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Introduction

The study of interacting particle systems is motivated by a large class of
applications in various disciplines. As a sub-class of the huge field of com-
plex systems, they originally appeared in statistical physics as mathematical
descriptions of physical phenomena. In particular, one has to mention here
microscopic descriptions of the behavior of gases or, in the case of the fa-
mous Ising model, the magnetization of ferromagnets. They are also used
as models for sociological and enonomical behavior as well as for biological
and ecological systems. Important examples here, aside from the classical
physical models, are infection spreading and agent behavior models or birth-
and-death processes and population dynamics. Thus, depending on the area,
one also speaks of agents or individuals instead of particles and hence of in-
dividual based models.

One can basically distinguish between two classes of interacting particle
systems. The first one consists of the so called lattice models. Here particles
live on a discrete space like the lattice Zd, d ≥ 1, or, more generally, an infinite
graph. Note that Zd has a natural graph structure, where the vertices are the
points of Zd and x, y ∈ Zd are adjacent if and only if their Euclidean distance
equals to one. The second type of models are the continuous ones, where the
underlying space is the Euclidean space Rd or a Riemannian manifold.

For many problems from applications, lattice models are an appropriate
description of the situation, e.g., for network models (internet, social net-
works) or models based on crystallic structures. But often it is much more
reasonable to consider the continuous case and lattice models are only used
as a technically easier alternative. Therefore, continuous versions of many
classical lattice models like lattice gas or birth-and-death dynamics (for fur-
ther examples of lattice models see, e.g., [Lig85]) have been developed and
studied.

The general framework for continuous infinite particle models is configu-
ration space analysis. The configuration space Γ over a Riemannian manifold
X consists of all locally finite subsets of X, i.e., of all sets of points without
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6 INTRODUCTION

accumulation points in X. The points of a configuration reflect the particles
or individuals in a model. Thus, a configuration describes (infinitely many)
indistinguishable particles. Each configuration γ ∈ Γ can be identified with
a positive integer-valued Radon measure by identifying each of its points
x ∈ γ with the Dirac measure with unite mass in concentrated in x. Thus, Γ
obtains a topological structure induced by the vague topology on the space
of all Radon measures on X. Furthermore, Γ has a natural differentiable
geometry obtained as a lifting of the geometry of the underlying manifold,
cf., e.g., [AKR98a, AKR98b]). Even for X = Rd, this geometry is non-flat.
Measures on Γ (with the Borel σ-algebra), so called point processes, describe
states of particle systems. The state of a system without interaction is de-
scribed by the Poisson measure. Introduction of interaction via potentials
then leads to the notion of Gibbs states. Together with the gradient from
the differential geometry, this allows to construct Dirichlet forms describing
stochastic processes on Γ, e.g., free equilibrium diffusion in the case of the
Poisson measure or diffusions of infinitely many particles interacting via pair
potentials in case of the corresponding Gibbs measures. See, e.g., [MR92] for
the general theory of Dirichlet forms and associated stochastic processes.

In this work, we study three infinite particle resp. individual based models
on Rd. The first model is the diffusion (Xt)t≥0 of a particle in Rd interacting
with the points of a random configuration via a pair potential. We will apply
a general technique developed by C. Kipnis and S.R.S. Varadhan [KV86] and
A. De Masi et al. [DFGW89] to obtain an invariance principle for this pro-
cess, i.e., the convergence to a Brownian motion under a space-time scaling.
Note that Xt describes a stochastic dynamics on Rd. But for application
of the invariance principle scheme, we have to work with the corresponding
environment process, i.e., the motion of the environment as seen from the
point of view of the moving particle. This gives a stochastic process on the
configuration space Γ.

The second model we discuss is a tagged particle dynamics, i.e., the
motion of one marked particle in an infinite interacting system of identi-
cal particles. This process has been constructed recently by T. Fattler and
M. Grothaus [FG08]. We will apply the same technique as for the diffusion
in random environment to obtain an invariance principle here, too.

For both models, the diffusion in random environment and the tagged
particle process, invariance principles have been discussed in [DFGW89], but
only on a heuristic level. And nevertheless, the authors have to make strong
assumptions on the interaction potentials like boundedness, positivity, and
finite range, which are hardly ever satisfied in realistic models. In contrast to
this, we can show all necessary results rigorously for a wide class of potentials
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as appearing in applications from statistical physics.

While the first two models are of a physical nature, the third model
studied in this work describes a population dynamics, namely a continuous
birth-and-death process with jumps. We will prove the existence of invariant
measures for this dynamics and a corresponding ergodicity result.

In the following we will give a more detailed overview over the contents
and results of this work.

Configuration spaces

In Chapter 1, we recall basic definitions and general results from configuration
space analysis. Although one can basically consider configuration spaces over
Riemannian manifolds or even more general topological spaces, we restrict
ourselves in the presentation to the case where the underlying space is Rd,
since all models considered in this work are based on this space.

After an introduction containing general notations used in this work, we
recall the definitions of finite, of simple, and of multiple configurations, and
we introduce the topologies on the corresponding spaces Γ0, Γ, and Γ̈, resp.
Of course, by having a topological structure on the configuration spaces, we
can consider them as measurable spaces by introducing the corresponding
Borel σ-algebras. The basic measures on Γ0 and Γ are the Lebesgue-Poisson
measure and the Poisson measure, resp., which are introduced in Section 1.3.
As mentioned above, Γ has a natural geometric structure obtained by lifting
of the underlying manifold geometry. It can be shown (see [AKR98a]), that
the mixed Poisson measures are the proper volume elements for this geometry.

The Poisson measure on Γ corresponds to the “free” case, i.e., it describes
a state of a system of non-interacting particles. If one introduces interaction
of particles via potentials, this leads to the notion of Gibbs measures. In Sec-
tion 1.4 we recall the definitions (via Dobrushin-Lanford-Ruelle equations) of
grand canonical and canonical Gibbs measures for general potentials. After-
wards we discuss the important case of two-body interactions via (symmet-
ric) pair potentials. We recall the well-known characterization of such Gibbs
measures via the Georgii-Nguyen-Zessin identity, cf. Proposition 1.4.8. After-
wards, we recall an existence result for grand canonical Gibbs measures w.r.t.
pair potentials, more precisely for so-called Ruelle measures (see [Rue70]),
where the basic intensity measure is the Lebesgue measure dx, and, more gen-
erally, for Gibbs measures w.r.t. an intensity measure absolutely continuous
w.r.t. dx with bounded Radon-Nikodym derivative (see [FG08]). This result
holds, for instance, for the Lennard-Jones potential, which has a singularity
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at zero, a negative (i.e. attractive) part, and an infinite range. For the mod-
els considered in Chapter 2 and Chapter 3 we always have such potentials in
mind.

In Section 1.5, we present the mentioned lifting procedure of the geometry
of the underlying space to the configuration space. We introduce the intrinsic
gradient ∇Γ on Γ and show how it acts on so called smooth bounded cylinder
functions FC∞b . The pre-Dirichlet forms in the later chapters will be defined
on this class of functions. Furthermore, we introduce another flat gradient
D corresponding to spatial shifts of configurations.

The last section of this chapter is on harmonic analysis on configura-
tion spaces as developed in [KK02]. The basic object here is the so-called
K-transform, which maps functions on the finite configuration space Γ0, so-
called quasi-observables, into functions on Γ, so-called observables. The ?-
convolution, a combinatorial convolution of quasi-observables, is mapped into
a product under the K-transform, i.e., K(G1 ? G2) = KG1 · KG2. Thus,
the K-transform can be considered as a combinatorial Fourier transform for
configuration space analysis. Via dualization, one obtains a transform K∗

mapping a probability measure on Γ into a measure on Γ0, the correspond-
ing correlation measure. If the latter one is absolutely continuous w.r.t. the
Lebesgue-Poisson measure, then its Radon-Nikodym derivative, or more pre-
cisely the corresponding system of densities w.r.t. the underlying intensity
measure, is just the well-known system of correlation functions from statis-
tical physics.

Invariance principle for a diffusion in random environ-
ment

The first model studied in this work is the diffusive motion of a particle
in a random environment consisting of a configuration of infinitely many
other (frozen) particles. The interaction of the diffusing particle with the
environment is described by a symmetric pair potential VI , which may be of
Lennard-Jones type. The randomness of the environment is given by a Ruelle
measure µE w.r.t a symmetric pair potential VE (not necessarily coinciding
with VI). In physical language, this means that the diffusing particle and the
environment particles may be of different nature.

We apply a general scheme (see [DFGW89]) to this model to prove an
invariance principle for the corresponding process. We recall this framework
and the necessary conditions for its application in Section 2.1. This also in-
cludes the precise definition of an invariance principle in the first subsection
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as well as the most famous example, namely Donsker’s invariance principle,
i.e., convergence of a simple random walk to a standard Brownian motion.
The aforementioned approach applies to a process (Xt)t≥0, which can be writ-
ten in the so-called standard decomposition consisting of a square-integrable
martingale and an integral over the mean forward velocity of a Markov pro-
cess. In applications, this Markov process is the environment process of
(Xt)t≥0.

In Section 2.2, we give the precise definition of the studied model in terms
of the corresponding stochastic differential equation. Usually, one would solve
this equation for a fixed environment and any possible starting point, thus get
the corresponding diffusion process (Xt)t≥0, and then obtain the environment
process by shifting the environment by −Xt, t ≥ 0. But we will construct
the environment process directly (see Subsection 2.3.3) as a process on the
configuration space and then obtain the one-particle process via the standard
decomposition. But for the sake of completeness, we have included some
known results on weak and even strong solutions of the stochastic differential
equation (see [KKR04, KR05]) in this section.

In Section 2.3, we construct the environment process using the general
theory of Dirichlet forms, cf., e.g., [MR92]. The pre-Dirichlet form associated
to this process has the following representation

ED
µ∗(F,G) :=

∫
Γ

(
DF (γ),DG(γ)

)
dµ∗(γ), F,G ∈ FC∞b .

Here, µ∗ is absolutely continuous w.r.t the Ruelle measure µE and the density
expression includes the interaction VI . Via an integration by parts formula,
we obtain the corresponding pre-generator and show that the form is clos-
able and its closure is a symmetric, conservative Dirichlet form. Afterwards,
we prove quasi-regularity of the form on the bigger space Γ̈ of multiple con-
figurations as well as locality. Thus, by the general theory, we obtain the
existence of a corresponding diffusion on Γ̈. By proving that the set Γ̈ \ Γ
is exceptional for this Dirichlet form, we show that the diffusion is, in fact,
supported by the smaller space Γ.

In the last section we show how to apply the general approach in the
considered model. We get the diffusion in random environment via the stan-
dard decomposition and obtain an invariance principle for this process. To
this end, we also have to assume ergodicity of the environment process. We
recall a general result on ergodicity of processes in terms of irreducibility of
the corresponding Dirichlet forms.

All results in this section are valid for a large class of interaction potentials
including the Lennard-Jones potential.



10 INTRODUCTION

Invariance principle for a tagged particle process

In Chapter 3, an invariance principle for another model is discussed, namely
for a tagged particle process. Consider an equilibrium diffusion of infinitely
many (indistinguishable) particles interacting with each other via a symmet-
ric pair potential. Then the tagged particle process describes the motion of
one of these particles in the environment of the others. We explain this model
with more details in terms of a system of stochastic differential equations at
the beginning of Chapter 3.

In a recent article by T. Fattler and M. Grothaus [FG08], a tagged particle
process was constructed rigorously for a wide class of interaction potentials
including Lennard-Jones type ones. They used a Dirichlet form approach
similar to the one in the previous chapter. In particular, the corresponding
environment process was constructed directly. We will recall their construc-
tion results in Section 3.1. In particular, we will explain in all details, how to
construct the environment process, to apply the invariance principle scheme
later.

Afterwards in Section 3.2 we will prove the remaining conditions to apply
the general scheme for invariance principles explained in Section 2.1. As well
as the model in Chapter 1, also this model had been treated in [DFGW89]
only on a heuristical level and under strong assumptions on the interaction.
Here, the invariance principle is proven for general potetials like Lennard-
Jones, and the proof is done in all necessary rigor.

Continuous contact model with jumps

In the final chapter, we will discuss a continuous contact model with jumps.

The lattice version of the contact model is well-studied. The name is due
to its interpretation as a model for infection spreading. Namely, consider
the lattice Zd with the abovementioned graph structure and introduce a
spin σ(x) ∈ {0, 1} for each vertex x ∈ Zd. The interpretation is, that the
vertices represent the individuals of a society or a population and the edges
of the lattice stand for contacts between the individuals. A spin σ(x) = 0
stands for a healthy individual x, and σ(x) = 1 says that x is infected with
a certain disease. The dynamics then is the following: infected individuals
become healthy after an exponentially distributed random time with fixed
rate, and healty ones become infected with a rate proportional to the number
of infected neighbors. Another interpretation of this model is a birth-and-
death dynamics on the lattice. Here σ(x) = 0, 1 represent free sites and those
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ones occupied by individuals, resp. Then individuals die (“become healthy”)
with a fixed rate or produce offspring on a free neighbor site with a certain
rate. Note that this is a model of biological evolution, since new individuals
only arise from existing ones.

In recent years, a continuous version of the contact model has been devel-
oped, see, e.g., [KS06, GK06], where individuals do not only live on lattice
points but on the whole continuum Rd. More precisely, the individuals are
represented by the points of a configuration γ ∈ Γ. This case is essentially
different from the lattice case. Namely, since there is no notion of neighbors
anymore, one has to change the mechanism of giving birth to new individ-
uals. This is done by introducing a probability distribution a(x) dx, a ≥ 0,
even, with 〈a〉 :=

∫
a(x)dx = 1. Thus, an individual at point x produces

offspring with a fixed rate κ > 0 and spatially distributed w.r.t. a(x− y) dy.
On the other hand, this mechanism simplifies the model compared to the
lattice case, since the problem of free neighbor sites for the offspring disap-
pears. Namely, for a given configuration γ ∈ Γ of individuals, almost every
(w.r.t. the Lebesgue measure) points in Rd are free.

Note that, in the contact model, the motion of individuals is not con-
sidered. The model only applies to immobile individuals like plants. In this
work we modify the continuous contact model by allowing motion in the form
of jumps of individuals.

Individual based models on the configuration space can be described in
terms of corresponding (formal) generators describing the mechanism of the
dynamics. The one for the continuous contact model has the form

(LCF )(γ) :=
∑
x∈γ

[F (γ \ x)− F (γ)] + κ
∫

Rd

∑
y∈γ

a(x− y)[F (γ ∪ x)− F (γ)] dx

for proper functions F on Γ. Here κ and a are as above. The first summand
describes the death of individuals (the model is normalized to a death rate
equal to 1), and the second one the birth mechanism. In the model studied
in this work, we will add a jump generator to LC , the generator of a so-called
free Kawasaki dynamics. So, the continuous contact model with jumps is
described by

(LCJF )(γ) :=(LCF )(γ) +
∑
y∈γ

∫
Rd
w(x− y)[F (γ \ y ∪ x)− F (γ)] dx.

Here w > 0 is an even density function, but not necessarily normalized. In
particular, the usual contact model (w = 0) is included in our considerations.
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In the second section of Chapter 4, we will construct a continuous contact
model for a given initial configuration from a certain set of admissible ones.
The basic assumption is a fast enough decay of the birth and the jump distri-
butions a, w at infinity, namely we assume a decay faster than polynomially,
see Theorem 4.2.2.

In Section 4.3, the model is studied in terms of corresponding correla-
tion functions of the states. Via the framework of harmonic analysis, the
mechanism of the dynamics is transported to the level of correlation func-
tionals and correlation functions. This gives a Focker-Planck equation and,
for a given initial system of functions (k

(n)
0 )n at time zero, a corresponding

Cauchy problem, which we will solve, see Proposition 4.3. We will prove a
priori bounds for the solution, namely if the initial system has a factorial
growth, i.e., k(n)

0 ≤ Cnn! for some C > 0, then this property is preserved un-
der time evolution (but with a constant C(t) depending on the time). With
the help of this, we can also prove, that if the initial system is a system of
correlation functions of a measure µ0 on Γ, then for any t > 0, the solu-
tion (k

(n)
t )n is a system of correlation functions as well for some measure µt.

Note that this is not a priori clear. With this we obtain a time evolution
of the state of the dynamics and a corresponding Markov function Xµ

t , see
Theorem 4.3.

In Section 4.4, in the translation invariant, critical (i.e., κ = 1) case,
for dimension d ≥ 2, we prove the existence of a continuum of invariant
measures for the model parametrized by the corresponding density ρ > 0,
i.e., the first correlation function, under some conditions on a, w. Given an
initial state, we prove the convergence of the corresponding non-equlibrium
evolution of states to the equilibrium measure with the density of the initial
state. (See Theorem 4.4.2 for both results.) This theorem is the main result
in this chapter. Note that, in the case of the usual contact model, a similar
result was proven by Yu. Kondratiev, O. Kutoviy, and S. Pirogov [KKP08],
but their result is only valid for d ≥ 3, not in the biologically important case
d = 2. We show that, by allowing long jumps for the individuals, one obtains
invariant measures also in the latter case.

In the final section we discuss a result on clustering of the system in the
subcritical case κ < 1.
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Chapter 1

Configuration Spaces

In this chapter we will recall the basic definitions and results about continu-
ous configurations.

1.1 General notations

Throughout this work will use the following notations:

For a topological space X we will use the following notations:

O(X): the set of all open subsets of X;

B(X): the corresponding Borel σ-algebra on X;

Oc(X), Bc(X): all open resp. Borel-measurable sets in X with compact
closure;

L0(X): all (Borel-)measurable functions on X;

B(X): the set of all bounded measurable functions on X;

C(X): the set of all continuous functions on X;

C0(X): the set of all continuous functions on X with compact support.

On the space Rd, we will denote the Euclidean norm by |·| and the cor-
responding inner product by (·, ·). The Lebesgue measure on Rd is denoted
by dx.

15



16 CHAPTER 1. CONFIGURATION SPACES

1.2 The space of configurations

One can define the configuration space Γ(X) over a general locally compact,
Polish space. Here we will just recall the case X = Rd. For the general case
and further details we refer, e.g., to [AKR98a].

For Λ ⊂ Rd let Γ(Λ) denote the set of all locally finite subsets of Λ, i.e.,

Γ(Λ) := {γ ⊂ Λ : |γ ∩K| <∞ for all K compact}, (1.1)

where |·| denotes the cardinality. The sets γ ∈ Γ(Λ) are called configurations.
Γ(Λ) is called the (continuous) configuration space over Λ.

Furthermore, for n ∈ N, set

Γ
(n)
0 (Λ) := {γ ∈ Γ(Λ) : |γ| = n}

and
Γ

(0)
0 (Λ) := {∅}.

Then

Γ0(Λ) :=
∞⊔
n=0

Γ
(n)
0 (Λ)

={γ ∈ Γ(Λ) : |γ| <∞} (1.2)

denotes the space of finite configurations over Λ .

We write Γ := Γ(Rd) and Γ0 := Γ0(Rd).

For Λ ⊂ Rd let

Λ̃n := {(x1, . . . , xn) ∈ Λn : xi 6= xj if i 6= j} ⊂ (Rd)n.

Define the symmetrization mapping

symn : (̃Rd)n → Γ
(n)
0 ,

(x1, . . . , xn) 7→ {x1, . . . , xn}. (1.3)

This gives a bijection
Λ̃n/Sn → Γ

(n)
0 (Λ),

where Sn denotes the permutation group over {1, . . . , n}, and hence induces
a topology O(Γ

(n)
0 (Λ)). The space Γ0(Λ) is then equipped with the topology

O(Γ0(Λ)) of the disjoint union of the spaces
(
Γ

(n)
0 (Λ),O(Γ

(n)
0 (Λ))

)
, n ≥ 0.
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The space Γ(Λ) can be considered as a subset of the space of all positive
Radon measures over Rd via the following identification:

γ ≡
∑
x∈γ

δx, (1.4)

where δx denotes the Dirac measure with mass in x. ∅ is identified with the
zero-measure. Thus, Γ(Λ) is topologized by the vague topology on the space
of Radon measures, i.e., the weakest topology such that all mappings

Γ(Λ) 3 γ 7→ 〈f, γ〉 :=

∫
Λ

f(x) dγ(x) =
∑
x∈γ

f(γ), f ∈ C0(Λ),

are continuous. In the following, we will use the identification (1.4) without
further notice and the definition

〈f, γ〉 :=

∫
Λ

f(x) dγ(x) =
∑
x∈γ

f(γ)

for all functions f for which it makes sense.

Remark 1.2.1. One can show that Γ with the vague topology can be
metrized in such a way that it becomes a complete, separable metric space,
i.e., Γ is a Polish space (cf., e.g., [Kut03, Remark 3.11]).

The space Γ̈ of multiple configurations is defined as the set of all locally
finite Radon measures taking values in N∪{0,+∞}, equipped with the vague
topology as well. We have Γ ⊂ Γ̈ since

Γ = {γ ∈ Γ̈ : γ({x}) ≤ 1 for all x ∈ Rd}.

For Λ ∈ B(Rd) define

NΛ(γ) := γ(Λ), γ ∈ Γ̈, (1.5)

then

B(Γ̈) = {NΛ : Λ ∈ Oc(Rd)}, (1.6)
B(Γ) = {NΛ �Γ : Λ ∈ Oc(Rd)}. (1.7)

For Λ ∈ B(Rd), set

BΛ(Γ̈) := {NΛ′ : Λ′ ∈ Bc(Rd),Λ′ ⊂ Λ}, (1.8)
BΛ(Γ) := {NΛ′ �Γ : Λ′ ∈ Bc(Rd),Λ′ ⊂ Λ}. (1.9)

For Λ ⊂ Rd and γ ∈ Γ̈, we will write γΛ := γ �Λ (≡ γ ∩ Λ if γ ∈ Γ).
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1.3 Lebesgue-Poisson and Poisson measure

The basic measures on (Γ0,B(Γ0)) and (Γ,B(Γ) are the Lebesgue-Poisson
measure and the Poisson measure, respectively.

Fix a non-atomic, locally finite measure σ > 0 on (Rd,B(Rd)) and a con-
stant z > 0. σ is called intensity measure, and z is called activity parameter.

The n-product measure σ⊗n of σ can be considered as a measure on (̃Rd)n,
since σ⊗n

(
(Rd)n \ (̃Rd)n

)
= 0. Then the Lebesgue-Poisson measure on Γ0 is

defined as

λzσ :=
∞∑
n=0

zn

n!
σ⊗n ◦ sym−1

n . (1.10)

Here σ⊗n ◦ sym−1
n , n ≥ 1, denotes the image measure of σ⊗n under the

mapping symn on Γ
(n)
0 , and for n = 0 it is defined as δ∅.

If σ(dx) = dx, we just write λz instead of λz dx.

For Λ ∈ Bb(Rd) let
πΛ
zσ := e−zσ(Λ)λzσ �Λ .

Note that this defines a probability measure. The Poisson measure on Γ is
then defined as

πzσ := proj lim
Λ∈Bb(Rd)

πΛ
zσ. (1.11)

As above, we write πz := πz dx.

One can also characterize the Poisson measure via its Laplace transform.
πzσ is the probability measure on (Γ,B(Γ)) which satisfies∫

Γ

exp

(∑
x∈γ

ϕ(x)

)
dπzσ(γ) = exp

(
z

∫
Rd

(eϕ(x) − 1) dσ(x)

)
(1.12)

for every ϕ ∈ D, the Schwartz space of all infinitely differentiable functions
with compact support.

The following result is useful in applications:

Proposition 1.3.1 (Minlos-Lemma). Let n ∈ N, n ≥ 2, and z > 0 be given.
Then∫

Γ0

· · ·
∫

Γ0

G(η1 ∪ · · · ∪ ηn)H(η1, . . . , ηn) dλzσ(η1) · · · dλzσ(ηn)

=

∫
Γ0

G(η)
∑

(η1,...,ηn)∈Pn∅ (η)

H(η1, . . . , ηn) dλzσ(η) (1.13)
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for all measurable functions G : Γ0 → R and H : Γ0 × · · · × Γ0 → R with
respect to which both sides of the equality make sense. Here Pn∅ (η) denotes
the set of all ordered partitions of η in n parts, which may be empty.

For the proof we refer, e.g., to [Oli02].

Note that for a function H : Γ0 × Rd → R the Minlos-Lemma has the
form∫

Γ0

∫
Rd
G(η ∪ x)H(η, x) zdσ(x) dλzσ(η)

=

∫
Γ0

G(η)
∑
y∈η

H(η \ y, y) dλzσ(η). (1.14)

1.4 Gibbs measures

Fix an intensity measure σ on Rd and an activity parameter z > 0 as in
Section 1.3.

Let Φ be a potential, i.e., a function Φ : Γ → R ∪ {+∞} such that Φ =
Φ �Γ0 , Φ(∅) = 0, and γ 7→ Φ(γΛ) is BΛ(Γ)-measurable for any Λ ∈ Oc(Rd).

1.4.1 Grand canonical and canonical Gibbs measures

For any Λ ∈ Oc(Rd) the conditional energy EΦ
Λ : Γ → R ∪ {+∞} is defined

by

EΦ
Λ (γ) :=


∑

γ′⊂γ,
γ′(Λ)>0

Φ(γ′), if
∑

γ′⊂γ,
γ′(Λ)>0

|Φ(γ′)| <∞,

+∞, otherwise.
(1.15)

Grand canonical Gibbs measures

Definition 1.4.1. For any Λ ∈ Oc(Rd), γ ∈ Γ (boundary condition), and
∆ ∈ B(Γ) define the grand canonical specification as

ΠΦ
Λ(γ,∆) := 1ZΦ

Λ<∞
(γ)(ZΦ

Λ (γ))−1

∫
Γ

1∆(γ′Λ ∪ γΛc)e
−EΦ

Λ (γ′Λ∪γΛc ) dπzσ(γ′).

(1.16)
Here Λc := Rd \ Λ, and

ZΦ
Λ (γ) :=

∫
Γ

e−E
Φ
Λ (γ′Λ∪γΛc ) dπzσ(γ′)
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denotes the corresponding partition function.

It is well-known (cf., e.g., [Pre76]) that (ΠΦ
Λ)Λ∈Oc(Rd) is a specification, i.e.,

for all Λ,Λ′ ∈ Oc(Rd)

(S1) ΠΦ
Λ(γ,Γ) ∈ {0, 1} for all γ ∈ Γ;

(S2) ΠΦ
Λ(·,∆) is BRd\Λ(Γ)-measurable for all ∆ ∈ B(Γ);

(S3) ΠΦ
Λ(·,∆′ ∩∆) = 1∆′Π

Φ
Λ(·,∆) for all ∆ ∈ B(Γ), ∆′ ∈ BRd\Λ(Γ);

(S4) ΠΦ
Λ′ = ΠΦ

Λ′Π
Φ
Λ if Λ ⊂ Λ′.

Here for γ ∈ Γ, ∆ ∈ B(Γ)(
ΠΦ

Λ′Π
Φ
Λ

)
(γ,∆) :=

∫
Γ

ΠΦ
Λ(γ′,∆) ΠΦ

Λ′(γ, dγ
′).

Definition 1.4.2. A probability measure µ on (Γ,B(Γ)) is called a grand
canonical Gibbs measure with interaction potential Φ iff it satisfies the Do-
brushin-Lanford-Ruelle equations (DLR)

µΠΦ
Λ = µ (1.17)

for all Λ ∈ Oc(Rd). Here

µΠΦ
Λ(∆) :=

∫
Γ

ΠΦ
Λ(γ′,∆) dµ(γ′).

Let Ggc(zσ,Φ) denote the set of all such measures µ.

Remark 1.4.3. (i) We have µ({Zσ,Φ
Λ <∞}) = 1 for all µ ∈ Ggc(σ,Φ).

(ii) For a sub-σ-algebra Σ ⊂ B(Γ) and a probability measure µ on (Γ,B(Γ))
let Eµ[· | Σ] denote the conditional expectation with respect to Σ. For
G ∈ Bb(Γ) (= bounded B(Γ)-measurable functions) we set

(ΠΦ
ΛG)(γ) :=

∫
Γ

G(γ′) Π,Φ
Λ (γ, dγ′).

Then a probability measure µ on (Γ,B(Γ)) is a grand canonical Gibbs
measure if and only if for all Λ ∈ Oc(Rd) and all G ∈ Bb(Γ)

Eµ[G | BΛc(Γ)] = ΠΦ
ΛG µ-a.e.

(iii) We may always replace Oc(Rd) by Bc(Rd) without any changes. In
particular, we obtain the same set Ggc(zσ,Φ).
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Canonical Gibbs measures

Definition 1.4.4. For any Λ ∈ Oc(Rd), γ ∈ Γ, and ∆ ∈ B(Γ) define the
canonical specification as

Π̂Φ
Λ(γ,∆) :=

{
ΠΦ

Λ(γ,∆∩{NΛ=γ(Λ)})
ΠΦ

Λ(γ,{NΛ=γ(Λ)}) , if ΠΦ
Λ(γ, {NΛ = γ(Λ)}) > 0,

0, otherwise.
(1.18)

Then analogously to grand canonical Gibbs measures, also canonical
Gibbs measures are defined via the Dobrushin-Lanford-Ruelle equation:

Definition 1.4.5. A probability measure µ on (Γ,B(Γ)) is called a canonical
Gibbs measure with interaction potential Φ iff it satisfies

µΠ̂Φ
Λ = µ (1.19)

for all Λ ∈ Oc(Rd). Let Gc(zσ,Φ) denote the set of all such measures µ.

Remark 1.4.6. (i) By [Pre79, Proposition 2.1] the following inclusion
holds:

Ggc(zσ,Φ) ⊂ Gc(zσ,Φ). (1.20)

(ii) Ggc(zσ,Φ),Gc(zσ,Φ) are convex sets. Let exGgc(zσ,Φ), exGc(zσ,Φ) de-
note their respective sets of extremal points. Then, e.g., by [Pre76,
Theorem 2.2], it holds that

exGgc(zσ,Φ) 6= ∅, exGc(zσ,Φ) 6= ∅,

provided
Ggc(zσ,Φ) 6= ∅, Gc(zσ,Φ) 6= ∅, resp,

and that any canonical or grand canonical µ has an integral represen-
tation in terms of the respective extremal Gibbs measures.

1.4.2 Gibbs measures for pair potentials

A special class of potentials are pair potentials describing the interaction of
two particles.

Definition 1.4.7. A pair potential is a Lebesgue-measurable, even function
V : Rd → R ∪ {+∞}, i.e., V (x) = V (−x), x ∈ Rd.
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Let V be a pair potential. V defines a potential via

ΦV (γ) :=

{
V (x− y), if γ = {x, y},
0, if |γ| 6= 2.

Let Λ ∈ Oc(Rd). It is useful, to decompose the conditional energy EV
Λ :=

EΦV
Λ in the following way:

EV
Λ (γ) = EV

Λ (γΛ) +W (γΛ | γΛc), (1.21)

where

W V (γ | γ′) :=


∑

x∈γ
y∈γ′

V (x− y), if
∑

x∈γ
y∈γ′
|V (x− y)| <∞,

+∞, otherwise,

γ, γ′ ∈ Γ, denotes the interaction energy of γ and γ′. (Usually, we have
γ ∩ γ′ = ∅.)

For x ∈ Rd and γ ∈ Γ we call

EV (x, γ) := W V ({x} | γ)

the relative energy of a particle at x w.r.t. γ.

Consider an intensity measure σ and an activity parameter z > 0. We
write

Ggc(zσ, V ), Gc(zσ, V ),

for the Gibbs measures w.r.t. the corresponding potential ΦV . It is well-
known (cf., e.g., [KK03, Theorem 3.12]), that the grand canonical Gibbs
measures can be characterized by the following identity:

Proposition 1.4.8. Let µ be a probability measure on (Γ,B(Γ)). Then µ ∈
Ggc(zσ, V ) if and only if it satisfies∫

Γ

∑
x∈γ

H(x, γ) dµ(γ) =

∫
Γ

∫
Rd
H(x, γ ∪ x)e−E

V (x,γ)z dσ(x) dµ(γ) (1.22)

for any positive B(Rd) × B(Γ)-measurable function H. (1.22) is called the
Georgii-Nguyen-Zessin identity (GNZ). In the free case (V ≡ 0), it is known
as Mecke identity and holds only for the Poisson measure πzσ.
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Standard properties of pair potentials and existence of correspond-
ing grand canonical Gibbs measures

In Definition 1.4.9 below, we will formulate some standard conditions on the
potential V that ensure the existence of corresponding Gibbs measures (for
appropriate intensity measures σ). Therefore, we introduce the following
notations.

For r = (r1, . . . , rd) ∈ Zd define the cube

Qr := {x ∈ Rd | ri − 1
2
≤ xi < ri + 1

2
}.

Furthermore, set ΛN := [−N + 1
2
, N − 1

2
)d.

Let Ω1 := B1(0) and Ωn := Bn(0) \Bn−1(0), n ≥ 2, where Br(x) := {y ∈
Rd : |x− y| < r} denotes the open ball with center in x ∈ Rd and radius
r > 0. Set

Γfd({Ωn}n) :=
⋃
M∈N

⋂
n∈N

{γ ∈ Γ : |γΩn| ≤Mσ(Ωn)}, (1.23)

the set of configurations of finite density. A probability measure µ on Γ with

µ
(
Γfd({Ωn}n)

)
= 1

is called tempered.

Definition 1.4.9. For a pair potential V define the following properties:

(S) (Stability) There exists B ≥ 0 such that for any Λ ∈ Oc(Rd) and for
all γ ∈ Γ(Λ)

EV
Λ (γ) ≥ −B |γ| . (1.24)

(SS) (Superstability) There exist A > 0, B ≥ 0 such that if γ ∈ Γ(ΛN) for
some N then

EV
ΛN

(γ) ≥
∑
r∈Zd

(A |γQr |
2 −B |γQr |). (1.25)

(LR) (Lower regularity) There exists a decreasing positive function a : N→
R+ such that ∑

r∈Zd
a(‖r‖∞) <∞

and for any disjoint Λ′,Λ′′, which are finite unions of cubes of the form
Qr, and any γ′ ∈ Γ(Λ′), γ′′ ∈ Γ(Λ′′)

W V (γ′ | γ′′) ≥ −
∑

r′,r′′∈Zd
a(‖r′ − r′′‖∞)

∣∣∣γ′Qr′ ∣∣∣ ∣∣∣γ′′Qr′′ ∣∣∣ . (1.26)

(Here ‖·‖∞ denotes the maximum norm on Rd.)
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(I) (Integrability) ∫
Rd

∣∣1− e−V (x)
∣∣ dx <∞. (1.27)

(D) (Differentiability) The function e−V is weakly differentiable on Rd, V
is weakly differentiable on Rd \ {0}. The gradient ∇V , considered as a
Lebesgue-a.e. defined function on Rd, satisfies

|∇V | ∈ L1(Rd, e−V (x) dx) ∩ L2(Rd, e−V (x) dx).

(LS) (Local summability) Suppose that σ(Ωn) ≥ κ(n + 1) for some κ > 0
and all n ∈ N. For all Λ ∈ Oc(Rd) and all γ ∈ Γfd({Ωn}n) it holds that

lim
n→∞

∑
y∈γBn(0)\Λ

∇V (· − y) exists in L1
loc(Λ, σ).

Remark 1.4.10. (i) (SS) implies (S), and (S) implies that V is bounded
from below.

(ii) In applications, one often has V ∈ C∞(Rd \ {0}). Nevertheless, condi-
tion (D) does not exclude a singularity at point 0 here. (A singularity
at zero reflects repulsion of particles at small distances.)

Example 1.4.11. A concrete example of a potential satisfying all conditions
(SS), (I), (LR), (D), and (LS) (see [AKR98b, Example 4.1]) is the well-known
Lennard-Jones potential VLJ from atomic and molecular physics. Let d = 3.
For fixed parameters a, b > 0

VLJ(x) :=
a

|x|12 −
b

|x|6
, x ∈ Rd \ {0}. (1.28)

Note that VLJ has a singularity at the point 0, a negative part, and an infinite
range, i.e., its support is not compact.

Consider now the case σ(dx) := ρ(x) dx with a bounded, nonnegative
density ρ. Fix a pair potential V and an activity parameter z > 0.

Then the following result holds, see [FG08, Theorem 2.12] and, for the
case ρ ≡ 1, [Rue70]. Let Ggc

Rb(zρ, V ) denote the set of grand canonical Gibbs
measures which have correlation functions, that satisfy a Ruelle bound, cf.
Subsection 1.6.2 below.
Theorem 1.4.12. Suppose that V satisfies (SS), (I) and (LR). Then

Ggc
Rb(zρ, V ) 6= ∅.

In the case σ(Ωn) ≥ κ(n+1) as in the definition of (LS), one has that every
µ ∈ Ggc

Rb(zρ, V ) is tempered. In the case ρ ≡ 1, those Gibbs measures are also
called Ruelle measures. We will just write Ggc

Rb(z, V ) for Ruelle measures.
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1.5 Geometry on configuration spaces

In this section, we will discuss two types of geometries on Γ resp. the corre-
sponding gradients. First we will recall the definition of the intrinsic gradient.
For further details we refer to [AKR98a, AKR98b]. Afterwards, we will dis-
cuss the shift gradient.

The gradients (and later the corresponding pre-Dirichlet forms, see Sec-
tions 2.3.1, 3.1) are defined for bounded smooth cylinder functions.

Definition 1.5.1. The bounded smooth cylinder functions

FC∞b := FC∞b (C∞0 (Rd),Γ)

on Γ are defined as all functions F : Γ → Rd having a (non-unique!) repre-
sentation of the form

F (γ) = gF
(
〈f1, γ〉, . . . , 〈fN , γ〉

)
, γ ∈ Γ, (1.29)

with N ∈ N, f1, . . . , fN ∈ C∞0 (Rd) (smooth functions with compact support),
and gF ∈ C∞b (RN) (smooth functions with bounded derivatives of all orders).

Since the functions fj, j = 1, . . . , N , have compact supports, F (γ) =
F (γ ∩ Λ), Λ :=

⋃
j supp(fj), for any γ ∈ Γ. This justifies the notion of

cylinder functions. Note, that FC∞b is an algebra of functions.

1.5.1 The intrinsic gradient

Consider the group Diff0(Rd) of diffeomorphisms of Rd which coincide with
the identity outside of some compact set. Any ψ ∈ Diff0(Rd) defines a trans-
formation on Γ via

γ 7→ ψ(γ) := {ψ(y) | y ∈ γ}.
Let v ∈ V0(Rd), i.e., v is a smooth vector field on Rd with compact support,
and let ψvt , t ∈ R, be the corresponding flow, i.e., d

dt
ψvt (x) = v(ψvt (x)),

ψv0(x) = x. Thus, for v ∈ V0(Rd) and for any γ ∈ Γ we obtain a curve in Γ
via

t 7→ ψvt (γ) = {ψvt (y) | y ∈ γ}, t ∈ R.

Then the directional derivative of F ∈ FC∞b along the vector field v ∈
V0(Rd) is defined as

(∇Γ
vF )(γ) :=

d

dt
F (ψvt (γ))

∣∣∣∣
t=0

. (1.30)



26 CHAPTER 1. CONFIGURATION SPACES

For F = gF
(
〈f1, ·〉, . . . , 〈fN , ·〉

)
, this gives

(∇Γ
vF )(γ) =

N∑
j=1

∂jgF
(
〈f1, γ〉, . . . , 〈fN , γ〉

)
〈∇vfj, γ〉

Here, ∇v denotes the usual directional derivative along the vector field v on
Rd, i.e.,

(∇vf)(x) := (∇f(x), v(x)), f ∈ C∞0 (Rd), x ∈ Rd.

Definition 1.5.2. The tangent space TγΓ of the configuration space Γ at the
point γ ∈ Γ is defined as the Hilbert space L2(Rd → Rd, γ) of measurable,
γ-square-integrable vector fields Vγ : Rd → Rd with the inner product

(V 1
γ , V

2
γ )TγΓ :=

∫
(V 1

γ (x), V 2
γ (x)) dγ(x) (1.31)

The corresponding tangent bundle is given by

TΓ :=
⋃
γ∈Γ

TγΓ. (1.32)

Note that any v ∈ V0(Rd) can be considered as a “constant” vector field
on Γ via

Γ 3 γ 7→ Vγ(·) := v(·) ∈ TγΓ, (1.33)

since
(v, v)TγΓ =

∫
Rd
|v(x)|2 dγ(x) =

∑
y∈γ

|v(y)|2 <∞.

Definition 1.5.3. The intrinsic gradient ∇ΓF of a function F ∈ FC∞b is
defined as the mapping

Γ 3 γ 7→ (∇ΓF )(γ) ∈ TγΓ

such that for any v ∈ V0(Rd)

(∇Γ
vF )(γ) =

(
(∇ΓF )(γ), v

)
TγΓ

. (1.34)

This leads to

∇ΓF (γ) =
N∑
j=1

∂jgF
(
〈f1, γ〉, . . . , 〈fN , γ〉

)
∇fj.

Note that ∇ΓF (γ) ∈ V0(Rd).



1.5. GEOMETRY ON CONFIGURATION SPACES 27

1.5.2 The shift gradient

We want to define a second gradient based on shifts of configurations in
space. To do this, for x0 ∈ Rd, define the space shift by x0 on Γ as

Θx0 : Γ→ Γ,

γ 7→ γ + x0 := {y + x0 | y ∈ γ}.

Definition 1.5.4. For F : Γ → R and h ∈ Rd, h 6= 0, we define the shift-
directional derivative of F in direction h via

DhF (γ) :=
d

dt
F (Θthγ)

∣∣∣∣
t=0

= lim
t→0

1

t

(
F (γ + th)− F (γ)

)
, (1.35)

provided the right hand side is well-defined.

For F ∈ FC∞b , F = g
(
〈f1, ·〉, . . . , 〈fN , ·〉

)
, we obtain by the chain rule

DhF (γ) =
N∑
j=1

∂jgF
(
〈f1, γ〉, . . . , 〈fN , γ〉

)
〈∇hfj, γ〉.

So, the shift-directional derivative coincides with the intrinsic directional
derivative on Γ along a vector field v ∈ V0(Rd) with v ≡ h on a neighborhood
of the supports of the functions fi, 1 ≤ i ≤ n.

Define the tangent space at point γ ∈ Γ corresponding to D by TD
γ Γ := Rd.

Definition 1.5.5. We define the shift-gradient DF of a function F : Γ→ R
as the mapping

Γ 3 γ 7→ (DF )(γ) ∈ Rd

such that for any h ∈ Rd \ {0}

(DhF )(γ) =
(
(DF )(γ), h

)
. (1.36)

For a vector field v ∈ V0(Rd), define (analogously as for functions f ∈
C∞0 (Rd))

〈v, γ〉 :=

∫
Rd
v(x) dγ(x) =

∑
y∈γ

v(y). (1.37)

Then, for f ∈ C∞0 (Rd) we have

D〈f, ·〉(γ) = 〈∇f, γ〉,
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and for F ∈ FC∞b we obtain

DF (γ) =
N∑
j=1

∂jgF
(
〈f1, γ〉, . . . , 〈fN , γ〉

)
〈∇fj, γ〉 ∈ Rd. (1.38)

hence
DF (γ) = 〈∇ΓF (γ), γ〉. (1.39)

1.6 Harmonic analysis and K-transform

In this section we will recall some facts from harmonic analysis on configu-
ration spaces, cf. [KK02].

We will use the following notations:

FL0(Γ): the set of cylinder functions on Γ, i.e., all measurable functions
F on Γ with

F (γ) = F �Γ(Λ) (γΛ)

for some Λ ∈ Bb(Rd);

L0
ls(Γ0): all measurable functions on Γ0 with local support, i.e., all mea-

surable functions G with

G �Γ0\Γ0(Λ)= 0

for some Λ ∈ Bb(Rd);

L0
bs(Γ0): all measurable functions on Γ0 with bounded support, i.e., all

measurable functions G with

G �
Γ0\

FN
n=0 Γ

(n)
0 (Λ)

= 0

for some N ∈ N and some Λ ∈ Bb(Rd);

Bbs(Γ0): all bounded measurable functions on Γ0 with bounded sup-
port;

M1
fm(Γ): all probability measures on Γ with finite local moments of all

orders, i.e., all µ with∫
Γ

|γΛ|n dµ(γ) < +∞ ∀Λ ∈ Bb(Rd), n ≥ 0;

Mlf(Γ0) : all locally finite measures on Γ0, i.e., all ρ with ρ(A) < +∞
for all bounded sets A from B(Γ0).
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1.6.1 The K-transform

Functions on Γ, Γ0 are also called observables, quasi-observables, respectively.
The K-transform maps quasi-observables into observables:

KG(γ) :=
∑
ξbγ

G(ξ), G ∈ L0
ls(Γ0), γ ∈ Γ. (1.40)

Here ξ b γ means that ξ is a finite subset of γ. Note that KG ∈ FL0(Γ) for
every G ∈ L0

ls(Γ0).

The K-transform is linear, positivity-preserving, and invertible with

K−1F (η) :=
∑
ξ⊂η

(−1)|η\ξ|F (ξ), F ∈ FL0(Γ), η ∈ Γ0. (1.41)

One can introduce a convolution of quasi-observables

(G1?G2)(η) :=
∑

(ξ1,ξ2,ξ3)∈P3
∅ (η)

G1(ξ1∪ξ2)G2(ξ2∪ξ3), G1, G2 ∈ L0(Γ0), η ∈ Γ0.

(1.42)
Here P3

∅ (η) denotes the set of all partitions of η into three (not necessarily
non-empty) subsets. Under the K-transform, this convolution is mapped
into a product, i.e.,

K(G1 ? G2)(η) = KG1(η) ·KG2(η) ∀G1, G2 ∈ L0(Γ0), η ∈ Γ0.

Therefore, the K-transform can be considered as a Fourier transform in con-
figuration space analysis.

1.6.2 Correlation measure and correlation functions

The transformation K∗ : M1
fm(Γ) → Mlf(Γ0), which is dual to the K-

transform, is defined via∫
Γ

KG(γ) dµ(γ) =

∫
Γ0

G(η) d(K∗µ)(η), ∀G ∈ Bbs(Γ0), µ ∈M1
fm(Γ).

(1.43)
The measure ρµ := K∗µ is called the correlation measure of µ. It has been
shown in [KK02] that for any G ∈ L1(Γ0, ρµ) the series

KG(γ) :=
∑
ξbγ

G(ξ)

is µ-a.s. absolutely convergent, KG ∈ L1(Γ, µ), and (1.43) still holds.
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Example 1.6.1. The correlation measure of the Poisson measure πzσ is the
Lebesgue-Poisson measure λzσ.

Assume that for some µ ∈M1
fm(Γ) the corresponding correlation measure

ρµ is absolutely continuous w.r.t. the Lebesgue-Poisson measure λzσ with
Radon-Nikodym derivative

kµ : Γ0 → R+,

kµ(η) :=
dρµ
dλzσ

(η), η ∈ Γ0.

kµ is called correlation functional of µ The corresponding functions

k(n)
µ : (Rd)n → R+, n ∈ N, (1.44)

k(n)
µ (x1, . . . , xn) := 1

(x1,...,xn)∈(̃Rd)n
k(n)
µ ({x1, . . . , xn}),

are the well-known correlation functions from statistical physics, cf., e.g.,
[Rue69, Rue70]. They are also characterized by the following formula:∫

Γ

∑
{x1,...,xn}⊂γ

f (n)(x1, . . . , xn) dµ(γ)

=
zn

n!

∫
(Rd)n

f (n)(x1, . . . , xn)k(n)
µ (x1, . . . , xn) dσ(x1) · · · dσ(xn) (1.45)

for any n ∈ N and any measurable, symmetric function f (n) : Rd → [0,+∞].

Note that there is a one-to-one relation between a correlation functional
kµ of a measure µ and the corresponding Ursell functional uµ given by

kµ(η) =
∑

(η1,...,ηn)∈P(η)

uµ(η1) · · ·uµ(ηn), η ∈ Γ0, (1.46)

where P(η) is the set of all partitions of η, cf., e.g., [Rue69].



Chapter 2

Invariance Principle for a
Diffusion in Random Environment

In this chapter and the following one, we will discuss invariance principles,
i.e., convergence to Brownian motion, for two models of stochastic evolutions
in random environments. First we will consider the motion of a diffusing
particle in Rd interacting with a with frozen configuration of particles, which
are randomly distributed over the space. The interaction is described by a
symmetric pair potential. Afterwards, in Chapter 3, we will study a tagged
particle process, i.e., the motion of one particle in an equilibrium infinite
particle diffusion.

The problem of an invariance principle for a diffusion interacting with
a random configuration has been studied in several works. In [DFGW89],
the authors proved a general result for invariance principles, cf. also Subsec-
tion 2.1.2, and applied it to this situation. But the application part in this
article was only on a rather heuristic level, and even on this level they had
to assume that the interaction potential is smooth, positive, and compactly
supported. These assumptions are hardly ever satisfied in physical models.
Furthermore, some integrability properties neccessary in their general frame-
work were only assumed to be satisfied. In [Str05], this result was generalized
to the case of potentials with a singularity at the origin, a negative part, and
an infinite range, e.g. the Lennard-Jones potential. The integrability condi-
tions were proven under the general assumptions on the potential. In both
works, the environment was a sample of a grand canonical Gibbs measure
w.r.t. the interaction potential.

In this work, we will consider a similar class of potentials as in [Str05], in
particular the Lennard-Jones potential (1.28) is included. But we will allow

31



32 CHAPTER 2. DIFFUSION IN RANDOM ENVIRONMENT

that the interaction potential VI between the diffusion and the configuration
differs from the potential VE for the Gibbs measure of the environment.
From the physical point of view this means that the diffusing particle and
the particles of the environment are of a different type.

For the application of the general scheme, we will have to work with the
environment process. This describes the motion of the environment as seen
from the diffusing particle. Since the environment is a configuration, the en-
vironment process will be a stochastic process on the configuration space Γ.
In both [DFGW89] and [Str05], this process was obtained by first construct-
ing the diffusion Xt and afterwards obtaining the environment process ξt as
a shift of the points of the environment configuration γ by this diffusion, i.e

ξt := {y −Xt : y ∈ γ}.

But in this work we will construct the environment process directly using the
general theory of Dirichlet forms, cf., e.g., [MR92].

Throughout this chapter, we will consider Rd with d ≥ 2 as underlying
space. Then for any configuration γ ∈ Γ, Rd \ γ is connected. Note that in
the one-dimensional case, for a repulsive interaction potential, the diffusing
particle would be trapped between to points of the configuration.

2.1 General theory of invariance principles

In this section, we will recall the general scheme of De Masi et al. [DFGW89]
(see also [Gol95]), which we will use to prove an invariance principle later.
This framework deals with antisymmetric functionals of reversible, ergodic
Markov processes. In the application, the latter one is the environment
process, and the diffusion is treated as a functional of this.

We will start with the definition of an invariance principle.

2.1.1 Central limit theorem and invariance principle

Consider a stochastic process Xt ∈ Rd, t ∈ R+ or t ∈ N0. Xt satisfies the
central limit theorem (CLT) if

Xt√
t
→ N(0, D) (2.1)
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in the sense of weak convergence of distributions, where N(0, D) denotes the
Gaussian distribution with mean 0 and variance D ≥ 0. Let

X
(ε)
t := εXε−2t, ε > 0. (2.2)

Closely connected to the (CLT)-property is the convergence

Xε
t → WD(t) (2.3)

in the sense of finite dimensional distributions, whereWD denotes a Brownian
motion with covariance Dt. In fact, let us denote both conditions together
by (CLT).

Stronger than (CLT) is the invariance principle (IP):

Definition 2.1.1. A process (Xt)t satisfies an invariance principle, if

Xε → WD (2.4)

in the sense of weak-convergence of the corresponding distributions on the
paths-space.

The (IP) amounts to (CLT) plus tightness of the family of paths-space
distributions.

Example 2.1.2. A well-known example for convergence to Brownian motion
is Donsker’s invariance principle. Consider a sequence (Yn)n∈N of indepen-
dent, identically distributed (i.i.d.) Rd-valued random variables with mean
vector 0 and covariance matrix I, the identity matrix. Define

Xn
t :=

1√
n

bntc∑
k=1

Yk, t ≥ 0.

Then, as n→∞, Xn
t converges to a standard Brownian motion on Rd in the

sense as in (2.4), see, e.g., [EK86, Chapter 5, Theorem 1.2(c)]. In particular,
a simple random walk on Z obtained from coin tossing converges to one-
dimensional Brownian motion.

2.1.2 The standard decomposition

The above-mentioned scheme from [DFGW89] applies to processes Xt which
are antisymmetric functionals of ergodic, reversible Markov processes. More
precisely, Xt satisfies the standard decomposition

Xt =

∫ t

0

Φ(ξs) ds+Mt. (2.5)
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Here ξt is an ergodic, reversible Markov process, andMt is a square-integrable
martingale. Φ is called mean forward velocity. In applications, we consider
motions Xt in random environments. Then ξt is the environment process
corresponding to Xt. Reversibility of ξt reflects the symmetry of the motion
together with translation invariance of the environment. Basically, we will
have to show L1- and L2-integrability of Φ w.r.t. the reversible measure of ξt
to obtain (CLT) and (IP), resp., for Xt.

Ergodic, square-integrable martingalesMt with stationary increments sat-
isfy the invariance principle, see, e.g., [Hel82]. Therefore, proving (IP) for Xt

of the form 2.5 can be reduced to the proving an (IP) for the integral term

St :=

∫ t

0

Φ(ξs) ds.

Kipnis and Varadhan [KV86] have done this by decomposing St into an-
other square-integrable martingale plus an asymptotically negligible term.
In [DFGW89], it is shown that some conditions on Φ in [KV86] are automat-
ically satisfied due to symmetry and antisymmetry properties of the involved
processes, and thus that the conditions are reduced to the above-mentioned
integrability properties.

2.1.3 The IP-scheme

As explained before, we will discuss a diffusion interacting with a frozen
configuration and a tagged particle process. In both cases, the environment
process is a process on the configuration space Γ.

Based on [DFGW89], one can apply the following procedure to these
models:

(i) Construct the process Xt.

(ii) Construct the corresponding environment process ξt.

(iii) Identify a probability measure µ on Γ, such that ξ is ergodic and re-
versible w.r.t. µ.

(iv) Rewrite Xt in form of the standard decomposition (2.5).

(v) Prove Φ ∈ L2(µ).
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Then one can apply [DFGW89, Theorem 2.2] to obtain an invariance prin-
ciple.

As mentioned at the beginning, we can skip (i) and construct the envi-
ronment process directly, see Section 2.3. Then we obtain the diffusion later
as the functional from the standard decomposition (2.5).

But nevertheless, we have to describe the model in details. This is done
in the following section.

2.2 The diffusion process

In this section, fix a configuration γ ∈ Γ(Rd). γ should describe the positions
of infinitely many indistinguishable particles. We will describe a diffusion
interacting with these particles via a pair potential VI . Since we do not con-
sider the randomness of the environment here and hence neither the potential
VE for the environment Gibbs measure, we will just write V instead of VI .

So, let V be a symmetric, translation-invariant pair potential, i.e., V (x−
y) = Ṽ (|x− y|), x, y ∈ Rd, x 6= y, for some proper function Ṽ : (0,+∞)→ R.
Assume repulsion at small distances, i.e., limx→0 V (x) = +∞, and hence set
V (0) = +∞. Furthermore, assume decay of the potential at infinity, i.e.,
lim|x|→+∞ V (x) = 0.

2.2.1 The corresponding evolution equation

Assume that the relative energy function

E(x) := EV (x, γ) :=

{∑
y∈γ V (x− y), if

∑
y∈γ |V (x− y)| <∞,

+∞, otherwise,

is finite on Rd \ γ. This is obviously satisfied, if V is a finite range potential,
i.e., its support is bounded, since in this case there are only finitely many
summands nonequal zero. But under the more general assumptions from
Section 2.3 it is still fulfilled.

Let ρ(x) := ρ(x, γ) := exp(−E(x, γ)). Then ρ > 0 outside of γ, and,
since γ is a Lebesgue nullset, the logarithmic derivative β(x) := β(x, γ) :=
∇ρ(x)
ρ(x)

= −
∑

y∈γ∇V (x− y) is well-defined Lebesgue-a.e.
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Then, the motion of the diffusing particle can be described by the follow-
ing stochastic differential equation{

dXt = β(Xt) dt+
√

2 dWt,

X0 = x0 (∈ Rd \ γ).
(2.6)

Here Wt is a standard Brownian motion on Rd. (2.6) is a stochastic differen-
tial equation describing a symmetric distorted Brownian motion on Rd with
singular drift.

2.2.2 On solutions for the evolution equation

The stochastic equation (2.6) has been studied in several works. We want to
summarize some results in this subsection.

In [KKR04], the problem has been treated by a Dirichlet forms approach,
and existence of a weak solution is proved. For this, the authors consider the
following set of admissible configurations for the environment:

Γad := {γ ∈ Γ : ∀r > 0∃c(γ, r) > 0 |γ ∩B(x, r)| ≤ c(γ, r) log(2 + |x|)}.
(2.7)

For applications, the restriction to configurations γ ∈ Γad is not too strong,
since, e.g. by [KKK04], it follows that µ(Γad) = 1 for any Ruelle measure
µ w.r.t. to a superstable pair potential. Equation (2.6) corresponds to the
pre-Dirichlet form

E(u, v) :=

∫
Rd

(
∇u,∇v

)
ρ(x) dx, u, v ∈ C∞0 (Rd),

with pre-generator

Lu = ∆u+
(
β,∇u), u ∈ C∞0 (Rd).

In [KKR04] it is shown that, for γ ∈ Γad and an interaction potential V
satisfying some integrability condition for the singularity and with proper
decay at infinity, the form

(
E , C∞0 ) is closable and its closure is associated

to a stochastic process solving (2.6). Furthermore, L1- and L2-uniqueness of
the generator is proven, i.e., conservativity of the form and the corresponding
process and essential self-adjointness of the generator, resp.

In [KR05], the authors apply their general result to (2.6) to even prove
existence and uniqueness of a strong solution. They treat the same set of
admissible configurations Γad as in [KKR04] and comparable interaction po-
tentials.
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2.3 The environment process

As mentioned before, from a solution Xt to (2.6) on can construct the envi-
ronment process by shifting every point of the environment configuration by
−Xt. But we will construct the environment process directly as a stochastic
process on the configuration space, ergodic and reversible w.r.t. a perturbed
Gibbs measure, see (2.8). From now on, we have to distinguish between the
interaction potential VI and the potential VE for the Gibbs measure for the
environment.

We make the following assumptions:

Assumption 2.3.1. VI : VI satisfies (I), (D) from Definition 1.4.9, and VI
is bounded from below.

VE: VI satisfies (SS), (LR), (I), (D), and (LS) from Definition 1.4.9. Hence,
by Theorem 1.4.12, there exist corresponding grand canonical Gibbs
measures.

µE Let z > 0 an activity parameter, and let µE ∈ Ggc
Rb(z, VE). Suppose

furthermore, that µE is translation invariant, i.e., µE(A) = µE(A+ h),
A ∈ B(Γ), h ∈ Rd, where

A+ h := {γ + h : γ ∈ A}.

Let EI , EE denote the relative energy functions w.r.t. VI , VE, resp.

Remark 2.3.2. (i) Below, from Subsection 2.3.4 on, we will additionally
assume that µE is such that the Dirichlet form

(
ED
µ∗ , D(ED

µ∗)
)
(see (2.12)

and Proposition 2.3.7) is irreducible.

(ii) Let µ ∈ Ggc
Rb(z, V ) for some z > 0 and a symmetric pair potential V .

Fix some h ∈ Rd and define

µ̃(A) := µ(A+ h), A ∈ B(Γ).

Then, by Georgii-Nguyen-Zessin identity (1.22) and by translation in-
variance of the Lebesgue measure, for any positive B(Rd) × B(Γ)-
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measurable function H∫
Γ

∑
x∈γ

H(x, γ) dµ̃(γ)

=

∫
Γ

∑
x∈γ

H(x+ h, γ + h) dµ(γ)

=

∫
Rd

∫
Γ

H(x+ h, (γ ∪ x) + h)ze−E
V (x,γ) dµ(γ) dx

=

∫
Rd

∫
Γ

H(x+ h, (γ + h) ∪ (x+ h))ze−E
V (x+h,γ+h) dµ(γ) dx

=

∫
Rd

∫
Γ

H(x+ h, γ ∪ (x+ h))ze−E
V (x+h,γ) dµ̃(γ) dx

=

∫
Γ

∫
Rd
H(x, γ ∪ x)ze−E

V (x,γ+h) dx dµ̃(γ).

Thus, µ̃ also satisfies (1.22), and hence µ̃ ∈ Ggc
Rb(z, V ), too.

In particular, if |Ggc
Rb(z, V )| = 1, which is always satisfied for small

enough z (cf., e.g., [Rue70]), then µ = µ̃, i.e., µ is translation invariant.

Define
dµ∗(γ) :=

1

Z
e−EI(0,γ) dµE(γ), (2.8)

where Z :=
∫

Γ
e−EI(0,·) dµE < +∞ by Lemma 2.3.3 below. Since e−EI(0,γ) = 0

only if 0 ∈ γ and µE({γ : 0 ∈ γ}) = 0, µ∗ and µE are equivalent measures.
µ∗ will be the symmetrizing measure for the environment process.

Lemma 2.3.3. Let p ≥ 1. Then e−EI(x0,·) ∈ Lp(Γ, µE) for every x0 ∈ Rd.
Moreover,

sup
x0∈Rd

‖e−EI(x0,·)‖Lp(Γ,µE) <∞.

The same holds for e−EE(·,·).

Proof. We will only show the result for e−EI(·,·). The proof is completely the
same for e−EE(·,·).

For x0 ∈ Rd define θ := θx0 : Rd → R, θx0(x) :=
∣∣1− e−pVI(x−x0)

∣∣ ≥ 0.
Because of the integrability assumption (I), we have that θx0 ∈ L1(Rd, dx).
For any γ ∈ Γ it holds that∏

y∈γ

(1 + θ(y)) =
∞∑
n=0

∑
{y1,...,yn}⊂γ

θ(y1) · · · θ(yn). (2.9)
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Since f (n)(x1, . . . , xn) := θ(x1) · · · θ(xn), x1, . . . , xn ∈ Rd, n ∈ N, is a
non-negative symmetric function on (Rd)n for any n, we have by (1.45) that∫

Γ

∑
{x1,...,xn}⊂γ

f (n)(x1, . . . , xn) dµE(γ)

=
zn

n!

∫
(Rd)n

f (n)(x1, . . . , xn)k(n)
µE

(x1, . . . , xn) dx1 · · · dxn, (2.10)

n ∈ N, where k
(n)
µE , n ∈ N, denote the correlation functions of µE. By

assumption,
(
k

(n)
µE

)
n
has a Ruelle bound. So there exists a ξ > 0 such that

k
(n)
µE ≤ ξn for all n ∈ N. From this it follows∫

Γ

∣∣e−EI(x0,γ)
∣∣p dµE(γ)

=

∫
Γ

e−p
P
y∈γ VI(x0−y) dµE(γ)

=

∫
Γ

∏
y∈γ

(
1 + (e−pVI(x0−y) − 1)

)
dµE(γ)

≤
∫

Γ

∏
y∈γ

(
1 + θ(y)

)
dµE(γ)

(2.9)
=

∫
Γ

∞∑
n=0

∑
{y1,...,yn}⊂γ

θ(y1) · · · θ(yn) dµE(γ)

(2.10)
=

∞∑
n=0

zn

n!

∫
(Rd)n

θ(x1) · · · θ(xn) k(n)
µE

(x1, . . . , xn)︸ ︷︷ ︸
≤ξn

dx1 · · · dxn

≤
∞∑
n=0

zn

n!
ξn‖θ‖nL1 = ezξ‖θ‖L1 <∞.

This proves the first part of the assertion.

But the term C := ezξ‖θx0‖L1 in the last equation is independent of x0,
since, by translation invariance of the Lebesgue measure, ‖θx0‖L1 = ‖θ0‖L1

for all x0. Thus,

sup
x0∈Rd

∫
Γ

∣∣e−E(x0,γ)
∣∣p dµE(γ) ≤ C <∞.
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The next result will be helpful for several of the following proofs in this
chapter.

Corollary 2.3.4. There exist a constant C > 0 such that for all x, y ∈ Rd∫
Γ

e−EI(0,γ)e−EE(y,γ) dµE(γ) +

∫
Γ

e−EI(0,γ)e−EE(x,γ)e−EE(y,γ) dµE(γ) ≤ C.

(2.11)

Proof. The assertion follows directly form Lemma 1.45 and the Cauchy-
Schwarz inequality.

2.3.1 Corresponding Dirichlet form, generator and clos-
ability

The environment process will be associated to (the closure of) the following
pre-Dirichlet form:

ED
µ∗(F,G) :=

∫
Γ

(
DF (γ),DG(γ)

)
dµ∗(γ), F,G ∈ FC∞b . (2.12)

We want to compute the pre-generator (HD
µ∗ ,FC∞b ) of (ED

µ∗ ,FC∞b ).

For h ∈ Rd \ {0} we have

Dhe
−EI(0,γ) = lim

t→0

1

t

(
e−EI(0,γ+th)︸ ︷︷ ︸
=e−EI (−th,γ)

−e−EI(0,γ)
)

= −∇he
−EI(0,γ). (2.13)

With this we can compute the adjoint operator D∗h,µ∗ of Dh on FC∞b with
respect to L2(Γ, µ∗). Let F,G ∈ FC∞b , then, using the invariance of µE
w.r.t. space shifts(

DhF,G
)
L2(Γ,µ∗)

=

∫
Γ

DhF (γ)G(γ) dµ∗(γ)

= lim
t→0

1

t

(∫
Γ

F (γ + th)G(γ)
1

Z
e−EI(0,γ) dµE(γ)

−
∫

Γ

F (γ)G(γ)
1

Z
e−EI(0,γ) dµE(γ)

)
= lim

t→0

1

t

(∫
Γ

F (γ)G(γ − th)
1

Z
e−EI(0,γ−th) dµE(γ)

−
∫

Γ

F (γ)G(γ)
1

Z
e−EI(0,γ) dµE(γ)

)
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=

∫
Γ

F (γ) lim
t→0

1

t

(
G(γ − th)

1

Z
e−EI(0,γ−th)

−G(γ)
1

Z
e−EI(0,γ)

)
dµE(γ)

=

∫
Γ

F (γ)D−hG(γ)
1

Z
e−EI(0,γ) dµE(γ)

+

∫
Γ

F (γ)G(γ)∇−h
( 1

Z
e−EI(0,γ)

)
dµE(γ)

=

∫
Γ

F (γ)D−hG(γ) dµ∗(γ)

+

∫
Γ

F (γ)G(γ)

(∇ 1
Z
e−EI(0,γ)

1
Z
e−EI(0,γ)

,−h
)
dµ∗(γ).

Hence

D∗h,µ∗ = D−h +

(∇ 1
Z
e−EI(0,·)

1
Z
e−EI(0,·) ,−h

)
= −Dh −

(∑
y∈·

∇VI(y), h

)
(2.14)

on FC∞b .

Definition 2.3.5. For a vector field V : Γ→ Rd, divD,µ∗ V is defined via the
duality relation∫

Γ

(
DF (γ), V (γ)

)
dµ∗(γ) = −

∫
Γ

F (γ)(divD,µ∗ V )(γ) dµ∗(γ) (2.15)

for all F ∈ FC∞b , provided it exists.

We want to compute divD,µ∗ DF for F ∈ FC∞b . Therefore we introduce
a larger set of functions on Γ:

FC∞pb := FC∞pb (C∞0 (Rd),Γ) := {g
(
〈f1, ·〉, . . . , 〈fN , ·〉

)
:

N ∈ N, g ∈ C∞pb (RN), f1, . . . , fN ∈ C∞0 (Rd)}. (2.16)

Here C∞pb (RN) denotes the set of all smooth functions on Rd for which all
derivatives of any order are bounded by polynomials. For each F ∈ FC∞pb ,
DF is defined, and the same equations as for F ∈ FC∞b hold. Note that
FC∞b ⊂ FC∞pb and 〈f, ·〉 ∈ FC∞pb for any f ∈ C∞0 (Rd).
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Consider a vector field

V (γ) :=
N∑
j=1

Gj(γ)hj,

where Gj ∈ FC∞pb and hj ∈ Rd, 1 ≤ j ≤ N . We denote the set of these
vector fields by VDFC∞pb . Then∫

Γ

(
DF (γ), V (γ)

)
dµ∗(γ)

=
N∑
j=1

∫
Γ

Gj(γ)
(
DF (γ), hj

)
dµ∗(γ)

=
N∑
j=1

∫
Γ

Gj(γ)DhjF (γ) dµ∗(γ)

(2.14)
= −

N∑
j=1

∫
Γ

F (γ)DhjG(γ) dµ∗(γ)

−
N∑
j=1

∫
Γ

F (γ)G(γ)
(∑
y∈γ

∇VI(y), hj
)
dµ∗(γ).

Hence

divD,µ∗ V (γ) =
N∑
j=1

DhjGj(γ) +
N∑
j=1

(∑
y∈γ

∇VI(y), hj
)
Gj(γ). (2.17)

Lemma 2.3.6. Let F ∈ FC∞b . Then DF ∈ VDFC∞pb .

Proof. Consider a representation F = gF
(
〈f1, ·〉, . . . , 〈fN , ·〉

)
. Then by (1.38)

DF (γ) =
N∑
j=1

∂jgF
(
〈f1, γ〉, . . . , 〈fN , γ〉

)
〈∇fj, γ〉

=
d∑
i=1

N∑
j=1

∂jgF
(
〈f1, γ〉, . . . , 〈fN , γ〉

)
〈∂xifj, γ〉ei,

where ei, 1 ≤ i ≤ d, denote the canonical unit vectors in Rd. Since

∂jgF
(
〈f1, ·〉, . . . , 〈fN , ·〉

)
〈∂xifj, ·〉 ∈ FC∞pb

the assertion follows.
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By the previous lemma, divD,µ∗ DF is defined for any F ∈ FC∞b , and, for
F = gF

(
〈f1, ·〉, . . . , 〈fN , ·〉

)
, we have by (2.17) and the proof of the lemma

divD,µ∗ DF =
d∑
i=1

Dei

( N∑
j=1

∂jgF
(
〈f1, γ〉, . . . , 〈fN , γ〉

)
〈∂xifj, γ〉

)

+
d∑
i=1

( N∑
j=1

∂jgF
(
〈f1, γ〉, . . . , 〈fN , γ〉

)
〈∂xif,γ〉

)
〈∂xiVI , γ〉

=
d∑
i=1

N∑
j,k=1

∂k∂jgF
(
〈f1, γ〉, . . . , 〈fN , γ〉

)
〈∂xifk, γ〉〈∂xifj, γ〉

+
d∑
i=1

( N∑
j=1

∂jgF
(
〈f1, γ〉, . . . , 〈fN , γ〉

))
〈∂2
xi
fj, γ〉

+
d∑
i=1

( N∑
j=1

∂jgF
(
〈f1, γ〉, . . . , 〈fN , γ〉

)
〈∂xif,γ〉

)
〈∂xiVI , γ〉

=
N∑

i,j=1

∂i∂jgF
(
〈f1, γ〉, . . . , 〈fN , γ〉

)(
〈∇fi, γ〉, 〈∇fj, γ〉

)
+

N∑
j=1

∂jgF
(
〈f1, γ〉, . . . , 〈fN , γ〉

)
×

×
(
〈∆fj, γ〉+ (〈∇fj, γ〉, 〈∇VI , γ〉)

)
. (2.18)

It follows, that

ED
µ∗(F,G) = −〈divD,µ∗ DF,G〉L2(µ∗) (2.19)

for F,G ∈ FC∞b , hence set HD
µ∗ := −LD

µ∗ := − divD,µ∗ D on FC∞b . Fur-
thermore, conservativity obviously holds, i.e., 1 ∈ FC∞b and ED

µ∗(1, 1) = 0.
Therefore we have the following proposition:

Proposition 2.3.7. The form (ED
µ∗ ,FC∞b ) is closable on L2(µ∗), and its

closure (ED
µ∗ , D(ED

µ∗)) is a symmetric, conservative Dirichlet form. It is gen-
erated by the Friedrichs extension of (HD

µ∗ ,FC∞b ), which we also denote by
HD
µ∗.

The gradient D extends to a linear operator on D(ED
µ∗), which we also

denote by D. We will write ED
µ∗ now in terms of the corresponding square

field operator :

ED
µ∗(F,G) =

∫
Γ

SD(F,G) dµ∗(γ), F,G ∈ D(ED
µ∗),
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with SD(F,G) = (DF (γ),DG(γ)). Furthermore, we will write SD(F ) :=
SD(F, F ).

2.3.2 Quasi-regularity

Now consider the bigger space Γ̈ of multiple configurations. Since B(Γ̈)∩Γ =
B(Γ), we can consider µ∗ as a measure on Γ̈. Then (ED

µ∗ , D(ED
µ∗)) is a Dirichlet

form on L2(Γ̈, µ∗).

To construct a process associated to (ED
µ∗ , D(ED

µ∗)), we have to show quasi-
regularity of the form, see, e.g [MR92, Chapter IV, Definition 3.1 and The-
orem 3.5]. We will prove quasi-regularity on Γ̈. So we will obtain a process
on Γ̈ as well. Then we will show, that under the assumption d ≥ 2, Γ̈ \ Γ
is an ED

µ∗-exceptional set. So the process is actually supported on the simple
configurations Γ.

Lemma 2.3.8. Let f : Rd → R be a positive, measurable function with
supp f compact, and B ⊂ Rd compact. Then∫

Γ̈

〈f, γ〉NB(γ) dµ∗(γ) < +∞.

Proof. Note that µ∗ and µE have full support on Γ ⊂ Γ̈, so we only have to
prove the assertion for the integral over Γ. Therefore, NB =

∑
x∈· 1B(x).

Iterated application of the Georgii-Nguyen-Zessin identity (1.22) gives∫
Γ

〈f, γ〉NB(γ) dµ∗(γ)

=
z

Z

∫
Rd
f(x)eVI(x)

∫
Γ

[NB(γ) + 1B(x)]e−EI(0,γ)e−EE(x,γ) dµE(γ) dx

=
z

Z

∫
Rd
f(x)eVI(x)×

×
[∫

Rd
1B(y)e−VI(y)e−VE(x−y)z

∫
Γ

e−EI(0,γ)e−EE(x,γ)e−EE(y,γ) dµE(γ) dy

+ 1B(x)

∫
Γ

e−EI(0,γ)e−EE(x,γ) dµE(γ)

]
dx

< +∞.

Here we have used Corollary 2.3.4 and the fact that f and 1B have bounded
support while e−VI and e−VE are bounded.
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Proposition 2.3.9. (ED
µ∗ , D(ED

µ∗)) is quasi-regular on L2(Γ̈, µ∗).

Proof. This proof is a modification of the ones for [MR00, Proposition 4.1]
and [FG08, Lemma 5.10]

To prove quasi-regularity, it suffices to show that there exists a bounded,
complete metric ρ̄ on Γ̈, which generates the vague topology on Γ̈ and fulfills
the following condition: for all γ0 ∈ Γ

ρ̄(·, γ0) ∈ D(ED
µ∗) and SD(ρ̄(·, γ0)) ≤ η µ∗-a.e.

for some function η ∈ L1(Γ̈, µ∗) independent of γ0.

Consider the sequence (Bk)k∈N of open balls in Rd with center 0 and
radius k. It is well-exhausting in the sense of [MR00] with δk := 1

2
for all k,

i.e.,
Bk ↗,

⋃
k

Bk = Rd, and Bδk
k ⊂ Bk+1.

Here Bδk
k := {x ∈ Rd : dist(x,Bk) < δk} = Bk+δk . For k ∈ N, set

gk(x) := 2
3

(
1
2
− dist(x,Bk) ∧ 1

2

)
, x ∈ Rd,

and φk := 3gk.

Let S(f, g) := (∇f,∇g), f, g ∈ H1,2(Rd), denote the standard square
field operator on L2(Rd, dx). Here

H1,2(Rd) := {u ∈ L2(Rd, dx) : ∂iu ∈ L2(Rd, dx), 1 ≤ i ≤ n},

with derivatives in the sense of Schwartz distributions, denotes the (1, 2)-
Sobolev space on Rd (with von Neumann or Dirichlet boundary conditions;
both spaces coincide on Rd). Again, we write S(f) := S(f, f). The form(∫

S(·, ·) dx,H1,2(Rd)
)
is the closure of

(∫
S(·, ·) dx, C∞0 (Rd)

)
. By [MR00,

Example 4.5.1], we have that (S,H1,2(Rd)) satisfies the following condition:

(Q) There exist χj ∈ C∞0 (Rd), χj > 0, j ∈ N, and fln ∈ C(Rd), l, n ∈ N,
such that

(i) supl∈N fln = |yn − ·| for all n ∈ N and some {yn : n ∈ N} ⊂ Rd

dense;

(ii) there exists C > 0 such that, for all j, l, n ∈ N and all φ ∈ C∞b (Rd),
χj(φ ◦ fln) ∈ C∞0 (Rd) and

S(χj(φ ◦ fln)) ≤ C sup{‖φ′‖∞, ‖φ‖∞}2(χj + S(χj)
1
2 )2;
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(iii) for all k ∈ N there exists j ∈ N such that χj ≡ 1 on Bk.

Choose (jk)k∈N such that χjk ≡ 1 on Bk+1. Then, by [MR00, Lemma 4.10],
for all k, j ∈ N, φkgj ∈ H1,2(Rd) and

S(φkgj) ≤ χ̃2
jk
, (2.20)

with χ̃jk = 4χjk
(
S(χjk)

1
2 + C(χjk + S(χjk)

1
2 )
)2
.

Let f ∈ H1,2(Rd) ∩ C0(Rd), then 〈f, ·〉 ∈ D(ED
µ∗), and

SD(〈f, ·〉) =
(
〈∇f, ·〉, 〈∇f, ·〉

)
.

If supp f ⊂ Bk+1, then, by the Cauchy-Schwarz inequality and the Jensen
inequality,

SD(〈f, ·〉)(γ) =

∫
Rd

∫
Rd

(
∇f(x),∇f(y)

)
dγ(x) dγ(y)

≤
∫

Rd

(
∇f(x),∇f(x)

)1/2
dγ(x)

∫
Rd

(
∇f(y),∇f(y)

)1/2
dγ(y)

= NBk+1
(γ)2

(∫
Rd
S(f)(x)1/2 1

NBk+1
(γ)

dγ(x)

)2

≤ NBk+1
(γ)

∫
Rd
S(f)(x) dγ(x)

= NBk+1
(γ)〈S(f), γ〉. (2.21)

In particular, this holds for f = φkgj, and with (2.20) we have

SD(〈φkgj, ·〉) ≤ NBk+1
(·)〈χ̃2

jk
, ·〉. (2.22)

Let ζ ∈ C∞b (R) (i.e., ζ is a bounded, smooth function on R), such that
0 ≤ ζ ≤ 1 on [0,∞), ζ(t) = t on [−1

2
, 1

2
], ζ ′ > 0, and ζ ′′ ≤ 0. Then similarly

as in [RS95, Lemma 3.2] we obtain that for any fixed γ0 ∈ Γ̈ and for any
k, n ∈ N

ζ
(
sup
j≤n
|〈φkgj, ·〉 − 〈φkgj, γ0〉|

)
∈ D(ED

µ∗).

Furthermore,

SD
(
ζ
(
sup
j≤n
|〈φkgj, ·〉 − 〈φkgj, γ0〉|

))
≤ NBk+1

(·)〈χ̃2
jk
, ·〉 µ∗-a.e. (2.23)

Set
Fk(γ, γ0) := ζ

(
sup
j∈N
|〈φkgj, γ〉 − 〈φkgj, γ0〉|

)
,
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then for fixed γ0 ∈ Γ̈

ζ
(
sup
j≤n
|〈φkgj, ·〉 − 〈φkgj, γ0〉|

)
−→ Fk(·, γ0), n→∞,

pointwisely and in L2(Γ̈, µ∗). Hence, by (2.23), the Banach-Alaoglu theorem,
and the Banach-Saks theorem (see, e.g., [MR92, Appendix A.2]),

Fk(·, γ0) ∈ D(ED
µ∗),

SD(Fk(·, γ0)) ≤ NBk+1
(·)〈χ̃2

jk
, ·〉 µ∗-a.e. (2.24)

Set

ck :=

(
1 +

∫
Γ̈

NBk+1
(γ)〈χ̃2

jk
, γ〉 dµ∗(γ)

)−1
2

2−
k
2

Then, by Lemma 2.3.8, ck ∈ (0,∞) for all k, and ck → 0, k →∞. Define

ρ̄(γ1, γ2) := sup
k∈N

ckFk(γ1, γ2). (2.25)

Then, by [MR00, Theorem 3.6], ρ̄ is a bounded, complete metric on Γ̈, which
generates the vague topology.

By (2.24), we have that

SD(ckFk(·, γ0)) = c2
kS

D(Fk(·, γ0))

≤ 2−k
(

1 +

∫
Γ̈

NBk+1
(γ)〈χ̃2

jk
, γ〉 dµ∗(γ)

)−1

NBk+1
(·)〈χ̃2

jk
, ·〉 µ∗-a.e.

Set

η := sup
k

[
2−k
(

1 +

∫
Γ̈

NBk+1
(γ)〈χ̃2

jk
, γ〉 dµ∗(γ)

)−1

NBk+1
(·)〈χ̃2

jk
, ·〉
]
,

then ∫
Γ̈

η(γ′) dµ∗(γ′) ≤
∞∑
k=1

2−k
(

1 +

∫
Γ̈

NBk+1
(γ)〈χ̃2

jk
, γ〉 dµ∗(γ)

)−1

×

×
∫

Γ̈

NBk+1
(γ′)〈χ̃2

jk
, γ′〉 dµ∗(γ′)

≤
∞∑
k=1

2−k = 1 < +∞,
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so η ∈ L1(µ∗), and as in [RS95, Lemma 3.2] we have for all n ∈ N

SD(sup
k≤n

ckFk(·, γ0)
)
≤ η µ∗-a.e.

But supk≤n ckFk(·, γ0) → ρ̄(·, γ0) as n → ∞ pointwisely and in L2(Γ̈, µ∗).
Hence, by the Banach-Alaoglu theorem and the Banach-Saks theorem,

ρ̄(·, γ0) ∈ D(ED
µ∗) and SD(ρ̄(·, γ0)) ≤ η.

Thus, the assertion is proved.

2.3.3 Corresponding process

Lemma 2.3.10. (ED
µ∗ , D(ED

µ∗)) is local, i.e., ED
µ∗(F,G) = 0 provided F,G ∈

D(ED
µ∗) and supp(|F |µ∗) and supp(|G|µ∗) are disjoint sets.

Proof. Since D satisfies the product rule, the proof is the same as in [MR00,
Proposition 4.12]. We recall it here just for completeness.

It is enough to show that for every F ∈ D(ED
µ∗)

SD(F ) = 0 µ∗-a.e. on Γ̈ \ supp(|F |µ∗).

Since (ED
µ∗ , D(ED

µ∗)) is quasi-regular, by [MR92, Chapter V, Proposition
1.7], there exists G ∈ D(ED

µ∗) with 0 ≤ G ≤ 1Γ̈\supp(|F |µ∗) and G > 0 µ∗-a.e.
on Γ̈ \ supp(|F |µ∗). Thus GF = 0 and hence

0 = SD(GF,F ) = GSD(F, F ) + FSD(G,F ).

Therefore, SD(F ) = 0 on Γ̈ \ supp(|F |µ∗).

As a consequence of Proposition 2.3.9 and Lemma 2.3.10 we obtain the
following result:

Theorem 2.3.11. (i) There exists a conservative diffusion process

MD,µ∗ =
(
Ω,F , (Ft)t≥0, (ξt)t≥0, (Pγ)γ∈Γ̈

)
on Γ̈, which is properly associated with (ED

µ∗ , D(ED
µ∗)), i.e., for all F ∈

L2(Γ̈, µ∗) and all t > 0 the function

γ 7→ ptF (γ) :=

∫
Ω

F (ξt) dPγ, γ ∈ Γ̈, (2.26)
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is an ED
µ∗-quasi-continuous version of exp(−tHD

µ∗)F . MD,µ∗ is up to
µ∗-equivalence unique. In particular, MD,µ∗ is µ∗-symmetric, i.e.,∫

Γ̈

GptF dµ
∗ =

∫
Γ̈

FptGdµ
∗, F,G ∈ L0(Γ̈, µ∗),≥ 0,

and has µ∗ as invariant measure.

(ii) The process MD,µ∗ from (i) is the (up to µ∗-equivalence) unique diffu-
sion process having µ∗ as invariant measure and solving the martingale
problem for (HD

µ∗ , D(HD
µ∗)), i.e., for all G ∈ D(HD

µ∗)

G̃(ξt)− G̃(ξ0) +

∫ t

0

HD
µ∗G(ξt) ds, t ≥ 0,

is an (Ft)t-martingale under Pγ for ED
µ∗-q.a. γ ∈ Γ̈. (Here G̃ denotes

an ED
µ∗-quasi-continuous version of G, cf. [MR92, Chapter IV, Propo-

sition 3.3].)

Proof. (i) follows directly from [MR92, Chapter IV, Theorem 3.5, and Chap-
ter V, Theorem 1.11]. (ii) follows from [AR95, Theorem 3.5].

Remark 2.3.12. The process MD,µ∗ can be taken to be canonical, i.e., Ω :=
D([0,∞) → Γ), the space of càdlàg functions ω : [0,∞) → Γ, ξt(ω) := ω(t),
t ≥ 0, ω ∈ Ω, and F , (Ft)t≥0 is the corresponding minimum completed
admissible family.

The following lemma shows, that the process MD,µ∗ actually lives on the
smaller space Γ.

Lemma 2.3.13. The set Γ̈ \ Γ is ED
µ∗-exceptional.

Proof. The proof is a modification of the ones for [RS98, Proposition 1 and
Corollary 1].

Let N := Γ̈ \ Γ. By construction, we have that µ∗(N) = 0. Thus it is
sufficient to show that 1N is ED

µ∗-quasi-continuous. It is even sufficient to
prove this locally, i.e. for any a ∈ N the function 1Na is quasi-continuous,
where

Na := {γ ∈ Γ̈ : sup
x∈[−a,a]d

γ({x}) ≥ 2}.

For this we have to find a sequence of functions Un ∈ D(ED
µ∗) with

sup
n
ED
µ∗(Un, Un) < +∞ and Un → 1Na pointwisely as n→∞.
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Let φ ∈ C∞0 (R) with 1[0,1] ≤ φ ≤ 1
[−1

2
,
3
2

)
and |φ′| ≤ 3 · 1

[−1
2
,
3
2

)
. For any

n ∈ N, i = (i1, . . . , id) ∈ Zd, set

φn,i(x) :=
d∏

k=1

φ(nxk − ik).

Then φn,i ∈ C∞0 (Rd). Set 1n,i(x) :=
∏d

k=1 1[−1
2
,
3
2

)
(nxk − ik), then φn,i ≤ 1n,i.

∂jφn,i(x) = nφ′(nxk − ik)
d∏

k=1

φ(nxk − ik),

so
(
∂jφn,i(x)

)2 ≤ 9n2
1n,i(x) and hence

|∇φn,i(x)|2 ≤ 9n2d1n,i(x). (2.27)

Let ψ ∈ C∞(R) with 1[2,∞) ≤ ψ ≤ 1[1,∞) and |ψ′| ≤ 2 · 1[1,∞). Let
An := [−na, na]d ∩ Zd, then

Un := ψ
(

sup
i∈An
〈φn,i, ·〉

)
∈ D(ED

µ∗),

Un is continuous, and Un → 1Na pointwisely. So it remains to show that
ED
µ∗(Un, Un) is bounded in n.

We have (
ψ′
(

sup
i∈An
〈φn,i, γ〉

))2 ≤ 4 · 1{supi∈An 〈φn,i,γ〉>1}

≤ 4 · 1{supi∈An 〈1n,i,γ〉≥2}. (2.28)

SD(Un)(γ) =
(
ψ′
(

sup
i∈An
〈φn,i, γ〉

))2
SD(sup

i∈An
〈φn,i, ·〉

)
(γ)

≤
(
ψ′
(

sup
i∈An
〈φn,i, γ〉

))2
sup
i∈An

SD(〈φn,i, ·〉)(γ)

(2.21)
≤
(
ψ′
(

sup
i∈An
〈φn,i, γ〉

))2
sup
i∈An
〈1n,i, γ〉〈S(φn,i), γ〉

(2.27),(2.28)
≤ 4 · 1{supi∈An 〈1n,i,γ〉≥2} sup

i∈An
〈1n,i, γ〉9n2d〈1n,i, γ〉

≤ const · n2
∑
i∈An

1{〈1n,i,γ〉≥2}〈1n,i, γ〉2. (2.29)
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But, by the Georgii-Nguyen-Zessin identity (1.22), we have∫
{〈1n,i,γ〉≥2}

〈1n,i, γ〉2 dµ∗(γ)

≤ z
Z

∫
Rd
1n,i(x)e−VI(x)×

×
∫

Γ̈

[
〈1n,i, γ〉+ 1n,i(x)

]
e−EI(0,γ)e−EE(x,γ) dµE(γ) dx

= z
Z

∫
Rd
1n,i(x)e−VI(x)

[
z

∫
Rd
1n,i(y)e−VI(y)e−VE(x−y)×

×
∫

Γ̈

e−EI(0,γ)e−EE(x,γ)e−EE(y,γ) dµE(γ) dy

+ 1n,i(x)

∫
Γ̈

e−EI(0,γ)e−EE(x,γ) dµE(γ)

]
dx

≤ const ·
(∫

Rd
1n,i(x) dx

)2

︸ ︷︷ ︸
≤

R
Rd 1n,i(x) dx for n > 2,

since then
R

Rd 1n,i(x) dx = ( 2
n

)d < 1

+const ·
∫

Rd
1n,i(x) dx,

where we have used Corollary 2.3.4 and boundedness of e−VI , e−VE . So with
(2.29) we obtain for n > 2

ED
µ∗(Un, Un) ≤ const · n2

∑
i∈An

∫
Rd
1n,i(x) dx.

But for each x ∈ Rd, 1n,i(x) 6= 0 for at most 2d ones of the points i ∈ An.
Hence

ED
µ∗(Un, Un) ≤ const · n22d( 2

n
)d = const · n2−d. (2.30)

Thus, since d ≥ 2,
sup
n∈N
ED
µ∗(Un, Un) < +∞.

This proves the assertion.

2.3.4 On ergodicity

For the application of the invariance principle scheme from Section 2.1 we
need ergodicity of the environment process. In this subsection we will give
conditions on the corresponding Dirichlet form, which ensure this.
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Consider the process

MD,µ∗ =
(
Ω,F , (Ft)t, (ξt)t≥0, (Pγ)γ∈Γ

)
from Theorem 2.3.11, associated to

(
ED
µ∗ , D(ED

µ∗)
)
.

Set

Pµ∗ :=

∫
Γ

Pγ dµ∗(γ).

We recall the following well-known result on ergodicity, cf., e.g., [AKR98b,
Theorem 6.1]:

Theorem 2.3.14. The following assertions are equivalent:

(i)
(
ED
µ∗ , D(ED

µ∗)
)
is irreducible, i.e., for all (bounded and hence for all)

F ∈ D(ED
µ∗) with ED

µ∗(F, F ) = 0 it follows that F is constant.

(ii)
(
e−tH

D
µ∗
)
t>0

is irreducible, i.e., if G ∈ L2(Γ, µ∗) with e−tH
D
µ∗ (GF ) =

Ge−tH
D
µ∗F for all F ∈ L∞(Γ, µ∗), t > 0, then G is constant.

(iii) If F ∈ L2(Γ, µ∗) with e−tH
D
µ∗F = F for all t > 0, then F is constant.

(iv)
(
e−tH

D
µ∗
)
t>0

is ergodic, i.e., for all F ∈ L2(Γ, µ∗)

∫ [
e−tH

D
µ∗F −

∫
F dµ∗

]2

dµ∗ → 0, t→∞.

(v) If F ∈ D(HD
µ∗) with HD

µ∗F = 0, then F is constant.

(vi) Pµ∗ is time-ergodic, i.e., every bounded F-measurable function G : Ω→
R, which is invariant under time-shifts, is constant Pµ∗-a.e.

In this case, (pt)t>0 as defined in (2.26) satisfies

lim
t→∞

ptF =

∫
F dµ∗ ED

µ∗-q.e.

for all bounded B(Γ)-measurable functions F : Γ→ R.
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2.4 The invariance principle

The mean forward velocity in the standard decomposition for the diffusion
in a random environment has the following form:

Φ(γ) := ∇xEI(0, γ) =
∑
y∈γ

∇VI(y) = −βγ,I(0). (2.31)

Lemma 2.4.1. Φ ∈ L2(Γ, µ∗).

Proof. By Corollary 1.45 and iterated application of the Georgii-Ngyuen-
Zessin identity (1.22), we obtain that∫

Γ

|Φ(γ)|2 dµ∗(γ)

≤
∫

Γ

∑
x∈γ

|∇VI(x)|
∑
y∈γ

|∇VI(y)| 1

Z
e−EI(0,γ) dµE(γ)

=
z

Z

∫
Γ

∫
Rd
|∇VI(x)|

∑
y∈γ∪x

|∇VI(y)| e−EI(0,γ∪x)e−EE(x,γ) dx dµE(γ)

=
z

Z

∫
Rd
|∇VI(x)|

∫
Γ

[
|∇VI(x)| e−EI(0,γ∪x)e−EE(x,γ)

+
∑
y∈γ

|∇VI(y)| e−EI(0,γ∪x)e−EE(x,γ)

]
dµE(γ) dx

=
z

Z

∫
Rd
|∇VI(x)|

[
|∇VI(x)| e−VI(x)

∫
Γ

e−EI(0,γ)e−EE(x,γ) dµE(γ)

+ e−VI(x)

∫
Γ

∑
y∈γ

|∇VI(y)| e−EI(0,γ)e−EE(x,γ) dµE(γ)

]
dx

≤ z

Z

∫
Rd
|∇VI(x)|

[
C |∇VI(x)| e−VI(x)

+ e−VI(x)z

∫
Rd
|∇VI(y)| e−VI(y)e−VE(y−x)×

×
∫

Γ

e−EI(0,γ)e−EE(x,γ)e−EE(y,γ) dµE(γ) dy

]
dx

≤ zC

Z

∫
Rd
|∇VI(x)|2 e−VI(x)

+ z |∇VI(x)| e−VI(x)

∫
Rd
|∇VI(y)| e−VI(y)e−VE(y−x) dy dx

< +∞,
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where C > 0 denotes the constant from Corollary 1.45. Here the last line
follows from the differentiability assumption (D) for VI and boundedness of
e−VE .

Thus, we can apply [DFGW89, Theorem 2.2.(ii)]:

Theorem 2.4.2. Let VI ,VE, and µE be as in Assumptions 2.3.1. Suppose
that the corresponding Dirichlet form

(
ED
µ∗ , D(ED

µ∗)
)
is irreducible. Consider

the associated process

MD,µ∗ =
(
Ω,F , (Ft)t, (ξt)t≥0, (Pγ)γ∈Γ

)
from Theorem 2.3.11 in the canonical case. Let

Xt := −
∫ t

0

Φ(ξs) ds+
√

2Wt, (2.32)

where Wt is a standard Brownian motion on Rd. Then Xt solves (2.6). Let
X

(ε)
t := εXε−2t, ε > 0. Then

Xε → WD (2.33)

in the sense of weak-convergence of the corresponding distributions on the
paths-space. Here WD denotes a Brownian motion with covariance Dt, and
D is given by

Dij = 2δij + 2(Φi, (L
D
µ∗)
−1Φj)L2(µ∗).



Chapter 3

Invariance Principle for a Tagged
Particle Process

As in the previous chapter we will always consider Rd with d ≥ 2. Thus
Rd \ γ is connected for every configuration γ ∈ Γ.

The tagged particle process describes the motion of a fixed particle in an
equilibrium motion of infinitely many interacting Brownian particles in Rd.
The latter dynamics can be desribed heuristically by the following infinite
system of stochastic differential equations:

dY i
t = −

∑
j∈N
j 6=i

∇V (Y i
t − Y

j
t ) dt+

√
2 dW i

t , t ≥ 0, i ∈ N. (3.1)

Here V denotes a symmetric pair potential, and W i
t , i ∈ N, are independent

Brownian motions. Such dynamics are called gradient stochastic dynamics.
The informal generator corresponding to (3.1) is given by

Lgsd =
∞∑
i∈N

∂2
yi −

∑
i∈N

(∑
j∈N
j 6=i

∇V (yi − yj)
)
∂yj .

Gradient stochastic dynamics have been constructed by Lang [Lan77] for
V ∈ C3

0(Rd) using finite-dimensional approximations and stochastic differen-
tial equations. Osada [Osa96] and Yoshida [Yos96] have also discussed singu-
lar potentials like Lennard-Jones by using Dirichlet form techniques, but they
could not show that their processes are actually weak solutions of (3.1). This
was proved by Albeverio, Kondratiev, and Röckner [AKR98b] by showing an
integration by parts formula for the corresponding Gibbs measures. Ma and

55
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Röckner [MR00] proved existence of a solution by another approach than
integration by parts. Finally, Grothaus, Kondratiev, and Röckner [GKR07]
discussed an N/V -limit. Their work also includes the case d = 1.

The tagged particle process looks the following. Consider a solution Yt
of (3.1). Now fix one particle and consider its motion in the sea of the other
particles. Therefore, consider the following coordinate transformation:

Xt := Y 1
t , ξit := Y i+1

t − Y 1
t , i ∈ N. (3.2)

Then we can rewrite (3.1) as

dXt =
∑
i∈N

∇V (ξit) dt+
√

2 dW 1
t (3.3)

dξit = −
(∑
j∈N
j 6=i

∇V (ξit − ξ
j
t ) +∇V (ξit) +

∑
j∈N

∇V (ξjt )

)
dt

+
√

2 d
(
W i+1
t −W 1

t

)
. (3.4)

Xt and ξt = (ξit)i denote now the tagged particle process and the environment
process, resp. The coordinate transform (3.2) gives

∂y1 = ∂x −
∑
i∈N

∂ξi , ∂yi+1 = ∂ξi .

Thus, the informal generator for the coupled process (Xt, ξ
1
t , ξ

2
t , . . . ) has the

form

Lcoup =
∞∑
i∈N

∂2
ξi +

(
∂x −

∞∑
i∈N

∂ξi

)2

+
∑
i∈N

∇V (ξi)

(
∂x −

∞∑
i∈N

∂ξi

)
−
∑
i∈N

(
∇V (ξi) +

∑
j∈N
j 6=i

∇V (ξi − ξj)
)
∂ξi . (3.5)

We will show an invariance principle for the tagged particle dynamics.
For this we will again apply the general scheme described in Section 2.1.
First, let us recall the construction of the tagged particle process.

3.1 Construction of a tagged particle process

A tagged particle process has been discussed, e.g., by Guo and Papanico-
laou [GP87] and De Masi et al. [DFGW89]. But both works only treat the
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case of bounded, positive interaction potentials with compact support. Fat-
tler and Grothaus [FG08] have The constructed rigorously the process for a
wide class of interaction potentials V including the Lennard-Jones potential
(1.28). They use a Dirichlet forms approach on the configuration space. For
completeness, we will recall their construction here. Note that, as in the
previous chapter, the environment process is constructed directly here, see
Theorem 3.1.5, which is useful for the application of the invariance principle
scheme.

The generator for the environment process ξt consists of a generator of
gradient stochastic dynamics with additional drift plus extra terms. Finally,
the generator of the coupled process (Xt, ξt) contains the environment process
genrator. Therefore, the construction is divided into four steps. We recall
the Dirichlet form and the generator of gradient stochastic dynamics (gsd),
and afterwards we will add an additional drift (gsdad). Then, we will discuss
the environment process (env) and finally the coupled process (coup).

Assumption 3.1.1. Throughout this chapter, let V be a symmetric pair
potential which satisfies (SS), (I), (LR), (D) and (LS) (see Subsection 1.4.2),
and let z > 0 be an activity parameter.

Remark 3.1.2. In contrast to the situation of a diffusing particle in a frozen
environment, as described in the previous chapter, here it is not reasonable
to consider different potentials for the environment Gibbs measure and the
interaction of the tagged particle with the environment.

3.1.1 Dynamics w.r.t. the intrinsic gradient

Gradient stochastic dynamics

Consider a grand canonical Gibbs measure µ0 ∈ Ggc
Rb(z, V ). In [AKR98b], the

gradient stochastic dynamics is described by the closure of the pre-Dirichlet
form

Eµ0

gsd(F,G) :=

∫
Γ

(∇ΓF (γ),∇ΓG(γ))TγΓ dµ0(γ), (3.6)

F,G ∈ FC∞b . Via integration by parts, its generator is obtained as the
Friedrichs extension of

Lµ0

gsdF (γ) =
N∑

i,j=1

∂i∂jgF
(
〈f1, γ〉, . . . , 〈fN , γ〉

)
〈(∇fi,∇fj), γ〉
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+
N∑
j=1

∂jgF
(
〈f1, γ〉, . . . , 〈fN , γ〉

)
×

×
(
〈∆fj, γ〉 −

∑
{x,y}⊂γ

(
∇V (x− y),∇fj(x)−∇fj(y)

))
,

F ∈ FC∞b , F (γ) = gF
(
〈f1, γ〉, . . . , 〈fN , γ〉

)
.

Gradient stochastic dynamics with additional drift

Now consider the Dirichlet form (3.6) but with a measure µ ∈ Ggc
Rb(ze−V , V )

instead of µ0 ∈ Ggc
Rb(z, V ).

Eµgsdad(F,G) :=

∫
Γ

(∇ΓF (γ),∇ΓG(γ))TγΓ dµ(γ), (3.7)

F,G ∈ FC∞b , is related to a gradient stochastic dynamics with additional
drift term. Again, via integration by parts, its generator is obtained as

LµgsdadF (γ) =
N∑

i,j=1

∂i∂jgF
(
〈f1, γ〉, . . . , 〈fN , γ〉

)
〈(∇fi,∇fj), γ〉

+
N∑
j=1

∂jgF
(
〈f1, γ〉, . . . , 〈fN , γ〉

)
×

×
(
〈∆fj, γ〉+ 〈(∇V,∇fj), γ〉

−
∑
{x,y}⊂γ

(
∇V (x− y),∇fj(x)−∇fj(y)

))
,

F ∈ FC∞b .

In [FG08, Theorem 5.3] it is shown, that
(
Eµgsdad,FC∞b

)
is closable, and

its closure
(
Eµgsdad, D(Eµgsdad)

)
is a conservative, symmetric Dirichlet form,

which is quasi-regular and local on the multiple configuration space Γ̈. The
arguments here are similar to the classical case, i.e., the ones for Eµ0

gsd treated
in [AKR98b]. Therefore we only sketch the line of argumentation here.

Closability follows immediately from the representation of Eµgsdad via its
generator Lµgsdad, and conservativity is obvious.

Quasi-regularity on Γ̈ follows as a special case of the results in [MR00].
Note that the square field operator

SΓ(F,G) := (∇ΓF,∇ΓG)TΓ, F,G ∈ FC∞b ,
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is given by lifting the standard square field operator

S(f, g) := (∇f,∇g), f, g ∈ C∞0 (Rd),

to the configuration space, i.e., it holds that

SΓ(F,G)(γ) =
N∑
i=1

M∑
j=1

∂igF
(
〈f1, γ〉, . . . , 〈fN , γ〉

)
×

× ∂jgG
(
〈g1, γ〉, . . . , 〈gM , γ〉

)
〈S(fi, gj), γ〉, γ ∈ Γ̈. (3.8)

Thus, SΓ is as in the general framework of [MR00]. In Proposition 2.3.9 in
the previous chapter and in Proposition 3.1.4 below, this framework is not
directly applicable, since

SD(F,G) := (DF,DG), F,G ∈ FC∞b ,

is not given as a lifting of some underlying square field operator.

Finally, locality of
(
Eµgsdad,FC∞b

)
is satisfied, since ∇Γ satisfies the prod-

uct rule (cf. also Lemma 2.3.10). Hence, by the general theory of Diri-
chlet forms (see, e.g., [MR92]), there exists a conservative diffusion process
on Γ̈ which is properly associated to

(
Eµgsdad, D(Eµgsdad)

)
, has µ as invariant

measure, and solves the corresponding martingale problem. Since we have
assumed that d ≥ 2, by the results from [RS98], we have that Γ̈ \ Γ is Eµgsdad-
exceptional. Hence the diffusion process is actually supported on the smaller
space Γ.

3.1.2 The environment process

Since we will need the environment process for the application of the invari-
ance principle scheme, we will recall its construction.

The environment process for the tagged particle is described by the fol-
lowing pre-Dirichlet form on L2(Γ, µ):

Eµenv(F,G) :=

∫
Γ

(∇ΓF (γ),∇ΓG(γ))TγΓ +
(
DF (γ),DG(γ)

)
dµ(γ), (3.9)

F ∈ FC∞b . Recall that here

DF (γ) = 〈∇ΓF (γ), γ〉.
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By similar arguments as in the proof of Proposition 2.3.7, we have that(
Eµenv,FC∞b

)
is generated on L2(µ) by

LµenvF (γ) = LµgsdadF (γ)

+
N∑

i,j=1

∂i∂jgF
(
〈f1, γ〉, . . . , 〈fN , γ〉

)(
〈∇fi, γ〉, 〈∇fj, γ〉

)
+

N∑
j=1

∂jgF
(
〈f1, γ〉, . . . , 〈fN , γ〉

)
×

×
(
〈∆fj, γ〉+

(
〈∇V, γ〉, 〈∇fj, γ〉

)
−
( ∑
{x,y}⊂γ

∇V (x− y),
∑
{x,y}⊂γ

(∇fj(x)−∇fj(y))
))
.

(3.10)

The conservativity, i.e., 1 ∈ FC∞b and Eµenv(1, 1) = 0, is again obvious. Hence
we obtain the following result:

Proposition 3.1.3. The form (Eµenv,FC∞b ) is closable on L2(µ), and its
closure (Eµenv, D(Eµenv)) is a symmetric, conservative Dirichlet form. It is gen-
erated by the Friedrichs extension of (Hµ

env := −Lµenv,FC∞b ), which we also
denote by Hµ

env.

Now we will show the quasi-regularity of
(
Eµenv, D(Eµenv)

)
on the multiple

configuration space Γ̈.

Consider µ as a measure on (Γ̈,B(Γ̈)) and (Eµenv, D(Eµenv)) as a Dirichlet
form on L2(Γ̈, µ). The gradients ∇Γ and D extend to linear operators on
D(Eµenv), which we denote with the same symbols. The same holds for the
corresponding square field operators SΓ and SD, resp. Also recall the notation
S(F ) := S(F, F ) for any square field operator.

Proposition 3.1.4. (Eµenv, D(Eµenv)) is quasi-regular on L2(Γ̈, µ).

Proof. The proof is analogous to the one for Proposition 2.3.9. It suffices to
show that there exists a bounded, complete metric ρ̄ on Γ̈, which generates
the vague topology on Γ̈ and fulfills the following condition: for all γ0 ∈ Γ

ρ̄(·, γ0) ∈ D(Eµenv) and (SΓ + SD)(ρ̄(·, γ0)) ≤ η µ-a.e.

for some function η ∈ L1(Γ̈, µ) independent of γ0.
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For k ∈ N, let Bk denote the open ball in Rd with center 0 and radius k.
Set

gk(x) := 2
3

(
1
2
− dist(x,Bk) ∧ 1

2

)
, x ∈ Rd,

and φk := 3gk.

By [MR00, Example 4.5.1], we have that the standard square field oper-
ator (S,H1,2(Rd)), where H1,2(Rd) denotes the (1, 2)-Sobolev space on Rd,
satisfies the following condition:

(Q) There exist χj ∈ C∞0 (Rd), χj > 0, j ∈ N, and fln ∈ C(Rd), l, n ∈ N,
such that

(i) supl∈N fln = |yn − ·| for all n ∈ N and some {yn : n ∈ N} ⊂ Rd

dense;

(ii) there exists C > 0 such that, for all j, l, n ∈ N and all φ ∈ C∞b (Rd),
χj(φ ◦ fln) ∈ C∞0 (Rd) and

S(χj(φ ◦ fln)) ≤ C sup{‖φ′‖∞, ‖φ‖∞}2(χj + S(χj)
1
2 )2;

(iii) for all k ∈ N there exists j ∈ N such that χj ≡ 1 on Bk.

Choose (jk)k∈N such that χjk ≡ 1 on Bk+1. Then, by [MR00, Lemma 4.10],
for all k, j ∈ N, φkgj ∈ H1,2(Rd) and

S(φkgj) ≤ χ̃2
jk
, (3.11)

with χ̃jk = 4χjk
(
S(χjk)

1
2 + C(χjk + S(χjk)

1
2 )
)2
.

Let f ∈ H1,2(Rd) ∩ C0(Rd), then 〈f, ·〉 ∈ D(Eµenv), and

(SΓ + SD)(〈f, ·〉) = 〈(∇f,∇f), ·〉+
(
〈∇f, ·〉, 〈∇f, ·〉

)
.

If supp f ⊂ Bk+1, then, by (2.21),

SD(〈f, ·〉)(γ) = NBk+1
(γ)〈S(f), γ〉.

In particular, this holds for f = φkgj. Furthermore, for any f ∈ H1,2(Rd) it
holds that

SΓ(〈f, ·〉)(γ) = 〈S(f), γ〉, (3.12)

since SΓ is the lifting of S to Γ̈. Thus, with (3.11), we have

(SΓ + SD)(〈φkgj, ·〉) ≤ (1 +NBk+1
(·))〈χ̃2

jk
, ·〉. (3.13)
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Let ζ ∈ C∞b (R) such that 0 ≤ ζ ≤ 1 on [0,∞), ζ(t) = t on [−1
2
, 1

2
], ζ ′ > 0,

and ζ ′′ ≤ 0. Then similarly as in [RS95, Lemma 3.2] we obtain that for any
fixed γ0 ∈ Γ̈ and for any k, n ∈ N

ζ
(
sup
j≤n
|〈φkgj, ·〉 − 〈φkgj, γ0〉|

)
∈ D(Eµenv).

Furthermore,

(SΓ + SD)

(
ζ
(
sup
j≤n
|〈φkgj, ·〉 − 〈φkgj, γ0〉|

))
≤ (1 +NBk+1

(·))〈χ̃2
jk
, ·〉 µ-a.e.

(3.14)

Set
Fk(γ, γ0) := ζ

(
sup
j∈N
|〈φkgj, γ〉 − 〈φkgj, γ0〉|

)
,

then for fixed γ0 ∈ Γ̈

ζ
(
sup
j≤n
|〈φkgj, ·〉 − 〈φkgj, γ0〉|

)
−→ Fk(·, γ0), n→∞,

pointwisely and in L2(Γ̈, µ). Hence, by (3.14), the Banach-Alaoglu theorem,
and the Banach-Saks theorem (see, e.g., [MR92, Appendix A.2]),

Fk(·, γ0) ∈ D(Eµenv),

(SΓ + SD)(Fk(·, γ0)) ≤ (1 +NBk+1
(·))〈χ̃2

jk
, ·〉 µ-a.e. (3.15)

Set

ck :=

(
1 +

∫
Γ̈

(1 +NBk+1
(γ))〈χ̃2

jk
, γ〉 dµ(γ)

)−1
2

2−
k
2 .

Then the Ruelle bound property of µ implies ck ∈ (0,∞) for all k, and
ck → 0, k →∞. Define

ρ̄(γ1, γ2) := sup
k∈N

ckFk(γ1, γ2). (3.16)

Then, by [MR00, Theorem 3.6], ρ̄ is a bounded, complete metric on Γ̈, which
generates the vague topology.

By (3.15), we have that

(SΓ + SD)(ckFk(·, γ0)) = c2
k(S

Γ + SD)(Fk(·, γ0))

≤ 2−k
(

1 +

∫
Γ̈

(1 +NBk+1
(γ))〈χ̃2

jk
, γ〉 dµ(γ)

)−1

×

× (1 +NBk+1
(·))〈χ̃2

jk
, ·〉 µ-a.e.
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Set

η := sup
k

[
2−k
(

1 +

∫
Γ̈

(1 +NBk+1
(γ))〈χ̃2

jk
, γ〉 dµ(γ)

)−1

(1 +NBk+1
(·))〈χ̃2

jk
, ·〉
]
,

then∫
Γ̈

η(γ′) dµ(γ′) ≤
∞∑
k=1

2−k
(

1 +

∫
Γ̈

(1 +NBk+1
(γ))〈χ̃2

jk
, γ〉 dµ(γ)

)−1

×

×
∫

Γ̈

(1 +NBk+1
(γ′))〈χ̃2

jk
, γ′〉 dµ(γ′)

≤
∞∑
k=1

2−k = 1 < +∞,

so η ∈ L1(µ), and as in [RS95, Lemma 3.2] we have for all n ∈ N

(SΓ + SD)
(
sup
k≤n

ckFk(·, γ0)
)
≤ η µ-a.e..

But supk≤n ckFk(·, γ0) → ρ̄(·, γ0) as n → ∞ pointwisely and in L2(Γ̈, µ).
Hence, by the Banach-Alaoglu theorem and the Banach-Saks theorem,

ρ̄(·, γ0) ∈ D(Eµenv) and (SΓ + SD)(ρ̄(·, γ0)) ≤ η.

Thus, the assertion is proved.

Locality of
(
Eµenv, D(Eµenv)

)
follows again from the product rule for ∇Γ and

D, see also the proof of Lemma 2.3.10.

Thus, by the general theory of Dirichlet forms, we have the following
result:

Theorem 3.1.5. (i) There exists a conservative diffusion process

Mµ
env =

(
Ω,F , (Ft)t≥0, (ξt)t≥0, (Pγ)γ∈Γ̈

)
on Γ̈, which is properly associated with (Eµenv, D(Eµenv)), i.e., for all F ∈
L2(Γ̈, µ) and all t > 0 the function

γ 7→ ptF (γ) :=

∫
Ω

F (ξt) dPγ, γ ∈ Γ̈, (3.17)

is an Eµenv-quasi-continuous version of exp(−tHµ
env)F . Mµ

env is up to
µ-equivalence unique. In particular, Mµ

env is µ-symmetric, i.e.,∫
Γ̈

GptF dµ =

∫
Γ̈

FptGdµ, F,G ∈ L0(Γ̈, µ),≥ 0,

and has µ as invariant measure.
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(ii) The process Mµ
env from (i) is the (up to µ-equivalence) unique diffu-

sion process having µ as invariant measure and solving the martingale
problem for (Hµ

env, D(Hµ
env)), i.e., for all G ∈ D(Hµ

env)

G̃(ξt)− G̃(ξ0) +

∫ t

0

Hµ
envG(ξt) ds, t ≥ 0,

is an (Ft)t-martingale under Pγ for Eµenv-q.a. γ ∈ Γ̈. (Here G̃ denotes
an Eµenv-quasi-continuous version of G, cf. [MR92, Chapter IV, Propo-
sition 3.3].)

Proof. (i) follows directly from [MR92, Chapter IV, Theorem 3.5, and Chap-
ter V, Theorem 1.11]. (ii) follows from [AR95, Theorem 3.5].

Remark 3.1.6. The process Mµ
env can be taken to be canonical, i.e., Ω :=

D([0,∞) → Γ), the space of càdlàg functions ω : [0,∞) → Γ, ξt(ω) := ω(t),
t ≥ 0, ω ∈ Ω, and F , (Ft)t≥0 is the corresponding minimum completed
admissible family.

The following lemma shows, that the process Mµ
env actually lives on the

smaller space Γ.

Lemma 3.1.7. The set Γ̈ \ Γ is Eµenv-exceptional.

Proof. The proof is analogous to the one for Lemma 2.3.13.

It is sufficient to prove that for any a ∈ N the function 1Na is Eµenv-quasi-
continuous, where

Na := {γ ∈ Γ̈ : sup
x∈[−a,a]d

γ({x}) ≥ 2}.

For this we have to find a sequence of functions Un ∈ D(Eµenv) with

sup
n
Eµenv(Un, Un) < +∞ and Un → 1Na pointwisely as n→∞.

Let φ, φn,i, 1n,i, and ψ be as in the proof of Lemma 2.3.13. Let An :=
[−na, na]d ∩ Zd, then

Un := ψ
(

sup
i∈An
〈φn,i, ·〉

)
∈ D(Eµenv),

Un is continuous, and Un → 1Na pointwisely. So it remains to show that
Eµenv(Un, Un) is bounded in n.
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We have

(SΓ + SD)(Un)(γ)

=
(
ψ′
(

sup
i∈An
〈φn,i, γ〉

))2
(SΓ + SD)

(
sup
i∈An
〈φn,i, ·〉

)
(γ)

≤
(
ψ′
(

sup
i∈An
〈φn,i, γ〉

))2
sup
i∈An

(SΓ + SD)
(
〈φn,i, ·〉

)
(γ)

(2.21),(3.12)
≤

(
ψ′
(

sup
i∈An
〈φn,i, γ〉

))2
sup
i∈An

[(1 + 〈1n,i, γ〉)〈S(φn,i), γ〉]

(2.27),(2.28)
≤ 4 · 1{supi∈An 〈1n,i,γ〉≥2} sup

i∈An
[(1 + 〈1n,i, γ〉)9n2d〈1n,i, γ〉]

≤ const · n2
∑
i∈An

1{〈1n,i,γ〉≥2}〈1n,i, γ〉2. (3.18)

Let (k
(n)
µ )n denote the system of correlation functions of µ. By assumption

there exists a constant Cµ > 0 such that

k(n)
µ ≤ Cn

µ ∀n ∈ N

(Ruelle bound). Let

G(η) := 1n,i(y)2
1{y}(η) + 21n,i(x)1n,i(y)1{x,y}(η),

then ∫
{〈1n,i,γ〉≥2}

〈1n,i, γ〉2 dµ(γ)

≤
∫

Γ

KG(γ)

=

∫
Rd
1n,i(y)2k(1)

µ (y)ze−V (y) dy

+

∫
Rd

∫
Rd

21n,i(x)1n,i(y)k(2)
µ (x, y) z

2

2!
e−V (x)e−V (y) dx dy

≤ Cµz

∫
Rd
1n,i(y)e−V (y) dy + C2

µz
2

(∫
Rd
1n,i(y)e−V (y) dy

)2

≤ const
∫

Rd
1n,i(y) dy,

since e−V is bounded. Then with the same argument as in the proof of
Lemma 2.3.13, we obtain

Eµenv(Un, Un) ≤ const · n2−d. (3.19)
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Thus, since d ≥ 2,

sup
n∈N
Eµenv(Un, Un) < +∞.

This proves the assertion.

3.1.3 The coupled process

The coupled process, which describes the motion of the tagged particle to-
gether with the environment, lives on Rd × Γ, and the corresponding pre-
Dirichlet form acts on functions F ∈ C∞0 (Rd)⊗FC∞b , i.e.,

F(x, γ) = f(x)F (γ), x ∈ Rd, γ ∈ Γ,

for some f ∈ C∞0 (Rd), F ∈ FC∞b . For brevity, we write F = fF instead of
F = f ⊗ F . Furthermore, introduce the following gradients on Rd × Γ:

(D−∇)F := fDF −∇fF and ∇ΓF := f∇ΓF.

Then the pre-Dirichlet form on L2(Rd×Γ, dx⊗µ) for the coupled process
has the form

Edx⊗µcoup (F,G)

=

∫
Rd×Γ

(
(D−∇)F(x, γ), (D−∇)G(x, γ)

)
+ (∇ΓF(x, γ),∇ΓG(x, γ))TγΓ dxdµ(γ) (3.20)

=

∫
Rd
f(x)g(x) dx

∫
Γ

[
(∇ΓF (γ),∇ΓG(γ))TγΓ +

(
DF (γ),DG(γ)

)]
dµ(γ)

−
∫

Rd×Γ

[
f(x)G(γ)(DF (γ),∇g(x))

+ F (γ)g(x)(∇f(x),DG(γ))
]
dxdµ(γ)

+

∫
Γ

F (γ)G(γ) dµ(γ)

∫
Rd

(∇f(x),∇g(x)) dx, (3.21)

F = fF,G = gG ∈ C∞0 (Rd)⊗FC∞b .
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Edx⊗µcoup is generated on L2(Rd × Γ, dx⊗ µ) by

Ldx⊗µcoup F(x, γ) (3.22)
= f(x)LµenvF (γ)

− 2
(
DF (γ),∇f(x)

)
−

N∑
j=1

∂jgF
(
〈f1, γ〉, . . . , 〈fN , γ〉

)
〈∆fk, γ〉f(x)

+ F (γ)
∑
y,y′∈γ

(
∇V (y − y′),∇f(y)−∇f(y′)

)
− F (γ)

∑
y∈γ

(
∇V (y),∇f(y)

)
+ F (γ)∆f(x), (3.23)

F(x, γ) = f(x)gF
(
〈f1, γ〉, . . . , 〈fN , γ〉

)
.

Also Edx⊗µcoup gives a corresponding diffusion:

Theorem 3.1.8.
(
Edx⊗µcoup , C

∞
0 (Rd)⊗FC∞b

)
is closable in L2(Rd×Γ, dx⊗µ).

Its closure
(
Edx⊗µcoup , D(Edx⊗µcoup )

)
is a conservative, local, quasi-regular, symmet-

ric Dirichlet form, which is generated by the Friedrichs extension of Ldx⊗µcoup .(
Edx⊗µcoup , D(Edx⊗µcoup )

)
is properly associated with a conservative diffusion process

MRd×Γ,dx⊗µ
coup =

(
Ωcoup,F coup, (F coup

t )t≥0, ((Xt, ξt)
coup)t≥0.(Pcoup

(x,γ))(x,γ)∈Rd×Γ

)
,

which has dx⊗ µ as invariant measure and solves the associated martingale
problem.

Proof. See [FG08, Theorems 5.15, 5.16, Remark 5.17]. The ideas of the proof
are the following: The arguments for closability, conservativity, and locality
are as before, i.e., the properties are obvious respectively follow directly from
the product rule for the gradients (D−∇) and ∇Γ.

Quasi-regularity follows from the quasi-regularity of the components of
Edx⊗µcoup . Namely, one has to construct an Edx⊗µcoup -nest of compact sets on
L2(Rd × Γ̈, dx⊗ µ). Therefor let E(f, g) :=

∫
Rd(∇f,∇g) dx, f, g ∈ H1,2(Rd),

denote the standard Dirichlet form on L2(Rd, dx). Both (E , H1,2(Rd)) and
(Eµenv, D(Eµenv)) are quasi-regular on L2(Rd, dx) and L2(Γ̈, µ), resp. Thus there
exists an Eµenv-nest (Ek)k of compact sets in Γ̈, and the closed balls (Bk)k form
an E-nest of compact sets on Rd. Then (Fk)k := (Bk ×Ek)k is an Edx⊗µcoup -nest
of compact sets.

The tagged particle process is then obtained as a projection of the coupled
process to its first component. Note that, in general, this is no longer a
Markov process.
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3.2 Application of IP-scheme

Fix an activity parameter z > 0. Let µ ∈ exGgc
Rb(ze−V , V ) such that the

Dirichlet form
(
Eµenv, D(Eµenv)

)
is irreducible (see Theorem 2.3.14). Consider

the environment process

Mµ
env =

(
Ω,F , (Ft)t≥0, (ξt)t≥0, (Pγ)γ∈Γ̈

)
from Theorem 3.1.5. By the assumptions on µ and the construction of

the process, ξ is reversible and ergodic w.r.t. µ.

We can write the tagged particle process in the form of the standard
decomposition (2.5) as

Xt =

∫ t

0

Φ(ξs) ds+
√

2Wt (3.24)

with
Φ(γ) :=

∑
y∈Γ

∇V (y). (3.25)

Lemma 3.2.1. Φ ∈ L2(µ).

Proof. Let (k
(n)
µ )n denote the system of correlation functions of µ. By as-

sumption there exists a constant Cµ > 0 such that

k(n)
µ ≤ Cn

µ ∀n ∈ N

(Ruelle bound).

Set

G(η) := |∇V (y)|2 1{y}(η) + 2 |∇V (x)| |∇V (y)|1{x,y}(η).

Then∫
Γ

Φ(γ)2 dµ(γ)

≤
∫

Γ

KG(γ) dµ(γ)

=

∫
Rd
|∇V (y)|2 k(1)

µ (y)ze−V (y) dy

+

∫
Rd

∫
Rd

2 |∇V (x)| |∇V (y)| k(2)
µ (x, y) z

2

2!
e−V (x)e−V (y) dxdy

≤ Cµz

∫
Rd
|∇V (y)|2 e−V (y) dy + C2

µz
2

(∫
Rd
|∇V (y)| e−V (y) dy

)2

< +∞
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since, by the assumption (D), |∇V | ∈ L1(Rd, e−V (x) dx) ∩ L2(Rd, e−V (x) dx).

Thus, we can apply [DFGW89, Theorem 2.2.(ii)] to obtain an invariance
principle for Xt:

Theorem 3.2.2. Let V be a symmetric pair potential satisfying (SS), (I),
(LR), (D) and (LS), and let z > 0. Let µ ∈ Ggc

Rb(ze
−V , V ). Suppose that

the corresponding Dirichlet form
(
Eµenv, D(Eµenv)

)
is irreducible. Let X(ε)

t :=
εXε−2t, ε > 0. Then

Xε → WD (3.26)

in the sense of weak-convergence of the corresponding distributions on the
paths-space. Here WD denotes a Brownian motion with covariance Dt, and
D is given by

Dij = 2δij + 2(Φi, (L
µ
env)

−1Φj)L2(µ).
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Chapter 4

Continuous Contact Model with
Jumps

4.1 Description of the model

4.1.1 Generator

A continuous contact process has been studied recently in [KS06, KKP08,
FKS09]. It is a special type of spatial birth-and-death processes, cf. eg.
[Pre75, HS78, KL05]. The mechanism of the dynamics is described by the
following formal generator acting on functions on Γ:

(LCF )(γ) :=
∑
x∈γ

[F (γ \ x)− F (γ)] + κ
∫

Rd

∑
y∈γ

a(x− y)[F (γ ∪ x)− F (γ)] dx

(4.1)
with κ > 0 and 0 ≤ a ∈ L1 an even probability density function. The first
term describes the death part. Points of the configuration die independently
after an exponentially distributed life time. The second summand describes
the birth of particles. In the contact model, particles of the configuration
generate independently from each other new particles distributed in space
according to a.

In this chapter we will study a modification of the contact process by
allowing the points also to perform jumps in the space, i.e., we add a jump
part to the generator (4.1). Let κ > 0, and let 0 ≤ a, w ∈ L1(Rd) be arbitrary
even functions with 〈a〉 :=

∫
Rd a(x) dx = 1. We consider the following Markov

71
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pre-generator on the configuration space Γ:

(LF )(γ) :=
∑
x∈γ

[F (γ \ x)− F (γ)] + κ
∫

Rd

∑
y∈γ

a(x− y)[F (γ ∪ x)− F (γ)] dx

+
∑
y∈γ

∫
Rd
w(x− y)[F (γ \ y ∪ x)− F (γ)] dx. (4.2)

The last term is a generator of so-called free Kawasaki dynamics, cf., e.g.,
[KLR07, KLR08]. Note that, in contrast to birth-and-death dynamics, Kawasaki
dynamics is conservative, i.e., the number of particles (if it is finite) does not
vary in time.

Note that the case w ≡ 0, i.e., the usual contact model, is included in all
further considerations.

To give meaning to the operator L, let FCb := FCb(C0(Rd),Γ) denote
the set of all continuous bounded cylinder functions on Γ, i.e., all F which
have a (non-unique) representation as

F (γ) = gF
(
〈ϕ1, γ〉, . . . , 〈ϕN , γ〉

)
with N ∈ N, gF ∈ Cb(RN), and ϕ ∈ C0(Rd), i = 1, . . . , N . Then for each
F ∈ FCb, (LF )(γ) is well-defined at least pointwisely.

4.1.2 Application: plankton dynamics

The model described by (4.2) serves as a model for a plankton dynamics.
The points of a configuration γ represent individuals of the plankton. Then
the contact model part of (4.2) describes the birth-and-death of individuals,
and the jump part describes their motion.

In the literature, see, e.g., [YRS01], the motion of plankton is often mod-
elled by diffusion. But motion and birth-and-death happen on different time
scales, e.g., motion in terms of minutes and birth-and-death in terms of days.
Therefore, it is appropriate to think of motion on the bio-time scale as (long)
jumps.

4.2 Construction of a continuous contact pro-
cess with jumps

We will construct now a Markov process with generator L. The arguments
are a modification of those for the construction of a usual continuous contact
process (cf. [KS06, FKS09]) to our situation.
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For any β > d introduce

eβ(x) :=
1

(1 + |x|)β
, x ∈ Rd, (4.3)

Ψβ(x, y) := eβ(x)eβ(y)
|x− y|+ 1

|x− y|
1{x 6=y}, x, y ∈ Rd. (4.4)

Furthermore, define the following functions on Γ:

Lβ(γ) := 〈eβ, γ〉 =
∑
x∈γ

eβ(x), (4.5)

Eβ(γ) :=
1

2

∫
Rd

∫
Rd

Ψβ(x, y) dγ(x)dγ(y) =
∑
{x,y}⊂γ

Ψβ(x, y), (4.6)

and

Vβ(γ) := Lβ(γ) + Eβ(γ). (4.7)

Let K(Γ) denote the set of all relatively compact subsets of Γ. In [KK06,
Proposition 3.1 and Remark 3.8] it is shown that for any C > 0

{γ ∈ Γ : Vβ(γ) ≤ C} ∈ K(Γ).

Hence, for any β > d, the set

Γβ := {γ ∈ Γ : Vβ(γ) < +∞} (4.8)

is σ-compact. For β1 < β2, Γβ1 ⊂ Γβ2 , and define

Γ∞ :=
⋃
β>d

Γβ ⊂ Γ. (4.9)

The space Γ∞ gives support to a large class of probability measures on Γ,
cf., e.g., [FKS09].

The next lemma shows that Vβ can be considered as a Lyapunov function
for L under the assumption of polynomial decay of a, w. Note that, since Vβ

is unbounded, the inequality (4.10) below has sense only pointwisely.

Lemma 4.2.1. Let d ≥ 2, and assume that

(κa+ w)(x) ≤ A

(1 + |x|)β+δ
, x ∈ Rd,

for some A > 0 and some β, δ > d. Then there exists a constant C > 0 such
that (pointwisely)

LVβ(γ) ≤ CVβ(γ). (4.10)
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Proof. The assumption on the polynomial bound of a, w leads to the following
estimate:

(κa+ w)(x− y)eβ(x) ≤ A

(1 + |x− y|)δ
eβ(y). (4.11)

Namely, since |x− y|+ |x| ≥ |y|, x, y ∈ Rd, we have

(1 + |x− y|)β(1 + |x|)β ≥ (1 + |y|)β, x, y ∈ Rd,

and this implies (4.11).

First consider γ ∈ Γ0. Then, with (4.11),

LLβ(γ) =
∑
x∈γ

[〈eβ, γ \ x〉 − 〈eβ, γ〉]

+ κ
∫

Rd

∑
y∈γ

a(x− y)[〈eβ, γ ∪ x〉 − 〈eβ, γ〉] dx

+
∑
y∈γ

∫
Rd
w(x− y)[〈eβ, γ \ y ∪ x〉 − 〈eβ, γ〉] dx

=−
∑
x∈γ

eβ(x) + κ
∑
y∈γ

∫
Rd
a(x− y)eβ(x) dx

+
∑
y∈γ

∫
Rd
w(x− y)[eβ(x)− eβ(y)] dx

=− Lβ(γ) +
∑
y∈γ

∫
Rd

(κa+ w)(x− y)eβ(x) dx

−
∑
y∈γ

eβ(y)〈w〉

≤ − (1 + 〈w〉)Lβ(γ) +
∑
y∈γ

eβ(y)

∫
Rd

A

(1 + |x− y|)δ
dx

=C ′Lβ(γ),

with C ′ := ACδ − (1 + 〈w〉), Cδ :=
∫

Rd
dx

(1+|x|)δ < +∞.
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Similarly,

LEβ(γ)

=
∑
x∈γ

[ ∑
{z1,z2}⊂(γ\x)

Ψβ(z1, z2)−
∑

{z1,z2}⊂γ

Ψβ(z1, z2)

]

+ κ
∫

Rd

∑
y∈γ

a(x− y)

[ ∑
{z1,z2}⊂(γ∪x)

Ψβ(z1, z2)−
∑

{z1,z2}⊂γ

Ψβ(z1, z2)

]
dx

+
∑
y∈γ

∫
Rd
w(x− y)

[ ∑
{z1,z2}⊂(γ\y∪x)

Ψβ(z1, z2)−
∑

{z1,z2}⊂γ

Ψβ(z1, z2)

]
dx

= −
∑
x∈γ

∑
y∈(γ\x)

Ψβ(x, y)

+ κ
∫

Rd

∑
y∈γ

a(x− y)

[∑
z∈γ

Ψβ(x, z)

]
dx

+
∑
y∈γ

∫
Rd
w(x− y)

[ ∑
z∈(γ\y)

Ψβ(x, z)−
∑

z∈(γ\y)

Ψβ(y, z)

]
dx

= −Eβ(γ) + κ
∑
y∈γ

∑
z∈γ

∫
Rd
a(x− y)Ψβ(x, z) dx

+
∑
y∈γ

∑
z∈(γ\y)

∫
Rd
w(x− y)Ψβ(x, z) dx− 〈w〉

∑
y∈γ

∑
z∈(γ\y)

Ψβ(y, z)

= −(1 + 〈w〉)Eβ(γ) +
∑
y∈γ

∑
z∈γ

∫
Rd

(κa+ w)(x− y)Ψβ(x, z) dx

= −(1 + 〈w〉)Eβ(γ)

+
∑
y∈γ

∑
z∈γ

eβ(z)

∫
Rd

(κa+ w)(x− y)eβ(x)
|x− z|+ 1

|x− z|
1{x 6=z} dx

≤ −(1 + 〈w〉)Eβ(γ)

+
∑
y∈γ

∑
z∈γ

eβ(y)eβ(z)

∫
Rd

A

(1 + |x− y|)δ
|x− z|+ 1

|x− z|
1{x 6=z} dx.

But we have∫
Rd

1

(1 + |x− y|)δ
|x− z|+ 1

|x− z|
dx

=

∫
Rd

1

(1 + |x|)δ
|x− (z − y)|+ 1

|x− (z − y)|
dx
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= Cδ +

∫
Rd

1

(1 + |x|)δ
1

|x− (z − y)|
dx

= Cδ +

∫
B1(z−y)

. . . dx+

∫
B1(z−y)c

. . . dx

≤ Cδ +

∫
B1(z−y)

1

|x− (z − y)|
dx+

∫
B1(z−y)c

1

(1 + |x|)δ
1

1
dx

= 2Cδ + C̃,

where C̃ :=
∫
B1(0)

dx
|x| < ∞ since d ≥ 2. Therefore, since eβ(y)eβ(z) ≤

Ψβ(y, z), y 6= z, and eβ(y)2 ≤ eβ(y),

LEβ(γ) ≤ −(1 + 〈w〉)Eβ(γ) + C ′′
∑
y∈γ

∑
z∈γ

eβ(y)eβ(z)

≤
(
C ′′ − (1 + 〈w〉)

)
Eβ(γ) + C ′′Lβ(γ),

where C ′′ := A(2Cδ + C̃).

Since C ′ ≤ C ′′ − (1 + 〈w〉), we thus obtain

LVβ(γ) ≤ (C ′ + C ′′)Lβ(γ) +
(
C ′′ − (1 + 〈w〉)

)
Eβ(γ)

≤
(
2C ′′ − (1 + 〈w〉)

)
Vβ(γ) (< +∞).

Thus we have proved the assertion of the lemma for γ ∈ Γ0.

But from the above calculations we can obtain the assertion also for a
general γ ∈ Γβ, because Vβ(γ) < +∞, hence LVβ(γ) < +∞, and LVβ(γ) ≥
−(1 + 〈w〉)Vβ(γ) > −∞. (Note that we can also here interchange infinite
sums with integrals because all limits appearing are monotone ones.)

Theorem 4.2.2. Under the conditions of Lemma 4.2.1, for any initial con-
figuration γ ∈ Γβ, there exists a Markov process (Xγ

t )t≥0 with generator
(L,B(Γ)), which starts in γ and satisfies

∀t ≥ 0 Xγ
t ∈ Γβ a.s.

In particular, if a(x), w(x)→ 0 rapidly as |x| → ∞, i.e., faster than any
polynomial, then the corresponding process exists for every starting configu-
ration γ ∈ Γ∞ and stays in Γ∞ for all times.

Proof. The proof is similar to the proof of Theorem 3.1 in [KS06].
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First we consider the situation of a finite initial configuration γ ∈ Γ0. We
can rewrite the generator L in the standard form of a pure jump Markov
generator: For any η ∈ Γ0 we have

LF (η) = λ(η)

∫
Γ0

[
F (η′)− F (η)

]
Q(η, dη′), (4.12)

where
λ(η) =

(
1 + κ + 〈w〉

)
|η|

and

Q(η, dη′) =
1

λ(η)

[∑
x∈η

δη\x(dη
′) + κ

∑
y∈η

∫
Rd
a(x− y) δη∪x(dη

′) dx

+
∑
y∈η

∫
Rd
w(x− y) δη\y∪x(dη

′) dx

]
.

Then the theory of pure jump Markov processes from [GS75] gives, for each
starting point η ∈ Γ0, the existence of a pure jump Markov process(

Ω,F , (Ft)t≥0, (X
η
t )0≤t<ζ ,Pη

)
(4.13)

on Γ0 with generator (L,B(Γ), where ζ(ω) denotes the life time of the process,
.

We want to show, that for any starting configuration η ∈ Γ0

Pη(ζ = +∞) = 1. (4.14)

Let k ∈ N, then |·| ∧ k ∈ B(Γ0). Fix η ∈ Γ0.

L |η| =
∑
x∈η

[|η \ x| ∧ k − |η| ∧ k]︸ ︷︷ ︸
≤0

+κ
∫

Rd

∑
y∈η

a(x− y)[|η ∪ x| ∧ k − |η| ∧ k] dx

+
∑
y∈γ

∫
Rd
w(x− y) [|η \ y ∪ x| ∧ k − |η| ∧ k]︸ ︷︷ ︸

=0

dx

≤ κ |η| [(|η|+ 1) ∧ k − |η| ∧ k]︸ ︷︷ ︸
=1|η|<k

≤ κ |η| ∧ k.

Hence, by martingale representation, we obtain

Eη[|Xt| ∧ k] = |η| ∧ k + κEη

[∫ t

0

(L |·| ∧ k)(Xs) ds
]

≤ |η| ∧ k + κ
∫ t

0

Eη[|Xs| ∧ k] ds.
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For k →∞ this gives

Eη[|Xη
t |] ≤ |η|+ κ

∫ t

0

Eη[|Xη
s |] ds,

and thus, by the Gronwall inequality,

Eη[|Xη
t |] ≤ |η| eκt. (4.15)

This implies (4.14).

Now we can construct the process for an infinite initial configuration
γ ∈ Γβ, β > d. Let γn := γ ∩ Bn(0) ∈ Γ0, n ∈ N, and consider the
corresponding sequence of Markov processes

(
(Xγn

t )t≥0

)
n∈N.

As well as for the usual contact process, we also have in our situation a
monotonic structure of these processes:

∀n ∈ N,∀t ≥ 0 Xγn
t ⊂ X

γn+1

t a.s. (4.16)

Namely, for ηn := γn+1\γn, because of the additive structure of the generator
L, we have that Xγn

t and Xηn
t are independent Markov processes with Xγn

t ∩
Xηn
t = ∅ a.s., hence Xγn+1

t = Xγn
t ∪X

ηn
t a.s. Introduce the limiting process

Xγ
t (ω) :=

⋃
n∈N

Xγn
t (ω). (4.17)

Let k ∈ N, then Vβ(·) ∧ k ∈ B(Γ0). Fix η ∈ Γ0. Note that

a ∧ k − b ∧ k ≤ (a− b ∧ k) ∧ k (4.18)

for all a, b ≥ 0. Namely,{
a ∧ k − b ∧ k ≤ (a− b) ∧ k ≤ (a− b ∧ k) ∧ k, if a ≥ b,

a ∧ k − b ∧ k = (a ∧ k − b ∧ k) ∧ k ≤ (a− b ∧ k) ∧ k, if b ≥ a.
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By (4.18), the Jensen inequality (· ∧ k is concave), and Lemma 4.2.1 we get

L(Vβ ∧ k)(η) =
∑
y∈η

[Vβ(η \ y) ∧ k − Vβ(η) ∧ k]

+ κ
∫

Rd

∑
y∈η

a(x− y)[Vβ(η ∪ x) ∧ k − Vβ(η) ∧ k] dx

+
∑
y∈γ

∫
Rd
w(x− y)[Vβ(η \ y ∪ x) ∧ k − Vβ(η) ∧ k] dx

≤
∑
y∈η

[
[Vβ(η \ y)− Vβ(η) ∧ k] ∧ k

+ κ
∫

Rd
a(x− y)[Vβ(η ∪ x)− Vβ(η) ∧ k] dx ∧ k

+ 〈w〉
∫

Rd
w
〈w〉(x− y)[Vβ(η \ y ∪ x)− Vβ(η) ∧ k] dx ∧ k

]
≤ (1 + κ + 〈w〉)︸ ︷︷ ︸

=:C′

|η|
[

1

C ′ |η|
×

×
(∑
y∈η

[Vβ(η \ y)− Vβ(η)] + |η| [Vβ(η)− Vβ(η) ∧ k]

+
∑
y∈η

κ
∫

Rd
a(x− y)[Vβ(η ∪ x)− Vβ(η)] dx

+ κ |η| [Vβ(η)− Vβ(η) ∧ k]

+ 〈w〉
∫

Rd
w
〈w〉(x− y)[Vβ(η \ y ∪ x)− Vβ(η)] dx

+ 〈w〉 |η| [Vβ(η)− Vβ(η) ∧ k]

)]
∧ k

= C ′ |η|
[

1

C ′ |η|
LVβ(η) + [Vβ(η)− Vβ(η) ∧ k]

]
∧ k

≤ C ′ |η|
[

C

C ′ |η|
Vβ(η) + [Vβ(η)− Vβ(η) ∧ k]

]
∧ k,

where C is the constant from Lemma 4.2.1.

Consider now γn, n ∈ N. Then by martingale representation

Eγn

[
(Vβ ∧ k)(Xγn

t )
]

= (Vβ ∧ k)(γn) + Eγn

∫ t

0

L(Vβ ∧ k)(Xγn
s ) ds
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≤ (Vβ ∧ k)(γn) + Eγn

∫ t

0

C ′ |Xγn
s | ×

×
[

C

C ′ |Xγn
s |

Vβ(Xγn
s ) + [Vβ(Xγn

s )− Vβ(Xγn
s ) ∧ k]

]
∧ k ds.

Note that we can interchange Eγn and
∫ t

0
here by (4.15). For k → ∞ this

gives

Eγn

[
Vβ(Xγn

t )
]
≤ Vβ(γn) + C

∫ t

0

Eγn [Vβ(Xγn
s )] ds,

and thus, by the Gronwall inequality, we have for all n ∈ N and all t ≥ 0

Eγn

[
Vβ(Xγn

t )
]
≤ Vβ(γ)eCt. (4.19)

Using the monotonicity property (4.16) of the sequence of processes (Xγn
t )n∈N,

we obtain the estimate (4.19) also for the limiting process Xγ
t , and hence

Xγ
t ∈ Γβ a.s.

By construction, the process Xγ
t has the generator L and Xγ

0 = γ. Thus, the
proof is finished.

4.3 Time evolution of correlation functions

Now we will study the dynamics of the correlation functions corresponding to
generator (4.2). Via the theory of harmonic analysis on configuration spaces
(cf. Section 1.6) we will get the correlation functions in terms of solutions of
a hierachical system of equations, see (4.26). We will solve this system of
equations and show that the solutions are indeed correlation functions of a
corresponding measure on Γ.

4.3.1 Symbol of the generator on the space of finite con-
figurations

The image of the generator L under the K-transform L̂ := K−1LK on quasi-
observables is called the symbol of L.

To compute the symbol of L we need the following lemma about the
K-transform:
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Lemma 4.3.1. For G ∈ Bbs(Γ0) and y ∈ Rd it holds that

K
(
G(· \ y)

)
(ξ) =

{
(KG)(ξ \ y), if y /∈ ξ
2(KG)(ξ \ y), if y ∈ ξ.

Proof.

K
(
G(· \ y)

)
(ξ) =

∑
ρ⊂ξ

G(ρ \ y)

=

{∑
ρ⊂(ξ\y) G(ρ), if y /∈ ξ,∑
ρ⊂(ξ\y) G(ρ) +

∑
ρ⊂(ξ\y) G((ρ ∪ y) \ y), if y ∈ ξ

=

{
(KG)(ξ \ y), if y /∈ ξ,
2(KG)(ξ \ y), if y ∈ ξ.

Proposition 4.3.2. For functions G ∈ Bbs(Γ0) the symbol of L has the
following form:

(L̂G)(η) = − |η|G(η)

+ κ
∫

Rd

∑
y∈η

a(x− y)G(η \ y ∪ x) dx

+ κ
∫

Rd

∑
y∈η

a(x− y)G(η ∪ x) dx

+

∫
Rd

∑
y∈η

w(x− y)G(η \ y ∪ x) dx− 〈w〉 |η|G(η). (4.20)

Proof. Write
(L̂G)(η) =: ID(η) + IB(η) + IJ(η)

with

ID(η) =K−1

(∑
x∈·

[(KG)(· \ x)− (KG)(·)]
)

(η),

IB(η) =K−1

(
κ
∫

Rd

∑
y∈·

a(x− y)[(KG)(· ∪ x)− (KG)(·)] dx
)

(η),

IJ(η) =K−1

(∑
y∈·

∫
Rd
w(x− y)[(KG)(· \ y ∪ x)− (KG)(·)] dx

)
(η).
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From [KKP08, Proposition 3.1] it follows that

ID(η) =− |η|G(η),

IB(η) =κ
∫

Rd

∑
y∈η

a(x− y)G(η \ y ∪ x) dx+ κ
∫

Rd

∑
y∈η

a(x− y)G(η ∪ x) dx,

so it remains to show that

IJ(η) =

∫
Rd

∑
y∈η

w(x− y)G(η \ y ∪ x) dx− 〈w〉 |η|G(η).

IJ(η) =
∑
ζ⊂η

(−1)|η\ζ|
∑
y∈ζ

∫
Rd
w(x− y)

[ ∑
ρ⊂(ζ\y∪x)

G(ρ)−
∑
ρ⊂ζ

G(ρ)
]
dx.

For y ∈ ζ and x /∈ (ζ \ y) one has∑
ρ⊂(ζ\y∪x)

G(ρ)−
∑
ρ⊂ζ

G(ρ) =
∑

ρ⊂(ζ\y∪x)

G(ρ)−
∑

ρ⊂(ζ\y)

G(ρ)−
∑

ρ⊂(ζ\y)

G(ρ ∪ y)

=
∑

ρ⊂(ζ\y)

G(ρ ∪ x)−
∑

ρ⊂(ζ\y)

G(ρ ∪ y).

Therefore,

IJ(η) =
∑
ζ⊂η

(−1)|η\ζ|
∫

Rd

∑
y∈ζ

w(x− y)
∑

ρ⊂(ζ\y)

G(ρ ∪ x) dx

−
∑
ζ⊂η

(−1)|η\ζ|
∫

Rd

∑
y∈ζ

w(x− y)
∑

ρ⊂(ζ\y)

G(ρ ∪ y) dx

Lemma 4.3.1
=

∑
ζ⊂η

(−1)|η\ζ|
∫

Rd

∑
y∈ζ

w(x− y)1
2
K(G(· \ y ∪ x))(ζ) dx

−
∑
ζ⊂η

(−1)|η\ζ|
∑
y∈ζ

∑
ρ⊂(ζ\y)

G(ρ ∪ y)〈w〉.

Since ∑
y∈ζ

w(x− y) = K
(
w(x− ·)1{|·|=1}(·)

)
(ζ),



4.3. TIME EVOLUTION OF CORRELATION FUNCTIONS 83

we obtain

Ij(η) =1
2

∫
Rd
K−1

[
K

((
w(x− ·)1{|·|=1}(·)

)
? G(· \ y ∪ x)

)]
(η) dx

− 〈w〉
∑
ζ⊂η

(−1)|η\ζ|
∑
y∈ζ

K(G(· ∪ y))(ζ \ y)

=1
2

∫
Rd

((
w(x− ·)1{|·|=1}(·)

)
? G(· \ y ∪ x)

)
(η) dx

− 〈w〉
∑
ζ⊂η

(−1)|η\ζ|
∑
y∈ζ

K(G(· ∪ y))(ζ \ y). (4.21)

Changing the order of summation in the second term of (4.21) we obtain

−〈w〉
∑
ζ⊂η

(−1)|η\ζ|
∑
y∈ζ

K(G(· ∪ y))(ζ \ y)

= −〈w〉
∑
y∈η

∑
ζ⊂(η\y)

(−1)|η\(ζ∪y)|K(G(· ∪ y))(ζ)

= −〈w〉
∑
y∈η

K−1
(
K(G(· ∪ y))

)
(ζ \ y)

= −〈w〉 |η|G(η).

For the first term in (4.21) we have

1
2

∫
Rd

((
w(x− ·)1{|·|=1}(·)

)
? G(· \ y ∪ x)

)
(η) dx

= 1
2

∫
Rd

∑
(ξ1,ξ2,ξ3)∈P3

∅ (η)

(
w(x− ·)1{|·|=1}(·)

)
(ξ1 ∪ ξ2)︸ ︷︷ ︸

(∗)

G((ξ2 ∪ ξ3) \ y ∪ x) dx.

There are only two cases in which (∗) 6= 0, namely (|ξ1| = 1, ξ2 = ∅) and
(ξ1 = ∅, |ξ2| = 1). Hence

1
2

∫
Rd

∑
(ξ1,ξ2,ξ3)∈P3

∅ (η)

(
w(x− ·)1{|·|=1}(·)

)
(ξ1 ∪ ξ2)G((ξ2 ∪ ξ3) \ y ∪ x) dx

= 1
2

∫
Rd

∑
y∈η

w(x− y)G((η \ y) \ y ∪ x) dx

+ 1
2

∫
Rd

∑
y∈η

w(x− y)G((y ∪ (η \ y)) \ y ∪ x) dx

=

∫
Rd

∑
y∈η

w(x− y)G(η \ y ∪ x) dx.

Thus, the assertion follows.
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4.3.2 The adjoint operator to the symbol L̂

Let ρ ∈ Mlf(Γ0) be absolutely continuous with respect to the Lebesgue-
Poisson measure λ (with activity parameter z = 1). Let k(η) := dρ

dλ
(η),

η ∈ Γ0, denote the corresponding Radon-Nikodym derivative.

Proposition 4.3.3. Assume that

k(η) ≤ C |η| |η|!, η ∈ Γ0 (4.22)

for some C > 0. Then L̂(Bbs(Γ0)) ⊂ L1(Γ0, ρ).

Proof. Let G ∈ Bbs(Γ0). Then by Proposition 4.3.2 and the assumption we
have∫

Γ0

∣∣∣L̂G(η)
∣∣∣ dρ(γ)

=

∫
Γ0

∣∣∣L̂G(η)
∣∣∣ k(η) dλ(η)

≤
∫

Γ0

(1 + 〈w〉) |η| |G(η)|C |η| |η|! dλ(η) (a)

+

∫
Γ0

∫
Rd

∑
y∈η

(κa+ w)(x− y) |G(η \ y ∪ x)|C |η| |η|! dx dλ(η) (b)

+ κ
∫

Γ0

∫
Rd

∑
y∈η

a(x− y) |G(η ∪ x)|C |η| |η|! dx dλ(η). (c)

We will show that all the terms (a), (b), and (c) are finite.

Since G ∈ Bbs(Γ0) there exist Λ ∈ Bb(Rd) and N ∈ N such that

G �
Γ0\

FN
n=0 Γ

(n)
Λ

= 0.

Term (a): ∫
Γ0

(1 + 〈w〉) |η| |G(η)|C |η| |η|! dλ(η)

= (1 + 〈w〉)NCNN !

∫
ΓΛ

|G(η)| dλ(η) <∞

since G is bounded.
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Term (b) (and term (c)): Here finiteness can be shown by application of
the Minlos lemma, cf. (1.13) and (1.14):∫

Γ0

∫
Rd

∑
y∈η

(κa+ w)(x− y) |G(η \ y ∪ x)|C |η| |η|! dx dλ(η)

=

∫
Rd

∫
Γ0

C |η| |η|!
∑
y∈η

(κa+ w)(x− y) |G(η \ y ∪ x)| dλ(η) dx

(1.14)
=

∫
Rd

∫
Γ0

∫
Rd
C |η∪z| |η ∪ z|!(κa+ w)(x− z) |G(η ∪ x)| dz dλ(η) dx

(1.14)
=

∫
Rd

∫
Γ0

|G(η)|
∑
y∈η

C |η\y∪z| |η \ y ∪ z|!(κa+ w)(y − z) dλ(η) dz

≤ CNN !

∫
ΓΛ

|G(η)|
∑
y∈η

∫
Rd

(κa+ w)(y − z) dz dλ(η)

≤ NCNN !(κ + 〈w〉)
∫

ΓΛ

|G(η)| dλ(η) <∞.

Term (c):

κ
∫

Γ0

∫
Rd

∑
y∈η

a(x− y) |G(η ∪ x)|C |η| |η|! dx dλ(η)

(1.14)
= κ

∫
Γ0

|G(η)|
∑
z∈η

C |η\z| |η \ z|!
∑
y∈η\z

a(z − y) dλ(η)

= κCN−1(N − 1)!

∫
ΓΛ

|G(η)|
∑
z∈η

∑
y∈η\z

a(z − y) dλ(η) <∞.

Thus, the assertion is proved.

The adjoint operator L̂∗ to the symbol L̂ is defined via the duality relation
given by the scalar product in L2(Γ0, λ),∫

Γ0

L̂G(η) ρ(dη) = (L̂G, k)L2(Γ0,λ)

= (G, L̂∗k)L2(Γ0,λ) =

∫
Γ0

G(η)(L̂∗k)(η)λ(dη). (4.23)

Proposition 4.3.4. The adjoint operator L̂∗ to the symbol L̂ on the space
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of functions that satisfy (4.22) has the following form:

(L̂∗k)(η) = − |η| k(η)

+ κ
∑
x∈η

∫
Rd
a(x− y)k(η \ x ∪ y) dy

+ κ
∑
x∈η

k(η \ x)
∑

y∈(η\x)

a(x− y)

+
∑
x∈η

∫
Rd
w(x− y)k(η \ x ∪ y) dy − 〈w〉 |η| k(η). (4.24)

Proof. We use the same notation as in the proof of Proposition 4.3.2. Fur-
thermore, write IB =: I

(1)
B + I

(2)
B and IJ =: I

(1)
J + I

(2)
J with

I
(1)
B (η) := κ

∫
Rd

∑
y∈η

a(x− y)G(η \ y ∪ x) dx,

I
(2)
B (η) := κ

∫
Rd

∑
y∈η

a(x− y)G(η ∪ x) dx,

I
(1)
J (η) :=

∫
Rd

∑
y∈η

w(x− y)G(η \ y ∪ x) dx,

I
(2)
J (η) := −〈w〉 |η|G(η).

Then, from [KKP08, Proposition 4.2] we obtain for the death part and
the birth part∫

Γ0

ID(η)k(η)λ(dη) =

∫
Γ0

G(η)[− |η| k(η)]λ(dη),∫
Γ0

I
(1)
B (η)k(η)λ(dη) =κ

∫
Γ0

G(η)

[∑
x∈η

∫
Rd
a(x− y)k(η \ x ∪ y) dy

]
λ(dη),∫

Γ0

I
(2)
B (η)k(η)λ(dη) =κ

∫
Γ0

G(η)

[∑
x∈η

k(η \ x)
∑

y∈(η\x)

a(x− y)

]
λ(dη).

Since the expressions I(1)
J (η) and I(2)

J (η) corresponding to the jump part are
of the same form as I(1)

B (η) and ID(η), respectively, we also obtain∫
Γ0

I
(1)
J (η)k(η)λ(dη) =

∫
Γ0

G(η)

[∑
x∈η

∫
Rd
w(x− y)k(η \ x ∪ y) dy

]
λ(dη),∫

Γ0

I
(2)
J (η)k(η)λ(dη) =

∫
Γ0

G(η)[−〈w〉 |η| k(η)]λ(dη).

This proves the assertion.
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4.3.3 Evolution equation associated to L̂∗

The evolutional equation associated with the operator L̂∗ has the form

∂kt
∂t

(η) =L̂∗kt(η)

=− (1 + 〈w〉) |η| kt(η)

+
∑
x∈η

∫
Rd

(κa+ w)(x− y)kt(η \ x ∪ y) dy

+ κ
∑
x∈η

kt(η \ x)
∑

y∈(η\x)

a(x− y). (4.25)

Since a function k on Γ0 corresponds to a family of functions (k(n))n∈N,
k(n) a function on the n-point configurations Γ

(n)
0 , we can rewrite (4.25) as a

system of equations:

∂k
(n)
t

∂t
(x1, . . . , xn) =L̂∗nk

(n)
t (x1, . . . , xn) + f

(n)
t (x1 . . . , xn), n ∈ N, (4.26)

with

L̂∗nk
(n)
t (x1, . . . , xn)

:= −(1 + 〈w〉)nk(n)
t (x1, . . . , xn)

+
n∑
i=1

∫
Rd

(κa+ w)(xi − y)k
(n)
t (x1, . . . , xi−1, y, xi+1, . . . , xn) dy,

f
(n)
t (x1, . . . , xn)

:=

{
κ
∑n

i=1 k
(n−1)
t (x1, . . . , x̌i, . . . , xn)

∑
j 6=i a(xi − xj), n ≥ 2

0, n = 1.

Note that L̂∗nk
(n)
t only depends on the n-point function k(n)

t and f (n)
t only on

the (n− 1)-point function k(n−1)
t .

Now fix an n ∈ N. We consider the Cauchy problem
∂k

(n)
t

∂t
(x1, . . . , xn) = L̂∗nk

(n)
t (x1, . . . , xn) + f

(n)
t (x1 . . . , xn), t ≥ 0,

k
(n)
t (x1, . . . , xn)

∣∣∣
t=0

= k
(n)
0 (x1, . . . , xn)

(4.27)

in the Banach space Xn := L∞((Rd)n, dx⊗n).
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Remark 4.3.5. The operator L̂∗n in Xn can also be written in the following
way:

L̂∗nk
(n)(x1, . . . , xn) = n(κ − 1)k(n)(x1, . . . , xn) +

n∑
i=1

Liκa+wk
(n)(x1, . . . , xn)

(4.28)
with

Liκa+wk
(n)(x1, . . . , xn) =

∫
Rd

(κa+ w)(xi − y)×

×
[
k(n)(x1, . . . , xi−1, y, xi+1, . . . , xn)− k(n)(x1, . . . , xn)

]
dy.

For each i, Liκa+w is a generator of a Markov process on (Rd)n (see [GS75]),
which describes the jump of a particle from the point (x1, . . . , xi, , . . . , xn)
to (x1, . . . , y, . . . , xn). The generator of a pure-jump Markov process has the
form

λ(x)

∫
[f(y)− f(x)]Q(x, dy),

where Q is a probability kernel describing the transition probabilities of the
embedded Markov chain, and λ(x) describes the jump-rate, i.e., the first exit
time from the state x is distributed exponentially with rate λ(x). In this
case, we have

λ(x) ≡ κ + 〈w〉, π(x, dy) =
κa+ w

κ + 〈w〉
(x− y) dy.

Lemma 4.3.6. Let a, w ∈ L1(Rd) be nonnegative even functions. Then, for
any n ≥ 1, the operator L̂∗n is a bounded linear operator both in Xn and in
L1((Rd)n).

Moreover, for each 1 ≤ i ≤ n, the operator Liκa+w generates a contraction
semigroup on Xn and on L1((Rd)n).

Proof. The first part of this lemma is trivial.

The second part follows in the case of the space Xn directly from Re-
mark 4.3.5, and in the case of L1((Rd)n) it is a consequence of the Beurling-
Deny criterion, cf., e.g., [RS78].

E.g. by [IK02, Theorem 2.13], the previous lemma implies the following
result:
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Proposition 4.3.7. Let n ≥ 1 be arbitrary and fixed. The solution to the
Cauchy problem (4.27) in the Banach space Xn is given by

k
(n)
t (x1, . . . , xn) =en(κ−1)t

[ n⊗
i=1

etL
i
κa+w

]
k

(n)
0 (x1, . . . , xn)

+ κen(κ−1)t

∫ t

0

e−n(κ−1)s

[ n⊗
i=1

e(t−s)Liκa+w

]
×

×
n∑
i=1

k(n−1)
s (x1, . . . , x̌i, . . . , xn)

∑
j 6=i

a(xi − xj) ds.

(4.29)

The next proposition establishes a priori estimates for the evolution of
the correlation functions in time.

Proposition 4.3.8. Let a, w ∈ L1(Rd)∩L∞(Rd) be non-negative, even func-
tions. Assume that there exists a constant C > 0, such that

k
(n)
0 (x1, . . . , xn) ≤ n!Cn ∀n ≥ 1,∀(x1, . . . , xn) ∈ Rd.

Then, for any t ≥ 0 and Lebesgue-a.a. (x1, . . . , xn) ∈ (Rd)n, n ≥ 1,

k
(n)
t (x1, . . . , xn) ≤ κ(t)n(1 + ‖a‖L∞)nen(κ−1)t(C + t)nn!, (4.30)

where κ(t) := max{1,κ,κe−(κ−1)t}.

Later, in Proposition 4.5.1, we will discuss a situation, where one also has
a lower factorial bound for the correlation functions and hence clustering of
the points.

Proof of Proposition 4.3.8. The assertion is proved via induction over n.

In the case n = 1, (4.30) follows directly from Proposition 4.3.7 and the
assumption on k(1)

0 : For a.a. x1 ∈ Rd and t ≥ 0 we have

k
(1)
t (x1) = e1(κ−1)tetL

1
κa+wk

(1)
0 (x1)

≤ κ(t)1(1 + ‖a‖L∞)1e1(κ−1)t(C + t)11!.
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Now assume, that, for any t ≥ 0, the estimate (4.30) holds for k(n−1)
t .

Then, again by Proposition 4.3.7, we get

k
(n)
t (x1, . . . , xn)

= en(κ−1)t

[ n⊗
i=1

etL
i
κa+w

]
k

(n)
0 (x1, . . . , xn)

+ κen(κ−1)t

∫ t

0

e−n(κ−1)s

[ n⊗
i=1

e(t−s)Liκa+w

]
×

×
n∑
i=1

k(n−1)
s (x1, . . . , x̌i, . . . , xn)︸ ︷︷ ︸

≤κ(s)n−1(1 + ‖a‖L∞)n−1

e(n−1)(κ−1)s(C + s)n−1(n− 1)!

∑
j 6=i

a(xi − xj)︸ ︷︷ ︸
≤(n−1)(1+‖a‖L∞ )

ds

≤ en(κ−1)tCnn!

+ κen(κ−1)t

∫ t

0

e−n(κ−1)sn!(n− 1)κ(s)n−1e(n−1)(κ−1)s×

× (1 + ‖a‖L∞)n(C + s)n−1 ds.

Noticing that (1 ≤)κ(s) ≤ κ(t) for s ≤ t and κe−(κ−1)s ≤ κ(s), we obtain

k
(n)
t (x1, . . . , xn) ≤ en(κ−1)tCnn!

+ en(κ−1)tn!nκ(t)n(1 + ‖a‖L∞)n
∫ t

0

(C + s)n−1 ds

≤ κ(t)n(1 + ‖a‖L∞)nen(κ−1)tCnn!

+ κ(t)n(1 + ‖a‖L∞)nen(κ−1)t
(
(C + t)n − Cn

)
n!

= κ(t)n(1 + ‖a‖L∞)nen(κ−1)t(C + t)nn!.

This proves the assertion.

With the help of the previous proposition, we can approximate solutions
of the Cauchy problem (4.27) for a, w with unbounded support by solutions
of (4.27) for a, w with bounded support:

Corollary 4.3.9. Let 0 ≤ a, w ∈ L1(Rd)∩C(Rd) be arbitrary even functions
with ‖a‖L1 = 1 and a(x) +w(x)→ 0 as |x| → ∞. Let k(n)

t,κa+w be the solution
to (4.27) in Xn. Suppose that the conditions of Proposition 4.3.8 are fulfilled.
Then for all sequences {al}l, {wl}l ⊂ C0(Rd) such that

al → a, wl → w in L1(Rd) and X1 = L∞(Rd) (4.31)
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(and such sequences exist)

k
(n)
t,κal+wl → k

(n)
t,κa+w

in Xn as l→∞.

Proof. Fix {al}l, {wl}l ⊂ C0(Rd) satisfying (4.31).

The assertion is again proved by induction over n. In the case n = 1, by
Proposition 4.3.7, we have

k
(1)
t,κal+wl − k

(1)
t,κa+w = e(κ−1)t

(
etL

1
κal+wlk

(1)
0 − etL

1
κa+wk

(1)
0

)
.

But this converges to 0 in X1, since (4.31) implies strong convergence of
the bounded generators L1

κal+wl in L
∞, and hence strong convergence of the

corresponding semigroups.

Now assume the assertion holds for n− 1. Again by Proposition 4.3.7 we
have

k
(n)
t,κal+wl(x1, . . . , xn)− k(n)

t,κa+w(x1, . . . , xn)

= en(κ−1)t

([ n⊗
i=1

etL
i
κal+wl

]
k

(n)
0 (x1, . . . , xn)

−
[ n⊗
i=1

etL
i
κa+w

]
k

(n)
0 (x1, . . . , xn)

)
+ κen(κ−1)t

∫ t

0

e−n(κ−1)s

([ n⊗
i=1

e(t−s)Liκal+wl

]
×

×
n∑
i=1

k
(n−1)
s,κal+wl(x1, . . . , x̌i, . . . , xn)

∑
j 6=i

al(xi − xj)

−
[ n⊗
i=1

e(t−s)Liκa+w

] n∑
i=1

k
(n−1)
s,κa+w(x1, . . . , x̌i, . . . , xn)×

×
∑
j 6=i

a(xi − xj)
)
ds (4.32)

The first summand in (4.32) converges to 0 in Xn since (4.31) implies
strong convergence of the generators Liκal+wl to Liκa+w and hence strong
convergence of the corresponding semigroups.
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For the second summand in (4.32), we have that
n∑
i=1

k
(n−1)
s,κal+wl(x1, . . . , x̌i, . . . , xn)

∑
j 6=i

al(xi − xj)

converges to
n∑
i=1

k
(n−1)
s,κa+w(x1, . . . , x̌i, . . . , xn)

∑
j 6=i

a(xi − xj)

in Xn, since k
(n−1)
s,κal+wl → k

(n−1)
s,κa+w, l → ∞, in Xn−1 by induction assumption

and al → a in X1. It follows from Proposition 4.3.8 that

‖
[ n⊗
i=1

e(t−s)Liκal+wl

] n∑
i=1

k
(n−1)
s,κal+wl(x1, . . . , x̌i, . . . , xn)

∑
j 6=i

al(xi − xj)‖Xn

and the same expression with a and w instead of al and wl, respectively,
are uniformly bounded in s ∈ [0, t]. Therefore, also the second summand in
(4.32) converges to 0 in Xn.

4.3.4 Solutions of (4.27) as correlation functions

Now we consider the following question: suppose that the system of initial
conditions (k

(n)
0 )n for the Cauchy problem (4.27) is a system of correlation

functions, i.e., there exists a probability measure µ0 ∈M1
fm(Γ), whose corre-

lation measure is absolutely continuous w.r.t. the Lebesgue-Poisson measure
and whose correlation functions are (k

(n)
0 )n. Is this property preserved under

time evolution? For every t ≥ 0, does there exist a corresponding probability
measure µt ∈ M1

fm(Γ) with correlation functions (k
(n)
t )n, where (k

(n)
t )n are

the solutions of (4.27)?

To answer this question we will apply A. Lenard’s result about construc-
tion of corresponding measures for given correlation functions, cf. [Len73,
KK02]. Let ρ ∈ M(Γ0) with corresponding system (k(n))n. Assume that ρ
is locally finite and normalized, i.e., ρ({∅}) = 1. In order to show that ρ is a
correlation measure of some µ ∈M1

fm(Γ) one has to check the following two
conditions:

• (Lenard positivity)
For any G ∈ Bbs(Γ0) with KG ≥ 0 it holds that∫

Γ0

G(η) dρ(η) ≥ 0. (4.33)
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• (Moment growth condition)
For any bounded set Λ ⊂ Rd and j ≥ 0

∞∑
n=0

(mΛ
n+j)

− 1
n = +∞, (4.34)

where
mΛ
n :=

1

n!

∫
Λ

· · ·
∫

Λ

k(n)(x1, . . . , xn) dx1 · · · dxn.

Remark 4.3.10. (i) Lenard positivity ensures existence of such a measure
µ, and the moment growth condition ensures its uniqueness.

(ii) If a system of functions (k(n))n≥0 satisfies, for a constant C > 0 inde-
pendent of n,

k(n)(x1, . . . , xn) ≤ n!Cn for all n,

(cf. also (4.22)) then it also satisfies the moment growth condition.

Denote the set of all probability measure µ whose correlation functions
satisfy the assumption from Remark 4.3.10 (ii) byM1

C,fac(Γ).

Lemma 4.3.11. Let 0 ≤ a, w ∈ L1(Rd) ∩ C(Rd) with ‖a‖L1 = 1 and a(x) +
w(x)→ 0 as |x| → ∞, and suppose that the assumptions of Proposition 4.3.8
are satisfied. Then for any t ≥ 0, the system of solutions (k

(n)
t )n of (4.27) is

positive in the sense of (4.33).

Proof. By Corollary 4.3.9, it suffices to prove the assertion under the as-
sumption that a, w have polynomial decay at infinity:

(κa+ w)(x) ≤ A

(1 + |x|)β+δ
, x ∈ Rd,

for some A > 0 and some β, δ > d

We have to show∑
n≥0

1

n!

∫
Rd
· · ·
∫

Rd
G(n)(x1, . . . , xn)k

(n)
t (x1, . . . , xn) dx1 · · · dxn ≥ 0 (4.35)

for all G ∈ Bbs(Γ0) with KG ≥ 0.

As in Section 4.2, let

eβ(x) :=
1

(1 + |x|)β
, x ∈ Rd.
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Furthermore set

F (n)(γ) :=
∑

{x1,...,xn}⊂γ

eβ(x1) · · · eβ(xn), n ∈ N, |γ| ≥ n.

If |γ| < N , then set F (n)(γ) := 0. Define a function Gn on Γ0 by the
corresponding family of functions(

G(k)
n : (̃Rd)k → R+

)
k∈N,

G(k)
n (x1, · · · , xk) := eβ(x1) · · · eβ(xk)1k=n.

Then KGn(γ) = F (n)(γ).
Let µ ∈ M1

fm(Γ) be such that its correlation measure ρµ is absolutely
continuous w.r.t. the Lebesgue-Poisson measure and its correlation functions
(k

(m)
µ )m∈N are bounded. Then we have that∫

Γ

F (n)(γ)µ(dγ) =

∫
Γ0

Gn(η) dρµ(η)

=
1

n!

∫
Rd
· · ·
∫

Rd
eβ(x1) · · · eβ(xn)k(n)(x1, . . . , xn) dx1 · · · dxn <∞.

(4.36)

In particular, we obtain that µ(Γβ) = 1, cf. Section 4.2. Hence, by Theorem
4.2.2, there exists a corresponding Markov process (Xγ

t )t≥0 with generator
L, which is a.s. in Γβ.

Similarly to the computation in the proof of Lemma 4.2.1 we have for
n ≥ 2 (pointwisely)

LF (n)(γ)

= −
∑
x∈γ

∑
{z1,...,zn−1}∈(γ\x)

eβ(x)eβ(z1) · · · eβ(zn−1)

+ κ
∫

Rd

∑
y∈γ

a(x− y)

[ ∑
{z1,...,zn−1}∈γ

eβ(x)eβ(z1) · · · eβ(zn−1)

]
dx

+
∑
y∈γ

∫
Rd
w(x− y)

[ ∑
{z1,...,zn−1}∈(γ\y)

eβ(x)eβ(z1) · · · eβ(zn−1)

−
∑

{z1,...,zn−1}∈(γ\y)

eβ(y)eβ(z1) · · · eβ(zn−1)

]
dx

= −(1 + 〈w〉)F (n)(γ)

+
∑
y∈γ

∑
{z1,··· ,zn−1}⊂γ

eβ(z1) . . . eβ(zn−1)

∫
Rd

(κa+ w)(x− y)eβ(x) dx
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≤ −(1 + 〈w〉)F (n)(γ)

+
∑
y∈γ

∑
{z1,··· ,zn−1}⊂γ

eβ(z1) . . . eβ(zn−1)

∫
Rd

A

(1 + |x− y|)δ
eβ(y) dx

= −(1 + 〈w〉)F (n)(γ) + ACδ
∑
y∈γ

∑
{z1,··· ,zn−1}⊂γ

eβ(y)eβ(z1) . . . eβ(zn−1)

≤
(
ACδ − (1 + |w|)

)
F (n)(γ) + ACδF

(n−1)(γ),

and hence we obtain
LL(N)(γ) ≤ CL(N)(γ) (4.37)

for some C > 0. So, similarly as in the proof of Theorem 4.2.2, we have

E
[
L(N)(Xγ

t )
]
≤ L(N)(γ)eCt. (4.38)

Let (µt)t≥0 denote the corresponding evolution of µ0 described by the dual
Kolmogorov equation 

∂µt
∂t

= L∗µt, t ≥ 0,

µt|t=0 = µ0.

We want to show that µt ∈M1
fm(Γ), so we have to show the finiteness of all

local moments. Therefore, let Λ ∈ Bb(Rd), Λ compact, and N ∈ N. Let

ε := εβ,Λ := min
x∈Λ

(eβ(x)) (> 0).

Then, if |γΛ| ≤ N ,

L(N)(γ) ≥ L(N)(γΛ)

=
N∑
n=1

∑
{x1,...,xn}⊂γΛ

eβ(x1) · · · eβ(xn)

≥
N∑
n=1

εn
(
|γΛ|
n

)
≥ (1 + ε)|γΛ| − 1 =: C ′ > 0.

Recall Stirling’s formula:

1 ≤ n!√
2πne−nnn

≤ e
1

12n , n ∈ N.
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In the case ` := |γΛ| > N , this gives

L(N)(γ) ≥ L(N)(γΛ)

≥ εN
(
|γΛ|
N

)
≥ εN

√
2π`e−```

√
2πNe−NNNe

1
12N

√
2π(`−N)e−(`−N)(`−N)(`−N)e

1
12(`−N)

≥ εN
1√

2πN

1

e
1

12N
+1

1

NN
`N =: εNCN |γΛ|N .

Therefore, by (4.36) with µ := µ0 and by (4.38) ,∫
Γ

|γΛ|N µt(dγ) =

∫
{|γΛ|≤N}

· · ·+
∫
{|γΛ|>N}

. . .

≤
∫
{|γΛ|≤N}

NN µt(dγ) +
1

εNCN

∫
Γ

E
[
L(N)(Xγ

t )
]
µ0(dγ)

≤ NN +
eCt

εNCN

∫
Γ

L(N)(γ)µ0(dγ) <∞.

This proves that µt ∈M1
fm(Γ).

Hence, there exists a Markov evolution of the corresponding correlation
measures onMlf(Γ0) associated with the generator L. Thus, (4.35) is obvi-
ously fulfilled because of the Markov property of the semigroup corresponding
to the evolution of states.

For any system of functions (k
(n)
t )n≥0 define Lk : Fk → C,

Lk(θ) :=
∞∑
n=0

1

n!

∫
Rd
· · ·
∫

Rd
θ(x1) · · · θ(xn)k(n)(x1, . . . , xn) dx1 · · · dxn, (4.39)

where Fk denotes the set of all functions θ such that (4.39) makes sense.

Remark 4.3.12. (i) For δ > 0 define

U1
δ := {θ ∈ L1(Rd) : ‖θ‖L1(Rd) ≤ δ}.

If the system (k
(n)
t )n≥0 satisfies the assumptions of Remark 4.3.10 (ii),

then Lk is holomorphic in U1
δ for some δ > 0.
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(ii) Suppose that (k
(n)
t )n≥0 is the system of correlation functions of some

measure µ ∈ M1
fm(Γ). Then, e.g. by [KK02], the functional Lk is

connected with µ via

Lk(θ) =
∞∑
n=0

1

n!

∫
Rd
· · ·
∫

Rd
θ(x1) · · · θ(xn)k(n)(x1, . . . , xn) dx1 · · · dxn

=

∫
Γ

(
K
∏
x∈·

θ(x)

)
(γ)µ(dγ)

=

∫
Γ

∏
x∈γ

(1 + θ(x))µ(dγ), θ ∈ Fk.

The latter term

Lµ(θ) :=

∫
Γ

∏
x∈γ

(1 + θ(x))µ(dγ) (4.40)

is called Bogoliubov functional of µ. Set

M1
hol(Γ) := {µ ∈M1(Γ) : Lµ is holomorphic in U1

δ for some δ > 0}.
(4.41)

So, by (i),
M1

C,fac(Γ) ⊂M1
hol(Γ).

Theorem 4.3.13. Let 0 ≤ a, w ∈ L1(Rd) ∩ C(Rd) be even functions with
‖a‖L1 = 1 and a(x) + w(x) → 0 as |x| → ∞. Then for any µ ∈ M1

C,fac(Γ)
there exists a Markov function Xµ

t on Γ associated to the generator L with
initial distribution µ, such that for any t ≥ 0 the corresponding distribution
µt of Xµ

t lies inM1
C,fac(Γ).

Proof. By Proposition 4.3.8, Lemma 4.3.11, and Remark 4.3.10 (ii) we obtain
that the corresponding solutions of the Cauchy problem (4.27) are correlation
functions for all times t ≥ 0. This gives the corresponding evolution µt on
M1(Γ) and thus all finite dimensional distributions of Xµ

t .

4.4 Invariant measures

Consider the translation invariant case, so the first correlation function k(1)
t

is independent of x ∈ Rd:

k
(1)
t (x) =: ρt ∀t ≥ 0.
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The function ρ is called density.

From equation (4.26) describing the time evolution of the correlation func-
tions we obtain

∂ρt
∂t

= −(1 + 〈w〉)ρt +

∫
Rd

(κa+ w)(−y)ρt dy

= (κ − 1)ρt,

ρt|t=0 = ρ0,

and hence
ρt = exp((κ − 1)t)ρ0. (4.42)

Thus one has three cases:

subcritical (κ < 1): ρt → 0, as t→∞;

supercritical (κ > 1): ρt →∞, as t→∞;

critical (κ = 1): ρt = ρ0 = ρ.

Invariant measures can exist only in the critical case. So, from now on, we
assume κ = 1.

Due to Theorem 4.3.13, all invariant measures can be described in terms
of the corresponding system of correlation functions as positive solutions of

∂k
(n)
t

∂t
(x1, . . . , xn) = L̂∗nk

(n)
t (x1, . . . , xn) + f

(n)
t (x1 . . . , xn) = 0, n ≥ 1.

With (4.26) this can be formulated the following way:

Proposition 4.4.1. If a measure µ ∈ M1(Γ) is an invariant measure for
Xµ
t ∈ Γ, then the system of the corresponding correlation functions of µ is a

solution to the following recurrent system of equations: for n ≥ 1

(1 + 〈w〉)nk(n)

=
n∑
i=1

k(n−1)(x1, . . . , x̌i, . . . , xn)
∑
j 6=i

a(xi − xj)

+
n∑
i=1

∫
Rd

(a+ w)(xi − y)k(n)(x1, . . . , xi−1, y, xi+1, . . . , xn) dy.

(4.43)
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The next theorem deals with the inverse problem. Under certain condi-
tions on a and w it shows existence of a continuum of invariant measures.

Theorem 4.4.2. Let d ≥ 2. Let 0 ≤ a, w ∈ L1(Rd) be even continuous
functions such that

(i) ‖a‖L1 = 1,

(ii)
∫

Rd |x|
2 a(x) dx <∞,

(iii) â :=
∫

Rd e
−i(·,x)a(x) dx ∈ L1(Rd),

(iv)
∫
|p|≤1

â(p)
1+〈w〉−(â+ŵ)(p)

dp <∞.

Then the following assertions hold: (I) For any ρ ∈ R+, there exists a unique
measure µρ ∈ M1(Γ) whose correlation functions {k(n),ρ}n≥0 are translation
invariant, solve equation (4.43) and satisfy

‖k(n),ρ‖Xn ≤ C(ρ)n(n!)2, n ≥ 1 (4.44)

for some positive constant C(ρ). Moreover, k(1),ρ ≡ ρ.

(II) Let µt be the distribution of Xµ0
t , µ0 ∈ M1

C,fac(Γ) , at time t ≥ 0,
and let (k

(n)
t )n≥0 denote the corresponding system of correlation functions of

µt. Then in the critical case:

(i) k(1)
t = k

(1)
0 =: ρ for all t ≥ 0;

(ii) for any n ≥ 2 and any ϕ ∈ L1
(
(Rd)n

)
,(

k
(n)
t , ϕ

)
→
(
k(n),ρ, ϕ

)
, t→∞,

where
(
k

(n)
t , ·

)
and

(
k(n),ρ, ·

)
denote the corresponding functionals on

L1
(
(Rd)n

)
.

Remark. The integrability condition (iv) in the previous theorem is satisfied
e.g. for ŵ(p) = e−|p|

α

, 1 ≤ α < 2, (α-stable distribution), and any a satisfying
the other conditions. For w ≡ 0, i.e., the usual contact model, condition (iv)
is automatically satisfied for dimension d ≥ 3, cf. [KKP08].

Proof of Theorem 4.4.2. (I): For a given ρ > 0, we will construct inductively
a system of solutions k(n),ρ of (4.43) in the Banach space Xn, which satisfies
(4.44) and hence the moment growth condition (4.34). Lenard positivity
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(4.33) of the system follows from part (II), since, for given ρ, we can always
find a measure µ0 with k(1)

0 = ρ. Together this proves part (I).

Set k(1),ρ := ρ. First, consider the case n = 2. Since we are in the
translation invariant case, a proper solution k(2),ρ must be of the form

k(2)(x1, x2) = k(2),ρ(x1 − x2, 0) =: k(x1 − x2),

where k is an even function on Rd. Then equation (4.43) reads as

(1 + 〈w〉)2k(x1 − x2) =
2∑
i=1

ρ
∑
j 6=i

a(xi − xj)

+
2∑
i=1

∑
j 6=i

∫
Rd

(a+ w)(xi − y)k(xj − y) dy

=2ρa(x1 − x2) + 2

∫
Rd

(a+ w)(x1 − x2 − y)k(y) dy,

hence(
(a+ w) ∗ k

)
(x1 − x2)− (1 + 〈w〉)k(x1 − x2) = −ρa(x1 − x2), (4.45)

where (a ∗ k)(x) :=
∫

Rd a(x− y)k(y) dy denotes the usual convolution. Sup-
pose, (4.45) has a solution v ∈ L1(Rd). Then one gets for the Fourier trans-
form v̂

(â+ ŵ)(p)v̂(p)− (1 + 〈w〉)v̂(p) = −ρâ(p),

and thus
v̂(p) =

ρâ(p)

1 + 〈w〉 − (â+ ŵ)(p)
. (4.46)

Under the assumptions on a and w, ρâ(p)
1+〈w〉−(â+ŵ)(p)

is integrable at p = 0 for
dimension d ≥ 2, and hence in L1(Rd). Therefore,

v(x) :=
1

(2π)d

∫
Rd
ei(p,x) ρâ(p)

1 + 〈w〉 − (â+ ŵ)(p)
dp ∈ L∞(Rd). (4.47)

Remark. Suppose that the solution to (4.45) is a second correlation function.
Then, application of Fourier transform does not have any physical sense,
since, in general, second correlation functions are not integrable. But the
second Ursell function u(2)(x1, x2) := k(2)(x1, x2)−k(1)(x1)k(1)(x2) is in many
applications integrable in one coordinate. In our case we have

u(x1 − x2) := u(2)(x1 − x2, 0) = k(x1 − x2)− ρ2.
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It is an easy computation to show that the equation for u has exactly the
same form as (4.45) for k, namely

(a+ w) ∗ u(x1 − x2)− (1 + 〈w〉)u(x1 − x2) = −ρa(x1 − x2).

With this remark and (4.47) one can then easily check that

k(2),ρ(x1, x2) := v(x1 − x2) + ρ2

is a solution to (4.45) in X2.

Let

A :=
1

(2π)d

∫
Rd

|â(p)|
1 + 〈w〉 − (â+ ŵ)(p)

dp.

Then
k(2),ρ(x1, x2) ≤ ρA+ ρ2 ≤ C2(2!)2

for any constant C ≥ 1
2

√
ρA+ ρ2. Choose

C := C(ρ) := max{A, 1
2

√
ρA+ ρ2}.

Now consider the case n ≥ 3. Assume that k(n−1),ρ is already constructed
and satisfies the estimate ‖k(n−1),ρ‖Xn−1 ≤ Cn−1((n − 1)!)2. Then, equation
(4.43) gives

L̂∗nk
(n)(x1, . . . , xn) = −

n∑
i=1

k(n−1),ρ(x1, . . . , x̌i, . . . , xn)
∑
j 6=i

a(xi − xj)

:= −f (n),ρ(x1, . . . , xn). (4.48)

The function

k(n),ρ(x1, . . . , xn) :=

∫ ∞
0

(
etL̂
∗
nf (n),ρ

)
(x1, . . . , xn) dt (4.49)

is a solution to (4.48) in the Banach space Xn provided∫ ∞
0

(
etL̂
∗
nf (n),ρ

)
(x1, . . . , xn) dt <∞ for a.a. (x1, . . . , xn) ∈ (Rd)n

and
etL̂
∗
nf (n),ρ → 0, t→∞.



102 CHAPTER 4. CONTINUOUS CONTACT MODEL WITH JUMPS

Therefore, to prove the existence of a solution to (4.48) we have to show
that the right hand side of (4.49) has sense in Xn. By the induction assump-
tion for (n− 1) and the Markov property of etL̂∗n we obtain∫ ∞

0

(
etL̂
∗
nf (n),ρ

)
(x1, . . . , xn) dt

≤
∫ ∞

0

(
etL̂
∗
nCn−1((n− 1)!)2

n∑
i=1

∑
j 6=i

a(·i − ·j)
)

(x1, . . . , xn) dt

= Cn−1((n− 1)!)2

n∑
i=1

∑
j 6=i

∫ ∞
0

(
et(L

i
a+w+Lja+w)a(·i − ·j)

)
(xi, xj) dt.

Since etL
j
a+w is a contraction semigroup on Xn, there exists a Lebesgue nullset

N such that, since ‖·‖L∞ ≤ ‖̂·‖L1 ,∫ ∞
0

(
et(L

i
a+w+Lja+w)a(·i − ·j)

)
(xi, xj) dt

≤
∫ ∞

0

sup
xj∈Rd\N

(
etL

i
a+wa(·i − xj)

)
(xi) dt

≤ 1

(2π)d

∫ ∞
0

sup
xj∈Rd\N

∫
Rd

∣∣∣∣∣ ̂(
etL

i
a+wa(·i − xj)

)
(p)

∣∣∣∣∣ dp dt
=

1

(2π)d

∫ ∞
0

sup
xj∈Rd\N

∫
Rd
et
(

(â+ŵ)(p)−1−〈w〉
)
×

×
∣∣∣∣∫

Rd
e−i(p,x)a(x− xj) dx

∣∣∣∣ dp dt
=

1

(2π)d

∫ ∞
0

sup
xj∈Rd\N

∫
Rd
et
(

(â+ŵ)(p)−1−〈w〉
) ∣∣e−i(p,xj)â(p)

∣∣ dp dt
≤ 1

(2π)d

∫ ∞
0

∫
Rd
et
(

(â+ŵ)(p)−1−〈w〉
)
|â(p)| dp dt. (4.50)

For any p 6= 0∫ ∞
0

et
(

(â+ŵ)(p)−1−〈w〉
)
dt =

1

1 + 〈w〉 − (â+ ŵ)(p)
.

Therefore, because of the Fubini theorem and (4.47), we have that∫ ∞
0

∫
Rd
et
(

(â+ŵ)(p)−1−〈w〉
)
|â(p)| dp dt

=

∫
Rd

|â(p)|
1 + 〈w〉 − (â+ ŵ)(p)

dp <∞.
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Therefore, with the results from the case n = 2, we obtain that for
Lebesgue-a.a. (x1, . . . , xn)∫ ∞

0

(
etL̂
∗
nf (n),ρ

)
(x1, . . . , xn) dt ≤ Cn−1((n− 1)!)2n(n− 1)A ≤ Cn(n!)2.

This finishes the proof of part (I) of Theorem 4.4.2.

(II): The first statement of this part is trivial.

Second assertion: consider the difference between the correlation func-
tions k(n)

t and k(n),ρ, where the latter one is the one constructed in part (I):

k
(n)
t (x1, . . . , xn)− k(n),ρ(x1, . . . , xn)

=
[
etL̂
∗
n − 1

]
k(n),ρ(x1, . . . , xn) + etL̂

∗
n
[
k

(n)
0 (x1, . . . , xn)− k(n),ρ(x1, . . . , xn)

]
+

∫ t

0

esL̂
∗
nf

(n)
t−s(x1, . . . , xn) ds.

Since

[
etL̂
∗
n − 1

]
k(n),ρ(x1, . . . , xn) =

∫ t

0

esL̂
∗
nL̂∗nk

(n),ρ(x1, . . . , xn) ds

= −
∫ t

0

esL̂
∗
nf (n),ρ(x1, . . . , xn) ds,

we have

k
(n)
t (x1, . . . , xn)− k(n),ρ(x1, . . . , xn)

=etL̂
∗
n
[
k

(n)
0 (x1, . . . , xn)− k(n),ρ(x1, . . . , xn)

]
(a)

+

∫ t

0

esL̂
∗
n
[
f

(n)
t−s(x1, . . . , xn)− f (n),ρ(x1, . . . , xn)

]
ds. (b)

Ad (b):

Similar to the computations for (4.49) and by Proposition 4.3.8 one can
show ∫ t

0

esL̂
∗
nf

(n)
t−s(x1, . . . , xn) ds ∈ Xn,∫ ∞

0

esL̂
∗
nf (n),ρ(x1, . . . , xn) ds ∈ Xn.
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We use induction over n to show that (b) tends to zero. For n = 1 this is
trivial. So assume now, that

k
(n−1)
t → k(n−1),ρ in Xn−1, t→∞. (4.51)

This immediately implies

f
(n)
t−s → f (n),ρ in Xn, t→∞. (4.52)

Therefore, by Proposition 4.3.8, there exists a constant K > 0 such that
for any t ≥ 0

‖k(n−1)
t ‖Xn−1 ≤ K‖k(n−1),ρ‖Xn−1 .

Let 0 < T ≤ t. Then∫ t

T

esL̂
∗
n
[
f

(n)
t−s(x1, . . . , xn)− f (n),ρ(x1, . . . , xn)

]
ds

≤
∫ t

T

esL̂
∗
n
[∣∣∣f (n)

t−s(x1, . . . , xn)
∣∣∣− ∣∣f (n),ρ(x1, . . . , xn)

∣∣] ds
≤ (1 +K)

∫ t

T

‖k(n−1),ρ‖Xn−1

n∑
i=1

∑
j 6=i

(
es(L

i
a+w+Lja+w)a(·i − ·j)

)
(xi, xj) ds

≤ (1 +K)

∫ ∞
T

. . . ds. (4.53)

By (4.50), this expression becomes abitrarily small for large enough T . But,
by (4.52) and the contraction property of the semigroup etL̂∗n , also∫ T

0

esL̂
∗
n
[
f

(n)
t−s(x1, . . . , xn)− f (n),ρ(x1, . . . , xn)

]
ds→ 0 in Xn, t→∞.

Thus we have shown the convergence of expression (b) to zero.

Ad (a):

The convergence of expression (a) to zero means that the solution of the
Cauchy problem

∂k
(n)
t

∂t
(x1, . . . , xn) = L̂∗nk

(n)
t (x1, . . . , xn), t ≥ 0,

k
(n)
t (x1, . . . , xn)

∣∣∣
t=0

= k
(n)
0 (x1, . . . , xn) ∈ Xn,

(4.54)

asymptotically does not depend on the initial conditions. The boundedness
of the operator L̂∗n implies the existence of the solution k(n)

t = etL̂
∗
nk

(n)
0 as a

function from Xn.
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The latter fact allows us to look at the solution of (4.54) in the class
of generalized functions

(
L1((Rd)n)

)′ ⊂ S ′((Rd)n), where S ′((Rd)n) denotes
the continuous linear functionals on the space S((Rd)n) of rapidly decreasing
functions on (Rd)n. Since the Fourier transform is well-defined on S ′((Rd)n),
we can consider the following functional: for ϕ ∈ S((Rd)n)(

k̂
(n)
t , ϕ

)
=
(
k

(n)
t , ϕ̂

)
=

∫
Rd
· · ·
∫

Rd
etL̂
∗
nk

(n)
0 (x1, . . . , xn)ϕ̂(x1, . . . , xn) dx1 · · · dxn.

Since
‖L̂∗nk‖L∞((Rd)n) ≤ n

(
1 + 〈a〉+ 2〈w〉

)
‖k‖L∞((Rd)n),

we get for all N ∈ N∣∣∣∣∣
N∑
l=0

tl

l!

((
L̂∗n
)l
k

(n)
0

)
(x1, . . . , xn)ϕ̂(x1, . . . , xn)

∣∣∣∣∣
≤

N∑
l=0

tl

l!
nl
(
1 + 〈a〉+ 2〈w〉

)l‖k(n)
0 ‖L∞((Rd)n) |ϕ̂(x1, . . . , xn)|

≤ etn
(

1+〈a〉+2〈w〉
)
‖k(n)‖L∞((Rd)n) |ϕ̂(x1, . . . , xn)| ∈ L1((Rd)n).

Hence, by Lebesgue’s dominated convergence theorem,(
k̂

(n)
t , ϕ

)
=
∞∑
l=0

tl

l!

∫
Rd
· · ·
∫

Rd

((
L̂∗n
)l
k

(n)
0

)
(x1, . . . , xn)ϕ̂(x1, . . . , xn) dx1 . . . dxn.

(4.55)
For l = 1, the integral in the last expression gives∫

Rd
· · ·
∫

Rd

(
L̂∗nk

(n)
0

)
(x1, . . . , xn)ϕ̂(x1, . . . , xn) dx1 . . . dxn

=

∫
Rd
· · ·
∫

Rd
(−(1 + 〈w〉)n)k

(n)
0 (x1, . . . , xn)ϕ̂(x1, . . . , xn) dx1 . . . dxn

+

∫
Rd
· · ·
∫

Rd

∫
Rd

n∑
i=1

(a+ w)(xi − y)k
(n)
0 (x1, . . . , y, . . . , xn)×

× ϕ̂(x1, . . . , xn) dy dx1 . . . dxn

=

∫
Rd
· · ·
∫

Rd
k

(n)
0 (x1, . . . , xn)(−(1 + 〈w〉)n)ϕ̂(x1, . . . , xn) dx1 . . . dxn

+
n∑
i=1

∫
Rd
· · ·
∫

Rd
k

(n)
0 (x1, . . . , y, . . . , xn)×

×
∫

Rd
(a+ w)(y − xi)ϕ̂(x1, . . . , xn) dxi dy dx1 · · · ďxi · · · dxn
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=

∫
Rd
· · ·
∫

Rd
k

(n)
0 (x1, . . . , xn)(−(1 + 〈w〉)n)ϕ̂(x1, . . . , xn) dx1 . . . dxn

+
n∑
i=1

∫
Rd
· · ·
∫

Rd
k

(n)
0 (x1, . . . , xi, . . . , xn)×

×
∫

Rd
(a+ w)(xi − y)ϕ̂(x1, . . . , y, . . . , xn) dy dxi dx1 · · · ďxi · · · dxn

=

∫
Rd
· · ·
∫

Rd
k

(n)
0 (x1, . . . , xn)

(
L̂∗nϕ̂

)
(x1, . . . , xn) dx1 · · · dxn.

From this it follows∫
Rd
· · ·
∫

Rd

((
L̂∗n
)l
k

(n)
0

)
(x1, . . . , xn)ϕ̂(x1, . . . , xn) dx1 . . . dxn

=

∫
Rd
· · ·
∫

Rd
k

(n)
0 (x1, . . . , xn)

((
L̂∗n
)l
ϕ̂
)
(x1, . . . , xn) dx1 · · · dxn

for each l ∈ N, and hence

(
k̂

(n)
t , ϕ

)
=
∞∑
l=0

tl

l!

∫
Rd
· · ·
∫

Rd
k

(n)
0 (x1, . . . , xn)

((
L̂∗n
)l
ϕ̂
)
(x1, . . . , xn) dx1 . . . dxn.

(4.56)
Furthermore,

n∑
i=1

∫
Rd

(a+ w)(xi − y)ϕ̂(x1, . . . , y, . . . , xn) dy

=
n∑
i=1

∫
Rd

∫
Rd
· · ·
∫

Rd
(a+ w)(y − xi)e−i〈(x1,...,y,...,xn),(p1,...,pn)〉×

× ϕ(p1, . . . , pn) dp1 · · · dpn dy

=
n∑
i=1

∫
Rd
· · ·
∫

Rd

∫
Rd

(a+ w)(z)e−i〈(x1,...,xn),(p1,...,pn)〉e−i〈z,pi〉×

× ϕ(p1, . . . , pn) dz dp1 · · · dpn

= F (n)

[ n∑
i=1

(â+ ŵ)(·i)ϕ
]
(x1, . . . , xn),

hence

(
L̂∗nϕ̂

)
(x1, . . . , xn) = F (n)

[( n∑
i=1

(â+ ŵ)(·i)− (1 + 〈w〉)n
)
ϕ

]
(x1, . . . , xn),
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and, inductively, for every l ∈ N,

((
L̂∗n
)l
ϕ̂
)
(x1, . . . , xn) = F (n)

[( n∑
i=1

(â+ ŵ)(·i)− (1 + 〈w〉)n
)l
ϕ

]
(x1, . . . , xn).

(4.57)
Therefore,(

k̂
(n)
t , ϕ

)
=

∫
Rd
· · ·
∫

Rd
k

(n)
0 (x1, . . . , xn)

(
etL̂
∗
nϕ̂
)
(x1, . . . , xn) dx1 . . . dxn

=

∫
Rd
· · ·
∫

Rd
k

(n)
0 (x1, . . . , xn)× (4.58)

×F (n)

[
et
(Pn

i=1(â+ŵ)(·i)−(1+〈w〉)n
)
ϕ

]
(x1, . . . , xn) dx1 . . . dxn.

(4.59)

By Remark 4.3.5 and Lemma 4.3.6, in the critical case κ = 1, etL̂∗n is a
contraction semigroup in L1((Rd)n). Furthermore, one can show that

F (n)

[
et
(Pn

i=1(â+ŵ)(·i)−(1+〈w〉)n
)
ϕ

]
(x1, . . . , xn)→ 0, t→∞,

pointwisely. These two facts imply

etL̂
∗
nϕ̂→ 0 in L1((Rd)n), t→∞,

thus (
k̂

(n)
t , ϕ

)
→ 0, t→∞,

and hence (
k

(n)
t , ϕ

)
→ 0, t→∞. (4.60)

Since S((Rd)n) is dense in L1((Rd)n) and

‖k(n)
t ‖(L1((Rd)n)′ = ‖k(n)

t ‖L∞((Rd)n) ≤ ‖k
(n)
0 ‖L∞((Rd)n),

we have (4.60) for every ϕ ∈ L1((Rd)n). This finishes the proof.

4.5 Clustering

Consider the translation invariant, subcritical case, i.e.,

k
(1)
t ≡ ρt, t ≥ 0, and κ < 1.
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By (4.42), we have that the density ρt converges to zero as t → ∞. In
fact, from Proposition 4.3.8 it follows, that the correlation functions of all
orders tend to zero as t→∞.

On the other hand, Proposition 4.3.8 implies, for fixed t, a factorial bound
for k(n)

t . Thus one can expect clustering of the system. We will prove this in
the next proposition. Starting from Poisson distribution of the particles we
obtain a lower bound, factorial in the order n, for the correlation functions
in a small region.

So, let k(n)
0 = Cn. Let B ⊂ Rd a bounded domain such that

α := inf
x,y∈B

a(x− y) > 0.

Set β := min(ακ, C).

Proposition 4.5.1. Let t ≥ 1. Then for any {x1, . . . , xn} ⊂ B, n ≥ 1, one
has

k
(n)
t (x1, . . . , xn) ≥ βnen(κ−1)tn!. (4.61)

Proof. We will prove the assertion by induction over n. Let n = 1. Then by
(4.42)

k1
t (x1) = ρt = e(κ−1)tC ≥ β1e1(κ−1)t1!.

Now let n ≥ 2 and assume that the assertion of the proposition is true
for n− 1. Then by Proposition 4.3.7

k
(n)
t (x1, . . . , xn) ≥ κen(κ−1)t

∫ t

0

e−n(κ−1)s

[ n⊗
i=n

e(t−s)Liκa+w

]
×

×
n∑
i=1

k(n−1)
s (x1, . . . , x̌i, . . . , xn)︸ ︷︷ ︸
≥βn−1e(n−1)(κ−1)s(n−1)!

∑
j 6=i

a(xi − xj) ds

≥ κen(κ−1)tnβn−1(n− 1)!(n− 1)α

∫ t

0

e(−1)(κ−1)s︸ ︷︷ ︸
≥e0=1

ds

≥ βnen(κ−1)tn!.

In the last line we have used that t ≥ 1.

Thus, the assertion is proved.
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