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Chapter 1

Introduction

The subject of this diploma thesis is the study of an in�nite dimensional
stochastic di�erential equation of Ornstein-Uhlenbeck type with Levy noise
and time-dependent periodic coe�cients.

Chapter 2 contains a general introduction into Lévy processes with par-
ticular emphasis on the Lévy-Ito decomposition and the Lévy-Khinchine rep-
resentation.

Taking advantage of the Lévy-Ito decomposition, we establish the neces-
sary theory of integration to give sense to our solution in chapter 3.

Then, in chapter 4, we focus our interest on the associated semigroup
and in particular on its asymptotic behaviour, its invariant measures and its
generator. The equation being non-autonomous results in a two-parameter
semigroup, since we have to keep track not only of the elapsed time but also
of the starting time. In this case the concept of an invariant measure has
to be generalized to allow for a whole collection of measures - a so-called
evolution system of measures- which are invariant in an appropriate sense.
We will prove the existence of such a system under some stability conditions.
Then we turn the problem into an autonomous one by enlarging the state
space, allowing for a one-parameter semigroup. Via the evolution system of
measures and thanks to the periodicity of the coe�cients we are able to es-
tablish a unique invariant measure for this semigroup. Thus we can introduce
the L2-space with respect to the invariant measure where the semigroup is
strongly continuous. On a domain of uniqueness for the generator we estab-
lish the form of its square �eld operator and prove an estimate for it, that
allows us to obtain a Poincaré and a Harnack inequality for our semigroup.
This also gives results for the original two-parameter semigroup.
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2 CHAPTER 1. INTRODUCTION

We will now give an overview of the literature on related problems, while
we point out our contributions. Our central reference is [daPr/Lun07] which
concentrates on the �nite dimensional case and Gaussian noise. A number of
our arguments are adapted from this paper, although the Lévy setting forces
us to work more heavily with Fourier transforms and the in�nite dimensional
setting requires additional care. The existence result on evolution systems of
measures (Theorem 4.10) is stated in [daPr/Lun07] in the �nite-dimensional
Gaussian framework, but the extension to Hilbert spaces and Lévy noise is
fundamentally new. The same applies to the existence result on invariant
measures (Theorem 4.19) for the corresponding one-parameter semigroup .
The form of the Fourier transform (Lemma 4.2) and of the generator (Lemma
4.24) are also genuine generalizations from what was done in [daPr/Lun07],
though they are very close to results from the theory of generalized Mehler
semigroups as for example in [Fuhr/Röck00] or [Lesc/Röck02]. Nevertheless,
our framework di�ers from theirs in that we allow for time-dependent coef-
�cients, making a direct use of the methods developed there impossible.
Our analogue to the integration by parts formula from [daPr/Lun07] is the
concrete calculation of the square �eld operator (Lemma 4.30). As far as we
know, there is no such result in our framework, though the general formula
in [Lesc/Röck04] is quite similar.
The gradient estimate in [daPr/Lun07] corresponds to our estimate of the
square �eld operator, which is a generalization of the result in [Röck/Wang03]
to the time-dependent case. Both our proofs of the Poincaré and the Harnack
inequality follow the ones in [Röck/Wang03] very closely. Nevertheless, as
far as we know, the extension to our framework is a new result.

The material in chapter 2 and 3 is of course standard, and the references
we used can be found at the beginning of each chapter.

I wish to thank Prof. Dr. Michael Röckner for his motivating lectures on
stochastic analysis and for his help in connection with this thesis. I would
also like to thank Dr. Walter Hoh for his lectures on jump processes and
his help concerning negative de�nite functions. Finally, special thanks are
kindly returned to my brother, Kristian Knäble.



Chapter 2

Introduction to Lévy Processes

2.1 Lévy Processes

The reader well acquainted with Brownian motion, will �nd Lévy processes
to share at least two of its desired properties. Stationarity and independence
of increments still hold and, together with stochastic continuity, assure that
the whole process can be characterized simply by its distribution after a
�xed time span. While Brownian motion is characterized by its drift term
and covariance operator, it turns out, that, to incorporate the jumps of a
Lévy process, it is su�cient to add a third quantity : the Lévy measure. The
correspondence between Lévy processes and these triples is made precise
in the seminal Lévy-Khinchine formula 2.36. The Lévy measure codes the
information about the size and the likelihood of jumps. This measure will
in general not be a probability measure, it need not even be �nite, however
it is only allowed to "explode" around zero, illustrating the possibility of an
accumulation point of jumps of vanishing size. Jumps above a �xed size,
on the other hand, cannot accumulate, an important observation on the
path structure, that will be stated in proposition 2.13, and follows directly
from the càdlàg property. The �nal result in this section will be the Lévy-
Ito decomposition, a representation of a Lévy process as an integral with
respect to a so called Poisson Random Measure. This decomposition is most
important, as it will be the basis for stochastic integration against Lévy
processes.
Our exposition follows [App04] and [Alb/Rue05]. Unless stated otherwise,
proofs are taken from [App04] and only slightly adapted. Note that the

3



4 CHAPTER 2. INTRODUCTION TO LÉVY PROCESSES

Lévy-Khinchine formula and the Lévy-Ito decomposition are of course closely
related and that there are basically two di�erent approaches to prove them.
We follow what might be called the probabilistic approach and what we deem
the more intuitive one. It consists in proving the Lévy-Ito decomposition �rst
and to derive the Lévy-Khinchine representation with its help. There is also
an analytic approach that bases everything on the Lévy-Khinchine formula
as for example in [Sato99].

In the following let be H a separable Hilbert space with scalar product
〈·, ·〉 := 〈·, ·〉H and norm ‖ · ‖ := ‖ · ‖H .

De�nition 2.1 An H-valued stochastic process L adapted to a
�ltration (Ft)t≥0 is a Lévy process if and only if

(L0) L(0) = 0 (a.s)

(L1) L has independent increments , i.e.
L(t)− L(s) is independent of Fs for all 0 ≤ s < t < ∞

(L2) L has stationary increments, i.e. for all 0 ≤ s < t < ∞
L(t)− L(s) has the same distribution as L(t− s)

(L3) L is stochastically continuous, i.e. for all t ≥ 0 and ε > 0 holds

lim
s→t

P (‖L(s)− L(t)‖H > ε) = 0

Remark 2.2 We could have required the Lévy process to have càdlàg paths
by de�nition, but we prefer to emphasize the result(see [Prott90]), that every
Lévy process has a modi�cation that is càdlàg(and indeed still satis�es (L0)-
L(3)). The proof is based on the fact, that every martingale admits a càdlàg
modi�cation. Although not every Lévy process is a martingale (of course
centralization would ensure this, but note that the �rst moment need not
exist), this argument can be made to work by considering a related martingale.
In the following, when speaking about a Lévy process, we will always mean a
càdlàg modi�cation.

As it will be useful later on (e.g. in the proof of the strong Markov
property) we will introduce the martingale mentioned in the remark.
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Lemma 2.3 For any �xed u ∈ H the process

Mu(t) :=
exp{i〈u, Lt〉}

E[exp{i〈u, Lt〉}]

is a martingale.

Although, the numerator is certainly integrable, we now have to rule out that
the denominator vanishes. This will be done in two additional lemmas which
will give us some insight into the behaviour of the Fourier transforms of Lt

as t changes and are interesting in themselves.
In the following we will denote by ΦX(u) the Fourier transform of a random
variable X.

Lemma 2.4 For a Lévy process Lt, the map t 7→ ΦLt(u) is continuous for
each u ∈ H.

Proof We have to show

lim
s→t

E[exp(i〈u, Ls〉)] = E[exp(i〈u, Lt〉)]

Note, simply, that x 7→ exp(i〈u, x〉) is bounded and continuous, and that
convergence in probability implies convergence in distribution for Hilbert
space valued random variables. �

Lemma 2.5 (Lévy symbol) If L is a Lévy process, then for every u ∈ H:

ΦLt(u) = exp(tλ(u))

where λ : H → C.

Proof We will show that for every u ∈ H, t 7→ ΦLt(u) ful�lls the func-
tional equation of the exponential function. We recall that the functional
equation is characterising, that is we prove the following claim :

Claim A function f : R+ → C with the properties:

• f(0) = 1

• f(t + s) = f(t)f(s) ∀s, t ∈ R+
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• t 7→ f(t) is continuous

is of the form f(t) = ezt for some z ∈ C.

Proof (of the claim) We must have f 6= 0 everywhere since f(t) = 0
would imply f( t

n
)n = 0 for every n and hence f( t

n
) = 0 for every n but this is

impossible by continuity. So we may de�ne g(t) := log(f(t)) where log is the
branch of the logarithm that assigns 0 to 1. But g ful�lls g(t+s) = g(t)+g(s),
is continous and g(0) = 0 and hence we must have g(t) = zt for some z ∈ C.
Applying the exponential yields the desired result. �

So let us check the three conditions in the claim for t 7→ ΦLt(u).
ΦL0(u) = E[exp(0)] = 1 is trivial. By stationarity and independence of
increments:

ΦLt+s(u) = E[ei〈u,Lt+s〉]

= E[ei〈u,Lt+s−Ls〉ei〈u,Ls〉]

= E[ei〈u,Lt+s−Ls〉]E[ei〈u,Ls〉]

= E[ei〈u,Lt〉]E[ei〈u,Ls〉]

= ΦLt(u)ΦLs(u)

The continuity follows, of course, from the last lemma.
Thus the claim applies for every �xed u and we have ΦLt(u) = etλ(u), where
λ(u) is the complex parameter that will depend on u. �

Remark 2.6 So we have seen that the characteristic function of a Lévy pro-
cess vanishes nowhere, since it can be written as an exponential. Moreover
the exponent simply scales by t and hence the whole process is determined
by a single Fourier transform. The function λ has a very special structure,
which will be given by the Lévy-Khinchine formula 2.36 later on. We will call
λ the Lévy symbol associated to L.
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Proof (of Lemma 2.3)
Obviously the �rst moment exists (this being the point of the construc-

tion). Furthermore, we have

E
[

ei〈u,Lt〉

E[ei〈u,Lt〉]
|Fs

]
= E

[
ei〈u,Lt−Ls〉ei〈u,Ls〉

E[ei〈u,Lt−Ls〉]E[ei〈u,Ls〉]
|Fs

]
=

ei〈u,Ls〉

E[ei〈u,Ls〉]
E
[

ei〈u,Lt−Ls〉

E[ei〈u,Lt−Ls〉]
|Fs

]
=

ei〈u,Ls〉

E[ei〈u,Ls〉]

E[ei〈u,Lt−Ls〉]

E[ei〈u,Lt−Ls〉]
= Mu(s) �

Lemma 2.7 For a �xed x ∈ H 〈L(t), x〉 is a real-valued Lévy process.

Proof Note, that we can consider 〈L(t), x〉 as Fx(L(t)) and Fx is linear and
continuous.
So let L be a Lévy-process. (L0) for Fx(L) is trivial. For (L1) and (L2) use
linearity of Fx and the obvious facts, that if X is independent of a σ-algebra

so is F (X) and that if X
d
= Y, thenF (X)

d
= F (Y ) for any measurable F . For

(L3) note, that Fx is uniformly continuos, since it is linear. So for a �xed
ε > 0 there is δ > 0 such that ‖z−y‖ < δ implies |Fx(z)−Fx(y)| < ε. Hence,
(using A ⊂ B ⇒ Bc ⊂ Ac):

P (|Fx(L(t))− Fx(L(s))| > ε) ≤ P (‖L(t)− L(s)‖ > δ)
s→t−→ 0 �

As for Brownian motion the strong Markov property also holds for Lévy
processes. Since we will often be interested in stopping times related to jump
occurences, this result will be crucial for several further proofs.

Proposition 2.8 (Strong Markov property) If L is a Lévy process and
T is a stopping time, then, on {T < ∞}, we have for the process
{LT

t }t≥0 := LT+t − LT :

1. {LT
t } is a Lévy process that is independent of FT

2. LT
t

d
= Lt

3. LT has càdlàg paths and is FT -adapted
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Proof We will give an idea of the proof:
Assume, at �rst, that T is a bounded stopping time, so we can apply optional
stopping.
Let A ∈ FT and recall the martingales Mu(t) = ei〈u,Lt〉e−tλ(u) from 2.3
Note that we have written the expectation in the form according to 2.5. For
s < t consider the following equalities:

E
[
ei〈u,LT+t−LT+s〉

]
= E

[
ei〈u,LT+t〉e−(T+t)λ(u)

ei〈u,LT+s〉e−(T+s)λ(u)

e(T+t)λ(u)

e(T+s)λ(u)

]
= E

[
Mu(T + t)

Mu(T + s)
e(t−s)λ(u)

]
= E

[
E
[

Mu(T + t)

Mu(T + s)
e(t−s)λ(u) | FT+s

]]
= e(t−s)λ(u)E

[
1

Mu(T + s)
E [Mu(T + t) | FT+s]

]
= e(t−s)λ(u) = E

[
ei〈u,Lt−s〉

]
Thus, setting s = 0, we see that LT+t − LT and Lt have the same Fourier
transforms and hence the same distributions and we have proven (2). For a
proof of 1. and 3. see [App04] Theorem 2.2.11. �

2.1.1 The Path Structure of Lévy Processes

One of the big di�erences between Brownian motion and general Lévy pro-
cesses is, that the latter do not admit continuous paths. We have, however,
pointed out, that their paths are still right continuous and admit left limits.
So the only discontinuities that can occur are of jump type. As we will aim
to split a Lévy process into a continuous part and a jump part in the Lévy-
Ito decomposition, it is worthwhile to take a closer look on the occurence of
jumps. First, we will combine stochastic continuity with the càdlàg property
to see, that jumps at a �xed time occur only with probability 0. Then, again
by the càdlàg property, we will show that there are only �nitely many jumps
on bounded intervals.

De�nition 2.9 Let Lt be a Lévy process. Since we always have left limits,
let Lt− := lims↗t Ls. We will call ∆Lt := Lt − Lt− the jump of L at time t.
Accordingly, we will call the process {∆Lt}t>0 the jump process of L.
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Lemma 2.10 If L is a Lévy process we have P (∆Lt 6= 0) = 0 for any �xed
t.

Proof Let tn be an increasing real sequence with limit t. By the càdlàg
property limn→∞ Ltn = Lt− exists for every ω. On the other hand, by stochas-
tic continuity, we obtain a subsequence of tn that converges for almost all ω
to Lt. So Lt− = Lt by uniqueness of limits. �

Remark 2.11 One may be tempted to assume that ∆L is itself a Lévy pro-
cess, but this is false in general. Let Nt be a Poisson process. Then, we have
by the above : P (∆Nt −∆Ns = 0) = 1 since with probability 1 there will be
no jumps. On the other hand (and for the same reason) we have
P (∆Nt −∆Ns = 0|∆Ns = 1) = 0. So increments are not independent.

As we pointed out, we want to prove that there are only �nitely many
jumps on �nite intervals. However, this is only true if we exclude arbitrary
small jumps. Those might accumulate without contradicting the càdlàg prop-
erty. Thus, the following de�nition is crucial:

De�nition 2.12 We say that A ∈ B(H) is bounded below if 0 /∈ Ā
We denote by N(t, A) the (random) number of "jumps of size A" up to time
t, that is N(t, A) := card{0 ≤ s ≤ t|∆Ls ∈ A}

Proposition 2.13 If L has càdlàg paths and A is bounded below, then N(t, A)
is �nite for every �xed t.

Proof Assume N(t, A) = ∞, so that we have in�nitely many jumps of size
A in �nite time, which have to accumulate, say at s.We can then �nd a
sequence sn ⊂ {0 ≤ s ≤ t|∆Ls ∈ A} tending to s either from the left or from
the right. As A is bounded below we can �nd ε > 0 such that ‖∆Lsn‖ > 2 ε.
First assume that sn ↘ s. By the càdlàg property there is δ > 0 such
that ‖Ls − Lr‖ < ε ∀ r with r − s < δ. Take n large enough to assure
‖Ls−Lsn‖ < ε. Of course we also have ‖Ls−Lsn−‖ < ε then. By the triangle
inequality this implies ‖Lsn − Lsn−‖ < 2 ε contradicting our requirement on
A.
Note that, in the proof, the value of Ls is arbitrary, we need only that the
left limit exists. So the proof for sn ↗ s is the same, with Ls replaced by
Ls−. �
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We stress once more that N(t, A) depends on ω. It is easy to see that N(t, A)
is a random variable (it will become clear in the proof of the next proposition)
and we can hence ask if we can �nd out something about its distribution
and how it depends on the set A. Moreover, �xing only A (which must be
bounded below, for technical reasons) and writing NA

t for a more suggestive
notation we want to examine the process {NA

t }t≥0. Note that N(t, A) only
takes values in N and that its jumps are always of size 1. Hence one might
hope for a Poisson process, and to show that this is indeed true, we will �rst
prove an auxiliary characterization result.

Proposition 2.14 If L is a Lévy process that takes values in N only, is
almost surely increasing and has only jumps of size 1, then L is a Poisson
process.

Proof The idea is to show that the waiting times between jumps are ex-
ponentially distributed, by using the characteristical functional equation of
the exponential again (compare the proof of 2.5). Let be Tn the sequence of
stopping times, de�ned by Tn := inf{t > 0 |Lt = n}. Tn is a stopping time
because of {Tn ≤ t} = {Lt > 0}. From 2.8 (strong Markov property) we
get that the random variables T1, T2 − T1, T3 − T2, ... are independent and
identically distributed. On the other hand by stationarity and independence
of the increments of L we have:

P (T1 > s + t) = P (Ls = 0, Ls+t − Ls = 0)

= P (Ls = 0) P (Ls+t − Ls = 0)

= P (Ls = 0) P (Lt = 0)

= P (T1 > s) P (T1 > t)

So f(t) = P (Lt > 0) ful�lls f(t + s) = f(t)f(s) ∀ t, s > 0. Furthermore, we
have:
f(0) = P (T1 > 0) = P (L0 = 0) = 1 and
f(t) = P (Lt = 0) = 1− P (Lt ≥ 1) = 1− P (|Lt − L0| ≥ 1) → 1 as t → 0
because of stochastic continuity, so f is continuous in 0 and since
f(t + s)− f(s) = f(s)(f(t)− 1) we have at least right continuity of f , which
allows us to deduce that f(t) = eαt for some α ∈ R. Moreover we have
f(t) < 1 for some t, otherwise we would have 1 = P (T1 > t) = P (Lt = 0)∀ t
contradicting the assumption that Lt is increasing. So −β := α must be
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negative. Having P (T1 > t) = e−βt, we get P (T1 ≤ t) = 1 − e−βt and
di�erentiation yields the density ρT1(t) = βe−βt, thus T1 is exponentially
distributed. It is then well-known that Lt must be a Poisson process. �

Proposition 2.15 If A is bounded below, then NA
t is a Poisson process.

Proof By the characterization above, we only have to show that NA
t is

a Lévy Process. We can assume that NA
t is increasing, otherwise NA

t will
just be the zero process, which we will consider as a Poisson process with
intensity 0. (L0) is clear, since by 2.10 with probability 1 we have no jump
at 0. (L1) and (L2) follow directly from the respective properties of Lt.
Stochastic continuity, on the other hand, is astonishingly di�cult to prove.
Since N(t, A) = 0 implies N(s, A) = 0 for all s < t we have for n ∈ N:

P [N(t, A) = 0] = P

[
N

(
t

n
, A

)
= 0, N

(
2t

n
, A

)
= 0, . . . , N(t, A) = 0

]
= P

[
N

(
t

n
, A

)
= 0, N

(
2t

n
, A

)
−N

(
t

n
, A

)
= 0, . . .

. . . , N(t, A)−N

(
(n− 1)t

n
, A

)
= 0

]
=

(
P

[
N

(
t

n
, A

)
= 0

])n

by independent increments

Hence we have :

lim sup
t→0

P [N(t, A) = 0] = lim sup
t→0

(
P

[
N

(
t

n
, A

)
= 0

])n

= lim
n→∞

lim sup
t→0

(
P

[
N

(
t

n
, A

)
= 0

])n

= lim
n→∞

(
lim sup

t→0
P

[
N

(
t

n
, A

)
= 0

])n

but

lim sup
t→0

P

[
N

(
t

n
, A

)
= 0

]
= lim sup

t→0
P [N (t, A) = 0]

is independent of n, so it can be only 0 or 1. Since the same argument applies
to the lim inf as well, there are only three possibilities:



12 CHAPTER 2. INTRODUCTION TO LÉVY PROCESSES

1. 0 = lim inft→0 P [N (t, A) = 0] 6= lim supt→0 P [N (t, A) = 0] = 1

2. limt→0 P [N (t, A) = 0] = 0

3. limt→0 P [N (t, A) = 0] = 1

3. implies stochastic continuity, so we will show that the other two are im-
possible:
As N is an increasing process P [N (t, A) = 0] =: Pt is decreasing in t. As-
sume 1. especially lim supt→∞ Pt = 1, so that we must have Pt > 1

2
for some

t. But since Pt is decreasing this implies Ps > 1
2
∀ s < t so lim inft→∞ Pt = 0

is impossible.
Assume 2. so that equivalently limt→0 P [N (t, A) > 0] = 1 Choose another
B which is bounded below and disjoint from A. Then P [N (t, A ∪B) > 0] =
P [N (t, A) > 0] + P [N (t, B) > 0] so that 2. is impossible, too. �

2.2 The Lévy-Ito Decomposition

The aim of this decomposition is to show that we can write every Lévy
process as a sum of a drift term, a continuous Brownian part and a jump part.
The proof of the Lévy-Ito Decomposition illustrates very well the technical
di�culties posed by the jumps. First of all, a Lévy process need not have
any moments and proposition 2.25 will show that this is only due to the big
jumps. Subtracting those, we can centralize and the remaining jump part
will be a martingale, although this is di�cult to prove in the case where
there are arbitrary small jumps. It remains then to show, that the rest term
is continuous and a Brownian motion.

In order to �nd a convenient representation for the jump part we have to
introduce Poisson integrals. In principle we want to give meaning to some-
thing like

∑
s≤t f(∆Ls), but this sum might not be �nite, even for bounded

f because of an in�te number of small jumps , so we have to come up with
another approach in the general case. If we consider only jumps above a
certain threshold speci�ed by a set A,which is bounded below, we know that
the sum above will be �nite, as is N(t, A) But then, of course, we will want to
make this threshold arbitrarily small. So we need to investigate the in�uence
of A on N(t, A). First of all we note, that jumps of di�erent size cannot
in�uence each other:
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Lemma 2.16 If A and B are bounded below and we have A ∩ B = ∅ then
N(t, A) and N(t, B) are independent.

Proof see [App04] Theorem 2.3.5 �

It is fairly obvious that for �xed ω and t Nt(A) is additive for disjoint
sets. We prove now that it is even a pre-measure on a properly chosen ring.
Moreover, as Nt(A) depends on ω we may take expectation, for t �xed and
it turns out, that we still have a pre-measure.

De�nition 2.17 For A bounded below, set ν(A) = E[N(1, A)].
Set R := {A ⊂ H|A is bounded below and Borel measurable}

Lemma 2.18 R is a ring in H\{0}, and ν and N(t, ·) are pre-measures on
R.

Proof To see that R is a ring in H\{0} we note that: because of A ∪B ⊂
Ā ∪ B̄ we have, that 0 ∈ A ∪B implies 0 ∈ Ā or 0 ∈ B̄ so that A ∪ B must
still be bounded below, if A and B are. To see that N(t, ·) is a pre-measure
on R, recall that we have to check σ-additivity only for unions that still
belong to the ring. So let A :=

⋃
n An where A and all the An are bounded

below. Then we have:

Nt(
⋃
n

An) =
∑
s≤t

χ(
S

n An)(∆Xs)

=
∑
s≤t

∑
n

χAn(∆Xs) =
∑

n

∑
s≤t

χAn(∆Xs) =
∑

n

Nt(An)

Note that we could interchange sums as all terms are positive, but that if A
was not bounded below, the second expression might not even make sense.
To see that ν(A) is �nite for A bounded below, we have to refer to proposition
2.25. As Nt(A) is a Lévy process with bounded jumps (of size 1) the �rst
moment must exist. The proof for ν then follows the same lines, we just
have to interchange sum and expectation in the last step, which is justi�ed
by monotone convergence. �

Proposition 2.19 We can extend ν and N(t, ·) uniquely to σ-�nite measures
on the σ-algebra S := {A ⊂ H|A is Borel and 0 /∈ A} in H\{0}
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Proof To make use of Caratheodory we have to show, that ν and Nt are
σ-�nite on R and that R generates S. But both follows easily on considering
the sets An := {x ∈ H| ‖x‖ ≥ 1

n
} which are in R . �

Remark 2.20 The measure ν is indeed the third member of the character-
ising triple, mentioned in the introduction. Heuristically, we can already un-
derstand that it contains all the information necessary to describe the jump
structure. Imagine, we wanted to roughly simulate the jump process of a Lévy
process. We would try to cover the space H with su�ciently small and disjoint
sets. Then we would simulate a collection of independent (recall proposition
2.16) Poisson processes, one for each set, giving us the respective jump times.
Each Poisson process is characterized by its intensity parameter and this is
precisely provided by ν, as we state in the next simple lemma.

Lemma 2.21 If A is bounded below, Nt(A)
d
= π(tν(A)) , where π(c) is the

Poisson distribution with parameter c. Moreover the process Nt(A) − tν(A)
is a martingale.

Proof The intensity of a Poisson process Pt is given by E[P1]. Hence ν gives
the intensity by construction. The second result follows by noting that any
adapted independent-increment process that is centralized is a martingale.�

The most important properties of Nt(·) are summarized in the next de�-
nition.

De�nition 2.22 Let (S,A) be a measurable space. A Poisson random mea-
sure is a collection of random variables {N(A)}A∈A on a common probability
space Ω such that

• for almost all ω N(·) is a measure on (S,A)

• if A1, ..., An are mutually disjoint, the random variables N(A1), ..., N(An)
are independent

• whenever E[N(A)] < ∞ N(A) has a Poisson distribution

Remark 2.23 As ν is somehow compensating the drift of Nt, we will call
the random measure Nt − tν the compensated Poisson random measure.
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As Nt(·) is a measure on H\{0} for ω �xed we may de�ne,
for f : H → H measurable

∫
A

f(x)Nt(dx) as a random Bochner integral.
For a short account on Bochner integrals see appendix A of [Spde07].
The following proposition explores the properties of this integral as a random
variable in terms of its Fourier transform and its �rst two moments. In
[App04] this is Theorem 2.3.8 , that we have adapted to the Hilbert space
setting and where we made the proof of 2. and 3. rigorous.

Proposition 2.24 Let A be bounded below and
∫

A
‖f(x)‖ ν(dx) < ∞, then:

1.

E
[
exp

(
i

〈
u,

∫
A

f(x)Nt(dx)

〉)]
= exp

(
t

∫
A

(
ei〈u,x〉 − 1

)
ν ◦ f−1(dx)

)

2.

E
[∫

A

f(x)Nt(dx)

]
= t

∫
A

f(x)ν(dx)

3. moreover, if
∫

A
‖f(x)‖2 ν(dx) < ∞:

Var

[
‖
∫

A

f(x)Nt(dx)‖
]

= t

∫
A

‖f(x)‖2ν(dx)

Proof 1. First, let f be a simple function, f =
∑n

j=1 hjχAj
where hj ∈ H

and the Aj are disjoint measurable subsets of A. Then by 2.16 N(t, Aj)
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and N(t, Ai) are independent and so we have:

E
[
exp

(
i

〈
u,

∫
A

f(x)Nt(dx)

〉)]
=E

[
exp

(
i

〈
u,

n∑
j=1

hjNt(Aj)

〉)]

=E

[
n∏

j=1

exp (i 〈u, hjNt(Aj)〉)

]

=
n∏

j=1

E [exp (i 〈u, hjNt(Aj)〉)]

=
n∏

j=1

E [exp (i 〈u, hj〉Nt(Aj))]

=
n∏

j=1

exp
(
t
[
ei〈u,hj〉 − 1

]
ν(Aj)

)
= exp

(
n∑

j=1

t
[
ei〈u,hj〉 − 1

]
ν(Aj)

)

= exp

(
t

∫
A

[
ei〈u,f(x)〉 − 1

]
ν(dx)

)

So we have the result for simple functions. For every integrable f we
can �nd a sequence of simple functions fn, that converge pointwise to
f , so we have:

lim
n→∞

exp

(
t

∫
A

[
ei〈u,fn(x)〉 − 1

]
ν(dx)

)
= exp

(
t

∫
A

[
ei〈u,f(x)〉 − 1

]
ν(dx)

)
by dominated convergence. On the other hand we obtain

lim
n→∞

E
[
exp

(
i

〈
u,

∫
A

fn(x)Nt(dx)

〉)]
=

E
[
exp

(
i

〈
u,

∫
A

f(x)Nt(dx)

〉)]
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as follows: If we can show that for P−almost all ω :

lim
n→∞

∫
A

fn(x)Nt(dx)(ω) =

∫
A

f(x)Nt(dx)(ω) (2.1)

then dominated convergence gives again the result. But (2.1) will follow
if:

lim
n→∞

∫
A

‖fn(x)− f(x)‖Nt(dx)(ω) = 0 (2.2)

and we will show this by dominated convergence. By assumption we
have:

∞ > t

∫
A

‖f(x)‖ν(dx) =

∫
A

E[‖f(x)‖Nt(dx)] = E
[∫

A

‖f(x)‖Nt(dx)

]
where we used Fubini-Tonelli.
Hence we must have

∫
A
‖f(x)‖Nt(dx) < ∞ almost surely, and since Nt

is for any �xed ω a �nite measure, we can take 2‖f(x)‖ + const as a
uniform bound in (2.2) for almost all ω.
Note that the technical problems arise from the fact, that the measure
for the Bochner integral does depend on ω, but our sequence of simple
functions must not.

2. First assume that f is bounded, that is supx∈H ‖f(x)‖ = M < ∞.
For λ ∈ R we will consider the �rst identity for λf , then di�erentiate
with respect to λ and set λ = 0:

d

dλ
E
[
exp

(
λi

〈
u,

∫
A

f(x)Nt(dx)

〉)]
=

d

dλ
exp

(
t

∫
A

(
eλi〈u,f(x)〉 − 1

)
ν(dx)

)
Starting with the right hand side, we get by formally interchanging
derivation and integration:

d

dλ

∣∣∣∣
λ=0

exp

(
t

∫
A

(
eλi〈u,f(x)〉 − 1

)
ν(dx)

)
= t

∫
A

i〈u, f(x)〉ν(dx)

= i〈u, t

∫
A

f(x)ν(dx)〉
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where we have also used that the Bochner integral commutes with the
scalar product, as it is linear and continuous for �xed u and because
f is integrable. Derivation under the integral is justi�ed because the
derived integrand is uniformly integrable in λ:

sup
λ

∫
A

∣∣(eλi〈u,f(x)〉 − 1
)
i〈u, f(x)〉

∣∣ ν(dx) ≤ 2

∫
A

|〈u, f(x)〉| ν(dx)

≤ 2‖u‖
∫

A

‖f(x)‖ν(dx) < ∞

For the left hand side we can interchange derivation and expectation
likewise, since:

sup
λ

E
∣∣∣∣exp

(
λi

〈
u,

∫
A

f(x)Nt(dx)

〉)
i

〈
u,

∫
A

f(x)Nt(dx)

〉∣∣∣∣
≤ E

∣∣∣∣〈u,

∫
A

f(x)Nt(dx)

〉∣∣∣∣ ≤ E
[
‖u‖M

∫
A

Nt(dx)

]
= ‖u‖M E[Nt(A)] = ‖u‖Mtν(A) < ∞

Thus we obtain:

d

dλ

∣∣∣∣
λ=0

E
[
exp

(
λi

〈
u,

∫
A

f(x)Nt(dx)

〉)]

= E
[
i

〈
u,

∫
A

f(x)Nt(dx)

〉]
= i

〈
u, E

[∫
A

f(x)Nt(dx)

]〉
So we have

i

〈
u, E

[∫
A

f(x)Nt(dx)

]〉
= i〈u, t

∫
A

f(x)ν(dx)〉

for arbitrary u ∈ H and the result follows for bounded f . For merely
integrable f we set fn := fχ{‖f‖≤n} so that fn is bounded and fn ↗ f
pointwise. To complete the proof, we have to show that:

E
[∫

A

f(x)Nt(dx)

]
= E

[∫
A

lim
n→∞

fn(x)Nt(dx)

]
!
= lim

n→∞
E
[∫

A

fn(x)Nt(dx)

]

= lim
n→∞

t

∫
A

fn(x)ν(dx)
!
= t

∫
A

lim
n→∞

fn(x)ν(dx) = t

∫
A

f(x)ν(dx)
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To see that we may interchange limit and integrals we show

E
[∫

A

‖fn(x)− f(x)‖Nt(dx)

]
n→∞
−→ 0

by dominated convergence. As ‖fn‖ ≤ ‖f‖, 2‖f‖ is an upper bound,
and we have by Fatou:

E
[∫

A

‖f(x)‖Nt(dx)

]
= E

[∫
A

lim
n→∞

‖fn(x)‖Nt(dx)

]
≤ E

[
lim inf
n→∞

∫
A

‖fn(x)‖Nt(dx)

]
≤ lim inf

n→∞
E
[∫

A

‖fn(x)‖Nt(dx)

]
= lim inf

n→∞
t

∫
A

‖fn(x)‖ν(dx) =

∫
A

‖f(x)‖ν(dx) < ∞

since ‖f‖ is ν-integrable by assumption. This also implies:

∫
A

‖fn(x)− f(x)‖ν(dx)
n→∞
−→ 0

and thus the last interchange is also justi�ed.

3. We make the same approach di�erentiating twice with respect to λ
and setting λ = 0. Note that since ν(A) < ∞ for A bounded below,
the assumption from 2. is now valid as well. Unlike in 2. we directly
consider a non-bounded f and we obtain along the same lines:

d2

dλ2

∣∣∣∣
λ=0

exp

(
t

∫
A

(
eλi〈u,f(x)〉 − 1

)
ν(dx)

)
=

(
ti〈u,

∫
A

f(x)ν(dx)〉
)2

+

∫
A

(ti〈u, f〉)2ν(dx)

where we used the assumption to justify derivation under the integral.
So we have seen that the characteristic function is twice di�erentiable
in 0. Borrowing a trick from [Chung68] we will show now that this



20 CHAPTER 2. INTRODUCTION TO LÉVY PROCESSES

implies the existence of second moments for X := 〈u,
∫

A
f(x)Nt(dx)〉.

E
[
|〈u, X〉|2

]
= 2E

[
lim
h→0

1− cos(h〈u, X〉)
h2

]
by Taylor expansion of the cosine

≤ lim inf
h→0

E
[
2− 2 cos(h〈u, X〉)

h2

]
by Fatou

= lim inf
h→0

E
[
2− eih〈u,X〉 − e−ih〈u,X〉

h2

]
by Euler's formula

= − d2

dλ2

∣∣∣∣
λ=0

E[eλi〈u,X〉] by central approximation of
d2

dλ2

< ∞ as we pointed out above

Thus the next interchange is also in order:

d2

dλ2
E
[
exp

(
λi

〈
u,

∫
A

f(x)Nt(dx)

〉)]
= E

[(
i

〈
u,

∫
A

f(x)Nt(dx)

〉)2
]

As u is arbitrary we now take u = en for an orthonormal basis {en}n∈N
and sum over n, using Parseval's identity:

∞∑
n=1

(
t

〈
en,

∫
A

f(x)ν(dx)

〉)2

=
∞∑

n=1

(〈
en, E

[∫
A

f(x)Nt(dx)

]〉)2

=

∥∥∥∥E [∫
A

f(x)Nt(dx)

]∥∥∥∥2

where we have employed 2.
∞∑

n=1

∫
A

t(〈en, f〉)2ν(dx) =

∫
A

∞∑
n=1

t(〈en, f〉)2ν(dx) =

∫
A

t‖f‖2ν(dx)

where we have interchanged summation and integration by monotone
convergence.

∞∑
n=1

E

[(〈
en,

∫
A

f(x)Nt(dx)

〉)2
]

=

E

[
∞∑

n=1

(〈
en,

∫
A

f(x)Nt(dx)

〉)2
]

= E

[∥∥∥∥∫
A

f(x)Nt(dx)

∥∥∥∥2
]
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where we have interchanged summation and expectation by Fubini-
Tonelli. So we have:

E

[∥∥∥∥∫
A

f(x)Nt(dx)

∥∥∥∥2
]

=

∥∥∥∥E [∫
A

f(x)Nt(dx)

]∥∥∥∥2

+

∫
A

t‖f(x)‖2ν(dx)

and recalling that Var[‖X‖] = E[‖X‖2]− ‖E[X]‖2 we obtain 3. �

Proposition 2.25 If L is a Lévy process with bounded jumps, then it has
moments of all orders.

Proof Let J be the bound for the jumps of L. De�ne stopping times by :
T1 := inf{t ≥ 0 : ‖Lt‖ > J} and Tn := inf{t ≥ Tn−1 : ‖Lt − LTn−1‖ > J}.
So we have Tn − Tn−1 = inf{t > 0 : ‖LTn−1+t − LTn−1‖ > J}.
By the strong Markov property 2.8 we see that Tn − Tn−1 has the same
distribution as T1, and that Tn−Tn−1 is independent of FTn−1 . So by iterated
optional stopping:

E[e−Tn ] = E[e−T1e−(T2−T1) · · · e−(Tn−Tn−1)] = (E[e−T1 ])n = qn

for some 0 ≤ q < 1 since 0 ≤ e−T1 ≤ 1 but P (T1 = 0) = 0 since there are no
jumps at 0 with probability 1. Furthermore, note that if we have ‖Lt‖ > 2nJ
this can only happen on Tn < t. This is clear, since the process can grow only
by a maximum of 2J between two stopping times, as it is stopped when the
di�erence exceeds J and a possible jump shortly before the critical point can
win not more than another J by the assumption of bounded jumps. Hence,
we get by the Markov inequality:

P (‖Lt‖ ≥ 2nJ) ≤ P (Tn < t) = P (e−Tn > e−t) ≤ E[e−Tn ]et = qnet

So the tail of P‖Lt‖ is so thin, that we may use a rather rough estimate for
the moments m = 1, 2 . . .∫

R+

ym P‖Lt‖(dy) =
∞∑

k=0

∫ (k+1)2J

k2J

ymP‖Lt‖(dy)

≤
∞∑

k=0

(k + 1)2J P (‖Lt‖ ≥ k2J) ≤ 2J
∞∑

k=0

(k + 1)etqk < ∞
�
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Given a general Lévy process, we de�ne a new process with bounded
jumps just by subtracting the big jumps. That this process is still a Lévy
process is stated in the next lemma.

De�nition 2.26 Given a Lévy process L de�ne L1(t) := L−
∫
‖x‖>1

xN(t, dx)

Lemma 2.27 L1 is a Lévy process.

Proof see [App04] Theorem 2.4.8 �

Since without large jumps, we can centralize, de�ne:

De�nition 2.28 L̃1 := L1 − E[L1]

Since we now have second moments we can use the powerful theory of square
integrable martingales:

Theorem 2.29 There is a decomposition : L̃1 = L1
c + L1

j such that L1
c and

L1
j are independent Lévy processes. L1

c has continuous sample paths and

L1
j =

∫
‖x‖≤1

x [N(t, dx)− tν(dx)] := L2 − lim
n→∞

∫
1
n

<‖x‖<1

x [N(t, dx)− tν(dx)]

Proof see [App04] Theorem 2.4.11

Corollary 2.30 For the measure ν we obtain:
∫
‖x‖≤1

‖x‖2ν(dx) < ∞

Proof∫
‖x‖≤1

‖x‖2ν(dx) = lim
n→∞

∫
1
n

<‖x‖≤1

‖x‖2ν(dx)

= lim
n→∞

Var

[∫
1
n

<‖x‖≤1

x N(1, dx)

]
= Var[L1

j ] < ∞ �

We already know that ν({‖x‖ > 1}) < ∞ since it is the intensity of the
respective Poisson process (note that {‖x‖ > 1} is bounded below) and
hence �nite. Thus, we have motivated the following de�nition:



2.2. THE LÉVY-ITO DECOMPOSITION 23

De�nition 2.31 A measure M on H with :∫
H\{0}

min(1, ‖x‖2)M(dx) < ∞

is called a Lévy measure.

Proposition 2.32 A real valued, centred Lévy process Bt with continuous
sample paths is a Brownian motion.

Proof We will show that E[eiuBt ] = e−
1
2
t2 for some a ≥ 0. As the char-

acteristic function uniquely determines a Lévy process, Bt then must be a
Brownian motion.
Since Bt has no jumps, all moments exist by proposition 2.25, thus the char-
acteristic function ΦBt(u) =: Φt(u) is in�nitely di�erentiable. By lemma 2.5
it has the form Φt(u) = etλ(u) for some λ : R → C which hence must be also
smooth. Moreover we have 0 = iE[Bt] = tλ′(0) and this easily implies

E[Bk
t ] = a1t + a2t

2 + ... + ak−1t
k−1 (2.3)

for the other moments by repeated di�erentiation, where the ak are real
constants. Note that we can already see: E[B2

t ] = a1t and thus, we must
have a1 ≥ 0. Note also that since the quadratic variation of Bt is almost
surely �nite, cubic variation will vanish almost surely. Actually this is a
good hint why the remainder in the following expansion should vanish.
Let P be a partition {0 = t0 < t1 < ... < tn = t} and write ∆Bj :=
Btj+1

−Btj . We employ Taylor expansion up to second order for the function
f(x) = eiux to get:

E[eiuBt − 1] = E

[
n−1∑
j=0

(eiuBj+1 − eiuBj)

]
=: E[T1 + T2 + TR]

where

T1 = iu

n−1∑
j=0

eiuBj∆Bj

T2 = −u2

2

n−1∑
j=0

eiuBj(∆Bj)
2
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TR = −u2

2

n−1∑
j=0

(eiuBj+Θj∆Bj − eiuBj)(∆Bj)
2

with 0 < Θj < 1, j = 0...n− 1.

T1 and T2 yield easily by idependent increments:

E[T1] = iu
n−1∑
j=0

E[eiuBj ]E[∆Bj] = 0

and

E[T2] = −u2

2

n−1∑
j=0

E[eiuBj ]E[(∆Bj)
2] = −a1

u2

2

n−1∑
j=0

Φtj(u)(tj+1 − tj)

where we have used (2.3) for k = 2. Now re�ne the partition P , that is
consider a sequence Pn of partitions with limn→∞ supjn

|tjn+1 − tjj
| = 0. We

write T n
2 for the term with respect to the n-th partition and we have

lim
n→∞

E[T n
2 ] = −a1

u2

2

∫ t

0

Φs(u)ds

So that if limn→∞ E[T n
R] = 0 we will have:

Φt(u)− 1 = −a1
u2

2

∫ t

0

Φs(u)ds

which yields the result by solving the di�erential equation:

d

dt
Φt(u) = −a1

u2

2
Φt(u)ds Φ0(u) = 1

To show limn→∞ E[T n
R] = 0 one could try to use the mean value theorem

to get by |eiu(x+y) − eiux| ≤ |uy|:

lim
n→∞

E[T n
R] ≤ lim sup

n→∞

|u|3

2
E

[
n−1∑
jn=0

|∆Bj|3
]

≤ lim sup
n→∞

|u|3

2
sup
jn,ω

|∆Bjn|E

[
n−1∑
jn=0

|∆Bj|2
]
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Indeed E
[∑n−1

jn=0 |∆Bj|2
]

= a1t independent of n by (2.3). For supjn,ω |∆Bjn|
we get limn→∞ supjn

|∆Bjn| = 0 for ω �xed by uniform continuity. Unfortu-
nately, the modulus of continuity is path-dependent, so the approach does
not work that fast. Thus, we introduce the set of "good" paths:

Gn
ε := {ω | sup

jn∈Pn

|∆Bjn| < ε}

So splitting E[T n
R] = E[T n

R 1Gn
ε
] + E[T n

R 1(Gn
ε )c ] we obtain as above:

E[T n
R 1Gn

ε
] ≤ εa1t

|u|3

2
(2.4)

On the other hand, using |eix| ≤ 1 for a di�erent estimate of TR we get:

E[T n
R 1(Gn

ε )c ] ≤ E[1(Gn
ε )cu2

n−1∑
jn=0

|∆Bj|2]

≤ u2
√

P (1(Gn
ε )c)

E

( n−1∑
jn=0

|∆Bj|2
)2
 1

2

by Cauchy-Schwarz. But again by (2.3) it is easy to see that we can esti-
mate the expectation of the squared sum independent of n. So if we can
show limn→∞ P ((Gn

ε )c) = 0 for every �xed ε we are done, since by making ε
arbitrarily small the right hand side in (2.4) will vanish as well.
But as we noted above, for every �xed ω, uniform continuity will assure that
eventually ω ∈ Gn

ε for n large enough. Hence 1(Gn
ε )c → 0 for n →∞, so that

P (Gn
ε )c) → 0 by dominated convergence. �

Corollary 2.33 L1
c is a Brownian motion.

Proof Since L1
c has continuous sample paths, so has 〈L1

c , h〉 for any h ∈ H.
Moreover by 2.7 〈L1

c , h〉 is a Lévy process. Hence 〈L1
c , h〉 is a real-valued

Brownian motion for any h ∈ H and thus by Proposition 5.2.3 in [Linde83]
L1

c is a Wiener process on H. �
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Theorem 2.34 (Lévy-Ito Decomposition) If L is an H-valued Lévy pro-
cess, there is a drift vector b ∈ H, a Q-Wiener process WQ on H, such that
WQ is independent of Nt(A) for any A that is bounded below and we have:

Lt = bt + WQ(t) +

∫
‖x‖<1

x(Nt(dx)− tν(dx)) +

∫
‖x‖≥1

xNt(dx)

where Nt is the Poisson random measure associated to L, and ν the corre-
sponding Lévy measure.

Proof Lemma 2.27 allows to separate the big jumps. Then we can centralize
as in de�nition 2.28 with :

b = E[L(1)−
∫
‖x‖<1

x N(1, dx)]

and theorem 2.29 allows to separate the small jumps. Then by corollary 2.33
the remainder is a Brownian motion. �

Remark 2.35 If
∫
‖x‖≥1

xNt(dx) has �rst moment we can directly centralize

and the form of b would change.
However, in general the drift only contains the expectation of the small jumps
and we will retrieve this asymmetry in the Lévy-Khinchine formula in the
form of a cut-o� function.

Theorem 2.36 (Lévy-Khinchine Representation) If L is an H-valued
Lévy process with Lévy-Ito decomposition as in 2.34, then its Lévy symbol
takes the following form:

λ(u) = i〈b, u〉 − 1

2
〈u, Qu〉+

∫
H/{0}

[
ei〈u,x〉 − 1− i〈u, x〉χ{‖x‖≤1}

]
ν(dx) (2.5)

Proof Since the four summands in the Lévy-Ito decomposition are inde-
pendent we have:

E [ei〈u,L(1)〉] = E [ei〈u,b〉] E [ei〈u,WQ(1)〉]

× E [ei〈u,
R
‖x‖<1 x(N1(dx)−ν(dx))〉] E [ei〈u,

R
‖x‖>1 xN1(dx)〉]

By 2.24 we have:

E[ei〈u,
R
‖x‖>1 xN1(dx)〉] = exp

(∫
‖x‖>1

(
ei〈u,x〉 − 1

)
ν(dx)

)
(1)
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and for A bounded below:

E[ei〈u,
R

A x(N1(dx)−ν(dx))〉] = exp

(∫
A

(
ei〈u,x〉 − 1− i〈u, x〉

)
ν(dx)

)
Hence:

E[exp{i〈u,

∫
‖x‖≤1

x(N1(dx)− ν(dx))〉}]

=E[exp{i〈u, lim
n→∞

∫
1
n

<‖x‖≤1

x(N1(dx)− ν(dx))〉}]

= lim
n→∞

E[exp{i〈u,

∫
1
n

<‖x‖≤1

x(N1(dx)− ν(dx))〉}] byL2convergence

= lim
n→∞

exp

(∫
1
n

<‖x‖≤1

(
ei〈u,x〉 − 1− i〈u, x〉

)
ν(dx)

)

= exp

(∫
‖x‖≤1

(
ei〈u,x〉 − 1− i〈u, x〉

)
ν(dx)

)
(2)

Writing (1) and (2) under a single integral und recalling the Fourier tranform
of Gaussian random variables, the result follows. �

De�nition 2.37 Since a measure is characterized by its Fourier transform
we will say that a measure µ is associated to a triple [b, Q, ν] if its character-
istic exponent has the form (2.5).

Remark 2.38 To better memorise the formula recall the Taylor expansion
of the exponential function. In the integral we basically subtract the �rst two
terms of the expansion so that the remainder is of second order. Note how
this relates to the fact that ‖y‖2 is locally ν-integrable.
We also emphasize that the cut-o� function may be replaced by other functions
changing the form of the drift b e.g. g(x) = 1

1+‖x‖2 . Note that g behaves like
χ{‖x‖≤1} near the origin.
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Remark 2.39 Actually the Lévy-Khinchine representation holds not only for
Lévy processes but for any in�nitely divisible random variable. (See [Sato99]
for an account of in�nite divisibility) Moreover, Lévy processes and in�nite
divisible measures can be brought in a one to one correspondence. In partic-
ular the converse of 2.36 is true: any function of the form

exp

{
i〈b, u〉 − 1

2
〈u, Qu〉+

∫
H/{0}

[
ei〈u,x〉 − 1− i〈u, x〉χ{‖x‖≤1}

]
ν(dx)

}
is the characteristic function of a measure.



Chapter 3

Generalised Ornstein-Uhlenbeck

Processes

3.1 Stochastic Integration with respect to Lévy

martingale measures

In this section we take advantage of the Lévy-Ito decomposition to de�ne
stochastic integrals with respect to Lévy processes. The only term posing any
problems is the integral with respect to the compensated Poisson measure.
Quite similarly to the case of Brownian motion, we make strong use of its
martingale properties, but the situation is a little more di�cult here. We
have to introduce the notion of a martingale measure. To get the basic
intuition it might be helpful to consider a Brownian motion as a degenerate
martingale valued measure and to see how the theory applies to it.

We follow here the approach of [App06], which has been carried out in detail
by [Stolze05] and [Knab06]. However, instead of taking the most general
setting we adapt the following de�nition to our situation. Especially we �x
the distinction between big and small jumps to be made at size 1, and hence
let R1 be the ring of all Borel subsets of the unit ball of H which are bounded
below. It can be immediately seen that this is a ring by reconsidering 2.18.
Also de�ne Sn := {x ∈ H| 1

n
≤ ‖x‖ ≤ 1} and note that Sn ∈ R1 for every n.

29
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De�nition 3.1 A Lévy martingale measure on a Hilbert space H is a set
function M : R+ ×R1 × Ω → H satisfying:

• M(0, A) = 0 almost surely for all A ∈ R1

• M(t, ∅) = 0 almost surely

• almost surely we have:M(t, A ∪ B) = M(t, A) + M(t, B) for all t and
all disjoint A, B ∈ R1

• M(t, A){t≥0} is a square-integrable martingale for each A ∈ R1

• if A ∩ B = ∅ M(t, A){t≥0} and M(t, B){t≥0} are orthogonal, that is:
〈M(t, A), M(t, B)〉 is a real-valued martingale for every A, B ∈ R1

• sup{E[‖M(t, A)‖2] |A ∈ B(Sn)} < ∞ for every n ∈ N

• for every sequence Aj decreasing to the empty set such that Aj ⊂ B(Sn)
for all j we have: limj→∞ E[‖M(t, Aj)‖2] < ∞

• for every s < t and every A ∈ R1 we have that M(t, A) −M(s, A) is
independent of Fs

Proposition 3.2 M(t, A) =
∫

A
xÑt(dx) is a Lévy martingale measure on H

for every A ∈ R1.

Proof see [Stolze05] Theorem 2.5.2 �

Similarly as a Wiener process is characterized by its covariance operator,
we can describe the covariance structure of a Lévy martingale measure by a
family of operators parametrized by our ring R1.

Proposition 3.3

E[|〈M(t, A), v〉|2] = t〈v, TAv〉

for all t ≥ 0, v ∈ H A ∈ R1, where the operators TA are given by
TAv :=

∫
A

Txvν(dx) and Txv := 〈x, v〉x.

Proof see [Stolze05] Theorem 2.5.4 �



3.1. STOCHASTIC INTEGRATION 31

We will establish only a limited theory of integration, as for our purposes
it will be su�cient to integrate deterministic operator valued functions. We
do not even need them to depend on the jump size. The procedure is the
same as for Brownian motion, so let us introduce the space of our integrands,
the approximating simple functions, and state how the integral is de�ned for
them. For convenience, we set M([s, t], A) := M(t, A)−M(s, A).

De�nition 3.4 Let H ′ be another real separable Hilbert space.
Let H2 := H2(T−, T+) be the space of all R : [T−, T+] → L(H, U) such that
R is strongly measurable and we have:

‖R‖H2 :=

(∫ T+

T−

∫
‖x‖<1

tr(R(t)TxR
∗(t))ν(dx)ds

) 1
2

< ∞

Let S be the space of all R ∈ H2 such that

R =
n∑

i=0

Ri χ(ti,ti+1]χA

where T− = t0 < t1 < ... < tn+1 = T+ for some n ∈ N, where each Ri ∈
L(H, H ′) and where A ∈ R

For each R ∈ S, t ∈ [T+, T−] de�ne the stochastic integral as follows:

It(R) :=
n∑

i=0

RiM([ti ∧ t, ti+1 ∧ t], A)

Proposition 3.5 The space H2 with inner product

〈R,U〉 :=

∫ T+

T−

∫
‖x‖<1

tr(R(t)TxU
∗(t))ν(dx)ds

is a Hilbert space.

Proof see [Knab06] Lemma 1.2 �



32 CHAPTER 3. ORNSTEIN-UHLENBECK PROCESSES

Proposition 3.6 The space S is dense in H2.

Proof see [Knab06] Lemma 1.3 �

Proposition 3.7 We have for any R ∈ S : E[It(R)] = 0 and

E[‖It(R)‖2] =

∫ t

T−

∫
A

tr(R(s)TxR
∗(s))ν(dx)ds = ‖χ[T−,t]R(t)‖2

H2

So for t �xed, It : S → L2(Ω,F , P ; H) is an isometry.

Proof Let {ek}K∈Nbe an orthonormal basis of H ′.

E[It(R)] =
n∑

i=0

E[RiM([ti ∧ t, ti+1 ∧ t], A)]

=
∞∑

k=0

n∑
i=0

〈E[RiM([ti ∧ t, ti+1 ∧ t], A)], ek〉 ek

=
∞∑

k=0

n∑
i=0

E[〈RiM([ti ∧ t, ti+1 ∧ t], A), ek〉]ek

=
∞∑

k=0

n∑
i=0

E[〈M([ti ∧ t, ti+1 ∧ t], A), R∗
i ek〉]ek = 0

since 〈M(t, A), v〉 is a real-valued martingale for any v ∈ H.
For the second part, we �rst show that :

E[‖It(R)‖2] = E[‖
n∑

i=0

RiM([ti ∧ t, ti+1 ∧ t], A)‖2]

=
n∑

i=0

E[‖RiM([ti ∧ t, ti+1 ∧ t], A)‖2]

since for i < j:

E[〈RiM([ti ∧ t, ti+1 ∧ t], A), RjM([tj ∧ t, tj+1 ∧ t], A)〉]
= E[E[〈R∗

jRiM([ti ∧ t, ti+1 ∧ t], A), M([tj ∧ t, tj+1 ∧ t], A)〉|Fti ]]

= E[〈R∗
jRiM([ti ∧ t, ti+1 ∧ t], A), E[M([tj ∧ t, tj+1 ∧ t], A)|Fti ]〉] = 0
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because of independent increments, and where we could introduce the expec-
tation into the scalar product because of E[〈X, Y 〉|F ] = 〈X, E[Y |F ]〉 when-
ever Y is F measurable.
For i = j we obtain:

E
[
‖RiM([ti ∧ t, ti+1 ∧ t], A)‖2

]
=E

[
∞∑

k=0

|〈RiM([ti ∧ t, ti+1 ∧ t], A), ek〉|2
]

by Parseval's identity

=
∞∑

k=0

E
[
|〈M([ti ∧ t, ti+1 ∧ t], A), R∗

i ek〉|2
]

by Fubini-Tonelli

=
∞∑

k=0

〈R∗
i ek, TAR∗

i ek〉(ti+1 ∧ t− ti ∧ t) by proposition 3.3

=
∞∑

k=0

〈R∗
i ek,

∫
A

TxR
∗
i ekν(dx)〉(ti+1 ∧ t− ti ∧ t) by de�nition of TA

=
∞∑

k=0

∫
A

〈R∗
i ek, TxR

∗
i ek〉ν(dx)(ti+1 ∧ t− ti ∧ t) as 〈R∗

i ek, ·〉 is continuous

=

∫
A

∞∑
k=0

〈R∗
i ek, TxR

∗
i ek〉ν(dx)(ti+1 ∧ t− ti ∧ t) by Fubini-Tonelli

=

∫
A

tr(RiTxR
∗
i )ν(dx)(ti+1 ∧ t− ti ∧ t)

and the application of Fubini-Tonelli is justi�ed, since:

〈R∗
i ek, TxR

∗
i ek〉 = 〈R∗

i ek, 〈x, R∗
i ek〉x〉 = |〈x, R∗

i ek〉|2 ≥ 0

Now, the assertion follows by taking the sum over i. �

So we can isometrically extend the operator It from S to its closure H2.
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3.2 Stochastic Convolution

We want to give meaning to the integral

XU,B :=

∫ t

s

U(t, r)B(r)dL(r)

which we will call a stochastic convolution. Here L is a H-valued Lévy pro-
cess and we have U(t, r) ∈ L(H), B(r) ∈ L(H) ∀ s ≤ r ≤ t.

Remark 3.8

In anticipation of the assumptions in chapter 4 we will pose the following
conditions:

• supr∈R ‖B(r)‖L(H) < ∞

• there is M > 0, ω > 0 such that : ‖U(t, r)‖L(H) < Me−ω(t−r)

• r 7→ B(r) is measurable and r 7→ U(t, r) is measurable for any �xed t

Under these conditions, which are by no means the most general, we can
de�ne the stochastic convolution:

Proposition 3.9
∫ t

s
U(t, r)B(r)dL(r) exists, if U and B are as above.

Proof We write, according to the Lévy-Ito decomposition 2.34:∫ t

s

U(t, r)B(r)dL(r) =

∫ t

s

U(t, r)B(r)b dr

+

∫ t

s

∫
‖x‖≥1

U(t, r)B(r)x Nr(dx)

+

∫ t

s

U(t, r)B(r)dWQ(r)

+

∫ t

s

∫
‖x‖<1

U(t, r)B(r)x Ñr(dx)

(3.1)

The �rst term in 3.1 is a simple Bochner integral, and by the assumptions
on U and B it is obviously �nite. The second term is well de�ned as a �nite
random sum. The third term is de�ned as in [Spde07], we just have to make
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sure that the integrand belongs to the space of integrable processes, that is
we have to check if: ∫ t

s

‖U(t, r)B(r)Q
1
2‖2

L2dr < ∞

where ‖·‖L2 is the Hilbert-Schmidt norm.(see e.g. [Spde07]) Since L2(H), the
space of Hilbert-Schmidt operators, is an L(H)-ideal, such that for A ∈ L(H)

and C ∈ L2(H) we have ‖AC‖L2 ≤ ‖A‖‖C‖L2 and we have ‖Q 1
2‖2

L2 < ∞ it
su�ces to see that ∫ t

s

‖U(t, r)B(r)‖2dr < ∞

and this is clear because U and B are uniformly bounded by assumption.
The last term in 3.1 is de�ned according to the theory of integration against
martingale valued measures, established above. We have to check if the
integrand is in H2 that is we have to show:∫ t

s

∫
‖x‖≤1

‖U(t, r)B(r)T
1
2

x ‖2
L2dr < ∞

But this follows as above, since we have:∫ t

s

∫
‖x‖≤1

‖U(t, r)B(r)T
1
2

x ‖2
L2ν(dx)dr

≤
∫ t

s

‖U(t, r)B(r)‖2dr

∫
‖x‖≤1

‖T
1
2

x ‖2
L2ν(dx)

where the left integral is �nite and for the right integral we calculate:

‖T
1
2

x ‖2
L2(G) = tr(Tx) =

∑
n∈N

(Txen, en) =
∑
n∈N

((x, en)x, en) =
∑
n∈N

(x, en)2 = ‖x‖2
G

where (en), n ∈ N, is an orthonormal basis of H.
Since ν is a Lévy measure, we have

∫
‖x‖≤1

‖x‖2ν(dx) < ∞ and the claim is
proved. �

3.3 Existence of the Mild Solution

In the following we will have to deal with a non-autonomous abstract Cauchy
problem - non-autonomous means we are not in the framework of strongly
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continuous semigroups anymore. This implies in particular, that we have no
easy characterization of well-posedness in the sense of the Hille-Yosida theo-
rem available. There are di�erent, yet technical, approaches (see [Nei/Zag07]
for a recent overview), but since this subject is not in the primary interest
of our thesis, we content ourselves with assuming that the problem is well
posed. This is closely related to the notion of evolution semigroups. Our
de�nition is taken from [Chi/Lat99]

We consider the following non-autonomous generalisation of the Langevin
equation: {

dXt = (A(t)Xt + f(t))dt + B(t)dLt

X(s) = x
(3.2)

where B : R → L(H) is strongly continuous and bounded in operator norm,
f : R → H is continuous, L(t) is an H-valued Levy-process and where the
A(t) are linear operators on H with common domain D(A) and
A : R×D(A) → H is such that we can solve the associated non-autonomous
abstract Cauchy problem{

dXt = (A(t)Xt + f(t))dt
X(s) = x

(3.3)

according to the following de�nitions:

De�nition 3.10 An exponentially bounded evolution family on H is a two
parameter family {U(t, s)}t≥s of bounded linear operators on H such that we
have:

(i) U(s, s) = Id and U(t, s)U(s, r) = U(t, r) whenever r ≤ s ≤ t

(ii) for each x ∈ H, (t, s) 7→ U(t, s)x is continuous on s ≤ t

(iii) there is M > 0 and ω > 0 such that : ‖U(t, s)‖ ≤ Me−ω(t−s) , s ≤ t

Assumption 3.11 There is a unique solution to (3.3) given by an exponen-
tially bounded evolution family U(t, s) so that the solution takes the form:

Xt = U(t, s)x +

∫ t

s

U(t, r)f(r)dr

Moreover, we assume that :

d

dt
U(t, s)x = A(t)U(t, s)x
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Remark 3.12 Note that in the �nite dimensional case, where each At is
automatically bounded we get the existence of an evolution family that solves
(3.3), under the reasonable assumption that t 7→ At is continuous and bounded
in the operator norm, by solving the following matrix-valued ODE:{

∂
∂t

U(t, s) = A(t)U(t, s)
U(s, s) = Id

Existence and uniqueness are assured since (t,M) 7→ A(t)M is globally Lip-
schitz in M . This result even holds in in�nite dimensions, see [Dal/Krei74].

De�nition 3.13 Given assumption 3.11 we call the process:

X(t, s, x) = U(t, s)x +

∫ t

s

U(t, r)f(r)dr +

∫ t

s

U(t, r)B(r)dLr

a mild solution for (3.2).

3.4 Existence of the Weak Solution

We have called the above expression a mild solution, though there is no
obvious relation to the equation yet. Now, we will show that our candidate
solution actually solves our equation in a weak sense. The following de�nition
makes this precise, but �rst we need to strengthen our assumption concerning
the common domain of the A(t) a little:

Assumption 3.14 We require that the adjoint operators A∗(t) also have a
common domain independent of t which we will denote by D(A∗). Further-
more, we assume that D(A∗) is dense in H and that we have:

d

dt
U∗(t, s)y = U∗(t, s)A∗

t y

for every y ∈ D(A∗).

De�nition 3.15 An H-valued process Xt is called a weak solution for (3.2)
if for every y ∈ D(A∗) we have:

〈Xt, y〉 = 〈x, y〉+

∫ t

s

〈Xr, A
∗
ry〉dr +

∫ t

s

〈f(r), y〉dr +

∫ t

s

B∗(r)ydLr (3.4)

Here (B∗(r)y)(h) := 〈B∗(r)y, h〉 so that B∗(r)y ∈ L(H, R) and the integral
is well de�ned, since

‖B∗y‖2
H2 ≤ (t− s) supr ‖B(r)‖2‖y‖2

∑
k

∫
‖x‖<1

‖T
1
2

x ek‖2ν(dx) < ∞.
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Theorem 3.16 The mild solution Xt from de�nition 3.13 is also a weak
solution for (3.2).

Proof By the expression for Xt (that already contains an integral) we will
have to establish the following equality:〈

U(t, s)x +

∫ t

s

U(t, r)f(r)dr +

∫ t

s

U(t, r)B(r)dLr, y

〉
= 〈x, y〉+

∫ t

s

〈
U(r, s)x +

∫ r

s

U(r, u)f(u)du +

∫ r

s

U(r, u)B(u)dLu, A
∗
ry

〉
dr

+

∫ t

s

〈f(u), y〉du +

∫ t

s

B∗(u)ydLu (3.5)

Therefore, we calculate :∫ t

s

〈U(r, s)x, A∗
ry〉dr =

∫ t

s

〈x, U∗(r, s)A∗
ry〉dr = 〈x,

∫ t

s

U∗(r, s)A∗
rydr〉

=

〈
x,

∫ t

s

d

dr
U∗(r, s)ydr

〉
= 〈x, [U∗(t, s)U∗(s, s)]y〉 = 〈U(t, s)x− x, y〉

and furthermore:∫ t

s

〈∫ r

s

U(r, u)f(u)du, A∗
ry

〉
dr =

∫ t

s

∫ r

s

〈f(u), U∗(r, u)A∗
ry〉 dudr

=

∫ t

s

∫ t

u

〈f(u), U∗(r, u)A∗
ry〉 drdu =

∫ t

s

∫ t

u

〈
f(u),

d

dr
U∗(r, u)y

〉
drdu

=

∫ t

s

〈f(u), [U∗(t, u)− Id]y〉 du =

∫ t

s

〈U(t, u)f(u), y〉 du−
∫ t

s

〈f(u), y〉 du

Hence, (3.5) reduces to:〈∫ t

s

U(t, r)B(r)dLr, y

〉
=∫ t

s

〈∫ r

s

U(r, u)B(u)dLu, A
∗
ry

〉
dr +

∫ t

s

B∗(u)ydLu (3.6)

and we will prove this equality by carefully transforming the double integral
with the help of a stochastic Fubini theorem. We also need to interchange
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scalar product and the stochastic integral in some respect, requiring a lemma
introduced in [App06]. As the Hilbert space valued integral there was called
strong stochastic integral and the real valued version was called weak stochas-
tic integral, the ability to interchange scalar product and integral was refered
to as weak-strong-compatibility. We shortly cite both results giving only the
idea of the proof.

Proposition 3.17 (stochastic Fubini) Let be (M,M, µ) a measure space
with µ �nite. By G2(M) denote the space of all L(H, H ′)- valued mappings
R on [s, t] ×M such that (r, m) 7→ R(r, m)y is measurable for each y ∈ H

and ‖R‖2
G2(M) :=

∫ t

s

∫
M
‖R(r, m)T

1
2

x ‖2ν(dx)µ(dm)dr < ∞ Then we have:

∫
M

(∫ t

s

R(u, m)dLu

)
µ(dm) =

∫ t

s

(∫
M

R(u, m)µ(dm)

)
dLu

Proof see [Stolze05] Theorem 3.3.4
The idea is simply (after verifying that both sides make sense) to check the
equality on simple functions dense in G2(M) and then to extend it to the
whole space. �

Lemma 3.18 (weak-strong-compatibility) Let be R ∈ H2 and y ∈ H.
Then we have: 〈∫ t

s

R(r)dLr, y

〉
=

∫ t

s

R∗(r)ydLr

Proof see [Stolze05] Again, the idea is to assure that both sides are well
de�ned, then to check the equality on simple functions and to extend it to
all of H2. �

Remark 3.19 In [Stolze05] the last two results are formulated only for the
integral with respect to the martingale measure. Of course the general results
involve nothing more than the stochastic Fubini theorem for Wiener integrals,
the ordinary Fubini theorem and, for the weak-strong compatibility, the ability
to interchange bounded linear operators with Bochner integrals.
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Now we are able to �nish our proof of 3.16:∫ t

s

〈∫ r

s

U(r, u)B(u)dLu, A
∗
ry

〉
dr

=

∫ t

s

(∫ r

s

B∗(u)U∗(r, u)A∗
ry dLu

)
dr by weak-strong-compatibility

=

∫ t

s

(∫ t

u

B∗(u)U∗(r, u)A∗
ry dr

)
dLu by stochastic Fubini

=

∫ t

s

(
B∗(u)

∫ t

u

d

dr
U∗(r, u)y dr

)
dLu

=

∫ t

s

B∗(u)[U∗(t, u)− Id]y dLu

=

〈∫ t

s

[U(t, u)− Id]B(u)dLu, y

〉
by weak-strong-compatibility

=

〈∫ t

s

U(t, u)B(u)dLu, y

〉
−
〈∫ t

s

B(u)dLu, y

〉

and that is precisely what we had to show. �



Chapter 4

Semigroup and Invariant Measure

Now that we have solved our equation, we turn our interest to the associated
semigroup. Since the coe�cients are time-dependent, this semigroup will
depend on two parameters. This leads us to a generalization of invariant
measures for two-parameter semigroups - an evolution system of measures,
de�ned in section 4.2.

The proof of our �rst main theorem - concerning existence and uniqueness
of such an evolution system of measures - is already quite demanding, so we
have collected some necessary prerequisites in section 4.1. Here we start
by deriving the characteristic function of our solution, using our results on
stochastic convolution from the preceding chapter. The Fourier transform
of the solution will be a valuable tool throughout the rest of this thesis.
As another helpful lemma, we provide a slightly extended monotone class
theorem. With its help, we establish the required �ow property to assure
that we are dealing indeed with a semigroup.

Then in section 4.3 we investigate the respective autonomous equation,
obtained by arti�cially enlarging the state space. The reason for this lies in
our interest in generators of semigroups. Alas, for two-parameter semigroups,
no sensible concept for generators is known, thus we have to introduce a
one-parameter semigroup that incorporates all the information of the two-
parameter semigroup.

Having done so, we are able to establish existence and uniqueness of an
invariant measure for this new semigroup, where the invariant measure is
basically given by dt⊗ νt where νt is the evolution system of measures from
section 4.2. In order to obtain a probability measure, it is crucial to have
T -periodicity of the νt, so that instead of dt we may consider dt restricted

41
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to [0, T ] which we can normalize. Moreover, we prove that the semigroup on
the respective L2-space is a contraction.

Next we turn to the in�nitesimal generator of our semigroup. Our �rst
result states that the semigroup is indeed strongly continuous on the L2-
space, that is, it ful�lls a condition assuring the existence of a generator on
a dense subspace. Next we identify a dense subspace of test functions that
contains all the information about the generator. In semigroup theory, such
a subspace is called a core. On this core, the generator is seen to be the sum
of a di�erential operator and a nonlocal operator given by a superposition of
di�erence operators. Moreover, we obtain some information on the spectrum
of the generator.

In section 4.4 we prove two functional inequalities related to our semi-
group. We will phrase the results both in terms of the one-parameter and
of the two-parameter semigroup. A central tool - the so-called square �eld
operator - is introduced in subsection 4.4.1. We calculate its precise form
and establish an important inequality, relating the square �eld operator and
the semigroup. Then we deduce a Poincaré and a Harnack inequality.

Beware of a change in notation, in this chapter the Lévy triple associated to
L will be denoted by [b, R, m]. Moreover, as a technical assumption that will
be necessary for proposition 4.19, we will require the coe�cients in (3.2) to
be T-periodic for some T > 0.

Assumption 4.1 From now on, we assume that there exists T >0 such that
the coe�cients A, f and B in (3.2) are T -periodic.

4.1 Preliminaries

Recall that the weak solution for (3.2) takes the following form:

X(t, s, x) = U(t, s)x +

∫ t

s

U(t, r)f(r)dr +

∫ t

s

U(t, r)B(r)dLr

As opposed to the Gaussian case we are no longer able to give an easy
representation of the law of X(t, s, x), but we can calculate its Fourier trans-
form:
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Lemma 4.2 (characteristic function)

E [exp (i 〈h,X(t, s, x)〉)] =

exp

{
i

〈
h, U(t, s)x +

∫ t

s

U(t, r)f(r)dr

〉}
exp

{∫ t

s

λ(B∗(r)U∗(t, r)h)dr

}
where λ is the Lévy symbol of L.

Proof : Knowing how the Fourier transform acts on translations, it will be
enough to show, that:

E
[
exp

(
i

〈
h,

∫ t

s

U(t, r)B(r)dLr

〉)]
= exp

{∫ t

s

λ(B∗(r)U∗(t, r)h)dr

}
Using the results from the last chapter, the continuity of U and B allows
us to approximate the Lévy stochstic integral by a sequence of sums. More
precisely, we want to prove the claim:∫ t

s

U(t, r)B(r)dLr = P − lim
n→∞

∑
si∈Pn

U(t, si)B(si)(Lsi
− Ls(i−1)∨0

)

where the limit is taken in probability and Pn is a sequence of partitions
s = s0 < ... < sN = t of [s, t] such that the mesh width tends to zero. As
the Lévy stochastic integral is composed of four di�erent terms (see (3.1))
we will show this equality separately for each of them.

We will need r 7→ U(t, r) ◦ B(r) to be strongly continuous and this is the
case, since the composition of strongly continuous bounded operators is again
strongly continuous:

‖Ut(r)B(r)x− Ut(s)B(s)x‖
≤ ‖Ut(r)B(r)x− Ut(s)B(r)x‖+ ‖Ut(s)B(r)x− Ut(s)B(s)x‖

≤ ‖[Ut(r)− Ut(s)]B(r)x‖+ ‖Ut(s)‖L(H)‖B(r)−B(s)x‖
s→t

−→ 0

where both terms tend to zero because of strong continuity.

For the drift term which is a Bochner integral we have to show that:

lim
n→∞

∑
si∈Pn

∫ si

si−1

‖U(t, si)B(si)b− U(t, r)B(r)b‖ dr = 0



44 CHAPTER 4. SEMIGROUP AND INVARIANT MEASURE

but since r 7→ Ut(r)B(r)b is even uniformly continuous on [s, t] we may �nd
δ > 0 such that ‖Ut(r)B(r)b− Ut(r

′)B(r′)b‖ < ε
t−s

whenever |r − r′| < δ, so
that if we choose n such that the mesh width of Pn is smaller than δ we have∑

si∈Pn

∫ si

si−1

‖U(t, si)B(si)b− U(t, r)B(r)b‖ dr <
∑

si∈Pn

∫ si

si−1

ε

t− s
dr < ε

For the small jumps we make use of the isometry from 3.7, so we have to
show that our piecewise approximation converges in the H2 norm, that is we
need:

lim
n→∞

∞∑
k=1

∫
‖x‖<1

(∑
si∈Pn

∫ si

si−1

‖[Ut(r)B(r)− Ut(si)B(si)]T
1
2

x ek‖2dr

)
M(dx) = 0

For each k and x �xed the expression in round brackets converges to zero,
for the same reasons as used for the drift term. So we only have to show
that we may take the limit into the sum and the integral, but this follows by
dominated convergence on considering the uniform integrable bound :

‖[Ut(r)B(r)−Ut(si)B(si)]T
1
2

x ek‖2 ≤ 2 sup
s≤r≤t

‖Ut(r)‖L(H) sup
s≤r≤t

‖B(r)‖L(H)‖T
1
2

x ek‖2

Thus we have convergence in L2 of the approximating sums towards the
integral.
The same argument works for the Brownian part, where there is even no
dependence on x.
The big jumps, �nally are quite simple to treat. Since the expression makes
sense pointwise, we consider the approximation for ω �xed and we obtain:

lim
n→∞

∑
si∈Pn

∑
si−1≤r≤si

[Ut(si)B(si)− Ut(r)B(r)]∆Lr(ω)χ‖∆Lr(ω)‖>1 = 0

again because of strong continuity.
So in any of the four cases we have at least convergence in probability

and the claim is proved.
Since convergence in probability implies convergence in distribution and

x 7→ ei〈h,x〉 is bounded and continuous, we may interchange limit and expec-
tation:

E
[
exp

(
i

〈
h,

∫ t

s

U(t, r)B(r)dLr

〉)]
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= lim
n→∞

E

[
exp

(
i

〈
h,
∑
k∈Pn

U(t, sk)B(sk)(Lsk
− Lsk−1∨0)

〉)]
Using the functional equation of the exponential and the independence of
increments of L:

= lim
n→∞

∏
k∈Pn

E
[
exp

(
i
〈
h, U(t, sk)B(sk)(Lsk

− Lsk−1∨0)
〉)]

= lim
n→∞

∏
k∈Pn

exp {λ(B∗(sk)U
∗(t, sk)h)(sk − (sk−1 ∨ 0))}

= exp

{∫ t

s

λ(B∗(r)U∗(t, r)h)dr

}
where we employed the Lévy-Khinchine formula and the functional equation
again. Note that the Riemannian sums converge to the integral because of
strong continuity. �

The following lemma will be of great technical help.

Lemma 4.3 (complex monotone classes) LetH be a complex vector space
of complex-valued bounded functions, that contains the constants and is closed
under componentwise monotone convergence. Let M ⊂ H be closed under
multiplication and complex conjugation. Then, all bounded σ(M)- measur-
able functions belong to H.

Proof Without loss of generality, we can assume that M already is an
algebra, by taking its linear hull, which changes neither the multiplicativity,
nor the generated σ-algebra. As M is closed under complex conjugation,
we have MR := {<f,=f | f ∈ M} ⊂ M. As M is multiplicative, MR
is a real algebra of real-valued functions. Of course, MR ⊂ HR, where HR
is the monotone real vector space of real-valued elements of H. Now we
can apply the standard monotone class theorem, which states, that every
bounded σ(MR)-measurable real-valued function belongs to HR ⊂ H. To
obtain our conclusion, we have to show, that σ(M) ⊂ σ(MR). The elements
of σ(M) are of the form Af := f−1(A) for a Borel-set A ∈ C and a f ∈M.If
A = B×C is a rectangle, we have Af = B<f ∩C=f . But since preimages and
set operations commute, it is clear, that it is su�cient to have the inclusion
for rectangles, as these form a generator for B(C). It is also obvious, that
any complex-valued function in H can be reconstructed from its real and
imaginary parts. �
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The last and the next result in combination will be particularly useful:

Lemma 4.4 The functions M := {ei〈h,x〉, h ∈ H} form a complex multi-
plicative systems that generates the Borel σ-algebra of H.

Proof It is obvious that M is closed under multiplication and complex
conjugation.
To show that indeed σ(M) = B(H) we make use of the following lemma:
(see [Schw73] page 108)

Lemma 4.5 A countable family of real-valued functions on a Polish space
X separating the points of X already generates the Borel-sigma-algebra of X.

Our countable family will be {fn,k(x) := sin(〈 1
n
ek, x〉)}k,n∈N ⊂M where {ek}

is an orthonormal basis of H.
Since the sine function is injective in a neighborhood of zero, and the func-
tions 〈 1

n
ek, x〉) separate the points of H, so do the fn,k. As real and imaginary

parts of functions inM, it is clear, that the sigma-algebra generated by them
is included in σ(M). �

Now we will show that our solution induces a two-parameter semigroup,
de�ned as follows:

De�nition 4.6 Whenever f : H → C is measurable and bounded, de�ne

P (s, t)f(x) := E[f(X(t, s, x))]

P (s, t) will be called the two-parameter semigroup (associated to the solution
X).

Lemma 4.7 For f as above, we have the following �ow property:

P (r, s)P (s, t)f(x) = P (r, t)f(x)

Proof We will show the equality for the functions fh(x) = ei〈h,x〉 and extend
it with the help of 4.3. First note, that by 4.2 we have

P (s, t)fh(x) = exp {i 〈h, U(t, s)x〉} exp

{
i

〈
h

∫ t

s

U(t, r)f(r)dr

〉}
× exp

{∫ t

s

λ(B∗(r)U∗(t, r)h)dr

}
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so that:

P (r, s)P (s, t)fh(x)

= E[P (s, t)fh(X(s, r, x)]

= E [exp {i 〈U∗(t, s)h,X(s, r, x)〉}]× exp

{
i

〈
h,

∫ t

s

U(t, r)f(r)dr

〉}
× exp

{∫ t

s

λ(B∗(r)U∗(t, r)h)dr

}
but again 4.2 gives us the Fourier transform of X(s, r, x) this time evaluated
at U∗(t, s)h:

= exp {i 〈U∗(t, s)h, U(s, r)x〉}

× exp

{
i

〈
U∗(t, s)h,

∫ s

r

U(s, q)f(q)dq

〉}
exp

{
i

〈
h,

∫ t

s

U(t, r)f(r)dr

〉}
× exp

{∫ s

r

λ(B∗(q)U∗(s, q)U∗(t, s)h)dq

}
exp

{∫ t

s

λ(B∗(r)U∗(t, r)h)dr

}
Interchanging U(t, s) with the integral, as it is a bounded operator, making
use of the semigroup property of U and U∗ and combining the integrals
yields the result for exponential f . The space of all bounded measurable f
for which the �ow property holds is a complex monotone vectorspace, since
by monotone convergence :

P (s, t) lim
n→∞

fn(x) = E[ lim
n→∞

fn(X(s, r, x))]

= lim
n→∞

E[fn(X(s, r, x))] = P (s, t) lim
n→∞

fn(x)P (s, t)fn(x)

and by monotonicity of the integral we have even P (s, t)fn(x) ↗ P (s, t)f(x)
so that we can apply monotone covergence again to obtain:

P (r, s)P (s, t) lim
n→∞

fn(x) = P (r, s) lim
n→∞

P (s, t)fn(x) = lim
n→∞

P (r, s)P (s, t)fn(x)

Hence, the proof is complete. �

4.2 Evolution Systems of Measures

Since our equation is non-autonomous we cannot hope for a single invariant
measure. What one can still expect in our setting is a so called evolution
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system of measures, a whole family {νt}t∈R of measures such that for all
s < t and all bounded measurable f :∫

Rn

P (s, t)f(x)νs(dx) =

∫
Rn

f(x)νt(dx) (4.1)

To assure the existence of such a system, besides assumption 3.11 we will
henceforth require the following condition to hold:

Assumption 4.8 We assume a weak regularity for the Levy symbol λ , that
is: for the corresponding Lévy measure M holds:∫

‖x‖>1

‖x‖M(dx) < ∞

Taking a clue from the Gaussian situation, we will consider the distribution
of our solutions after an in�nite time span. As we have explicit knowledge
of the Fourier transforms, we will characterize the measures in that way.

The following lemma will give a useful growth condition for the Lévy
symbol that will allow us to construct limit measures.

Lemma 4.9 Every Lévy symbol λ with a Lévy measure M satisfying 4.8 is
Fréchet di�erentiable. In particular such a λ is locally of linear growth.

Proof : Let be λ the corresponding Lévy symbol and M the Lévy measure.
By the Lévy-Khinchine formula 2.36 we know that:

λ(u) = i〈u, b〉 − 1

2
〈u, Au〉+

∫ (
ei〈u,x〉 − 1− i〈u, x〉χ{‖x‖≤1}

)
M(dx)

Clearly, it is enough to show that the integral expression is di�erentiable.
We �rst show Gâteaux di�erentiability, hence we will need the directional
derivatives to be integrable to obtain the result via dominated convergence.
We have:

∂

∂t

∣∣∣∣
t=0

(
ei〈u+tv,x〉 − 1− i〈u + tv, x〉χ{‖x‖≤1}

)
= i〈v, x〉ei〈u,x〉 − i〈v, x〉χ{‖x‖≤1}
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To see the integrability we split the integral in two parts:∫
‖x‖≤1

∣∣i〈v, x〉ei〈u,x〉 − i〈v, x〉χ{‖x‖≤1}
∣∣M(dx)

=

∫
‖x‖≤1

∣∣∣∣∣i〈v, x〉
∞∑

k=0

(i〈u, x〉)k

k!
− i〈v, x〉

∣∣∣∣∣M(dx)

≤
∫
‖x‖≤1

(
‖v‖ ‖x‖

∞∑
k=1

|(i〈u, x〉)|k

k!

)
M(dx)

≤
∫
‖x‖≤1

(
‖v‖ ‖x‖

∞∑
k=1

‖u‖k‖x‖k

k!

)
M(dx)

≤
∫
‖x‖≤1

(
‖v‖ ‖x‖2‖u‖

∞∑
k=1

‖u‖k−1‖x‖k−1

k!

)
M(dx)

≤ sup
‖x‖≤1

exp{‖u‖‖x‖}
∫
‖x‖≤1

(
‖v‖ ‖x‖2‖u‖

)
M(dx)

= exp{‖u‖}‖u‖ ‖v‖
∫
‖x‖≤1

‖x‖2M(dx) < ∞

for every �xed u, v and s since M is a Lévy measure. On the other hand,
we have:∫

‖x‖>1

∣∣i〈v, x〉ei〈u,x〉 − i〈v, x〉χ{‖x‖≤1}
∣∣M(dx) ≤ ‖v‖

∫
‖x‖>1

‖x‖M(dx) < ∞

by assumption.
Moreover, from the above, it is easy to see that the Gâteaux derivative is lin-
ear and bounded and depends continuously on u with respect to the operator
norm, so λ is Fréchet di�erentiable and hence locally Lipschitz. �

Theorem 4.10 Assume hypothesis 4.8. Then the functions

ν̂t(h) := exp

{
i

〈
h,

∫ t

−∞
U(t, r)f(r)dr

〉}
exp

{∫ t

−∞
λ{B∗(r)U∗(t, r)h}dr

}
are the Fourier transforms of an evolution system of measures.
This system is T -periodic, that is we have νT+t = νt for any t.
Any other T -periodic evolution system of measures, coincides with the above.
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Proof : To establish T -periodicity, �rst note, that we have:
U(t, s) = U(t + T, s + T ) for any s < t, which follows easily from its de�ning
di�erential equation and the assumption that A is T -periodic. Hence, we get∫ t+T

−∞
U(t+T, r)f(r)dr =

∫ t

−∞
U(t+T, r+T )f(r+T )dr =

∫ t

−∞
U(t, r)f(r)dr

and for the other integral the argument is the same.
We have to assure that the integrals above exist. Since U is stable and f

is bounded on all of R (as it is continuous and periodic) we have:∫ t

−∞
‖U(t, r)f(r)‖dr ≤

∫ t

−∞
Me−ω(t−r)‖f‖∞dr =

M

ω
‖f‖∞

As λ is Fréchet di�erentiable it has locally linear growth, so that with
λ(0) = 0 we have ‖λ(u)‖ ≤ C‖u‖ on the bounded range of the argument for
some C > 0. So with ‖B∗‖ bounded we can treat the second integral as the
�rst:

∫ t

−∞
‖λ{B∗(r)U∗(t, r)h}‖dr ≤ C

∫ t

−∞
‖B∗(r)U∗(t, r)h‖dr

≤ C sup
r
‖B∗(r)‖M

ω
‖h‖ < ∞ (4.2)

where we have used, that ‖U∗‖ = ‖U‖.

To show that these functions are indeed Fourier transforms of measures we
can make use of Lévy's continuity theorem in the �nite dimensional case.
We have just proven pointwise convergence of the Fourier transforms of P ◦
[X(t, s, x)]−1, and that the limit function is continuous in 0 follows easily by
dominated convergence. Pointwise convergence under the integral is clear by
continuity of λ, U and B and a majorizing function is found by looking at
(4.2) again.
In the in�nite dimensional case, however, we cannot apply Lévy's continuity
theorem for reasons explained in appendix B. For a better readability we
postpone the somewhat technical alternative.

In order to see that the respective measures constitute an evolution system
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of measures we will check (4.1) for exponential functions and then extend
the result via monotone classes.
So if we take k(x) = ei〈h,x〉 in (4.1) we get:∫

Rn

k(x)νt(dx) = ν̂t(h)

by the very de�nition of Fourier transformation.
On the other hand we have by 4.2:

P (s, t)k(x) =

ei〈h,U(t,s)x〉 exp

{
i

〈
h,

∫ t

s

U(t, r)f(r)dr

〉}
exp

{∫ t

s

λ{B∗(r)U∗(t, r)h}dr

}
Using the adjoint of U and the fact that Fourier transformation is only with
respect to x we obtain by de�nition of ν̂s:∫

Rn

P (s, t)k(x)νs(dx)

= ν̂s(U
∗(t, s)h) exp

{
i

〈
h,

∫ t

s

U(t, r)f(r)dr

〉
+

∫ t

s

λ{B∗(r)U∗(t, r)h}dr

}

= exp

{
i

〈
U∗(t, s)h,

∫ s

−∞
U(s, r)f(r)dr

〉
+

∫ s

−∞
λ{B∗(r)U∗(s, r)U∗(t, s)h}dr

}
exp

{
i

〈
h,

∫ t

s

U(t, r)f(r)dr

〉
+

∫ t

s

λ{B∗(r)U∗(t, r)h}dr

}

= exp

{
i

〈
h,

∫ s

−∞
U(t, s)U(s, r)f(r)dr

〉
+

∫ s

−∞
λ{B∗(r)U∗(t, r)h}dr

}
exp

{
i

〈
h,

∫ t

s

U(t, r)f(r)dr

〉
+

∫ t

s

λ{B∗(r)U∗(t, r)h}dr

}
where we used in the left part, that linear continuous operators commute with
the integral, and in the right part the corresponding ("twisted") semigroup
property for the adjoints.

= exp

{
i

〈
h,

∫ s

−∞
U(t, r)f(r)dr

〉
+ i

〈
h,

∫ t

s

U(t, r)f(r)dr

〉}
exp

{∫ s

−∞
λ{B∗(r)U∗(t, r)h}dr +

∫ t

s

λ{B∗(r)U∗(t, r)h}dr

}
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= exp

{
i

〈
h,

∫ t

−∞
U(t, r)f(r)dr

〉}
exp

{∫ t

−∞
λ{B∗(r)U∗(t, r)h}dr

}

but the last line equals ν̂t(h) and that is precisely what we had to show.

To prove the full assertion we have to show that (4.1) not only holds
for functions of the form kh(x) := ei〈h,x〉, but for any bounded measurable
function.
By 4.4 we can apply 4.3, because the bounded and measurable functions for
which (4.1) holds, form a complex monotone vector space:
for constant functions the equality is trivial and that (4.1) holds for monotone
limits is essentially an iterated application of Levy's theorem about monotone
convergence. Hence, all bounded measurable functions satisfy (4.1) and the
existence of an evolution system of measures is proved.

To prove uniqueness, let {νs} be another T -periodic family satisfying (4.1),
then it follows by periodicity:

ν̂s(h) = ν̂s(U
∗(s + T, s)h)

×exp

{
i

〈
h,

∫ s+T

s

U(s + T, r)f(r)dr

〉
+

∫ s+T

s

λ{B∗(r)U∗(s + T, r)h}dr

}

Using the easy to check relations:

∫ s+T

s

U(s+T, r)f(r)dr =

∫ s

−∞
U(s, r)f(r)dr−U(s+T, s)

∫ s

−∞
U(s, r)f(r)dr

∫ s+T

s

λ{B∗(r)U∗(s + T, r)h}dr =∫ s

−∞
λ{B∗(r)U∗(s, r)h}dr −

∫ s

−∞
λ{B∗(r)U∗(s + T, r)h}dr
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we get:

ν̂s(h) = ν̂s(U
∗(s + T, s)h) exp

{
i

〈
h,

∫ s

−∞
U(s, r)f(r)dr

〉}
exp

{∫ s

−∞
λ{B∗(r)U∗(s, r)h}dr

}
exp

{
i

〈
h,−U(s + T, s)

∫ s

−∞
U(s, r)f(r)dr

〉}
exp

{
−
∫ s

−∞
λ{B∗(r)U∗(s + T, r)h}dr

}
or equivalently:

ν̂s(h)

[
exp

{
i

〈
h,

∫ s

−∞
U(s, r)f(r)dr

〉}
exp

{∫ s

−∞
λ{B∗(r)U∗(s, r)h}dr

}]−1

= ν̂s(U
∗(s + T, s)h)

[
exp

{
i

〈
U∗(s + T, s)h,

∫ s

−∞
U(s, r)f(r)dr

〉}
exp

{∫ s

−∞
λ{B∗(r)U∗(s + T, r)h}dr

}]−1

�

Finding, that the second line is the �rst, with h replaced by U∗(s+T, r)h we
can iterate, since the relation was valid for all h ∈ H. As ‖U∗(s + T, r)‖ < 1
must hold by our stability assumption, all the factors in the second equation
will tend to 1, so ν̂s must indeed have the desired form.

Remark 4.11 The condition that the Lévy symbol is of linear growth is ac-
tually stronger than necessary. To assure the existence of the integral in
(4.2) it would be even su�cient to have a very weak estimate of the form
|λ(u)| = O(

√
‖u‖). But we were unable to �nd any other easy to check con-

ditions to control the growth of a Lévy symbol around the origin. Moreover,
in the in�nite dimensional case, we make full use of our assumption, as can
be seen next.

Proof (ν̂t is a characteristic function - Hilbert space case)
The general idea is the following. In the Gaussian case, it is known that
the limit distributions are Gaussian again. In the same manner we take
advantage of the fact that, in the Lévy case, our limit distribution is in�nitely
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divisible. We proceed here as in [Fuhr/Röck00] chapter 3. First of all we
show that our distributions P ◦X(t, s, x) are in�nitely divisible for any t >
s, x. By the Lévy-Khinchine representation it is su�cient to prove that
their characteristic functions have the form (2.5) for some triple [b, Q, M ].
Therefore, we calculate:

exp

{∫ t

s

λ(B∗
rU

∗
t,rh)dr

}
= exp

{∫ t

s

i〈b, B∗
rU

∗
t,rh〉dr − 1

2

∫ t

s

〈B∗
rU

∗
t,rh,RB∗

rU
∗
t,rh〉dr

+

∫ t

s

(∫
H

ei〈x,B∗r U∗t,rh〉 − 1− i〈x, B∗
rU

∗
t,rh〉χ{‖x‖≤1}M(dx)

)
dr

}

For the jump part we have:

∫
H

ei〈x,B∗r U∗t,rh〉 − 1− i〈x, B∗
rU

∗
t,rh〉χ{‖x‖≤1}M(dx)

=

∫
H

ei〈Ut,rBrx,h〉 − 1− i〈Ut,rBrx, h〉χ{‖x‖≤1}M(dx)

+

∫
H

[−χ{‖Ut,rBrx‖≤1} + χ{‖Ut,rBrx‖≤1}]M(dx)

=

∫
H

ei〈x,h〉 − 1− i〈x, h〉χ{‖x‖≤1}M ◦ (Ut,rBr)
−1(dx) (4.3)

−
∫

H

i〈Ut,rBrx, h〉[χ{‖x‖≤1} − χ{‖Ut,rBrx‖≤1}]M(dx) (4.4)

Note that (4.3) is �nite because of: (setting C := ‖Ut,rBr‖L(H))

∫
H

(1 ∧ ‖x‖2)M ◦ (Ut,rBr)
−1(dx) =

∫
H

(1 ∧ ‖Ut,rBrx‖2)M(dx)

≤
∫

H

(1 ∧ C2‖x‖2)M(dx) ≤ C2

∫
H

(
1

C2
∧ ‖x‖2)M(dx) < ∞

and only in that way we can argue that (4.4) must be �nite as well. Thus,
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we obtain:

exp

{∫ t

s

λ(B∗
rU

∗
t,rh)dr

}
= exp

{
i

〈∫ t

s

Ut,rBrb dr, h

〉
− 1

2

〈
h,

∫ t

s

Ut,rBrRB∗
rU

∗
t,rhdr

〉
+

∫ t

s

(∫
H

ei〈x,h〉 − 1− i〈x, h〉χ{‖x‖≤1}M ◦ (Ut,rBr)
−1(dx)

)
dr

− i

〈∫ t

s

∫
H

Ut,rBrx[χ{‖x‖≤1} − χ{‖Ut,rBrx‖≤1}]M(dx)dr, h

〉}
so that with:

• b(t, s) :=
∫ t

s
Ut,rBrbdr−

∫ t

s

∫
H

Ut,rBrx[χ{‖x‖≤1}−χ{‖Ut,rBrx‖≤1}]M(dx)dr

• Q(t, s) :=
∫ t

s
Ut,rBrRB∗

rU
∗
t,rdr

• Mt,s(A) :=
∫ t

s
M ◦ (Ut,rBr)

−1(A)dr for 0 /∈ A

exp
{∫ t

s
λ(B∗

rU
∗
t,rh)dr

}
is associated to the triple [b(t, s), Q(t, s), Mt,s], where

Q(t, s) is still symmetric and nonnegative and we have :

trQ(t, s) =
∑

k

〈ek, Q(t, s)ek〉 =
∑

k

∫ t

s

‖
√

RB∗
rU

∗
t,rek‖2

=

∫ t

s

‖
√

RB∗
rU

∗
t,r‖2

2 ≤
∫ t

s

‖
√

R‖2
2‖B∗

rU
∗
t,r‖2 < ∞

and Mt,s is a Lévy measure, as we have [since (1∧ ‖x‖2) ≤ (‖x‖ ∧ ‖x‖2)]:∫ t

s

∫
H

(1 ∧ ‖x‖2)M ◦ (Ut,rBr)
−1(dx) ≤

∫ t

s

∫
H

(‖x‖ ∧ ‖x‖2)M ◦ (Ut,rBr)
−1(dx)

=

∫ t

s

∫
H

(‖Ut,rBrx‖ ∧ ‖Ut,rBrx‖2)M(dx)

≤
∫ t

s

‖Ut,rBr‖
∫

H

(‖x‖ ∧ ‖Ut,rBr‖ ‖x‖2)M(dx)

≤
∫ t

s

max
r≤t

‖Br‖Me−ω(t−r)

∫
H

(‖x‖ ∧max
r≤t

‖Ut,rBr‖ ‖x‖2)M(dx)︸ ︷︷ ︸
<∞ by assumption 4.8

< ∞
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Moreover, we see that we can let s → −∞ and Q(t,−∞) will still be trace
class as well as Mt,−∞ will still be a Lévy measure, because of the exponential
stability of U . Since we already know that the Fourier transform as a whole
converges, convergence of the �rst part of b(t,−∞) (which is obvious) implies
convergence of the second part. Hence the limit function is associated to
a Lévy triple and thus the characteristic function of an in�nitely divisible
measure. �

Remark 4.12 Note that we did not show weak convergence and that we do
not need to do so. The point is only in proving that our limit functions
are indeed associated to measures. Extension to functions more general than
complex exponentials is then done by monotone class arguments.
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4.3 The Reduced Equation

Since we are interested in generators, we have to reduce our equation to
the autonomous case, so that we obtain a one-parameter semigroup, that
we can relate to a generator. It will turn out, that we can establish an
invariant measure for our new semigroup on the extended state space, using
our evolution system of measures.

Reduction of non-autonomous problems is a well-known method in the
theory of ordinary di�erential equations.(see e.g. [Dal/Krei74]) We recall
that the basic idea is to enlarge the state space, thus allowing to keep track
of the elapsed time. The reduced problem then looks:{

dX(t) = {A(y(t))X(t) + f(y(t))}dt + B(y(t))dL(t) X(0) = x

dy(t) = dt y(0) = s

The one-parameter semigroup is then de�ned as follows:

Pτu(t, x) := Pt,t+τu(t + τ, ·)(x) := (Pt,t+τut+τ )(x)

meaning that we apply the two-parameter semigroup to u as a function of
x only. That the family {Pτ}τ∈R is indeed a semigroup, follows, of course,
from the semigroup property of {Ps,t}s<t and is a simple calculation:

(Pσ(Pτu))(t, x) = Pt,t+σPt+σ,t+σ+τu(t + σ + τ, ·)(x)

= Pt,t+σ+τu(t + σ + τ, ·)(x) = Pτ+σu(t, x)

4.3.1 The Invariant Measure ν and the Space L2
∗(ν)

Starting from our evolution system of measures, we will establish an invariant
measure for the one-parameter semigroup. On the respective L2-space the
semigroup will then be a contraction.

From now on we will require the following assumption to hold:

Assumption 4.13 D(A∗) is dense in H and we have U∗(t, s)D(A∗) ⊂ D(A∗)
for all s ≤ t. Moreover, we have d

dt
U∗(t, s)x = U∗(t, s)A∗(t)x for all x ∈

D(A∗)

To obtain our invariant measure we need the following lemma:

Lemma 4.14 The function F : (t, A) 7→ νt(A) is a transition kernel.
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Proof Obviously, for �xed t we have a measure.
To show measurability, we will need a monotone class argument:
H := {f : H → C | t 7→

∫
f(x)νt(dx) is measurable } is a monotone

complex vector space, since pointwise limits of measurable functions are again
measurable.
M := {exp(〈h, x〉)}h∈H is a complex multiplicative system, such
that σ(M) = B(H) (see 4.5 and the following arguments)
We will have proved the lemma, once we know that M⊂ H.
Therefore, we will show that t 7→

∫
f(x)νt(dx) is even continuous for all

f ∈M
Recalling the form of the Fourier transforms,

ν̂t(h) = exp

{
i

〈
h,

∫ t

−∞
U(t, r)f(r)dr

〉}
exp

{∫ t

−∞
λ{B∗(r)U∗(t, r)h}dr

}
it will be su�cient to show that:∫

R
χ{r≤s}λ{B∗(r)U∗(s, r)h}dr

s→t−→
∫ t

−∞
λ{B∗(r)U∗(t, r)h}dr

Pointwise convergence of the integrands is clear, and an integrable upper
bound is given by: C χ{r≤smax} M e−ω(smin−r)

where C is composed of the Lipschitz constant of λ and a bound for ‖B(r)‖
and smin, smax are upper and lower bounds for the convergent sequence sn,
while M and ω are the stability constants for U .
The argument for the other integral follows the same lines. �

Now, we introduce the space, on which the semigroup will be strongly con-
tinuous and the subspace that will be the core for the generator of our semi-
group. Let be

De�nition 4.15 As F is a kernel from H to R we can form ν := F ⊗ 1
T
dt,

a measure on H × R.

L2
∗(ν) :={f : R×H → R measurable | f(t + T, x) = f(t, x) ν − a.e.∫

[0,T ]×H

‖f‖2(y)ν(dy) < ∞}
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M := spanC{f : R×H → C | f = Φ(t)ei〈x,h(t)〉, where

Φ ∈ C1(R, R) and T-periodic,

h ∈ C1(R, H) and T-periodic such that Im h ⊂ D(A∗)}

K := {<(f) | f ∈M}
That is, K comprises the real parts of the functions in M.

Remark 4.16 L2
∗ is a Hilbert space. Because of the periodicity it is clear,

that (
∫

[0,T ]×H
‖f‖2(y)ν(dy))

1
2 is a norm(where we introduce ν a.e.-equivalence

classes as usual). Given a Cauchy-sequence fn we consider f z
n the restriction

of fn to the interval Iz := [zT, (z + 1)T ], z ∈ Z. By Riesz-Fischer we obtain
a limit f 0 of f 0

n on [0, T ], and because of periodicity it is clear that the other
restrictions form the same Cauchy sequences, that is: lim f z

n = f z = f 0 ∀z ∈
Z. Hence, the limit function is periodic, and the space is complete.

Lemma 4.17 K is dense in L2
∗(ν).

Proof Note that by periodicity, we can think of our functions to be de�ned
on [0, T ]×H and in the following we will do so without changing notation.
We will show density ofM in L2

∗(ν; C). This implies density of the respective
real vector spaces. We will use complex monotone classes again. The space
M is closed under multiplication and conjugation. Consider H := M̄ as a
subspace of L2

∗(ν; C) where we allow complex-valued integrable and periodic
functions. H is a complex monotone vector space, by monotone convergence,
applied separately to real and imaginary parts. So, H contains all σ(M)-
measurable functons. If we can show that σ(M) = B(H × R), then we will
have all step functions in H, so density will be obvious. Note that we want
to show, that functions of the form Φi ⊗ eh generate a product σ-algebra
B([0, T ])⊗ B(H). Since both families contain the constant function, we can
break the problem down, as (1R ⊗ f)−1(A) = R× f−1(A) and knowing that
Φi generates B(R) and eh := ei〈 · ,h〉 generates B(H) (which follows again from
4.5 and the fact that D(A∗) is dense), we have the result. �

Remark 4.18 Note that to prove the density of K, h ≡ const is su�cient,
but we will need the t-dependence of h later to show that K is Pτ -invariant.

Proposition 4.19 The measure ν is the unique invariant measure for the
semigroup Pτ on L2

∗(ν). The semigroup Pτ is a contraction on L2
∗(ν).
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Proof We will prove both invariance and contractivity for functions from
K �rst. Since K is dense, it is then easy to see that they hold on the whole
of L2

∗(ν). Note, however, that we �rst need invariance to prove contractivity,
then extend contractivity by density, and then obtain global invariance by
density and contractivity. For invariance we have to show:∫

[0,T ]×H

Pτu(t, x)dν =

∫
[0,T ]×H

u(t, x)dν ∀τ > 0, u ∈ K

Writing ut(x) := u(t, x), remember, that (Pτu)(t, x) = (Pt,t+τut+τ )(x). Tak-
ing into account (4.1),which is valid, since the elements from K are bounded,
we have: ∫

[0,T ]×H

Pτu(t, x)dν =
1

T

∫
[0,T ]

∫
H

(Pt,t+τut+τ )(x)νt(dx)dt

=
1

T

∫
[0,T ]

∫
H

ut+τ (x)νt+τ (dx)dt =
1

T

∫
[τ,T+τ ]

∫
H

ut(x)νt(dx)

=
1

T

∫
[0,T ]

∫
H

ut(x)νt(dx) =

∫
[0,T ]×H

u(t, x)dν

because of translation invariance of dt and T -periodicity of u and νt.
For the contraction property we have to show: ‖Pτu‖L2

∗ ≤ ‖u‖L2
∗

Using the Jensen inequality for the expectation and afterwards the invariance
property for u2 (recall that K is closed under multiplication):

‖Pτu‖L2
∗ =

∫
[0,T ]×H

E[u(t + τ,X(t + τ, t, x))]2ν(dx, dt)

≤
∫

[0,T ]×H

E[u2(t + τ,X(t + τ, t, x))]ν(dx, dt) =

∫
[0,T ]×H

(Pτu
2)(t, x)ν(dx, dt)

=

∫
[0,T ]×H

u2(t, x)ν(dx, dt) = ‖u‖L2
∗

To show uniqueness, let µ be another invariant measure for Pτ , so that
we have:∫

[0,T ]×H

Pτu(t, x)µ(dx, dt) =

∫
[0,T ]×H

u(t, x)µ(dx, dt) ∀τ > 0, u ∈ L2
∗(ν)

(4.5)
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By [Dudley89] : corollary 10.2.8 , we can disintegrate µ as follows:∫
u(t, x)µ(dt, dx) =

∫
[0,T ]

(∫
H

u(t, x)µt(dx)

)
µ1(dt) (4.6)

for the marginal µ1(dt) = µ ◦ Pr−1 where Pr is the Projection on the t-
component, and {µt}t∈R is a family of probability measures on H. Choosing
u(t, x) = f(t) independent of x in (4.5) we have by (4.6):∫

[0,T ]×H

f(t + τ)µ1(dt) =

∫
[0,T ]×H

f(t)µ1(dt)

Since f is T -periodic, µ1 is translation invariant (note, that we need here
a similar monotone class argument as in 4.17). So µ1 must be Lebesgue
measure.

To show µt = νt, we will of course use the uniqueness property from 4.10.
Choosing u(t, x) = f(t)g(x) and τ = T in (4.5) yields:∫

[0,T ]

f(t)

(∫
H

Pt,t+T g(x)µt(dx)

)
µ1(dt) =

∫
[0,T ]

f(t)

(∫
H

g(x)µt(dx)

)
µ1(dt)

Clearly, if this holds for a �xed, bounded g and arbitrary bounded f , we
must have ∫

H

Pt,t+T g(x)µt(dx) =

∫
H

g(x)µt(dx)

Since this holds for any bounded measurable g we can apply 4.10
to obtain νt = µt ∀ t ∈ R. �

Remark 4.20 Note that we cannot abandon the T-periodicity, because we
need translation invariance in our proof above. But as we want a proba-
bility measure, we cannot take Lebesgue measure on the whole of R. The
only alternative known to us, is to restrict ourselves to a �nite interval by
periodicity.
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4.3.2 Generator and Domain of Uniqueness

In this subsection we prove that the generator is given by a pseudo-di�erential
operator. Compared to the Gaussian case, we have an additional nonlocal
part. However, we still obtain a result on the spectrum of the generator,
exactly as in the Gaussian case.

Proposition 4.21 (strong continuity) Pτ is strongly continuous on L2
∗(ν)

Proof The invariance of ν and the density of K allow us to use proposition

4.3 from [Ma/Röck92]. Hence, it will be su�cient to show, that Pτu
t→0−→ u

ν − a.e. For u(t, x) = Φ(t)ei〈x,h(t)〉 we have by 4.2:

(Pτu)(t, x) = exp

{∫ t+τ

t

λ(B∗(r)U∗(t + τ, r)h(t + τ))dr

}
× Φ(t + τ) exp

{
i

〈
h(t + τ), U(t + τ, t)x +

∫ t+τ

t

U(t + τ, r)f(r)dr

〉}
(4.7)

Recalling that Φ, h and U are continuous and that U(t, t) = Id we obtain
the result, since all the integrals vanish. Note, that by linearity, this extends
to general u ∈ K. �

Since Pτ is strongly continuous, it admits a generator, say G. For the
concept of cores, that is domains of uniqueness for operators, see appendix
A.

Lemma 4.22 Let assumption 4.8 hold. Then K is a core for G.

Proof Looking closely at (4.7) again, one notes that (Pτu)(t, x) is again of
the form Ψ(t)ei〈x,k(t)〉 with Ψ and k as follows:

Ψ(t) := Φ(t + τ) exp
{

i
〈
h(t + τ),

∫ t+τ

t
U(t + τ, r)f(r)dr

〉}
× exp

{∫ t+τ

t
λ(B∗(r)U∗(t + τ, r)h(t + τ))dr

}
k(t) := U∗(t + τ, t)h(t + τ)

Since by assumption 4.13 k : R → D(A∗), K is invariant under Pτ , since by
linearity it is su�cient to check the invariance for special u. Furthermore,
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we have again by (4.7):

Gu =
d

dτ
Pτu

∣∣∣∣
τ=0

= [Φ′(t) + iΦ(t)〈x, h′(t)〉] ei〈x,h(t)〉

+ i〈x + f(t), A∗(t)h(t)〉Φ(t) ei〈x,h(t)〉

+ λ[B∗(t)h(t)] Φ(t) ei〈x,h(t)〉 (4.8)

Note that we have used the di�erentiability of λ.

Seeing, that K ⊂ D(G) we can apply corollary A.3 to prove the asser-
tion. �

Remember, that (b, R, M) is the triple of our Levy process (see 2.5)
Set Σ =

√
R.

To obtain a realization of G let us de�ne the following operator on K:

De�nition 4.23 For u ∈ K we set:

Lu(t, x) := ut(t, x) + 〈A(t)x + f(t),∇xu(t, x)〉

+ 〈B(t)b,∇xu(t, x)〉+
1

2
Tr{Σ∗B∗∇xxu(t, x)BΣ}

+

∫
Rd

{u(t, x + B(t)y)− u(t, x)− 〈B(t)y,∇xu(t, x)χ‖y‖≤1}ν(dy)

where ∇x u denotes the gradient of u, ∇xx u denotes the generalized Hessian
of u and Tr denotes the trace of an operator.
Note that ∇xx u is Hilbert-Schmidt, (see [daPr04] 1.2.4.) so the trace is well
de�ned.

Lemma 4.24 (realization of G) L = G|K , so that G = L̄

Proof Again, we will only check this for special u, since we deal with linear
operators. Note, for the calculations involved, that for u(t, x) = Φ(t)ei〈x,h(t)〉

we have ∇xu(t, x) = ih(t)u(t, x) ∇xxu(t, x) = −h(t)h∗(t)u(t, x) and that
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Tr(Auu∗A∗) = 〈Au, Au〉. Hence the Levy-Khinchine formula yields for λ:

u(t, x) λ(B∗(t)h(t))

= i〈B(t)b, h(t)〉 u(t, x)− 1

2
〈Σ∗B∗(t)h(t), Σ∗B∗(t)h(t)〉 u(t, x)

+ u(t, x)

∫
Rd

{ei〈B∗(t)h(t),y〉 − 1− i〈B∗(t)h(t), y〉χ‖y‖≤1}ν(dy)

= 〈B(t)b,∇xu(t, x)〉 − 1

2
Tr(Σ∗B∗(t)h(t)h∗(t)u(t, x)B(t)Σ)

+

∫
Rd

{Φ(t)ei〈h(t),x〉ei〈h(t),B(t)y〉 − u− i〈h(t)u, B(t)y〉χ‖y‖≤1}ν(dy)

= 〈B(t)b,∇xu(t, x)〉+
1

2
Tr{Σ∗B∗∇xxu(t, x)BΣ}

+

∫
Rd

{u(t, x + B(t)y)− u(t, x)− 〈B(t)y,∇xu(t, x)χ‖y‖≤1}ν(dy)

That the �rst two summands in both expressions also coincide is very easy
to see. �

Lemma 4.25 For all u ∈ D(L) we have∫
[0,T ]×Rd

Lu(t, x)ν(dt, dx) = 0 (4.9)

Proof We will prove this for u ∈ K �rst. As ν is Pτ invariant, let us
consider the equality:∫

[0,T ]×Rd

Pτu(t, x)ν(dt, dx) =

∫
[0,T ]×Rd

u(t, x)ν(dt, dx)

Di�erentiating both sides with respect to τ we obtain the result, if we can
show that we can interchange integral and di�erential on the left hand side.
We know, that for a �xed u ∈ K τ 7→ Pτu(t, x) is di�erentiable ν− almost
everywhere, since limn→∞ nP 1

n
u(t, x) = Lu(t, x) in L2

∗(ν) implies pointwise
a.e.-convergence along a subsequence, that we can choose without loss of gen-
erality. Furthermore, for a �xed u the derivative in τ is given by PτLu(t, x),
but since every Pτ is a contraction with respect to the supremum norm, and
every Gu ∈ K is bounded we have a uniform bound for the derivatives.
Hence we can apply Lebesgue's dominated convergence theorem.
Since K is a core, for u ∈ D(G) we can �nd a sequence un such that un → u
in L2

∗ and Gun → Gu in L2
∗. Taking the limit, we obtain the equality for u.�
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Exactly as in [daPr/Lun07] we obtain the following result on the spectrum
of G:

Corollary 4.26 For any z ∈ σ(G) and k ∈ Z we have z + 2 π
T
ki ∈ σ(G).

Moreover 0 is a simple eigenvalue of G.

Proof For �xed k ∈ Z consider the operator Tku(t, x) = e2k π
T

itu(t, x). Since
T is unitary the spectrum of G is equal to the spectrum of T−1

k GTk = G +
(2ki π

T
)Id where the equality holds, because the factors cancel out everywhere,

except for the derivative with respect to t where the product rule applies.
This proves the �rst statement.
Since every unique invariant measure is ergodic, we also have the equivalent
property (see [daPr/zab03]):
If u ∈ L2

∗ ful�lls Pτu = u for every τ > 0 then u is equal to a constant in L2
∗.

Now assume Gu = 0. Then we have:

Pτu− u =

∫ τ

0

PsGuds = 0 for all τ > 0

Hence, the kernel of G is one-dimensional and contains exactly the constants.
Let now u ∈ KerG2 that is Gu ∈ KerG. Thus, we must have Gu ≡ c for
some constant c. But since

∫
Gudv = 0 by 4.25 we can deduce c = 0, thus u

already was in Ker G and we have Ker G2 =KerG. �

4.4 Asymptotic Behaviour of the Semigroup

Having obtained a unique invariant measure for the semigroup of the reduced
equation, we may use ergodic theory to ivestigate the asymptotics of the two-
parameter semigroup. By a simple application of the ergodic theorem we get:

Proposition 4.27 Assume that f : H → R is such that∫ T

0

∫
H

f 2(x)νt(dx)dt < ∞ Then we have:

lim
τ→∞

1

τ

∫ τ

0

Pt,t+sf(x)ds =
1

T

∫ T

0

∫
H

f(x)νt(dx)dt

Proof Since every unique invariant measure is automatically ergodic, the
result follows directly from the equality (see [daPr/zab03] 3.2.4):

lim
τ→∞

1

τ

∫ τ

0

Psg(t, x)ds =

∫ T

0

∫
H

g(t, x)ν(dx)
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which is valid for all g ∈ L2
∗(ν). We have only to take g(t, x) = f(x) indepen-

dent of t and recall, that then Psg(t, x) = Pt+s,tf(x). �

Under the condition of weak convergence, we are able to characterize the
asymptotic behaviour of Ps,t for s → −∞ with the help of our evolution
system of measures.

Proposition 4.28 Assume that there is x ∈ H such that for s → −∞
P ◦ (X(t, s, x))−1 → νt weakly. Then we have for f ∈ Cb(H) :

lim
s→−∞

Ps,tf(x) =

∫
H

f(x)νt(dx)

Proof By de�nition of weak convergence. �

4.4.1 The Square Field Operator and an Estimate

In the following we will introduce the square �eld operator. Its importance
lies in the crucial role, that it will play in the proof of the following functional
inequalities.

De�nition 4.29 Γ(u, u) := Gu2 − 2uGu will be called the square �eld oper-
ator.

Lemma 4.30 (square �eld operator) On K we have:

Gu2 − 2uGu = 〈Σ∗B∗(t)∇xu, Σ∗B∗(t)∇xu〉

+

∫
H

[u(x + B(t)y, t)− u(x, t)]2 M(dy)

Proof Let u be given by u(t, x) = Φ(t)ei〈x,h(t)〉.
First note, that u2(t, x) = Φ2(t)ei〈x,2h(t)〉, so that by (4.8):

Gu2(t, x) = [2Φ′(t)Φ(t) + iΦ2(t)〈x, 2h′(t)〉] ei〈x,2h(t)〉 (4.10)

+ i〈A(t)x + f(t), 2h(t)〉Φ2(t) ei〈x,2h(t)〉 (4.11)

+ λ[B∗(t)2h(t)] Φ2(t) ei〈x,2h(t)〉

2u(t, x)Gu(t, x) = 2[Φ′(t) + iΦ(t)〈x, h′(t)〉] Φ(t)
(
ei〈x,h(t)〉)2 (4.12)

+ 2i〈A(t)x + f(t), h(t)〉Φ2(t)
(
ei〈x,h(t)〉)2 (4.13)

+ 2λ[B∗(t)h(t)] Φ2(t)
(
ei〈x,h(t)〉)2
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We see immediately, that (4.10)=(4.12) and (4.11)=(4.13), so that:

Gu2 − 2uGu
=

(
i〈b, B∗(t)2h(t)〉 − 1

2
〈Σ∗B∗(t)2h(t), Σ∗B∗(t)2h(t)〉

+

∫
H

[
ei〈B∗(t)2h(t),y〉 − 1− i〈B∗(t)2h(t), y〉

]
M(dy)

− 2i〈b, B∗(t)h(t)〉+ 2
1

2
〈Σ∗B∗(t)h(t), Σ∗B∗(t)h(t)〉

−2

∫
H

[
ei〈B∗(t)h(t),y〉 − 1− i〈B∗(t)h(t), y〉

]
M(dy)

)
× Φ2(t)ei〈x,2h(t)〉

= −〈Σ∗B∗(t)h(t), Σ∗B∗(t)h(t)〉Φ2(t)ei〈x,2h(t)〉

+

∫
H

[
e2i〈h(t),B(t)y〉 − 2ei〈h(t),B(t)y〉 + 1

]
M(dy)Φ2(t)ei〈x,2h(t)〉

= 〈Σ∗B∗(t)h(t)iΦ(t)ei〈x,h(t)〉, Σ∗B∗(t)h(t)iΦ(t)ei〈x,h(t)〉〉

+

∫
H

[
Φ2(t)e2i〈h(t),x+B(t)y〉 − 2Φ2(t)ei〈h(t),2x〉ei〈h(t),B(t)y〉 + Φ2(t)ei〈x,2h(t)〉]M(dy)

= 〈Σ∗B∗(t)h(t)∇xu(t, x), Σ∗B∗(t)h(t)∇xu(t, x)〉

+

∫
H

[(
Φ(t)ei〈h(t),x+B(t)y〉)2 − 2Φ(t)2ei〈h(t),x+x+B(t)y〉 +

(
Φ(t)ei〈x,h(t)〉)2]M(dy)

= 〈Σ∗B∗(t)h(t)∇xu(t, x), Σ∗B∗(t)h(t)∇xu(t, x)〉

+

∫
H

[(
Φ(t)ei〈h(t),x+B(t)y〉 − Φ(t)ei〈x,h(t)〉)2]M(dy)
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To see, that the equality also holds for sums of such u note that:

G(u + v)2 − 2(u + v)G(u + v)− 〈Σ∗B∗(t)∇x(u + v), Σ∗B∗(t)∇x(u + v)〉

−
∫

H

[(u + v)(x + B(t)y, t)− (u + v)(x, t)]2 M(dy)

=Gu2−2uGu−〈Σ∗B∗(t)∇xu, Σ∗B∗(t)∇xu〉+
∫

H

[u(x+B(t)y, t)−u(x, t)]2 M(dy)

+Gv2−2vGv−〈Σ∗B∗(t)∇xv, Σ∗B∗(t)∇xv〉+
∫

H

[v(x+B(t)y, t)−v(x, t)]2 M(dy)

+ 2G(uv)− 2vGu− 2uGv − 2 〈Σ∗B∗(t)∇xu, Σ∗B∗(t)∇xv〉

− 2

∫
H

[u(x + B(t)y, t)− u(x, t)][v(x + B(t)y, t)− v(x, t)] M(dy) (4.14)

so that by our previous result the �rst two lines in (4.14) vanish. To see that
the last two lines vanish as well we compute with u(t, x) = Φ(t)ei〈x,h(t)〉 and
v(t, x) = Ψ(t)ei〈x,k(t)〉 (recalling, that ∇xu = ih(t)u and ∇xv = ik(t)v):

G(uv)− vGu− uGv =

〈Σ∗B∗(t)[h(t) + k(t)], Σ∗B∗(t)[h(t) + k(t)]〉uv

− 〈Σ∗B∗(t)h(t), Σ∗B∗(t)h(t)〉uv − 〈Σ∗B∗(t)k(t), Σ∗B∗(t)k(t)〉uv

+

∫
H

[u(x + B(t)y, t)v(x + B(t)y, t)− v(x, t)u(x, t)]M(dy)

− u

∫
H

[v(x + B(t)y, t)− v(x, t)]M(dy)

− v

∫
H

[u(x + B(t)y, t)− u(x, t)]M(dy)

where the terms of the generator involving simple di�erentiation have can-
celed out, precisely because of the "product rule structure" of G(uv)−vGu−
uGv.
Cautiously comparing, we obtain the result by using bilinearity of the scalar
product and for the integrals an equality of the form:
(a− b)(c− d) = ac− bd− d(a− b)− b(c− d) �
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Assumption 4.31

(i) For every t, τ > 0 : U(t + τ, t)RH ⊂
√

RH and there is a strictly
positive C1 ∈ C[0,∞) such that:

‖U(t, s)Rx‖H0 ≤
√

C1(t− s)‖Rx‖H0 x ∈ H, t > s

(ii) There is a strictly positive C2 ∈ C[0,∞) such that:

M ◦ U(t + τ, t)−1 ≤ C2(τ)M τ > 0

that is C2(τ)M −M ◦ U(t + τ, t)−1 is a positive measure.

Lemma 4.32 (estimate of the square �eld operator) If B = Id, we
have for u ∈ K:√

〈DxPτu(t, x), RDxPτu(t, x)〉 ≤
√

C1(τ) Pτ

(
‖
√

RDxu‖
)

(t, x) (4.15)

∫
H

[Pτu(x + y, t)− Pτu(x, t)]2 M(dy)

≤ C2(τ)Pτ

(∫
H

[u(·+ y)− u(·)]2M(dy)

)
(x, t) (4.16)

So that combining the two estimates, we have:

Γ(Pτu, Pτu) ≤ max(C1, C2)(τ)PτΓ(u, u)
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Proof Let be z ∈ H and u(t, x) = Φ(t)ei〈x,h(t)〉, then:

〈DxPτu(t, x), Rz〉
=〈iU∗(t + τ, t)h(t + τ)Pτu(t, x), Rz〉

=

〈
iU∗(t + τ, t)h(t + τ)

∫
H

u(t + τ, y)P ◦X(t + τ, t, x)−1(dy), Rz

〉
=

∫
H

〈iU∗(t + τ, t)h(t + τ)u(t + τ, x), Rz〉P ◦X(t + τ, t, x)−1(dy)

=Pτ 〈iU∗(t, t− τ)h(t)u(t, x), Rz〉
=Pτ 〈Dxu(t, x), U(t, t− τ)Rz〉

=Pτ 〈Dxu(t, x),
√

R
√

R
−1

U(t, t− τ)Rz〉

=Pτ 〈
√

(R)Dxu(t, x),
√

R
−1

U(t, t− τ)Rz〉 (+)

≤Pτ‖
√

(R)Dxu(t, x)‖‖
√

R
−1

U(t, t− τ)Rz‖
=Pτ‖

√
(R)Dxu(t, x)‖‖U(t, t− τ)Rz‖H0

≤Pτ‖
√

(R)Dxu(t, x)‖
√

C1(τ)‖Rz‖H0

=Pτ‖
√

(R)Dxu(t, x)‖
√

C1(τ)‖
√

Rz‖

Now, for every pair (t, x) choosing z = DxPτu(t, x) we obtain:

〈DxPτu(t, x), RDxPτu(t, x)〉

≤
√

C1(τ) ‖
√

RDxPτu(t, x)‖ Pτ

(
‖
√

RDxu‖
)

(t, x)

or √
〈DxPτu(t, x), RDxPτu(t, x)〉 ≤

√
C1(τ) Pτ

(
‖
√

RDxu‖
)

(t, x) (4.17)

Note that we have used the special form of u only up to equation (+), but by
linearity of P and Dx it is clear that this also holds for sums. So we obtain
(4.17) on all of K
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Setting P̃ := P ◦X(t + τ, t, 0)−1 and M̃ := M ◦ U(t + τ, t)−1 we have for
general u ∈ K: (setting τ̃ := t + τ for brevity)∫

H

|Pτu(x + y, t)− Pτu(x, t)|2 M(dy)

=

∫
H

∣∣∣∣∫
H

u(U(τ̃ , t)(x + y) + z, τ̃)− u(U(τ̃ , t)x + z, τ̃)P̃ (dz)

∣∣∣∣2 M(dy)

≤
∫

H

(∫
H

|u(U(τ̃ , t)(x + y) + z, τ̃)− u(U(τ̃ , t)x + z, τ̃)|2P̃ (dz)

)
M(dy)

=

∫
H

(∫
H

|u(U(τ̃ , t)(x + y) + z, τ̃)− u(U(τ̃ , t)x + z, τ̃)|2M(dy)

)
P̃ (dz)

=

∫
H

(∫
H

|u(U(τ̃ , t)x + y + z, τ̃)− u(U(τ̃ , t)x + z, τ̃)|2M̃(dy)

)
P̃ (dz)

≤C2(τ)

∫
H

(∫
H

|u(U(τ̃ , t)x + y + z, τ̃)− u(U(τ̃ , t)x + z, τ̃)|2M(dy)

)
P̃ (dz)

=C2(τ)Pτ

(∫
H

|u(·+ y)− u(·)|2M(dy)

)
(x, t) �

Corollary 4.33√
〈DxPτu(t, x), DxPτu(t, x)〉 ≤ ‖U(t + τ, t)‖Pτ (‖Dxu‖) (t, x) (4.18)

Proof Reconsidering the proof above and setting R = Id yields the result.�
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4.4.2 Functional Inequalities

Following [Röck/Wang03], we will now prove a Poincaré and a Harnack in-
equality.

De�nition 4.34

ut :=

∫
H

u(t, x)νt(dx)

Proposition 4.35 Assume that the νt have uniformly bounded �rst mo-
ments, that is: supt{

∫
H
‖x‖νt(dx)} < ∞ Then we have for all u ∈ K:

lim
τ→∞

(
sup

t
|Pτu(t, x)− ut+τ |

)
= 0 for every �xed x

Proof We have, since ut+τ :=
∫

H
u(t+τ, y)νt+τ (dy) = Pt,t+τu(t+τ, ·)(y)νt(dy)

by the property of the evolution system :

|Pτu(t, x)− ut+τ | =
∣∣∣∣∫

H

Pt,t+τu(t + τ, ·)(x)− Pt,t+τu(t + τ, ·)(y)νt(dy)

∣∣∣∣
≤ ‖DxPt,t+τu(t + τ, ·)‖∞

∫
H

|x− y|νt(dy)

≤ ‖U(t + τ, t)‖‖PτDxu(t, ·)‖∞
∫

H

|x− y|νt(dy)

≤ Me−ωτ‖Dxu(t + τ, ·)‖∞
∫

H

|x− y|νt(dy)
τ→∞−→ 0

since the integral is bounded by assumption and ‖Dxu(t, x)‖ = ‖h(t)‖ but
h : R → H is continuous and periodic, hence bounded. �

Proposition 4.36 (Poincaré Inequality) Given assumption 4.31 and B =
Id then we have for C(τ) := max

(∫ τ

0
C1(s)ds,

∫ τ

0
C2(s)ds

)
:

Pτu
2 − (Pτu)2 ≤ C(τ)PτΓ(u, u) for all τ > 0, u ∈ K (4.19)

Proof Set f(s) := Pτ−s(Psu)2 Then we have by the product rule:

d

ds
f(s) = −Pτ−sG(Psu)2 + Pτ−s2PsuGPsu

= −Pτ−s[G(Psu)2 − 2PsuGPsu] = −Pτ−sΓ(Psu, Psu)
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Hence,

− d

ds
f(s) = Pτ−sΓ(Psu, Psu)

= Pτ−s 〈Σ∗∇xPsu, Σ∗∇xPsu〉

+ Pτ−s

∫
H

[Psu(x + y, t)− Psu(x, t)]2 M(dy)

≤ C1(s)Pτ−sPs 〈Σ∗∇xu, Σ∗∇xu〉 by (4.15)

+ C2(s)Pτ−sPs

∫
H

[u(x + y, t)− u(x, t)]2 M(dy) by (4.16)

Integrating with respect to s and noting that f(0) = Pτf
2 and f(t) = (Pτf)2

we obtain:

Pτf
2 − (Pτf)2 ≤

(∫ τ

0

C1(s)ds

)
Pτ 〈Σ∗∇xu, Σ∗∇xu〉

+

(∫ τ

0

C2(s)ds

)
Pτ

∫
H

[u(x + y, t)− u(x, t)]2 M(dy)

and the result is proved. �

Corollary 4.37 Let be C as in 4.36.
Given that C(∞) < ∞ we also have for all u ∈ K:∫

[0,T ]×H

[u(t, x)− ut]
2ν(dt, dx) ≤ C(∞)

∫
[0,T ]×H

Γ(u, u)ν(dt, dx)

Proof Integrating (4.19) with respect to ν yields, because of invariance:∫
[0,T ]×H

u2 − (Pτu)2ν(dt, dx) ≤ C(τ)

∫
[0,T ]×H

Γ(u, u)ν(dt, dx)

Letting τ →∞ and using 4.35 together with dominated convergence we have:∫
[0,T ]×H

u2 − (ut)
2ν(dt, dx) ≤ C(∞)

∫
[0,T ]×H

Γ(u, u)ν(dt, dx)
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Since u does not depend on x anymore, we have:∫
[0,T ]×H

[u(t, x)− ut]
2ν(dt, dx) =

∫
[0,T ]×H

u2(t, x)− 2u(t, x)ut + u2
t ν(dt, dx)

=

∫
[0,T ]×H

u2(t, x) + u2
t ν(dt, dx)− 2

∫
[0,T ]

ut

∫
H

u(t, x)νt(dx)︸ ︷︷ ︸
ut

dt

=

∫
[0,T ]×H

u2(t, x)− u2
t ν(dt, dx)

and the result follows. �

For the following Harnack inequality we need a de�nition:

De�nition 4.38

ρ(x, y) := inf{ ‖z‖ :
√

Rz = x− y}

with the usual convention that inf ∅ = ∞ , so ρ may take the value in�nity
if (x− y) /∈ Im

√
R.

The de�ntion of ρ is closely related to the notion of the pseudo inverse, for
information on that see [Spde07] appendix B. The vague intuition for the
term ρ in the Harnack inequality might be explained as follows: the operator√

R governs the di�usion of the underlying equation, if there is no di�usion
possible from x to y then we have no result.

Proposition 4.39 (Harnack Inequality)

|Pτu(y)|2 ≤ Pτu
2(x) exp

[
ρ2(x, y)∫ τ

0
1

h(s)
ds

]
for all u ∈ Cb (4.20)

Proof First, let be u ∈ K such that u is strictly positive. Since
Pτ−s(Psu)2(t, x) will then also be strictly positive we can de�ne:

Φ(s) := log[Pτ−s(Psu)2(t, xs)]

where xs is given by:

xs := x +
(y − x)

∫ s

0
1

h(τ−u)
du∫ τ

0
1

h(u)
du
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Note that we have x0 = x and xτ = y.
Di�erentiating Φ we obtain:

d

ds
Φ(s) =

d
ds

Pτ−s(Psu)2(t, xs)

Pτ−s(Psu)2(t, xs)
(4.21)

and for the numerator:

d

ds
[Pτ−s(Psu)2(t, xs)] =

d

ds
[Pτ−s(Psu)2](t, xs) +

〈
Dx[Pτ−s(Psu)2](t, xs),

dxs

ds

〉
= −GPτ−s(Psu)2(t, xs) + Pτ−s[2PsuGPsu](t, xs)

+
1

h(τ − s)
∫ τ

0
1

h(u)
du

〈
Dx[Pτ−s(Psu)2](t, xs), (y − x)

〉
= −Pτ−sΓ(Psu, Psu)

+
1

h(τ − s)
∫ τ

0
1

h(u)
du

〈
Dx[Pτ−s(Psu)2](t, xs), (y − x)

〉
(4.22)

We will now estimate 〈Dx[Pτ−s(Psu)2](t, xs), (y − x)〉:

〈
Dx[Pτ−s(Psu)2](t, xs), (y − x)

〉
= inf

{z:
√

Rz=x−y}

〈
Dx[Pτ−s(Psu)2](t, xs),

√
Rz
〉

(x− y) ∈ Im
√

R

≤
√
〈RDx[Pτ−s(Psu)2](t, xs), Dx[Pτ−s(Psu)2](t, xs)〉ρ(x, y) Cau.-Schw.

≤ ρ(x, y)
√

h(τ − s)Pτ−s

(√
〈RDx(Psu)2, Dx(Psu)2〉

)
(t, xs) by (4.15)

≤ 2ρ(x, y)
√

h(τ − s)Pτ−s

(
Psu
√
〈RDx(Psu), Dx(Psu)〉

)
(t, xs) chain rule

(4.23)
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Combining (4.21),(4.22) and (4.23) we obtain:

d

ds
Φ(s) ≤ −Pτ−sΓ(Psu, Psu)

Pτ−s(Psu)2(t, xs)

+

1
h(τ−s)

R τ
0

1
h(u)

du
2ρ(x, y)

√
h(τ − s)Pτ−s

(
Psu
√
〈RDx(Psu), Dx(Psu)〉

)
(t, xs)

Pτ−s(Psu)2(t, xs)

writing out Γ but omitting the non-local part, we get:

≤ −Pτ−s (〈RDx(Psu), Dx(Psu)〉) (t, xs)

Pτ−s(Psu)2(t, xs)

+

1√
h(τ−s)

R τ
0

1
h(u)

du
2ρ(x, y)Pτ−s

(
Psu
√
〈RDx(Psu), Dx(Psu)〉

)
(t, xs)

Pτ−s(Psu)2(t, xs)

=
1

Pτ−s(Psu)2(t, xs)

× Pτ−s

(
(Psu)2

[
2H

√
〈RDx(Psu), Dx(Psu)〉

Psu
− 〈RDx(Psu), Dx(Psu)〉

(Psu)2

])
(t, xs)

where we have set H := ρ(x,y)√
h(τ−s)

R τ
0

1
h(u)

du
for brevity.

Furthermore, setting G :=

√
〈RDx(Psu),Dx(Psu)〉

Psu
:

d

ds
Φ(s) ≤ 1

Pτ−s(Psu)2(t, xs)
Pτ−s

(
(Psu)2

[
−G2 + 2HG

])
(t, xs)

=
1

Pτ−s(Psu)2(t, xs)
Pτ−s

(
(Psu)2

[
−G2 + 2HG−H2 + H2

])
(t, xs)

≤ 1

Pτ−s(Psu)2(t, xs)
Pτ−s

(
(Psu)2

[
H2
])

(t, xs)

= H2
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since H depends neither on xs nor on t. Integration over s yields:

log[(Pτu)2(t, y)]− log[(Pτu
2)(t, x)] = Φ(τ)− Φ(0)

≤
∫ τ

0

H2(s)ds

=

∫ τ

0

ρ2(x, y)

h(τ − s)(
∫ τ

0
1

h(u)
du)2

ds

=
ρ2(x, y)∫ τ

0
1

h(u)
du

Hence, applying the exponential yields:

(Pτu)2(t, y) ≤ Pτu
2(t, y)

ρ2(x, y)∫ τ

0
1

h(u)
du

and the proof is complete for positive functions.
To obtain the result for general u, note �rst, that it is su�cient to have it
for |u|, since we have:

|Pτu(t, y)|2 ≤ [Pτ |u|(t, y)]2 ≤ Pτu
2(t, x) exp

[
ρ2(x, y)∫ τ

0
1

h(s)
ds

]

Of course, we cannot take modulus without leaving K, but as K is an algebra
we may take the square of our functions. Thus, let be u ∈ Cb and ε > 0.
Then f :=

√
|u| ∈ Cb. Now, by 4.40 we can approximate f pointwisely by

functions un from K. Then, u2
n +ε is strictly positive, it will approach |u|+ε

and since the approximating functions are uniformly bounded, we can take
limits in (4.20) and obtain the result via dominated convergence and then
letting ε → 0. �

Lemma 4.40 For every f ∈ Cb we can �nd a sequence un ∈ K such that:

• un → f pointwisely

• supx,n |un(x)| ≤ 1 + supx |f(x)|
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Proof We try to approximate a given f ∈ Cb as follows:
Let be (ek)k∈N a complete orthonormal system in D(A∗). Let be

fn(h) := gn(Pnh)

where Pn : H → Rn h 7→ (〈h, e1〉, . . . , 〈h, en〉)
and gn : Rn → R (x1, . . . , xn) 7→ f(x1e1 + · · ·+ xnen)

Note that each gn is continuous and bounded and that fn = f on
span{e1, . . . , en}. Moreover, we have Pn → Id strongly and hence fn → f
pointwisely.

To obtain an approximation by functions of K we now need to approach
every gn by trigonometric polynomials. So let be g : Rd → R continuous and
bounded. For each n ∈ N let be be φn a function that coincides with g on
{‖x‖∞ ≤ n} vanishes on {‖x‖∞ ≥ n+1} and is still continuous. Since φn can
be extended to a continuous (n+1)-periodic function, we can approximate it
with respect to the supremum norm on {‖x‖∞ ≤ n + 1} with trigonometric
polynomials, by Fejér's Theorem. Let us call g(n) an approximation of φn on
{‖x‖∞ ≤ n + 1} up to 1

n
, that is we have:

sup
‖h‖∞≤n+1

|g(n)(h)− φn(h)| < 1

n

This implies, of course:

sup
‖h‖∞≤n

|g(n)(h)− g(h)| < 1

n

hence, by construction, we have g(n) → g pointwisely for n → ∞ and by
periodicity it is clear that we have supx,n |g(n)(x)| ≤ 1 + supx |g(x)|.

Now, applying the above approximation to our functions gn from above,
we denote:

un(h) := f (n)
n (h) := g(n)

n (Pnh)

and an easy calculation shows that f
(n)
n is indeed a function from K, since

we have:

ei〈(k1,...,kn),Pnh〉 = ei〈(k1,...,kn),(〈h,e1〉,...,〈h,en〉)〉

= ei(〈h,k1e1〉+···+〈h,knen〉) = ei〈h,k1e1+···+knen〉
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and (k1e1 + · · ·+ knen) ∈ D(A∗).

To see that f
(n)
n (h) → f(h) for each �xed h we calculate:

|f(h)− f (n)
n (h)| ≤ |f(h)− fn(h)|+ |fn(h)− f (n)

n (h)|

We have already stated that the �rst tern will tend to 0. For the second term,
note, that for �xed h there is N independent of n such that ‖Pnh‖∞ < N .
Thus, we obtain:

|fn(h)− f (n)
n (h)| = |gn(Pnh)− g(n)

n (Pnh)| ≤ sup
‖x‖∞≤N

|gn(x)− g(n)
n (x)| < 1

n

whenever n is bigger than N . �
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Appendix A

Cores

As it is often di�cult to describe the action of a generator G on the whole of
its domain D, one would like to �nd a subspace, C say, of D which is in some
sense �tted to G. For example, a space of smooth functions might be suited
to a di�erential operator. When this is possible without loss of information,
in the sense that the whole generator can be reconstructed from its values
on the test functions, such a C is called a core. Formally:

De�nition A.1 Let be G a generator of a strongly continuous semigroup on
a Banach space (B, ‖ ‖) with domain D. A subspace C of D is called a core
for G if it is dense in D with respect to the graph norm ‖ ‖G on D, that is
‖x‖G := ‖x‖+ ‖Gx‖.

So the above mentioned reconstruction can be carried out by taking the
closure of the graph of the restricted operator. There are other character-
izations of a core available. We will cite one and derive another one from
it. The material here is taken from [Arendt86], another useful reference for
cores is [Eberle97].

Proposition A.2 Let G be the generator of a strongly continuous semigroup
S(t) and let C be a subspace of D(G). If S is the only semigroup, which has
a generator that extends G|C, then C is a core.

We will sketch a proof:
Notice that the contraposition of the statement is: If C is not a core than
G|C admits more than one generating extension. So the idea is to construct a
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semigroup T (t) di�erent from S, whose generator coincides with G on C. By
a pertubation result, whose proof we omit here, G+P will be a generator for
any P that is continuous with respect to the graph norm on D(G). Since we
do not want to change the generator on C, we need a P that vanishes on C
but not on all of D(G). Since C is not a core, hence not dense in D(G) with
respect to the graph norm, we have the existence of a linear functional f on
D(G) continuous for the graph norm, that vanishes on C but not everywhere.
(Recall that a subspace is dense if and only if every continuous functional
vanishing there is trivial). Setting P (x) = f(x)u for a �xed 0 6= u ∈ D(G)
we have the reqired pertubation, and it is clear that G + P 6= G

A complete proof can be found in [Arendt86] page 46.

Lemma A.3 Let S(t) be a strongly continuous semigroup with generator G
on a Banach space B. Let C be a dense subspace of D(G) that is invariant
under S. Then C is a core.

Proof We have to prove, that G is the only generating extension of G|C .
Assume A is another generating extension, with semigroup T (t). Consider
the following Cauchy problem, where f ∈ C:

dX(t) = GX(t)dt , X(0) = f

By de�nition S(t)f is a solution that stays in C by assumption. So S(t)f is
also a solution for the problem:

dX(t) = AX(t)dt , X(0) = f

since G and A coincide on C. Of course T (t)f is also a solution of the second
problem. As both problems admit a unique solution (see [Pazy74] Chapter
4) we conclude S(t)f = T (t)f whenever f ∈ C. As the operators S(t) and
T (t) are continuous for any t, and C is dense in B (as it is dense in a dense
subset)we have S = T . �



Appendix B

Lévy's Continuity Theorem in

In�nite Dimensions

In this section we follow [Vakh81]. [Somm07] was helpful.
Consider a sequence of probability measures µn on a real separable Hilbert
space H, and the sequence fn of their respective characteristic functions.
On Rd Lévy's continuity theorem states, that the pointwise convergence of
fn to a limit function f , which is continuous in 0, implies that f is the char-
acteristic function of some probability measure µ to whom the µn converge
weakly.

On an in�nite dimensional Hilbert space, this need no longer hold: Let
{ek}k∈N be an orthonormal basis of H and let νn be the standard normal
distribution on Rn. Let Tn : Rn → H be an isometric embedding with
Im(Tn) = span(e1, ..., en)
Then the image measure Tnνn on H will have characteristic function:

fn(h) = e−
1
2

Pn
k=1 |〈h,ek〉|2

It is clear, that limn→∞ fn(h) = e−
1
2
‖h‖2 =: f(h) and that f is continuous in

the norm topology.
Alas, f is not a characteristic function. To see this, note that every charac-
teristic function must be even weakly continuous, since

E[ei〈hn,X〉]
hn

w→h−→ E[ei〈h,X〉]

holds by dominated convergence.
But f is not weakly continuous. We have ek

w→ 0 for k →∞ but f(ek) = e−
1
2

for each k.
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So, we have to impose stronger conditions on the limit function f to
assure that it is itself a characteristic function. It turns out that one has to
ask for continuity with respect to a weaker topology, the Sazonov topology.

De�nition B.1 The Sazonov topology on a Hilbert space H is the coarsest
topology such that the functions

x 7→ 〈Sx, x〉

are continuous for any positive , self-adjoint trace class operator S.

With the help of this de�nition, we can formulate an extension of Bochner's
theorem:

Theorem B.2 (Sazonov) A functional f on a Hilbert space H is the char-
acteristic function of a measure on H, if and only if:

• f is positive de�nite

• f(0) = 1

• f is continuous in the Sazonov topology

Proof See [Vakh81] 3.1.6 �

For the proof of 4.10 we have tried to make use of this theorem without
success. However, we give the underlying idea.
Recall that our limit function was essentially of the form:

f(h) := exp

{∫ t

−∞
λ(Lrh)dr

}
where the Lr := B∗(r)U∗(t, r) were linear operators.
f(0) = 1 is trivial and positive de�niteness of the limit is rather easy to show.
For the continuity, we know that λ is Sazonov continuous and then it is not
hard to show that also λ ◦ L is Sazonov continuous for any bounded linear
operator L. Hence, we have pointwise convergence under the integral, and the
result would follow by dominated convergence, if we had an integrable bound
uniform in hn as hn → h. Regrettably, we were unable to �nd norm-bounded
neighborhoods in the Sazonov topology and without those this approach
seems to be hopeless.
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