x Wy, B(H) @ B(By) ®
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B(Bg) © B(W,)), by
P = P" o (X(0), X, LIl vy~
and P’ denotes the distribution of W; on (W, B(Wy)).

[Step 1] There exists a family K, ((z,w), dwl, dw?),z € H,w € W, of probability
measures on (By x Bg, B(By) ® B(Bgr)) having the following properties:

(i) For every A € B(By) ® B(Bgr) the map
HxW, 5 (z,w) = K,((z,w), A)
is B(H) ® B(Wj)-measurable.

(ii) For every B(H) ® B(By) ® B(Bgr) ® B(Wy)-measurable map f : H x By X
Bg x Wy — [0, 00) we have

/ f(x,wi,w%,w)p”z(dx, dw%,dw%,dw)
HXBHX]BRXWO
:/ / f(z,w},w%,w)Ky((z,w),dwi,dw%)PJ(dw).
WQ BHXB]R
(iii) If t € [0,00) and f: By x Bg — [0,00) is By(By) ® B;(Bg)-measurable, then

HxW,3 (z,w) — f(w},w%)K,,((x,w),dw%,dw%)

BHXBR

v@P v@P
) )

J J
is B(H) ® B:(W, -measurable, where B(H) ® B,(W, denotes the comple-

tion with respect to v ® P’ in B(H) @ B(W,).

Let IT: H x By x Bg x Wy — H x W, be the canonical projection. Since X (0)
is Fo-measurable, hence P”-independent of W, it follows that

P’ oIl =P o (X(0),W) ' =v® P’/

Hence by the existence result on regular conditional distributions, the existence of
the family K, ((z,w), dwi, dw?),z € H,w € W satisfying (i) and (ii) follows.

To prove (iii) it suffices to show that for ¢ € [0,00) and for all Ay € B(H), A; €
Bt(BH) ® Bt(BR), A€ Bt(Wo) and

A= A{m,, —7m € By, mp,—7y € By, ooy, —Tp,_, € Br},t <11 < ...< 7%, Bi,..., B, € B(H)
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/Ao /Wo Lanar (w (z,w), A1) P’ (dw)v(dx)

:/A /W Lana (W) E,gps (K, (-, A1) |B(H) ®Bt<WO)>PJ(dW)V(d:L‘)

since the system of all AN A", A € B,(Wy), A" as above generates B(Wy). By (ii)
above, the left-hand side of above relation is equal to

/H L@ )L, (A ) P, d e )
:/ 14, (X (0))14, (X, LT, (W14 (W)dP”
:/1A,(W)dPZ-/1AO(X(O))1A1(X, LI (W) dP”

Q Q
:PJ(A')/H N 1a,(2)1a(w) 1, (dw?, dw?)PY (dz, dwt, dw?, dw)
:PJ(A’)/A /K,,((a:,w),Al)PJ(dw)u(dx)

P!A) [ [ Bups B AVIBUH) © Bi(Wo))(0.0) P (do)v )

_ /A /W Lana () By pr (Ko (- A1) [ BUH) By (Wo)) (i, w)) P (dew)w(de)

[step 2] For z € H define a measure )% on

(HxBy xBr xBy xBr x Wy, B(H) @ B(By) @ B(Br) @ B(By) @ B(Br) @ B(Wy))

// / /1Axw1,w1,w2,w2,w)
BHXBR BHX]B]R WO

K, ((z,w),dwt, dw}) K, ((z,w), dwy, dw3) P’ (dw)d..(dx)

by

Define the stochastic basis

Q) := H x By x Bg x By x Bg x W,

F* .= B(H) ® B(Bp) ® BBg) ® BBr) @ BBz) @ B(W)
ﬁtz = Nes00 (B(H) @ Bi1e(By) @ Bie(Br) @ Bic(By) @ Biye(Br) @ By (W), N,),
where NV, := {N € F?,Q*(N) = 0} and define maps

I : Q — H, (2,0 w? wl wlw)—
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J .0 r .2 1 2 Joios
I} : Q — By or Bg, (z,w], w],ws, w3, w) — w},i,7 = 1,2,

G 1,2 1 2
I3 : Q@ = Wy, (z,wy, w], ws, w3, w) — w € W,

Then, obviously,
Qz o Hal — 6z

and
Qz ° Hgl — pJ

By definition II3 is (ff)—adapted. Furthermore, for 0 < s < t,y € H, and
Ag, Ay € B(H), A; € Bs(By) @ Bs(Bgr),i = 1,2, A3 € By(W,),

//X Eo- (exp(i(y, TIa(t) — TTa(5)))Lagetsctprcts ()
- / /W exp(ily, (1) — () Ly () Lag (@)K (1, 0), ALV (1, 0), As) P (deo)(d2)

_ / /W exp(ily, w(t) — w(s))) P! (dw)Q*(Ag x Ay X Ay x Ag)i(d2)

Now by a monotone class argument, we have that II3 is an (F7)-Wiener process on
(Q, F*,Q%).

Then we can conclude that there exists Ny € B(H) with v(NVy) = 0 and for all
x € N¢, I3 is an (F7)-Wiener process on (Q, F#, Q?).

[Step 3] There exists Ny € B(H), Ng C Ny, with v(N;) = 0 such that for z € Ny,
(I1}, 112, J~'113) and (IT3, 112, J~'13) with stochastic basis (Q, 2, Q7, (F7)) satisfy
(i)(ii)(iii) in Definition 2.4.4 for X =1}, L = 112, W = J'1I3,i = 1,2 such that

I1}(0) = 113(0) = 2 Q* —a.e.,
therefore, 11} = 113, 112 = 12 Q% — a.e..

For this we need to consider the set A; € F* defined by

Ay ={(LIL(E) — o) = (I, T 03(t) — /Onr(ﬂi(S))dH?(t»—(Ala/o IT; (t)ds), L € D(A)}

N | —

t
N {I1Z(¢) is an increasing process ,/ Tor (10} (8))dITZ (s) = TI2(t),t > 0}
0

Define A € B(H)®B(By) ® B(Bgr) ® B(Wj) analogously with IT}, IT? replaced by the
canonical projection from H x By xBr x Wy onto the second and the third and Iy, I13
by the canonical projection onto the first and the forth coordinate respectively. Then
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by step 1 (ii), for 1 = 1,2

2 1 2
/ / / / ZL’ W17("}170‘]27("}27("})
WO ]BHXBR BHX]BR

K, ((z,w),dwt, dw)) K, ((x,w), dws, dw3) P’ (dw)v(dz)
=PY(A) = P*({(X(0), X, LIo"l W) € A}) =1

Then we have for p-a.e. z€ HNM
Q*(A) = Q7(Aiz) =1
where for ¢ = 1,2
Ao =TT =2 = 1700 = 5 [ ez — ([ eyas). e Dy
N {II3(t) is an increasing process , / s))dIIZ(s) = 12 (t),t > 0}

and have the results for [step 3.

[Step 4] There exists a B(H) ® B(WO)M@)P /B(By) ® B(Bg)-measurable map
FVZHXWO%B(H) XBR

such that
Ku((za w), ) - 5Fy(z,w)

" J
for v®@ P’-a.e. (z,w) € H x Wy. Furthermore, F, is B(H) ® B;(Wo) o /Bi(By)®

B,(Bgr)-measurable. Then we have

(X, LY = F,(2,W)  P*—ae.

As for all z € Ny,
1= Q*({Il = I, ITy = IT3})

/ / / wl,wl,wé,wg)K,,((x,w),dw%,dw%)K,,((m,w),dw%,dw%)PJ(dw)
Wo ]BHXBR BHXBR

where D := {(w},w? wi, w?) € By x Bg x By x Bg|(wl,w?) € By x Bg}. Hence by
[Ro10] Lemma 2.2, there exists N € B(H) @ B(W;) such that v ® P/(N) = 0 and
for all (z,w) € N¢ there exists F,(z,w) € By x Bgr such that

Ku((za W), dw%a dw%) = 5Fu(z,w) (dw%, dw?)
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5.P7

/Bi(Brr) @ Bi(Br)-

Set F,(x,w) :=0, if (r,w) € N. Then F, is B(H) ® B;(Wy)
measurable.

As

PY({(X, LIy = F, (X (0), W)})

[ gt e (o )0 (s ) P ()
H JWq BHXER

=1

We have (X, LIoTl) = F,(X(0), W) P-a.e..

[step 5] Let W’ be another standard Wiener process on a stochastic basis (', F', P’, (F}))
and ¢ : Q' — H an F)/B(H)-measurable map and v := P’ o ¢, Set (X', L') :=
F,(z,W') then (X', L', W') is a (weak) solution of (2.4.2) with X'(0) = & P'-a.s.

By the measurability properties of F, it follows that X’ is adapted. We have

P'({X'(0) = £}) =P'({(£,0) = F,(z,W')(0)})
v ® P/ ({(z,w) € H x Wo|(x,0) = F,(z,w)(0)})
=P"({(X(0),0) = F,(X(0),W)(0)}) =1

To see that (X', L') is a solution of (2.4.2), we consider the set A € B(H) @ B(By)®
B(Bg) ® B(Wy) defined in the step 3. We have to show that

P({(X"(0), X", L', W') € A}) =1
We have
/1A X'(0), F,(X'(0), W), W")dP'
//W (e, By (2, w), w) P (dw)v(dz)

:// / La(w,w}, Wi, W)0k, (2w (dwi, dw?) P (dw)v(dx)
H Wo BHX]BR
/1A(x wh w? W) P (dx, dwt, dw?, dw)

=P "({(X(0), X, LI"I W) e A}) =1
Then we have the results.

[Step 6] Define F(x,w) := Fj, (z,w) for x € M,w € Wy and F(z,w) := 0 for
r € H\M,w € W,. Then v be a probability measure on (H, B(H)) with v(M) =1
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and F,, as constructed in [Step 4]. Then for v-a.e. z € H
F(z,) = F,(x,") P’ —a.e.

Furthermore, F(x,-) is WPJ/&(BH) ® By (Bg)-measurable for all z € H,t €
[0, 00), where WP} denotes the completion of B;(Wy) with respect to PV in
B(Wo).
For fixed z € M,
Q:=H x By x Bg x W,

F* .= B(H) @ B(Bp) @ BBz) ® B(Wo) ™~
Define a measure Q* on (Q, F) by

Q*(A) ::/ / / La(z,w', w?, WK, ((z,w), dw', dw®) P! (dw)d ., (dx)
H ]BHXBR Wo
F = Ne00(B(H) @ Bie(By) @ Biye(Br) ® Biy-(Wo), ),
where N, := {N,Q*(N) = 0} and define maps
Iy : Q — H, (2,0, W w) —

IV : Q — By or By, (z,w!,w? w) —w,j=1,2,
I3 : Q — W, (z,w!, w? w) — w € W,

As in [Step 3] one shows that (IT*, 112, 11%) on (Q, 7, Q%, F7) is a (weak) solution to
(2.4.2) with I1'(0) = z Q*a.e.. And by [Step 5], (Fs.(2,113),1I3) on the stochastic
basis (Q, F#,Q*, F7) is a (weak) solution to (2.4.2) with Fj_(z,113)(0) = 2. Hence,
it follows that Fs_(z,II3) = (II', 1I?) Q*—a.s..

For A € B(H) ® B(By) ® B(Br) @ B(W))

/M/WO /BHXBR La(z,w", w?, W)k, (2w (dw', dw?) P (dw)v(dz)
~ [ @t
:/M/Q1A(H0,Fax($7H3)7H3)deu(dm)

:// /1A(3:,wl,w2,w)5péz(x7w)(dw1,de)P‘](dw)l/(dx),
M EHXBR Wo

which implies the assertion. The last results follow by the same arguments as in
[PRO7, Lemma E.1.16]. O






Chapter 3

BV functions for differentiable
measure

The main motivation of this chapter is to give a definition of BV functions which
can take BV functions in a Gelfand triple and BV functions in abstract Wiener
space as examples. So we introduce a definition of BV functions for differentiable
measure in a Gelfand triple by using Dirichlet form theory. We also give examples
of BV functions which cannot be BV functions in a Gelfand triple or BV functions
in abstract Wiener space. As an application, we consider the reflected stochastic
quantization problem associated with a self-adjoint operator A and a cylindrical
Wiener process on a convex set I' in a Hilbert space H. We prove the existence of
a martingale solution of this problem when I is a regular convex set.

3.1 The Dirichlet form and the associated dis-

torted process

In this section, we consider a special kind of Dirichlet form and its associated dis-
torted process. Let E be a Banach space, and H be a real separable Hilbert space
(with scalar product (-,-) and norm denoted by |- |) continuously and densely em-
bedded in E. We denote its Borel o-algebra by B(H). Here identifying H with its
dual we obtain the continuous and dense embeddings

E*C H=H")CE.

It follows that
p{z,0)p = (z,0)gVz € E*,v € H.
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Let LP(E, ), p € [1,00], denote the corresponding real LP-spaces equipped with
the usual norms || - ||, and let L% (E, 1) denote the set of all non-negative elements
in LP(E, ). Assume that:

Hypothesis 3.1.1 (@ : H — H is a strictly positive linear bounded operator and
there exists an orthonormal basis {e;} in H consisting of eigen-functions for ¢) with
corresponding eigenvalues \; € Ry, 5 € N, that is,

er = )\jej,j e N.
Also, {e;} C E*.
Let

]:C'l} ={u:u(z) = f(gl1,2)E, p<la, 2) By oy lm, 2)E), 2 € E, 11,10, ..., 1L, € B, f € C’,}(Rm)}
Define for u € FC} and | € H,

ou d
E(z) = Eu(z + sl)|s=0, 2 € E,

that is,

m

ou
W = Zlajf(E*<llvz>E7E*<l27Z>E7 7E*<lm7Z>E)<lJ7l>
j=

Denote by Du the H-derivative of u € FC}, namely, it is a map from F to H such
that

Ju

Du,l) = —.

< U/, > al
Let p be a finite positive Radon measure on E has the following property: if a
function ¢ € FC} is equal to zero p-almost everywhere, then %_<,l9 = 0 p-almost

everywhere. In particular, this holds for a measure with a complete support. Now
we introduce the following definition from [Bo10].

Definition 3.1.2 A measure p on F is called differentiable along a vector v in
the sense of Fomin if there exists a signed measure d,u of bounded variation such
that for any ¢ € FC} the following equality holds:

aggjx>ﬂ<dx) — /gp(l‘)dvﬂ(dm)a

and d,u is absolutely continuous with respect to pu.

If v is a fixed vector, then the density of d,u with respect to u will be denoted
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by 3,. We denote by H(u) the space
{h € E : p is differentiable along h and ||3,||s < oo},

endowed with the norm ||| () = ||B4ll2- The space H(u) is a Hilbert space con-
tinuous embedded in E.

Let u be a differentiable measure on F, and in the following we assume Q/2(H) C
H(p).

For p € L (E, i) we consider

1 — ou Ov
p S i 1
EP(u,v) 5 kgl /E 9e, 8ekpdu,u,v e FCy,

where F' := Supplp - ). Let QR(E) be the set of all functions p € L (E,p)
such that (€7, FC}) is closable on L*(F, p- ). Tts closure is denoted by (£°, F?).
We denote by F? the extended Dirichlet space of (€7, F?), that is, u € FP? if and
only if |u| < 0o p - p — a.e. and there exists a sequence {u,} in F? such that

EP(Upy — Upy Uy — Up) — 0 asn >m — oo and u, = u p-p— a.e. as n — o0.

Theorem 3.1.3 Let p € QR(F). Then (€7, F?) is a quasi-regular local Dirichlet
form on L?(F;p- ) in the sense of Definition 1.3.

Proof The assertion follows from the main result in [RS92]. O

By virtue of Theorem 3.1.3 and Theorem 1.4, there exists a diffusion process
MP = (Q, M,;{M;},0;, X, P.) on F associated with the Dirichlet form (€7, F?).
M? will be called distorted process on F'. Since constant functions are in F* and
EP(1,1) = 0, M? is recurrent and conservative. We denote by A’ the set of all
positive continuous additive functionals (PCAF in abbreviation) of M?, and define
A? = A% — A, For A € A’ its total variation process is denoted by {A}. We
also define Aj) = {A € A”|E, ,({A};) < ooVt > 0}. Each element in A7 has a
corresponding positive £/-smooth measure on F' by the Revuz correspondence. The
set of all such measures will be denoted by S%. Accordingly, A; € A” corresponds
toav e SP = S% — 5% the set of all £P-smooth signed measure in the sense
that 4, = A} — A? for AY € A%k = 1,2 whose Revuz measures are v* k = 1,2
and v = v! — 12 is the Hahn-Jordan decomposition of v . The element of A’
corresponding to v € S” will be denoted by A”.

Note that for each [ € E* the function u(z) = g«(l, z) g belongs to the extended
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Dirichlet space F? and

1 [ Ov(?)

EP(I(+),v) = 5 Bl p(2)du(z) Yv € FCY. (3.1.1)

On the other hand, the AF g« (I, X; — Xo)g of M? admits a unique decomposition
into a sum of a martingale AF (M,) of finite energy and CAF (1V;) of zero energy.
More precisely, for every [ € E*,

(1, X; — Xo)gp = M} + N} ¥t >0 P, — a.s. (3.1.2)
for £7-q.e. z € F.

Now for p € LY(E,pu) and | € E*, we say that p € BV|(FE) if there exists a
constant C; > 0,

|/Eag<lz)p(z)du(z)| <C vl YoeFCL (3.1.3)

By the same argument as in [FHO1, Theorem 2.1], we obtain the following:

Theorem 3.1.4 Let p € L} and [ € E*.
(1) The following two conditions are equivalent:
(i)p € BV(E)

(ii) There exists a (unique) signed measure v; on F' of finite total variation such

that
1 [ 0v(z)

2 ol

p(2)du(z) = —/ v(2)v(dz) Yo € FCY. (3.1.4)
F
In this case, v; necessarily belongs to SP*1.

Suppose further that p € QR(FE). Then the following condition is also equivalent
to the above:

(iii)N' € Af
In this case, v; € SP, and N! = A"

(2) M'is a martingale AF with quadratic variation process

(MY, = t|I]*,t > 0. (3.1.5)
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3.2 BYV functions and distorted processes in F

We introduce BV functions in this section, by which we can get the Skorohod type
representation for the process.

Let ¢;,j € N, be a sequence in [1,00). Define
Hy:={x € H|Y (x,¢;)’c] < o0},
j=1

equipped with the inner product

o

<x>y>H1 = ch<x7€j><y7€j>'

Then clearly (Hi, (,)m,) is a Hilbert space such that H; C H continuously and
densely. Identifying H with its dual we obtain the continuous and dense embeddings

H, C H=H") C H.

It follows that
m{z,v)m = (z,v)g¥z € Hy,v € H,

and that (Hy, H, Hf) is a Gelfand triple. Furthermore, {Z} and {c;e;} are orthonor-
mal bases of H; and H7, respectively.

We also introduce a family of H-valued functions on E by
(FC)uzmnm = {G : G(z) = igj(z)lj, 2 € E,g; € FCLV € QV*(H)N H,}.
j=1
Denote by D* the adjoint of D : FC} C L*(E,u) — L*(E,u; H). That is
Dom(D*) :={G € L*(E,u; H)|C} > u /(G, Du)dy is continuous with respect to L*(E, p)}.
E
Obviously, (FCy)qu2(mrynm, € Dom(D*). Then

/E D*G(2) f(=)p(dz) = /E (G(2), Df(2))n(d=) YG € (FC)guegmom. | € FCL.
(3.2.1)
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For p € L*(E, i), we set

Vv = DG dz 3.2.2
() s / Jiu(dz). (3.2.2)

Ge(FCy) 1/2(H)mH

A function p on E is called an BV function in the Gelfand triple (Hy, H, Hf)(p €
BV (H, H;) in notation), if p € L*(E,u) and V(p) is finite. We can prove the
following theorem by a modification of the proof of Theorem 2.2.1 in chapter 2.

Theorem 3.2.1 (1) BV(H, H1> C mlte/Q(H)ﬂHlﬂE* BW(E>

(ii) Suppose p € BV (H, Hy)N L3 (E, j1), then there exist a positive finite measure
|dp|| on E and a Borel-measurable map o, : E — H{ such that |o,(z)]

Lldpll — a.e, [[dpll(E) = V(p),

Hy —

[ D Gpntdz) = [ G0 ldpll(d) VE € (FCaprsanyom

(3.2.3)
and ||dp|| € SPT.

Furthermore, if p € QR(E), ||dp]|| is £EP-smooth in the sense that it charges no
set of zero E-capacity. In particular, the domain of integration E on both sides of
(3.2.3) can be replaced by F, the topological support of pp.

Also, 0, and ||dp|| are uniquely determined, that is, if there are o}, and ||dp||’
satisfying relation (3.2.3), then ||dp|| = ||dp||" and o,(2) = o/,(2) for ||dp|| — a.e.z

(iii) Conversely, if Eq.(3.2.3) holds for p € L*(E, 1) and for some positive finite
measure ||dp|| and a map o, with the stated properties, then p € BV (H, H;) and

Vip) = lldpl[(E).
(iv) Let W2(E) be the domain of the closure of (D, FC}) with norm
1= [ AP + DG Ph(a)
E

Then W'%(E) C BV (H, H) and Eq.(3.2.3) is satisfied for each p € W'?(F). Fur-
thermore,

ldoll = |Dp| - 1, V(p) = /E Dpl(d=), o) = —— Dplypyeo.

1
| Dpl
Proof (i) Let p € BV(H, Hy). Take G € (FCy)qu/2(rynm, of the type

G(z)=g(2)l,z € E,g € FC},1 € QY*(H) N H,. (3.2.4)
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y (3.2.1)

B
/E D'G(2) f(2)u(dz) = / (G(2), DF(2))u(d)

_ /E (1, Dg(=)) £ (2)u(d=) — / Bi(z Ju(dz) Vi € FC}:
consequently,

D*G(=) = —(L, Dg(2)) — g()i(2). (3.2.5)
Accordingly,
/E (L (=) pl2)u(dz) = — /E D*G(2)p(=)(dz) / Bi(z Ju(dz). (3.2.6)

For any g € FC}, satisfying ||g|/oc < 1, by (3.2.2) the right hand side is dominated
by
V) l[Ule + lIpll2llBell2 < oo,

hence, p € BV|(H).

(ii) Suppose p € LL(E,u)(\BV(H, H;). By (i) and Theorem 3.1.4 for each
I € QY*(H) N H, N E*, there exists a finite signed measure v; on E for which
Eq.(3.1.4) holds. Define

Dy p(dz) = 2v(dz) — B,(2)p(2)pu(dz).
In view of (3.2.6), for any G of type (3.2.4), we have
t/l)G u(dz) = /}xyzﬁpu@, (3.2.7)
E

which in turn implies

V(Di'p)(E) = sup /EQ(Z)DzAp(dZ) < V)l (3.2.8)

9€FCysllgllec<1
where V(Dj'p) denotes the total variation measure of the signed measure D{'p.

For the orthonormal basis {i—j} of Hy, we set

dD% p(z2)
Vo= E;’;12*JV(D§p), vi(z) == W z€ E,jeN, (3.2.9)
J P

74 is a positive finite measure with v7'(E) < V(p) and v; is Borel-measurable. Since
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D% p belongs to S**!, so does 'y;‘ . Then for

CJ

Zg] € (FCHou2(mynm n €N, (3.2.10)
by (3.2.7) the following equation holds
| DG = Y [ autni), (3:2.11)
j=1

Since |v;(z)| < 27 75-a.e. and FCj is dense in L'(E, ), we can find vj,,, € FC}
such that

n%l_l)l{l)ovjm = v 7p a.e..
Substituting
Gim(z) = viml?) (3.2.12)

\/ZZ:1 Vk,m(2)* + 1/m7

for g;(z) in (3.2.10) and (3.2.11) we get a bound

n

> [ gimle@mad) < V),

j=1"7F

because |G (2) |13, = 27— gjm(2)? < 1Vz € E. By letting m — oo, we obtain

Now we define

ldpll = (3.2.13)
and o, : ' — Hy by
oo v;(2) . e8] 2
| = Cj€j, if z € k()7 >0
Up(Z) _ Z;J S ()2 0 {Zkfl k( ) } <3'2'14>
0 otherwise.
Then
ldpll(E) < V(p), llop(z)lla; =1 lldpll — a.e., (3.2.15)

|dp|| is SP**-smooth and o, is Borel-measurable. By (3.2.11) we see that the desired
equation (3.2.3) holds for G = G,, as in (3.2.10). It remains to prove (3.2.3) for any
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G of type (3.2.4), ie. G =g-l,g € FCL 1 € QY*(H)N H;, . In view of (3.2.6),
Eq.(3.2.3) then reads

- /E (1, Dg(2))pl=)u(dz) — [E 9(2)B(2)pl2)u(dz) = /E 9(2) i (1, 7,(2)) s | dp (d2).
(3.2.16)
We set
ky = Z(l, ej)e; = Z< , i—j>Hz—j - Z<g, A6 ga A e, Gu(2) == g(2)ka.

Thus k, — [ in Hy and k, — [ in QY2(H) as n — oo. So ||8),, — Billa — 0. But
then also

n—oo

lim /(Dg,kmpdu:/(l?g, [)pdp,
E E
and

| / 9(2)Be. (2)p(2)n(dz) — /E 9(2)B,(2)p(2)u(dz)|
< lgllllollaliBe. — il

Furthermore,

lim 9(2) m, (knaap(fz»Hl*

n—o0 E

dpl|(d=) =/EQ(Z)HIU,%(Z»H;Hdﬂll(dZ)-

So letting n — oo yields (3.2.16).
If p € QR(E), we can get the claimed result by the same arguments as above.
Uniqueness follows by the same method as Theorem 2.2.1.

(iii) Suppose p € L*(E,u) and that Eq.(3.2.3) holds for some positive finite
measure ||dp| and some map o, with the properties stated in (ii). Then clearly

V(p) < lldpll(E)

and hence p € BV (H, Hy). To obtain the converse inequality, set
e; ,
0j(z) == (cje;,0,(2))m; =m <ﬁ>0p(2)>Hf,J eN.
J

Fix an arbitrary n. As in the proof of (ii) we can find functions

Vim € FCy, lim v;,,(2) = 0;(2) ||dp| — a.e.

m—00

Define g;,n(2) by (3.2.12). Substituting Gy, (2) == >, gj’m(z)i—; for G(z) in (3.2.3)
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then yields

n

> [ ainGesEiplaz) < Vi)

Jj=1

By letting m — oo, we get

J

We finally let n — oo to obtain ||dp||(E) < V(p).

2||dp||(dz) < V(p) Vn € N.

Z%

(iv) Obviously the duality relation (3.2.1) extends to p € Wh?(FE) replacing

f € FC!. By defining ||dp|| and o,(2) in the stated way, the extended relation
b p

(3.2.1) is exactly (3.2.3). O

Now we give the following examples of BV functions by using the result in [Pu98§].
Now let f satisfies the conditions in [Pu98, Section 4], i.e. there exists a Capy 12-
quasi-continuous function f € H*'?(E) such that |QDf|~! € L'*(E,n), D*(QDf) €
L*(E,p), and

U= f"((~00,0)).

Here H*'(E) is the completion of the space FCs° with respect to the norm

0 090 2 6
= )+ E Ak ( E A ( dz).
||‘P||2 12 / @ek - kAR ( @ek aeh )°)"p(dx)

Capy 12 is defined by the following:
Cap112(U) = inf{||¢ll112 : ¢ > 0,¢ > 1y almost everywhere on U} for open setU,

Capy12(A) = inf{Cap, 12(U) : U is open, U D A} for arbitary setA,

where

ol = [(0)+ S Ml 52

The set © = f1(0) will be called the surface of U, denoted by U. By [Pu98, Section
3], we have the finite measure v on ¥ (see [Pu98, Section 3] for the construction of
v). Here we take Q'/2H as the H used in [Pu98]. Then by [Pu98 , Theorem 4.1],
we have the following theorem.

Theorem 3.2.2  Assume there exists a Clap; j9-quasi-continuous function f €
H*'2(E) such that |QDf|™! € L'*(E, u), D*(QDf) € L*(E, ), then Iy is an BV



3.2. BV functions and distorted processes in F 63
function with H} = Q7'/?H, H, = Q'/?H, and

[ DG = = [ G @) ol ) VG € (FCgun,
where ny(2) = Df(2)/[|Df(2)||m: and ||dp||(dz) = || D f(2)||a;v(dz) is a finite mea-

sure on . Moreover, if |Df(z)|g; is finite on ¥ for some Hy C Q7Y?H, then
Iy € BV(H, H)).

Theorem 3.2.3 Let p € QR(E)NBV(H, Hy) and consider the measure ||dp|| and
o, from Theorem 3.2.1(ii). Then for any smooth measure v under P, there exists
an M- cylindrical Wiener process W, such that the sample paths of the associated
distorted process M” on F satisfy the following: for [ € H; N E* N QY?(H)

t 1 t 1 t
p(l, Xi—Xo)p = / (1 dW?)+3 / il (X)) LI 45 / Bi(Xs)ds ¥t > 0 P,—aus..
0 0 0
(3.2.17)
Here LL'd” I"is the real valued PCAF associated with ||dp|| by the Revuz correspon-
dence.

Proof Let {e;} be the orthonormal basis of H introduced above. Define for all
keN

1

t 1 t
Wi (t) := plex, Xi — 2)p — 5/0 i€, 0p(Xo)) pr dLI — 5/0 B, (Xs)ds. (3.2.18)

By (3.1.1) and (3.2.16) we get for all £ € N

1 1

& (ex(.9) = = [ 9208, Conld) =5 [ o mlerou=)a; dpl(d:) Vg € FC,

By Theorem 3.1.4 it follows that for all k € N

Nt = 5/0 H1<€k70p(Xs)>Hde!dp“ +§/0 B, (Xs)ds. (3.2.19)

Here we get from (3.2.18), (3.2.19) and the uniqueness of decomposition (3.1.2) that,
Wi (t) = M* ¥Vt > 0 P,—as..

By Dirichlet form theory we get (M, M%), = t§;;. So W}, is an M,;-Wiener process
under P,. Thus, with W being an M,- cylindrical Wiener process given by W (t) =
(Wi(t)er)ken, (3.2.17) is satisfied for P, — a.e.. O
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3.3 Examples

Now we want to give examples which cannot be covered by the BV functions in
abstract Wiener space and BV functions in a Gelfand triple and by using it, we can

consider the reflected stochastic quantization equation.

3.3.1 Reflected stochastic quantization equations with fi-

nite volume

In this section we apply our BV functions theory to the stochastic quantization of
(P(¢)2—) field theory in finite volume. The stochastic quantization problem was
studied in [AR89], [AR91], [RZ92] and [LR98] by using the Dirichlet form theory
and get the existence and uniqueness of the martingale problem. And Da Prato and
Debussche in [DDO03] proved the existence and uniqueness of a strong solution of this
problem. We consider the reflected problem in this case. Let H = L*([0, 27]?), and
denote the complete orthonormal system by {e; = 5"}, z>. Define for o € RT,

HY:={ue H: Y |k[**(u,e)? < oo},
k

and for « € R™, define H* be the dual of H™%. Set & = H %, E* = H? for some
s > 0. Also set py = N(0,(=A +1)71) := N(0,C), where A is Laplace operator on
[0, 27]? with Dirichlet boundary condition. Then p, is a measure supported on E.

Let us introduce the renormalized power. Set W.(z) = (x,C~Y22), for z €
C'Y2(H). We have for any N € N,

zy (&) = Z (w, enyer(§) = pyWane)(2) for zp — a.e. in H,

|k|<N

where

1 1

_ iy /2

oy =gl D T JRP
k=N

and

Ly 6@,
N (§) pN;Z:N\/TW k-

Now for any n € N, we set
cay (&) = pnHn (W 0)()) for zpp —a.e. in H.

Here H, are the Hermite polynomials, i.e. H,(t) = Z[":z(])(—l)mC’nmt”_zm with

m
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Chrm = n!/[(n—2m)!12™ml!]. By [GJ86, Section 8.5], there exists an element : 2" : (h)
such that the sequence (: 2% :,h) —: 2™ : (h) in L*(E, uy),n — oo for h € H. By
[DDO03, Lemma 3.2], : % : is bounded in L*(E, py, H"(G)) for any r < 0. Thus
h € H™ —: 2" : (h) € L*(E, py) is continuous. So by [AR91, Proposition 6.9],
there exists a B(H **")/B(H *'") measurable map : 2" : H *"" — H *'" such
that : " : (h) =g-24r (: " :, h) g2—. Finally, we set : P(x) := Zi]io an : x" :. Now
we assume that a,, € R and asy > 0.

Let
exp (= [ op2 1 (@) : dx)

= o-
[ exp(— L[[0,27r]2 : P(z) @ dx)dp,"

Now set Qej, = Wﬁek, so QY2(H) = H?**. Then by [G1J86, (9.1.32)] we have
the following;:

Theorem 3.3.1 QY2(H) C H(u). Moreover for each | € QY/2H, we have

/Bl<x> ) ) <— Zna,n . xnil :, l>H2+s +Hs <Al — Z,I>H—s.

n=1

Now fix k € Nya € R and take U = {x € H™* ;g (z,ex)gs < a},p = Iy. Then
by Theorem 3.2.2, p is an BV function with H = H; = H{. Since U is a convex
closed set, then p € QR(E). Thus we can apply Theorem 3.2.3 directly and by a
modification get the following:

Theorem 3.3.2  There is an £P-exceptional set S C F' such that Vz € F'\\S under
P, there exists an M- cylindrical Wiener process W#, such that the sample paths
of the associated distorted process M? on F satisfy the following: for [ € H?**

t 1 t
B{l, Xt — Xo)p = / (l,dW?2) — 5/ (1, ny(X,))d LIl
0 0

1 t 2N
+§/ a-s—2(— Znan C X Dgors Fpe (AL =1, X, g-sdr ¥t > 0 P,—a.s..
0 n=1

Here L/l is the real valued PCAF associated with ||dp|| by the Revuz correspon-

dence satisfying
Ty (X )dL\wl = qrldel p — ¢ s,

and ny(z) = ey.

We can also take U = {z € E : ||z||g < 1},p = Iy. Then by Theorem 3.2.2,
p is an BV function with H; = Hy = H. Since U is a convex closed set, then
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p € QR(E). Thus as Theorem 3.3.2, we get the following:

Theorem 3.3.3 There is an £P-exceptional set S C F such that Vz € F\S under
P, there exists an M- cylindrical Wiener process W?#, such that the sample paths
of the associated distorted process M* on F satisfy the following: for [ € H***

t 1 t
L, Xi — Xo)p = / (I, dW?) — 5/ (1, ny(X,))d LIl
0 0

1 t 2N
+§/ o= > _nan : XP7 D s +ps (AL = 1, X,) gadr V¥t > 0 Po—aus..
0 n=1

Here L%l is the real valued PCAF associated with ||dp|| by the Revuz correspon-
dence satisfying
Loy (X )dLldl = qrldel p— g s.

and ny(x) = %.

Now we want to construct an example which is an BV functions in Gelfand triple
with H # Hy. Set z, = > p_, #ek. Then it is obvious that g«(z,, ) g as a function
on FE converges to some function in H*>'?(E, ). We will denote this function by z(z).
By [RS92, Lemma 2.4], z(z) has a Cap; 12-quasi-continuous versions. It is easy to
check the conditions in Theorem 3.2.2 are satisfied. We take U = {z € E : z(x) < a}
for some a € R such that u(U) > 0, and p = I;. Then by Theorem 3.2.2, p is an
BV function with H;, = H', Hf = H~'. Since z(z + se;) is continuous in s, we
havep € QR(E). Thus as Theorem 3.3.2, we get the following:

Theorem 3.3.4 There is an EP-exceptional set S C F' such that Vz € F\'S under
P, there exists an M- cylindrical Wiener process W?#, such that the sample paths
of the associated distorted process M? on F satisfy the following: for [ € H?**

1

13 t
e, X — Xo)p = / (l,dW?) — 5/ il ny (X)) groard LIl
0 0

1 t 2N
—1—5/ a-2—s(— Znan C X Dgors Fe (AL =1, X, g-sdr V1 > 0 P,—a.s..
0 n=1

Here LL'd” I"is the real valued PCAF associated with ||dp|| by the Revuz correspon-
dence satisfying
Loy (X )dL\l = qrldel p — g s,
_ Seen/lk
and ny (z) = T8 7w,

Remark 3.3.5 From above three theorems, we get martingale solutions to the



3.3. Examples 67

reflected stochastic quantization equations. By the same argument as above, we can
also obtain martingale solution to the stochastic reflected OU equations with space

dimension 2.

3.3.2 Reflected stochastic quantization equations with infi-

nite volume

In this section, we consider the reflected stochastic quantization equations with
infinite volume. Let S’(R?) be the space of tempered Schwartz distributions on R?
and S(R?) the associated test function space equipped with the usual topology. Let
tto be the mean zero Gaussian measure on (S'(R?), B(S'(R?))) with covariance

/ k1, 2)s stk 2)srptg(dz) = / / (—2 + 1) (& — )k (ko (y)dady = (ky, k),

where (—A + 1)71) denotes the Green function of the operator (—A + 1) on R2
Now for n € N, let S_,, denote the Hilbert subspace of &’(R?) which is the dual of
S,, defined as the completion of S w.r.t the norm

aml amz
= 1 2\n 2 1211/2.
el =1 /R; + o)) s e () P

For h € Hy, we define X;, € L3(S', 1) by Xp = lim, o0 s{kn, s in L2(S', 1)
where k, is any sequence in § such that k, — h in Hy. We have the well-known
(Wiener-1to) chaos decomposition

L2(Sla MO) = @ Hon.

n>0

For h € L*(R?,dz) and n € N, define : 2™ : (h) to be the unique element in H,, such
that

/ 22" (h): Hij i dv = n!/ H(/ (=A + 1) — y;)k;(y)dy;)h(x)dx
j=1 R? 57 JR?
where ki, ..., k, € S(R?) and ::,, means orthogonal projection onto H,, (see [S74, V.1]

for existence of : 2 : (h)).

From now on we fix N € N,a, € R,0 <n < 2N, and define for h € L*(R?, dx)

2N
:P(2) 1 (h) =Y an: 2" (h) with agy > 0.
n=0
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We have that exp(— : P(z) : (h)) € LP(S,v) for all p € [1,00) if h > 0 (cf.
[AR91, Section 7]), hence the following probability measures (called space-time cut-
off quantum fields) are well-defined for A € B(R?), A bounded,

_ exp (—: P(z): (14))
Jexp (= P(z) : (14))dug

It has been proven that the weak limit

Ha - Ho-

=
exists as a probability measure on (S'(R?), B(S'(R?))) (see [AR91, Section 7]). In
particular, ;(S_,,) = 1 for some n € N. Thus we take £ =S8_,,, H = L*(R?,dz) for
some n big enough. Since the embedding H C E is Hilbert-Schmidt(cf. [H80, A.3]),
by [AR89, Proposition 3.9], there exists an orthonormal basis e, of H and [, such
that l,e, is an orthonormal basis of E. Now take Q'/?H = S,. Then by [AR91,
Theorem 7.11], QY2(H) C H(u) and for each | € S,

2N
Bi(z) == man: 2" (1) = s {(~A+ 1), 2)s_,, 2 € Sy
n=1

Then by the same argument as last section, we also obtain the following two theo-

rems.

Now fix k € Nya € R and take U = {x € S_,, : s_ (2, ex)s, < a},p = Iy. Then
by Theorem 3.2.2, p is an BV function with H = H; = Hj. Since U is a convex
closed set, then p € QR(E). Thus we can apply Theorem 3.2.3 directly and by a

modification get the following:

Theorem 3.3.6 There is an £P-exceptional set S C F' such that Vz € F\\S under
P, there exists an M;- cylindrical Wiener process W7, such that the sample paths
of the associated distorted process M* on F satisfy the following: for [ € §

t 1 t
Bl, Xt — Xo)p = / (l,dW?Z) — 5/ (1, ny (X,))d LIl
0 0

1 t 2N
+§/ - Znan : Xﬁ_l c (D) +s, (Al =1, X,)s_, dr Vt > 0 P,—a.s..
0 n=1

Here LL'd” I"is the real valued PCAF associated with ||dp|| by the Revuz correspon-
dence satisfying
Ty (X )dL\l = qrldel p — ¢ s,

and ny(z) = ey.
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We can also take U = {z € E : ||z|[g < 1},p = Iy. Then by Theorem 3.2.2,
p is an BV function with Hy = Hf = H. Since U is a convex closed set, then
p € QR(E). Thus as Theorem 3.3.2, we get the following:

Theorem 3.3.7 There is an £P-exceptional set S C F such that Vz € F'\S under
P, there exists an M- cylindrical Wiener process W?#, such that the sample paths
of the associated distorted process M” on F satisfy the following: for [ € S

t 1 t
el Xy — Xo)p = / (l,dW?Z) — 5/ g, ny (X)) pd L%
0 0

1 t 2N
+§/ - Znan C X (D) s, (AL 1, X, )s ,dr VE> 0 Po—as..
0 n=1

Here L%l is the real valued PCAF associated with ||dp|| by the Revuz correspon-
dence satisfying

Loy (X,)dLI¥l = qrldel p— ¢ 5.
Zk f;<$1ek>ek

X é(w,ewek\'

o

and ny ()

3.3.3 Other examples

Consider pu = ¢?u,. Here p, is the Gaussian measure in H with mean 0 and
covariance operator() := %A*I., where A satisfies Hypothesis 2.1.1 in last chapter,
i.e.A: D(A) C H — H is a linear self-adjoint operator on H such that (Az,z) >
§|x|? Vo € D(A) for some § > 0 and A™! is of trace class. Assume

/ |Ddp, < 00, ¢ > 0. (3.3.1)
H
Then by Young’s inequality we can deduce

p(x) - (ex, ) € L*(H, py),Vk € N,

By [MR92, I1.3.d], for [ € D(A), we have

B,(z) = —2(Al, z) + 2(l,

We can use Theorem 3.2.3 get the following result.

Theorem 3.3.8 Let p € QR(H)NBV(H, Hy) and consider the measure ||dp|| and
o, from Theorem 3.2.1(ii). Then there is an £-exceptional set S C F' such that



70 Chapter 3. BV functions for differentiable measure

Vz € F\S under P, there exists an M- cylindrical Wiener process W# such that

the sample paths of the associated distorted process M? on F satisfy the following:
for | € D(A) N H,y

t t t t
[, X, —Xo) = [ (I, dW? +1 1l oo (X)) p=d LIl — [ (Al X,)ds+ | (L, Do(Xs) ds P,—a.s..
s P 1 S
0 2 Jo 0 0 ©(Xs)

Here L%l is the real valued PCAF associated with ||dp|| by the Revuz correspon-
dence.

Assume f satisfies the same conditions as in Theorem 3.2.2 and

U= f"((~00,0)).

Theorem 3.3.9 Let [y € QR(H) satisfying the same conditions as in Theorem
3.2.2 and |Df| is finite on U, then there is an £P-exceptional set S C F' such that
Vz € F\S under P, there exists an M- cylindrical Wiener process W#, such that
the sample paths of the associated distorted process M? on F' satisfy the following:
for I € D(A)

(1, X,— Xo) :/;(l,de)—%/Ot(l,nU(Xs»dLsdP_/Ot<Al,Xs)ds+/0t<l,%>ds P,—as..

Here L!*! is the real valued PCAF associated with ||dp|| by the Revuz correspon-
dence satisfying
Loy (X )dL\wl = qrldel p — ¢ s,

and ny(z) = DF(2)/|DF(z)| is the normal to X.
Now consider the following stochastic differential inclusion in the Hilbert space
H,

{ AX (1) + (AX(t) — 2250 4 N (X (8)))dt > dW(t), (332)

(X+t)
X(0)

where W (t) is a cylindrical Wiener process in H on a filtered probability space
(Q, F, F:, P) and Ny (z) is the normal cone to U at z, i.e.

Ny(x)={z€ H:{(z,y—z) <0VyeU}.

Definition 3.3.10 A pair of continuous H x R-valued and F;-adapted processes
(X(t), L(t)),t € [0,T7, is called a solution of (3.3.2) if the following conditions hold.
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(i) X(t) e U for all t € [0, T] P — a.s.;

(ii) L is an increasing process with the property that
Ioy(Xs)dLs = dLg P — a.s.

and for any [ € D(A) we have

(I, X,—) = /t(l,dWs>—/t<l, nU(XS)dL5>—/t<Al,X5>ds—|—/t(l, %)da‘ Vt >0 P—a.s.

where ny; is the exterior normal to U.

Then by a modification of Theorem 2.4.11, we can get the pathwise uniqueness.

Theorem 3.3.11 Assume U C H satisfies the same conditions as in Theorem
3.3.9, and log ¢ is a concave function. Then the stochastic inclusion (3.3.2) admits
at most one solution in the sense of Definition 3.3.9.

Combining Theorem 3.3.9 and 3.3.11 with the Yamada-Watanabe Theorem, we

now obtain the following:

Theorem 3.3.12 Assume U satisfies the same conditions as in Theorem 3.3.9, and
log ¢ is a concave function. Then there exists a Borel set M C H with Iy - u(M) =
p(U) such that for every x € M, (3.3.2) has a pathwise unique continuous strong
solution in the sense that for every probability space (2, F, F;, P) with an F;-Wiener
process W, there exists a unique pair of F;-adapted processes (X, L) satisfying
Definition 3.3.10 and P(Xy = z) = 1. Moreover X (t) € M for all t > 0 P-a.s.

As an example, we can take f = (z,2) — 1, p(z) = e"*I" and log ¢ is a concave
function. Then we can check that all the conditions in Theorem 3.3.12 is satisfied,
and by using Theorem 3.3.12, we get there exists a unique probabilistically strong
solution in the sense of Definition 3.3.10 for the following problem:

dX(t) + (AX(t) + | X > X, + Ny (X (2)))dt > dW (¢),
X(0) = .






Chapter 4

The stochastic quasi-geostrophic

equation

In this chapter we study the 2d stochastic quasi-geostrophic equation in T? for gen-
eral parameter a € (0, 1) and multiplicative noise. We prove the existence of weak
solutions with regular additive noise and the existence of martingale solutions with
multiplicative noise and pathwise uniqueness under some condition in the general
case, i.e. for all & € (0,1) . In the subcritical case a > 1/2, we prove existence and
uniqueness of (probabilistically) strong solutions and construct a Markov family of
solutions. The large deviations principle in the subcritical case for multiplicative
noise has also been established. Part of result in this chapter has been included in
[RZZ12].

4.1 Notations and preliminaries

We consider the usual abstract form of equations (1.3)-(1.4). In the following, we

will restrict ourselves to flows which have zero average on the torus, i.e.

/Wedgzo.

0 Y
“= "5, a8,

Thus (1.4) can be restated as
) and (=A)Y2) = —4.
Set H = {f € L*(T?) : [, fdz = 0} and let |- | and (.,.) denote the norm

and inner product in H respectively. On the periodic domain T?, {sin(ké)|k €
2%} U{cos(k€)|k € Z:} form an eigenbasis of —A. Here Z2 = {(ki, ks) € Z*|ky >
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0} U{(k1,0) € Z*|ky > 0},Z2 = {(k1,k2) € Z?| — k € Z3},x € T? and the
corresponding eigenvalues are |k|?. Define

e = Y IR fen)?
k

and let H® denote the Sobolev space of all f for which ||f|
(=A)Y2. Then

s is finite. Set A =

1.f1

Hs — |A5f‘

By the singular integral theory of Calderén and Zygmund (cf [St70, Chapter 3]),
for any p € (1, 00), there is a constant C' = C'(p), such that

(4.1.1) [ullr < C@)O]] 2o

Fix @ € (0,1) and define the linear operator A : D(A) = H**(T?) Cc H - H
as Au := r(—A)%u. The operator A is positive definite and selfadjoint with the
same eigenbasis as that of —/A mentioned above. Denote the eigenvalues of A by

0 <A1 <X <---  and renumber the above eigenbasis correspondingly as ey, es,....
We also set ||ul| := |AY2ul, then [|0]|* > A\i|0]>.

First we recall the following important product estimates (cf. [Re95, Lemma

AA4)):

Lemma 4.1.1 Suppose that s > 0 and p € (1,00). If f,g € S, the Schwartz
class, then

IA°CfDlle < CUflzws llgllzroez + Nl gllzes [|f]
with p; € (1,00),7 =1, ...,4 such that

o), (4.1.2)

1 1 1 1 1

p pP1 D2 P3 P4

We shall use as well the following useful Sobolev inequality (cf. [St70, Chapter
V]):

Lemma 4.1.2  Suppose that ¢ > 1,p € [g,00) and
==
Suppose that A?f € L9, then f € LP and there is a constant C' > 0 such that

1flle < CIIA f|a.
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The following compact embedding results will be used later.

Lemma 4.1.3 ([FG95, Theorem 2.1]) Let By C B C B; be Banach spaces, By
and By reflexive, with compact embedding of By in B. Let p € (1,00) and « € (0, 1)
be given. Let X be the space

X = LP(O, T, Bo) N W“’p(O, T, Bl>

endowed with the natural norm. Then the embedding of X in LP(0, T’; B) is compact.

Lemma 4.1.4 ([FG95, Theorem 2.2]) If By C B are two Banach spaces with
compact embedding, and the real numbers o € (0,1),p > 1 satisfy ap > 1, then

the space W*P(0,T; By) is compactly embedded into C([0,7; B). Similarly, if the
Banach spaces By, ..., B, are compactly embedded into B and the real numbers
gy € (0,1),p1,...pn > 1 satisfy ayp; > 1,Vi = 1, ..., n, then the space

W0, T; By) + ... + W (0, T; B,,)

is compactly embedded into C([0, T]; B).

4.2 Existence of solutions for additive noise

In this section, we consider the abstract stochastic evolution equation in place of
Egs (1.3)-(1.4),

(4.2.1)

dO(t) + AO(t)dt + u(t) - VO()dt = G(O(t))dW (1),
9(0) - 90 S H,

where u satisfies (1.4) and W (t) is a cylindrical Wiener process in a separable Hilbert
space K defined on a filtered probability space (2, F, {F:}icjor), P). Here G is a
measurable mapping from H® to Lyo(K, H).

Definition 4.2.1 (i) We say that there exists a (probabilistically) strong solution
to (4.2.1) over the time interval [0, T'] if for every probability space (€2, F, {Ft }icjo.17, P)
with an F;-Wiener process W, there exists an Fi-adapted process 6 : [0, 7] xQ — H
such that for P —a.s. w € Q

0(-,w) € L=(0,T; H) N L*(0,T; H*) N C([0, T); H,)
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and P-a.s.
t t ¢
0. o)+ [ (47200), A7 0)ds— [ (ul)Vio,6(5))ds = B iph+( | GOE)AW(3).5),
0 0 0

for all t € [0, 7] and all ¢ € C*(T?), (assuming also that all integrals in the equation
are defined). Here C([0,T]; H,) denotes the space of H-valued weakly continuous
functions on [0, 7.

(i))If 6 is not an Fi-adapted process, then for additive noise the equation is still
defined. In this case we call § a (probabilistically) weak solution.

Remark 4.2.2 Note that, because divu = 0 for regular functions 6 and v, we
have

(u(s) - V(8(s) +¢),0(s) + ) =0,
SO
(u(s) - VO(s), ¥) = =(u(s) - Vi, 0(s)).
Thus the integral equation in Definition 4.2.1 corresponds to equation (4.2.1).

Assumption 4.2.3  Assume that G does not depend on # and Tr(A2(+Ho-)+GG*) <
oo for some £ > 0, where o := (1 — 2a) V 0.

Consider the OU equation
dz(t) + Az(t)dt = GdAW (t).

It is known that the process

2(t) = /Ot e~ E=DAGAW (s)

is a solution with continuous trajectories.

By [DZ92], under Assumption 4.2.3, supyc,<r |[|Vz(t)|[ze < 0o P — a.s. with
q= (% +¢) V2 for some ¢ > 0.

Theorem 4.2.4 Let o € (0,1) and suppose that Assumption 4.2.3 holds. Then
for each initial condition 6y € H, there exists a weak solution # of equation (4.2.1)
over [0, 7] with initial condition #(0) = 6.

Proof By the classical change of variable v(t) = 6(t) —z(¢) we obtain the differential

equation
WU 4 o) + u(t)- V(0l1) + 2(0)) = 0 (422)

For almost all given paths of the process z(t) we study this equation as a determin-
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istic evolution equation.

Let P, be the orthogonal projection in H onto the linear space spanned by
e1,...en. Consider the ordinary differential equation

d”g—;ﬂ + Ava(t) + Puun(t) - V(0a(t) + 2(1))) = 0,

with initial condition
Un(O) = PnU().

Here u,, satisfies (1.4) with 6 replaced by v, + z.

Its solution satisfies
~—|val* + [vall® = (—un(t) - V(0n(t) + 2(t)), vn(2)).

Here w € Q is fixed. For simplicity, in the following estimate, we set v = v,
and u(t) = u,(t) + u,(t), u, and u, satisfying (1.4) with 6 replaced by v and z,
respectively. So

[(=u(t) - V(u(t) + 2()), v(8)] =[{us(t) - V2(2), (1)) + (u.(t) - V2(2),0(1))|
<C|IVzllzsllvllZs + CIV 2l zall2l| 2o ll0]] 2o

1 2 .
Here 7 + b= 1. Since
||U||2Lp < CHUH?{Hl < C||UH2'B|U|2(176);

where 8 = “—=L by Young’s inequality, we obtain

1d 1/(1—
Sl P < ol + CEll® + CE) IVl ™ + Ol vzl

Therefore, for all ¢t € [0,T7,

t
o(1)[2 < elo CA+IV@IL sy 4 o / et COHIVEOIL s | 157714, dr,
0

(4.2.3)
and for [r,t] C [0,T],

t t
[ WolPdr < o) + € [ (o + P19 5 |Velar. (@24)

Then by Assumption 4.2.3, all the terms in (4.2.3) and (4.2.4) containing z are
uniformly bounded in t. Therefore, from (4.2.3) and (4.2.4) (which hold true for
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v,) We obtain that the sequence v, is bounded in L>°(0,T; H) and in L?(0,T; H*).
It is obvious that there exists an element v € L*>(0,7; H) N L*(0,T; H*) and a
sub-sequence v/ such that

vl — v in L*(0,T; H*) weakly, and in L>(0,T; H) weak-star, as m — oo.

In order to prove the strong convergence in L*(0,T; H), we need to use Lemma
4.1.3. So we just need to prove that [|v,||w~.2(0,r,z-3) is bounded for some 1/2 < 7y <
1. Then by compact embedding, we have v/, — v in L2(0,T; H) N C([0,T]; H=")
strongly for some 3 > 3. Note that v, also satisfies

¢ ¢
(on(t), ) +/ (A0, (s), A2)ds —/ (un(s) - Vi, vn(s) + 2(s))ds = (Pavo, ¥),
0 0
(4.2.5)
for all ¢t € [0,7] and all ¢» € C*(T?). Then taking the limit in (4.2.5), we obtain the
result.

Now decompose v,, as

t t
vn(t) = Pyug — / Av,(s)ds — / Po(un(s) - V(vn(s) + 2(s)))ds.
0 0
By (4.2.4) we obtain
||/ Avn(s)dSHle(O’T,H—a) S C
0
And by H? C L*, we have for § € H', ¢ € H?3,
[(u-V0,9)| = [(u-V,0)| < |0 Vlloo < |01 [[)]] 13-
Then

||Pn(un -V(v, + Z))“L?(O,T;H*S) < T'/? oquT |Un(5) + z(s)|2 <C,

whence

|| / Po(tn(s) - V(vn(s) + 2(s))dsllwrecorn s < C.
0
Clearly for a Banach space B, W'2(0,T; B) C W"2(0,T; B). So we have proved
HUnHW%?(O,T,H*?’) <C.

Thus the assertion follows.
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4.3 Martingale solutions in the general case

In this section, we consider multiplicative noise in the general case « € (0,1). First

we introduce the following definition of a martingale solution.

Definition 4.3.1 We say that there exists a martingale solution of the equation
(4.2.1) if there exists a stochastic basis (2, F, {F;}icpr, P), a cylindrical Wiener
process W on the space K and a progressively measurable process 6 : [0, T]xQ — H,
such that for P-a.e. w € 2,

0(-,w) € L>(0,T; H) N L*(0,T; H*) N C([0,T); H?),

where 8 > 3, and such that P-a.s.

(6(¢), d)+ / (AV20(s), AY2)ds— / (u(5)V, 6(s))ds = (B, )+ / G(6(3))dWV (5), 6).
’ ’ ’ (4.3.1)
for t € [0,T] and all ¢ € C1(T?).

Let f,,n € N, be an ONB of K and consider the following two conditions:

(G.1)(E) |GO)Z, sy < Molf]? + p,0 € H?, for some positive real numbers A
and p.

(ii) Iif y, y, € H* such that y,, — y in H, then lim,, o [|G(y,)*(v)—G(y)*(v)||x =
0 for all v € C>(T?).

(G2)Fory e K

Gu)y = (bphu+ cxu)(y, fi) i, u € H,
k=1

where by, ¢, € C™(T?) satisfying >, b3(€) < 2k, Y., c2(&) < M, € € T

Theorem 4.3.2 Let a € (0,1). Under Assumption (G.1), there exists a martin-
gale solution (92, F,{F:}, P,W,0) to (4.2.1).

Proof [Step 1] Let P, be the orthogonal projection in H onto the space spanned
by ey, ...e,. Consider the Faedo-Galerkin approximation.

(4.3.2)

d0,,(t) + AB, ()dt + Py (un(t) - VO, (£))dt = PoG(0,,(£))dW (¢),
6,.(0) = P,

where w,, satisfy (1.4) with 0 replaced by 6,,. Since all the coefficients are smooth in
P, H, this equation has a martingale solution 6,, € L*(Q; C([0,T]; P,H)).
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Since we have

(un(t) - VO,(t),8,) = 0,

by Ito’s formula, for all p > 2 we have

_ _ 1 -
A0 (O)F+pl0n ()2 ([6n]*dt < plOn(0)F>(G(On) AW (£), On)+ 5P (0= 1) 0nl"* [ PaG (0n) 1, )

By classical arguments, we easily show that there exist positive constants C;(p), Ca,
for each p > 2, such that (cf [FG95, Appendix 1])

E( sup |0,(s)") < Ci(p), (4.3.3)
0<s<T
and
T
E/ 10,.(5)?ds < Cs. (4.3.4)
0

[Step 2] Now decompose 6,, as

0,.(1) = Poo — / A6, (s)ds — /0 Po(un(s) - VO, (s))ds + /0 PoG(00(s)) AW (s).

0

By (4.3.4) we obtain

B /O A6, (5)ds| w20 ) < C.
And by H? C L* we have for § € H',v € H?
[(u-VO,0)] = [(u- Vv, 0)] < [0 Volla < [0F]0] s
Then

EI|Pa (- V0 s20iz-3 < TV*E[ sup 10,()/") < C,

0<s<T
whence

t
EH/ Pn(un(s) : ven)dSHWLQ(O,T,H*) S C.
0
By [FG95, Lemma 2.1], Assumption (G.1), and (4.3.3), (4.3.4), we have
t
B| / PaG(0,(3))dW (3) w207 < C.
0

Clearly, for a Banach space B, W'2(0,T; B) C W7%(0,T; B) for 0 < v < 1. So, we
have proved
E0n|lw20,0,m-3) < C.
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Recalling (4.3.4), this implies that the laws £(6,,),n € N are bounded in probability
in
L*(0,T; H*) "N W™2(0,T, H™?)

and thus are tight in L?(0,T; H) by Lemma 4.1.3.

Arguing similarly for the term fot P,G(0,(s))dW (s), on the basis of the estimate
(4.3.3), we apply Lemma 4.1.4 and have that the family £(6,),n € N, is tight in
C([0,T); H=#), for all given 8 > 3. Thus, we find a subsequence, still denoted by
0., such that £(0,) converges weakly in

L*(0,T; HYynC(0,T, H?).

By Skorohod’s embedding theorem, there exist a stochastic basis (', F*, {F/ hepo. 1
P and, on this basis, L*(0,T; H)NC(0, T, H?)-valued random variables #', 8 n >

YV n?

1, such that 6} has the same law as 6,, on L?(0,T; H)NC(0,T, H?), and ) — 6" in
L*(0,T; H)NC(0,T, H#), P' -a.s. For 6} we also have (4.3.3) and (4.3.4). Hence
it follows that

0'(-,w) € L*(0,T; H*) N L™(0,T; H) for P* — a.e w € £2.

For each 6} we have that u! satisfies (1.4) with 6 replaced by 6.

For each n > 1, define the process
t t
M(t) =0} (t) — P06} +/ Ab! (s)ds —i—/ P (uk(s) - VO (s))ds.
0 0
In fact M! is a square integrable martingale with respect to the filtration
{Gnhi = o{0,(s).s < t}
with quadratic variation
t
(1)) = [ PuGOL)G(6} ) Puds.
0

For all s < t € [0, T], all bounded continuous functions on L%(0, s; H) or C([0, s]; H~"),
and all v, z smooth, we have

E({M,(t) = My (5),v)$(0pj0.)) = 0
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and

B0, oMY, 2) — (M), o) (013 (5), 2
= [ (G601 P G Pa2)dr)o(6L0.9)) =0

Take the limit in the above equation, we obtain that for all s < t € [0,7], all
bounded continuous functions on L?(0,s; H) or C([0, s]; H~?), and all v, 2 smooth,

we have

E((M'(t) = M'(s),v)$(0"|j0.5))) = 0

t

0 (t) — 6} +/ A0 (s)ds +/ (u'(s) - VO'(s))ds.

0 0

<
—
~
N—
I

Thus the conclusion of the proof follows by a martingale representation theorem (cf.
[DZ92]). OJ

In order to get an estimate for the LP norm, we need to use another approxima-
tion.

Theorem 4.3.3 Let a € (0,1). If G € Ly(K, H) satisfies (G.1) and also the
following conditions: for all € H* N LP(T?),

[ i6@urreas < o f1opds + 1,900 (4:3.5)
with 2 < p < oo for some constant C':= C(p) > 0 and for all 61,60, € H* N LP(T?),
[ 6o - cenryra<c [lo-ors @30

J

then there exists a martingale solution (2, F,{F}, P,W,0) to (4.2.1). Moreover, if
0o € LP(T?) with p > 2, then

E sup ||0(t)]|rr < 0.
te[0,7)

Remark 4.3.4 Typical examples for G satisfying (4.3.5) have the following form:
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for 0 € H* .
GOy =Y bely fi)xb, yeK
k=1

where by, are C* functions on T? satisfying Y ,-, b7 (&) < M.

Proof [Step 1] We first establish the existence of LP-bounded solutions of the linear
equation:

dO(t) + AD(t)dt + w(t) - VOL)dt = ks + G(0)dW (1), (4.3.7)

with a given coefficient function w(t) which satisfies divw(t) = 0 and sup,cpo 7 [[w(t)|lcs <
C. Here ks * G(6) means for y € K, ks« G(0)(y) = ks *x (G(6)(y)), where ks is the
periodic Poisson kernel in T2 given by ks(¢) = e~%<l ¢ € Z2. First, we consider G

not depending on #. Now take z = fot e~ (=945 x GdW (s),v = 0 — z. We have

dv(t) + Av(t)dt + w(t) - V(v + 2(t))dt = 0,

which is easily seen to have a solution v € C([0,T]; H) N L*([0, T]; H*). We have for
any s > 0,

d S ST S ST« ST«
E|A v]? + 2|AFT)? < C([lwlleser2y) |A v]? + A2+ O(|AST2)).

By this estimate and a standard argument we prove that if v(tg) € H?®, then
v € C([to, T), H*) N L*([to, T], H*™*). Then we obtain v € C((0,T]; H®) for any
3 > s > 0. Thus we get the existence of LP-bounded solutions for additive noise.
Then consider the mapping I' : L*(Q, L>=([0,T7], L?)) — L*(Q2, L>=[0, T, L?)) defined
by I'(0,) = 0, where 0 satisfies (4.3.7) with G() replaced by G/(#,). Thus, by consid-
ering the norm [E sup, o 71(e7*(|0(s)]7,)]'/? for suitable 5 € (0,00) and a similar
calculation as (4.3.9) below, we obtain I' maps L'(Q2, L>°[0, T, L?)) into itself and is
a contraction. Thus, the equation 6; = I'(#;) has a unique solution. Hence (4.3.7)
has a unique LP bounded solution.

[Step 2] Now we construct an approximation of (4.2.1).

We pick a smooth ¢ > 0, with supp¢ C [1,2], [ ¢ =1, and for § > 0 let
Us[0](t) = / o(7) (ks * R0)(t — 67)dr,
0

where ks is the periodic Poisson Kernel in T? given by /%:;(Q ) = e ¢ € 7%, and
we set 6(t) = 0,t < 0. We take a zero sequence d,, and consider the equation:

d0,,(t) + A, (1)t + un(t) - VO, (t)dt = ks, * G(O)dW (1), (4.3.8)
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with initial data 6,,(0) = 0y and u,, = Us, [0,]. For a fixed n, this is a linear equation
in @, on each subinterval [tg,t;y1] with ¢, = kd,, since w,, is determined by the
values of #,, on the two previous subintervals. By [Stepl], we obtain the existence
of a solution to (4.3.8).

[Step 3] It is sufficient to show that 6,, converge to the solution of (4.2.1). This
follows by similar arguments as in the proof of Theorem 4.3.2. Just as in Theorem
4.3.2, we only need to prove

EHQHHW«/,Q(QT,H%) S C
Here we can’t bound |u,| by |0,|, pointwise in time. Instead, we have

sup [u,| < C'sup6,|.
[0,¢] [0,¢]

Thus by a small modification of the proof of Theorem 4.3.2, we get the martingale
solution (2, F,{F:}, P,W,0) to (4.2.1).

[Step 4] Now we prove the last statement. It is sufficient to prove that

E sup [|0n(t)|L, < C.

te[0,7)

We write for simplicity 6(t) = 0,(,€). By [Kr10, Lemma 5.1], we have
o)1, =||‘90|V£p # [ p [ BP0 (00 + () - Vo)
3= [ 1ot P i, » GOl
b / P00k, = GO )
<[y, + / p=1) [ 106 25 ks, » GO )P e
o [ [ 06200 ks, = GOV ()
<)10oll5, + / : [ o+ cte /Zm « G(O()) () 2)7/2dg ) ds

w0 [ [ 10P20(s)ks, = GO dsaw (o)

Then by the Burkholder-Davis-Gundy inequality, Minkowski’s inequality and the



4.4. Uniqueness of solutions 85

same estimate as in the proof of (6.4) in [Kr10] and (4.3.1) we have

t
B sup 065)17, <Blooll + 2 [ (e [ |evm+c/§]%ﬁa ()P )/2de)ds

s€[0,t]

+pEQ/’U/ 6(s P?%§j|hh*<nﬂ<>Xf>ﬁﬁﬂdsfdsfﬂ

<E|60]2, +E/ / 10(s V’d£+0/ waa « G(0(s))(f;)])P/2d€) ds

+pE sup ||6(s) / / Z]k(; x G(0(3))(f;)[)P/2de)*rds)'/?

s€[0,t]

<E|6o]2, +E/ /|9 |pd§+C/Z|G ) [2)7/24g)ds

+C(T)E sup ||0(s) / / Z|G )|2)P/2de)ds )P

s€[0,t]

s€[0,t]

B0y + < sup 005} + i [ 65} Lpds + Co (4.3.9)
0
t

smw|+£prﬂm+a/Ewpwwmw+@
0

s€[0,t] s€(0,0]

By Gronwall’s lemma, the assertion follows. 0

Theorem 4.3.5 Let a € (0,1). Under Assumption (G.2), there exists a martin-
gale solution (9, F,{F:}, P,W,0) to (4.2.1).

Proof 'The proof is similar to the one for Theorem 4.3.2. The only difference is the
proof of §(-,w) € C([0,T]; H"). Here by Aldous’ criterion it suffices to check that
for all stopping times 7, < T and ¢,, — 0,

lim E||0,,(7, + 6) — 0,(70) || -5 = 0.

This can however be checked easily. O

4.4 Uniqueness of solutions

In this section, we will prove pathwise uniqueness for equation (4.2.1). First we

prove uniqueness in the subcritical case.
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Theorem 4.4.1 Assume « > % If G satisfies the following condition
IA72(G () = G yaemy < BIAT(w—0)P + B A2 (w—v)]’,  (44.1)

for all u,v € H*, for some § € R independent of u,v, and f; < 2k, then (4.2.1)
admits at most one probabilistically strong solution in the sense of Definition 4.2.1
such that

sup ||0(t)]|La < o0, P —a.s.,

t€[0,T)
with 0 < 1/¢ < a — 3, and

E sup |A7Y20(t)]? < 0.
t€[0.7)

Remark If in Remark 4.3.4 by = pyep for py, € R | then (4.4.1) is satisfied.

Proof Let 01,60, be two solutions of (4.2.1), and let {ej}ren be the eigenbasis of A
from above. Then their difference 8 = 6, — 0, satisfies

(@D, Q(t)) — t(u -V, 491>ds — t(uQ -V, 9>d8 + K t(@, A2°‘@/)>ds
B R
- / (6, (G(8:) — G(62))dW (s)).

Now set ¢, = {ex, 0(t)), 0 = (A ter, 0(t)). 1t0’s formula and (4.4.2) yield

PruPr, :/0 Ordepy + /o Aoy, + (P, Oi) (1)
=2 /t(u Ver, 01 (N0, e) + (ug - Ve, 0) (A0, e) — k{A*er, 0)(A710, ex)ds
2 [ (070,00 (e, (G(01) = GO AW ()

t
+/ (G(01) — G(62) ex, (G(O1) — G(02))* A er)ds.
0
(4.4.3)
The dominated theorem implies:

t t
Z / (u-Veg, 01)(A10,e.)ds — / g-1{u - VO, A1 0) gads, N — oo,
0 0

k<N

t t
Z/ (ug - Ve, ) (A0, e)ds — / -1ty - VO, A10) gads, N — oo,
0 0

k<N
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and . .
/ (N*er, 0V (A0, er)ds — / (0, A**710)ds, N — oo
fen 70 0

Furthermore, since
t
/0 A20RATYA(G8)) — G(02))2, e 0,

t
)|2/0 IATY2(G(81) — G(02)) |12, (s0.11yds < o0,

< Csupld(s
s<t

we obtain
/0 (A=20, ) (ex, (G(01) — G(02))dWV (5)) —

M, = / t<A*1/29, AV2(G(0,) — G(602))dW (5)), N — oo

Finally, the following inequality holds:
t t
(GO0 -Ge)) en. (G0 -Gio2)) A eadds < [ IAAG0)- GO mis
0 0

k<N
Thus, summing up over k < N in (4.4.3) and letting N — oo we obtain

t
IAT120)% 4 2/1/ IA*26|%ds
0

t
SQM(t) + 2/ H_1<U : V91, A_19>H1 + H_1<U2 : V@, A_19>H1d8
0

t
T / A2 (0) — G012, e ds.

By [Re95] we have
-i{u - VO, A70) g =0,

2/N —1.112(
A1) A

and
(s - VO,AT0) g, | <[lwollLal|0]l o [ VA0 o < Clluall Lol g1a [ VAT 114
<Clall s AR 1,5 < Cl6]ls |46 il
<e| A2 + C||62 1 |A 202,

8]

1Lfor 0 <1/g < a—1/2,N = —%— and we use HYa « [p
2 q

Here 1 4 2
q - p
continuously.
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Now by (4.4.1) we have
t t
[ATI260]7 < M(t) +/ C|16a]|7% |A~1/26]ds +B/ [ATI2(0) — 65)Pds.
0 0

Let
T111 = mf{t > O, H92<t>HLq > n}

Then by the weak continuity of 65, 7} are stopping times with respect to Fi , (Frp :=
Nyt Fs)and ||0o(t A 71)||ze < n for large n. Also let 72 be a localizing sequence of
stopping times for M and 7,, := 71 A72. Then, since M (¢t AT,) is a martingale with
respect to Fi, we get

tATh tATh
EIAY20(t A T,))? ganE/ |A=Y20)%ds + 5E/ |A~Y20)%ds
0 0
t t
—C’(n)/ E|AY20(s A 1,)|2ds + 5/ E|AY20(s A 1,))2ds.
0 0

By Gronwall’s inequality, we get |A=Y20(t A 7,)|*> = 0 P — a.s., and recalling that
T, — T as n — 0o, we obtain that 0(t) = 0 P — a.s. for t < T, thus completing the
proof. O

From the proof we immediately obtain the following result.

Corollary 4.4.2  Assume a > % If there exists a probabilistically strong solution
05 in the sense of Definition 4.2.1 such that

sup ||02(t)]|Le < o0, P —a.s.
t€[0,T]

for some ¢ with 0 < 1/¢ < v — % and G satisfies (4.4.1), then 6, is the only solution
to (4.2.1) such that

E sup |[A7Y20,(t) < oo,
te[0,T]

Thus, combining Theorem 4.4.1, Theorem 4.3.3 and the Yamada-Watanabe The-
orem in [Ku07], we get the following existence and uniqueness result.

Theorem 4.4.3 Assume a > i and that G satisfies (4.4.1), (G.1) (4.3.5) and
(4.3.6) for some p with 0 < 1/p < o — 4. Then for each initial condition §, € L? ,
there exists a pathwise unique probabilistically strong solution € of equation (4.2.1)

over [0, 7] with initial condition 6(0) = 6y such that

sup [|0(t)]|zr < o0, P —a.s,
t€[0,T]
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and

E sup |[A7Y20(1)]? < .
te(0,7)

Combining Theorem 4.4.3 and Corollary 4.4.2, we obtain the following more

general existence and uniqueness result.

Theorem 4.4.4 Assume o > 3 and that G satisfies (4.4.1), (G.1), (4.3.5) and
(4.3.6) with 0 < 1/p < o — . Then for each initial condition y € L?, there exists
a pathwise unique probabilistically strong solution € of equation (4.2.1) over [0, 7]

with initial condition 6(0) = 6, such that

E sup |[A7Y20(t)]? < oo.
te[0,7)

Moreover, the solution satisfies

sup [|0(t)||r» < oo, P —a.s..
te[0,7

Theorem 4.4.5 (Markov property) Assume a > 1 and that G satisfies (G.1),(4.4.1)
and (4.3.5),(4.3.6) with 0 < 1/p < a—1. If 6y € LP , then for every bounded, B(H )-
measurable F': H — R, and all s,t € [0,7], s <t

E(F0(1)|F,) (w) = B(F(0(t, 5,0(s)(w)))) for P — a.s.0 € Q.

Here 0(t,s,0(s)(w)) denotes the solution to (4.2.1) starting from 6(s) at time s
satisfying

E sup |[A7Y20(t)? < .
te(s,T|

Proof By Theorem 4.4.4, we have 0(t) = 0(t,s,0(s)) P-a.s.. Then by the same
arguments as in [PRO7, Proposition 4.3.3] and the Yamada-Watanabe Theorem in
[RSZ08], the assertion follows. O

Set
pe(w,dy) == P o (0(t,2)) "' (dy),0 <t < T,z € H.

Here and in the following, we use 0(¢,x) to denote a solution with initial value .
We set for B(H)-measurable F': H - R, and t € [0,T],2 € H

PF(x) = / F(y)p(, dy),
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provided F is p;(z, dy)-integrable. Then by Theorem 4.4.5, we have for F': H — R,
bounded and B(H )-measurable, s,t > 0,

1
P,(P,F)(x) = Pyt F(x),x € LP with 0 < 1/p < v — 7

Theorem 4.4.6 Let o € (0,1). If G satisfies the Lipschitz condition

1G () = G L) < Blu—vf* + Byllu = vlF, (4.4.4)

for all u,v € H*, for some § € R independent of u,v, and f; < 2k, then (4.2.1)
admits at most one solution in the sense of Definition 4.2.1 such that

E sup [0(t)|* < >
te€[0,7

and

T
1
/ AT Te0()||9,dt < oo, ~ + a_afe P —a.s.,
0 p g 2

where € € (0,a] and ¢ < oco.

Proof By the same argument as in the proof of Theorem 4.4.1, we get (4.4.2). Set
¢y = (ex,0(t)). Then Itd’s formula and (4.4.2) yield

¢ =2 / buddy + [6)(1)

:2/ (- Ver, 0200, ex) + (s - Ve, 0)(6, ex) — 1(A2ep, 6)(0, ex)ds
0 (4.4.5)

2 / (0, cx) (ex, (G(B1) — G(62))dW (s))
n / (G(8:) — G(B)) er. (G(Br) — C(B))ex)ds.

Since

[(uz - VO, )| <[IAT =0l o [| A% (u20)]
<CIA " zon (102l [A*Ol oz + 10| ar | A0 ]] e2)
<CIAT o (102 + 1011)* 777 (A0 + [A%6a])7T
SCIA= =0, (1052 + 102]2) + [A20[2 + A6, 2,

the term wuy - VO can be considered as an element in (H'~*"¢?1)". Here qil + q% = p—l,
1
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and f+7 = J(a—c+2),p2=2/(8+1).
By a similar calculatlon for (u-V#,,0), the dominated convergence theorem
yields the following:

Z/ u- Veg, 01)(0, ey ds—>/ (t-etenry U - VO, 0) pp—atep ds, N — 00,

k<N

Z/ ug - Vey, 0)(0, ey, d5—>/ (i-eten Uz - VO, 0) pp—atep ds, N — 00,

k<N

and . .
Z/ (A%, 0)(0, ek)d$—>/ (0, A**0)ds, N — co.
0

k<N VO

Furthermore, since

t t
|16 = GO < Csup 0 [ 1660 = GOl cmds < .
we obtain

Z/ (0, ) ex, (G(01)—G(0:))dW (5)) — M, ::/0(0,(G(91)—G(92))dW(s)),N—>oo.

k<N

Finally, the following inequality holds:

§j/ aw%wwn—m%mwwséHmawmwmmmmw

k<N

Thus, summing up over k < N in (4.4.5) and letting N — oo we obtain
t
0(8)2 + 2% |Aae| ds <2M(t) + 2/ (1 V01, 0) + (up - V6, 0)ds

+ [ 16(0) = GO s
We have
(uy - V0, 0) = 0,

and by a similar calculation as in the proof of [Ju05, Theorem 3.3], we have

[{w - V01, 0)] <IAT20 || oo A= (uO) ]| oy < CIAT 01 [ o 16]] s [|A*70| oo

<CA=40, 1 077 4]+
<c[ AV + Ol A0, 2%, o]
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Here o+ &= and B+ = J(a—c+ 2).p2 = 2/(B+7).

Now by (4.4.4) we have
t ) t
0(1)” < M(t)+/ 0\|Ala+€91||§a,l|e|2ds+5/ (61 — 02)ds.
0 0
Define the stopping time
t /
Ty := inf{t > 0,/ |AtF=0, |2, ds > n}.
0

Applying Gronwall’s lemma, we have
|9(t A Tn)|2 < |M(t A Tn)|€f0tm—n C||A17(¥+€91Hzl)/2p1 ds+pBt < |M(t A Tn)|60n+ﬁt.
Consequently,

tATRH
El0(t Ara)|* <O / B1G(6:) — G(62) s s

¢
§,32620”+2'8t/ E|0(s A 7,)|*ds.

0

By Gronwall’s lemma, we get [0(tA7,)|*> =0 P —a.s., and recalling that 7,, — T as
n — 0o, we obtain that #(t) =0 P — a.s. for t < T, thus completing the proof. [

Remark 4.4.7 For oo = 1/2, consider

do = [A0 +u - VO)]dt + > b;0 o duwy(t), (4.4.6)

J=1

for b; € R, and independent 1-dimensional Brownian motions w;. Consider the

process
B(t) = e~ iz biws®),

Then, the process v(t) defined by transformation

satisfies the equation (which depends on a random parameter)

d
d—: = Av+ B ", - Vo. (4.4.7)

Then by the same argument as in the proof of [CC04, Theorem 3.1], we obtain the
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local existence and uniqueness of smooth solutions starting from H' periodic initial
data. More precisely, for P-almost every w € €, there exists a time t(w, |Afy|), such
that v € C((0,t), H™) for any m > 0. On the other hand, by the same arguments
as in [CV06, Section 2], we obtain for any 7' > 0, there exists M (w, |Afy|) such that

lv(t, e < M for t € [0,T).
Then
18 uy(t, ) |lemo < My (w, |Ab|, T) for t € [0,T).

Hence by [KN09, Theorem 1.1], we obtain that there exists v(w, |Aby|, T") > 0, such
that
[o(, )llcvirz) < Clw, [Abol, T).

Then by the same arguments as in the proofs of [CW07, Theorem 3.1] and [CV06,
Theorem 10], we obtain

H'U(',t)HCq(TQ) S C’l(w, ‘A90|,T) fOI' t € [O,T]

By this a-priori bound and the local existence, we obtain a global regular solution
v for P-almost every w € (). Define

0(t,€) == B(t) (L, ).

Then we obtain a solution € such that

1
sup [[AI7+0)| 1 < o0, < 21
te[0,T) p 2

P—a.s..

So, for this special linear multiplicative noise, we obtain a solution satisfying the
condition in Theorem 4.4.6. Unfortunately, we don’t get this result for more general
1

noise and o = 5 since the results and the method in the deterministic case (e.g.

[CVO06], [KNV07], [KN09]) cannot be applied directly.

4.5 The large deviations result for small noise in

the subcritical case

In this section, for a > 1/2 we want to consider the large deviation principle for small
noise stochastic quasi-geostrophic equation. Here we will use the weak convergence
approach established by Budhiraja and Dupuis in [BD00]. Let us first recall some
standard definitions and results from the large deviation theory. Let {X¢} be a
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family of random variables defined on a probability space (€2, F, P) and taking
values in some Polish space E.

Definition 4.5.1 (Rate function) A function I : £ — [0,00] is called a rate
function if I is lower semicontinuous. A rate function [ is called a good rate function
if the level set {x € F : I(z) < K} is compact for each K < co.

Definition 4.5.2 (I). (Large deviation principle) The sequence {X¢} is said to
satisfy the large deviation principle with rate function [ if for each Borel subset A
of £

— inf I(z) < hmmfa log P(X° € A) < limsupe®log P(X® € A) < — inf I(x),

zEA° e—0 z€A

where A° and A are respectively the interior and the closure of A in E.

(IT). (Laplace principle) The sequence { X¢} is said to satisfy the Laplace principle
with rate function [ if for each bounded continuous real-valued function h defined
on £

lim < log B{exp[~ Lnxe = inf {h(x) + 1(x)}.

Suppose W(t) is an cylindrical Wiener process on Hilbert space K (with the
inner product (-, -)g, and norm |- |o) defined on a probability space (2, F, F;, P),(i.e.
the path of W take values in C([0,T], Hy), where H; is another Hilbert space such
that the embedding K C H; is Hilbert-Schmidt.) Let A denote the class of K
valued {F;}- predictable processes ¢ which satisfy fOT |6(s)|2ds < oo a.s. and Sy :=
{v e L*([0,T], fo lv(s)|2ds < N}. Define Ay :={¢ € A: ¢(w) € Sy, P —a.s}.

Suppose ¢° : C([0,T], H;) — E is a measurable map and X¢ = ¢g°(W). We are
interested in the large deviation principle for X¢ as ¢ — 0. Consider the following
Hypothesis:

Hypothesis 4.5.3 There exists a measurable map ¢° : C([0,T], H;) — E such
that the following hold:

Let {v° : ¢ > 0} C Ay for some M < oo. If v8 converge to v as Sy-
valued random elements in distribution, then ¢*(W(-) \[ Jo v°(s)ds) converge in
distribution to ¢°( [, v(s)ds).

2. For every M < oo, the set Ky = {g°(f,v(s)ds) : v € Sy} is a compact
subset of E.

The following theorem was proven in [BD0O].

Theorem 4.5.4 If {¢°} satisfies Hypothesis 4.5.3, then {X¢} satisfies the Laplace
principle (hence large deviation principle) on E with the good rate function I given
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by .
I(f) = inf {1/ lv(s)|ads}. (4.5.1)

{veL2([0,T],K): f=g°(f; v(s)ds)} 2

In this section, we consider the abstract stochastic evolution equation in place
of Egs (1.3)-(1.4),

{ do(t) + Ab(t)dt +u(t) - VO(t)dt = G(0)dW (1), (4.5.2)

6(0) = 0o,

where u satisfies (1.4).

Hypothesis 4.5.5 Assume G satisfies the following conditions:
i) G : H — Ly(K, H) is continuous and |G(6)]7, K) < Xol0)? + p,0 € H, for

some positive real numbers Ay and p.

ii)For some p with 0 < 1/p < o — %,

/Z|G 2p2de < O /|«9|pd§+ 1), (4.5.3)

and
[1@0) - cepePrra<c [o-opa. @54

iii)
IA2(G ) — G e < CIA (= o) + BA S — o), (45.5)
for some [, < 2k.

Under Hypothesis 4.5.5, by Theorem 4.4.4, for 6y € L?, there exists a pathwise
unique strong solution of (4.5.2) in L>([0,T], H) N L*([0,T], H*) N C([0,T], H#),
where § > 3. The main difficulty lies in dealing with the nonlinear term since the
solution to the stochastic quasi-geostrophic equation is not as regular as in the 2D
Navier-Stokes case. To estimate the nonlinear term, we use Galerkin approximations
and using the method in [GK96] we prove that these approximations converge in
probability to the solution.

Lemma 4.5.6 ([GK96, Lemma 1.1]) Let Z,, be a sequence of random elements
in a Polish space (F, p) equipped with the Borel g-algebra. Then Z,, converges in
probability to an F-valued random element if and only if for every pair of subse-
quences Z; and Z,, there exists a subsequence vy, := (Zy), Zm(x)) converging weakly
to a random element v supported on the diagonal {(x,y) € E x E : x = y}.
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Theorem 4.5.7 Assume Hypothesis 4.5.5, then 6,, converge to # in probability.

Proof 1In Theorem 4.3.3, we proved that 6, is tight in L2([0, T], H)NC([0, T], H=?).
In order to use Lemma 4.5.6, we now take two subsequences 6;,6,, of 6,. Then
obviously (0;, 6,,, W) is tight in

L*([0,T], H)n C([0,T), H?) x L*([0,T], H) N C([0,T], H ") x C([0,T], Hy).

Then by Skorokhod’s embedding theorem, there exists subsequences l;, m;, a proba-
bility space (Q, F, P) carrying on élj, Orm, W] such that the distribution of (ézj, Orm, W])
and (0;,0;, W) coincide, and for P a.e.

A

0, — 0, 0, — 0, W, = W
in the corresponding topology.

Thus (6, W) and (8, W) are the solutions of (4.5.2). Then by pathwise unique-
ness, we have 0 = 6. Thus the result follows from Lemma 4.5.6. 0

Consider the stochastic quasi-geostrophic equation with multiplicative noise given
by
dO® (t) + AG°(t)dt + u°(t) - VO (t)dt = eG(0°)dW (1) (4.5.6)

with 6°(0) = 0y € LP . By Theorem 4.4.5, under Hypothesis 4.5.5, there exists
a pathwise unique strong solution of (4.5.6) in L*([0,7], H) N L*([0,T], H*) N
C([0,T),H=#), for B > 3. Therefore, there exists a Borel-measurable function
g°: C([0,T), Hy) — L>=([0,T], H)NL3([0,T], H*)N C([0, T], H?) such that °(-) =
g (W (")) as..

Now the aim is to prove the large deviation principle for 6°. For this purpose we
need to impose the following assumptions on G.

Hypothesis 4.5.8 Assume G satisfies the following conditions:

i) G(0) is a bounded operator from K to H° with § > r := (2 — 2a) V a such
that

GO emi—ey < CUONa +1), GO Lney < CUIOmea +1). (4.5.7)

i)
|G (u) = G) || Lo m) < Cllu— ] g
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Remark (4.5.7) can also be changed to

|Gl Lk, 5y < C[0] gro+a +1).

Let 8, be the solution of
do,(t) + Ab,(t)dt + u,(t) - VO,(t)dt = G(0,)v(t)dt (4.5.8)
with 0,(0) = 6y and v € L*([0,T], K). By Hypothesis 4.5.5 and 4.5.8, we obtain
IG@)olle < Clofo(ll0]l e + 1),

|G(O)v][m1-o < Clofo([|0]] 2 + 1),
[AT2(G(61) = G(B2))v] < Clofo| AT 2(61 — 62))].

By [Re95, Theorems 3.5, 3.7], we know that there exists a unique solution 6, €
L=([0,T], HY) N L2([0,T], H***) N C([0,T], H=?) for (4.5.8).

Define ¢° : C([0,T), Hy) — L*([0,T], H) N L([0,T], H*) N C([0, T], H=?) by

0y ) O, if h= [ v(s)ds for some v € L*([0,T], K),
g'(h) = .
0, otherwise.

The following result shows that ¢° satisfies Hypothesis 4.5.3 so that Theorem 4.5.4
is applicable to establish the large deviation principle for 6°.

Theorem 4.5.9  Suppose Hypothesis 4.5.5 and 4.5.8 hold, then {#°} satisfies the
Laplace principle (hence large deviation principle) on

L([0, 71, H) N L2([0,T], H*) N C([0, T], H ")
with a good rate function given by (4.5.1).

Proof To prove the theorem, it suffices to verify the two conditions in Hypothesis
4.5.3.

[Step 1] First we show that the set Ky = {g°(f, v(s)ds) : v € Sy} is a compact
subset of L>=([0,T], H) N L*([0,T], H*) N C([0,T], H=#?). Let {6, } be a sequence in
Ky where 0,, corresponds to the solution of (4.5.8) with v, € Sy, in place of v. By
the weak compactness of Sy, there exists a subsequence of {v, } which converges to
a limit v weakly in L*([0,T], K). Let w, = 0,, — 0,,. It suffices to show that w, — 0
in L>=([0,T], H) N L2([0,T], H*) N C([0,T], H?) as n — oo.
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By [Re95] we have
(U, - Vwy,, wy,) = 0.

By Lemma 4.1.2 and (4.1.1) we get

(= o) - Vo, wa)] < |AB|[wn]2s < O|AG, |21 28| A%, |«
K

4.5.9
|Aawn|2 + C|A6’v|2"/(2°‘_1)|wn|2. ( )

<=
—2

Thus

¢ ¢
|w, (1)) + 2/1/ |A%w,|*ds :2/ — (U, - VOy,wy) + (uy - VO, wy,)ds
0

0

+ [ (GO - G w5 ds

_ /Ot<(un ) -V, wy)ds

[ (66~ GO ) o)

+ [ 16006 (o) vl

< / AT + CAG P 1y, B 2

+(G(00)(vn(s) = v(s)), wa(s))ds.

Define .
() = / G(6.)(vn(s) — v(s))ds.

Since H® C H" is compact and v, — v weakly in L2([0,T]; K), by (4.5.7), it is easy
to show that A" — 0 in C([0,T], H")(cf. [Li09, Lemma 3.2]) by using the Arzela-
Ascoli theorem(more precisely, this convergence may only hold for a subsequence,
but it is enough for our use and we denote the convergent subsequence still by h,,).
Also we have

/0 (G(8.) (0n(5) — 0(8)) ()} s = (wa(t), hu(1)) — / (1 (5), hu(5))ds
=(wn(t), hy(t)) + /0 (Aw,(8) + uy - VO, — uy - VO, hy(s))ds

_ / (G(6,,)0a(5) — G(0,)0(5)), hn(s))ds

:I[1 + IQ + 13
(4.5.10)
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Note that
I < elwn(8)* 4 Clhn(8)]%;

L<C sup [ha(s)ne
s€[0,T

For ¢ € H*72* by Lemma 4.1.1 and (4.1.1), we obtain
(V0= V., 0)| < AP (unf—1,0,)||A* 2] < (JA0, 2 +HA%0, ) [A* ],

hence
|t - VO, — wy - VO, || g-2-20) < |Aa6n|2 + |A°‘9v|2.

Therefore,

t
I S/ (I Awn(s) | zr-e + l[tn - VOn = wy - VO || =200 ) [[ () || - ds
0

t
<C sup th(S)llm/0 (lwnllze + 10l Fre + 100]l7e)ds

s€[0,T]

<C sup |[hn(s)nr-
s€[0,T

By the Gronwall lemma and (4.5.10) we have

t
|wn(t>|2+f/ AW, [2ds < C sup ||hn(s)|| =€ Jo 10022/ D tonf3ds,
2 0 s€[0,T1]

Since 6, € L>([0,T], H') N L*([0, T], H'**), we obtain

T
sup |w,(t)* + E/ |A*w, [*ds — 0, n — 0o.
te[0,7) 2 0

[Step 2] Let v. converge to v as Sy/-valued random elements in distribution. By
the Girsanov Theorem 6, = ¢°(W () + \/Lg Jo v°(s)ds) solves the following equation

0, () + Af, (£)dt + uy, (t) - VO, (£)dt = G(0,,)v-(t)dt + /2G(0,)dW (). (4.5.11)

Since Sj; is Polish space, by the Skorokhod theorem, we can construct processes
(9=, 0, W.) such that the joint distribution of (., W.) is the same as that of (v., W),
and the distribution of v coincides with that of ¥, and v. — v a.s. in the topology.

Set w(t) := 65 — 0. It suffices to prove that w. — 0 in probability in
L([0, T, H) N L*([0, 7], H*) n C([0, T, H?).

Let 05 be the solution of the Galerkin approximations to (4.5.11). Then by
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Theorem 4.5.7, we know that ¢ converge in probability to 05 as elements in
L*([0,T],H). Also let 8 be the solution of Galerkin approximation to (4.5.8),
then 07 — 6; P — a.s. as element in L*([0,T], H).

Set wl(t) := 05— 03, then 1to’s formula and (4.5.9) implies that

s O +2n [ 1At =2 [~ V0Lt + - V0w
+ [ PG 0n(s) = PG (o)t (o))
+f/ W, PaGO" )dW) + / I LGOI, e s
__ 2/0 (s - VO, wlVds
+ [ (G060~ Gz s) o)
+ [ GO ) — ot (s))ds
+f/ w?, G0 )dW) + / | PG00 ) 17, kc.ry A
_Ammaﬁ%HXM%me”+mmmww
+ [ (GO ) — ot ut(s))ds
+f/ wl, G0 )dW) + / 1P G012, .1y s
Here we write v, = 5, for simplicity. Now let 7 — 0o, we obtain
)+ [ 1A ds < [ Cloup AP0 o s
[ (GO )~ sl + V7 [ e G0 0w) (4512

/WG%MMH

Similarly we define

elt) = [ GO we(s) =~ ol5)is

Then h.(t) — 0 in C([0,T],H"). By Itd’s formula and the same arguments as
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(4.5.10), we have

/O(G(Qv(S))(ve(S)—U(S))ywe(8)>d8 §5|w5(t)|2+0(1+/0 A0, |*ds) sup ||he(s)|

s€[0,7

v (e, G0 ) AW,

By the Burkholder-Davis-Gundy inequality one has

t T
VEE sup | [ (w. — he, G(0,)dW)| <2ZE( / w, — hePIG(6,.) 2
tel0, 7] Jo 0
<Cy/z

Combining the above estimates with (4.5.12) and applying the Gronwall lemma we
have

%Q(KH)dS

¢ ¢
sup |w5(s)|2+g/0 |A%w, [2ds S(C’(l—i—/o |A*0,.|*ds) sup | h(s)]

s€[0,¢] s€[0,T

HS

t

+ve sup | [ (w. — he, G(0,,)dW)|

tefo,7] Jo

t
+§ /0 ||G(0’UE) H%Q(K,H)ds) eC’foT sup,, |[AO™ |20/ 2a=1) 1|y, (2)dr_

Define .
TNe =T Ninf{t : / |A“0,_(s)|*ds > N}.
0

Then we have

TN,e
sup |w.(t)]* + E/ |A“w,|*ds — 0
0

te[0,7 N ] 2

in probability as € — 0.

Let N be fixed. It is easy to show that for a suitable constant C

C
. _msq_ &
lugl_)lglf P(tye=T)>1 N
Therefore,
o [T
sup |w.(t)|* + —/ |A%w,[*ds — 0
te[0,7] 2 Jo

in probability as ¢ — 0. U

HS
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4.6 The small time large deviations result in the

subcritical case

In this section, we consider the small time large deviations result. The approach
is similar to [XZ09]. We consider again the stochastic quasi-geostrophic equation
(4.5.2) and G satisfies Hypothesis 4.5.5, then by Theorem 4.4.4, for 6y € LP, there
exists a pathwise unique strong solution of (4.5.2) in L*°([0, T, H)N L*([0,T], H*)N
C([0,T), H=#), for B > 3.

Moreover, we consider the following conditions:

A.1) There exists a constant L such that [|G(O)||7,x ) < L(1 + [|0]|%:) for all
gc H.

A.2) There exists a constant L, such that ||G(6) —G(6,)]|
for all 6,60, € H'.

%Q(K,Hl) S Ll”e_el”?_[l

Let € > 0, by the scaling property of the Brownian motion, it is easy to see that
0(et) coincides in law with the solution of the following equation:

67 (t) + e AGF(£)dt + eus(t) - VO (t)dt = /EG(6°)dW (t) (4.6.1)

with 6°(0) = 6y. Let u be the law of #° on L>([0,T], H~/2).

Remark 4.6.1 Since the solution is not as regular as in for 2D Navier-Stokes
equation, we cannot deal with the nonlinear term as in the 2D Navier-Stokes case.
So we cannot consider the problem on L>°(0,7, H) as Xu and Zhang did in [XZ09].
Here we can only obtain the large deviation principle on L*>([0, T, H~/2).

Theorem 4.6.2  Suppose Hypothesis 4.5.3, A.1), A.2) holds, then for 0, € L?,
pif satisfies a large deviation principle on L ([0, 7], H~'/?) with the rate function I
given by

. e
I(f) = inf {5/ lv(s)|3ds}. (4.6.2)
{veL2([0,T],K):f=00+ [y G(f(s))v(s)ds)} 0

Proof Let v® be the solution of the stochastic equation
t
ve(t) = 0 + \/E/ G(v(s))dW (s),
0
and v¢ be the law of v° on L*®([0,T], H~'/?). Then by [Li09], we know that v°

satisfies a large deviation principle with the rate function /. Our main task is
to show that two families of the probability measures p° and v are exponentially
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equivalent, that is, for any ¢ > 0,

hmelog P(sup |[AYV2(0°(t) — v5())]* > 6) = —oc. (4.6.3)

0<t<T
Then Theorem 4.6.2 follows from [DZ93, Theorem 4.2.13].
Now we prove the following Lemmas.

Lemma 4.6.3

lim sup 5logP( sup. HHE( Wiy > M) = —c0.

M—oc0 0<e<1

Proof Now consider the approximation 8" to 6° as in Theorem 4.3.3 and by [Kr10,
Lemma 5.1], we have

1611z, _||90|| / =0 [ B P26(5) (A0(s) + u(s) - T0(s))d
p—1e /|9 yMZyG dx)ds
+pvE / [ 0P 060 ded (s
<100l + [ oo =1)e [ 10023 1GO()) e s
oV [ [ 0P 60 ar
< (1667, +5/ / 0(s |pdx+C/ Z|G )27/ ) ds
—i—p\/g/o N 10(5)|P20(s)G((s))dzdW (s).
Here we write for simplicity 6(t) = 6" (¢, x).
Then by Hypothesis 4.5.5 (ii), we have

T
sup, 10@)Nz» <ll0ollzr +eCT + Cf:‘/ sup [|0(t) |7, ds
tel0,T

te0,s]

+pVe sup ! N 0(s)["~20()G(0(s))ddW ().

0<t<T
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Hence, for ¢ > 2 we obtain

(E( sup [[0)I75)"" <[16o]I%, +8CT+CS(E(/O sup [[0(t)][7,ds)")"?

te[0,T) te0,s]

+pve(E sup \/ / 10(s)[P~260(5)G(0(s))dzdW (s)|9)1/4.

0<t<T

To estimate the stochastic integral term, we will use the following result from [BY82]
and [Da76] that there exists a universal constant ¢ such that for any ¢ > 2 and for
any continuous martingale M; with My = 0, one has

1M |20 < cq ([ (M) 1o, (4.6.4)
where M} = supgc,<; | M.

Using this result and Minkowski’s inequality we have

Esuwp || 2!9 $)[P720(s)G (0(s))dadW (s)|7)"/1

0<t<T T

< pey/ge(E / / 16(s)|P~( Z\G )12 ) 2ds)9/%) e

< peyV/aE(E (sup 10(s) / / Z|G )PP 2dx )P ds) /2 )e) Ve

s€l0,T

< peyEE(E( st 1009 / (. (5 GOy dolas) )

1
< 308 s 10"+ elr)(a=) (B 7 / (S IGEN )PPy
se X
1
< 308 sup IO+ elp)aey( [ 1+ (Lot ) ).
s€[0,7T 0
Thus

T
(B( sup [|0(8)[24))/2 <2[6o||%, + CT + C= / (E sup [6(1)][2%)"/9ds
0

te[0,T] t€(0,s]

+C(P)(q5)p/2(/ L+ (E|l6(s)][75)"/ds).

0

Applying Gronwall’s lemma we obtain

<E<£[1£] 169 < (21|60l + eCT + c(p)(ge)?*T) exp(Ce + c(p)(ge)*’?).
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Let n — oo we have

(E(sup [|0°()[175))"" < (20|00l[7, + eCT + c(p)(ae)”*T) exp(Ce + c(p)(ge)”?).

t€[0,T]

Since
P(sup [0°()|7, > M) < M ?E( sup [[0°(t)[75),

0<t<T te[0,T]
let ¢ = 2/e we get

elog P(sup [|6°(1)|[}, > M) < —2log M + 2log(E( sup [|6°(t)[[7%))"*
0<t<T

t€[0,T]

< —2log M + 2log(2||0o]]%, + eCT + CT) + 2Ce + 2C,
hence the proof is complete. O

Since H' is dense in H, there exists a sequence 6y C H' such that lim,, |0f —0o| =
0. Let &, be the solution of (4.6.2) with the initial value 6. From the proof of Lemma
4.6.3, it follows that

hm sup sup e log P( sup HGE( Wiy > M) = —cc. (4.6.5)
M—oo n 0<e<1
Let v be the solution of (4.6.3) with the initial value 6. We have the following
result whose proof is very similar to (but simpler than) Lemma 4.6.3.

Lemma 4.6.4 For any n € Z*,

lim sup elog P( sup_ oS ()]|5: > M) = —oo0.
M—00 gce<1 0<t<

Lemma 4.6.5 For any § > 0,

lim sup elog P( sup H@E( ) — (t)H%,_l/2 > 0) = —00.

N—=00 <e<1 0<

Proof For M > 0, we define the following stopping times with respect to F;",
Ten = Inf{t o ||0°()||}, > M}.

Clearly,
P( sup [[#,(t) - 0" ()52 > 0, sup [[0°(1)]|7, < M)
0<t<T

0<t<
) o (4.6.6)
<P( sup  [|65(8) = 6°()[[5-12 > 0).

0<t<TATc M
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Let k be a positive constant and N = —F—
2

’ti\'—'

t/\T67 E
Applying Ito’s formula to e=5Jo =" 10°E0ds | \=1/2(0% (AT, 5p) — 05 (EATe0))2,

we get
ke fo TeM g2 (g Nd5|A 1/2(98(t/\TgM)_9 (t/\TaM))‘z

tATe, M S 6% ( N
+2sff/ e TR IO OIZndr | N2 (05 (5) — 05 (s)) [2ds
0
t/\Ts,]W S 1pe | N 1
1A (0 — 0P — ke / e Ve 2 X A5 (6 (s) — 65 (s)) s
tAT M s |1 pe NO
_%/ e RS I IERdr (e 70° — uf - YOS, AN (0° — 6°))ds
tATe M N
va [T ke e gy A G) - G )
tATe M SN g _ c <
+€/0 eI IR ATV2G (%) — GO s s

Notice that

(VO —u;, VL, A (07 =03,)) = ((ug,—u)- VO, A0, —0%)) +{(u-V (0, —0°), A~ (67, —67)).

By [Re95], we have
((us —u) - VO, AHO5 —6°)) =0, (4.6.7)

n

and

[ -V (05, — 0°), A (05, — 0)| <[l 165, — O°[| Lo [ VAT (O, — %) 1
<Clu o 1(65, = ) 11 [IVATHO, = 09[4
<Clluf | o [|A7H67, = )2

1
H' P

13 — e 5 _ c 2(1—
<Cl16° e IA1(05, — ) I I A (65, — 69)]

H1/2 1+a
<k|AT2 (65, — 6°)]7 + C|6°|| 1| AT 2 (65, — 69)%.
(4.6.8)

Here 117 +;z% =1for 0<1/p<a—1/2, and we use H'/? < L¥". Therefore,

7]6 f s]ﬂ |95 Nd3|A 1/2<0€(t/\7-5M) —9 (t/\TsM))‘

tAT M
+25/1/ ke o 107 (I d’”|A°‘_%(05(s) — 0 (s))|ds
0

. tATe M S 051N dr 1
<A (0 — O3 — ke / eI R 7 5 |AE (6% (s) — 05 (5)) ds
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tATe M S 1pelIN N
w2e [ W AT 0, - 0 + O AT, ) s
tATe M [
sagE [T R (g ) AVAGO) ~ GOV ()
0

tATe, M
+Ca/ ¢k J3 10| A <172 g2 _ ey 24
0
Choosing k > 2C and using (4.6.4), we have

(B[ sup et o IOl A2 (9%(5) — 67 (5))[*])*/9

0<8<t/\7'5 M

<2A"F (B — [

t
O+ (B[ sup e RICOS A ) — 05 (5) 0,
0

0<r<sAT¢ m

Applying Gronwall’s lemma, one obtains,

(B[ sup e Rl IO A=12(6%(s) — 65 (5))[*)7)*/

0<S<T/\T€ M

<2|A73 (G — 6| *eClrr).

Hence,
(B[ sup  [ATV2(6°(s) — 6;,(s))[])*/
OSSST/\TSJ\/[
§262kMN/PT|A—%(90 . 98)’460(@5%—52).
Fix M, and take ¢ = 2/¢ to get

sup ¢log P( sup 165.(t) — 0°(t)|| gr-1/2 > 0)

0<e<1 0<
FElsu AY2(6%(s) — 67 (s))]%
< sup clog [ Pogng/\rE,M| q (0°(s) — 67.(s))|*] (4.6.9)
0<e<1 )

<2k MN/PT 4 log2|A‘é(90 —0)|* —2logd + C — —o0, as n — oo.

By Lemma 4.6.3, for any R > 0, there exists a constant M such that for any
€ (0, 1], the following inequality holds

P(sup [|6°(t)||h, > M) < e R/5. (4.6.10)

0<t<T

For such M, by (4.6.6), and (4.6.9), there exists a constant Ny such that for any
n Z N07

0<e<1 0<

sup ¢log P( sup. HGE( ) — ()| g > (5,0iu£)TH95(t)Hip) < —R. (4.6.11)
<t<
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Putting (4.6.10) and (4.6.11) together, one sees that there exists a positive integer
Ny such that for any n > Ny, e € (0, 1]

P sup [[05(t) — 6°(1) 32 > 6) < 271

0<t<T

Since R is arbitrary, the conculsion in the lemma follows. O

The next lemma can be proved similarly as Lemma 4.6.5.

Lemma 4.6.6 For any 6 > 0,

lim sup elog P( sup Hv (t )—Uf(t)||§{_1/2 > 0) = —o0.

n—00 0<e<1 0<

Lemma 4.6.7 For any ¢ > 0,

hmglog P(sup |[ATV2(05(t) — o5 (1) > 6) = —oc.

Up
0<t<T

Proof For M > 0, we define the following stopping times:
7oy = inf{t: v (8)]13: > M},

Then we have

P( sup [[0,(t) - VE ()21 > 0, sup o5 (1)]|2n < M)
0<t< 0<t<T
<P( sup  |[0(8) — v (D) -1s2 > 0).

0<t<TAT? ),

Applying Ito’s formula to |A~Y2(vE (¢ A T2 y) — 05t ATe))]?, we get

t/\‘r?’M 1
AT2(E(E AT ) = 05 ATT DI + 20 / A3 (15 (s) — 05(s)Pds
INTTY op

9. / M (A9, A7 (05 ) — 05 (5)))ds + 20 / s - VL AT (0 6))ds

0

+2\f/MT6M T2 (v; = 07), A V(G (wn) — GU9;))dW (s)

t/\T
te / T IATR(GE) — GO 2, s,
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Notice that by the similar argument as (4.6.7) and (4.6.8), we have

[ur, - VO, AT (0f, = O)) ] =[((uy, — ui,,) - VO ATHO;, — v7))

(s, - V(0 = i), AT 0 = v5)
(u, - Vo, A0 — o))
<SIATTH (0, — o) P

FONE N IATY(8: — 052 + Olfog L.
Thus
t/\‘r?’M L
ATV2(E(E AT ) — B (AT )P + 22k / AT (0 (s) — 65 (s)) 2ds

t/\TEM K 01
<o [ DA b i) — o)) + A i

0

M K 2 N 1/2 2 4
+25/ CIATTE (O — o)) + ClEIRIATVA0; — of)? + Cof s
LoyE / ATV2(05 — 0), A"V2(G(E) — GI(62))dW ()

t/\T e M
—|—56’/ IA™Y2 (05 — 6°)|2ds.

0

Using Gronwall’s lemma, we obtain
ATY2 (g (8 AT y) = O (E ATE L))

t/\Ts,M )
§(2€/ CIA" 3052 4 O v |1 ads+
0

n
t/\TE,]VI

NG / AYV2(05 — 02), AV2(G(u5) — G(O2))dVY (5)) )€

Using (4.6.4), we have

[|vg, ngds-i-Cts

(B[ sup |A7V2(vi(s) — 65 (s)) 202/

Ogsgt/\Tg’M

t
<Ce M PGt (V[ 4 e M + ge / (B[ sup  |ATY2(0E(r) — 65(r))|2)9) ¥/ ds).
0

OSTSS/\T&A{
Applying Gronwall’s lemma, one obtains,

(E[ sup ‘A_l/Q(U;(S) _ 02(8))’2]q)2/q

0<s<TATe M

<CesCMN/2+Ct6<8M + 6MQ) exp CngesCMN/%Ctg
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Fix M, and take ¢ = 2/ we have

elog P( sup [|65,(t) — v5,(t)[|3 12 > 9)
0<t<T

E[supg<ocrpr, ,, [N (v (s) = 07,(5))[*]

<eclog

54
<log C(eM + eM?) — 2log 4 + CefOMNP4Cte L cOMN2 4 Cte — —o0, as € — 0.
(4.6.13)
Thus, there exists a £q9 such that for any e satisfying 0 < € < &,
P(sup [|65() = 05 (D151 > 6, sup [[o°()][7p < M) < e, (4.6.14)
0<t<T 0<e<T

By Lemma 4.6.4 and (4.6.14), one sees that there exists g such that for any e
satisfying 0 < ¢ < g,

P(sup [|65(t) — vy (8) | 3-12 > 0) < 2e77/°,
<T

n

Since R is arbitrary, the conculsion in the lemma holds. 0

By Lemmas 4.6.5, 4.6.6, we have for any R > 0, there exists N satisfying

P( sup [|65,(t) — 6°(t)[|3-1/2 > 0) < e B/5 for any ¢ € (0,1],
0<t<T

and

P(sup [[vg, (t) — v°(t)[|5-1/2 > 0) < e f/% for any e € (0, 1].
0<t<T

By Lemma 4.6.7, for such Ny, there exists g such that for any ¢ satisfying 0 < € < ¢,

P(sup (185 (1) = viq ()12 > ) < 77

Thus, for any e satisfying 0 < € < g,

P( sup ||0°(t) — v‘E(t)qu_l/2 >0) < 3e Bz,

Since R is arbitrary, we conclude that

limelog P(sup [ATV2(6°(t) —v°(1))]* > 6) = —o0.
e—0 0<t<T
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