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1. Introduction
Life’s necessities: Food,
water, shelter, . . . noise.

(from [Hän02])

Stochastic resonance (SR) is a quite prominent example for a convincingly sim-
ple model from an applied science (climatology), that not only has found lots
of applications in other sciences but has also inspired mathematicians to adapt
their methods and develop new results to faciliate a rigorous study of the
model and its properties.

In this text we present, after a short review of the development of the model
and some interesting applications, two important mathematical approaches
to SR: The sample paths large deviations approach based on the Freidlin-
Wentzell theory, which was the first rigorous mathematical approach to SR,
and the pathwise approach developed by N. Berglund and B. Gentz. A sum-
mary of the mathematical results can be found in Section 1.2.

1.1. SR – The Physical Model and its Applications

1.1.1. Historical Note

In the eighties of the last century, scientists analyzing the earth mean tem-
perature curve of the last 400,000 years (which had been calculated from the
biochemical composition of antarctic ice cores) made the observation that the
earth climate shows two stable states (“warm age”, “ice age”), which alter-
nate periodically every 100,000 years. The changes from warm to ice age and
back are matching noticeably well with planetary cycles (“Milankovich cy-
cles”), where the gravitational influence of other planets in the solar system
makes the earth slightly deviate from its standard orbit around the sun. How-
ever, these slight fluctuations in the distance between earth and sun and the
resulting fluctuations in the amount of incoming energy explain only a small
fraction of the temperature difference between warm and ice age. This dis-
crepancy was the motivation for the development of SR. The basic idea of the
model is that “warm age” and “ice age” are stable states in the otherwise dy-
namic energy balance development of the earth, and that the quasi-random
fast fluctuations of the earth mean temperature, which are caused by the day-
to-day changes of the weather, together with the comparably slow fluctuations
of incoming energy from the sun, which change the energy balance configu-
ration, trigger the transition between these stable states.

A more detailed exposition of the so-called energy-balance-model and the
role of SR therein can be found e.g. in [IP04], where also more references
are provided. Among the pioneering publications are [BPSV83] and [Nic82].
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Figure 1.1.: Asymmetric double-well potential Vt(x) for different values of t.

However, specialists are nowadays convinced that SR can not sufficiently de-
scribe the dynamics underlying the transitions between warm and ice ages,
which is why we do not cover the topic in more detail.

However, other phenomena analyzed in climatology seem to follow an SR
scheme: New observations and long-time climate simulations point out that
SR might be an appropriate model to describe intermediate changes in the
atlantic circulation during the last ice age, the so-called Dansgaard–Oeschger
events (see [GR02]). It remains to be seen whether refined simulations can
confirm this result.

Before we describe applications of SR beyond climatology let us describe
the underlying physical model.1

1.1.2. The Physical Model

Consider the graph of the function Vt : R → R defined by

Vt(x) :=
1
4
· x4 − 1

2
· x2 + λ0 · cos(2π · εt) · x , (1.1.1)

where t parametrizes ‘time’ and λ0 > 0 is a constant such that for any t ∈ R

the graph of Vt(x) has two separate local minima. This is called an asymmetric
double well potential, and it changes continuously in time with period 1

ε . See
Figure 1.1 for the graph of Vt(x) in the cases t ∈

{
0, 1

4ε , 1
2ε , 3

4ε

}
.

1Readers who are generally interested in stochastic models in climatology will easily find a wide
array of research papers available. Valuable starting points are [vSvSM01] and the proceedings
volumes [IvS01, IM02].
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1.1. SR – The Physical Model and its Applications

It is obvious that an unperturbed (‘deterministic’) particle in one of the po-
tential wells will remain in that well for infinitely long time, independent of
whether the well is deep or flat.

If on the other hand there is a strong stochastic perturbation acting on the
particle, it will randomly move forth and back between the two wells, again
independent of their depth.

The most interesting situation occurs when there is a moderate stochastic
perturbation acting on the particle. The particle will then typically stay in the
well it occupies for some time, until the random diffusion drives it over the
potential barrier into the other well. It is intuitively clear that the exit from
a flat well happens faster than the exit from a deep well (more precisely, we
will show below that the time the process typically spends in a well grows
exponentially fast with the depth of the well). Let us call the typical exit time
from a flat well Tw and the exit time from a deep well TW .

If now the motion speed of the potential is such that the flat well remains
‘almost flat’ for longer than Tw, a typical particle will leave the flat well. If
in the same setting the period of time during which a well is deeper than the
other is shorter than TW , a typical particle will stay inside the deep well – until
it becomes flat again. In this situation, the typical particle will always jump
from the flat into the deep well, remain there until the deep well becomes
(almost) flat, jump back, etc. This concurrence, where a slight modification of
the basic situation (the potential) and a mild stochastic perturbation together
faciliate a transition between different stable states, is called noise-induced
synchronization or stochastic resonance (SR).

Actually, there are different models for SR (see also below) and a number of
modifications (e.g. SR in a symmetric double-well potential, non-continuous
simplifications of the potential up to a two-state system, SR-like behavior of a
particle in a multiwell-potential (one- or multidimensional), etc.). However, in
this text we will consider the model of a particle under stochastic perturbation
in a continuously changing double-well potential, as described above.

1.1.3. Applications of SR

In this subsection we provide an overview of some interesting applications of
SR beyond the original climatology results. The applications divide roughly
into two groups, one of biological and one of physical topics.

Biology. There are a great number of research results concerning SR in biol-
ogy. Most of them belong to neurology and behavior research. There are lots
of scientific results showing that the presence of a certain amount of (electric
and/or mechanical) noise makes neurons and sense organs more sensitive to
input signals. This has behavioral consequences in so far as a better percep-
tion of the environment lets animals and humans react in a more appropriate
way. Possible applications of research in this direction include a better under-
standing of neurological diseases and technical devices like gloves that raise
the tactile sensitivity of the user by inducing electric or mechanic noise (see
e.g. [Hän02] for a recent review and further references, and [KNE+03] for a
concrete application example in health care).

However, the underlying concept of SR is different from ours: The concept

3
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Figure 1.2.: A different concept: SR in neurons (Figure from [Hän02]).

of SR in most of the applications to biology is the following: A signal alone
(e.g. the electric field emitted by moving zooplancton) is too weak to be rec-
ognized, because the respective receptor (e.g. a sense organ of a paddlefish)
only reacts if incoming signals are above a certain threshold. But if the sig-
nal is complemented by noise (e.g. the emissions of hundreds of creatures),
the combined effect overcomes the threshold and enables recognition of the
signal (see Figure 1.2).

Even though most of the applications of SR in biology belong to the above-
mentioned concept, there also are biological applications of SR as described in
Subsection 1.1.2 above. For example, there is strong empirical evidence that
neuronal growth, especially the transition between forward and backward
motion of the leading edge of a neuronal growth cone, is subject to a stochas-
tic resonance mechanism (see e.g. [BLK06]). In this case, the stable states are
‘forward motion’ and ‘backward motion’.

Physics. After the invention of SR in climatology, it took some time until
the topic gained momentum. An important result that established the concept
of SR outside climatology was published by McNamara and Wiesenfeld (see
[MW88], [MW89]), who also extended the underlying theory. They showed
the following result:

Consider a bistable ring laser, the stable states being the two directions
of oscillation (clockwise, counterclockwise). An optical modulation device is
placed in the ring laser beam. It is possible to control the direction of oscilla-
tion with such a device (see [RSW87]).

Now, two control signals are applied to the modulation device: A sinusoidal
signal with a frequency of e.g. 2 kHz (the ‘slow modulation’ of the SR model)
and a high-frequency noise with variable intensity. In this situation it is possi-
ble to specify an amount of noise which significantly optimizes the response
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1.2. Mathematical Treatment of SR

of the laser (i.e. the synchronization of transitions between the rotation direc-
tions to the periodic input signal) in comparison to the response without noise
or with too much noise.

Another example of SR in laser physics has been shown in [GMR99]: A
modulation of the control current plus a varied amount of noise causes the
polarization of a laser beam to flip according to an SR pattern.

An explicit analog simulation of SR has been done using so-called optical
tweezers. An optical tweezer is the real-world analogue to the tractor beam
‘invented’ in science fiction literature: A laser beam providing an attractive
force of about a trillionth (10−12) of a Newton on a particle. Based on this prin-
ciple, it is possible to use two laser beams, each controlled by a filter, to create
a force field that resembles a continuously changing double well potential. It
has been shown in [SL92], [BSPB04] that the perturbations caused by heat (at
room temperature) on a particle of 1 µm diameter in water, together with an
appropriate modulation of the abovementioned configuration of optical traps,
leads to transitions of the particle between the two traps which clearly follow
an SR pattern.

In [CDM03], the authors provide empirical evidence that even geomagnetic
polarity reversals follow an SR pattern, where the periodic slow modulation of
the bistable geomagnetic dynamo due to planetary (e.g. Milankovich) cycles –
directly or indirectly, possibly via climate changes, different spin, tidal effects
or other – coincides with fast fluctuations in the liquid core of the earth and
thus leads to periodic flips in the polarity of the earth’s magnetic field.

The comparably simple basic idea of SR has led to a huge amount of further
research, considering theoretical aspects and variations of the model as well as
various applications: The classical review on SR [GHJM98], which alone cites
more than 300 references, is by now (according to ISI Web of Science) cited
in more than 1,200 scientific articles. More topics remain open: An interesting
question for empirical research might e.g. be whether an SR-like mechanism
can appropriately explain the development of liquidity (or underlying psy-
chological factors) on the stock markets.

As final remark let us mention that, even though our focus is on SR with
periodic slow modulation, it has been shown that SR works with aperiodic
modulation as well (see e.g. [CCCI96]).

1.2. Mathematical Treatment of SR

In this section we summarize the main results of the following two chapters.

Freidlin’s approach. Apparently, the first mathematically rigorous treatment
of SR was published in the article [Fre00] by M. Freidlin. In this paper, Frei-
dlin analyzes the quasi-deterministic behaviour of a stochastic particle in a
multiwell potential landscape, based on the idea of a hierarchy of cycles of the
stable states. For each of the cycles rotation rate, exit rate and main state are de-
termined. This allows the identification of a (quasi-deterministic) metastable
state for any chosen pair of initial point and timescale.

5



1. Introduction

In the case of a stochastic particle in an asymmetric double-well poten-
tial Vt : R → R, the underlying result boils down to the following: Let the
potential Vt have two potential wells which are separated by a barrier. Let
0 < w < W be the respective depths of the flat and the deep potential well rel-
ative to the maximum of the barrier. Let Tw denote the exit time (i.e., time until
transition) from the flat well and TW the exit time from the deep well. Then
Tw is of the order exp

[ 2w
ε

]
, and TW is of the order exp

[ 2W
ε

]
. This fact has been

commonly used in physics for a long time and is known as “Kramer’s law”
or “Arrhenius’ law”. A rigorous formulation and proof based on Freidlin-
Wentzell theory of random perturbations of dynamic systems is presented in
Chapter 3.

If in this situation the potential is periodically “flipped” such that the flat
and the deep well are exchanged by each others after a period of time T with

Tw � T � TW ,

a synchronization of the particle position with the position of the deep well
(hence, SR) may be expected with high probability.

This one of is the simplest mathematically rigorous approaches to SR. How-
ever, it does not cover potentials that change continuously in time, which – at
least in terms of applications – is the much more natural approach.

The approach of Berglund and Gentz. In [BG02b], N. Berglund and B. Gentz
introduce a new sample-paths approach to SR. They consider two classes
– symmetric and asymmetric – of continuously and periodically modulated
double well potentials (in the asymmetric case, basically a generalization of
Vt defined in (1.1.1)) and the behaviour of a stochastically perturbed particle
therein. They show that there exists is a threshold for the noise intensity: Be-
low this value, there is no transition and above this value, transition happens
– both with probability exponentially close to 1. Furthermore, they precisely
specify the parameters (basically, barrier height and lenght of modulation pe-
riod) that control the behavior of the particle and they rigorously describe the
dependence of the abovementioned threshold on these parameters.

However, in [BG02b] only the symmetric case is completely presented and
proven. For the asymmetric case, only the results are presented and actually
very few of them proven. In Chapter 4, we provide a complete exposition of
the asymmetric case, with small optimizations of the results by Berglund and
Gentz.

Let us only sketch the general structure of the approach: In a first step, the
behavior of a deterministic (unperturbed) particle in the modulated potential
is analyzed. After that the behavior stochastically perturbed particle is esti-
mated with respect to the deterministic path. This is done in two parts, first
for noise intensity below the threshold and then for noise above the thresh-
old. The estimates in the stochastic case are based on the relation between the
stochastic process describing the motion of the particle in the potential – which
is modeled as the strong solution of a stochastic differential equation (SDE) –
and the process that solves a linearized version of that SDE.

Since Freidlin’s paper [Fre00], more mathematical research concerning SR
has been done. An interesting alternative to the approaches presented here
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1.2. Mathematical Treatment of SR

is the spectral power amplification approach that goes back to the work of
McNamara and Wiesenfeld [MW89] and has recently been further developed
e.g. by P. Imkeller and others (see e.g. [IP02, IP04]). The core idea of this ap-
proach is the following: Consider a randomly perturbed particle in an asym-
metric, periodically changing double well potential with period ∆. Then the
dependence of the spectral component of period ∆ of the particle’s path on the
strength of the stochastic perturbation is mathematically obtained. It is possi-
ble to identify the amount of noise for which the ∆-component of the path be-
comes maximal in comparison to other (weaker or stronger) amounts of noise.
This has been extensively analyzed for different variations of the SR model
(time/space discretization, up to a two-state Markov process), including com-
parisons of the results for the model variations. One of the main results of
this work is that intrawell fluctuations of the process may cause a dramatic
deviation of the ‘original’ model’s behavior from that of the reduced (Markov
chain) model.

Other mathematical approaches to SR make e.g. use of refined multidimen-
sional generalizations of diffusion exit results or of the Fokker-Planck equa-
tion characterizing the distribution of the stochastic particle in the double well
potential.

The aims (and structure) of this thesis. In Chapter 3, we provide a self-
contained, yet streamlined presentation of the large deviations approach to
SR via diffusion exit results, understandable for anybody with basic knowl-
edge in Stochastic Analysis. This chapter is based on the lecture notes [Gen03]
by B. Gentz, which are, however, not very much detailed. Thus, even though
the basic structure of the chapter follows that of [Gen03], most of the results
are based on other sources – especially [DZ98] and [FW98] – to obtain a com-
plete presentation of this approach to SR with all necessary results and proofs
included.

In Chapter 4, we present the pathwise approach to SR in an asymmetric
double-well potential. This chapter is based on the article [BG02b] by N. Berg-
lund and B. Gentz. However, in this article only the case of a symmetric double-
well potential is completely covered, whereas the case of an asymmetric po-
tential (which all the abovementioned applications belong to) is presented in
the fashion of an outline with many of the proofs missing. In our presentation,
the asymmetric case is treated completely in all detail.
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2. Mathematical Preliminaries

2.1. Prerequisites

The reader is assumed to have at least basic knowledge in probability theory
and stochastic analysis (stochastic processes, stochastic integration, stochas-
tic differential equations), especially the theory of Brownian motion. Further-
more, some knowledge of functional analysis is necessary.

More than sufficient preparation in stochastics is provided by the lectures
of Professor Röckner in probability theory (notes of these lectures (in German,
see [Röc03]) have been typeset by the author of this thesis and can be found on
his internet site, as well as that of Professor Röckner) and his introduction to
stochastic analysis (notes of parts of this lecture (again in German, see [Röc04])
have been typeset by S. Stolze).

2.2. Basic Notions

For any suitable space X and any subset A ⊂ X we denote by Ā the closure,
by Å the interior and by Ac the complement of A in X.

Inclusions of set are denoted as follows: “⊂” is used in the sense of “⊆”.
Whenever we exclude the identity of the compared sets, we use “ ”.

The infimum of a function over an empty set is defined to be ∞.
The derivative of a function ϕ with respect to time will often be denoted by

ϕ̇.
For a topological space X, B(X) will always denote the Borel σ-algebra, i.e.

the σ-algebra generated by the topology. Throughout this text, we will always
assume that probability spaces are completed; nevertheless, we will denote
the (completed) Borel σ-algebra by B(X). Furthermore, in a topological space
X the neighborhood N of a set A ⊂ X is an open set N ⊂ X such that A ⊂ N
(unless we explicitly note that A should be closed).

Let (X, d) be a metric space, m ∈ X, and δ > 0 a real number. Then

B(m, δ) :=
{

x ∈ X
∣∣ d(x, m) < δ

}
is the (open) ball of radius δ centered at m. The distance between a set A ⊂ X
and a point x ∈ Ac is given by

d(x, A) := inf
z∈A

d(x, z) ,

and the (closed) δ-blowup of A by

Aδ :=
{

y ∈ X
∣∣ d(y, A) 6 δ

}
.

As usual, R denotes the set of real numbers and R̄ := R∪ {∞} ∪ {−∞}.
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2. Mathematical Preliminaries

By ‖x‖ we denote the norm of any x ∈ Rd, and by |r| the absolute value of
r ∈ R.

The transpose of a matrix or vector M is denoted by MT .

2.2.1. Function Spaces and Norms

We fix a time interval [0, T] ⊂ R+.
We denote by

C := C
(
[0, T]; Rd)

the set of all continuous functions from [0, T] to Rd, and by

C0 := {ϕ ∈ C | ϕ0 = 0}

the subset of all functions in C starting at 0. For any ϕ from C or C0 we define

‖ϕ‖∞ := ‖ϕ‖[0,T] := sup
t∈[0,T]

‖ϕt‖ .

By

L2 := L2([0, T]; Rd)
we denote the set of all square-integrable functions from [0, T] to Rd. Further-
more, we set

H1 := H1
(
[0, T]; Rd) :=

{∫ ·

0
f (s) ds

∣∣∣∣ f ∈ L2
}

for the set of all absolutely continuous functions from [0, T] to Rd which have
a square-integrable derivative and start at 0. For any ϕ ∈ H1 we define

‖ϕ‖H1 :=
(∫ T

0
‖ϕ̇s‖2 ds

) 1
2

.
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3. SR through Freidlin-Wentzell
theory

Even though the theory presented in this chapter originally stems from [FW98],
the structure of chapter is mainly based on the lecture notes “Random Pertur-
bations of Dynamical Systems” by Barbara Gentz (cf. [Gen03]). Further fre-
quently used references are [DZ98], [DS01] and [FW98].1

In this chapter we provide a complete exposition of the large deviations
theory necessary to prove the diffusion exit results which form the basis of
Freidlin’s approach to SR.

We start with general large deviations theory and prove the classical theo-
rem by Schilder on large deviations sample paths of Brownian motion. After
that, we show how large deviations results can be generalized using the con-
traction principle and apply this to Schilder’s result to obtain a large devia-
tions principle for strong solutions of certain stochastic differential equations.

This lays the fundament for the second section of this chapter, where we
prove the classical results on diffusion exit from a domain: The behavior of a
stochastic particle in e.g. a potential well can be modeled by an SDE. The exit
of the particle from the well (or a certain domain therein) is a large deviation
from its expected behavior. Thus, the generalized large deviations principle
from the first section is the tool we need to analyze the diffusion exit behavior
of the particle. The results of this section justify the estimates for potential well
transition quoted in the first part of Section 1.2. Hence, they lay the foundation
to this simple mathematical approach to SR.

3.1. Large Deviations

Our main reason for studying large deviations is that we want to understand
the behaviour of strong solutions to stochastic differential equations in Rd of
the form{

dxε
t = b(xε

t) dt +
√

ε dWt

xε
0 = x ,

where we assume that the noise intensity
√

ε is small, and (Wt)t>0 is a d-
dimensional Brownian motion2.

1Every lemma/theorem/. . . carries a reference to the source for the original version it is based
on. A proof only carries a separate reference if it is not from the same source as the assertion.

2We assume throughout this text that the Brownian motion is continuous.
Throughout this chapter we assume that b, σ are bounded and uniformly Lipschitz contin-

uous – thus, a unique, strong solution exists.
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3. SR through Freidlin-Wentzell theory

It seems obvious that for sufficiently small ε the perturbed process xε
t should

be close to the solution of the deterministic ordinary differential equation{
dxt = b(xt) dt
x0 = x .

And indeed, if b is Lipschitz continuous with Lipschitz constant Lb, then we
have that

‖xε
t − xt‖ 6 Lb

∫ t

0
‖xε

s − xs‖ ds +
√

ε · ‖Wt‖ .

Applying Gronwall’s inequality this leads to the estimate

sup
t∈[0,T]

‖xε
t − xt‖ 6

√
ε · sup

t∈[0,T]
‖Wt‖ · exp[LbT] .

In other words, the behaviour of ‖xε
t − xt‖ for t ∈ [0, T] can be estimated if we

know the behaviour of the d-dimensional Brownian motion (Wt):

P
[

sup
t∈[0,T]

‖xε
t − xt‖ > δ

]
6 P

[
sup

t∈[0,T]
‖Wt‖ >

δ√
ε
· exp[−LbT]

]
.

Hence, to measure the event that xε
t deviates away from xt during [0, T], we

basically need to know the probability that Wt leaves a ball of some radius r
before the time T. This we can estimate using Lemma 3.1.1 below:

P
[

sup
t∈[0,T]

‖xε
t − xt‖ > δ

]
6 4d · exp

[
− δ2 · exp[−2LbT]

2d · εT

]
.

Let us take a closer look at this estimate. As might have been expected, the
probability of leaving a δ-neighborhood of the deterministic solution increases
with T and/or ε, and decreases as δ grows. More precisely, for increasing δ
and/or decreasing ε the probability of leaving the δ-neighborhood of xt decays
exponentially.

Hence, if we choose A ∈ B(C) such that no path (ϕt) ∈ A remains inside
the δ-neighborhood of the deterministic solution for all t ∈ [0, T], then the
path xε := (xε

t)06t6T of the solution of the perturbed equation satisfies the
inequality

P[xε ∈ A] 6 4d · exp
[
− δ2 · exp[−2LbT]

2d · εT

]
ε→0−−→ 0 . (3.1.1)

The event xε ∈ A for sets A as described above and ε → 0 is what we call a
large deviation: The expected behaviour would of course be xε /∈ A for any such
A, because a typical path xε should “remain near the deterministic solution”
for small enough ε > 0. In other words, when we look for large deviations
of a stochastic process, we consider atypical behaviour of that process. Our
first aim is to find the rate at which the probability in (3.1.1) tends to zero as
ε → 0, depending on the choice of A. To achieve this, we have to find a better
estimate for the probability, which takes into account the choice of A.
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3.1. Large Deviations

However, in general it is not possible to obtain the exact rate for the decay
of the probability, but only the exponential rate. To formulate this exponential
estimate, we select special sets A, namely δ-neighborhoods of some ϕ ∈ C

(with respect to the supremum norm ‖ · ‖[0,T] = ‖ · ‖∞). Our new aim for this
section is then to find a rate function I : C → [0, ∞] such that

P
[
‖xε − ϕ‖∞ < δ

]
≈ exp

[
− I(ϕ)

ε

]
as ε → 0.

Before we start into the theory of large deviations, let us prove the estimate
for the Brownian motion in Rd, which we have used above. We use the fol-
lowing notation:

Wε
t :=

√
ε ·Wt .

Lemma 3.1.1 (large deviations for Wε
t ). [DZ98, Lemma 5.2.1] For any (integer)

dimension d and any set of positive constants τ, ε, δ, the following estimate holds:

P
[

sup
t∈[0,τ]

‖Wε
t ‖ > δ

]
6 4d · exp

[
− δ2

2d · τε

]
. (3.1.2)

Proof. Let us first fix that for x = (x1, . . . , xd) ∈ Rd and any α > 0

{
x ∈ Rd ∣∣ ‖x‖2 > α

}
⊂

d⋃
i=1

{
x ∈ Rd

∣∣∣∣ |xi|2 >
α

d

}
.

If we denote by (W(1)
t ) a Brownian motion in R, we obtain the estimate

P
[

sup
t∈[0,τ]

‖Wε
t ‖ > δ

]
= P

[
sup

t∈[0,τ]
‖Wt‖2 >

δ2

ε

]

6 d · P
[

sup
t∈[0,τ]

(
W(1)

t
)2

>
δ2

d · ε

]
.

Since the laws of W(1)
t and

√
τ ·W(1)

t
τ

are identical, this estimate and time scal-

ing imply:

P
[

sup
t∈[0,τ]

‖Wε
t ‖ > δ

]
6 d · P

[
sup

t∈[0,1]

∣∣W(1)
t
∣∣ > δ√

τ · dε

]
. (3.1.3)

Because the distribution of Brownian motion is symmetric, i.e. W(1)
t and−W(1)

t
have the same law in C0, we see that

P
[

sup
t∈[0,1]

∣∣W(1)
t
∣∣ > η

]
6 2 · P

[
sup

t∈[0,1]
W(1)

t ) > η
]

= 4 · P
[
W(1)

1 > η
]

6 4 · exp
[
−η2

2

]
,

where the equation is an application of the reflection principle. Combining the
this with (3.1.3) completes the proof.
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3. SR through Freidlin-Wentzell theory

3.1.1. Basic Definitions

Situation 3.1.2 (basic general situation). Let X be a topological space, and B a
σ-algebra over X such that B ⊃ B(X).3

We consider a family {µε}ε>0 of probability measures on the measurable
space (X, B). We want to describe the limiting behaviour of the measures µε

as ε → 0 by a rate function I. More precisely, we want to understand, whether
the exponential bounds on the values that µε assigns to sets from B can be
asymptotically formulated in terms of such a rate function. Such an asymptot-
ical formulation of exponential bounds we will call the large deviations princi-
ple.

Before our first definitions we recall that for any topological space X a func-
tion f : X → R̄ is named lower semi-continuous if

{
x ∈ X

∣∣ f (x) 6 α
}

is a
closed set in X for any α ∈ R.

Definition 3.1.3 (rate function). [DS01, p. 32–33] A lower semi-continuous
function I : X → [0, ∞] is named a rate function. (In [FW98], rate functions
are called action functional.)

If for all α ∈ R the level sets

ΦI(α) :=
{

x ∈ X
∣∣ I(x) 6 α

}
of a rate function I are compact subsets of X, we call I a good rate function (by
lower semi-continuity of I, the level sets ΦI are closed anyway).

Definition 3.1.4 (large deviations principle). [DZ98, pp. 5, 7] We say that the
family of measures {µε}ε>0 satisfies the large deviations principle with rate func-
tion I if, for all A ∈ B, the following holds:

− inf
x∈Å

I(x) 6 lim inf
ε→0

ε log µε(A) 6 lim sup
ε→0

ε log µε(A) 6 − inf
x∈Ā

I(x) .

(3.1.4)

For better differentiation from the following notion of a weak large deviations
principle, we will also call the principle defined above a full large deviations
principle.

The collection {µε}ε>0 is said to satisfy a weak large deviations principle with
rate function I, if the upper bound in (3.1.4) holds for all compact sets A (in-
stead of all A ∈ B) and the lower bound holds for all A ∈ B.

In general, the limit in (3.1.4) does not exist, i.e. the lim sup and lim inf are
not equal. If, however, {µε}ε>0 satisfies (3.1.4) and we have for a set A ∈ B

that

inf
x∈Å

I(x) = inf
x∈Ā

I(x) ,

then the limit

lim
ε→0

ε log µε(A) = − inf
x∈A

I(x)

does exist, and A is called an I-continuity set.

3This is the general setting considered in [DZ98]; cf. p. 4 there.
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3.1. Large Deviations

In the next remark, by giving a probability measure µ on (X, B) the attribute
non-atomic, we simply mean that µ({x}) = 0 shall hold for all x ∈ X.

Remark 3.1.5 (note on interior and closure of A in (3.1.4)). [DZ98, p. 5] The use
of interior and closure of A in the formulation of (3.1.4) is explicitly necessary if we
assume {µε}ε>0 to be non-atomic probability measures.

We will show this for the lower bound: Assume that in (3.1.4) the lower bound
holds for A instead of Å. Let {µε}ε>0 be non-atomic probability measures. Then for
any x ∈ X

−I(x) = − inf
x∈{x}

I(x) 6 lim inf
ε→0

ε log µε({x}) = −∞ ,

hence I(x) = ∞ for all x ∈ X. But, because of X̄ = X and the upper bound in (3.1.4),
this implies

0 = lim sup
ε→0

ε log µε(X) 6 − inf
x∈X

I(x) = −∞ ,

which is obviously wrong. Hence, our assumption, that in the formulation of a large
deviations principle we may replace the interior of the considered set by the set itself,
must have been wrong.

The following basic properties of good rate functions will reappear through-
out the proofs of large deviations facts.

Remark 3.1.6 (good rate functions). [[DS01, Lemma 2.1.2] and [DZ98, Lem-
ma 4.1.6]] Let I be a good rate function.

(i) Since I has compact level sets {I 6 α}, the infimum infx∈A I(x) is achieved
over any non-empty closed set A ⊂ X.

(ii) Let {Fδ}δ>0 be a nested family of closed sets, i.e., for any δ < δ′ we assume that
Fδ ⊂ Fδ′ . If we set F0 :=

⋂
δ>0 Fδ, then

inf
y∈F0

I(y) = lim
δ→0

inf
y∈Fδ

I(y) .

(iii) (on metric space X). Assume that (X, d) is a metric space. Then

inf
y∈Ā

I(y) = lim
δ→0

inf
y∈Aδ

I(y) ,

where Aδ is the (closed) δ-blowup of A.

Proof. Part (i) is trivial.

(ii) By construction, we have F0 ⊂ Fδ for all δ > 0. Thus, we only need to
prove that for any η > 0

lim
δ→0

inf
y∈Fδ

I(y) =: γ > inf
y∈F0

I(y)− η .

This is obvious if γ = ∞. Hence, we assume that γ < ∞, fix an η > 0 and
set α := γ + η. It remains to prove that α > infy∈F0 I(y).

15



3. SR through Freidlin-Wentzell theory

The sets
{

Fδ ∩ΦI(α)
}

δ>0 are non-empty (by definition of γ and α), nested
and compact. Consequently, the set

F0 ∩ΦI(α) =
⋂
δ>0

Fδ ∩ΦI(α)

is also non–empty, hence infy∈F0 I(y) 6 α.

(iii) The distance function d( · , A) is continuous. This implies that the sets
{Aδ}δ>0 are closed and nested. Furthermore, we have that⋂

δ>0

Aδ =
{

y ∈ X
∣∣ d(y, A) = 0

}
= Ā .

Now the assertion follows from (ii).

The definition of a weak and a full large deviations principle raises the ques-
tion how the two are related. While it is obvious that “full implies weak”, the
implication does not generally hold in the opposite direction:

Example 3.1.7 (weak ; full). [Gen03, Example 2.9] Consider the Dirac mea-
sures µn := δn on

(
R, B(R)

)
. The family {µn}n∈N, setting ε = 1

n , satisfies a
weak large deviations principle with a good rate function: Let F ∈ B(R) be a
compact set and n large enough. Then µn(F) = 0. Hence, the upper bound in
(3.1.4) holds for the rate function I :≡ ∞. At the same time, this rate function
makes the lower bound in (3.1.4) trivial for any F ∈ B(R).

If, on the other hand, we choose F := [1, ∞[, then we see that

lim sup
n→∞

1
n
· log µn(F) = 0 > −∞ = − inf

x∈F̄
I(x) ,

which contradicts the upper bound in (3.1.4).

Before the next remark we recall that a family {µε}ε>0 of probability mea-
sures on X is called exponentially tight, if for any (arbitrarily big) α < ∞ there
exists a compact set Kα such that

lim sup
ε→0

ε log µε(Kc
α) < −α .

I.e., it can be specified that as ε → 0 the probability measures are “concen-
trated on Kα”.

Remark 3.1.8 (conditions for “weak implies full”). [DZ98, Lemma 1.2.18] As-
sume that {µε}ε>0 is an exponentially tight collection of probability measures on
(X, B).

If I is a rate function and {µε}ε>0 satisfies a weak large deviations principle with
rate function I, then I is a good rate function and {µε}ε>0 satisfies a full large devia-
tions principle with rate function I.

We do not need this result in the following. Thus, we state it without proof.
Finally, we state equivalent formulations for the upper and lower bounds in

(3.1.4).
The motivation for this reformulation comes from the following observa-

tion: Since µε(X) ≡ 1 for all ε, the upper bound in (3.1.4) implies that for any
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3.1. Large Deviations

rate function I governing a large deviations principle, the infimum over X has
to be infx∈X I(x) = 0. Especially, for any good rate function I we can find an
x ∈ X with I(x) = 0. If, on the other hand, infx∈Ā I(x) = 0 holds for a set
A ∈ B, this implies that the upper bound in (3.1.4) is automatically fulfilled
for this set A. In the same way, infx∈Å I(x) = ∞ implies that the lower bound
in (3.1.4) holds for the set A under consideration.

Lemma 3.1.9 (reformulation of bounds in (3.1.4)). [Gen03, Lemma 2.10]4

(i) The upper bound in (3.1.4) is equivalent to the following statement:
For all α < ∞ and all A ∈ B such that Ā ⊂ ΦI(α)c, the inequality

lim sup
ε→0

ε log µε(A) 6 −α

holds.

(ii) The lower bound in (3.1.4) is equivalent to the following statement:

For all x with I(x) < ∞ and all A ∈ B such that x ∈ Å, we have that

lim inf
ε→0

ε log µε(A) > −I(x) . (3.1.5)

We won’t need part (i) below. Hence, we only prove part (ii).

Proof. Assume that the lower bound in (3.1.4) holds. Choose x such that I(x) <
∞ and an A ∈ B such that x ∈ Å. Then

lim inf
ε→0

ε log µε(A)
(3.1.4)
> − inf

y∈Å
I(y) > −I(x) .

For the converse implication, let I : X → R̄ be a rate function and A ∈ B

such that infx∈Å I(x) < ∞ (otherwise, the lower bound in (3.1.4) is trivial).
Choose x ∈ Å such that I(x) < ∞ and let {µε}ε>0 be a family of measures
such that (3.1.5) is fulfilled. Then

lim inf
ε→0

ε log µε(A) > −I(x) .

This implies the lower bound in (3.1.4).

3.1.2. Excursus: Logarithmic Equivalence

During5 our later proofs, we will quite often make estimates based on the
following observations:

Definition 3.1.10 (logarithmic equivalence). Let (an)n∈N and (bn)n∈N be se-
quences of strictly positive real numbers. If

lim
n→∞

1
n
· (log an − log bn) = 0

holds, we say that (an)n∈N and (bn)n∈N are logarithmically equivalent. We de-
note

an ' bn .
4Without proof.
5This subsection is based on a note which I found in [dH00, Section I.1].
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3. SR through Freidlin-Wentzell theory

Remark 3.1.11 (log. estimate for sums). Let (an)n∈N and (bn)n∈N be sequences
of strictly positive real numbers. Then the following holds:

an + bn ' an ∨ bn . (3.1.6)

Proof. For any n ∈ N we set cn := an ∨ bn. Hence, (3.1.6) holds if and only if
an + bn ' cn.

On the one hand, we have that

lim
n→∞

1
n
·
(
log(an + bn)− log cn

)
6 lim

n→∞

1
n
·
(
log(2cn)− log cn

)
= lim

n→∞

1
n
· log 2 = 0 .

On the other hand, an + bn > cn implies that for any n ∈ N the following
holds:

log(an + bn)− log cn > 0 ,

and consequently

lim
n→∞

1
n
·
(
log(an + bn)− log cn

)
> 0 .

Remark 3.1.12 (a late explanation). [OV05, p. 3] Let
{
(Ω, A, µn)

}
n∈N

be a series
of probability spaces, I an A-measurable function and A1, A2 ∈ A disjoint sets, such
that

lim
n→∞

1
n
· log µn(Ai) = −I(Ai)

holds for i = 1, 2. Then, the above result implies that

lim
n→∞

1
n
· log µn(A1 ∪ A2) = −min

{
I(A1), I(A2)

}
.

A heuristic iteration, yielding

“ I(A) = inf
x∈A

I(x) ” ,

explains why it makes sense to formulate the large deviations principle using the infi-
mum of a rate function over the set under consideration.

3.1.3. Existence and Uniqueness Properties

If6 the space X under consideration has a “coarse” topology, the information
provided by a large deviations principle may be relatively poor: E.g., if the
topology is given by {∅, X}, then the large deviations principle on the space(

X, B(X)
)

only implies that infx∈X I(x) = 0, and nothing more. Hence, if we
intend to prove uniqueness of the rate function, we have to make further as-
sumptions on the topology: we will be able to show, that uniqueness of the
rate function holds, if X is a regular Hausdorff space.

6This subsection is entirely based on [DZ98, Section 4.1].
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3.1. Large Deviations

Let us recall that a topological space X is called a Hausdorff space, if for every
pair of points x 6= y in X we can find disjoint open sets A, B ⊂ X, such that
x ∈ A and y ∈ B (we say, x and y are separated by open neighborhoods).

Furthermore, a Hausdorff space X is named regular, if for any closed set
F ⊂ X and any point x ∈ Fc we can find disjoint open sets A, B ⊂ X such that
F ⊂ A and x ∈ B.

In the following remark we collect some facts from topology.

Remark 3.1.13 (about regular Hausdorff spaces). [DZ98, pp. 102–103] Let X be
a regular Hausdorff space and x ∈ X.

(i) For any neighborhood A of x there exists a neighborhood B of x such that B̄ ⊂ A.

(ii) (metric spaces). Every metric space is a regular Hausdorff space. Furthermore,
every real topological vector space with Hausdorff property is regular.

(iii) (lower semi-continuous functions). Any lower semi-continuous function
f : X → R̄ satisfies

f (x) = sup
{

inf
y∈A

f (y)
∣∣ A is neighborhood of x

}
.

This implies that for every y ∈ X and any (arbitrarily small) δ > 0 we can find
a neighborhood G(y, δ) of y, such that(

f (y)− δ
)
∧ 1

δ
6 inf

z∈G(y,δ)
f (z) .

Now, (i) allows us to select a neighborhood F(y, δ) of y such that F(y, δ) ⊂
G(y, δ), and we obtain

inf
z∈F(y,δ)

f (z) > inf
z∈G(y,δ)

f (z) >
(

f (y)− δ
)
∧ 1

δ
.

In metric spaces, sets of the form G(y, δ) might be selected as balls B(y, δ̃)
with small enough radius δ̃ (which does not have to be equal to δ!). We will
come across this kind of construction during subsequent proofs.

Now we show the promised uniqueness result for rate functions.

Lemma 3.1.14 (uniqueness of rate function). [DZ98, Lemma 4.1.4] Let X be a
regular Hausdorff space. A family {µε}ε>0 of probability measures on X can not have
more than one rate function associated with its large deviations principle.

Proof. Assume that there are two rate functions I1, I2, such that {µε}ε>0 satis-
fies the large deviations principle with both of them. Without loss of general-
ity, we assume that there exists an x0 ∈ X such that I1(x0) > I2(x0).

Now, fix δ > 0 and consider the open set A that fulfills

x0 ∈ A and inf
y∈Ā

I1(y) >
(

I1(x0)− δ
)
∧ 1

δ
.

Such a set A exists by part (iii) of the preceding remark. The assumed large
deviations principle for {µε}ε>0 implies that

− inf
y∈Ā

I1(y) > lim sup
ε→0

ε log µε(A) > lim inf
ε→0

ε log µε(A) > − inf
y∈A

I2(y) ,
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3. SR through Freidlin-Wentzell theory

hence,

I2(x0) > inf
y∈A

I2(y) > inf
y∈Ā

I1(y) >
(

I1(x0)− δ
)
∧ 1

δ
.

Since δ can be selected arbitrarily small, this contradicts the assumption that
I1(x0) > I2(x0).

Before we show an existence result, let us recall that in any topological space
X, a subset A of the topology is named a base of the topology, if any open
subset of X (i.e., any element of the topology) is a union of sets from A.

Theorem 3.1.15 (existence of weak large deviations principle). [DZ98, Theo-
rem 4.1.11] Let X be a topological space and A a base of the topology on X. Further-
more, let {µε}ε>0 be a family of measures on (X, B) and define, for any A ∈ A,

LA := − lim inf
ε→0

ε log µε(A) .

Finally we set, for any x ∈ X,

I(x) := sup
{
LA

∣∣ A ∈ A such that x ∈ A
}

. (3.1.7)

If now, for all x ∈ X,

I(x) = sup
{
− lim sup

ε→0
ε log µε(A)

∣∣ A ∈ A such that x ∈ A
}

(3.1.8)

holds, then the family {µε} satisfies a weak large deviations principle with the rate
function I(x).

The identity (3.1.8) automatically holds if the limit limε→0 ε log µε(A) exists
for all A ∈ A (not necessarily finite).

Proof. By definition, I is a nonnegative function, and for any x ∈ X with
I(x) > α for a constant α we can find an A ∈ A such that LA > α. For such a
set A we have that for any y ∈ A, again by the definition of I, I(y) > LA > α.
In other words, for any x with I(x) > α we can find a neighborhood A ∈ A

such that I(y) > α for all y ∈ A. Hence, for any α the set
{

x ∈ X
∣∣ I(x) > α

}
is open, and this implies that I as defined in (3.1.7) is a rate function.

Select an open set G ⊂ X. For any x ∈ G we can find a set A ∈ A such that
x ∈ A ⊂ G. Hence, we obtain that

lim inf
ε→0

ε log µε(G) > lim inf
ε→0

ε log µε(A) = −LA > −I(x) .

We have seen in Lemma 3.1.9(ii) that this is equivalent to the lower bound in
a large deviations principle.

We note that the condition (3.1.8) was not necessary to prove the fact that I
is a rate function, nor the lower bound. We need this condition only to prove
the upper bound for compact sets:

Fix a constant δ > 0 and a compact subset F of X and set

Iδ(x) :=
(

I(x)− δ
)
∧ 1

δ
.
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3.1. Large Deviations

Assumption (3.1.8) implies that for every x ∈ F there exists a set Ax ∈ A

(which may depend on δ), such that

x ∈ Ax and − lim sup
ε→0

ε log µε(Ax) > Iδ(x) . (3.1.9)

The family {Ax}x∈F forms an open cover of F, and since F is compact, there
exists a finite cover of F by a sub-family Ax1 , . . . , Axm of neighborhoods, such
that (3.1.9) is fulfilled for any pair xi, Axi . Obviously,

µε(F) 6
m

∑
i=1

µε(Axi ) ,

and this implies that

lim sup
ε→0

ε log µε(F) 6 max
i=1,...,m

lim sup
ε→0

ε log µε(Axi ) 6 − min
i=1,...,m

Iδ(xi)

6 − inf
x∈F

Iδ(x) .

We complete the proof by taking the limit for δ → 0.

In [DZ98, Section 4.2], further results can be found on the existence of large
deviations principles as well as on properties of rate functions.

3.1.4. Sample-Path Large Deviations for Brownian Motion:
Schilder’s Theorem

In7 this subsection we present the classical large deviations result for Brow-
nian motion first proved by Schilder. We do not only do this for historical
reasons: The results provided here will be of use later.

Let Wt be a Brownian motion on a probability space (Ω, F, P) with state
space Rd, where W0 = 0. For any ε > 0 we define

Wε
t :=

√
ε ·Wt .

The following theorem states a large deviations principle for the distribution
of this scaled Brownian motion as ε → 0.

We fix a time T ∈ R+ and a dimension d ∈ N and recollect that C0 :=
{

ϕ ∈
C([0, T]; Rd)

∣∣ ϕ0 = 0
}

.

Theorem 3.1.16 (Schilder, 1966). [[Gen03, Theorem 2.2], [Sch66]] The family
{

P ◦
(Wε)−1}

ε>0 of probability measures on
(
C0, B(C0)

)
satisfies a large deviations prin-

ciple with the good rate function

I(ϕ) := IBM
[0,T],0(ϕ) :=

{
1
2‖ϕ‖2

H1
if ϕ ∈ H1 ,

+∞ otherwise .
(3.1.10)

7This subsection is largely based on [Gen03, Section 2.2].
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3. SR through Freidlin-Wentzell theory

In other words, the relation

− inf
ϕ∈Γ̊

I(ϕ) 6 lim inf
ε→0

ε log P[Wε ∈ Γ]

6 lim sup
ε→0

ε log P[Wε ∈ Γ] 6 − inf
ϕ∈Γ̄

I(ϕ)
(3.1.11)

holds for all Γ ∈ B(C0), and the rate function I has compact level sets {I 6 α}.

Remark 3.1.17 (observation). [Gen03, Remark 2.3] Since the paths of a Brownian
motion are almost surely of unbounded variation, we have that Wε /∈ H1 almost
surely. Hence, for all ε > 0 we get that I(Wε) = +∞ almost surely.

As we have seen in the general case (cf. the notes preceding Lemma 3.1.9),
infϕ∈C0 I(ϕ) = 0. Since, in the case of Schilder’s theorem, I is a good rate
function, there exists a ϕ such that I(ϕ) = 0; e.g., ϕ(t) :≡ 0. Now, (3.1.11)
implies that any set containing this ϕ has maximal probability with respect to
P ◦ (Wε)−1 as ε → 0. In other words, Wε “concentrates near the zero function”.
The use of the large deviations principle is that it allows to estimate the prob-
ability of rare events, namely that Wε is “far away from the zero function”.

Especially, Schilder’s theorem allows us to optimize the estimate shown in
Lemma 3.1.1:

Example 3.1.18 (application of Schilder’s theorem). [Gen03, Example 2.4] We
want to specify the probability that Wε ∈ C0

(
[0, T]; Rd) leaves a ball of radius

δ around the origin,

B := B(0, δ) :=
{

ϕ ∈ C0
(
[0, T]; Rd) ∣∣∣ ‖ϕ‖∞ < δ

}
,

for some T > 0.
Since the typical spreading of the Brownian motion scales with

√
t, we ex-

pect that Wε remains inside B(0, δ) as long as T � δ2

ε .
Here, infϕ∈Bc I(ϕ) is obtained for any ϕ of the form ϕs = s

T · x for an x with
‖x‖ = δ:

inf
ϕ∈Bc

I(ϕ) = I
(

s
T
· x
)

=
1
2

∫ T

0

(
δ

T

)2

ds =
δ2

2T
.

Schilder’s theorem implies that P[Wε /∈ B] decays like exp
[
− δ2

2εT
]
, which is

small for δ2 � εT, as expected.

We prove Schilder’s theorem in three steps. First, we show that the rate
function I, as defined in (3.1.10), is a good rate function. Afterwards, we prove
the upper and lower bounds in (3.1.11), thus completing the proof of Schilder’s
theorem.

Lemma 3.1.19 (compactness of level sets). [FW98, Chap. 3, Lem. 2.1(b)] The level
sets of I,

ΦI(α) :=
{

ϕ ∈ C0
∣∣ I(ϕ) 6 α

}
, α ∈ [0, ∞[ ,

are compact.
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3.1. Large Deviations

Proof. Let us first note that for all ϕ ∈ ΦI(α), α ∈ [0, ∞[,∫ T

0
‖ϕ̇s‖2 ds = ‖ϕ‖2

H1
6 2α .

This implies that for all t ∈ [0, T]

‖ϕt‖ =
∥∥∥∥ϕ0 +

∫ t

0
ϕ̇s ds

∥∥∥∥ 6 ‖ϕ0‖+

√
T
∫ T

0
‖ϕ̇s‖2 ds 6 ‖ϕ0‖+

√
T · 2α .

Consequently, all ϕ ∈ ΦI(α) are uniformly bounded for any α ∈ [0, ∞[.
Furthermore, for any ϕ ∈ ΦI(α) and all choices of t and h such that {t, t +

h} ⊂ [0, T],

‖ϕt+h − ϕt‖ 6
∫ t+h

t
‖ϕ̇s‖ ds 6

√
h
∫ t+h

t
‖ϕ̇s‖2 ds

6

√
h
∫ T

0
‖ϕ̇s‖2 ds 6

√
h · 2α

h→0−−→ 0 ,

i.e., all elements of ΦI(α) are equicontinuous for any α ∈ [0, ∞[.
The compactness of ΦI(α) ⊂ C0 follows from Arzela-Ascoli.

For next step in the proof of Schilder’s theorem, we prove a lower bound
for the probability that Wε remains in a ball. This bound depends only on the
centre of the ball and on ε.

Lemma 3.1.20 (lower bound for (3.1.11)). [Gen03, Lemma 2.5] For all δ > 0, all
γ > 0 and all K > 0 there exists an ε0 = ε0(δ, γ, K, T) > 0 such that for all ε 6 ε0
and all ϕ ∈ C0 with I(ϕ) < K we have

P
[
‖Wε − ϕ‖∞ < δ

]
> exp

[
−1

ε
·
(

I(ϕ) + γ
)]

.

Note that by definition of I in (3.1.10), the boundedness of I(ϕ) automati-
cally implies that ϕ ∈ H1.

This lemma implies the lower bound in (3.1.11):

Proof of Schilder’s theorem, part I. The fact that I is a good rate function has been
established through Lemma 3.1.19.

To prove the lower bound in (3.1.11), we select an arbitrary open set G ⊂
C0. If infϕ∈G I(ϕ) = ∞, the lower bound is trivial. Hence we assume that
infϕ∈G I(ϕ) < ∞. Since I is a good rate function, this allows us to choose a
ϕ ∈ G such that I(ϕ) < ∞. And because G is open, we can choose a radius
rϕ > 0 such that the ball B(ϕ, rϕ) is contained in G. Now, the above lemma
implies that

lim inf
ε→0

ε log P[Wε ∈ G] > lim inf
ε→0

ε log P
[
Wε ∈ B(ϕ, rϕ)

]
> −I(ϕ) .

We conclude the proof by taking the infimum over all ϕ ∈ G.

23



3. SR through Freidlin-Wentzell theory

Proof of Lemma 3.1.20. We fix δ > 0, γ > 0, K > 0 and ϕ ∈ C0 such that
I(ϕ) 6 K (hence, ϕ ∈ H1). We consider

P
[
‖Wε − ϕ‖∞ < δ

]
= P

[∥∥∥∥W − ϕ√
ε

∥∥∥∥
∞

<
δ√
ε

]
.

Applying Girsanov’s formula, we get that

P
[
‖Wε − ϕ‖∞ < δ

]
= exp

[
− 1

2ε

∫ T

0
‖ϕ̇s‖2 ds

]
·
∫
{W∈B(0,δ/

√
ε)}

exp
[
− 1√

ε

∫ T

0
〈ϕ̇s, dWs〉

]
dP .

We do now split the domain of integration two parts: We set C :=
√

I(ϕ) · 4
ε

and define

AC :=
{

ω ∈ Ω
∣∣∣∣ − 1√

ε

∫ T

0
〈ϕ̇s, dWs〉 6 −C

}
.

To obtain a precise lower bound, we want to base our estimate on those ω ∈ Ω
where the integrand is not too small, i.e. Ac

C. Thus we first show that AC is
‘small’: Using Chebychev’s inequality and our above choice of C we get that

P(AC) =
1
2
· P

[∣∣∣∣ 1√
ε

∫ T

0
〈ϕ̇s, dWs〉

∣∣∣∣ > C

]
6

1
2εC2 ·E

[(∫ T

0
〈ϕ̇s, dWs〉

)2
]

6
1

2εC2

∫ T

0
‖ϕ̇s‖2 ds =

1
εC2 · I(ϕ) =

1
4

.

On the other hand we have that

P
({
‖Wε − ϕ‖∞ < δ

}
∩ Ac

C

)
> exp

[
− I(ϕ)

ε

]
· exp[−C] · P

({
W ∈ B

(
0,

δ√
ε

)}
∩ Ac

C

)

> exp
[
− I(ϕ)

ε
− C

]
·
(

P(Ac
C)− P

[
W ∈ B

(
0,

δ√
ε

)c
])

.

Since P(Ac
C) > 3

4 we can find a small enough ε > 0 such that

P(Ac
C)− P

[
W ∈ B

(
0,

δ√
ε

)c
]

>
1
2

.

By the definition of C, we finally get that for any small enough ε (say, ε 6
ε0(δ, γ, K, T))

P
[
‖Wε − ϕ‖∞ < δ

]
> P

({
‖Wε − ϕ‖∞ < δ

}
∩ Ac

C

)
> exp

[
− I(ϕ) + γ

ε

]
.
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3.1. Large Deviations

Now, let us again consider the level sets of I,

ΦI(α) :=
{

ϕ ∈ C0
∣∣ I(ϕ) 6 α

}
, α > 0 .

These level sets are special neighborhoods of the function 0 ∈ C0. In the fol-
lowing lemma we provide an upper bound for the probability that Wε leaves
a δ-neighborhood of ΦI(α).

Lemma 3.1.21 (upper bound for (3.1.11)). [Gen03, Lemma 2.6] For all δ > 0, all
γ > 0 and all α0 > 0 there exists an ε0 > 0 such that for all ε 6 ε0 and all α 6 α0

P
[
dist

(
Wε, ΦI(α)

)
> δ
]

6 exp
[
−α− γ

ε

]
,

where

dist
(

ϕ, ΦI(α)
)

:= min
ψ∈ΦI(α)

‖ϕt − ψt‖∞ .

The statement of this lemma is equivalent to the upper bound in (3.1.11).
We prove, however, only the one implication we actually need:

Proof of Schilder’s theorem, part II. Choose an arbitrary closed set F. The result
is trivial if infϕ∈F I(ϕ) = 0, hence we may assume that infϕ∈F I(ϕ) > 0 and
choose a γ > 0 such that α := infϕ∈F I(ϕ)−γ > 0. As I is a good rate function,
the level set ΦI(α) is compact. By definition of α, its intersection ΦI(α) ∩ F
with the closed set F is empty, which implies δ := dist

(
F, ΦI(α)

)
> 0. By

Lemma 3.1.21 and the definition of α we get that

P[Wε ∈ F] 6 P
[
dist

(
Wε, ΦI(α)

)
> δ
]

6 exp
[
−

infϕ∈F I(ϕ)− 2γ

ε

]
,

which completes the proof of Schilder’s theorem.

Finally, we prove Lemma 3.1.21. The main problem in the proof is the fact
that I(Wε) = ∞, hence we have to approximate the scaled Brownian motion
by functions from H1. We use random polygons to solve this problem.

Proof of Lemma 3.1.21. To construct an approximating random polygon xn,ε for
Wε, we divide the time intervall [0, T] into parts of the identical length ∆ > 0.
We will specify ∆ later; for now we assume that T

∆ ∈ N. The approximating
polygon xn,ε shall have the vertices

(0, 0),
(
∆, xε

∆
)
,
(
2∆, xε

2∆
)
, . . . ,

(
T, xε

T
)

.

To prove the upper bound claimed in the lemma with the help of this approx-
imation, we consider two events: Either xn,ε is a bad approximation of Wε or
xn,ε is so good an approximation that it leaves ΦI(α) whenever Wε leaves the
δ-neighborhood of the level set:

P
[
dist

(
Wε, ΦI(α)

)
> δ
]

6 P
[
‖Wε − xn,ε‖∞ > δ

]
+ P

[
I(xn,ε) > α

]
. (3.1.12)

First, we prove an upper bound for the first summand in (3.1.12), which
is the probability of xn,ε being a bad approximation. We use the fact that the

25



3. SR through Freidlin-Wentzell theory

distances ‖Wε
s − xn,ε

s ‖, considered on different time intervalls
[
k∆, (k + 1)∆

[
,

are identically distributed.

P
[
‖Wε − xn,ε‖∞ > δ

]
= P

[
sup

06s6T
‖Wε

s − xn,ε
s ‖ > δ

]
6

T
∆
· P
[

sup
06s6∆

‖Wε
s − xn,ε

s ‖ > δ
]

6
T
∆
· P
[

sup
06s6∆

‖Wε
s ‖ > δ

]
Lemma 3.1.1

6
4dT

∆
· exp

[
− δ2

2dε∆

]
,

and, choosing ∆ := δ2

2dα0
, we get that for all ε 6 ε0 = ε0(T, δ, γ, α0)

P
[
‖Wε − xn,ε‖∞ > δ

]
6

1
2
· exp

−α0 − ε log
(

4d2Tα0
δ2

)
ε


6

1
2
· exp

[
−α0 − γ

ε

]
.

Next we estimate the second summand in (3.1.12) which specifies the prob-
ability that the approximation xn,ε leaves the level set. Since xn,ε is a polygon,
we have that

I(xn,ε) =
1
2

T/∆

∑
l=1

∫ l∆

(l−1)∆

∥∥√ε ·Wl∆ −
√

ε ·W(l−1)∆
∥∥2

∆2 ds

=
ε

2

T/∆

∑
l=1

∥∥Wl∆ −W(l−1)∆
∥∥2

∆
.

The sum on the right-hand side has the same distribution as the sum ∑ ξ2
i

over the squares of dT
∆ independent, one dimensional standard-normal ran-

dom variables ξi, which can be estimated by Chebychev’s inequality; hence,
we achieve for any κ ∈

]
0, 1

2
[
, that

P
[
I(xn,ε) > α

]
= P

[dT/∆

∑
i=1

ξ2
i >

2α

ε

]
6 exp

[
−2κα

ε

]
·
(

E
[
exp[κξ2

1]
]) dT

∆

6 (1− 2κ)−
dT
2∆ · exp

[
−2κα

ε

]
.

Now we choose κ = 1
2
(
1− γ

2α

)
. Then for any small enough ε

P
[
I(xn,ε) > α

]
=
(

γ

2α

)− dT
2∆

· exp
[
−

α− γ
2

ε

]
︸ ︷︷ ︸

=exp
[
− γ/2

ε

]
·exp
[
− α−γ

ε

]
6

1
2
· exp

[
−α− γ

ε

]

and the lemma is proved.
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3.1. Large Deviations

3.1.5. The Contraction Principle (continuous version)

Let us return to the general setting from Subsection 3.1.1.
As soon as we have established a large deviations principle with a good rate

function for a family of probability measures {µε}ε>0, the basic, continuous
version of the contraction principle as proved below provides us with a large
deviations principle for {µε ◦ f−1}ε>0, where f is assumed to be a continuous
mapping of spaces.

Theorem 3.1.22 (contraction principle – continuous version). [DZ98, Theo-
rem 4.2.1] Let X, Y be topological spaces, I : X → [0, ∞] a good rate function and
f : X → Y continuous. We define the function I′ : Y → [0, ∞] by

I′(y) := inf
{

I(x)
∣∣ x ∈ X such that f (x) = y

}
.

Then I′ is a good rate function on Y.
If I governs a large deviations principle for {µε}ε>0 on X, then I′ governs a large

deviations principle for the image measures {µε ◦ f−1}ε>0 on Y.

Of course, this result may also be applied if X and Y are the same space but
e.g. equipped with different topologies.

Proof. We first show that I′ is a good rate function. The nonnegativity of I′

is obvious by definition. Since I is a good rate function, we know that for all
y ∈ f (X) the infimum in the definition of I′ is obtained for (at least) one x ∈ X.
Hence, we get for the level sets ΦI′(α) :=

{
y ∈ Y

∣∣ I′(y) 6 α
}

that

ΦI′(α) =
{

f (x)
∣∣ x ∈ X s.th. I(x) 6 α

}
= f

(
ΦI(α)

)
,

where ΦI(α) :=
{

x ∈ X
∣∣ I(x) 6 α

}
are the level sets of I. The compactness

of the level sets of I in X implies the same for the level sets of I′ in Y, which
makes I′ a good rate function.

If we can show that for all A ∈ B(Y),

− inf
y∈Å

I′(y) 6 lim inf
ε→0

ε log
(
µε ◦ f−1)(A)

6 lim sup
ε→0

ε log
(
µε ◦ f−1)(A) 6 − inf

y∈Ā
I′(y) ,

(3.1.13)

the proof is complete.
By the definition of I′, we know that for all A ⊂ Y,

inf
y∈A

I′(y) = inf
x∈ f−1(A)

I(x) .

To show the lower bound of (3.1.13), we have to prove that for all open sets
A ∈ B(Y)

− inf
x∈ f−1(A)

I(x) 6 lim inf
ε→0

ε log
(
µε ◦ f−1)(A) . (3.1.14)

But since by continuity f−1(A) is open in X for any open A ⊂ Y, the LDP for
{µε}ε>0 implies that

− inf
x∈ f−1(A)

I(x) 6 lim inf
ε→0

ε log µε

(
f−1(A)

)
,
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3. SR through Freidlin-Wentzell theory

which proves (3.1.14). The proof of (3.1.13) is completed by a similar argument
for closed sets, utilizing the upper bound of the LDP for {µε}ε>0.

Remark 3.1.23 (possible generalizations). [DZ98, p. 111]

(i) It can be proved, that this result holds even when B does not contain B(X).

(ii) (if I is not good). If in the preceding theorem the rate function I is not good,
the large deviations principle for {µε ◦ f−1}ε>0 on Y does still hold.

However, it may happen in this case that I′ as constructed above is no longer
a rate function. For example, consider X = Y = R, I(x) ≡ 0 and f (x) =
exp[x]: In this case, I′(y) = 0 for any y > 0, whereas for any z 6 0 we have
that I′(z) = ∞. This implies that e.g. ΦI′(1) = ]0, ∞[ is an open set.

We want to generalize the contraction principle from continuous functions
to functions which can be approximated in some sense by continuous ones.
This will be done in Subsection 3.1.7; however, we first have to introduce some
additional results.

3.1.6. Exponentially Good Approximations

Definition 3.1.24 (exponential equivalence of measures). [DZ98, Def. 4.2.10]
Let (Y, d) be a metric space and consider families {µ

(1)
ε }ε>0 and {µ

(2)
ε }ε>0 of

probability measures on Y. The two families are called exponentially equivalent,
if there exist a family

{
(Ω, Bε, Pε)

}
ε>0 of probability spaces and two families

{Z(1)
ε }ε>0 and {Z(2)

ε }ε>0 of Y-valued random variables with joint distributions
{µ̄ε}ε>0 and marginal distributions {µ

(1)
ε }ε>0 and {µ

(2)
ε }ε>0, respectively, such

that the following holds:
For any constant δ > 0, we have that{

ω ∈ Ω
∣∣∣ (Z(1)

ε (ω), Z(2)
ε (ω)

)
∈ Γδ

}
∈ Bε

and

lim sup
ε→0

ε log µ̄ε(Γδ) = −∞ ,

where we set

Γδ :=
{
(ỹ, y) ∈ Y ×Y

∣∣ d(ỹ, y) > δ
}

. (3.1.15)

Families of random variables {Z(1)
ε }ε>0 and {Z(2)

ε }ε>0, which fulfill these
conditions, are also named exponentially equivalent.

Remark 3.1.25 (if Y is separable). [DZ98, p. 114] If Y is a separable space, the
required measurability automatically holds.

The next result provides an idea, why the notion of exponentially equivalent
families of probability measures is interesting for us.
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3.1. Large Deviations

Theorem 3.1.26 (large deviations principles for exp. equivalent measures).
[DZ98, Theorem 4.2.13] If a family {µ

(1)
ε }ε>0 of probability measures on a metric

space (Y, d) fulfills a large deviations principle with a good rate function I, and if
we have a second family {µ

(2)
ε }ε>0 of probability measures which are exponentially

equivalent to the aforementioned family, then both families of probability measures
fulfill the same large deviations principle.

The theorem is a consequence of Theorem 3.1.28; cf. the note following that
theorem.

Definition 3.1.27 (exponentially good approximations). [DZ98, Def. 4.2.14]
Let (Y, d) be a metric space and Γδ defined as above. For each ε > 0 and
any m ∈ N, let (Ω, Bε, Pε) be a probability space, and let the Y-valued random
variables Zε and Zε,m be distributed according to the joint distribution µ̄ε,m,
with marginal distributions µε and µε,m, respectively.

The random variables {Zε,m}ε>0,m∈N are called exponentially good approxima-
tions of {Zε}ε>0 if, for every δ > 0, we have that{

ω ∈ Ω
∣∣∣ (Zε(ω), Zε,m(ω)

)
∈ Γδ

}
∈ Bε for all m ∈ N

and

lim
m→∞

lim sup
ε→0

ε log µ̄ε,m(Γδ) = −∞ .

We call the families of measures {µε,m}ε>0,m∈N exponentially good approxi-
mations of the family {µε}ε>0 if we can construct a family

{
(Ω, Bε, Pε)

}
ε>0 of

probability spaces as above.

Theorem 3.1.28 (large deviations under exp. good approximation). [DZ98,
Theorem 4.2.16] Let (Y, d) be a metric space, and suppose that for any m ∈ N the
family {µε,m}ε>0 of probability measures satisfies a large deviations principle with
rate function Im. Furthermore, assume that {µε,m}ε>0,m∈N are exponentially good
approximations of {µε}ε>0. Then the following holds:

(i) {µε}ε>0 satisfies a weak large deviations principle with the rate function

I(y) := sup
δ>0

lim inf
m→∞

inf
z∈B(y,δ)

Im(z) . (3.1.16)

(ii) If I is a good rate function and for every closed set F in Y we have that

inf
y∈F

I(y) 6 lim sup
m→∞

inf
y∈F

Im(y) , (3.1.17)

then {µε}ε>0 satisfies a full large deviations principle with rate function I.

If the rate functions Im are good rate functions and independent of m, then
the theorem implies that {µε}ε>0 satisfies a full large deviations principle with
rate function I = Im. In particular, this proves Theorem 3.1.26.

Proof. (i) Let us assume that {Zε,m}ε>0,m∈N are exponentially good approx-
imations of {Zε}ε>0 with joint distributions {µ̄ε,m}ε>0,m∈N and marginal
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3. SR through Freidlin-Wentzell theory

distributions {µε,m}ε>0,m∈N and {µε}ε>0, respectively. Let Γδ be defined
as in (3.1.15).
By application of Theorem 3.1.15 (the existence theorem for a weak large
deviations principle) to the (topological) base

{
B(y, δ)

}
y∈Y,δ>0 of (Y, d),

we obtain the claimed weak large deviations principle after proving that

I(y) = − inf
δ>0

lim sup
ε→0

ε log µε

(
B(y, δ)

)
= − inf

δ>0
lim inf

ε→0
ε log µε

(
B(y, δ)

)
.

(3.1.18)

To prove (3.1.18), we choose a pair δ > 0, y ∈ Y and note that for any
m ∈ N and ε > 0, we have that{

Zε,m ∈ B(y, δ)
}
⊂
{

Zε ∈ B(y, 2δ)
}
∪
{
(Zε, Zε,m) ∈ Γδ

}
, (3.1.19)

hence,

µε,m
(

B(y, δ)
)

6 µε

(
B(y, 2δ)

)
+ µ̄ε,m(Γδ) . (3.1.20)

The lower bounds in the large deviations principles for {µε,m}ε>0,m∈N do
now imply the following for all m ∈ N:

− inf
z∈B(y,δ)

Im(z) 6 lim inf
ε→0

ε log µε,m
(

B(y, δ)
)

6 lim inf
ε→0

ε log
(

µε

(
B(y, 2δ)

)
+ µ̄ε,m(Γδ)

)
6 lim inf

ε→0
ε log µε

(
B(y, 2δ)

)
∨ lim sup

ε→0
ε log µ̄ε,m(Γδ)︸ ︷︷ ︸

=:ξm

.

By assumption, {µε,m}ε>0,m∈N are exponentially good approximations of
{µε}ε>0; hence, ξm

m→∞−−−→ −∞ and we conclude that

lim sup
m→∞

(
− inf

z∈B(y,δ)
Im(z)

)
6 lim inf

ε→0
ε log µε

(
B(y, 2δ)

)
. (3.1.21)

Now we repeat this argument, exchanging the roles of Zε,m and Zε; par-
allel to (3.1.19) we see that{

Zε ∈ B(y, δ)
}
⊂
{

Zε,m ∈ B(y, 2δ)
}
∪
{
(Zε,m, Zε) ∈ Γδ

}
;

the analogue estimate to (3.1.20) is

µε

(
B(y, δ)

)
6 µε,m

(
B(y, 2δ)

)
+ µ̄ε,m(Γδ) ,

which implies that for any m ∈ N

lim sup
ε→0

ε log µε

(
B(y, δ)

)
6 lim sup

ε→0
ε log

(
µε,m

(
B(y, 2δ)

)
+ µ̄ε,m(Γδ)

)
6 lim sup

ε→0
ε log µε,m

(
B(y, 2δ)

)
∨ lim sup

ε→0
ε log µ̄ε,m(Γδ)︸ ︷︷ ︸

m→∞−−−→−∞

.
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3.1. Large Deviations

Thus, we obtain the following analogue to (3.1.21), this time using the
upper bound of the large deviations principle for {µε,m}ε>0,m∈N:

lim inf
m→∞

(
− inf

z∈B(y,2δ)
Im(z)

)
> lim inf

m→∞
lim sup

ε→0
ε log µε,m

(
B(y, 2δ)

)
∨−∞

> lim sup
ε→0

ε log µε

(
B(y, δ)

)
. (3.1.22)

Remember that for the justification of (3.1.21) and (3.1.22) we did not
pose any assumptions on the selection of y ∈ Y and δ > 0.

Because of B(y, 2δ) ⊂ B(y, 3δ) and the definition of I (cf. (3.1.16)), by
taking the infimum over δ > 0 in (3.1.21) and (3.1.22) we obtain that

inf
δ>0

lim inf
ε→0

ε log µε

(
B(y, δ)

)
> inf

δ>0
lim sup

m→∞

(
− inf

z∈B(y,δ)
Im(z)

)
= − sup

δ>0
lim inf

m→∞
inf

z∈B(y,δ)
Im(z) = −I(y)

(3.1.23)

and

inf
δ>0

lim sup
ε→0

ε log µε

(
B(y, δ)

)
6 inf

δ>0
lim inf

m→∞

(
− inf

z∈B(y,δ)
Im(z)

)
= − sup

δ>0
lim sup

m→∞
inf

z∈B(y,δ)
Im(z) 6 −I(y) .

(3.1.24)

Combining the estimates (3.1.23) and (3.1.24), we get that

inf
δ>0

lim sup
ε→0

ε log µε

(
B(y, δ)

)
6 −I(y) 6 inf

δ>0
lim inf

ε→0
ε log µε

(
B(y, δ)

)
,

which finally implies (3.1.18).

(ii) Fix δ > 0 and a closed set F ⊂ Y. Like above, we note that for any m ∈ N

and all ε > 0 we have that

{Zε ∈ F} ⊂ {Zε,m ∈ Fδ} ∪
{
(Zε, Zε,m) ∈ Γδ

}
.

The large deviations principles for {µε,m}ε>0,m∈N imply hat for any m ∈
N the following holds:

lim sup
ε→0

ε log µε(F) 6 lim sup
ε→0

log
(
µε,m(Fδ) + µ̄ε,m(Γδ)

)
6 lim sup

ε→0
ε log µε,m(Fδ) ∨ lim sup

ε→0
ε log µ̄ε,m(Γδ)

6
(
− inf

y∈Fδ
Im(y)

)
∨ lim sup

ε→0
ε log µ̄ε,m(Γδ) .

Because we know that {Zε,m}ε>0,m∈N are exponentially good approxi-
mations of {Zε}ε>0, by taking m → ∞ and applying condition (3.1.17) to
the set Fδ (closed by definition!), we get that

lim sup
ε→0

ε log µε(F) 6 − lim sup
m→∞

inf
y∈Fδ

Im(y) 6 − inf
y∈Fδ

I(y) .
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3. SR through Freidlin-Wentzell theory

Using the property of I to be “good” and Remark 3.1.6(iii), we may take
limits for δ → 0 and obtain the upper bound for the claimed full large
deviations principle.

3.1.7. The Contraction Principle (extended)

Now we can extend the contraction principle for continuous functions, which
we have proved above, to a more general class of functions.

The following result is a special case of the preceding theorem. Hence, the
idea of the proof is to apply the preceding theorem.

Theorem 3.1.29 (contraction principle). [DZ98, Theorem 4.2.23] Let (Y, d) be a
metric space and X a Hausdorff space. Let {µε}ε>0 be a family of probability measures
on X that satisfies the large deviations principle with a good rate function I. For any
m ∈ N, let fm : X → Y be continuous mappings. If there exists a measurable map
f : X → Y such that for any α < ∞

lim sup
m→∞

sup
{

d
(

fm(x), f (x)
) ∣∣∣ x ∈ ΦI(α)

}
= 0 , (3.1.25)

and if {µ̃ε}ε>0 is a family of probability measures on Y for which {µε ◦ f−1
m }ε>0,m∈N

are exponentially good approximations, then {µ̃ε}ε>0 satisfies a large deviations prin-
ciple with the good rate function

I′(y) = inf
{

I(x)
∣∣ x ∈ X such that f (x) = y

}
.

Proof. Since the functions fm : X → Y are continuous by assumption, we may
apply the contraction principle for continuous functions (Theorem 3.1.22), and
obtain that for any m ∈ N the family of measures {µε ◦ fm}ε>0 satisfies a large
deviations principle on Y with the good rate function

Im(y) := inf
{

I(x)
∣∣ x ∈ X such that fm(x) = y

}
.

By (3.1.25), fm
m→∞−−−→ f converges uniformly on any level set ΦI(α) if α < ∞.

Thus, by similar arguments as in the proof of Theorem 3.1.22, f is continuous
on each of these level sets, I′ is a good rate function on Y, and its level sets are
f
(
ΦI(α)

)
.

Now, fix a closed set F ⊂ Y and define, for any m ∈ N,

γm := inf
y∈F

Im(y) = inf
x∈ f−1

m (F)
I(x) .

Assume that8

γ := lim inf
m→∞

γm < ∞

and select a subsequence (γmk )k∈N of (γm)m∈N, such that

γmk
k→∞−−−→ γ and sup

k∈N

γmk =: β < ∞ .

8see below for the case γ = ∞
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3.1. Large Deviations

Since I is a good rate function and f−1
m (F) is a closed subset of X for any

m ∈ N, we can find a sequence (xk)k∈N ⊂ X such that fmk (xk) ∈ F and
I(xk) = γmk < β for all k ∈ N. By the uniform convergence assumption
(3.1.25), we know that for any δ > 0 we can find a K0 ∈ N such that for all
k > K0 we have f (xk) ∈ Fδ. This implies that, for all δ > 0 and all k ∈ N large
enough,

inf
y∈Fδ

I′(y) 6 I′
(

f (xk)
)

6 I(xk) = γmk .

Hence, again for all δ > 0,

inf
y∈Fδ

I′(y) 6 lim inf
k→∞

inf
y∈F

Imk (y)

(note: this holds trivially if γ = ∞).
Letting δ → 0, Remark 3.1.6(iii) shows that for every closed set F we have

that

inf
y∈F

I′(y) 6 lim inf
k→∞

inf
y∈F

Imk (y) . (3.1.26)

This does, in particular, imply that the estimate

inf
y∈F

I′(y) 6 lim sup
k→∞

inf
y∈F

Imk (y)

holds, which in turn implies that Assumption (3.1.17) from Theorem 3.1.28
holds.

If we now choose F := B(y, δ), we obtain that

I′(y) Rem. 3.1.13= sup
δ>0

inf
z∈B(y,δ)

I′(z)
(3.1.26)

6 sup
δ>0

lim inf
k→∞

inf
z∈B(y,δ)

Imk (z) =: Ī(y) .

Because Ī is the rate function defined in Theorem 3.1.28, we note that this proof
is complete as soon as we can show that Ī(y) 6 I′(y) holds for all y ∈ Y – be-
cause then Theorem 3.1.28 implies that {µ̃ε}ε>0 satisfies a full large deviations
principle with the rate function I′ = Ī.

To prove this estimate, we select an y ∈ Y and assume without loss of gen-
erality, that I′(y) =: α < ∞. But I′(y) = α implies that y ∈ f

(
ΦI(α)

)
, i.e., there

exists an x ∈ ΦI(α) such that f (x) = y. We set ym := fm(x) ∈ fm
(
ΦI(α)

)
, and

thus obtain Im(ym) 6 α for all m ∈ N. Now, condition (3.1.25) implies that
d(y, ym) m→∞−−−→ 0, hence,

Ī(y) 6 lim inf
m→∞

Im(ym) 6 α ,

which proves the required estimate.

3.1.8. Sample-Path Large Deviations for Strong Solutions of
Stochastic Differential Equations: Freidlin-Wentzell
Theory

Let us return to the original problem described in the beginning of this chapter.
We want to understand the behaviour of the strong solution xε of a stochastic
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3. SR through Freidlin-Wentzell theory

differential equation{
dxε

t = b(xε
t) dt +

√
ε · σ(xε

t) dWt , t ∈ [0, T] , T < ∞
xε

0 = x
(3.1.27)

in Rd, where we assure the existence of a unique strong solution xε by assum-
ing that b, σ are bounded and uniformly Lipschitz continuous.

Our aim in this subsection is to prove a large deviations principle and the
corresponding rate function for xε, more precisely, for its distributions µε as
ε → 0. We do this in two steps: First we describe a simple special case, and
then we go into the details of the large deviations of xε.

Simple case: σ ≡ 1 and xε
0 = 0

In this special case,9 we can use the continuous version of the contraction
principle to obtain a large deviations principle the distribution of xε from
Schilder’s theorem:

Let f be the unique solution in C0 of the integral equation

f (t) =
∫ t

0
b
(

f (s)
)

ds + g(t) , g ∈ C0,

and define
F : C0 → C0

g 7→ F(g) := f .

We note that F
(√

ε ·W
)

= xε.
To apply the contraction principle using F, we have to prove that F is con-

tinuous. We choose g1, g2 ∈ C0 and denote f1 = F(g1), f2 = F(g2). Then we
have that for all t ∈ [0, T], T < ∞,

‖ f1 − f2‖[0,t] 6 Lb ·
∫ t

0
‖ f1 − f2‖[0,s] ds + ‖g1 − g2‖[0,t] ,

where Lb is a Lipschitz constant such that
∥∥b(x)− b(y)

∥∥ 6 Lb · ‖x− y‖. Gron-
wall’s lemma now implies that

‖ f1 − f2‖[0,T] 6 exp[LbT] · ‖g1 − g2‖[0,T] ,

and hence the continuity of F.
By Schilder’s theorem,

{
P ◦ (Wε

t )
−1}

ε>0, for Wε
t :=

√
ε ·Wt, satisfies a large

deviations principle with the good rate function

IBM(ϕ) := IBM
[0,T],0(ϕ) :=

{
1
2 · ‖ϕ‖2

H1
if ϕ ∈ H1

+∞ otherwise .

By application of the contraction principle (continuous version) we know that
xε = F(Wε) satisfies a large deviations principle with the good rate function

I( f ) := inf
{

IBM
[0,T],0(g)

∣∣∣ g ∈ C0 such that F(g) = f
}

= inf
{

1
2
· ‖g‖2

H1

∣∣∣∣ g ∈ C0 such that F(g) = f
}

.

9This subsection is based on the first part of [Gen03, Section 2.5].
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Remember that the H1-norm of a function g ∈ H1 = H1
(
[0, T]; Rd) is de-

fined by

‖g‖H1 :=

√∫ T

0

∥∥ġ(t)
∥∥2 dt .

Finally, we want to identify I. If g /∈ H1, then also f = F(g) /∈ H1. If g ∈ H1,
then f is a.s. differentiable with ḟ (t) = b

(
f (t)

)
+ ġ(t), and f (0) = 0. Then

there exists a constant B > 0 such that for all t ∈ [0, T]∥∥ ḟ (t)
∥∥ 6 B

∫ t

0

∥∥ ḟ (s)
∥∥ ds +

∥∥b(0)
∥∥+

∥∥ġ(t)
∥∥ .

Gronwall’s lemma together with g ∈ H1 implies that f ∈ H1. Thus,

I( f ) =

{
1
2

∫ t
0

∥∥ ḟ (s)− b
(

f (s)
)∥∥2 ds if g ∈ H1 (⇒ f ∈ H1)

+∞ if g /∈ H1 (⇒ f /∈ H1) .

Less simple case

Let xε be the unique solution of (3.1.27).10 We want to understand the large de-
viations behavior of this stochastic process. The first idea for a proof of a large
deviations result in this situation would be to apply the same tools as we did
above – construct some continuous transformation F and use the contraction
principle. However, the map defined by xε on C does not necessarily have to be
continuous: It can be shown that, if we replace the Brownian motion Wt by its
polygonal approximation (hence, a continuous approximation), the solution
of (3.1.27) differs in the limit from xε by a non–zero (so–called Wong–Zakai)
correction term. The existence of this non–zero correction term contradicts the
assumption of continuity. Hence, we may not use the continuous version of
the contraction principle.

On the other hand, the mentioned correction term is of order ε, so we may
expect that it will not influence large deviations results. Consequently, we
guess that, even though we have just realized that the proof will not work
as above, the rate function for this situation might in principle be the same as
above:

Ixε

[0,T],x( f ) := inf
{

1
2
· ‖g‖2

H1

∣∣∣∣ g ∈ H1 such that (3.1.28)

f (t) = x +
∫ t

0
b
(

f (s)
)

ds +
∫ t

0
σ
(

f (s)
)

ġ(s) ds
}

.

The following theorem confirms this guess:

Theorem 3.1.30 (Large deviations principle for
{

P ◦ (xε)−1}
ε>0). [DZ98, The-

orem 5.6.7] Consider the stochastic differential equation (3.1.27). Assume that b and
σ are bounded and uniformly Lipschitz continuous, and xε the solution of (3.1.27).
Then the family {µ̃ε}ε>0 :=

{
P ◦ (xε)−1}

ε>0 satisfies a large deviations principle
with the good rate function Ixε

[0,T],x as defined in (3.1.28).

10This subsection is almost entirely based on [DZ98, Section 5.6]
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3. SR through Freidlin-Wentzell theory

Proof. Without loss of generality, we may assume that the initial conditon is
x = 0, and we may choose T = 1. Hence, C0 is the support of µ̃ε.

Our proof is based on the construction of a series of processes xε,m which
are shown to approximate xε exponentially good and thus allow us to apply
the contraction principle as formulated in Theorem 3.1.29.

For any m ∈ N, let xε,m be the solution of the stochastic differential equation

dxε,m
t = b

(
xε,m
bmtc

m

)
dt +

√
ε · σ

(
xε,m
bmtc

m

)
dWt , t ∈ [0, 1],

xε,m
0 = 0 ,

(3.1.29)

where the drift and diffusion coefficients are by construction “frozen over[ k
m , k+1

m
[
”. Since for any ε > 0 and m ∈ N, xε and xε,m are strong solutions

of (3.1.27) and (3.1.29), respectively, they are defined on the same probability
space, and by Lemma 3.1.31 (below) we know that {xε,m}ε>0,m∈N are expo-
nentially good approximations of {xε}ε>0.

Like in the “simple case” above, we define functions

Fm : C0 → C0

g 7→ Fm(g) = hm ,

where for any t ∈
] k

m , k+1
m
]
, k = 0, . . . , m− 1, we set hm(0) := 0 and

hm(t) := hm
(

k
m

)
+ b

(
hm
(

k
m

))
·
[

t− k
m

]

+ σ

(
hm
(

k
m

))
·
[

g(t)− g
(

k
m

)]
.

We want to use these functions as “approximating functions”, applying
Theorem 3.1.29 (note that xε,m = Fm(Wε)). To do this, we first have to prove
that for any m ∈ N, Fm is continuous. Let g1, g2 ∈ C0, set hm

1 = Fm(g1),
hm

2 = Fm(g2) and define

e(t) :=
∥∥hm

1 (t)− hm
2 (t)

∥∥ .

By the continuity and boundedness assumptions on b and σ, we have that for
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3.1. Large Deviations

t ∈
] k

m , k+1
m
]

there exist Lb, B > 0 such that

e(t) 6

∥∥∥∥∥hm
1

(
k
m

)
− hm

2

(
k
m

)∥∥∥∥∥︸ ︷︷ ︸
=e( k

m )

+

∥∥∥∥∥b

(
hm

1

(
k
m

))
− b

(
hm

2

(
k
m

))∥∥∥∥∥︸ ︷︷ ︸
6Lb ·e( k

m )

·
[

t− k
m

]
︸ ︷︷ ︸

6 1
m

+

∥∥∥∥∥σ

(
hm

1

(
k
m

))
− σ

(
hm

2

(
k
m

))∥∥∥∥∥︸ ︷︷ ︸
62B

·
∥∥∥∥∥g1(t)− g1

(
k
m

)
− g2(t) + g2

(
k
m

)∥∥∥∥∥︸ ︷︷ ︸
62·‖g1−g2‖[0,1]

6 C ·
(

e
(

k
m

)
+ ‖g1 − g2‖[0,1]

)

where C < ∞ is bigger than

max
{

2, 2 · Lb
m

, 4B
}

,

and hence,

sup
t∈ ] k

m , k+1
m ]

e(t) 6 C ·
(

e
(

k
m

)
+ ‖g1 − g2‖[0,1]

)
.

Knowing that e(0) = 0, we can iterate this bound for k = 0, . . . , m− 1 and thus
obtain the continuity of Fm for all m ∈ N.

Now, define

F : H1 → C0

g 7→ F(g) = f ,

where f shall be the unique solution of the integral equation

f (t) =
∫ t

0
b
(

f (s)
)

ds +
∫ t

0
σ
(

f (s)
)

ġ(s) ds , t ∈ [0, 1].

Again, existence and uniqueness of the solution are standard because of the
a–priori conditions on b and σ. As soon as we prove that for any α < ∞,

lim
m→∞

sup
{∥∥Fm(g)− F(g)

∥∥
[0,1]

∣∣∣ g such that ‖g‖H1 6 α
}

= 0 , (3.1.30)
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3. SR through Freidlin-Wentzell theory

we know that Fm approximates F in the sense of (3.1.25). As we have noted
above, by Lemma 3.1.31 we know that {µε,m}ε>0,m∈N approximate {µ̃ε}ε>0
exponentially good. Hence, the conditions for Theorem 3.1.29, the general-
ized version of the contraction principle, are fulfilled and we have proved the
assertion of the theorem.

To prove (3.1.30), we fix α < ∞ and g ∈ H1 with ‖g‖H1 6 α. We write

hm = Fm(g) , f = F(g) and r(t) :=
∥∥ f (t)− hm(t)

∥∥2 ,

and note that for all t ∈ [0, 1], hm fulfills the integral equation

hm(t) =
∫ t

0
b

(
hm
(
bmsc

m

))
ds +

∫ t

0
σ

(
hm
(
bmsc

m

))
ġ(s) ds .

By the Cauchy-Schwartz inequality and the fact that bmsc
m = bmtc

m = const. for

all s ∈
[ bmtc

m , t
[
, t ∈ [0, 1], we have that

∫ t

bmtc
m

σ

(
hm
(
bmsc

m

))
ġ(s) ds

6

√√√√∫ t

bmtc
m

σ

(
hm
(
bmtc

m

))2

ds ·
∫ t

bmtc
m

ġ(s)2 ds︸ ︷︷ ︸
6‖g‖2

H1
6α2

6

√[
t− bmtc

m

]
· σ

(
hm
(
bmtc

m

))
· α ,

and thus,

hm(t)− hm
(
bmtc

m

)

=
∫ t

bmtc
m

b

(
hm
(
bmsc

m

))
ds +

∫ t

bmtc
m

σ

(
hm
(
bmsc

m

))
ġ(s) ds

6
[

t− bmtc
m

]
· b

(
hm
(
bmtc

m

))

+

√[
t− bmtc

m

]
· σ

(
hm
(
bmtc

m

))
· α .

Because σ, b are bounded, we may find a constant δm for every m ∈ N, which
is independent of g, such that δm

m→∞−−−→ 0 and the following estimate holds for
all t ∈ [0, 1]:

hm(t)− hm
(
bmtc

m

)
6 δm(1 + α) . (3.1.31)
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3.1. Large Deviations

By the Lipschitz continuity of b, σ we can find a constant C̃ < ∞, independent
of m and g, such that for all t ∈ [0, 1]√

r(t) :=
∥∥ f (t)− hm(t)

∥∥
=

∥∥∥∥∥
∫ t

0
b
(

f (s)
)
− b

(
hm
(
bmsc

m

))
︸ ︷︷ ︸

6C̃·‖ f (s)−hm( bmsc
m )‖

ds

+
∫ t

0

[
σ
(

f (s)
)
− σ

(
hm
(
bmsc

m

))]
︸ ︷︷ ︸

6C̃·‖ f (s)−hm( bmsc
m )‖

· ġ(s) ds

∥∥∥∥∥

6 C̃

√√√√∫ t

0

∥∥∥∥∥ f (s)− hm
(
bmsc

m

)∥∥∥∥∥
2

ds

+ C̃

√√√√∫ t

0

∥∥∥∥∥ f (s)− hm
(
bmsc

m

)∥∥∥∥∥
2

ds · α2

= (1 + α) · C̃

√√√√∫ t

0

∥∥∥∥∥ f (s)− hm
(
bmsc

m

)∥∥∥∥∥
2

ds .

This implies that r(0) = 0. By application of (3.1.31) we see that there are
K1, K2 < ∞, depending on C̃ and α, such that for all t ∈ [0, 1]

r(t) =
∥∥ f (t)− hm(t)

∥∥2
6 (1 + α)2 · C̃2︸ ︷︷ ︸

=K1

∫ t

0

∥∥∥∥∥ f (s)− hm
(
bmsc

m

)∥∥∥∥∥
2

ds

6 K1

∫ t

0

∥∥ f (s)− hm(s)
∥∥2 ds + K1

∫ t

0

∥∥∥∥∥hm(s)− hm
(
bmsc

m

)
︸ ︷︷ ︸

6δm(1+α)

∥∥∥∥∥
2

ds

︸ ︷︷ ︸
6δ2

m ·K1
∫ 1

0 (1+α)2 ds︸ ︷︷ ︸
=K2

6 K1

∫ t

0
r(s) ds + δ2

m · K2 ,

hence r(t) 6 K2δ2
m · exp[K1t] by Gronwall’s lemma. Finally, we obtain that

∥∥F(g)− Fm(g)
∥∥

[0,1] 6
√

K2 · δm · exp
[

K1 · 1
2

]
,

which proves (3.1.30), because the selection of g ∈ H1 was without further
assumptions and because δm

m→∞−−−→ 0.
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3. SR through Freidlin-Wentzell theory

Lemma 3.1.31 (xε,m approximate xε exp. good). [DZ98, Lemma 5.6.9] In the
situation of the above proof, the following holds for any δ > 0:

lim
m→∞

lim sup
ε→0

ε log P
[
‖xε,m − xε‖[0,1] > δ

]
= −∞ .

To prove this lemma, we need the following result; remember that, for a
measurable space (Ω, F) and a filtration {Ft}t∈[0,∞[, a function X mapping
[0, ∞[×Ω into a measurable space (E, A) is named progressively measurable, if
X|[0,T]×Ω is B[0,T] × FT-measurable for every T < ∞.

Lemma 3.1.32. [DZ98, Lemma 5.6.18] Let bt and σt be progressively measurable
processes, and consider the equation

dzt = bt dt +
√

ε · σt dWt in Rd , (3.1.32)

where z0 is deterministic. Let τ1 ∈ [0, 1] be a stopping time with respect to the fil-
tration of {Wt}t∈[0,1]. Suppose that the coefficients of the diffusion matrix σ are uni-
formly bounded, and that for some constants M, B, ρ and any t ∈ [0, τ1] we have
that

‖σt‖ 6 M ·
(
ρ2 + ‖zt‖2)1/2

‖bt‖ 6 B ·
(
ρ2 + ‖zt‖2)1/2 . (3.1.33)

Then for any δ > 0 and any ε 6 1 the following estimate holds:

ε log P
[

sup
t∈[0,τ1]

‖zt‖ > δ
]

6 K + log
(

ρ2 + ‖z0‖2

ρ2 + δ2

)
,

where K := 2B + M2(2 + d).

Note that the notation in (3.1.32) is ‘abbreviating’: b and σ are dependent on
variables in space and time. Cf. the proof of Lemma 3.1.31.

Proof. For any y ∈ Rd we define

φ(y) :=
(
ρ2 + ‖y‖2)1/ε

and set ut := φ(zt). By Itô’s formula, ut is the strong solution of the stochastic
differential equation

dut =
(
∇φ(zt)

)T dzt +
ε

2
· tr
(
σtσ

T
t D2φ(zt)

)
dt

=: gt dt + σ̃t dWt ,
(3.1.34)

where D2φ(y) denotes the matrix of second derivatives of φ(y). Because of

∇φ(y) =
1
ε
·
(
ρ2 + ‖y‖2) 1

ε−1 · 2y =
2φ(y)

ε ·
(
ρ2 + ‖y‖2

) · y
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3.1. Large Deviations

and (3.1.33), we have that, for any t ∈ [0, τ1],∥∥∥(∇φ(zt)
)T bt

∥∥∥ 6
2φ(zt) · B · ‖zt‖

ε ·
(
ρ2 + ‖zt‖2

)1/2 =
2B
ε
· φ(zt) ·

‖zt‖(
ρ2 + ‖zt‖2

)1/2

6
2B
ε
· ut . (3.1.35)

In a similar way we obtain that, for any ε 6 1 and any t ∈ [0, τ1],

ε

2
· tr
(
σtσ

T
t D2φ(zt)

)
6

M2(2 + d)
ε

· ut

(using that (σ
(i)
t )2 6 M2 ·

(
ρ2 + ‖zt‖2) for all i = 1, . . . , d and estimating com-

ponentwise). With these estimates and (3.1.34), we get that, for any t ∈ [0, τ1],

gt 6
Kut

ε
, (3.1.36)

with K as defined above.
Now, fix δ > 0 and define the stopping time

τ2 := inf
{

t
∣∣ ‖zt‖ > δ

}
∧ τ1 .

Since, similar to (3.1.35),

‖σ̃t‖ 6
2Mut√

ε

is uniformly bounded on [0, τ2], we know that

ut −
∫ t

0
gs ds

is a continuous martingale up to τ2. Hence, we may apply Doob’s optional
sampling theorem and obtain that

E[ut∧τ2 ] = u0 + E

[∫ t∧τ2

0
gs ds

]
.

Combining this with (3.1.36) and the fact that u is non–negative by definition,
we get that

E[ut∧τ2 ] 6 u0 +
K
ε
·E

[∫ t∧τ2

0
us ds

]
= u0 +

K
ε
·E

[∫ t∧τ2

0
us∧τ2 ds

]
6 u0 +

K
ε
·
∫ t

0
E[us∧τ2 ] ds .

Gronwall’s lemma implies now that

E[uτ2 ] = E[u1∧τ2 ] 6 u0 · exp
[

K
ε

]
= φ(z0) · exp

[
K
ε

]
.
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3. SR through Freidlin-Wentzell theory

We note that φ(y) is positive and monotonely increasing in ‖y‖; hence, by
Markov’s inequality,

P
[
‖zτ2‖ > δ

]
= P

[
φ(zτ2) > φ(δ)

]
6

E
[
φ(zτ2)

]
φ(δ)

=
E[uτ2 ]
φ(δ)

.

Now we combine the two preceding inequalities and finally see that

ε log P
[
‖zτ2‖ > δ

]
6 ε log

(
E[uτ2 ]
φ(δ)

)
6 ε log

(
φ(z0) · exp

[K
ε

]
φ(δ)

)
= K + log

(
φ(z0)
φ(δ)

)
= K + log

(
ρ2 + ‖z0‖2

ρ2 + δ2

)
.

The lemma is proved, as we have that

sup
t∈[0,τ1]

‖zt‖ > δ ⇔ ‖zτ2‖ > δ .

Proof of Lemma 3.1.31. We fix δ > 0 and define, for any ρ > 0, the stopping
time

τ1 := inf
{

t
∣∣∣ ∥∥xε,m

t − xε,m
bmtc

m

∥∥ > ρ
}
∧ 1 .

If we denote

zt := xε,m
t − xε

t ,

we see that this process zt fulfills the differential equation (3.1.32), with

z0 = 0 , bt := b
(

xε,m
bmtc

m

)
− b(xε

t) and σt := σ
(

xε,m
bmtc

m

)
− σ(xε

t) .

Hence, as the assumptions on b and σ are fulfilled by any bounded and Lip-
schitz-continuous function, we may apply Lemma 3.1.32, which shows that
for any δ > 0 and any ε 6 1 we can find a K < ∞ that is independent of ε, δ, ρ
and m and makes the following estimate valid:

ε log P
[

sup
t∈[0,τ1]

‖xε,m
t − xε

t‖ > δ
]

6 K + log
(

ρ2

ρ2 + δ2

)
,

which in turn implies that

lim
ρ→0

sup
m>1

lim sup
ε→0

ε log P
[

sup
t∈[0,τ1]

‖xε,m
t − xε

t‖ > δ
]

= −∞ .

Since, by construction of τ1, for any ρ > 0{
‖xε,m − xε‖[0,1] > δ

}
⊂ {τ1 < 1} ∪

{
sup

t∈[0,τ1]
‖xε,m

t − xε
t‖ > δ

}
,

the proof of the lemma is complete if we can show that

lim
m→∞

lim sup
ε→0

ε log P
[

sup
t∈[0,1]

∥∥xε,m
t − xε,m

bmtc
m

∥∥ > ρ
]

= −∞ . (3.1.37)
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3.1. Large Deviations

The boundedness of b and σ allows us to find a constant C such that for all
m ∈ N∥∥xε,m

t − xε,m
bmtc

m

∥∥ 6
∫ t

bmtc
m

∥∥∥b
(

xε,m
bmtc

m

)∥∥∥ dt +
√

ε
∫ t

bmtc
m

∥∥∥σ
(

xε,m
bmtc

m

)∥∥∥ dWt

6 C ·
(

1
m

+
√

ε · max
k=0,...,m−1

sup
s∈[0, 1

m ]

∥∥Ws+ k
m
−W k

m

∥∥) .

This implies that for all m > C
ρ

P
[

sup
t∈[0,1]

∥∥xε,m
t − xε,m

bmtc
m

∥∥ > ρ
]

6 m · P
[

sup
s∈[0, 1

m ]
‖Ws‖ >

ρ− C
m√

ε · C

]

6 4d ·m · exp
[
−

m
(
ρ− C

m
)2

2d · εC2

]
,

where the last estimate is based on Lemma 3.1.1. This completes the proof.

Finally, we extend the results of this section by the following theorem, which
allows more general initial conditions, and the subsequent corollary, which we
will need in the next section on diffusion exit from a domain.

Theorem 3.1.33. [DZ98, Theorem 5.6.12] Consider the situation of Theorem 3.1.30.
Let xε,y denote the solution of the stochastic differential equation (3.1.27) for the initial
condition xε,y

0 := y. Then the following holds:

(a) For any closed set F ⊂ C
(
[0, 1]; Rd),

lim sup
ε→0,
y→x

ε log P[xε,y ∈ F] 6 − inf
ϕ∈F

Ixε

[0,1],x(ϕ) . (3.1.38)

(b) For any open set G ⊂ C
(
[0, 1]; Rd),

lim inf
ε→0,
y→x

ε log P[xε,y ∈ G] > − inf
ϕ∈G

Ixε

[0,1],x(ϕ) . (3.1.39)

Corollary 3.1.34 (generalized large dev. principle). [DZ98, Corollary 5.6.15]
Consider the situation of Theorem 3.1.30. Then for any compact set K ⊂ Rd and
any closed set F ⊂ C

(
[0, 1]; Rd) we have that

lim sup
ε→0

ε log sup
y∈K

P[xε,y ∈ F] 6 − inf
ϕ∈F,
y∈K

Ixε

[0,1],y(ϕ) . (3.1.40)

Similarly, for any open set G ⊂ C
(
[0, 1]; Rd),

lim inf
ε→0

ε log inf
y∈K

P[xε,y ∈ G] > − sup
y∈K

inf
ϕ∈G

Ixε

[0,1],y(ϕ) . (3.1.41)
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3. SR through Freidlin-Wentzell theory

Proof. Let −IK denote the right hand side of (3.1.40). Fix δ > 0 and set

Iδ
K := min

{
IK − δ,

1
δ

}
.

Then (3.1.38) implies that for every x ∈ K we can find an εx > 0 such that for
all ε 6 εx

ε log sup
y∈B(x,εx)

P[xε,y ∈ F] 6 −Iδ
K .

We can cover K by open balls B(xi, εxi ) fulfilling this estimate, where i ∈ I for
some index set I. Choose x1, . . . , xm ∈ K such that the compact set K is covered
by the finite union

⋃m
i=1 B(xi, εxi ) of open balls. Hence, for ε 6 mini=1,...,n εxi ,

ε log sup
y∈K

P[xε,y ∈ F] 6 −Iδ
K .

Now take first ε → 0 and then δ → 0; this implies (3.1.40).
(3.1.41) can be proved by a similar argument based on (3.1.39).

Proof of Theorem 3.1.33. By Theorem 3.1.26 (on large deviations principles for
exponentially equivalent families of measures), we only have to show that the

family {xε,x}ε>0 is exponentially equivalent to {xε,xε}ε>0 whenever xε
ε→0−−→ x.

We fix a family (xε)ε>0 such that xε
ε→0−−→ x and denote

zt := xε,xε
t − xε,x

t .

Then zt fulfills (3.1.32), with

z0 := xε − x , σt := σ(xε,xε
t )− σ(xε,x

t ) and bt := b(xε,xε
t )− b(xε,x

t ) .

The standard properties of b, σ imply that (3.1.33) holds for any ρ > 0 and
τ1 = 1. Thus, applying Lemma 3.1.32, we obtain that for any δ > 0 and any
ρ > 0 we can find a K < ∞ which is independent of ε, δ and ρ, such that

ε log P
[
‖xε,xε − xε,x‖[0,1] > δ

]
6 K + log

(
ρ2 + ‖xε − x‖2

ρ2 + δ2

)
.

Now, we take first ρ → 0 and then ε → 0, and get

lim sup
ε→0

ε log P
[
‖xε,xε − xε,x‖[0,1] > δ

]
6 K + lim sup

ε→0
log
(
‖xε − x‖2

δ2

)
.

This proves the exponential equivalence of xε,xε and xε,x, and thus the theorem.

3.2. Diffusion Exit from a Domain

In the last section11 we were concerned with the question, in which way a
dynamical system changes its behaviour under small stochastic perturbations,
with a special focus on untypical behaviour – large deviations.
11Even though the basic skeleton of this section comes from [Gen03], virtually anything in here

is based on [DZ98, Section 5.7] and [FW98, Chapter 3].
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3.2. Diffusion Exit from a Domain

In this section we consider a special case of this problem, namely the situ-
ation when the system without stochastic perturbations has a stable equilib-
rium point and the property to drift towards that point (under certain con-
ditions). We study such systems under small stochastic perturbations. Espe-
cially, we want to understand, when and where such systems under stochas-
tic perturbations leave certain neighborhoods of the deterministic equilibrium
state.

Situation 3.2.1 (deterministic equilibrium point). We consider the stochastic dif-
ferential equation{

dxε
t = b(xε

t) dt +
√

ε · σ(xε
t) dWt , t ∈ [0, T],

xε
0 = x

(3.2.1)

in Rd, and an open, bounded domain D ⊂ Rd with 0 ∈ D. We assume that b and σ
are uniformly Lipschitz continuous on a neighborhood of D̄, and that B < ∞ is large
enough to bound

sup
x∈D̄

∥∥b(x)
∥∥ , sup

x∈D̄

∥∥σ(x)
∥∥

and the Lipschitz constants for b and σ.
We denote by

{
Px ◦ (xε)−1}

ε>0 the family of distributions of the solution xε to
(3.2.1) with initial condition x, and by Ex the corresponding expectation.

Furthermore, we assume that the ordinary differential equation

dxt = b(xt) dt (3.2.2)

has a unique stable equilibrium point at 0 ∈ D, and that for all solutions (xt)t>0 of
(3.2.2) with initial condition x0 ∈ D the following holds:

• xt ∈ D for all t > 0 ,

• lim
t→∞

xt = 0 .

Finally, we need the Ft-stopping time

τε := inf{t > 0 | xε
t /∈ D} ,

where {Ft}t>0 is the canonical right-continuous filtration12 generated by the Brown-
ian motion (Wt)t>0.

It seems obvious that in this situation the system (3.2.1) should stay inside
D for small ε with very high probability, if x0 ∈ D. However, also in this situa-
tion large deviations occur and the stochastically perturbed system eventually
leaves D even for small ε. Our aim in this section is to understand these large
deviations from the expected behaviour, including exit times and the proba-
bilities of exit through certain parts of ∂D.

Remark 3.2.2 (possible generalization). It is noted in [DZ98, p. 197, p. 201] that
the results of this section (concerning diffusion exit from a domain) and the preceding
subsection (concerning Freidlin-Wentzell theory) can be generalized to other forms of
stochastic perturbations, as e.g. Poisson processes, or, more generally, Lévy noise.
12I.e., let {F0

t }t>0 be the filtration generated by Brownian motion and then set Ft :=
⋂

ε>0 F0
t+ε

for any t > 0.
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3. SR through Freidlin-Wentzell theory

3.2.1. Quasi-Potentials

Definition 3.2.3 (cost function V, quasi-potential). [DZ98, p. 198] Let us define
the cost function

V(x, y; t) := inf
{

Ixε

[0,t],x(ϕ)
∣∣∣ ϕ ∈ C

(
[0, t]; Rd), ϕ0 = x, ϕt = y

}
(3.2.3)

= inf
{

1
2

∫ t

0
‖us‖2 ds

∣∣∣∣ u ∈ L2([0, t]; Rd) such that (3.2.4)

ϕs := x +
∫ s

0
b(ϕr) dr +

∫ s

0
σ(ϕr)ur dr ,

s ∈ [0, t] , fulfills ϕt = y
}

.

Heuristically, this may be understood as the cost of forcing the stochastically
perturbed system (3.2.1) to be at the point y at time t, when starting at x.

Furthermore, we define

V(x, y) := inf
t>0

V(x, y; t) .

Following the above heuristic idea for V(x, y; t), this may be understood as the
cost of forcing the system (3.2.1) with starting point x to reach y eventually.

If the deterministic dynamics of the system under consideration possess a
unique stable equilibrium point at the origin (which is the case in our setting,
as described in Situation 3.2.1), we fix the special case y 7→ V(0, y) and call it
a quasi-potential.

This definition (and especially its independence of the initial condition x) is
motivated by the following observation.

Remark 3.2.4 (role of initial condition of (3.2.1)). [DZ98, p. 198] In our setting,
as described in Situation 3.2.1, the typical behaviour of a solution xε with initial
condition xε

0 ∈ D is to move towards the origin as ε → 0, and to stay close to that
point for exponentially long time (until a large deviation occurs).

During this long time span, the probability of hitting a closed set N ⊂ ∂D is always
determined by infz∈N V(0, z). Furthermore, during any excursion from the stable
point, the probability to return there is overwhelmingly higher than the probability to
push on towards (and beyond) ∂D.

In other words, to determine the probability of an exit from the domain D, it is not
the time spent away from the stable point which matters, but the a priori chance for a
direct, fast exit from the origin to Dc due to a rare segment in the Brownian motion’s
path.

A rigorous justification for this remark will be given below (cf. the note
following Lemma 3.2.18).

We do not generally assume that the drift coefficient b in the system (3.2.1)
derives from a potential. However, this may be the case in certain situations.
For those situations, we note the following interesting fact.

Lemma 3.2.5 (potential and quasi-potential). [adapted from [FW98, Chap. 4,
Thm. 3.1]] Assume that σ ≡ 1 and that there exists a continuously differentiable
potential U on D̄ satisfying the following conditions:
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3.2. Diffusion Exit from a Domain

• U(0) = 0,

• U(x) > 0 for all x 6= 0,

• ∇U(x) 6= 0 for all x 6= 0.

If now the drift term is of the form

b(x) = −∇U(x) ,

then the quasi-potential V(0, y) satisfies

V(0, y) = 2 ·U(y) for all y ∈ D0 :=
{

y ∈ D̄
∣∣ U(y) 6 U0 := min

z∈∂D
U(z)

}
.

If, in addition, U is twice continuously differentiable, then the rate function I has a
unique extremal ϕ on the set{

ϕ ∈ C
(
]−∞, T]; Rd) ∣∣∣ lim

s↘−∞
ϕs = 0, ϕT = x

}
,

and this extremal is the solution of the differential equation{
dϕs = +∇U(ϕs) ds , s ∈ ]−∞, T],
ϕT = x .

(3.2.5)

According to [FW98], this relation between a potential and the quasi-poten-
tial derived from it is the reason for the name “quasi-potential”.

Proof. Let ϕ : [T1, T2] → Rd be a path and let us first assume that ϕs ∈ D̄ for
all s ∈ [T1, T2]. Then the relation

U(ϕT2)−U(ϕT1) =
∫ T2

T1

〈
∇U(ϕs), ϕ̇s

〉
ds

implies that (with the polarization identity)

I[T1,T2](ϕ) =
1
2

∫ T2

T1

∥∥ϕ̇s +∇U(ϕs)
∥∥2 ds

=
1
2

∫ T2

T1

∥∥ϕ̇s −∇U(ϕs)
∥∥2 ds + 2

∫ T2

T1

〈
∇U(ϕs), ϕ̇s

〉
ds

> 2 ·
(
U(ϕT2)−U(ϕT1)

)
. (3.2.6)

Hence, if we choose ϕ such that ϕs ∈ D̄ for all s ∈ [T1, T2], ϕT1 = 0 and ϕT2 = x
where x ∈ D0, we see that

I[T1,T2],0(ϕ) > 2U(x) . (3.2.7)

If ϕT1 = 0 and ϕT2 = x, but there exist s ∈ [T1, T2] such that ϕs /∈ D̄ (i.e., ϕ
leaves D̄ during [T1, T2]), there exists a time τ ∈ [T1, T2] such that U(ϕτ) = U0
and

I[T1,T2],0(ϕ) > I[T1,τ],0(ϕ)
(3.2.7)
> 2U(ϕτ) = 2U0 > 2U(x) ,

47



3. SR through Freidlin-Wentzell theory

which is the asserted lower bound for all ϕ such that ϕT1 = 0 and ϕT2 = x.
Now, let ϕ̂ be a solution of (3.2.5) (we still do not assume that U is twice dif-

ferentiable). Then lims→−∞ ϕ̂s = 0 and (3.2.6) becomes an equation, because∥∥ ˙̂ϕs −∇U(ϕ̂s)
∥∥ = 0 for all s ∈ [T1, T2]. Hence, similar to (3.2.6),

I[−∞,T],0(ϕ̂) = 2
∫ T

−∞

〈
∇U(ϕ̂s), ˙̂ϕs

〉
ds = 2U(x) ,

and we conclude that ϕ̂ is an extremal of the rate function (because “I > 2U”
has been shown above). By the definition of the quasi-potential, this implies
that V(0, x) = 2U(x), as claimed in the Lemma.

If U ∈ C2, the solution to (3.2.5) is unique. This implies the uniqueness of
the extremal (“optimal”) path.

Remark 3.2.6. [cf. [FW98, Chap. 4, Thm. 3.1]]

• The idea behind the restriction on the domain D0, where the relation V = 2U
holds, is the following:

As before, we think of the quasi-potential as the representation of the “cost” of
forcing the process to a certain point within D. The process will naturally leave
D near a point z ∈ ∂D with U(z) = U0, where this is “as cheap as possible”.

It will not, on the other hand, approach points y ∈ D where U(y) > U0. In
other words, the “cost” of forcing the process to points in D \D0 is simply “not
interesting”, the quasi-potential V “does not know these”.

• The second assertion of the lemma and the differential equation (3.2.5) reflect
that the “cheapest way” for the process to reach some x ∈ D is to “move directly
towards the exit point”, along the path which the deterministic process would
take from x to the origin.

Remark 3.2.7 (possible generalization). [Gen03, Lemma 3.6] The above lemma
can be generalized for the situation where b(x) = −∇U(x) + l(x), if l is a mapping
D̄ → Rd such that〈

l(x),∇U(x)
〉
≡ 0 .

If l is continuously differentiable, then the second assertion of the lemma can be
extended to this generalized case, and the extremal ϕ is the solution of the differential
equation{

dϕs = +∇U(ϕs) ds + l(ϕs) ds , s ∈ ]−∞, T],
ϕT = x .

3.2.2. Classical Results

Situation 3.2.8 (additional assumptions). [[DZ98, p. 199] and [Gen03, Ass. 3.9–
3.11]] We still remain in Situation 3.2.1 and state the following additional assump-
tions:

(A1) We add to the assumption that the deterministic system has a unique, stable
equilibrium point at x∗ = 0 the requirement, that if x0 ∈ ∂D, then limt→∞ xt =
0.
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3.2. Diffusion Exit from a Domain

(A2) V0 := inf
z∈∂D

V(0, z) < ∞ .

(A3) There exist a constant K > 0 and a maximal radius $0 > 0, such that for all
$ 6 $0 and all x0, y with ‖x0 − z‖+ ‖z− y‖ 6 $ for a point z ∈ ∂D ∪ {x∗},
there exist a “control” u ∈ L2 with ‖u‖∞ < K and a time T($), such that the
path ϕt, defined by

ϕt := x0 +
∫ t

0
b(ϕs) ds +

∫ t

0
σ(ϕs)us ds ,

satisfies ϕT($) = y, and the time T($) converges to 0 as $ → 0.

Note that in (A3) neither x0 nor y are required to be in D.

Remark 3.2.9 (about the assumptions). [[DZ98, p. 199] and [Gen03, Rem. 3.12]]

(A1): The basic assumption on existence and uniqueness of a stable equilibrium point
(as formulated in Situation 3.2.1) formalizes the setting that we are interested
in: If the deterministic dynamics starting inside D were allowed to leave D, the
conclusion that the perturbed dynamics did so, too, would be trivial. Hence, we
concentrate on the case of the deterministic dynamics drifting towards x∗ = 0.

(A1) extends this assumptions on the dynamics to initial conditions x0 ∈ ∂D
(whereas earlier only x0 ∈ D = D̊ were included). By this stronger assump-
tion, we exclude a characteristic boundary, i.e. ∂D may not fall together with
the boundary between different domains of attraction of the deterministic dy-
namics.

For example, if the drift coefficient b is the derivative of a potential, the topologi-
cally closed domain D̄ may not contain a local extremum between two potential
wells.

This poses a problem for us, since our aim is to understand stochastic resonance,
i.e. transitions between wells. Fortunately, we will be able to relax the extended
assumption and thus allow characteristic boundaries; see Corollary 3.2.13.

(A2): This assumption is obviously necessary to assure that the exit from D in finite
time is possible at all.

(A3): The rather technical-looking assumption states that there exists a bounded con-
trol function u, such that the controlled process ϕt connects the initial condition
x0 and the point y within time T($), and that this time T($) becomes smaller
the more x0 and y move closer towards each other and some point z out of
x∗ ∪ ∂D.

Heuristically speaking, this assumption makes sure that leaving x∗ or moving
near (especially: crossing) ∂D is not “too expensive” in terms of the cost func-
tion that underlies the quasi-potential V.

It can be proved (cf. [DZ98, Exercise 5.7.29]) that if a(x) = σ(x)σ(x)T is
positive definite for x = x∗ = 0 and uniformly positive definite for x ∈ ∂D,
this assumption is satisfied.

Assumption (A3) implies the following continuity property:
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3. SR through Freidlin-Wentzell theory

Lemma 3.2.10 (continuity of V near x∗ = 0 and ∂D). [DZ98, Lemma 5.7.8]
For any δ > 0 there exists a radius $ > 0 small enough, such that the following
inequalities hold:

sup
{

inf
t∈[0,1]

V(x, y; t)
∣∣∣ x, y ∈ B(0, $) ⊂ D

}
< δ ,

sup
{

inf
t∈[0,1]

V(x, y; t)
∣∣∣ x, y ∈ Rd s.th. inf

z∈∂D

(
‖y− z‖+ ‖x− z‖

)
6 $

}
< δ .

Proof. The function ϕ as defined in (A3) fulfills

V(x, y; t) 6 Ixε

[0,t],x(ϕ) =
1
2

∫ t

0
‖us‖2 ds 6

1
2
· tK2 .

Assumption (A3) furthermore implies that t := T($) converges to 0 as $ → 0.
Hence, by choosing $ small enough, the inequalities of the lemma are fulfilled.

The following theorem is the main result of this subsection. It provides both
an exponential growth rate for the exit time τε and estimates for the exit loca-
tion.

Theorem 3.2.11. [DZ98, Theorem 5.7.11]

(first exit time τε). For any initial condition x ∈ D and any δ > 0, the first exit
time fulfills the estimate

lim
ε→0

Px

[
exp

[
V0 − δ

ε

]
< τε < exp

[
V0 + δ

ε

]]
= 1 . (3.2.8)

Furthermore, for any x ∈ D, we can estimate the expected value of τε as follows:

lim
ε→0

ε log Ex[τε] = V0 . (3.2.9)

(first exit location). For any closed set N ⊂ ∂D such that VN := infz∈N V(0, z) >
V0, and all initial conditions x ∈ D, we have that

lim
ε→0

Px
[
xε

τε ∈ N
]

= 0 . (3.2.10)

In particular, if the quasi-potential V has a unique minimum z∗ on ∂D, then
the following holds for all initial conditions x ∈ D and all δ > 0:

lim
ε→0

Px
[
‖xε

τε − z∗‖ < δ
]

= 1 . (3.2.11)

The result (3.2.9) about the asymptotic mean exit time has been predicted by
physicists (in the case that the drift derives from a potential U) long before the
mathematical theory actually provided the result. The assertion that the log-
arithm of the mean exit time behaves like 2U0/ε, where U0 := minz∈∂D U(z),
is known in this context as “Arrhenius’ law” (the original reference for this is
[Arr89]; about the relation between U and V see also Lemma 3.2.5).

50



3.2. Diffusion Exit from a Domain

Remark 3.2.12 (restriction). [DZ98, p. 201] If V|∂D : ∂D → R+ has more than one
minimum, the exit occurs from a neighborhood of the set of minima. The weight among
the minima can not be determined without further refinements of the underlying large
deviations theory.

Finally, we state the result that is fundamental for SR in an asymmetric
double-well potential. The proof can be found at the end of this section.

Corollary 3.2.13 (characteristic boundary). [DZ98, Corollary 5.7.16] The first
part of Theorem 3.2.11 (concerning the first exit time) remains true without Assump-
tion (A1), i.e. ∂D may fall together with a characteristic boundary with respect to the
deterministic dynamics.

To prove the theorem and the corollary, we need the following handful of
lemmata.

Situation 3.2.14 (balls and spheres in D). [DZ98, p. 198] Let us add to the as-
sumptions stated in Situations 3.2.1 and 3.2.8, that from now on and for the rest of
the subsection, whereever we talk about a ball B(x, $) or a sphere

S(x, $) := ∂B(x, $)

with x ∈ D, we assume that the radius $ is small enough to ensure B(x, $) ⊂ D or
S(x, $) ⊂ D, respectively.

Furthermore, we define a new stopping time

σ$ := inf
{

t > 0
∣∣ xε

t ∈ B(0, $) ∪ ∂D
}

.

First we provide a uniform lower bound for the probability of an exit from
D during a finite time T0.

Lemma 3.2.15 (minimum exit probability during finite time). [DZ98, Lem-
ma 5.7.18] For any (arbitrarily small) η > 0 and any radius $ > 0 small enough
for Lemma 3.2.10 to hold (with δ = η

3 ), there exists a time T0 = T0(η, $) < ∞ such
that

lim inf
ε→0

ε log inf
x∈B(0,$)

Px[τε 6 T0] > −(V0 + η) .

Proof. Fix η > 0 and let $ > 0 be as in the lemma.
The idea of this proof is to construct deterministic exiting paths φx for all

x ∈ B(0, $) such that a certain neighborhood Ψ of the set of all such φx in the
set of all (not necessarily deterministic) continuous paths fulfills the following
properties:

• lim inf
ε→0

ε log inf
x∈B(0,$)

Px[xε ∈ Ψ] > −(V0 + η) ,

• xε ∈ Ψ ⇒ τε 6 T0 for some T0 < ∞ .

We construct φx piecewise:
By the continuity of V near x∗ = 0 (cf. Assumption (A3) and Lemma 3.2.10),

we know that for small enough $ > 0 the following holds: For any x ∈ B(0, $)
we can find a path ψx with

ψx
0 = x and ψx

tx = x∗ = 0 ,
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3. SR through Freidlin-Wentzell theory

where tx ∈ [0, 1], such that

Ixε

[0,tx ],x(ψx) 6
η

3
.

Since V0 is finite (cf. Assumption (A2)), there exists a continuous path ψ0

with

ψ0
tx = 0 and ψ0

tx+t0
=: z ∈ ∂D ,

where t0 is some finite time, such that

Ixε

[tx ,tx+t0],0
(ψ0) < V0 +

η

3
.

Again by the continuity property of V, we can find a small radius κ > 0,
such that for any point13 y ∈ S(z, κ) ∩ (D̄)c there exists a continuous path ψz

with

ψz
tx+t0

= z and ψz
tx+t0+tz = y ,

where tz ∈ [0, 1], such that

Ixε

[tx+t0,tx+t0+tz ],z(ψz) 6
η

3
.

Since D̄ is compact and y ∈ (D̄)c, the Euclidean distance α between y and
D̄ is strictly positive. We remark that, by selection of tz and tx, we have that
tx + tz 6 2.

Now, we denote by ψy the continuous path with the following properties:

ψ
y
tx+t0+tz

= y ,

ψ̇
y
s = b(ψ

y
s ) for all s ∈ [tx + t0 + tz, t0 + 2].

Hence, Ixε

[tx+t0+tz ,t0+2],y(ψy) = 0. Note that we do not know, whether ψ
y
t0+2 is

an element of D or not.
Finally, we define the promised path

φx : [0, t0 + 2] → Rd

s 7→


ψx

s if s ∈ [0, tx]
ψ0

s if s ∈ [tx, tx + t0]
ψz

s if s ∈ [tx + t0, tx + t0 + tz]
ψ

y
s if s ∈ [tx + t0 + tz, t0 + 2] .

This path has, by construction, the following properties:

• φx
0 = x ,

• φx
s = y ∈ (D̄)c for some s ∈ [0, t0 + 2] ,

13This is one of the rare occasions in this subsection where we do not assume S(z, κ) ⊂ D, in
contrast to the general setting described in Situation 3.2.14.
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3.2. Diffusion Exit from a Domain

• Ixε

[0,t0+2],x(φx) < V0 + η .

Moreover, this construction, along with the properties mentioned above, is
independent of the initial selection of x ∈ B(0, $).

For the final step of the proof we define the set of all continuous paths start-
ing at some x ∈ B(0, $) and following φx outside D̄:

Ψ :=
⋃

x∈B(0,$)

{
ψ ∈ C

(
[0, t0 + 2]; Rd) ∣∣∣∣ ‖ψ− φx‖∞ <

α

2

}

(remember that the distance between y and D̄ is α > 0, hence, every ψ ∈ Ψ
actually leaves D!). If we set T0 := t0 + 2 (which is a finite time, since t0 < ∞),
we know that xε ∈ Ψ implies τε 6 T0. Thus, we obtain

lim inf
ε→0

ε log inf
x∈B(0,$)

Px[τε 6 T0] > lim inf
ε→0

ε log inf
x∈B(0,$)

Px[xε ∈ Ψ]

(∗)
> − sup

x∈B(0,$)
inf

ψ∈Ψ
Ixε

[0,T0],x
(ψ) > − sup

x∈B(0,$)
Ixε

[0,T0],x
(φx) > −(V0 + η) ,

where the inequality (∗) is justified by Corollary 3.1.34.

The second helping fact is that the probability of xε remaining inside D arbi-
trarily long without visiting a small neighborhood of 0 is exponentially small.

Note that for the proof of this lemma we need Assumption (A1).

Lemma 3.2.16 (σ$ can not become arbitrarily big). [DZ98, Lemma 5.7.19] For all
$ > 0,

lim
t→∞

lim sup
ε→0

ε log sup
x∈D

Px[σ$ > t] = −∞ .

Proof. Let $ > 0. If xε
0 = x ∈ B(0, $), then σ$ = 0 and the lemma trivially

holds.
Hence, we choose xε such that xε

0 = x ∈ D \ B(0, $) and set

Ψt :=
{

φ ∈
(
[0, t]; Rd) ∣∣∣ ∀ s ∈ [0, t] : φs ∈ D \ B(0, $)

}
.

Now,

{σ$ > t} ⊂ {xε ∈ Ψt} . (3.2.12)

By Corollary 3.1.34 we have that for all t < ∞

lim sup
ε→0

ε log sup
x∈D\B(0,$)

Px[xε ∈ Ψt] 6 − inf
ψ∈Ψt

Ixε

[0,t],ψ0
(ψ)︸ ︷︷ ︸

=:Ixε
t (ψ)

.

We will now show that

lim
t→∞

inf
ψ∈Ψt

Ixε

t (ψ) = ∞ . (3.2.13)

This implies the assertion of the lemma because of the inclusion (3.2.12).
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3. SR through Freidlin-Wentzell theory

Choose a point x ∈ D \ B(0, $) and denote by φx the trajectory of the deter-
ministic system (3.2.2) with initial condition φx

0 = x. By Assumption (A1) (and
the general Situation 3.2.1), φx hits S

(
0, $

3
)

in finite time, denoted Tx. Since the
deterministic drift coefficient b is assumed to be Lipschitz continuous, we can
find an open neighborhood Wx of x such that for all y ∈ Wx the path φy hits
S
(
0, 2

3 $
)

before time Tx.
By iterating this argument for more points in D \ B(0, $), we can construct

enough open sets like Wx to cover D \ B(0, $), each of these open sets related
to a finite hitting time like Tx.

By compactness of D \ B(0, $), we find a finite cover of D \ B(0, $) by such
open sets. Hence, there exists a finite time T such that for any y ∈ D \ B(0, $)
the path φy hits S

(
0, 2

3 $
)

before T.
Now, let us assume that (3.2.13) is wrong. Then we can find a constant M <

∞ such that for any n ∈ N there exists a continuous function ψn ∈ ΨnT which
fulfills Ixε

nT(ψn) 6 M. Thus, we may select functions ψn,k ∈ ΨT , k 6 n, so that

M > Ixε

nT(ψn) =
n

∑
k=1

Ixε

T (ψn,k) > n · min
k=1,...,n

Ixε

T (ψn,k) .

Since this works for any n ∈ N, there exists a sequence (φn)n∈N ⊂ ΨT with
limn→∞ Ixε

T (φn) = 0. Now, remember that Ixε
is a good rate function, hence{

φ
∣∣ φ0 ∈ D̄ and Ixε

[0,T],φ0
6 1

}
is a compact subset of C

(
[0, T]; Rd). This implies that the sequence (φn)n∈N

has a limit point ψ∗ ∈ ΨT . By the general properties of the rate function Ixε
,

we have that Ixε

T (ψ∗) = 0. This implies that ψ∗ has to be a trajectory of the
deterministic system (3.2.2). But, being an element of ΨT , this path cannot hit
S
(
0, 2

3 $
)

during [0, T]. This is a contradiction to the construction of T.
Hence, the assumption that (3.2.13) is wrong can not be true: (3.2.13) holds,

and the proof is complete.

Choose an initial condition xε
0 = y ∈ S(0, 2$). The next lemma provides an

upper bound for the probability that xε
σ$

meets some subset of ∂D instead of
joining the small ball B(0, $).

Lemma 3.2.17 (probability of leaving D before visiting 0: upper bound). [DZ98,
Lemma 5.7.21] For any closed set N ⊂ ∂D,

lim
$→0

lim sup
ε→0

ε log sup
y∈S(0,2$)

Py
[
xε

σ$
∈ N

]
6 − inf

z∈N
V(0, z) .

Proof. We choose a closed set N ⊂ ∂D. Fix a constant δ > 0 and define

Vδ
N :=

(
inf
z∈N

V(0, z)− δ
)
∧ 1

δ
.

By the continuity property of the quasi-potential (cf. Assumption (A3) and
the first assertion of Lemma 3.2.10), for any small enough $ > 0 the following
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3.2. Diffusion Exit from a Domain

holds:

inf
y∈S(0,2$),

z∈N

V(y, z) > inf
z∈N

V(0, z)− sup
y∈S(0,2$)

V(0, y)︸ ︷︷ ︸
<δ

> Vδ
N . (3.2.14)

By Lemma 3.2.16, we can select a time T < ∞ such that

lim sup
ε→0

ε log sup
y∈S(0,2$)

Py[σ$ > T] < lim sup
ε→0

ε log sup
x∈D

Px[σ$ > T] < −Vδ
N .

Now, we collect those ψ ∈ C
(
[0, T]; Rd) that hit N during [0, T]:

Ψ :=
{

ψ ∈ C
(
[0, T]; Rd) ∣∣∣ ∃ t ∈ [0, T] such that ψt ∈ N

}
.

This allows us to extend (3.2.14):

inf
y∈S(0,2$),

ψ∈Ψ

Ixε

[0,T],y(ψ) > inf
y∈S(0,2$),

z∈N

V(y, z) > Vδ
N ,

and hence we get by Corollary 3.1.34, that

lim sup
ε→0

ε log sup
y∈S(0,2$)

Py[xε ∈ Ψ] 6 − inf
y∈S(0,2$),

ψ∈Ψ

Ixε

[0,T],y(ψ) 6 −Vδ
N .

Since

Py
[
xε

σ$
∈ N

]
6 Py[σ$ > T] + Py[xε ∈ Ψ] ,

we obtain that

lim sup
ε→0

ε log sup
y∈S(0,2$)

Py
[
xε

σ$
∈ N

]
< −Vδ

N .

Taking δ → 0 completes the proof of the lemma.

The next lemma has a more general point of view in so far as it allows all
initial conditions xε

0 ∈ D without asking for S
(
0, ‖xε

0‖
)

being a subset of D. It
shows, that even in this situation xε can hardly avoid any small neighborhood
of 0 as ε → 0.

Lemma 3.2.18 (xε will visit 0 almost surely as ε → 0). [DZ98, Lemma 5.7.22]
For all $ > 0 and any initial condition x ∈ D,

lim
ε→0

Px
[
xε

σ$
∈ B(0, $)

]
= 1 .

This result provides, by the way, the promised justification for Remark 3.2.4.

Proof. Choose $ > 0 such that B(0, $) ⊂ D. If x = xε
0 ∈ B(0, $), the assertion

obviously holds. Hence, we select x ∈ D \ B(0, $). Let φ be the trajectory of
the deterministic system (3.2.2) with φ0 := x, and set

T := inf

{
t > 0

∣∣∣∣∣ φt ∈ S
(

0,
$

2

)}
< ∞ .
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3. SR through Freidlin-Wentzell theory

φ is a continuous path that does not hit the compact set ∂D, hence, the distance
∆ between {φt}t6T and ∂D is strictly positive. We set

∆′ := ∆ ∧ $

and let xε be the solution of (3.2.1) with initial condition xε
0 = x. Then we have

that

if sup
t∈[0,T]

‖xε
t − φt‖ <

∆′

2
, then xε

σ$
∈ B(0, $) . (3.2.15)

The uniform Lipschitz continuity of b implies that

‖xε
t − φt‖ 6 B

∫ t

0
‖xε

s − φs‖ ds +
√

ε ·
∥∥∥∥∫ t

0
σ(xε

s) dWs

∥∥∥∥ ,

and by Gronwall’s lemma we obtain that

‖xε
t − φt‖ 6

√
ε ·
∥∥∥∥∫ t

0
σ(xε

s) dWs

∥∥∥∥
+ B

∫ t

0

√
ε ·
∥∥∥∥∫ s

0
σ(xε

r) dWr

∥∥∥∥ · exp
[
B · (t− s)

]
ds ,

which implies that

sup
t∈[0,T]

‖xε
t − φt‖ 6

√
ε · exp[BT] · sup

t∈[0,T]

∥∥∥∥∫ t

0
σ(xε

s) dWs

∥∥∥∥ . (3.2.16)

Finally, we obtain from (3.2.15) and (3.2.16) that by the maximal inequality
and the Burkholder-Davis-Gundy inequality there exist constants c(1), c(2) ∈
]0, ∞[, independent of z, such that

Px
[
xε

σ$
∈ ∂D

]
6 Px

[
sup

t∈[0,T]
‖xε

t − φt‖ >
∆′

2

]

6 Px

[
sup

t∈[0,T]

∥∥∥∥∫ t

0
σ(xε

s) dWs

∥∥∥∥ >
∆′

2
√

ε
· exp[−BT]

]

6 εc(1) ·Ex

[(
sup

t∈[0,T]

∥∥∥∥∫ t

0
σ(xε

s) dWs

∥∥∥∥)2
]

6 εc(2) ·Ex

[∫ T

0
tr
(
σ(xε

s)σ(xε
s)

T) ds
]

ε→0−−→ 0 .

Finally, we show that during a short time intervall xε will almost surely not
leave its starting point too far behind.

Lemma 3.2.19 (xε is “slow”). [DZ98, Lemma 5.7.23] For any $ > 0, any initial
condition x ∈ D and any constant c > 0 there exists a time T(c, $) < ∞ such that

lim sup
ε→0

ε log sup
x∈D

Px
[

sup
t∈[0,T(c,$)]

‖xε
t − x‖ > $

]
< −c .
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3.2. Diffusion Exit from a Domain

Proof. First let us notice that

Jt :=
∫ t

0
σ(xε

s) dWs

is a continuous and square-integrable martingale.
For any radius $ > 0 and all times T 6 $

2B ,

Px
[

sup
t∈[0,T]

‖xε
t − x‖ > $

]
= Px

[
sup

t∈[0,T]

∥∥∥∥∫ t

0
b(xε

s) ds︸ ︷︷ ︸
“sup”6T·B6 $

2

+
√

ε · Jt

∥∥∥∥ > $

]

6 Px

[√
ε · sup

t∈[0,T]
‖Jt‖ >

$

2

]
.

It suffices now to consider the corresponding one-dimensional problem (ex-
changing $

2 by β$, where β depends on the dimension). Hence, from here on
let σ(xε

s) =: σs be scalar (still bounded by B) and Wt a one-dimensional Brow-
nian motion.

By time change there is a standard one-dimensional Brownian motion W ′
t

on the same probability space as Wt, such that almost surely Jt = W ′
τ(t), where

τ(t) :=
∫ t

0
σ2

θ dθ .

We know that τ(t) 6 B2t almost surely, and τ is continuous and increasing.
Hence,

Px
[√

ε sup
t∈[0,T]

|Jt| > β$
]

= Px

[√
ε sup

t∈[0,T]

∣∣W ′
τ(t)
∣∣ > β$

]

6 Px
[√

ε sup
τ∈[0,B2T]

|W ′
τ | > β$

] (∗)
6 4 exp

[
−β2$2

2εB2T

]
,

where the inequality (∗) is justified by Lemma 3.1.1. Choosing

T = T(c, $) < min
{

$

2B
,

β2$2

2B2c

}
,

we obtain that

Px
[√

ε sup
t∈[0,T]

|Jt| > β$
]

6 min

{
4 exp

[
− β2$

εB

]
, 4 exp

[
− c

ε

]}
,

which implies the assertion of the lemma.

Now we can finally prove the main theorem. For the convenience of the
reader we repeat the assertions made in the theorem.

Proof of Theorem 3.2.11. (first exit time τε). The following is claimed: 14

14The equation numbers here are the same as in the “original theorem”.
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3. SR through Freidlin-Wentzell theory

For any initial condition x ∈ D and any δ > 0, the first exit
time fulfills the estimate

lim
ε→0

Px

[
exp

[
V0 − δ

ε

]
< τε < exp

[
V0 + δ

ε

]]
= 1 . ((3.2.8))

Furthermore, for any x ∈ D, we can estimate the expected
value of τε as follows:

lim
ε→0

ε log Ex[τε] = V0 . ((3.2.9))

We prove the equations by providing upper and lower bounds. There-
fore, we fix an initial condition x ∈ D and a constant δ > 0. Without loss
of generality, we assume V0 > 0 and δ

2 < V0.

Upper bound. [Gen03, Proof of Theorem 3.14] Set η := δ
8 and choose a

small radius $ > 0. Lemma 3.2.15 implies the existence of a time T0 =
T0(η, $) and an ε0 > 0, such that the estimate

Px[τε 6 T0] > exp
[
−V0 + 2η

ε

]
holds uniformly for any x ∈ B(0, $) and all ε 6 ε0. We may assume that
ε0 < η.

By Lemma 3.2.16, there exists a time T1 = T1(η, $), such that the estimate

Px[σ$ > T1] < exp
[
−η

ε

]
holds uniformly for all x ∈ D and all ε 6 ε0 (where ε0 is the same as
above).

Now, we set T := T0 + T1. Then, for all ε 6 ε0, the probability that xε

leaves D before time T can be estimated as follows:

q := inf
x∈D

Px[τε 6 T] > inf
x∈D

Px[σ$ 6 T1] · inf
x∈B(0,$)

Px[τε 6 T0]

(3.2.17)

>

(
1− exp

[
−η

ε

])
· exp

[
−V0 + 2η

ε

]

= exp
[
−V0 + 2η

ε

]
− exp

[
−V0 + 3η

ε

]
.

By construction of ε0 we have that ε0 < η, hence for all ε 6 ε0

exp
[

2η

ε

]
− exp

[
η

ε

]
> 1

⇔ exp
[
−V0 + 2η

ε

]
− exp

[
−V0 + 3η

ε

]
> exp

[
−V0 + 4η

ε

]
.

(3.2.18)
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3.2. Diffusion Exit from a Domain

A simple iteration using the strong Markov property shows that for any
k ∈ N

sup
x∈D

Px[τε > kT] 6 (1− q)k ,

and thus we obtain that

sup
x∈D

Ex[τε] 6 T
[
1 +

∞

∑
k=1

sup
x∈D

Px[τε > kT]
]

(3.2.19)

6 T
∞

∑
k=0

(1− q)k =
T
q

6 T · exp
[

V0 + 4η

ε

]
,

where the last inequality holds because of (3.2.17), (3.2.18). This proves
the upper bound on the mean first-exit time, since

Ex[τε] 6 T · exp
[

V0 + δ
2

ε

]

⇒ log Ex[τε] 6 log T +
V0 + δ

2
ε

⇒ ε log Ex[τε] 6 ε log T + V0 +
δ

2

independent of the selection of δ > 0, hence

lim
ε→0

ε log Ex[τε] 6 V0 .

Applying Markov’s inequality and (3.2.19), we obtain

sup
x∈D

Px

[
τε > exp

[
V0 + δ

ε

]]
6 exp

[
−V0 + δ

ε

]
· sup

x∈D
Ex[τε]

6 T · exp
[

V0 + δ
2

ε

]
· exp

[
−V0 + δ

ε

]
= T · exp

[
− δ

2ε

]
ε→0−−→ 0 ,

which proves that τε < exp
[V0+δ

ε

]
Px-a.s., as claimed in the assertion of

the theorem.

Lower bound. [DZ98, Proof of Thm. 5.7.11] We assume that $ > 0 is
small enough for S(0, 2$) ⊂ D. We define sequences of stopping times
(τm)m∈N0 and (θm)m∈N0 as follows:

θ0 := 0 ,

τm := inf
{

t > 0
∣∣ t > θm, xε

t ∈ B(0, $) ∪ ∂D
}

,

θm+1 :=

{
∞ if xτm ∈ ∂D
inf
{

t > 0
∣∣ t > τm, xε

t ∈ S(0, 2$)
}

else .

We say that each time interval [τm, τm+1] represents a significant excur-
sion from B(0, $), and note that there must be an m∗ ∈ N0 such that

59



3. SR through Freidlin-Wentzell theory

τε = τm∗ (note that τε < ∞ Px-a.s. by the upper bound proved above).
Furthermore, we note that

(zm)m∈N0 :=
(

xε
τm

)
m∈N0

is a Markov chain, since (xε
t)t>0 is a strong Markov process.

Consider δ > 0, V0 > 0 as chosen in the beginning of the proof. By
Lemma 3.2.17, choosing N = ∂D we obtain that

lim sup
ε→0

ε log sup
y∈S(0,2$)

Py
[
xε

σ$
∈ ∂D

]
< −V0 +

δ

2
. (3.2.20)

By Lemma 3.2.19, we can find a time T0 := T(V0, $), independent of ε,
such that

lim sup
ε→0

ε log sup
x∈D

Px
[

sup
t∈[0,T0]

‖xε
t − x‖ > $

]
< −V0 .

This implies that

sup
x∈D

Px[θm − τm−1 6 T0] 6 sup
x∈D

Px
[

sup
t∈[0,T0]

‖xε
t − x‖ > $

]
6 exp

[
−

V0 − δ
2

ε

]
.

(3.2.21)

By construction of the stopping times θm, τm, we know that for any m > 1

sup
x∈D

Px[τε = τm] 6 sup
y∈S(0,2$)

Py
[
xε

σ$
∈ ∂D

]
;

hence, by (3.2.20) we can find an ε0 > 0 such that for any ε 6 ε0 and all
m > 1

sup
x∈D

Px[τε = τm] 6 exp
[
−

V0 − δ
2

ε

]
. (3.2.22)

We fix a k ∈ N0 and consider the event {τε 6 kT0}. This event implies
that either for m ∈ {0, . . . , k} the event {τε = τm} occurs (these are
disjoint for different m), or that at least one of the significant excursions
[τm, τm+1], for m ∈ {0, . . . , k − 1}, has a length 6 T0. Hence, we obtain
that for any x ∈ D and any k ∈ N0 the following holds:

Px[τε 6 kT0] 6
k

∑
m=0

(
Px[τε = τm] + Px

[
min

k=1,...,m
(θm − τm−1) 6 T0

])
6 Px[τε = τ0] + 2k · exp

[
−

V0 − δ
2

ε

]
. (3.2.23)

where we used (3.2.21) and (3.2.22) in the last step. We recall the identity

{τε = τ0} =
{

xε
σ$

/∈ B(0, $)
}
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3.2. Diffusion Exit from a Domain

and choose

k :=

⌈
1
T0
· exp

[
V0 − δ

ε

]
+

1
T0

⌉
.

Then the following estimate holds for any x ∈ D:

Px

[
τε 6 exp

[
V0 − δ

ε

]]

6 Px

[
τε 6 exp

[
V0 − δ

ε

]
+ 1

]
6 Px[τε 6 T0 · k]

6 Px
[
xε

σ$
/∈ B(0, $)

]︸ ︷︷ ︸
=:A

+ 2 ·
(

1
T0
· exp

[
V0 − δ

ε

]
+

1 + T0

T0

)
· exp

[
−

V0 − δ
2

ε

]
︸ ︷︷ ︸

=:B

,

where we used (3.2.23) in the last step.

We will now show that A, B ε→0−−→ 0, which implies that for any x ∈ D

lim
ε→0

Px

[
τε > exp

[
V0 − δ

ε

]]
= 1

holds. This is the lower bound of (3.2.8), hence, (3.2.8) is completely
proved.

By Lemma 3.2.18, A ε→0−−→ 0 is trivial. For B we see that

B =
2
T0
· exp

[
V0 − δ−V0 + δ

2
ε

]
+

2 + 2T0

T0
· exp

[
−

V0 − δ
2

ε

]

=
2
T0
· exp

[
−δ

2ε

]
︸ ︷︷ ︸

ε→0−−→0

+
2 + 2T0

T0
· exp

[
−

V0 − δ
2

ε

]
︸ ︷︷ ︸

ε→0−−→0

,

where the convergence of the second summand relies on our initial as-
sumption that V0 − δ

2 > 0.

By Markov’s inequality we know that for any x ∈ D

Px

[
τε > exp

[
V0 − δ

ε

]]
6 exp

[
−V0 − δ

ε

]
·Ex[τε]

holds; hence, the lower bound for Ex[τε] is also proved.

(first exit location). What we want to prove:
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3. SR through Freidlin-Wentzell theory

For any closed set N ⊂ ∂D such that VN := infz∈N V(0, z) >
V0, and all initial conditions x ∈ D, we have that

lim
ε→0

Px
[
xε

τε ∈ N
]

= 0 . ((3.2.10))

In particular, if the quasi-potential V has a unique minimum
z∗ on ∂D, then the following holds for all initial conditions
x ∈ D and all δ > 0:

lim
ε→0

Px
[
‖xε

τε − z∗‖ < δ
]

= 1 . ((3.2.11))

We fix a closed set N ⊂ ∂D, such that VN > V0. (If VN = ∞, we use an
arbitrarily large finite constant throughout the proof instead.)

The proof uses the same idea as the proof of the lower bound for τε. We
fix a constant η > 0 such that η < VN−V0

3 , and choose $, ε0 > 0 small
enough to show with Lemma 3.2.17, that for any ε 6 ε0

sup
y∈S(0,2$)

Py
[
xε

σ$
∈ N

]
6 exp

[
−VN − η

ε

]
(3.2.24)

holds. By Lemma 3.2.19, we know that there is a time T0 := T(VN − η, $),
such that

lim sup
ε→0

ε log sup
x∈D

Px
[

sup
t∈[0,T0]

‖xε
t − x‖ > $

]
< −(VN − η) .

This implies that for every ε 6 ε0 (if necessary, we reduce ε0 to a smaller
value > 0), (τk)k∈N0 and (θk)k∈N0 as defined before, and any k ∈ N, we
have that

sup
x∈D

Px[τk 6 kT0] 6 k · sup
x∈D

Px
[

sup
t∈[0,T0]

‖xε
t − x‖ > $

]
6 k · exp

[
−VN − η

ε

]
.

(3.2.25)

Like before we set zm := xε
τm for all m ∈ N0. By decomposition of the

event {xε
τε ∈ N} we obtain for any y ∈ B(0, $) (for which τε > τ0 = 0)

and any k ∈ N, that

Py[xε
τε ∈ N]

6 Py[τε > τk] +
k

∑
m=1

Py[τε > τm−1] · Py[zm ∈ N | τε > τm−1]

6 Py[τε > kT0] + Py[τk 6 kT0]

+
k

∑
m=1

Py[τε > τm−1] ·Ey

[
Pxε

θm

[
xε

σ$
∈ N

] ∣∣∣ τε > τm−1

]
6 Py[τε > kT0] + Py[τk 6 kT0] + k · sup

x∈S(0,2$)
Px
[
xε

σ$
∈ N

]
6 Py[τε > kT0] + 2k · exp

[
−VN − η

ε

]
,
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3.2. Diffusion Exit from a Domain

where we have used (3.2.24) and (3.2.25) in the last estimate. We have
seen before (in the first part, proof of the upper bound for Ex[τε]), that
the following estimate holds for a finite time T and all ε 6 ε0 (if neces-
sary, we reduce ε0 > 0 again):

sup
x∈D

Ex[τε] 6 T · exp
[

V0 + η

ε

]
.

By Markov’s inequality, we thus have that

Py[τε > kT0] 6
1

kT0
·Ex[τε] 6

T
kT0

· exp
[

V0 + η

ε

]
.

If we choose

k :=

⌈
exp

[
V0 + 2η

ε

]⌉
,

we finally obtain (3.2.10) because of the estimate

lim sup
ε→0

sup
y∈B(0,$)

Py[xε
τε ∈ N]

6 lim sup
ε→0

(
T

kT0
· exp

[
V0 + η

ε

]
︸ ︷︷ ︸

= T
T0
·exp[− η

ε ]
ε→0−−→0

+ 2k · exp
[
−VN − η

ε

]
︸ ︷︷ ︸

ε→0−−→0

)
= 0 .

(3.2.11) is a special case of (3.2.10), if we consider

N :=
{

z ∈ ∂D
∣∣ ‖z− z∗‖ > δ

}
.

Proof of Corollary 3.2.13. For any β > 0 set

D−β :=
{

x ∈ D
∣∣ ‖x− z‖ > β ∀ z ∈ ∂D

}
.

Since D−β are open with D−β ⊂ D, Assumption (A1) holds for D−β for any
β > 0. Furthermore, if β > 0 is chosen small enough, Assumption (A3) also
holds for D−β. Thus, Theorem 3.2.11 holds for D−β for small enough β > 0.

The exit times τε,β for D−β decrease monotonically over β. Hence, taking
β → 0 we obtain the lower bound for τε because of the continuity property of
the quasi-potential resulting from (A3).

To check the upper bound, we proceed as in the proof of Theorem 3.2.11.
We only have to check (parallel to (3.2.17), (3.2.18)) that

inf
x∈D

Px[τε 6 T] > exp
[
−V0 + 4η

ε

]
still holds for all ε 6 ε0. Obviously, this estimate holds for τε,β. Thus, we have

inf
x∈D

Px[τε 6 T + 1] > inf
x∈D

Px[τε,β 6 T] · inf
x∈D\D−β

Px[τε 6 1] .
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3. SR through Freidlin-Wentzell theory

It remains to show that

lim inf
ε→0

ε log inf
x∈D\D−β

Px[τε 6 1] > −η . (3.2.26)

This completes the proof of the corollary, because (3.2.17) is the only argument
in the proof of the first part of Theorem 3.2.11 that relies on Assumption (A1).
However, using the continuity property of V near ∂D implied by (A3), (3.2.26)
follows from the same construction as Lemma 3.2.15.
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4. The Pathwise Approach of
Berglund and Gentz

In this chapter we construct and analyze a pathwise mathematical model for
SR. Basically, we consider the behavior of a particle in a one-dimensional,
continuously changing double-well potential V as described in Section 1.1.2
(resp., a slightly generalized class of potentials). The method is is to analyze a
stochastic differential equation modeling the behavior of that particle, where
the drift term is a derivative of the potential V.

Our approach is divided into three steps: First we consider the determinis-
tic case, i.e., a system with time-dependent drift and without stochastic per-
turbations. Then we prove an upper bound for the probability that the path
of the stochastically perturbed system leaves a certain neighborhood of the
corresponding deterministic path during a finite time t. We show that, for
exponentially long times, the perturbed system behaves nearly the same as
the deterministic system, if the stochastic perturbation is not too strong. In
the third step we consider the case of a diffusion coefficient σ which is strong
enough to ensure that, under certain assumptions, we see a transition between
the wells happen with high probability whenever the potential reaches a cer-
tain state (i.e., when the well containing the particle is most shallow). This is
the main mechanism behind our mathematical model of stochastic resonance,
or, noise-induced synchronization.

This chapter is almost entirely based on the article [BG02b]. In this article,
N. Berglund and B. Gentz analyze the behaviour of systems described by one-
dimensional stochastic differential equations of the type

dxs = − d
dx

V(xs, s) ds + σ dWs . (4.0.1)

• Ws is a Brownian motion.

• V(x, t) is a potential changing continuously in time, being 1
ε -periodic

in t, and showing two local minima for each point t in time, which are
separated by a barrier.

• ε and σ, the frequency and the noise intensity, as well as the height of the
potential barrier, are (“moderately small”) parameters.

The relation between these parameters is shown to control the transition
probability.

In their article, Berglund and Gentz cover two related settings of the above
type, namely the case of a symmetric potential, where the two wells decrease
and increase simultaneously, and the case of an asymmetric potential, where
the two wells achieve their respective maximum and minimum depth at dif-
ferent times (cf. the example in Section 1.1.2). The treatment of the two cases
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4. The Pathwise Approach of Berglund and Gentz

differs insofar as the symmetric case is provided completely with all proofs,
whereas in the asymmetric case most of the proofs are left out, with a few hints
on how the proofs may be carried over from the symmetric to the asymmetric
situation.

The main result of [BG02b] is that in the situation with stochastic perturba-
tion there exists a threshold σ∗, depending on ε and the barrier height, such
that for σ > σ∗ a transition happens with probability close to 1, and for σ < σ∗

there is no transition with probability exponentially close to 1. Especially, there
is no gradual change between “transition” and “no transition”.

In this chapter, we provide a complete treatment of the asymmetric case and
slightly optimize some of the estimates of [BG02b].

All citations of theorems, remarks, proofs, etc. are marked as such. Where-
ever we present a statement or proof that is adapted from the treatment of the
symmetric case in [BG02b], we refer to the original statement and mark the
reference with “sc” (“symmetric case”).

Remark 4.0.20 (possible generalizations). [Gen03, p. 49] Several restrictions ap-
plied below are not necessary for the theory to hold. We will restrict ourselves to the
one-dimensional case, even though the treatment of the multidimensional case is pos-
sible. We will only consider drift coefficients that derive from a potential, even though
this limitation is not necessary, either. And, finally, we will always assume that the dif-
fusion coefficient is constant, even though time-dependent diffusion coefficients could
in principle be treated.

4.1. Preliminaries

We consider the abovementioned stochastic differential equation, replacing
the time s by the slow time t := εs (this technical trick provides us with a
periodically changing system with period 1). By this substitution, considering
the rescaling properties of the Brownian motion, we obtain{

dxt = 1
ε · f (xt, t) dt + σ√

ε
dWt

xt0 = x0 ,
(4.1.1)

where we assume the following conditions to be fulfilled:

• f is the force that is the derivative of the given potential V; it is always
assumed to fulfill Lipschitz and boundedness conditions, which secure
existence and uniqueness of a strong solution (xt)t>t0 to (4.1.1).

It will turn out that this is no restriction, as we are only interested in the
behaviour of the system in a neighborhood of the equilibrium branches,
and we will pose assumptions on f from which the solvability condi-
tions over this domain follow immediately.

• (Wt)t>t0 is a standard Wiener process on a probability space (Ω, F, P).

• x0 is the initial condition; it is always assumed to be square-integrable
with respect to P and independent of W.

• t0 is the starting time (not necessarily 0).
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4.1. Preliminaries

Since under these conditions x always has a continuous version, we assume
that the paths t 7→ xt(ω) are continuous for P-a.e. ω ∈ Ω.

Our aim is to understand the “jumping between wells” of x; technically
speaking, to analyze first-exit times of x from space-time sets: Let A ⊂ R×
[t0, t1] be a Borel measurable space-time set. We assume that the space-time
starting point (x0, t0) is in A and define the first-exit time of

(
(xt, t)

)
t>t0

from
A by

τA(ω) :=


∞ for all ω ∈ Ω s.th.(

xt(ω), t
)
∈ A

for all t ∈ [t0, t1]

inf
{

t ∈ [t0, t1]
∣∣ (xt(ω), t

)
/∈ A

}
else.

We will also call τA the first-exit time of x from A.

Example 4.1.1 (typical space-time set). Let g1, g2 : [t0, t1] → R be continuous
functions such that g1 < g2. In this chapter, we will typically consider sets of
the form

A :=
{
(x, t) ∈ R× [t0, t1]

∣∣ g1(t) < x < g2(t)
}

.

In this case, τA is a stopping time with respect to the canonical filtration on
(Ω, F, P) generated by (xt)t>t0 .

We introduce some additional notation:
Let ε > 0 be a small parameter, t ∈ [t0, t1], and φ, ψ : (t, ε) 7→ R two func-

tions. We write φ(t, ε) � ψ(t, ε) if there exist constants c+, c− > 0, independent
of t and ε, such that for all t ∈ [t0, t1] and all sufficiently small ε we have that

c− · φ(t, ε) 6 ψ(t, ε) 6 c+ · φ(t, ε) .

We remark that a � b especially implies that a and b have the same sign. When
working with estimates of this type, we always denote the greater of the two
positive constants with subscript “+” and the smaller with subscript “−”.

By Pt0,x0 we denote probabilities with respect to the law of (xt)t>t0 , after
starting in x0 at time t0, and by Et0,x0 we denote the corresponding expecta-
tion.

Remark 4.1.2 (about the following results). Most estimates provided below hold
for small enough ε only, and often only for P-a.e. ω ∈ Ω.

4.1.1. Concerning f

Until now we have posed only very broad assumptions on the force f that pro-
vides the deterministic drift part of the stochastic differential equation (4.1.1).
We will now show a typical example for such a function, before we provide
a precise definition of the class of functions f which we consider during this
chapter.

Example 4.1.3 (typical force term). Let λ(t) := −(λc − a0) · cos(2πt) and de-
fine

f (x, t) = −x3 + x + λ(t) .
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4. The Pathwise Approach of Berglund and Gentz

Since f shall be the derivative of a potential with two separated wells, we must
ensure that f has three vanishing points. The number of these points depends
on λ: If λ = 0, there are three vanishing points at 1, 0,−1. If |λ| is “big”, there is
only one vanishing point, as the local maximum and the local minimum value
of f have the same sign. If |λ| = 2

3
√

3
=: λc, then either the local maximum or

the local minimum of f is a vanishing point (“double root”). Hence, to ensure
that f has three vanishing points, we must take care that for any t ∈ [t0, t1] the
inequality

∣∣λ(t)
∣∣ < λc holds. To achieve this, we require that a0 ∈ ]0, λc[.

For intuitive understanding, the reader should always keep in mind that
the force f derived from the potential V is not d

dx V but − d
dx V.

Situation 4.1.4 (class of functions f ). We consider a class of functions f : R2 → R

which shall satisfy the following assumptions:

smoothness. f ∈ C3(M; R), where M := [−d, d]×R for a constant d > 0.

periodicity. For all (x, t) ∈ M we assume that f (x, t + 1) = f (x, t).

equilibrium branches. There exist continuous functions

x∗−(t) < x∗u(t) < x∗+(t) ∀t ,

mapping R → [−d, d] such that for any (x, t) ∈ M the equation f (x, t) = 0
holds if and only if x ∈

{
x∗−(t), x∗u(t), x∗+(t)

}
. These functions are called

equilibrium branches of f .

We claim that these zeroes of f are isolated in the following sense: For any δ > 0
there exists a constant ρ > 0 such that for all x with∣∣x− x∗−(t)

∣∣ > δ ,
∣∣x− x∗+(t)

∣∣ > δ , and
∣∣x− x∗u(t)

∣∣ > δ

we have that
∣∣ f (x, t)

∣∣ > ρ.

stability. The equilibrium branches x∗+, x∗− are stable, whereas the equilibrium branch
x∗u is unstable. In other words, for all t ∈ R we assume that

a∗−(t) := ∂x f
(

x∗−(t), t
)

< 0 ,

a∗+(t) := ∂x f
(

x∗+(t), t
)

< 0 , (4.1.2)

a∗u(t) := ∂x f
(

x∗u(t), t
)

> 0 .

Especially, this implies that there exist constants a+, a−, au > 0, such that for
any t ∈ R

a∗−(t) < −a−

a∗+(t) < −a+

a∗u(t) > au .

(Intuitively speaking, for any t the potential V with derivative f is strictly
convex near the stable equilibrium branches and strictly concave near the un-
stable equilibrium branch. This does explicitly exclude bifurcations of or from
the equilibrium branches.)
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4.1. Preliminaries

behaviour near t = 0. We want that x∗+(t) and x∗u(t) come close at integer times
t. To achieve this, we assume that for t = 0 we have an “avoided (saddle-node)
bifurcation”: We assume the existence of a (fixed) point xc ∈

]
x∗u(0), x∗+(0)

[
,

such that

∂xx f (xc, 0) < 0 ,

∂x f (xc, t) = O(t2) , (4.1.3)

f (xc, t) = a0 + a1t2 + O(t3) ,

where a1 > 0 and ∂xx f (xc, 0) are both fixed and of order 1, while a0 = a0(ε) =
Oε(1) is a small positive parameter.
(Intuitively speaking, xc is a local maximum of x 7→ f (x, 0). At t = 0, the
curve t 7→ f (xc, t) achieves a minimum value a0 > 0 of order ε.)

Remark 4.1.5. These assumptions imply, together with the isolation and sta-
bility assumptions for the equilibrium branches, that x∗+(t) reaches a local min-
imum near t = 0, at a time t∗+ = O(a0), and x∗u(t) reaches a local maximum
near t = 0, at a time t∗u = O(a0).

We summarize our assumptions as follows: For a small enough constant time
T ∈

]
0, 1

2
[

(such that the derivatives of x∗+(t) and x∗u(t) vanish once during
[−T, T]), the equilibrium branches of f and the linearizations of f near these
branches satisfy:

x∗+(t)− xc �
{√

a0 if |t| ∈ [0,
√

a0]

|t| if |t| ∈ [
√

a0, T] ,

a∗+(t) �
{
−√a0 if |t| ∈ [0,

√
a0]

−|t| if |t| ∈ [
√

a0, T] ,

x∗u(t)− xc �
{
−√a0 if |t| ∈ [0,

√
a0]

−|t| if |t| ∈ [
√

a0, T] ,
(4.1.4)

a∗u(t) �
{√

a0 if |t| ∈ [0,
√

a0]

|t| if |t| ∈ [
√

a0, T] ,

x∗−(t)− xc � −1 if |t| ∈ [0, T] ,

a∗−(t) � −1 if |t| ∈ [0, T] .

We tighten our assumptions as follows: We assume that x is rescaled such that
∂xx f (xc, 0) = −2. This will provide us nice Taylor estimates for f further
below.

behaviour near t = tc. We want that x∗−(t) and x∗u(t) come close at a time tc ∈
]T, 1− T[. We achieve this by making similar assumptions as above that shall
hold at a point (x′c, tc) ∈ M.
Note that while we assume that tc ∈ [0, 1] \

(
[−T, T]∪ [1− T, 1 + T]

)
, we do

not claim that

[tc − T, tc + T] ∩
(
[−T, T] ∪ [1− T, 1 + T]

)
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4. The Pathwise Approach of Berglund and Gentz

is empty: even though tc is outside the T-neighborhood of any integer time, the
T-neighborhoods of tc and the integer times are not required to be disjoint.

behaviour between the close encounters. We want to exclude the possibility of
more close encounters (and almost-bifurcations). Hence, we assume that for any
t ∈ ]T, tc − T[ and for any t ∈ ]tc + T, 1− T[ the distances

∣∣x∗+(t)− x∗u(t)
∣∣

and
∣∣x∗u(t)− x∗−(t)

∣∣ as well as the derivatives in (4.1.2) are bounded away from
zero.

The assumption on the behaviour near t = tc follows immediately from the
assumptions on the behaviour near t = 0 if we assume that f

(
x, t + 1

2
)

=
− f (−x, t) holds for all (x, t) ∈ M. This condition is fulfilled in Example 4.1.3.

The following remark lists some direct consequences of the above assump-
tions.

Remark 4.1.6 (Taylor estimates). By Taylor’s formula (and thanks to the rescaling
we did to ensure that ∂xx f (xc, 0) = −2) we obtain that

∂x f (xc + x̃, t) = ∂x f (xc, t) + x̃ ·
(
−2 + r1(x̃, t)

)
, (4.1.5)

where r1(0, 0) = 0, and by the smoothness assumptions on f we know that r1 ∈ C1.
Our assumption that ∂x f (xc, t) = O(t2) implies together with (4.1.5) that ∂x f (x, t)
vanishes on a curve x̄(t) = xc + O(t2).

As x̄(0) = xc, hence ∂xx f
(

x̄(0), 0
)

= −2, we further see that

f
(

x̄(t) + z, t
)

= f
(

x̄(t), t
)
+ z2 ·

(
−1 + r0(z, t)

)
,

where r0 ∈ C1 with r0(0, 0) = 0, and that

f
(

x̄(t), t
)

= f (xc, t) + O(t4) = a0 + a1 · t2 + O(t3)

for all t ∈ [−T, T].

4.2. The Deterministic Case

As announced above, we first analyze the behaviour of the deterministic sys-
tem corresponding to (4.1.1). Our aim is, to come back to the intuitive descrip-
tion from above, to understand the motion of a particle in the potential V un-
der the assumption that it starts near the bottom of one of the potential wells
and that this well remains well-separated from the other well throughout the
time intervall under consideration.

Situation 4.2.1 (deterministic situation). We analyze the behavior of the system

ε · d
dt

xdet
t = f (xdet

t , t) , (4.2.1)

where we require that the assumptions from Situation 4.1.4 are still valid and the
initial point xdet

−T (starting time is −T, not 0) satisfies the condition

xdet
−T − x∗+(−T) � ε . (4.2.2)
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4.2. The Deterministic Case

We also use the notation

εẋdet
t = f (xdet

t , t)

instead of (4.2.1).
Before we state the main theorem of this section, let us first take a look at

the behavior of the solution to (4.2.1) during [−1 + T,−T]. By our stability
assumption we might expect that, if the initial point xdet

−1+T is chosen appro-
priately, the path of the system approaches the equilibrium branch x∗+ expo-
nentially fast to a distance of zero and then follows its path.

However, this is not the case. We will see that there is a so-called slow so-
lution x̂det to (4.2.1), which remains in a neighborhood of the order ε of the
equilibrium branch, and that this solution is approached exponentially fast by
any solution xdet of (4.2.1) if only xdet

−1+T is chosen close enough to x∗+(−1 + T).
This result justifies our assumption (4.2.2) on the initial condition xdet

−T : If
we start the system at a time t0 = −1 + T in any initial point close enough
to the equilibrium branch, then the following theorem implies that

∣∣xdet
−T −

x∗+(−T)
∣∣ � ε if only 1− 2T � ε. Thus, assumption (4.2.2) is compatible with

the general concept of periodicity of the setting.

Proposition 4.2.2 (deterministic system during [−1 + T,−T]; Gradšteı̆n, Ti-
honov). [adapted from [Gen03, Theorem 4.2]]1 Consider (4.2.1) under the assump-
tions of Situation 4.1.4. There exist constants ε0, c0, c1 > 0, which depend on f only,
such that for any ε ∈ ]0, ε0] the system (4.2.1), starting at time−1 + T, has a solution
x̂det such that for all t ∈ [−1 + T,−T]∣∣x̂det

t − x∗+(t)
∣∣ 6 c1 · ε (4.2.3)

holds, and, if the initial condition xdet
−1+T satisfies

∣∣xdet
−1+T − x∗+(−1 + T)

∣∣ 6 c0 and
xdet
−1+T > x∗u(−1 + T), then the corresponding solution xdet of (4.2.1) fulfills for any

t ∈ [−1 + T, T] the estimate

|xdet
t − x̂det

t | 6 |xdet
−1+T − x̂det

−1+T | · exp
[
−

a+ ·
(
t− (−1 + T)

)
2ε

]
. (4.2.4)

Proof. We consider the deviation

yt := xdet
t − x∗+(t)

of an arbitrary solution of (4.2.1) from the equilibrium branch. To analyze this
deviation, we first develop estimates for εẏt and then, in a second step, prove
the first assertion of the theorem by showing that |yt| 6 c1ε for a properly
chosen initial condition y−1+t; the so-constructed solution xdet is the “ideal
solution” x̂det. In the third step of the proof, we prove (4.2.4), hence, that all
solutions of (4.2.1) which start in a neighbourhood of x∗+(−1 + T), approach
each others exponentially fast.

We observe that εẏt = f (xdet
t , t)− εẋ∗+(t). Using the Taylor expansion

f (xdet
t , t) = f

(
x∗+(t), t

)︸ ︷︷ ︸
=0

+ ∂x f
(

x∗+(t), t
)︸ ︷︷ ︸

=a∗+(t)

· yt + b(yt, t) , (4.2.5)

1[Gen03] refers to [Gra53] and [Tih52] as original sources.
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where
∣∣b(yt, t)

∣∣ 6 M · y2
t for all t ∈ [−1 + t,−T], |yt| 6 d, and a big enough

constant M > 0, we may extend our above observation to obtain

εẏt = a∗+(t)︸ ︷︷ ︸
6−a+

· yt + b(yt, t)︸ ︷︷ ︸
6My2

t

− εẋ∗+(t) .

To complete the estimate of εẏt, we need to show the boundedness of
∣∣ẋ∗+(t)

∣∣.
But

0 =
d
dt

f
(

x∗+(t), t
)

= ∂x f
(

x∗+(t), t
)
· ẋ∗+(t) + ∂t f

(
x∗+(t), t

)
implies that

ẋ∗+(t) = −
∂t f
(

x∗+(t), t
)

a∗+(t)
.

By our general assumptions in Situation 4.1.4, we know that the derivatives
of f are bounded over M and that a∗+(t) is bounded away from zero for all t:
a∗+(t) 6 −a+ < 0. Hence, the above result proves that we can find a constant
B > 0 such that

∣∣ẋ∗+(t)
∣∣ 6 B for all t ∈ [−1 + T,−T]. Combining this with the

estimate for εẏt, we see that

εẏt 6 −a+yt + My2
t + εB if yt > 0

εẏt > −a+yt − My2
t − εB if yt 6 0.

(4.2.6)

For the second step, we assume that yt > 0; the other case is similar. We
define vt by

εv̇t = −a+vt + Mv2
t + εB︸ ︷︷ ︸

=:g(vt)

.

Simple arithmetic proves that g(vt) = 0 if and only if

vt =
a+

2M
±

√
a2
+

4M2 −
εB
M︸ ︷︷ ︸

=:v∗±

.

Hence, v∗± are solutions of εv̇t = g(vt) if ε is small enough to guarantee the
positivity of the argument of the square root. By definition, vt dominates yt
whenever v−1+T > y−1+T . Hence, if 0 6 y−1+T 6 v∗−, we conclude that for
any t ∈ [−1 + T,−T]

yt 6 v∗− =
a+

2M
−

√
a2
+

4M2 −
εB
M

.

For yt 6 0, we can apply a similar argument and obtain alltogether that

|yt| 6
a+

2M
−

√
a2
+

4M2 −
εB
M︸ ︷︷ ︸

=:v∗

.
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Hence, whenever the initial condition y−1+T fulfills |y−1+T | 6 v∗, the corre-
sponding process (yt)t∈[−1+T,−T] meets the claimed estimate |yt| 6 c1ε for a
constant c1 > 0 and all t ∈ [−1 + T,−T].

Finally, we come to the third step, the proof of (4.2.4). Let x̂det be a solution
of (4.2.1) that fulfills the estimate (4.2.3) – we have just proved the existence of
such a process. Let xdet be another solution with

∣∣xdet
−1+T − x∗+(−1 + T)

∣∣ 6 c0

for a constant c0 > 0 and xdet
−1+T > x∗u(−1 + T), and set

zt := xdet
t − x̂det

t .

By definition,

εżt = f (xdet
t , t)− f (x̂det

t , t) ,

and by Taylor expansion for f (cf. (4.2.5)) we see that

εżt = ∂x f
(

x∗+(t), t
)︸ ︷︷ ︸

=a∗+(t)

·
(
(xdet

t − x∗+(t))− (x̂det
t − x∗+(t))︸ ︷︷ ︸

=xdet
t −x̂det

t =zt

)
+ b̂(yt, t) ,

where again
∣∣b̂(yt, t)

∣∣ 6 Mz2
t for all t ∈ [−1 + T,−T]. Hence,

εżt 6 −a+ · zt + Mz2
t ,

and as long as 0 6 z−1+T 6 a+
2M we may conclude that

εżt 6 − a+

2
· zt .

Thus, as long as 0 6 z−1+T 6 a+
2M ,

zt 6 z−1+T · exp
[
−a+ ·

t− (−1 + T)
2ε

]
.

In the case 0 > z−1+T > − a+
2M , a similar estimate holds; consequently, we have

that

|zt| 6 |z−1+T | · exp
[
−a+ ·

t− (−1 + T)
2ε

]
,

and (4.2.4) is proven for c0 := a+
2M .

From here on, we concentrate on the behaviour of the system during the
time interval [−T, T] and remark in passing that the behaviour during the
interval [tc − T, tc + T] is in principle the same (“modulo glide reflection”).

We sum up the results of this section in the following theorem:

Theorem 4.2.3 (deterministic system during [−T, T]). [BG02b, Theorem 2.5]
Consider the setting of Situation 4.2.1. The curves xdet

t and x∗+(t) cross exactly once
during [−T, T], at a time t̃ such that

t̃− t∗+ � ε√
a0
∧ ε1/2 (> 0) .

73



4. The Pathwise Approach of Berglund and Gentz

There is a constant c0 > 0 such that

xdet
t − x∗+(t) �

{
ε
|t| if t ∈

[
−T,−c0

(√
a0 ∨ ε1/2)]

− ε
|t| if t ∈

[
c0
(√

a0 ∨ ε1/2), T
]

.
(4.2.7)

This implies that during these time intervals xdet
t − xc � |t|.

Notation: We set t0 := −c0
(√

a0 ∨ ε1/2).
If t ∈ [t0,−t0], then

xdet
t − xc �

{√
a0 if a0 > ε

ε1/2 if ε > a0.
(4.2.8)

For all t ∈ [−T, T], the linearization of f at xdet
t can be estimated by

∂x f (xdet
t , t)︸ ︷︷ ︸

=:ā(t)

� −
(
|t| ∨

√
a0 ∨

√
ε
)

. (4.2.9)

We note that (4.2.8) especially implies that xdet
t always remains greater than

xc. In other words, for any choice of a0 and ε, the deterministic path will never
cross the saddle.

The remaining part of this section is devoted to the proof of this theorem.

Remark 4.2.4 (xdet and x∗+ cross once at t̃). [sc: [BG02b, Remark 3.1]] During the
time interval [−T, T], the curve xdet

t crosses the equilibrium branch x∗+(t) precisely
once at a time t̃ > t∗+.

Basically, this is a consequence of the fact that t 7→ xdet
t is strictly decreasing

if xdet
t > x∗+(t) and strictly increasing if xdet

t < x∗+(t).

Proof. Let t̃1, t̃2, . . . be the crossing times of xdet
t and x∗+(t) during [−T, T].

Since we assume (see (4.2.2)) that xdet
−T − x∗+(−T) > 0, xdet

t must be decreasing
during [−T, t̃1], increasing during [t̃1, t̃2], and so on. Further, x∗+(t) is decreas-
ing in a neighborhood of −T by (4.1.4).

Because of f
(

x∗+(t), t
)

= 0 for all t, the crossing can not happen as long
as x∗+ is decreasing. Hence, there must be a time t slightly smaller than t̃1,
such that x∗+(t) is increasing. By the same argument, there must be a time t
slightly smaller than t̃2 (and bigger than t̃1) such that x∗+(t) is decreasing. On
the other hand, by our general assumptions and the definition of t∗+, we know
that x∗+(t) is decreasing during [−T, t∗+[ and increasing during ]t∗+, T]. Hence,
the crossing times must fulfill t̃1 > t∗+ and t̃2 > T. This proves the claimed
uniqueness of t̃ as the single crossing time during [−T, T] and the relation
between t̃ and t∗+.

We will see below that such a crossing actually happens. We will also deter-
mine the order of t̃ (see Propositions 4.2.8, 4.2.9 and estimates (4.2.27), (4.2.36)).

For the next steps, we set

yt := xdet
t − x∗+(t)
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and recover that by assumption, we know that y−T � ε.
The dynamics of yt are characterized by

ε · d
dt

yt = f
(

xdet
t , t

)
− ε · d

dt
x∗+(t)

= a∗+(t) · yt + b∗+(yt, t)− ε · d
dt

x∗+(t) . (4.2.10)

By assumption (4.1.4) we know that

a∗+(t) �
{
−√a0 if |t| 6 √

a0

−|t| if |t| ∈ [
√

a0, T] ,
(4.2.11)

and the smoothness properties of f : M → R imply that
∣∣b∗+(yt, t)

∣∣ 6 M · y2
t

for a big enough M > 0 and all t ∈ [−T, T]. Again from (4.1.4) we obtain the
estimate

d
dt

x∗+(t) �


−1 if t ∈ [−T,−√a0]

1√
a0
· (t− t∗+) if t ∈ [−√a0,

√
a0]

1 if t ∈ [
√

a0, T] .

(4.2.12)

Remark 4.2.5 (concerning estimate (4.2.12)). There is a small complication con-
cerning the application of this estimate over the interval [−√a0,

√
a0].

By definition of the notation “�”, the estimate

f (t) � g(t)

says that there are constants c+ > c− > 0, such that for all t

c− · g(t) 6 f (t) 6 c+ · g(t) .

Also in this situation, the estimate states that there must be two constants c� >
c� > 0 such that d

dt x∗+(t) is for any t ∈ [−√a0,
√

a0] inside the strip confined
by g�(t) := c�√

a0
· (t − t∗+) and g�(t) := c�√

a0
· (t − t∗+). But t∗+ ∈ [−√a0,

√
a0]

implies that

g�(t)
{

6
>

}
g�(t)

{
if t 6 t∗+
if t > t∗+

}
.

Hence, (4.2.12) can only be understood as follows:
There exist constants c� > c� > 0 such that

c�√
a0
· (t− t∗+) 6

d
dt

x∗+(t) 6
c�√

a0
· (t− t∗+) 6 0 for all t 6 t∗+

0 6
c�√

a0
· (t− t∗+) 6

d
dt

x∗+(t) 6
c�√

a0
· (t− t∗+) for all t > t∗+ .

We will need the following, technical result several times:
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β > ε1/2 (> ε) β 6 ε1/2

À t ∈ [−T,−β] t ∈ [−T,−ε1/2] Ã

Á t ∈ [−β, β] t ∈ [−ε1/2, ε1/2] Ä

Â t ∈ [β, T] t ∈ [ε1/2, T] Å

Table 4.1.: The six cases for the proof of Lemma 4.2.6.

Lemma 4.2.6. [BG02b, Lemma 4.1] Let β = β(ε) > 0 be some parameter. Let ã be
an arbitrary continuous function such that ã(t) � −

(
β ∨ |t|

)
for all t ∈ [−T, T].

Furthermore, let χ0 � 1 and define

α̃(t, s) :=
∫ t

s
ã(u) du .

Then,

χ0 · exp
[

α̃(t,−T)
ε

]
+

1
ε

∫ t

−T
exp

[
α̃(t, s)

ε

]
ds

�
{ 1

β∨ε1/2 if |t| ∈ [0, β ∨ ε1/2]
1
|t| if |t| ∈ [β ∨ ε1/2, T] .

(4.2.13)

Proof. [adapted from [BG02a, Lemma 4.2]] For this proof we make use of the
flow property of solutions to differential equations; obviously, the left hand
side of (4.2.13), which we refer to as χ(t) during the proof, is the solution
of a differential equation. We consider six different cases, which are listed in
Table 4.1. During the proof, we use the circled numbers, À–Å, to identify the
cases.

Let us start with À. By the assumptions of the Lemma, there exist constants
χ+, χ− > 0 such that for all t ∈ [−T, T]

χ0

{
6 χ+

> χ− ,

and constants c+, c− > 0 such that for all t ∈ [−T,−β]

ã(t)

{
6 −c− · |t|
> −c+ · |t| ,

which implies that for any s, t with −T 6 s 6 t 6 −β

α̃(t, s)

{
6 c−

2 · (t2 − s2)
> c+

2 · (t2 − s2) .

It should be noted that both ã and α̃ are 6 0 throughout the proof. We use
this to estimate functions of the type exp[α̃] from above by 1. Furthermore, we
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remark that we may always enlarge c+, χ+ or diminish c−, χ− without loss of
generality. By integration by parts2 we obtain the following:

1
ε

∫ t

−T
exp

[
c±
2ε
· (t2 − s2)

]
ds (4.2.14)

=

[
− 1

c± · s
· exp

[
c±
2ε
· (t2 − s2)

]]t

−T

−
∫ t

−T

1
c± · s2 · exp

[
c±
2ε
· (t2 − s2)

]
ds

= − 1
c± · t︸ ︷︷ ︸

= 1
c±·|t|

>0

− 1
c± · T

· exp
[

c±
2ε
· (t2 − T2)

]

−
∫ t

−T

1
c± · s2 · exp

[
c±
2ε
· (t2 − s2)

]
ds .

Now we see the the upper bound for À as follows:

χ(t) 6 χ+ · exp
[

c−
2ε
· (t2 − T2)

]
+

1
ε

∫ t

−T
exp

[
c−
2ε
· (t2 − s2)

]
ds

= χ+ · exp
[

c−
2ε
· (t2 − T2)

]
+

1
c− · |t|

− 1
c− · T

· exp
[

c−
2ε
· (t2 − T2)

]
−
∫ t

−T

1
c− · s2 · exp

[
c−
2ε
· (t2 − s2)

]
ds︸ ︷︷ ︸

>0

6
1

c− · |t|
−
(

1
c− · T

− χ+

)
︸ ︷︷ ︸

>0
if c− small enough

· exp
[

c−
2ε
· (t2 − T2)

]

6
1

c−
· 1
|t| .

This argument also proves the upper bound for Ã.

2We use

∫ b

a
u(s)v′(s) ds =

[
u(s)v(s)

]b
a −

∫ b

a
u′(s)v(s) ds

with

v(s) = exp
[

c±
2ε
· (t2 − s2)

]
and u(s) = − 1

c± · s
.
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Let us target the lower bound for À. Using (4.2.14), we see that

1
ε

∫ t

−T
exp

[
c+

2ε
· (t2 − s2)

]
ds >

1
ε

∫ t

(−T∨2t)
exp

[
c+

2ε
· (t2 − s2)

]
ds

>
1

c+ · |t|
+

1
c+ · (−T ∨ 2t)

· exp
[

c+

2ε
·
(
t2 − (−T ∨ 2t)2)]

−
∫ t

(−T∨2t)

1
c+ · s2 · 1 ds︸ ︷︷ ︸

= 1
c+
·
(

1
|t|+

1
−T∨2t

)
=

−1
c+ · (−T ∨ 2t)

·
(

1− exp
[

c+

2ε
·
(
t2 − (−T ∨ 2t)2)]) (4.2.15)

This implies that for all t ∈ [−T,−β]

χ(t) > χ− · exp
[

c+

2ε
· (t2 − T2)

]

+
−1

c+ · (−T ∨ 2t)
·
(

1− exp
[

c+

2ε
·
(
t2 − (−T ∨ 2t)2)]) .

Now, if t ∈
[
−T,− T

2
]
, i.e. (−T ∨ 2t) = −T, we get that

χ(t) > χ− · exp
[

c+

2ε
· (t2 − T2)

]
+

1
c+ · T

·
(

1− exp
[

c+

2ε
· (t2 − T2)

])

=
1

c+ · T
+ exp

[
c+

2ε
· (t2 − T2)

]
·
(

χ− −
1

c+ · T

)
︸ ︷︷ ︸

>0
if c+ big enough

>
1

c+ · T
>

1
2c+

· 1
|t| ,

which proves the lower bound for À and Ã for all t ∈
[
−T,− T

2
]

To complete the proof of the lower bound for À, we consider the case t ∈[
− T

2 ,−β
]
, where (−T ∨ 2t) = 2t. In this case, the lower bound is proved as

follows:

χ(t) > χ− · exp
[

c+

2ε
· (t2 − T2)

]
︸ ︷︷ ︸

>0

+
−1

2c+ · t
·
(

1− exp
[

c+

2ε
· (−3t2)

])

>
1

2c+ · |t|
·
(

1− exp
[
−3

2
· c+

])
where we used the following estimate:

exp
[

c+

2ε
· (−3t2)

]
6 exp

[
c+

2ε
· (−3β2)

]
6 exp

[
c+

2ε
· (−3ε)

]
. (4.2.16)
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To show the lower bound for Ã in the case t ∈ [− T
2 ,−ε1/2], we simply have to

replace (4.2.16) by

exp
[

c+

2ε
· (−3t2)

]
6 exp

[
c+

2ε
· (−3ε)

]
.

Now, let us consider Á. For t ∈ [−β, β], we have

χ(t) = χ(−β) · exp
[

α̃(t,−β)
ε

]
+

1
ε

∫ t

−β
exp

[
α̃(t, s)

ε

]
ds .

By the assumptions of the lemma, we have the following estimates for ã(t)
and α̃(t) for all t ∈ [−β, β]:

ã(t)

{
6 −c−β

> −c+β ,
(4.2.17)

α̃(t, s)

{
6 −c−β · (t− s)
> −c+β · (t− s) .

(4.2.18)

From the above results we conclude that

χ(−β) � 1
|β| ⇒ χ(−β)

{
> χ− · 1

|β|
6 χ+ · 1

|β| ,

adjusting χ+, χ−, if necessary. Let us note that

1
ε

∫ t

−β
exp

[
− c±β

ε
· (t− s)

]
ds =

1
c±β

− 1
c±β

· exp
[
− c±β

ε
· (t + β)

]
.

Hence, the lower bound is proved as follows:

χ(t) > χ− ·
1
|β| · exp

[
− c+β

ε
· (t + β)

]
+

1
ε

∫ t

−β
exp

[
− c+β

ε
· (t− s)

]
ds

=
χ−
β
· exp

[
− c+β

ε
· (t + β)

]
+

1
c+β

− 1
c+β

· exp
[
− c+β

ε
· (t + β)

]
=

1
c+β

+ exp
[
− c+β

ε
· (t + β)

]
·
(

χ−
β
− 1

c+β

)
︸ ︷︷ ︸

>0
if c+ big enough

>
1

c+
· 1
|β| .
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For the corresponding upper bound, we obtain for all t ∈ [−β, β] that

χ(t) 6 χ+ ·
1
β
· exp

[
− c−β

ε
· (t + β)

]
︸ ︷︷ ︸

61

+
1

c−β
− 1

c−β
· exp

[
− c−β

ε
· (t + β)

]
︸ ︷︷ ︸

>0

6
(

χ+ +
1

c−

)
· 1

β
.

The proof for Ä is very similar. Even for ε1/2 > β we may use ã(t) � −
(

β ∨
|t|
)

to obtain for all t ∈ [−ε1/2, ε1/2] the estimate

ã(t)

{
6 −c−β

> −c+β ;
(4.2.19)

we only have to remark that the constants c+, c− > 0 used here may be
different from those in (4.2.17). In the same way, (4.2.18) holds in this case,
too, but with the constants c+, c− from (4.2.19). Since t − s 6 2ε1/2 for all
t, s ∈ [−ε1/2, ε1/2] and

exp
[
− c+β

ε
· 2ε1/2

]
> exp

[
− c+ε1/2

ε
· 2ε1/2

]
= exp[−2c+] ,

we have, using that χ
(
− 1

ε1/2

)
� 1

|ε1/2| ,

χ(t) > χ− ·
1

ε1/2 · exp
[
− c+ε1/2

ε
· 2ε1/2

]
+

1
ε

∫ t

−ε1/2
exp

[
− c+β

ε
· 2ε1/2

]
ds︸ ︷︷ ︸

>0

>
χ−

exp[2c+]
· 1

ε1/2 .

The corresponding upper bound, again for t ∈ [−ε1/2, ε1/2], follows from

χ(t) 6 χ+ ·
1

ε1/2 · 1 +
1
ε
·
∫ t

−ε1/2
1 ds︸ ︷︷ ︸

6 1
ε ·2ε1/2= 2

ε1/2

6 (χ+ + 2) · 1
ε1/2 .

Now we come to Â. Similar to (but not identical with) À, we have

ã(t)

{
6 −c− · |t|
> −c+ · |t| ,

(4.2.20)

α̃(t, s)

{
6 − c−

2 · (t2 − s2)
> − c+

2 · (t2 − s2) .
(4.2.21)
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The same computations as in (4.2.14) show that

1
ε

∫ t

β
exp

[
− c±

2ε
· (t2 − s2)

]
ds (4.2.22)

=
1

c± · t
− 1

c±β
· exp

[
− c±

2ε
· (t2 − β2)

]
+
∫ t

β

1
c± · s2 · exp

[
− c±

2ε
· (t2 − s2)

]
ds .

Hence, we see that

χ(t) 6 χ+ ·
1
β
· exp

[
− c−

2ε
· (t2 − β2)

]
+

1
ε

∫ t

β
exp

[
− c−

2ε
· (t2 − s2)

]
ds

= χ+ ·
1
β
· exp

[
− c−

2ε
· (t2 − β2)

]
︸ ︷︷ ︸

61

+
1

c− · t
− 1

c−β
· exp

[
− c−

2ε
· (t2 − β2)

]
+
∫ t

β

1
c− · s2 · exp

[
− c−

2ε
· (t2 − s2)

]
ds︸ ︷︷ ︸

6
∫ t

β
1

c−·s2 ds

= 1
c−β−

1
c−·t

6 χ+ ·
1
β

+
1

c−β
·
(

1− exp
[
− c−

2ε
· (t2 − β2)

])
︸ ︷︷ ︸

<1

<

(
χ+ +

1
c−

)
· 1

β
.

Thus, we can find a constant C, such that χ(t) 6 C · 1
|t| for all t ∈ [β, T]. By

precisely the same arguments, replacing β with ε1/2, the upper bound in Å
follows.
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Next, we prove the lower bound in Â, again using (4.2.22):

χ(t) > χ− ·
1
β
· exp

[
− c+

2ε
· (t2 − β2)

]
+

1
ε

∫ t

β
exp

[
− c+

2ε
· (t2 − s2)

]
ds

= χ− ·
1
β
· exp

[
− c+

2ε
· (t2 − β2)

]
+

1
c+ · t

− 1
c+β

· exp
[
− c+

2ε
· (t2 − β2)

]
+
∫ t

β

1
c+ · s2 · exp

[
− c+

2ε
· (t2 − s2)

]
ds︸ ︷︷ ︸

>0

>
1
β
· exp

[
− c+

2ε
· (t2 − β2)

]
·
(

χ− −
1

c+

)
︸ ︷︷ ︸

>0
if c+ big enough

+
1

c+ · t

>
1

c+
· 1
|t| .

The lower bound for Å is proved by the same arguments.

Proposition 4.2.7 (yt during
[
−T,−|t0|

]
). [sc: [BG02b, Proposition 3.3]; see also

p. 1462 therein] There exists a constant c0 > 0, such that the solution of (4.2.10) with
initial condition y−T � ε satisfies

yt �
ε

|t| (4.2.23)

for any t ∈ [−T, t0] =
[
−T,−c0

(√
a0 ∨ ε1/2)].

Proof. Let us first assume that c0 > 1; during the proof, we will add more
restrictions on c0. We first prove the upper bound, i.e., we show that there
exists a constant c1 > 1

ε y−T · |T| such that for all t ∈ [−T, t0]

yt 6 c1 ·
ε

|t| .

Let us note that by choice of c1, y−T meets this estimate.
We set

τ := inf

{
t ∈ [−T, T]

∣∣∣∣∣ yt /∈
]

0, c1 ·
ε

|t|

[}
.

If we can prove that τ > t0, the assertion follows.
By (4.1.4), we know that a∗+(t) � −|t| during [−T,−√a0], hence, also for

all t ∈ [−T, t0]. This implies that we can find a constant c− > 0 such that
a∗+(t) 6 −c−|t| for all t ∈ [−T, t0].

By (4.2.12) we know that for all t ∈ [−T, t0] ⊂ [−T,−√a0]

d
dx

x∗+(t) � −1 .
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Thus, there exists a constant c+ > 0 such that for all t ∈ [−T, t0]

− d
dt

x∗+(t) 6 c+ .

We use these estimates to modify (4.2.10) and obtain that for all t ∈ [−T, t0]

ε · d
dt

yt 6 −c−|t| · yt + M · y2
t︸ ︷︷ ︸

=−c− |t|·yt ·
(

1− M·yt
c−|t|

) + εc+ .

By definition of τ, we have that yt ∈
]
0, c1 · ε

|t|
[

for all t ∈ [−T, τ ∧ t0].
Furthermore, there is a constant M′ > 0 such that, by definition of t0, we have
that t 6 t0 6 −c0M′, hence, |t| > c0M′ for all t ∈ [−T, τ ∧ t0]. This implies
that for all such t

ε · d
dt

yt 6 −c−|t| · yt ·
[

1− Mc1ε

c−|t|2︸ ︷︷ ︸
6

Mc1ε

c−c2
0 M′2

]
+ εc+ .

For any constant c1, we can choose c0 = c0(c1) big enough for the term in
square brackets to be larger than 1

2 . Hence, for a “big enough” c0 in this sense,

d
dt

yt 6 − c−|t|
2ε

· yt + c+ =
c−
2ε
· t · yt + c+ ,

since all t ∈ [−T, t0] fulfill−|t| = t. By assumption, the initial condition to our
deterministic model is y−T � ε.

From all this, we obtain (using Theorem A.0.1) that

yt 6 y−T · exp
[∫ t

−T

c−
2ε
· s ds

]
+
∫ t

−T
exp

[
−
∫ t

s

c−
2ε
· s̃ ds̃

]
· c+ ds ,

hence,

1
ε
· yt 6

y−T
ε
· exp

[
c−
4ε
· (t2 − T2)

]
+

c+

ε

∫ t

−T
exp

[
c−
4ε
· (t2 − s2)

]
ds .

We note that y−T
ε � 1 and c+

ε � 1
ε . Hence, we may apply Lemma 4.2.6, where

c−
2 · |t| takes the role of ã(t), and obtain that there exists a constant c2 > 0,

independent of c1 and τ (note that by construction c+, c− are independent of
c1 and τ, too), such that for all t ∈ [−T, τ ∧ t0]

yt 6 c2 ·
ε

|t| . (4.2.24)

Hence, we may choose c1 > c2.
Assume that τ 6 t0. Then (4.2.24) implies that

|τ| · yτ 6 c2ε . (4.2.25)
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On the other hand, by continuity of the path t 7→ yt and the definition of τ,
we have

|τ| · yτ = c1ε
c1>c2⇒ τ2 · yτ > c2ε ,

which contradicts (4.2.25). Thus, the assumption that τ 6 t0 must be wrong
and the proof of the upper bound is thus completed.

The proof of the lower bound is in principle the same: We have to show the
existence of a constant c3 ∈

]
0, y−T

ε · |T|
[

such that for all t ∈ [−T, t0]

yt > c3 ·
ε

|t| .

Let us note that by definition of c3, y−T meets this estimate.
Like above, we use the general assumptions on equilibrium branches and

linearizations of f during [−T,
√

a0]:

• a∗+(t) � −|t|, i.e. there exists a constant c⊕ > 0 big enough for

a∗+(t) > −c⊕|t| for all t ∈ [−T, t0].

• d
dt x∗+(t) � −1, i.e. there exists a constant c	 > 0 small enough for

− d
dt

x∗+(t) > c	 for all t ∈ [−T, t0].

• There exists a constant M > 0 such that b∗+(yt, t) > −M · y2
t for all t ∈

[−T, t0].

Hence, we get that

ε · d
dt

yt > −c⊕|t| · yt − M · y2
t︸ ︷︷ ︸

−c⊕ |t|·yt ·
(

1+ M·yt
c⊕|t|

) + εc	 .

By the first part of the proof, we already know that there is a constant c1 such
that

yt 6
c1ε

|t| for all t ∈ [−T, t0] .

Hence, because again |t| > c0M′ for a constant M′ > 0,

ε · d
dt

yt > −c+|t| · yt ·
(

1 +
Mc1ε

c+|t|2

)
+ εc−

> −c+|t| · yt ·
(

1 +
Mc1ε

c+M′2c2
0

)
+ εc− .

If we only choose c0 big enough (with respect to c1), the term in brackets is
smaller than 2. Then we get

d
dt

yt >
−2c+|t|

ε
· yt + c− =

2c+

ε
· t · yt + c− ,
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as −|t| = t for all t ∈ [−T, t0].
From here on, the procedure is as above. Since we do not have the restriction

that estimates only hold up to a time τ, the contradiction argument is not
needed here.

From now on we assume that c0 is large enough for Proposition 4.2.7 to
hold.

We note that the proposition implies that for all t ∈ [−T, t0] we have that

xdet
t � x∗+(t) ,

hence, again for t ∈ [−T, t0],

xdet
t − xc �

√
a0 , and yt0 �

ε√
a0
∧ ε .

Now we analyze the development of yt for |t| 6 |t0|. We will distinguish
between the cases yt0 � ε√

a0
(“a0 not too small”) and yt0 �

√
ε.

Proposition 4.2.8 (yt during [t0,−t0] for a0 > γ0ε). [sc: [BG02b, Prop. 3.4]] There
exists a constant γ0 > 0, depending only on f and yt0 , such that in the case a0 > εγ0
we have that for all t ∈ [t0,−t0]

yt = C1(t) · (t∗+ − t) + C2(t) , (4.2.26)

where

C1(t) � ε

a0
and C2(t) � ε2

a3/2
0

.

The estimate in (4.2.26) shows in particular that yt vanishes at a time t̃ such
that

t̃− t∗+ � ε√
a0

, (4.2.27)

if a0 > γ0ε. Furthermore, if t1 �
√

a0, (4.2.26) together with the assumption
that t∗+ = O(a0) implies that yt1 � − ε√

a0
, hence, yt1 � − ε

|t1|
.

Proof. As in the proof of Proposition 4.2.7, we begin with the upper bound.
Our proof is again based on estimates for a∗+(t) and d

dt x∗+(t), see (4.1.4) and
(4.2.12), respectively. However, these estimates are based on a certain partition
of the interval [−T, T], namely

[−T, T] = [−T,−
√

a0] ∪ [−
√

a0,
√

a0] ∪ [
√

a0, T] .

To use them for t ∈ [t0,−t0], we have to remark that it is possible to extend
the estimates from t ∈ [−√a0,

√
a0] to [t0,−t0] – due to the fact that the corre-

sponding original estimates for the neighborhood of [−√a0,
√

a0] are linear –
by enlarging/shrinking the respective constants for upper and lower bound.
Hence, we obtain that there exists a constant c− > 0 small enough for

a∗+(t) 6 c− · (−
√

a0) for all t ∈ [t0,−t0],
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and two constants, c� > 0 big enough and c� > 0 small enough (cf. Re-
mark 4.2.5), for

d
dt

x∗+(t) >

{ c�√
a0
· (t− t∗+) for all t ∈ [t0, t∗+]

c�√
a0
· (t− t∗+) for all t ∈ [t∗+,−t0].

Furthermore, there is a constant M > 0 big enough for∣∣b∗+(yt, t)
∣∣ 6 M · y2

t .

Let c1 > a0
ε · yt0 be a constant and set

τ := inf
{

t ∈ [t0, T]
∣∣∣∣ |yt| >

c1ε

a0

}
.

By definition of c1, we have that τ > t0.
Using∣∣b∗+(yt, t)

∣∣
|yt|

6 M · |yt| 6 M · c1ε

a0
for t ∈ [t0, τ ∧−t0]

we get that, if we choose γ0 (hence, a0) big enough,

a∗+(t) +

∣∣b∗+(yt, t)
∣∣

|yt|
6 −

c−
√

a0

2
for t ∈ [t0, τ ∧−t0]. (4.2.28)

Based on these estimates and setting

c�(t) :=

{
c� if t 6 t∗+
c� if t > t∗+ ,

we obtain the following modification of (4.2.10) for all t ∈ [t0, τ ∧−t0]:

d
dt

yt 6 −
c−
√

a0

2ε
· yt −

c�(t)√
a0

· (t− t∗+) ,

which implies (using Theorem A.0.1) that for all t ∈ [t0, τ ∧−t0]

yt 6 yt0 · exp
[∫ t

t0

−
c−
√

a0

2ε
ds
]

+
∫ t

t0

exp
[∫ t

s
−

c−
√

a0

2ε
ds̃
]
· −c�(s)√

a0
· (s− t∗+) ds

= yt0 · exp
[
−

c−
√

a0

2ε
· (t− t0)

]
+
∫ t

t0

exp
[
−

c−
√

a0

2ε
· (t− s)

]
· −c�(s)√

a0
· (s− t∗+) ds .
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By integration by parts3 we obtain that∫ t

t0

exp
[
−

c−
√

a0

2ε
· (t− s)

]
· c�(s)√

a0
· (t∗+ − s) ds

=

[
c�(s)√

a0
· (t∗+ − s) · 2ε

c−
√

a0
· exp

[
−

c−
√

a0

2ε
· (t− s)

]]t

t0

−
∫ t

t0

−2ε · c�(s)
c−a0

· exp
[
−

c−
√

a0

2ε
· (t− s)

]
ds .

Furthermore,∫ t

t0

c�(s) · exp
[
−

c−
√

a0

2ε
· (t− s)

]
ds

= c�(t) · 2ε

c−
√

a0
− c�(t0) ·

2ε

c−
√

a0
· exp

[
−

c−
√

a0

2ε
· (t− t0)

]
.

Hence, we have for all t ∈ [t0, τ ∧−t0]

yt 6 yt0 · exp
[
−

c−
√

a0

2ε
· (t− t0)

]
+

2ε · c�

c−a0
· (t∗+ − t)

− 2ε · c�

c−a0
· (t∗+ − t0) · exp

[
−

c−
√

a0

2ε
· (t− t0)

]

+
4ε2 · c�

c2
−a3/2

0

·
(

1− exp
[
−

c−
√

a0

2ε
· (t− t0)

])
,

where we use that c�(t0) = c�, and estimate c�(t) from above by c� for any
t 6= t0;

=
2ε · c�

c−a0
· (t∗+ − t) +

4ε2 · c�

c2
−a3/2

0

(4.2.29)

+ exp
[
−

c−
√

a0

2ε
· (t− t0)

]
·
(

yt0 −
2ε · c�

c−a0
· (t∗+ − t0)−

4ε2 · c�

c2
−a3/2

0

)
︸ ︷︷ ︸

=:η(ε)

.

By the properties of yt0 and a0, η(ε) is of the order O
(

ε√
a0

)
.

To further analyze the right hand side, we first assume that η(ε) > 0 and
t ∈ [t0, τ ∧ t∗+].

3 We use ∫ b

a
u(s)v′(s) ds = u(s)v(s)

∣∣b
a −

∫
v(s)u′(s) ds

with

v(s) = exp
[
−

c−
√

a0

2ε
· (t− s)

]
· 2ε

c−
√

a0
and u(s) =

c�(s)√
a0

· (t∗+ − s) .
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By convexity of x 7→ exp x, we have that

exp
[
−

c−
√

a0

2ε
· (t− t0)

]
6

t∗+ − t
t∗+ − t0

+ exp
[
−

c−
√

a0

2ε
· (t∗+ − t0)

]
. (4.2.30)

Since t0 � −√a0, t∗+ = O(a0), we obtain that

2ε · c�

c−a0
+

1
t∗+ − t0

· η(ε) � ε

a0

⇒ ∃ C̃1 > 0 :
2ε · c�

c−a0
+

1
t∗+ − t0

· η(ε) 6 C̃1 ·
ε

a0
. (4.2.31)

Since x exp[−x] x→∞−−−→ 0, we get

η(ε) · exp
[
−

c−
√

a0

2ε
· (t∗+ − t0)

]
︸ ︷︷ ︸

ε→0−−→0

+
4ε2 · c�

c2
−a3/2

0

� ε2

a3/2
0

⇒ ∃ C̃2 > 0 : η(ε) · exp
[
−

c−
√

a0

2ε
· (t∗+ − t0)

]
+

4ε2 · c�

c2
−a3/2

0

6 C̃2 ·
ε2

a3/2
0

.

(4.2.32)

If we apply these estimates to the right hand side of (4.2.29), we obtain for all
t ∈ [t0, τ ∧ t∗+]:

yt
(4.2.29)

6
2ε · c�

c−a0
· (t∗+ − t) +

4ε2c�

c2
−a2/3

0

+ exp
[
−

c−
√

a0

2ε
· (t− t0)

]
· η(ε)

(4.2.30)
6

2ε · c�

c−a0
· (t∗+ − t) +

4ε2c�

c2
−a3/2

0

+

(
t∗+ − t
t∗+ − t0

+ exp
[
−

c−
√

a0

2ε
· (t∗+ − t0)

])
· η(ε)

(4.2.31)
6 C̃1 ·

ε

a0
· (t∗+ − t) +

4ε2c�

c2
−a3/2

0

+ exp
[
−

c−
√

a0

2ε
· (t∗+ − t0)

]
· η(ε)

(4.2.32)
6 C̃1 ·

ε

a0
· (t∗+ − t) + C̃2 ·

ε2

a3/2
0

. (4.2.33)

Thus, the assertion is proved for all t ∈ [t0, t∗+ ∧ τ], under the assumption that
η(ε) > 0.

For t > t∗+ (but still t 6 τ ∧−t0, η(ε) > 0), we exchange (4.2.30) by

exp
[
−

c−
√

a0

2ε
· (t− t0)

]
6 exp

[
−

c−
√

a0

2ε
· (t∗+ − t0)

]
,

substitute (4.2.31) with

2ε · c�

c−a0
� ε

a0
,
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and re-use (4.2.32) to obtain that (4.2.33) holds for any t ∈ [t0, τ ∧−t0] as long
as η(ε) > 0 (with C̃1, C̃2 enlarged, if necessary).

The case η(ε) 6 0 is even easier: The upper estimates (4.2.31), (4.2.32) do
still hold, hence (4.2.33) also does.

If τ > −t0, the proof is now complete. If τ < −t0, we simply have to enlarge
c1, such that the bound in the definition of τ ‘catches’ y−t0 . This is possible, be-
cause the involved processes are all continuous. But to guarantee the validity
of (4.2.28), we need that

M · c1ε

a0
6

c−
2
·
√

a0 .

Consequently, whenever c1 is enlarged by multiplication with a constant k >
1, we have to multiply a0 with k2/3. However, for any k > 1 we have that
k > k2/3, hence, such a ‘simultaneous growth’ of c1 and a0 will both grow the
bound for yt that defines τ and let (4.2.28) remain valid.

Thus, the upper bound is finally proved for all t ∈ [t0,−t0].
We will only outline the proof of the lower bound, as it is basically the same.

By similar arguments as above, there exist constants c+, c� > 0 big enough
and c� > 0 small enough, such that

a∗+(t) > c+ · (−
√

a0) for all t ∈ [t0,−t0] ,

d
dt

x∗+(t)

{
6 c�√

a0
· (t− t∗+) for t ∈ [t0, t∗+]

6 c�√
a0
· (t− t∗+) for t ∈ [t∗+,−t0] ,

and M > 0 big enough for∣∣b∗+(yt, t)
∣∣ 6 M · y2

t

⇒ b∗+(yt) > −M · y2
t .

Now, let c1 and τ be as above. Then we have for t ∈ [t0, τ ∧−t0]

b∗+(yt, t)
|yt|

> −M · |yt| > −M · c1ε

a0
,

hence, if γ0 (consequently, a0) is big enough,

a∗+(t) +
b∗+(yt, t)
|yt|

> −2c+ ·
√

a0 for t ∈ [t0, τ ∧−t0] .

By the same steps as above, this time applying c�(t0) = c� and the estimate
c�(t) > c� for all t ∈ ]t0,−t0], we arrive at the following estimate:

yt >
εc�

2c+a0
· (t∗+ − t) +

ε2c�

2c2
+a3/2

0

+ exp
[
−

2c+
√

a0

ε
· (t− t0)

]
·
(

yt0 −
εc�

2c+a0
· (t∗+ − t0)−

ε2c�

4c2
+a3/2

0

)
︸ ︷︷ ︸

=:η(ε)

,
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which can be shown to fulfill the assertion in the same way as presented for
the upper bound. The estimates used here are basically the same as above, we
only have to replace (4.2.31) with the estimate

εc�

2c+a0
> Č1 ·

ε

a0

for a constant Č1 > 0, and (4.2.30) with the estimate

exp
[
−

2c+
√

a0

ε
· (t− t0)

]
> exp

[
−

4c+
√

a0

ε
· |t0|

]
(which are both derived in a similar way as before) to obtain that

yt > Č1 ·
ε

a0
· (t∗+ − t) + Č2 ·

ε2

a3/2
0

,

where Č2 > 0 is a constant fulfilling a lower bound analogon to (4.2.32).

From now on we assume that γ0 is big enough for Proposition 4.2.8 to hold.

Proposition 4.2.9 (yt during [t0, t1] for a0 < γ0ε). [BG02b, Prop. 4.2] Assume
that a0 < γ0ε. We choose an arbitrary t1 �

√
ε. Then for any t ∈ [t0, t1]

xdet
t − xc �

√
ε , (4.2.34)

and xdet
t crosses x∗+(t) at a time t̃ such that t̃ �

√
ε.

Together with the preceding proposition, this result implies that there exists
a time t1 � (

√
a0 ∨ ε1/2) such that

yt1 = xdet
t1
− xc −

(
x∗+(t1)− xc

)
� − ε

|t1|
.

Proof. This Proposition is proved in the asymmetric version in [BG02b, Propo-
sition 4.2].

For t ∈ [t1, T], we have yt � − ε
|t| . The proof is similar to that of Proposi-

tion 4.2.7. This estimate implies that, because of x∗+(t)− xc � t for t ∈ [t1, T],
we also have xdet

t − xc � t for t ∈ [t1, T].
Alltogether, we have shown that for t ∈ [−T, T]∣∣xdet

t − x∗+(t)
∣∣ � ε

|t| ∧
ε√
a0
∧
√

ε , (4.2.35)

and the vanishing time t̃ of yt fulfills

t̃− t∗+ � ε√
a0
∧
√

ε . (4.2.36)

Proposition 4.2.10 (linearization of f at xdet
t ). [BG02b, Prop. 4.3] For all t ∈

[−T, T] and any a0 = Oε(1),

ā(t) := ∂x f (xdet
t , t) � −

(
|t| ∨

√
a0 ∨

√
ε
)

. (4.2.37)
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Proof. [sc: [BG02b, Prop. 3.7]] From the assumptions on x∗+(t) for t ∈ [−T, T]
and the behavior of yt during [−T, T], as proved in the preceding propositions,
we conclude that

x̃t := xdet
t − xc �


|t| for |t| ∈ [−t0, T]
√

a0 for t ∈ [t0,−t0] and a0 > ε√
ε for t ∈ [t0,−t0] and a0 6 ε

� |t| ∨
√

a0 ∨
√

ε . (4.2.38)

By (4.1.5) we obtain that for all t ∈ [−T, T]

∂x f (xdet
t , t) = ∂x f (xc + x̃t, t) � −

(
|t| ∨

√
a0 ∨

√
ε
)

,

since by assumption T < 1
2 .

Finally, we introduce a further solution to (4.2.1), which we will have to use
during the proofs of the non-deterministic results.

Corollary 4.2.11 (“unstable solution”). [BG02b, Theorem 2.5 and Prop. 4.3] The
deterministic equation (4.2.1) has a solution x̂det

t that “tracks the unstable equilibrium
branch” x∗u(t). This solution satisfies analogous claims as xdet

t does with respect to
x∗+(t): x̂det

t and x∗u(t) cross once (during [−T, T]) at a time t̂ such that

t̂− t∗0 � −(t̃− t∗+) ,

and (4.2.7), (4.2.8) and (4.2.9) hold for x̂det
t and x∗u(t), but with opposite signs. Fur-

thermore, we have that

â(t) := ∂x f (x̂det
t , t) � |t| ∨

√
a0 ∨

√
ε .

Proof. The equation

ε · d
ds

zs = − f (zs,−s) , (4.2.39)

with f as before, has a stable equilibrium branch z∗0(s) = x∗u(−s). The same
arguments as above prove the existence of a solution zs to (4.2.39) tracking
z∗0(s). By zs = x−s we obtain the path of the claimed solution x̂det

t .

The following Lemma is a consequence of Lemma 4.2.6. It will be needed in
the following section.

Lemma 4.2.12. Like in Lemma 4.2.6 we set

ᾱ(t, s) :=
∫ t

s
ā(u) du .

Then we obtain that

ζ(t) :=
1

2 ·
∣∣ā(−T)

∣∣ · exp
[

2ᾱ(t,−T)
ε

]
+

1
ε

∫ t

−T
exp

[
2ᾱ(t, s)

ε

]
ds

� 1
|t| ∨ √a0 ∨

√
ε

.
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4.3. The Stochastic Case

Let us return to the stochastic equation (4.1.1), which we repeat here for con-
venience of the reader:{

dxt = 1
ε · f (xt, t) dt + σ√

ε
dWt

xt0 = x0 ,
((4.1.1))

with σ > 0 and f as described in Situation 4.1.4. We note that xt = xε
t depends

on ε > 0, but we stick to the notation of [BG02b]
We assume that the initial condition for t0 = −T fulfills

x−T − x∗+(−T) � ε . (4.3.1)

It has been proved in [BG02a, Theorem 2.4] that, if the system (4.1.1) and
the corresponding deterministic system (4.2.1) start at the same initial point
x−1+T = xdet

−1+T , and if this initial point fulfills the conditions listed in the as-
sumptions of Proposition 4.2.2, the relation (4.3.1) is fulfilled with very high
probability, if σ is not too large.

Our aim is to describe the dynamics of the strong solution (xt)t∈[−T,T] to
(4.1.1) in comparison to the corresponding deterministic path xdet

t .

4.3.1. The Stable Case

In this subsection, we show that if σ is small enough, xt remains close enough
to xdet

t to have no transition during [−T, T].
The main idea we follow is to describe the deviation of x from xdet by the

variance of the solution of the linearization of (4.1.1) at xdet
t , and then to extend

this result to the solution of the (original) nonlinear system. For technical rea-
sons, we will replace the variance by ζ(t) as defined in Lemma 4.2.12, which
is asymptotically the same as the variance itself.

Let h > 0 be a constant. We set

B(h) :=
{
(r, t) ∈ [−d, d]× [−T, T]

∣∣ |r− xdet
t | < h ·

√
ζ(t)

}
τB(h) := inf

{
t ∈ [−T, T]

∣∣ (xt, t) /∈ B(h)
}

.

The main result of this subsection is the following:

Theorem 4.3.1 (motion near stable equilibrium branches). [BG02b, Thm. 2.6]
There exists a constant h0 > 0, depending only on f , such that the following holds:

(i) If t ∈
[
−T,−(

√
a0 ∨

√
ε)
]

and h < h0 · |t|3/2, then

P−T,x−T [τB(h) < t] (4.3.2)

6 C(t, ε) · exp

[
− h2

2σ2 ·
(

1−O(ε)−O

(
h

|t|3/2

))]
.
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(ii) If t ∈
[
−(
√

a0 ∨
√

ε), T
]

and h < h0 · (a3/4
0 ∨ ε3/4), then

P−T,x−T [τB(h) < t] (4.3.3)

6 C(t, ε) · exp

[
− h2

2σ2 ·
(

1−O(ε)−O

(
h

a3/4
0 ∨ ε3/4

))]
.

In both cases,

C(t, ε) :=
1
ε2 ·

∣∣ᾱ(t,−T)
∣∣+ 2 . (4.3.4)

Remark 4.3.2. [BG02b, pp. 1429, 1437]

(i) If h is significantly larger than σ, the exponential factors in (4.3.2) and (4.3.3)
become very small, i.e. a transition is very unlikely.

(ii) C(t, ε) is a correction factor that models the increase of P−T,x−T
[
τB(h) < t

]
over time. However, if h

σ > O
(
|log ε|

)
, its effect becomes negligible, because the

exponential factor is already very small.

The authors of [BG02b] note that they believe that C(t, ε) is not optimal.

(iii) The theorem implies that the typical spreading of the paths of (4.1.1) around
xdet is of the order σ

√
ζ(t), which by Lemma 4.2.12 fulfills

σ
√

ζ(t) � σ√
|t| ∨ a1/4

0 ∨ ε1/4
.

(iv) In the case that σ � a3/4
0 ∨ ε3/4, it is possible within the assumptions of the

theorem to choose h � σ. Then (cf. (i)) the probability P−T,x−T
[
τB(h) < t

]
becomes exponentially small. In other words, σ � a3/4

0 ∨ ε3/4 implies that a
transition is very unlikely.

(v) If σ is not so small, we can still apply part (i) of the theorem to show that for t of
order −σ2/3 (or smaller) a transition is unlikely.

The rest of this subsection is devoted to the proof of this theorem. We ana-
lyze the deviation of the solution x of (4.1.1) from the solution xdet of (4.2.1)
(with identical initial conditions x−T = xdet

−T as described before) using4

zt := xt − xdet
t .

This process satisfies the stochastic equation{
dzt = 1

ε ·
(
ā(t) · zt + b̄(zt, t)

)
dt + σ√

ε
dWt

z−T = 0 .
(4.3.5)

4Because of consistency, we use a different notation than the authors of [BG02b]: zt for the de-
viation of the perturbed from the deterministic solution, because yt is already used for the
deviation of the deterministic solution from the equilibrium branch, and ā instead of ã for
∂x f (xdet

t , t) because this notation is already established in Proposition 4.2.10
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4. The Pathwise Approach of Berglund and Gentz

Here, as before, ā(t) = ∂x f (xdet
t , t), and by Taylor’s formula we obtain that

there exists a constant M > 0 such that∣∣b̄(z, t)
∣∣ 6 M ·

(
xdet

t + |z|
)
· z2 (4.3.6)

for all t ∈ [−T, T] and xdet
t + |z| 6 d.

We consider the solution z0 to the linearization of (4.3.5) at xdet, namely{
dz0

t = 1
ε · ā(t) · z0

t dt + σ√
ε

dWt

z0
−T = 0 .

(4.3.7)

The solution z0 to this equation is a Gaussian process with expectation zero
and variance

v(t) =
σ2

ε

∫ t

−T
exp

[
2ᾱ(t, s)

ε

]
ds , where ᾱ(t, s) =

∫ t

s
ā(u) du .

Instead of the variance itself we will use for our estimates the function ζ(t)
defined in Lemma 4.2.12. For any t ∈ [−T + ε, T] we have that both v(t)

σ2 and
ζ(t) can be estimated by

� 1
|t| ∨ √a0 ∨

√
ε

(the fact that v(t)
σ2 ≈ ζ(t) for t > −T + ε follows from the definition of ζ and

(4.2.37): For t > −T + ε, the negativity of ā lets the first summand of the
definition of ζ become negligibly small).

The advantage of ζ is that it is bounded away from zero, which avoids tech-
nical problems (see e.g. the formulation of the following proposition) and is
more realistic in terms of the general periodicity of our model.

The next proposition shows that z0 is likely to remain in a strip of width
proportional to

√
ζ(t).

Proposition 4.3.3. [sc: [BG02b, Proposition 3.8]] For all t ∈ [−T, T] and any h > 0,

P−T,0
[

sup
s∈[−T,t]

|z0
s |∣∣ζ(s)
∣∣ > h

]
6 C(t, ε) · exp

[
− h2

2σ2 ·
(
1−O(ε)

)]
,

with C(t, ε) as defined in (4.3.4).

Proof. For k ∈ N let

−T = u0 < u1 < · · · < uK = T (4.3.8)

be a partition of [−T, t]. By [BG02a, Lemma 3.2] we have

P−T,0
[

sup
s∈[−T,t]

|z0
t |∣∣ζ(s)
∣∣ > h

]
6 2

K

∑
k=1

Pk , (4.3.9)

where

Pk = exp

[
− h2

2σ2 · inf
s∈[uk−1,uk ]

ζ(s)
ζ(uk)

· exp
[

2ᾱ(uk, s)
ε

]]
.
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Let the partition (4.3.8) be such that

ᾱ(uk, uk−1) = −2ε2 for all k = 1, . . . , K− 1, (4.3.10)

where

K =
⌈ ∣∣ᾱ(t,−T)

∣∣
2ε2

⌉
.

By Proposition 4.2.10, we have ā(s) < 0 for all s ∈ [−T, T], hence,

ζ ′(s) =
1

2 ·
∣∣ā(−T)

∣∣ · exp
[

2ᾱ(t,−T)
ε

]
· 2ā(t)

ε

+
1
ε
·
[

2ā(t)
ε

·
∫ t

−T
exp

[
2ᾱ(t, s)

ε

]
ds + 1

]

=
1
ε
·
(
2ā(t) · ζ(t) + 1

)
6

1
ε

,

where we used that∫ t

−T
exp

[
2ᾱ(t, s)

ε

]
ds = exp

[
2ᾱ(t,−T)

ε

]
·
∫ t

−T
exp

[
−2ᾱ(s,−T)

ε

]
ds .

Thus, we obtain

inf
s∈[uk−1,uk ]

ζ(s)
ζ(uk)

>
1

ζ(uk)
· inf

s∈[uk−1,uk ]

[
ζ(uk)−

1
ε
· (uk − s)

]
= 1− 1

ζ(uk)
· 1

ε
· (uk − uk−1) .

For all k such that |uk| >
√

a0 ∨
√

ε, we apply (4.3.10) and (4.2.37) to see that

there exist constants c(1)
− , c(2)

− , . . . > 0 small enough for

2ε2 = −ᾱ(uk, uk−1) > c(1)
−

∫ uk

uk−1

|s| ds > c(2)
− · |uk| · (uk − uk−1) .

Furthermore, by Lemma 4.2.12 we know that ζ(uk) � 1
|uk |

, i.e. ζ(uk) >
c(3)
−
|uk |

.
Thus,

uk − uk−1
ζ(uk)

6
|uk|
c(3)
−

· 2ε2

c(2)
− |uk|

= O(ε2) . (4.3.11)

For all other k = 1, . . . , K− 1 (i.e., such that |uk| <
√

a0 ∨
√

ε) we have

2ε2 > c(4)
− · (

√
a0 ∨

√
ε) · (uk − uk−1)

and

ζ(uk) >
c(5)
−√

a0 ∨
√

ε
,
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hence again

uk − uk−1
ζ(uk)

6
√

a0 ∨
√

ε

c(5)
−

· 2ε2

c(4)
− · (√a0 ∨

√
ε)

= O(ε2) . (4.3.12)

Now we apply this to (4.3.9) and obtain, using the definition of K,

P−T,0
[

sup
s∈[−T,t]

|z0
t |∣∣ζ(s)
∣∣ > h

]

6 2
K

∑
k=1

exp

[
− h2

2σ2 ·
(
1−O(ε)

)
· exp

[
2ᾱ(uk, s)

ε

]]

6 2 ·
(∣∣ᾱ(t,−T)

∣∣
2ε2 + 1

)
· exp

[
− h2

2σ2 ·
(
1−O(ε)

)]
,

because for ε � 1 we have
(
1−O(ε)

)2 = 1−O(ε).

In the preceding proposition we have proved that the solution to the lin-
earized version of (4.3.5) behaves as claimed in the theorem. Now we extend
this result to the original, nonlinear system.

We define the notations

Ω0
t (h) :=

{
ω ∈ Ω

∣∣ |z0
s | 6 h

√
ζ(s) ∀ s ∈ [−T, t]

}
Ωt(h) :=

{
ω ∈ Ω

∣∣ |zs| 6 h
√

ζ(s) ∀ s ∈ [−T, t]
}

.

Furthermore, for two events A, B ∈ A in a probability space (Ω, A, P) we say

A
a.s.
⊂ B if P-a.e. ω ∈ A are elements of B.

Proposition 4.3.4 (extension to nonlinear system). [sc: [BG02b, Prop. 3.10]]
There exists a constant $, depending only on f , such that the following holds:

(i) If t ∈
[
−T,−(

√
a0 ∨

√
ε)
]

and h < |t|3/2

$ , then

Ω0
t (h)

a.s.
⊂ Ωt

([
1 + $ · h

|t|3/2

]
· h

)
. (4.3.13)

(ii) If t ∈
[
−(
√

a0 ∨
√

ε), T
]

and h < 1
$ · (a3/4

0 ∨ ε3/4), then

Ω0
t (h)

a.s.
⊂ Ωt

([
1 + $ · h

a3/4
0 ∨ ε3/4

]
· h

)
. (4.3.14)

Proof. For this proof we define the process z̃t := zt − z0
t , which fulfills the

stochastic equation{
dz̃t = 1

ε · ā(t) · z̃t dt + 1
ε · b̄(zt, t) dt

z̃−T = 0 ,
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and thus fulfills

z̃t =
1
ε
·
∫ s

−T
exp

[
ᾱ(s, r)

ε

]
· b̄(zr, r) dr . (4.3.15)

Let us first assume that t ∈
[
−T,−(

√
a0 ∨

√
ε)
]
. Let $ > 0 be a constant

(more specific restrictions on the selection of $ follow below) and

δ :=
$h
|t|3/2 ,

which by the assumptions on h implies that δ < 1. We define the first-exit time

τ := inf
{

s ∈ [−T, t]
∣∣∣∣ |z̃s|√

ζ(s)
> δh

}
∈ [−T, t] ∪ {∞} (4.3.16)

and the set

A := Ω0
t (h) ∩

{
ω ∈ Ω

∣∣ τ(ω) < ∞
}

. (4.3.17)

The aim of this proof is to show that P(A) = 0 and hence τ(ω) = ∞ for
P-almost all ω ∈ Ω0

t (h). This implies that for s ∈ [−T, t] and P-almost all
ω ∈ Ω0

t (h) we have∣∣zs(ω)
∣∣ 6 (1 + δ) · h

√
ζ(s) ,

which proves (4.3.13) (and, consequently, (4.3.2)).
We choose an ω ∈ A and an s ∈

[
−T, τ(ω)

]
. Then, by the definition of

Ω0
t (h) we have for all r ∈ [−T, s]∣∣z0

r (ω)
∣∣ 6 h

√
ζ(r)

and, by the definition of τ,∣∣zr(ω)
∣∣ 6 (1 + δ) · h

√
ζ(r) < 2h

√
ζ(r) .

By Lemma 4.2.12, this implies that there exists a constant c+ > 0 such that for
all r ∈ [−T, s]∣∣zr(ω)

∣∣ 6 2h ·
√

c+√
|r|

.

Furthermore, we know by (4.2.38) that we can find constants c(1)
+ , c(2)

+ > 0 such
that for all r ∈ [−T, s] (note that s < 0!)

xdet
r − xc 6 c(1)

+ · |r| ⇒ xdet
r 6 c(2)

+ · |r| 6 sup{c(2)
+ , c+} · |r| .

From here on we use c+ to denote the Supremum in the above estimate. Ap-
plying (4.3.6) we get that for all r ∈ [−T, s]∣∣b̄(zr, r)

∣∣ 6 M ·
(

xdet
r + |zr|

)
· z2

r 6 M ·
(

c+|r|+ 2h ·
√

c+√
|r|

)
· 4h2 · c+

|r|

= 4Mh2c2
+ ·
(

1 +
2h

√
c+|r|3/2

)
6 4Mh2c2

+ ·
(

1 +
2h

√
c+|s|3/2

)
,
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where we used |r| > |s| in the last step.
Using this estimate to (4.3.15), we see that for all s ∈

[
−T, τ(ω)

]
|z̃s| 6 4Mh2c2

+ ·
(

1 +
2h

√
c+|s|3/2

)
· 1

ε

∫ s

−T
exp

[
ᾱ(s, r)

ε

]
dr .

From Lemma 4.2.6 we conclude that there exists a constant c(3)
+ such that

∫ s

−T
exp

[
ᾱ(s, r)

ε

]
dr 6

sup{c(3)
+ , c+}
|s|

(from now on we write c+ instead of the supremum), hence,

|z̃s| 6 4M ·
h2c3

+
|s| ·

(
1 +

2h
√

c+|s|3/2

)
.

By Lemma 4.2.12 we know that there exists a constant c− > 0 such that ζ(s) >
c−
|s| . Consequently, for all s ∈ [−T, τ(ω)]

|z̃s|
h
√

ζ(s)
6 4M ·

hc3
+√

c−
√
|s|
·
(

1 +
2h

√
c+|s|3/2

)
.

Now we set

$ =
2√
c+

∨ 8M ·
c3
+√
c−

. (4.3.18)

Because of 1 > |s| > |t| > 0, we have

δ = $ · h
|t|3/2 > $ · h

|s|3/2 > $ · h
|s|1/2 .

Hence, we see that for all s ∈ [−T, τ(ω)]

|z̃s|
h
√

ζ(s)
6

$h
2
√
|s|
·
(

1 +
$h
|s|3/2

)
<

δ

2
· (1 + δ)

δ<1
< δ .

This estimate implies that for almost all ω ∈ A

|z̃τ(ω)| < δh
√

ζ
(
τ(ω)

)
.

At the same time, by continuity of z̃ and the definition of τ, we know that for
all ω ∈ {τ < ∞} we have

|z̃τ(ω)| = δh
√

ζ
(
τ(ω)

)
.

Hence, P(A) = 0 as requested above. This completes the proof of (4.3.13).
The proof of (4.3.14) is very similar. The main difference stems from the fact

that the estimates for ζ and xdet are a bit more complicated in this case:
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We choose t ∈
[
−(
√

a0 ∨
√

ε), T
]

and re-use the constant $ > 0 as chosen in
(4.3.18). We set

δ :=
$h

a3/4
0 ∨ ε3/4

and note that the assumptions on h yield δ < 1. We define A as above and
τ ∈

[
−(
√

a0 ∨
√

ε), t
]

similar to (4.3.16) and select ω ∈ A and s ∈
[
−(
√

a0 ∨√
ε), τ(ω)

]
.

By definition of Ω0
t (h) we have for any r ∈

[
−(
√

a0 ∨
√

ε), s
]

that
∣∣z0

r (ω)
∣∣ 6

h
√

ζ(r), hence, by the definition of τ, that

∣∣zr(ω)
∣∣ 6 (1 + δ) · h

√
ζ(r) < 2h

√
ζ(r) .

With similar arguments as before, we obtain from (4.2.38) that there exists a
constant c+ > 0 such that xdet

r 6 c+ ·
(
|r| ∨ √a0 ∨

√
ε
)
. Together with (4.3.6)

this implies that∣∣b̄(zr, r)
∣∣

6 M ·
(

c+ ·
(
|r| ∨

√
a0 ∨

√
ε
)
+ 2h ·

√
c+√

|r| ∨ a1/4
0 ∨ ε1/4

)

· 4h2 · c+

|r| ∨ √a0 ∨
√

ε

6 4Mh2c2
+ ·
(

1 +
2h

√
c+ · (a3/4

0 ∨ ε3/4)

)
,

where we used that |r|3/2 ∨ a3/4
0 ∨ ε3/4 > a3/4

0 ∨ ε3/4. By (4.3.15) and applying
Lemma 4.2.6 as above we see that

|z̃s| 6 4Mh2c2
+ ·
(

1 +
2h

√
c+ · (a3/4

0 ∨ ε3/4)

)
· 1

ε

∫ s

−T
exp

[
ᾱ(s, u)

ε

]
du

6 4M ·
h2c3

+
|s| ∨ √a0 ∨

√
ε
·
(

1 +
2h

√
c+ · (a3/4

0 ∨ ε3/4)

)
.

By Lemma 4.2.12 we know that there exists a c− > 0 such that

ζ(s) >
c−

|s| ∨ √a0 ∨
√

ε
,

hence,

|z̃s|
h
√

ζ(s)
6 4M ·

hc3
+√

c− ·
(√

|s| ∨ a1/4
0 ∨ ε1/4

) ·(1 +
2h

√
c+ · (a3/4

0 ∨ ε3/4)

)

=
$

2
· h√

|s| ∨ a1/4
0 ∨ ε1/4

·
(

1 + $ · h
a3/4

0 ∨ ε3/4

)
.
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By

δ =
$h

a3/4
0 ∨ ε3/4

>
$h

a1/4
0 ∨ ε1/4

>
$h

|s|1/2 ∨ a1/4
0 ∨ ε1/4

,

we finally see that also in this case

|z̃s|
h
√

ζ(s)
6

δ

2
· (1 + δ)

δ<1
< δ .

The remaining argument is as before.

These two propositions prove the result claimed in the theorem: Proposi-
tion 4.3.3 proves that solutions z0 of the linearized SDE fulfill

P−T,0[τB(h)(z0) < t
]

6 C(t, ε) · exp
[
− h2

2σ2 ·
(
1−O(ε)

)]
,

and Proposition 4.3.4 extends this result by showing that there exists a con-
stant $ > 0 such that{

τ
B
(
[1+$ h

|t|3/2 ]·h
)(z) < t

} a.s.
⊂
{

τB(h)(z0) < t
}

for all t ∈
[
−T,−(

√
a0 ∨

√
ε)
]

and h < 1
$ · |t|3/2, and{

τ
B
(
[1+$ h

a3/4
0 ∨ε3/4

]·h
)(z) < t

} a.s.
⊂
{

τB(h)(z0) < t
}

for all t ∈
[
−(
√

a0 ∨
√

ε), T
]

and h < 1
$ · (a3/4

0 ∨ ε3/4).

4.3.2. Transition

In this subsection, we consider the situation that σ is big enough for a transi-
tion from the potential well at x∗+(t) over the saddle at x∗u(t) to the potential
well at x∗−(t). Theorem 4.3.1 shows that ‘big enough’ means σ > C · (a3/4

0 ∨
ε3/4) for a reasonable constant C > 0. Our aim is to find an upper bound for
the probability of “no transition”.

Situation 4.3.5. We consider (4.1.1), still under the assumptions of Situation 4.1.4.
Furthermore, we assume that σ is not small with respect to a3/4

0 ∨ ε3/4.
We assume that there exist constants δ0, δ1, δ2 ∈ [−d, d] such that for all t ∈

[−T, T]

δ0 < δ1 < xc < xdet
t < δ2 (4.3.19)

and

f (x, t) � −1 for x ∈ [δ0, δ1] and t ∈ [−T, T] , (4.3.20)

∂xx f (x, t) 6 0 for x ∈ [δ1, δ2] and t ∈ [−T, T] . (4.3.21)

This especially implies that we may complement (4.3.19) to obtain

x∗−(t) < δ0 < δ1 < x∗u(t) < xc < xdet
t < δ2 for all t ∈ [−T, T] ,

and that we may assume that δ0 is of order −1.
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The basic idea for δ0 is that the constant is ‘near the potential bottom’ dur-
ing [−T, T] in the sense that a deterministic path starting at δ0 approaches a
neighborhood of the order ε of x∗−(t) exponentially fast by Tihonov’s Theorem.

In many cases, like in Example 4.1.3, δ2 may be chosen arbitrarily large. In
this example, a typical selection for δ1 is the inflection point of x 7→ f (x, t).

We will now bound the nontransition-probability from above using the fol-
lowing heuristic idea:

P[no transition]

6 P
[
process escapes away from x∗u (beyond xdet

t + h
√

ζ(s))
]

(4.3.22)

+ P
[
process crosses neither δ1 nor xdet

t + h
√

ζ(s)
]

+ P
[
process starting at δ1 does not reach δ0

]
.

The following theorem collects the results of this subsection.

Theorem 4.3.6 (nontransition probability). [BG02b, Theorem 2.7] Let c1, c2 > 0
be constants and assume that

c3/2
1 σ > a3/4

0 ∨ ε3/4 .

Choose times −T 6 t0 6 t1 6 t 6 T such that

t1 ∈ [−c1σ2/3, c1σ2/3] and t > t1 + c2ε .

Let h > 2σ be such that

xdet
s + h

√
ζ(s) < δ2 for all s ∈ [t0, t1].

Then, for any small enough c1, any large enough c2 and any x0 ∈
]
δ1, xdet

t0
+ 1

2 ·
h
√

ζ(t0)
]

we have that

Pt0,x0
[
xs > δ0 ∀ s ∈ [t0, t]

]
6

3
2
·
(∣∣ᾱ(t1, t0)

∣∣
ε

+ 1
)
· exp

[
−κh2

σ2

]
(4.3.23)

+
3
2
· exp

[
−κ · 1

log h
σ ∨ |log σ2/3|

· α̂(t1,−c1σ2/3)
ε

]

+ exp
[
− κ

σ2

]
,

where κ > 0 is a constant and

α̂(t, s) :=
∫ t

s
â(u) du .

We already know from the preceding subsection, that for σ smaller than
a3/4

0 ∨ ε3/4 the transition probability becomes exponentially small. The above
result allows us to extend this connection between the relation of the parame-
ters and the probability of (non-)transition.
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Remark 4.3.7 (optimal choice of parameters). [BG02b, p. 1438ff] Consider the
situation of Theorem 4.3.6 and the force term f defined in Example 4.1.3. In this case,
the assumptions from Situation 4.3.5 are fulfilled for any arbitrarily large δ2 > 0; we
choose δ2 large, t1 = − 1

2 c1σ2/3 and h � (δ2 − xc) · σ1/3. Then,

∣∣ᾱ(t1, t0)
∣∣ =

∣∣∣∣∫ t1

t0

ā(r) dr
∣∣∣∣ 6 t2

0

α̂(t1,−c1σ2/3) =
∫ − 1

2 c1σ2/3

−c1σ2/3
â(r) dr 6 const. · σ4/3 .

Thus, in this case

Pt0,x0
[
xs > δ0 ∀ s ∈ [t0, t]

]
6

t2
0
ε
· exp

[
−O

(
(δ2 − xc)2

σ4/3

)]
+ exp

[
− const.

log δ2−xc
σ2/3 ∨ |log σ|

· σ4/3

ε

]
+ exp

[
− κ

σ2

]
.

From this we conclude that for a3/4
0 ∨ ε3/4 � σ �

( 1
|log ε|

)3/4, the probability of a
transition becomes exponentially close to 1.

For large σ, e.g. σ >
( 1
|log ε|

)3/4, the variance of the path becomes so great that it
does not make sense any longer to speak of a transition probability.

Remark 4.3.8 (reaching x∗−(t) from δ0). [BG02a, Theorem 2.4] shows that x is
likely to reach a small neighborhood of x∗− when starting at δ0.

In the following lemma we specify conditions under which z0, the solution
of the linearized stochastic differential equation (4.3.7), dominates z. The idea
to consider linearized versions of the stochastic differential equations under
consideration is again among our basic tools in this subsection.

Lemma 4.3.9. [modified version of [BG02b, Lemma 4.4]] Let t0 as in the theorem be
an initial time. We consider the following processes on [t0, T]:

(xdet
t ) The stable solution of the deterministic equation (4.2.1) with initial con-

dition xdet
t0

∈ [δ1, δ2], such that xdet
t ∈ [δ1, δ2] for all t ∈ [t0, T].

(xt) The solution of (4.1.1) with initial condition xt0 ∈ [xdet
t0

, δ2].
(zt) The difference zt := xt− xdet

t . The initial point is zt0 = xt0 − xdet
t0

> 0.
(z0

t ) The solution of (4.3.7) with initial condition z0
t0
∈ [zt0 , δ2 − xdet

t0
].

Then we have z0
t > zt for any t ∈ [t0, T].

Proof. [adapted from [BG02b, Lemma 3.11]] We show that z̃t := zt − z0
t ∈ R−

for all t ∈ [t0, T]. z̃t0 6 0 is obvious.
The definition of δ1, δ2 and the assumptions on xdet imply that for all t ∈

[t0, T] and all z ∈ R with xdet
t + z ∈ [−d, d] for all t we have

f (xdet
t + z, t) 6 f (xdet

t , t) + ∂x f (xdet
t , t) · z . (4.3.24)
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4.3. The Stochastic Case

By definition, zt fulfills

dzt =
1
ε
·
[

f (xdet
t + zt, t)− f (xdet

t , t)
]

dt +
σ√

ε
dWt .

Hence, for all t ∈ [t0, T],

z̃s = z̃t0 +
1
ε

∫ s

t0

f (xdet
r + zr, r)− f (xdet

r , r)︸ ︷︷ ︸
(4.3.24)

6 ∂x f (xdet
r ,r)·zr

− ∂x f (xdet
r , r) · z0

r dr

= z̃t0 +
1
ε

∫ s

t0

∂x f (xdet
r , r)︸ ︷︷ ︸

=ā(r)

· z̃r dr .

With Gronwall’s inequality, we see that for all s ∈ [t0, T]

z̃s 6 z̃t0 · exp
[

ᾱ(s, t0)
ε

] z̃t060
6 0 .

We define the stopping time

τ := inf
{

s ∈ [t0, t1]
∣∣ xs 6 δ1

}
∈ [t0, t1] ∪ {∞}

and estimate, following the idea of (4.3.22),

Pt0,xt0
[
xs > δ0 ∀ s ∈ [t0, t]

]
6 Pt0,xt0

[
sup

s∈[t0,t1]

xs − xdet
s√

ζ(s)
> h

]
(4.3.25)

+ Pt0,xt0

[
xs ∈

]
δ1, xdet

s + h
√

ζ(s)
]
∀ s ∈ [t0, t1]

]
+ Et0,xt0

[
I{τ6t1} ·Pτ,δ1

[
xs > δ0 ∀ s ∈ [τ, t]

]]
.

The following propositions are dedicated to the development of upper bounds
for each of the summands on the right hand side of (4.3.25). The first summand
on the right hand side is similar to the probabilities we have estimated in the
previous subsection, but here we need it for a larger selection of σ as before:

Proposition 4.3.10 (first summand in (4.3.25)). [modified version of [BG02b, Pro-
position 4.5]] Let xt0 ∈

[
δ1, xdet

t0
+ 1

2 h
√

ζ(t0)
]
. Then

Pt0,xt0

[
sup

s∈[t0,t1]

xs − xdet
s√

ζ(s)
> h

]
6

3
2
·
(∣∣ᾱ(t1, t0)

∣∣
ε

+ 1
)
· exp

[
−κh2

σ2

]
,

where κ > 0.

As before, we denote

ᾱ(t, s) :=
∫ t

s
ā(r) dr , ā(s) := ∂x f (xdet

s , s)

(cf. Proposition 4.2.10 and Lemma 4.2.12).
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4. The Pathwise Approach of Berglund and Gentz

Proof. Part 1. We define a partition t0 = u0 < u1 < · · · < uk = t1 of [t0, t1]
such that∣∣ᾱ(uk, uk−1)

∣∣ = ε for 1 6 k < K :=
⌈ ∣∣ᾱ(t1, t0)

∣∣
ε

⌉
. (4.3.26)

With the same arguments as in the proof of (4.3.11), (4.3.12), using (4.3.26)
instead of (4.3.10), we obtain that

uk+1 − uk
ζ(uk)

= O(ε) for all k = 0, . . . , K− 2. (4.3.27)

We set

$k :=
1
2
· h
√

ζ(uk)

and

Qk := sup
zuk 6$k

(
P

uk ,zuk

[
sup

s∈[uk ,uk+1]

zs√
ζ(s)

> h
]

+ P
uk ,zuk

[
sup

s∈[uk ,uk+1]

zs√
ζ(s)

6 h , zuk+1 > $k+1

])
for k = 0, . . . , K− 2

QK−1 := sup
zuK−16$K−1

PuK−1,$K−1

[
sup

s∈[uK−1,uK ]

zs√
ζ(s)

> h
]

.

Then,

Px0,t0

[
sup

s∈[t0,t1]

xs − xdet
s√

ζ(s)
> h

]
6

K−1

∑
k=0

Qk .

Part 2. Estimating Qk. We define the process
(
z(k)

s
)

s∈[uk ,uk+1]
for k = 0, . . . , K− 1

by

z(k)
s := $k · exp

[
ᾱ(s, uk)

ε

]
+

σ√
ε

∫ s

uk

exp
[

ᾱ(s, r)
ε

]
dW(k)

r , (4.3.28)

where the Brownian motion
(
W(k)

s
)

s∈[uk ,uk+1]
is defined by W(k)

s := Ws −Wuk .

z(k) solves the linearized equation (4.3.7) with initial condition z(k)
uk = $k. The

variance of z(k)
uk+1 is

v(k)
uk+1 =

σ2

ε

∫ uk+1

uk

exp
[

2ᾱ(uk+1, r)
ε

]
dr . (4.3.29)

We define for any k = 0, . . . , K− 1 the stopping time

τ+
k := inf

{
s ∈ [uk, uk+1]

∣∣ z(k)
s = h

√
ζ(s)

}
.
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4.3. The Stochastic Case

By Lemma 4.3.9 we have that zs 6 z(k)
s during [t0, T]. Hence,

Qk 6 Puk ,$k [τ+
k < uk+1] + Puk ,$k [z(k)

k+1 > $k+1] for k = 0, . . . , K− 2

QK−1 6 PuK−1,$K−1 [τ+
K−1 < uK] .

These estimates no longer depend on z, but on z(k).
We first estimate Puk ,$k [τ+

k < uk+1] for k = 0, . . . , K− 1:

Puk ,$k [τ+
k < uk+1]

= Puk ,$k
[
∃ s ∈ [uk, uk+1] : z(k)

s > h
√

ζ(s)
]

;

(4.3.28) is invariant in P under σ 7→ −σ, hence

6 Puk ,$k

[
∃ s ∈ [uk, uk+1] : z(k)

s 6 h
√

ζ(uk) · exp
[

ᾱ(s, uk)
ε

]
− h
√

ζ(s)

]
;

the upper bound for z(k) is negative by definition of ζ, hence

6 Puk ,$k
[
∃ s ∈ [uk, uk+1] : z(k)

s 6 0
]

= 2 ·Puk ,$k [z(k)
uk+1 6 0]

=
2√
2π

∫ −$k exp
[ ᾱ(uk+1,uk)

ε

]
(v(k)

uk+1
)−1/2

−∞
exp

[
− r2

2

]
dr

6 exp

[
−1

2
·

$2
k · exp

[ 2ᾱ(uk+1,uk)
ε

]
v(k)

uk+1

]
,

thus, by exp
[ 2ᾱ(uk+1,uk)

ε

]
> exp[−2] (by (4.3.26); “=” for k = 0, . . . , K − 2), the

definition of $k and 1 = σ2/σ2:

6 exp
[
− h2

8σ2 ·
ζ(uk)

v(k)
uk+1 /σ2

· exp[−2]
]

.

For the upper bound of Puk ,$k [z(k)
uk+1 > $k+1] (for k < K − 1) we need again

the definition of $k to see that(
$k+1 − $k · exp

[
ᾱ(uk+1, uk)

ε

])2

= $2
k ·
(

$k+1
$k

− exp[−1]
)2

=
h2 · ζ(uk)

4
·
(√

ζ(uk+1)
ζ(uk)

− exp[−1]
)2

. (4.3.30)
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4. The Pathwise Approach of Berglund and Gentz

By the definition of ζ, we have for k < K − 1 that there exist constants5

c(1)
− , c(2)

− > 0 such that

ζ(uk+1) = ζ(uk) · exp
[

2ᾱ(uk+1, uk)
ε

]
+

1
ε

∫ uk+1

uk

exp
[

2ᾱ(uk+1, s)
ε

]
ds

> ζ(uk) · exp[−2] + exp[−2] · c(1)
− · inf

s∈[uk ,uk+1]
ζ(s) ,

where we used (4.3.27) in the last step; hence,

ζ(uk+1)
ζ(uk)

> exp[−2] + exp[−2] · c(1)
− · infs ζ(s)

ζ(uk)︸ ︷︷ ︸
Lemma 4.2.12

> c(2)
−

. (4.3.31)

Similar to the above estimate we obtain that for all k = 0, . . . , K− 2

Puk ,$k [z(k)
uk+1 > $k+1]

6
1
2
· exp

[
−1

2
·

(
$k+1 − $k · exp

[ ᾱ(uk+1,uk)
ε

])2

v(k)
uk+1

]

(4.3.30)
=

1
2
· exp

[
− h2

8σ2 ·
ζ(uk)

v(k)
uk+1 /σ2

·
(√

ζ(uk+1)
ζ(uk)

− exp[−1]
)2
]

(4.3.31)
6

1
2
· exp

[
− h2

8σ2 ·
ζ(uk)

v(k)
uk+1 /σ2

·
(√

exp[−2] · (1 + c(2)
− )− exp[−1]

)2
]

.

Hence we see that for all k = 1, . . . , K− 1

Qk 6
3
2
· exp

[
− h2

σ2 · κk

]
,

where

κk =
1
8
· ζ(uk)

v(k)
uk+1 /σ2

·
(

exp[−2] ∧
(√

exp[−2] · (1 + c(2)
− )− exp[−1]

))
︸ ︷︷ ︸

=:C>0

.

By (4.3.29) we have that for any k = 0, . . . , K− 1 there exists a θ(k) ∈
[
exp[−2], 1

]
such that

v(k)
uk+1 =

σ2

ε
· (uk+1 − uk) · θ(k) ,

hence, applying (4.3.27),

κk ·
8θ(k)

εC
= O(ε) .

5more precisely, these constants depend on k, but we choose the minimum of the respective
constants over all k
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4.3. The Stochastic Case

Thus, we may conclude that κk is of order 1 for all k = 0, . . . , K − 1. We set
κ := infk κk (thus, κ > 0) and conclude that for all k = 0, . . . , K− 1

Qk 6
3
2
· exp

[
− h2

σ2 · κ

]
.

Part 3. Re-collecting. We finally obtain that

Pt0,x0

[
sup

s∈[t0,t1]

xs − xdet
s√

ζ(s)
> h

]

6
K−1

∑
k=0

3
2
· exp

[
− h2

σ2 · κ

]
=

3
2
·
⌈ ∣∣ᾱ(t1, t0)

∣∣
ε

⌉
· exp

[
− h2

σ2 · κ

]

6
3
2
·
(∣∣ᾱ(t1, t0)

∣∣
ε

+ 1
)
· exp

[
− h2

σ2 · κ

]
.

In the next proposition we prove an upper bound for the probability of the
event that x stays near x∗+ (i.e. “no transition”) even though σ is not small
with respect to a3/4

0 ∨ ε3/4. We have already seen in the previous subsection
that for σ � a3/4

0 ∨ ε3/4 a transition is very unlikely and that for bigger σ a
transition before a time of order −σ2/3 is very unlikely. Hence, we consider
now the situation where σ is of order a3/4

0 ∨ ε3/4 or bigger, and we focus on
the behaviour of x beginning with a time of order −σ2/3.

Proposition 4.3.11 (second summand in (4.3.25)). [BG02b][Prop. 4.6] There exist
constants c1 > 0 and κ̄ > 0 such that, if c3/2

1 σ > a3/4
0 ∨ ε3/4 and h > 2σ, then

P−c1σ2/3,x0
[

xs ∈
]
δ1, xdet

s + h
√

ζ(s)
]
∀ s ∈ [−c1σ2/3, t1]

]
6

3
2
· exp

[
−κ̄ · 1

log h
σ ∨ |log σ2/3|

· α̂(t1,−c1σ2/3)
ε

]
for all t1 ∈ [−c1σ2/3, c1σ2/3] and any initial point

x0 ∈
[
δ1, xdet

−c1σ2/3 + h
√

ζ(−c1σ2/3)
]

.

Proof. Part 1. Reformulating the problem. We set

ẑt := xt − x̂det
t ,

where (as in the previous section) x̂det is the solution of the deterministic equa-
tion (4.2.1) that tracks the unstable equilibrium branch x∗u of f . The process ẑ
is described by the SDE

dẑt =
1
ε
·
[
â(t) · ẑt + b̂(ẑt, t)

]
dt +

σ√
ε

dWt , (4.3.32)

where Corollary 4.2.11 and Lemma 4.2.12 show that

â(t) � |t| ∨
√

a0 ∨
√

ε � 1
ζ(t)

,
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4. The Pathwise Approach of Berglund and Gentz

and the definition of δ1, δ2 implies that for all ẑt ∈ [δ1 − x̂det
t , δ2 − x̂det

t ]

b̂(ẑt, t) 6 0 .

We introduce a parameter

$ = $

(
h
σ

)
> 1

(to be specified later) and define a partition

−c1σ2/3 = u0 < u1 < · · · < uK = t1

of [−c1σ2/3, t1] by requiring that for all k = 1, . . . , K− 1

α̂(uk, uk−1) = $ε ,

where we set

K :=
⌈

α̂(t1,−c1σ2/3)
$ε

⌉
.

Furthermore, we define

Qk := sup
{

P
uk ,ẑuk

[
x̂det

s + ẑs ∈
]
δ1, xdet

s + h
√

ζ(s)
]
∀ s ∈ [uk, uk+1]

]
∣∣∣∣ ẑuk such that x̂det

uk
+ ẑuk ∈

]
δ1, xdet

uk
+ h
√

ζ(uk)
]}

for each k = 0, . . . , K− 1. Then,

P−c1σ2/3,x0
[

xs ∈
]
δ1, xdet

s + h
√

ζ(s)
]
∀ s ∈ [−c1σ2/3, t1]

]
6

K−1

∏
k=0

Qk .

Our aim is to find a $ such that Qk is bounded away from 1 for all k =
0, . . . , K− 2.
Part 2. Estimating Qk. We select an arbitrary k ∈ [0, . . . , K − 2] and define a
subdivision of our partition by introducing times ũk,1, ũk,2 such that

uk < ũk,1 < ũk,2 < uk+1

and

α̂(ũk,1, uk) =
1
3
· $ε , α̂(ũk,2, uk) =

2
3
· $ε ,

and stopping times

τk,1 :=
{

s ∈ [uk, ũk,1]
∣∣ ẑs 6 xdet

s − x̂det
s
}

,

τk,2 :=
{

s ∈ [uk, ũk,2]
∣∣ ẑs 6 0

}
.

We note that ẑs 6 xdet
s − x̂det

s if and only if xs 6 xdet
s .

108



4.3. The Stochastic Case

To estimate Qk, we decompose the underlying event:

P
uk ,ẑuk

[
x̂det

s + ẑs ∈
]
δ1, xdet

s + h
√

ζ(s)
]
∀ s ∈ [uk, uk+1]

]
6 P

uk ,ẑuk

[
x̂det

s + ẑs ∈
]
xdet

s , xdet
s + h

√
ζ(s)

]
∀ s ∈ [uk, ũk,1]

]
(4.3.33)

+ E
uk ,ẑuk

[
I{τk,1<ũk,1}

·P
τk,1,ẑτk,1

[
x̂det

s + ẑs ∈
]
δ1, xdet

s + h
√

ζ(s)
]

∀ s ∈ [τk,1, uk+1]
]]

.

We start by computing an upper bound for the first summand on the r.h.s.
That is, we show that xt is likely to fulfill xt < xdet

t before t = ũk,1. Let z(k)

be the solution of the linearized equation (4.3.7) with initial condition z(k)
uk =

zuk = xuk − xdet
uk

(cf. also Part 2 in the proof of Proposition 4.3.10). The variance

v(k)
ũk,1

of z(k)
ũk,1

fulfills

v(k)
ũk,1

=
σ2

ε

∫ ũk,1

uk

exp
[

2ᾱ(ũk,1, s)
ε

]
ds

> inf
s∈[uk ,ũk,1]

−ε

2ā(s)
· σ2

ε

∫ ũk,1

uk

−2ā(s)
ε

· exp
[

2ᾱ(ũk,1, s)
ε

]
ds .

Via partial integration (notice that d
ds ᾱ(ũk,1, s) = −ā(u)) we see that∫ ũk,1

uk

1 ·
(
−2ā(s)

ε

)
· exp

[
2ᾱ(ũk,1, s)

ε

]
ds

=

[
1 · exp

[
2ᾱ(ũk,1, s)

ε

]]ũk,1

uk

= 1− exp
[

2ᾱ(ũk,1, uk)
ε

]

> 1− exp
[

2
3L

· $

]
,

where we used that by Proposition 4.2.10 and Corollary 4.2.11 there exists a
constant L > 0 such that we can bound ᾱ away from zero as follows:

1
3
· $ε =

∫ ũk,1

uk

â(u) du 6 L
∫ ũk,1

uk

−ā(u) du = L ·
∣∣ᾱ(ũk,1, uk)

∣∣ ,

which implies

ᾱ(ũk,1, uk) 6 − 1
3L

· $ε .

Thus,

v(k)
ũk,1

>
σ2

2
· inf

s∈[uk ,ũk,1]

1∣∣ā(s)
∣∣ ·
(

1− exp
[
− 2

3L
· $

])
.
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From this and the assumption that z(k)
uk 6 h

√
ζ(uk) (cf. the definition of Qk)

we conclude that

z(k)
uk · exp

[
ᾱ(ũk,1, uk)

ε

]
· 1(

v(k)
ũk,1

)1/2

6 h
√

ζ(uk) · exp
[
− 1

3L
· $

]

· sup
s∈[uk ,ũk,1]

√
|ā(s)| ·

√
2

σ
·
(

1− exp
[
− 2

3L
· $

])−1/2

=: Bk,1($) > 0 .

Hence,

P
uk ,xuk

[
x̂det

s + ẑs ∈
]
xdet

s , xdet
s + h

√
ζ(s)

]
∀ s ∈ [uk, ũk,1]

]
6 P

uk ,xuk
[
zs > 0 ∀ s ∈ [uk, ũk,1]

]
6 P

uk ,xuk
[
z(k)

s > 0 ∀ s ∈ [uk, ũk,1]
]

= 1− 2 ·P
uk ,xuk [z(k)

ũk,1
6 0]

= 1− 2√
2π

·
∫ −z(k)

uk
·exp
[ ᾱ(ũk,1,uk)

ε

]
· 1

(v(k)
ũk,1

)1/2

−∞
exp

[
− r2

2

]
dr

6
2√
2π

∫ Bk,1($)

0
exp

[
− r2

2

]
dr

6
2√
2π

· Bk,1($) .

Now we assume that τk,1 < ũk,1 and focus the second summand of (4.3.33).
We see that

P
τk,1,xdet

τk,1
[

x̂det
s + ẑs ∈

]
δ1, xdet

s + h
√

ζ(s)
]
∀ s ∈ [τk,1, uk+1]

]
6 P

τk,1,xdet
τk,1
[
ẑs ∈

]
0, xdet

s − x̂det
s + h

√
ζ(s)

]
∀ s ∈ [τk,1, ũk,2]

]
(4.3.34)

+ E
τk,1,xdet

τk,1

[
I{τk,2<ũk,2}

·P
τk,2,x̂det

τk,2
[

x̂det
s + ẑs ∈

]
δ1, xdet

s + h
√

ζ(s)
]

∀ s ∈ [τk,2, uk+1]
]]

.

In the next step we derive an upper bound for the first summand on the
right hand side of (4.3.34). Therefore, we consider the process ẑ(k), which is
described by the linearized version of (4.3.32) with initial condition ẑ(k)

τk,1 =
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xdet
τk,1
− x̂det

τk,1
. The variance v̂(k)

ũk,2
of ẑ(k)

ũk,2
fulfills

exp
[
−

2α̂(ũk,2, τk,1)
ε

]
· v̂(k)

ũk,2
=

σ2

ε

∫ ũk,2

τk,1

exp
[
−

2α̂(s, τk,1)
ε

]
ds

> − inf
s∈[τk,1,ũk,2]

ε

2â(s)
· σ2

ε

∫ ũk,2

τk,1

(−1) · 2â(s)
ε

· exp
[
−

2α̂(s, τk,1)
ε

]
ds .

By partial integration we obtain that∫ ũk,2

τk,1

1 ·
(
−2â(s)

ε

)
· exp

[
−

2α̂(s, τk,1)
ε

]
ds

= exp
[
−

2α̂(ũk,2, τk,1)
ε

]
− 1 6 exp

[
−

2α̂(ũk,2, ũk,1)
ε︸ ︷︷ ︸

=− 2
3 $

]
− 1 .

Thus we get

v̂(k)
ũk,2

> inf
s∈[τk,1,ũk,2]

1
â(s)

· σ2

2
·
(

1− exp
[
−2

3
· $

])
· exp

[
2α̂(ũk,2, τk,1)

ε

]
,

which implies

ẑ(k)
τk,1 · exp

[
α̂(ũk,2, τk,1)

ε

]
·
(
v̂(k)

ũk,2

)−1/2

6
(

xdet
τk,1
− x̂det

τk,1

)
·
√

2
σ
· sup

s∈[τk,1,ũk,2]

√
â(s) ·

(
1− exp

[
−2

3
· $

])−1/2

=: Bk,2($) > 0 .

This leads to the estimate

P
τk,1,xdet

τk,1
[
ẑs ∈

]
0, xdet

s − x̂det
s + h

√
ζ(s)

]
∀ s ∈ [τk,1, ũk,2]

]
6 P

τk,1,xdet
τk,1
[
ẑ(k)

s > 0 ∀ s ∈ [τk,1, ũk,2]
]

= 1− 2P
τk,1,xdet

τk,1
[
ẑ(k)

ũk,2
< 0

]
= 1− 2√

2π

∫ −ẑ(k)
τk,1

·exp
[ α̂(ũk,2,τk,1)

ε

]
· 1

(v̂(k)
ũk,2

)1/2

−∞
exp

[
− r2

2

]
dr

6
2√
2π

∫ Bk,2($)

0
exp

[
− r2

2

]
dr

6
2√
2π

· Bk,2($) .

We aim at the second summand in (4.3.34) and assume that τk,2 < ũk,2. We
use again the process ẑ(k), but this time we assume the initial point ẑ

τ
(k)
k,2

= 0
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at the initial time τk,2. The variance v̂(k)
uk+1 of this process can be estimated as

follows:

exp
[
−

2α̂(uk+1, τk,2)
ε

]
· v̂(k)

uk+1 =
σ2

ε

∫ uk+1

τk,2

exp
[
−

2α̂(s, τk,2)
ε

]
ds

> − inf
s∈[τk,2,uk+1]

ε

2â(s)
· σ2

ε

∫ uk+1

τk,2

(−1) · 2â(s)
ε

· exp
[
−

2α̂(s, τk,2)
ε

]
ds .

Similar to the above estimate, we obtain again by partial integration∫ uk+1

τk,2

1 ·
(
−2â(s)

ε

)
· exp

[
−

2α̂(s, τk,2)
ε

]
ds 6 exp

[
−

2α̂(uk+1, ũk,2)
ε︸ ︷︷ ︸

=− 2
3 $

]
− 1

and see thus that

v̂(k)
uk+1 > inf

s∈[τk,2,uk+1]

1
â(s)

· σ2

2
·
(

1− exp
[
−2

3
· $

])
· exp

[
2α̂(uk+1, τk,2)

ε︸ ︷︷ ︸
> 2

3 $

]
,

which implies(
x̂det

uk+1
− δ1

)
· 1(

v̂(k)
uk+1

)1/2

6
(

x̂det
uk+1

− δ1
)

· sup
s∈[τk,2,uk+1]

√
â(s) ·

√
2

σ
·
(

1− exp
[
−2

3
· $

])−1/2

· exp
[
−1

3
· $

]
=: Bk,3($) > 0 .

Hence, we see that

P
τk,2,x̂det

τk,2
[

x̂det
s + ẑs ∈

]
δ1, xdet

s + h
√

ζ(s)
]
∀ s ∈ [τk,2, uk+1]

]
6 P

τk,2,x̂det
τk,2
[
ẑ(k)

s > δ1 − x̂det
s ∀ s ∈ [τk,2, uk+1]

]
6 P

τk,2,x̂det
τk,2
[
ẑ(k)

uk+1 > δ1 − x̂det
uk+1

]
=

1√
2π

∫ −(δ1−x̂det
uk+1

)· 1

(v̂(k)
uk+1

)1/2

−∞
exp

[
− r2

2

]
dr

6
1
2

+
1√
2π

∫ Bk,3($)

0
exp

[
− r2

2

]
dr

6
1
2

+
1√
2π

· Bk,3($) .

Combining these results, we see that

Qk 6
1
2

+
1√
2π

·
(
2Bk,1($) + 2Bk,2($) + Bk,3($)

)
.
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As $ > 1 and L > 0, we know that there exists a constant C > 0 such that

Qk 6
1
2

+
C
σ
· sup

s∈[uk ,uk+1]

√
â(s)

·
(

h
√

ζ(uk) · exp
[
− 1

3L
· $

]
+ sup

s∈[uk ,uk+1]
(xdet

s − x̂det
s )

+ (x̂det
uk+1

− δ1) · exp
[
−1

3
· $

])
.

Remember that by assumption we consider t1 ∈ [−c1σ2/3, c1σ2/3]. Thus, there
exist constants Ca, Cζ , Caζ , Cx, Cδ > 0 such that for all s ∈ [−c1σ2/3, c1σ2/3]
and all k = 0, . . . , K− 2√

â(s) 6 Ca · c1/2
1 σ1/3√

ζ(s) 6 Cζ ·
1

a1/4
0 ∨ ε1/4

⇒
√

â(s) ·
√

ζ(s) 6 CaCζ ·
c1/2

1 σ1/3

a1/4
0 ∨ ε1/4

6 Caζ

xdet
s − x̂det

s 6 Cx · c1σ2/3

⇒
√

â(s) · (xdet
s − x̂det

s ) 6 CaCx · c3/2
1 σ

x̂det
uk+1

− δ1 6 Cδ .

We choose C1 := Caζ ∨ (CaCx) ∨ Cδ and obtain that for all k = 0, . . . , K− 2

Qk 6
1
2

+ C1 ·
(

h
σ
· exp

[
− 1

3L
· $

]
+ c3/2

1 +
√

c1

σ2/3 · exp
[
−1

3
· $

])

Finally, we specify c3/2
1 := 1

18C1
and

$ := 1∨ 3L · log
(

18C1 ·
h
σ

)
∨ 3 · log

(
18C1 ·

√
c1

σ2/3

)
.

This implies that for any k = 0, . . . , K− 2 we have Qk 6 2
3 . Using that QK−1 6

1, we get that

K−1

∏
k=0

Qk 6
(

2
3

)K−1

=
3
2
· 1( 3

2
)K 6

3
2
· exp

[
− log

(
3
2

)
· α̂(t1,−c1σ2/3)

$ε

]
.

By selection of $, we have that there exists a constant κ̄ > 0 such that

log
(

3
2

)
· 1

$
> κ̄ · 1

log h
σ ∨− log σ2/3

,

which proves the assertion.
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Finally, we consider the last summand on the right hand side of (4.3.25). We
only state the proposition, because it is completely proved in [BG02b].

Proposition 4.3.12 (third summand in (4.3.25)). [BG02b, Prop. 4.7] Let $ ∈
]0, δ1 − δ0] and f0 > 0 be constants such that

f (x, t) 6 − f0 < 0 for all x ∈ [δ0, δ1 + $] and t ∈ [−T, T] .

Then we have for all t0 ∈ [−T, T − cε] that

Pt0,δ1
[
xs > δ0 ∀ s ∈ [t0, t0 + cε]

]
6 exp

[
− κ̃

σ2

]
,

where κ̃ = f0$2

4(δ1−δ0)
and c = (δ1 − δ0) 2

f0
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A. Appendix: Differential
Inequalities

Estimates based on differential inequalities are among the basic tools used in
the Chapter 4. Here we present the necessary results.

The following theorem is based on [Fle80, Theorem 2.6.1]; the version pre-
sented there is more general than we need it here.

Theorem A.0.1. Consider [a, b] ⊂ R, let p, q : [a, b] → R be continuous, and let
φ : [a, b] → R be a differentiable function such that for all t ∈ [a, b] the following
holds

φ′(t) 6 p(t)φ(t) + q(t) . (A.0.1)

Then φ does not exceed the solution of the linear equation x′ = p(t)x + q(t) with
initial condition φ(a), i.e. for all t ∈ [a, b] we have that

φ(t) 6 φ(a) · exp
[∫ t

a
p(v) dv

]
+
∫ t

a
q(u) · exp

[∫ t

u
p(v) dv

]
du . (A.0.2)

Proof. We set

r(t) := exp
[
−
∫ t

a
p(v) dv

]
,

hence, r(t) > 0 for all t ∈ [a, b] and r is continuously differentiable for all such
t. Then for all t ∈ [a, b] the following holds:(

φ(t) · r(t)
)′ = r(t) · φ′(t) + φ(t) · r′(t) = r(t) · φ′(t)− φ(t) · r(t)p(t)

6 r(t) ·
(

p(t)φ(t) + q(t)
)
− φ(t) · r(t)p(t) = r(t) · q(t) .

Thus we obtain by the fundamental theorem of calculus that for all t ∈ [a, b]

φ(t)r(t)− φ(a) 6
∫ t

a
q(u)r(u) du .

This proves the assertion.

This result especially implies that for φ, p as above the relation

φ′(t) 6 p(t)φ(t)

together with the initial condition φ(a) 6 0 implies that φ(t) 6 0 for all t ∈
[a, b] and all continuous functions p.
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A. Appendix: Differential Inequalities

Corollary A.0.2. In the situation of the theorem, we replace (A.0.1) by

φ′(t) > p(t)φ(t) + q(t) .

Then the same proof as for the theorem shows that

φ(t) > φ(a) · exp
[∫ t

a
p(v) dv

]
+
∫ t

a
q(u) · exp

[∫ t

u
p(v) dv

]
du .
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