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1. Introduction

In this thesis the author examines convergence problems of non-symmetric forms defined
on different Hilbert spaces. The aim is to provide necessary and sufficient conditions
for convergence of the associated resolvents and semigroups. The convergence of pro-
cesses shall also be considered. We deal with various concepts of convergence “along” a
“sequence of Hilbert spaces”, including the concept of generalized convergence of non-
symmetric forms or, more precisely, so-called generalized Dirichlet forms. Our notion of
convergence is a generalization of the famous concept of Mosco convergence, a variational
convergence of symmetric quadratic forms introduced by U. Mosco (cf. [Mos94]). Not
only that the considered forms are fitting the general framework of generalized Dirich-
let forms introduced by W. Stannat (cf. [Sta98], [Sta99]), they are also assumed to be
defined on different Hilbert spaces. This idea is due to K. Kuwae and T. Shioya who de-
veloped this framework in [KS03] as a consequence of research on convergence of metric
measure spaces. To understand this conceptual difference to former research on conver-
gence of forms (except a few papers published recently), we would like to explain what
we mean with “convergence of Hilbert spaces” in applications. An abstract functional
analytic introduction to this new framework and consequences can be found in Chapter
2.1, where many proofs are taken either from [KS03] or from [Kol05a] and can be found
in Appendix A in order to make this thesis as self-contained as possible.

Let E be an infinite dimensional locally convex (real) topological vector space. Let fi,,,
n € N, u be fully supported Borel probability measures such that u,, — p weakly. Define
H, = L*(E;u,),n € N, H := L*(E; u) and let C' := FC°(E) be the space of so-called
cylindrical test functions. Assume that E is Souslinean, so that C' is dense in H. Now
{H,} converges to H in the following sense:

There exists a sequence {®,, : C C H — H,} of injective linear operators with dense
linear domain C' such that

lim||[@, ()|, = lull, Vu e C.

Clearly, if we take each ®,, as the identity operator on C, H, converges to H in this
sense by weak convergence of measures.

If welet £ := R? and p,, n € N, u be fully supported Borel measures such that
pn — p vaguely, we clearly obtain by setting C' := C5°(R?), H,, := L*(R% u,), n € N,
H := L*(R% u) that H,, converges to H in this sense. Let us denote the disjoint union
of Hilbert spaces by ¢ :=J, H,UH.

Now one can define the concept of strong and weak convergence of vectors {u,, } to v with
u, € H,, n € N, u € H. This is done via approximation in C, since in a way we deal
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with “isometry classes of Hilbert spaces” which itselves are not normed but somehow
equipped with a Gromov-Hausdorff-type topology.

Definition 1.1 (Strong and weak convergence). A sequence of vectors {u,}, u, €
H,, n € N is said to strongly converge to u € H if there exists a approximating sequence
{om} C C with ¢,, — v in H and

i T, (90) = 11, = 0.
A sequence of vectors {u,}, u, € H,, n € N is said to weakly converge to u € H if
liyrln(un,vn)Hn = (u,v)g
for every v, — v strongly convergent.

Carrying on in this framework we also define weak and strong convergence of bounded
linear operators from H,, to H,, n € N and the analog to Mosco convergence (resp. I'-
convergence) in this framework. This has mainly be done by K. Kuwae and T. Shioya in
[KS03]. The analysis of Dirichlet forms by convergence problems goes back to [DGS73],
[DGF75] where the so-called T'-convergence introduced by E. De Georgi was used to
obtain asymptotic properties of Dirichlet forms (see [DM93] for a complete disquisition
on I'-convergence on arbitrary topological spaces). In [Mos94] U. Mosco examined the
Mosco convergence formerly known as strong I'-convergence. His main result was to
identify Mosco convergence as a necessary and sufficient condition on a sequence of
symmetric closed forms {&"} such that the associated Cy-contraction resolvents {G7}

a > 0 converge in the strong operator topology. (For an introduction to symmetric
Dirichlet forms we refer to [FOT94] or [MR92]).

Definition 1.2 (Mosco convergence - standard version). We say that a sequence
of symmetric closed forms {&"} on some common Hilbert space Hy Mosco converges to
a symmetric closed form & on the same Hilbert space Hy if the following two conditions

are fulfilled:

(M1) For every weakly convergent sequence of vectors u,, — u we have

& (u) < lim & (uy,).

n

(M2) For every v € (&) there exists a strongly convergent sequence v, — v such that

E(v) =lm & (vy,),

n

where 2(&) denotes the domain of &. We extend every &", n € N, & to Hy by
setting & (u) := +oo if u € Hy \ Z(&) (similarly for each &™).



The convergence of the associated Cy-contraction semigroups {7;'}, ¢t > 0 in the strong
operator topology is either obtained by analysis of the associated spectral measures or
the more general Theorem of T. Kato (cf. [Kat66, Theorem 1X.2.16]).

Combining both the concepts of [Mos94] and [KS03] almost analog results for Mosco
convergence can be obtained (see Chapter 2.2 of this thesis). There has been some
research on this new approach, since (as can be seen in the examples above) a change of
reference measures resp. speed measures can be considered here. We refer to the papers
of A.V. Kolesnikov [Kol05a], [Kol06] and [Kol05b], where also other useful completions
of the Kuwae-Shioya framework have been proved. They can be found in Chapter 3,
since Mosco convergence of symmetric parts of non-symmetric forms helps to establish
generalized convergence (see Definition 1.3 below). The proofs are omitted with some
important exceptions.

Convergence problems for Dirichlet forms, resp. associated operators have been ex-
amined in [AHKS80], [AKS86], [CES02], [Can75], [Hin98|, [Kas05], [Kol05al, [Kol06],
[Kol05b], [KS03], [KU97|, [KU96|, [LZ93|, [LZ94], [LZ96], [Mat99], [Mer94], [Mos94],
[OTTO02], [Pos96], [PZ04], [RZ97], [Str88], [Sun99] and [Uem95].

We would like to point out that S. Mataloni in [Mat99] and P. Mertens in [Mer94] first
considered an abstract convergence of sectorial forms (though non-symmetric cases can
be found also in [RZ96] and other papers) and that M. Hino in [Hin98] first stated
abstract conditions on generalized forms (as in [Sta99]). In all of these three papers
the strong convergence of the associated resolvents was proved. (For an introduction
to sectorial forms we refer to [MR92]; the theory of generalized forms can be found in

[Sta99]).

Our notion of generalized convergence as found below is a generalization of M. Hino’s
conditions for the Kuwae-Shioya framework. The author would like to express his grat-
itude to this advance in research. Although we shall use the case of generalized forms
later, we would like to formulate this notion for sectorial forms here:

Definition 1.3 (Generalized convergence). A sequence of coercive closed forms
{(&", 2(&™))} defined on H,, resp. converges to a coercive closed form (&, 2(&)) on H
in the generalized sense if the sector constants K, of the &™’s are uniformly bounded
and 2(&) C H is dense w.r.t. &>, And, moreover, the following two conditions hold:

(F1) For every weakly convergent sequence u,, — u with lim,, & (u,) < oo we get that

u€ P(8).

(F2) For every w € 2(&) and for every weakly convergent sequence u,, — u with
U, € D(E"), u € P(&) there exists a strongly convergent sequence w, — w such
that

lizn E(wy, uy) = &(w,u)

We prove in the Kuwae-Shioya framework, that this is equivalent to the strong con-

vergence of the associated resolvents and the weak convergence of the associated co-
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resolvents. This has not been done before, although the proof relies on the results of
M. Hino. The condition that the sector constants are uniformly bounded can be relaxed
into a weaker version of (F1).

Let us now give a brief overview of the structure of this thesis and the main results.

In Chapter 2.1 we develop the Kuwae-Shioya framework of convergence of spectral struc-
tures along a sequence of Hilbert spaces. Chapter 2.1.1 introduces us to the original
rather abstact setting, whereas in view of our later applications we will use the set-
ting of Chapter 2.1.2 exclusively (this is just the setting as described above, from an
abstact point of view). Here we obtain as a main result (cf. Theorem 2.10) the (com-
plete and separable) metric structure of our space J# and a sequence of isometric iso-
morphisms {V¥,, : H — H,} with the property that w, — wu strongly if and only if
lim, || ¥, () — u,||m, = 0. The proof is essentially due to A.V. Kolesnikov (cf. [Kol05a,
Proposition 7.2]), but has been completed, simplified and entirely rewritten. All other
Lemmas and Propositions from this Chapter are taken from K. Kuwae and T. Shioya
in [KS03, Chapter 2]. All proofs (partially completed and rewritten) can be found in
Appendix A (as well as some of the proofs of A.V. Kolesnikov in [Kol05a] and [Kol06]
and one proof of H. Attouch in [Att84]). We propose to the interested reader to carry
through Chapters 2.1-2.2 and Appendix A parallelly.

In Chapter 2.1.4 we prove an entirely new result, namely the generalization of T. Kato’s
Theorem (as mentioned above) for the Kuwae-Shioya case. It gives the equivalence of
strong convergence of resolvents and semigroups.

Chapter 2.2 is taken from [KS03] and [Kol05a].

In Chapter 2.3 we arrive at the main result for generalized (non-symmetric) forms. The
result (Theorem 2.41) is already described above. We would like to point out that our
version differs from the above, and, being more general, gives necessary and sufficient
conditons on the convergence of resolvents. After that we examine the relation between
Mosco convergence and generalized convergence. This is also entirely new.

Chapter 2.4 examines the connection of generalized convergence and strong graph con-
vergence of the infinitesimal generators of our forms. Equivalence is proved as well.
Additionally, we give a new characterization of strong graph convergence for closed oper-
ators associated with generalized forms. All this is done in the Kuwae-Shioya framework,
and particularly, since dealing with the non-symmetric case, is entirely new.

Chapter 2.5 deals with the contraction and Dirichlet properties of our forms, and shows
that generalized convergence is sufficiently strong to obtain the Dirichlet property of the
limiting form.

Chapter 3 reviews the results of [Kol05a] and [Kol06] by reasons mentioned already.

Chapter 4 containes the main application results, which are also totally new. We con-
sider finite and infinite dimensional elliptic (and sectorial) a; ;-forms and give sufficient
conditions on the generalized convergence of these forms.



Chapter 5 gives an short application to stochastics, namely, that the associated processes
converge weakly (in the sense of the generating path measures) provided the associated
forms converge in the generalized sense and the collection of path measures is tight.
This is also new in this detail in the Kuwae-Shioya framework, and we would like to
remark that here the concept of changing reference measures unfolds its strength in a
very distinct manner.

Appendix A is a collection of proofs (which may have been completed and rewritten)
from some reference papers.
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2. General functional analytic theory

2.1. Convergence of spectral structures

We shall first start with some notation. Let N, Z, @, R, C resp. denote the natural,
integer, rational, real, complex numbers resp. We write K := R or C if we do not want
to specify whether we use the real or complex numbers. Let R := R U {—o00} U {+00}
and C := C U {oo}, i.e., the corresponding compactified numbers. For two sets A, B
we write AUB := AU B, if A and B are disjoint, i.e., AN B = (). This notation also
extends to arbitrary unions of pairwise disjoint sets. For a Banach space F we denote by
E' its (topological) dual. For Banach spaces E, F' denote the set of all bounded linear
operators from E to F' by Z(F, F') with operator norm || || ¢z, r). For convenience we
set Z(F):= Z(E,FE). We abbreviate a := a/Id for any a € K.

We follow a framework developed recently by K. Kuwae and T. Shioya in [KS03]. It
provides a beautiful functional analytic theory introducing convergence along a sequence
of Hilbert spaces, and applications to convergence of spectral structures and forms. The
most important proofs are repeated in Appendix A.

2.1.1. Convergence of Hilbert spaces - the general case

The general framework shall be described as follows remarking that we intend to restrict
it to a countable index set thereafter. Let .4 be an arbitrary index set and {H, | v € A"}
a family of separable Hilbert spaces over K. Assume there exists a family

{®,,:6,— H,|v,ue N}

of linear maps with dense linear domains %, C H, such that ®,, for each v € .4 is the
identity operator on %,. Assume that {H, | v € A4} (i.e., 47) has a (not necessarily
Hausdorff) topology such that a sequence {H,, }nen converges to some H,, v € A if
and only if for any u € €,

|| @, ullm,, = [[Pvpullm, (= ulm,)-

Now we can define a topology on the disjoint union ¢ :=(J,. , H, by:

Definition 2.1. Assume that a sequence {H,, } converges to an H,. We say a that a
sequence {uy, }nen With w,, € H,, (strongly) converges to a vector u € H, if for one (and

11



2. General functional analytic theory

hence all) sequence(s) {tm, }men C %, tending to u in H, such that

lim lim||®,,,, @ — unl|m,, = 0.
m n

This topology is called the strong topology on 7. Note that this notion of convergence
depends explicitly on the sequence {v,} and can only be defined in a reasonable way
it H, — H,. “Reasonable” means that “hence all” in the above Definition holds,
which is a consequence of the easily provable fact that H,, — H, if and only if for every
{t,,} C C, such that @, — 0 € H, we have

lim m||¢y7u'nam||HVW = 0.
m n

Nevertheless, the notion of a subsequence is defined, since, provided H,, — H,, clearly
H,, — H, for any sequence of natural numbers ny | 00, g1 > ny. It can easily
be proved that u, — u, v, € H, , u € H, strongly if and only if every subsequence
Up, — U, Uy, € H,,nk strongly. On the other hand, it does not make sense to ask for
convergence of a sequence {u,} C 5 with u,, € H,, for some v, such that the sequence
{H,, }nen does not have a limit.

Lemma 2.2. The the strong topology on S is Hausdorff if and only if {H, |v € A}
is Hausdorff.

Proof. This is a more detailed proof than the original one found in [KS03, Corollary
2.2]. To prove the “if”-part assume that {H, | v € 4"} is Hausdorff, i.e., a convergent
sequence {H,, } has at most one limit point H,,. Now let u,, € H,,, u,v € H,, such that
u, — uand u, — v strongly. If we can prove that u = v, we are done. Let {@,}, {0} C
@, as in Definition 2.1 such that lim,, ||@m, — ul|m,, = 0, limy,|[9, — |/, =0,

lim lim||®,, ,, W — Up|lm,, =0 and  limIim||®,,,, 0 — Un|/m,, = 0.
m n m n
Now,
|u—v|m, < % [l = G| 11,y + N[ — Ol 11,y + 1O — 0]l 1, ]
= mhmH(I)I/o,Vn (ﬁm - ﬁm)HHun = mhm”(I)l/o,l/nf‘m - ®V07Vnﬁm||Hun
m n m n
< lim lm|| @y, u, U — Up| g, + limlim||w, — @y 0, Ol 1,
m n m n
= (.

Hence u = v.

To prove the “only if”-part, assume that { H, | v € A4} is not Hausdorff, i.e., there exists
a sequence of Hilbert spaces {H,, } with H,, — H,, and H,, — H,, where H, # H,,.
Set u, :==0¢€ H, ,n € N. Then clearly v, — 0 € H,, strongly and uw, — 0 € H,,
strongly. Hence .77 is not Hausdorff which proves the “only if”-part. O

12



2.1. Convergence of spectral structures

We would like to remark that the fact that for every v € H,,, there exists a strongly con-
vergent sequence {u,} along H,, is verified in the fundamental case below (see Remark
2.6), but it is not clear whether it holds in the general case. (Theorem 2.10 even tells us
that ¢ is polish in this case).

2.1.2. Convergence of Hilbert spaces - the fundamental case

From now on, we shall consider the case that 4/ = N U {oo}. Therefore, let H,,
n € N, H,, resp. be real separable Hilbert spaces with inner product ( , )g,, (, ).
resp. and norm || ||, = (,, )}ff, g, =, )%i resp. As a special case of the above,
we set 6, := H,, n # oo, and fix some dense linear subspace €, C H. Furthermore,
we fix some injective linear operators @, ,, : 6o — H,, and for m,n € N set ®,,,, = Id,
if m =nand ®,,,, = 0if m # n. Let 7 = H,UH_. be the disjoint union of
Hilbert spaces. As above we define:

neN

Definition 2.3 (Convergence of Hilbert spaces). Let n; be (not necessarily in-
creasing) sequence of natural numbers. A sequence of Hilbert spaces

{H,,} C{H,|neNU{oco}}
is said to converge to a Hilbert space H,,, no € N U {occ} if
JL R P (21)
for every u € 6,,.

From now on assume:

Assumption 1. {H, },en converges to Hy,.

For the motivation of this assumption and the relation to a sequence of L?-spaces and
forms defined on them we either refer to the introduction or the latter chapters.

Definition 2.4 (Strong convergence). Let {n;} be a (not necessarily increasing)
sequence of natural numbers. Let np € N U {oo}. Assume that H,, — H,, in the
above sense. {ug}, u, € H,, is said to strongly converge to some u € H,, if there exist
{t,} C 6, with:

lim [,y — ull;, =0, (2.2)

Then (2.3) even holds for every sequence {0,,} C %, with 0,, — u in H,,.

13



2. General functional analytic theory

Definition 2.5 (Weak convergence). Let {n;} be a (not necessarily increasing) se-
quence of natural numbers. Let ng € NU {oo}. Assume that H,, — H,, in the above
sense. {uy}, up € H,, is said to weakly converge to u € H,, if

(uk,vk)an — (u,v)m,, (2.4)

for every sequence {uv;}, v, € H,, strongly convergent to v € H,,.

Strong (weak) convergence creates a topology on # = ) _ H,UH, called the strong

(weak) topology.

neN

Remark 2.6. We point out that we are in the very special case which in a way restricts
strong and weak convergence of “interesting” sequences to those converging along the
sequence of Hilbert spaces H, — H.,. To see what this specificly means consider the
following statements, which can easily be proved taking into account that for n,m € N,
Cn=H,, ®,,,=1dif m=n and ®,,,, =0, if m #n,

(1) It can easily be seen that the topology of {H, |n € NU{oo}} is Hausdorff (which
also follows from Lemma 2.2 and Theorem 2.10). (It has also been proved that it is
second countable, see [KS03, Lemma 2.13]).

(2) Letng € N, (ng # oo !) H,, — Hy, if and only if Ikg > 1 with H,, = H,, Vk > k.

(3) Let ng € N, (ng # oo !) and assume H,, — H,,. Then u, — u, u, € Hy,, u € H,,
strongly if and only if Iko > 1 such that u, € H,, Yk > ko and

o=l =0

A similar characterization holds for the weak convergence.

As a consequence, in our particular case, depending on the “limiting” Hilbert space, one
should understand strong and weak convergence either in the “usual” way, ending up in
one “final” Hilbert space, or in the new sense “along H,” ending in H., introducing
a new notion of strong convergence, where “u, converges strongly to u” means: The
“distance” between some approzimating sequence {l,} C €~ and u is small, and the

“distance” between its embeddings in the H),’s via the ® , s and the u,’s is small.

From now on we shall always understand strong and weak convergence, unless stated
differently, along the sequence H, — H,,, since by the above remark the other cases
are more or less trivial. This convention extends also to the Appendix. From now
on we also shall set H := Hy,, C = ., ®,, := P, unless this leads to confusion.
Subsequences are also understood in this way.

Now let us start with some useful facts.

Lemma 2.7. (1) Let u, € H,, n € N. Then u,, — 0 € H strongly in € if and only if
[tn]| 1, — 0.

14



2.1. Convergence of spectral structures

(2) Let up,v, € Hy, n € N, u,v € H such that u,, — u strongly and v,, — v strongly.
Then au, + Bv, — au + Bv strongly in € for any o, € R.

(8) Let {u,} be a sequence with u, € H,, n € N and v, — u € H strongly. Then
lunllg, — llullg. In particular, the sequence of norms {||u,||n,} of a strongly
convergent sequence is bounded.

(4) If un,v, € H,, n € N, u,v € H such that u, — u and v, — v J-strongly, then
(Un, Un) g, — (u,0)g. In particular, every strongly convergent sequence converges
weakly.

Proof. See Appendix A. n

Lemma 2.8. Let {u,}, {v,} be two sequences of vectors in S with u,,v, € H,, n € N,
and let uw € H. Suppose that u, — u strongly in 7. Then v, — u strongly in 7 if and
only if ||u, — vy, — 0.

Proof. The proof is trivial by Lemma 2.7 (1) and (2). O

Remark 2.9. (1) One immediately obtains by definition that ®,,(p) — ¢ H-strongly
for every ¢ € C.

(2) Note that if v, € H,, n € N, with v, — ¢ € C F-strongly, it follows from Lemma
2.8 (or even from ‘hence all” in Definition 2.1), that

lim|[on, = @ ()|, = 0.
We will use this later.

The next Theorem is due to A.V. Kolesnikov, taken from [Kol05a, Propositon 7.2]. We
would like to point out, that the proof has been rewritten and completed for this paper.

Theorem 2.10. Assume that all H,, n € N and H are infinite dimensional and separa-
ble. Then there exists a complete separable metric d» on € such that the convergence in
dy coincides with the strong convergence and there exists a bijective isometry of metric

spaces U (A, dy) — I x 2, where T := {0} U, en{} CR.

There also exists a sequence of isometric isomorphisms of Hilbert spaces
v,:Ho — H,
such that Vo, = Idy and u,, — u, u, € Hy,, u € Hy strongly in € if and only if
lim||V,u — u,| g, = 0. (2.5)
Futhermore, if we fix ng € N, the metric has the property that for f,, € H,, for all

m €N, f € Hy, one has || fm — fllu,, — 0 as m — oo if and only if de(fm, f) — 0 as
m — 00.

15



2. General functional analytic theory

Proof. As in the beginning of the paper we write H,, = H. Let us first construct an
orthonormal basis {e; | i € N} in H., consisting of vectors from C using a standard
orthogonalization procedure.

Step 1:

Let us assume for a while that the ¥,’s are constructed already. Then for fixed ng €
NU{oo}, {U,,(e;) | i € N} clearly is an orthonormal basis of H,,,. Let u € H,,, v € H,,,
n,m € N U {oco}. We claim that the metric

Ao (10,0) = | 100 = > + 3 (s = 03,)2,
i=1

where u = >0 w; W, (e;) € Hy, v = > vV, (e;) € Hy,, 6, := %, dso := 0, is the
desired one.

Let us prove that d - is a metric generating strong convergence on .7¢. Obviously, d_»
is symmetric. We would like to prove that d s (u,v) = 0 if and only if u = v:

The “if”-part is trivial. To see the “only if”-part, assume that both |5, — §,,|?> = 0 and
> (u; —v;)* = 0. The former gives us that u,v € H,, for some fixed ng € N U {oo}.
and the latter shows that u = v.

The triangular inequality follows obviously from the triangular inequality for ¢2 (as a
metric space). Thus d, defines a metric on .. Now we would like to prove that
convergence in this metric coincides with strong convergence in 7.

Case 1: “H, — H.,,”. Let u, € H,, u € Hy, u, — u strongly. Then by (2.5)

lim||¥,,(u) — up|| g, = 0.

Let ugn) = (Un, V() m,, wi = (u,e) g, = (Vp(u), W, (e;))n,. Thus by Parseval’s
identity (cf. [RS72, Theorem I1.6])

[e.e] [ee)

D" =)t =3 (= W), Wnlea)m, | = um = Cn(w)l[7, =0 (2:6)

i=1

as n — oo. Clearly, lim, |6, — ds|*> = 0. Thus lim,, d(u,,u) = 0.
Now assume lim,, d_»(u,,u) = 0. Let ugn), u; as above. Now we can prove that

lim, ||V, (u) — un,|| g, = 0 by reading (2.6) backwards.

Case 2: “H,, — H,,”. Let {nt} be a (not necessarily increasing) sequence of natural
numbers and ny € N. Assume that H,, converges to H,,. Then there exists a
ko € IN such that

H,, =H,, Yk>k. (2.7)

Let u, € H,,, v € H,,. We want to prove that u; — wu strongly if and only if

16



2.1. Convergence of spectral structures

Assume that u, — w strongly in 5. By (2.7) 6 = 0p, Yk > ko. Thus limg|d, —
Ono|> = 0. Let ul(-k) = (uk,\I/nk(ei))an, u; = (u, \I/no(ei))HnO. Since u, € Hp,
Vk > kg, we have by strong convergence

i _ : (k) . 32
kﬁlér,?zko e (g, 1) _kﬁgr,ilzko — (i i)
= lim ;O ‘(Uk —u, Yy (€:))u ‘2 (2:8)
ko0 k2o £ T "0

= i —ull%2 =o.
kﬂoéfﬁzko”“’“ ully,, =0

Thus limy, d 7 (ug, u) = 0.

Suppose now limy d»(ug,u) = 0. By reading (2.8) backwards and noting the
observations above we get limg||uy — u||fr1,—n0 = 0 Vk > ko, which gives the desired
result.

By Remark 2.6 all types of strongly convergent sequences are contained in these two
cases. The other way round, if limy d(uy,u) = 0 for some uy € €, u € F, we clearly
are in one of the two cases above.

Step 2:
It remains to prove the existence of the isometric isomorphisms V¥,, : H,, — H, with
the property (2.5). To this end, for k € N let Z* := lin{ey, ..., e}, L5 = &,(L%),
which is k-dimensional as well since the ®,,’s are one-to-one. Now by (2.1) the sequence
of symmetric matrices { M*} C R* @ R given by

(M r<ijan = (Pa(er), Pu(e)) ) 1< jer
tends to 1, := diag{1,...,1} € R* ® R¥ in the usual matrix norm

[(aij)i<ij<illrrers = lgllggkmi,ﬂ,

and thus in the standard operator norm || || gk o, i.e.,
k k 1
”Mn - ﬂk”fff—»fr]f < COIlSt.HMn - ]]'kH]Rk(X)]Rk < E vn > n(k)7

for some increasing sequence of natural numbers n(k). (Here we have used Remark 2.9
(1) and Lemma 2.7 (4)). Let n > n(k). For each such n we want to define

U,: *cCcH,— £ cH,
such that for the operator

(U, — ®,) [gn: L* — L¥cH,

17



2. General functional analytic theory

we have .
provided n > n(k). This is needed to establish (2.5).
There exists an orthonormal basis {ef, ... er} of £* and a bijective linear operator
V. £k — £F with
k
Oule) = > (Ve el u,e},

J=1

such that (VF)*V¥ = MFE. More precisely, V¥e? := ®,(¢;). Note that {e},...,er}

n

depends on the inner product generated by MF.

By the Polar-Decomposition Theorem (cf. [LT85, Theorem 5.7.1]) we can represent
VE = BFUF as a composition of a positive definite, self-adjoint operator BF = /Vk(Vk)*
on £ and an isometric operator U¥ on Z¥. BF is even strictly positive definite, since
V¥ is invertible, hence all eigenvalues \* ., 1 <i < k, of B¥ are strictly positive.

n,t?

For a bounded self-adjoint linear operator A and a polynomial P we have

[P(A)]| = sup [P(A)],
A€o (A)

where o(A) denotes the spectrum of A (cf. [RS72, Section VII.1 Lemma 2J).

Furthermore, we have 1; = U*(U*)* and
(By)* = (By) By = (VA(UR) ) Vi(UR) = U(Vi) Vi (U)" = Uy My (Uy)"
Hence for each n > n(k) we have (using also the fact that U* is isometric)

1
ma (IO )2 = 11} = (B2 = Lall oy p < IME = Ll < 3.

Hence ﬂ/l_%<>‘fm < 1—1—% for all 1 < ¢ < k. Define \Ifﬁ:gkﬁff by
Uy (e;) = Uley

and linear extension. Then (V¥ (e;), W% (e;))n, = 0;;, where §;; denotes the Kronecker-
delta. Moreover, for 1 <i <k

(@0 — Tp)(ei) = (Vi = Up)(el)

and consequently for n > n(k) again by the above remark about spectra and the fact
that UF is isometric

1
@0 — Ukl gizn = Vil = Ul grzn < || BE = Ll gn g = fg%{!)\ﬁ,i — 1} < T

18



2.1. Convergence of spectral structures

To extend U* to H,, pick for every n € N some arbitrary isometric isomorphisms
Tk (L8 = (ZLF)" and extend UF by setting Wk (v) := Tk (v) for every v € (L*)*.
Set U, := Idy, : Hew — H, and pick some arbitrary isometric isomorphisms ¥, :
H, — H, for 1 < n < n(l). Now by a standard diagonal argument we can select a
sequence of isometric isomorphisms (using the construction above)

v, :H,— H,

such that 1
H(I)n - \I]n||$k—>$7lf < E

for all n > n(k). Evidently, for every fixed ky € N and every v € %, we have

lim||(®, — W,)v| 1, = 0.

Finally, if we can prove (2.5), we are done. So let u = > .° a;e; € Ho. Let us first
prove that ¥,,u — u strongly in . Therefore, set @y, := Y .-, a;e; € C. Then @, — u
in Hy, as m — oo and

lim lim||®,, &, — V|,
m n

m o
=lim Tim[(®, — ©,) Y agei =, > aieilln,
mon i=1 i=m+1
o0

<HmTm|(®, — U,) > aseillm, + ImTm| ¥, > e,
=1

i=m+1
)
= 11m|| Z aieiHHOC
m

1=m+1

=0.

Now by Lemma 2.8 (since W,u — u strongly for any u € H,) for u, € H,, n € N,
u € Hy,, we have u,, — u -strongly if and only if

lim||V,,u — uy| g, = 0.
n

In addition, it is clear that the following mapping W : & — I x 02, I := {0} U, {2}
is the desired isometry of metric spaces:

qf(?}) = (5717 (Ui)ielN) el x 62,

where v € H, and v; := (v, ¥, (¢;))g, . It is clearly bijective. Note I x £* is complete as
a product of complete metric spaces (I is complete since it is compact in R) and hence
is (A, dy). Furthermore, |J, oy ling J;en{V¥ne:} is a countable set which is dense in
J€ w.rt. dy (here ling denotes the linear span w.r.t. Q).

The proof is complete. O
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2. General functional analytic theory

Corollary 2.11. (i) For any uw € H there exists a sequence {u,}, u, € H,, n € N,
such that u, — u strongly.

(i) If ni 1 o0 as k — oo and vy € Hy,, k € N, such that vy, — uw € H in dy, then
there exist u, € H,, n € N, such that u, — u in dy and u,, = vy for every k € N.

Proof.  (i): Obvious.

(ii): For n & {ny | k € N} define u,, := ¥, (u) and u,, = vy for k € N. Then {u,} is
as desired.

O

We would like to remark that the above Theorem enlightens the geometric structure of
F as follows: We start with a rather weak limiting structure of .7 based on a “uniform
approximation” of H by the H,’s via our embeddings ®,, (which are not unitary nor
even bounded!) on a set of vectors C' (having e.g. “nice” or “controllable” properties).
The definition of strong convergence (of weak, too) seems natural in this setting, but is
yet hard to handle and does not even provide existence of strongly convergent sequences
(along the H,,’s) for every possible limit © € H, unless much stronger assumptions on the
®,,’s like uniform bound of operator norms are stated. Finally, by the above Theorem,
using only basic properties of our concepts and a little linear algebra, we construct a
natural metric on ¢, and moreover, a sequence of isometric isomorphisms {W, } which
in a way carry over the geometry of H to each H, and contain the “asymptotics” of
strong convergence (namely, u,, — u strongly if and only if ||u,, — ¥, (u)||m, — 0). From
now on, strong convergence should always be thought as given by this characterization:
along a “limit of orthonormal bases” resp. “geometric structures” via the ¥,,’s. From
now on we shall always refer to the U,,’s of Theorem 2.10 if we use this notation.

As a surprising fact, we would like to mention that in applications the ®,’s are actually
the “easier guys”, namely being identity operators. Keeping this in mind, the next two
Lemmas and Lemma 2.20 as well as the later convergence Theorems for forms turn out
to be very useful for they provide conditions for various properties having to be checked

only along {®,,(¢)}, ¢ € C.

Lemma 2.12. A sequence {u,}, u, € H,, n € N converges to w € H 5 -strongly if
and only if unllm, — |[ullsr and (n, @a(¢))i, — (u0)r Jor every o € C.

Proof. See Appendix A. O

Lemma 2.13. Let {u,}, u, € H,, n € N be a sequence in 7 and let w € H. Then
un, — u weakly if and only if sup,, ||u,|| g, < oo and (u, P ())m, — (u, @) for every
pel.

Proof. See Appendix A. n
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2.1. Convergence of spectral structures
Lemma 2.14. (1) Let {u,} be a sequence with u, € H,, n € N. If the sequence of
norms {||un||m,} is bounded, there exists a weakly convergent subsequence of {u,}.

(2) Let {u,}, u, € H,, n € N be a sequence which weakly converges to u € H. Then

sup|lun||m, < oo, [lullm < lim[luy |, -
n n

Moreover, u,, — u strongly if and only if

[l = Tim |,

(8) A sequence {u,}, u, € Hy,, n € N tends to u € H 5 -strongly if and only if

(umvn)Hn - (U7U)H

for every {v,}, v, € H,, n € N J-weakly tending to v € H.

Proof. See Appendix A. n

2.1.3. Convergence of bounded operators

Definition 2.15 (Convergence of bounded operators). {B,}, B, € Z(H,) are
said to strongly (weakly) converge to B € Z(H) if for every sequence {u,}, u, € H,
strongly (weakly) converging to u € H, {B,u,} strongly (weakly) converges to Bu.

{B,}, B, € Z(H,) is said to compactly converge to B € Z(H) if for every sequence
{un}, u, € H, weakly converging to u € H, { B,u,} strongly converges to Bu.

Clearly, compact convergence of a sequence of bounded operators implies both weak and
strong convergence of this sequence.

Lemma 2.16. Let {B,} be a sequence of bounded operators, B, € £ (H,), B € £ (H).
Then we have:

(1) B, — B strongly if and only if

n

lim (B, vp) g, = (Bu,v)y (2.9)

for any {u,}, {v.}, u, v such that u,, — wu strongly and v, — v weakly.

(2) B, — B weakly if and only if (2.9) holds for any {u,}, {vn}, u, v such that u,, — u
weakly and v,, — v strongly.

(3) B, — B compactly if and only if (2.9) holds for any {u,}, {v.}, u, v such that

Up, — u weakly and v, — v weakly.
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2. General functional analytic theory

Proof. The lemma follows from the definitions of convergences and Lemma 2.14 (3). O

Lemma 2.17. (1) If B, — B strongly, then

lim|| By || #(s1,) = (| Bl (m)-

(2) If B, — B compactly, then

lim|[ Byl () = || Bll 2 (m)-
Proof. See Appendix A. n

Denote by A the adjoint of an operator A. The following is a direct consequence of
Lemma 2.16.

Corollary 2.18. (1) B, — B strongly if and only if B, — B weakly. In particular,
strong convergence is equivalent to weak convergence for symmetric operators.

(2) B, — B compactly if and only if B, — B compactly.

It is very important to realize, that in this point the Kuwae-Shioya framework differs
from the case of one fixed Hilbert space, where strong operator convergence implies weak
operator convergence. Also uniform operator convergence does not make any sense in
this framework.

Lemma 2.19. If B, — B compactly, then B and B are both compact operators.
Proof. See Appendix A. n

The next Lemma shows that C' contains enough information to verify strong convergence
of a sequence of operators, if strong convergence along the sequence {®,(¢)}, p € C'is
assumed. This has not been proved in this setting before.

Lemma 2.20. Let B, € Z(H,), n € N, B e Z(H), such that sup,, || B, | z#,) < oo.

(1) If B,®,p — By J-strongly for every ¢ € C,

(2) or if there exists a dense linear subspace C C H (which might be taken equal to H)
such that BV, — B J€-strongly for every ¢ € C,

then B, — B strongly in the sense of Definition 2.15.
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2.1. Convergence of spectral structures

Proof. We prove only (2), since the proof of (1) is similar except B, V1, in (2.10) is
replaced by B, ®,1,,. Let u e H a~nd u, € H,, n € N with u, — u J7-strongly. Pick
U — u strongly in H with v, € C' for every m. Clearly,

| Buun — Vi Bul|m,
<|Brun = BuVontmllm, + | BaVntbm — Vi B, + Vo Btm — Vo Bullm,
< SUP||BTLH$(Hn)“un - \Ilnl/’mHHn + ||Bn‘1}n¢m - \I/nBl/’mHHn + ||B||$(H)H¢m - UHH
' (2.10)

The first term tends to 0 as m,n — oo by the uniform boundedness of {|| B, || #,)} and
[t = Vot lm, < [lun — Youllm, + [[Vau — Votbmlm, = |lun — Coullm, + lu =l a-

The second term tends to 0 as m,n — oo by assumption as clearly the last term, too.
This proves the assertion. ]

2.1.4. Convergence of semigroups

In this section we prove a generalization of Kato’s Theorem for strong convergence
of semigroups (cf. [Kat66, Theorem I1X.2.16]), i.e., that strong convergence of (not
necessarily symmetric) contraction semigroups is equivalent to strong convergence of
the associated contraction resolvents. We point out that this result is entirely new for
the Kuwae-Shioya framework and that the proof uses techinques turning out to be useful
only in this particular framework, for the standard proof cannot be assigned one-to-one.

To this end, let (A", D(A")), n € N, (A, D(A)) resp. be the infinitesimal generators
of (not necessarily symmetric) Cy-contraction-semigroups (7}");>0, n € N, (T})s>0 resp.
defined on subspaces D(A™) C H,, n € N, D(A) C H. Let (G)a>0, n € N, (Go)a>0
resp. be the associated Cp-contraction-resolvents.

Theorem 2.21. Let (T}]")i>0, n € N, (T1)i>0, (G2)as0, n € N, (Gu)aso be as above.
Then G — G, strongly for any o > 0 if and only if T;* — T} strongly for any t > 0.

Proof. Let us first prove the “if”-part: Let « > 0, v, € H,, n € N, u € H, u,, — u

HC-strongly. Then T]'u,, — Tiu strongly for every ¢ > 0. We express Gu,, in terms of
the following H,-valued Bochner integral

[e.9]
n o —asgmn
Gaun—/ e T uyds,
0

(cf. [MR92, Section I.1] and, particularly for Bochner integrals: [Yos78, Section V.5]).
Let v, € H,, n € N, v € H such that v, — v weakly in . It suffices to prove that

(Ggunvvn)Hn - (GQU,U>H.
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2. General functional analytic theory

We note that

o7 —Qs

suple” (T un, vn ), | < €7 supl|un|m, [[vn]|m, < Ce
n n

for some constant C' > 0 by the contraction property of the 77'’s, Cauchy’s inequality and
strong and weak convergence of {u,}, {v,} resp. applied to Lemma 2.14 (2). The right-
hand side is integrable, so we can use Lebesgue’s dominated convergence theorem and the
well-known fact, that Bochner integrals interchange with continuous linear functionals
(cf. [Yos78, Corollary V.5.2]) to obtain

o
lim (G uy, vp) g, = lim (/ e Ty, ds,v,)m,
n—oo n—oo 0
o oo
= lim e‘aS(TS"un,vn)Hnds:/ e *(Tsu,v)gds
0

n—oo 0

= (/ e “Tuds,v)g = (Gau,v)n.
0

The “if”-part is proved.

To prove the “only if”-part, let GI! — G|, strongly for a > 0. Recall that for each a > 0,
n € N, we have G(H,) = D(A"), Go(H) = D(A) (cf. [MR92, Section I.1.a)]). We
would like to prove for each v € H, t > 0, a > 0 that

T, Goth — T,Got) (2.11)
strongly in . Since D(A) C H densely (e.g. by [MR92, Proposition 1.1.10]), we can

apply Lemma 2.20 (2) and we are done (note that sup,||7}||.#m,) < 1 < 00).
Throughout the following fix & > 0. Now let u € H and s > 0. We have

d
%TsGau =T AGu = —T5(1 — aGy)u

and the same with 77", A™ and G? replacing Ts, A and G, resp. Now for t > s > 0

d n n
Eﬂsta\I/nTSGau

n n d d n n
= jlsta\Dn (%TSGQ> + @Efs’GaanTsGau N

=T G, (—Ty(1 — aGa)u) + T (1 — aG™) U, ToGou
= T (G"U,T, — U, T,Go)u,

where the “product rule” is proved the same way as in finite dimensions. Note that
we have used that W, is continuous and the fact that T,G,u = G,Tsu for u € H (cf.
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2.1. Convergence of spectral structures

[Kat66, Chapter IX.]). Applying the fundamental theorem of calculus we obtain

¢ t
d

~ / T (GrU,T, — U,GoTy)u ds = / ST GG T ds
0 0 S

s=t
= G, G Tiu — TGP, G .

s=0

=T .G"0,G.Tou

Hence by Bochner’s inequality (cf. [Yos78, Corollary V.5.1])
t
1Gm 0, G Tyt — TG, G|, < / (G0, T, — U, GuT)ullds.  (2.12)
0

First note that | G2V, Tsu — V,,G,Tsul|lg, — 0 as n — oo by Lemma 2.8 and the fact
that both G2V, Tysu — G, Tsu and ¥, G, Tsu — G, Tsu F-strongly, which follows from
the strong convergence of resolvents. It is easy to see that ||(G2V,Ts — V, TG )u| g, <
%HUHH for every n. We conclude that by Lebesgue’s dominated convergence theorem
the right-hand side of (2.12) tends to zero as n — oo. Altogether, for u € H,

lim|Gr W, T,Gou — TG, Goul i, =0

and since Go(H) = D(A), and D(A) C H densely, we get by a 3-c-argument, taking
into account that |G"| g, < a~! for every n, that for every v € H

|| GEW, Tip — T GoVn ||, = 0. (2.13)

As another result of strong convergence of resolvents and Lemma 2.8 we get (using the
contraction property of the T}*’s)

Um || 77V, Gop — T GoV )| g, < Um||V,,Gotp — GoV,1)| g, = 0, (2.14)

and
lim|GoW, Ty — U, G Ty || g, = 0. (2.15)

To prove (2.11), let p € H, t > 0, a > 0. One easily observes

||T;5n\IJnGozw - anEGa¢||Hn
SHTtn\IInGa¢ - TtnGZ\I}nl/}“Hn + ||TtnGZ\Ijn¢ - GZ\IjnTtwan + HGZ\PnTt¢ - \IlnGothwHHn

Gathering (2.14), (2.13) and (2.15) and the last equation above, we get the desired result
as n — 0o. The proof is complete. O
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2. General functional analytic theory
2.2. Convergence of symmetric forms

Now we consider three different types of convergence of a sequence of symmetric forms
{&,} along S, where each form is defined on H,. Recall that a quadratic form is
a bilinear mapping & : Z(&) x 2(&) — R defined on some subspace (&) C H.
In this section we consider only non-negative and symmetric quadratic forms, that is,
&(u,u) > 0 for every u € Z(&) and &(u,v) = &(v,u) for every u,v € Z(&). Define for
a >0 and a form (&, Z(&)) the inner product

Eo(u,v) = E(u,v) + alu,v)y, u,ve D),

which makes (&) a pre-Hilbert space. Recall that a form & is closed if (&) equipped
with the norm é"ll/ % is complete. We identify a quadratic form & with the functional

E(u,u) , ue P&E)

00 ,u g D(E). (2.16)

It is well known that & is closed if and only if & : H — R is lower-semicontinuous (see
for instance [Mos94, p. 372]). We shall use the notions quadratic form and bilinear
form interchangeably if the form is symmetric and non-negative, which is justified by
the polarization identity:

& (u,v) :%L[@@(u—irv,u—irv)—@@(u—v,u—v)], u,v € P(&).

Also note that &(u) = &(u,u), u € Z(&) is used for the diagonal even for non-
symmetric forms.

Definition 2.22. A sequence {&™ : H,, — R} of symmetric, non-negative, closed forms
is said to Mosco converge to a quadratic form & on H if the following two conditions
hold:

(M1) If {u,}, u, € H,, n € N weakly converges to u € H then
&(u) < lim & (uy).

n

(M2) For every u € H there exists a strongly convergent sequence w, — u, u, € H,,
n € N such that
& (u) = lim & (uy,).

Definition 2.23. A sequence {&™ : H,, — R} of symmetric, non-negative, closed forms
is said to I'-converge to a quadratic form & on H if the following conditions are fulfilled:

(G1) If {u,}, u, € H,, n € N strongly converges to u € H then
&(u) < im & (u).

n
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2.2. Convergence of symmetric forms

(G2) For every u € H there exists a strongly convergent sequence u,, — u with u,, € H,,
n € N such that
E(u) = lim & (uy,).

n

The above conditions, especially (M2) resp. (G2) make sense by Corollary 2.11 and
(2.16). It is clear that Mosco convergence implies I'-convergence. To determine when
they are equivalent, consider the following:

Definition 2.24. A sequence {&"} is called asymptotically compact if for every {u,},
u, € H,, n € N such that

(™ (un) + [Junll7,) < oo,

there exists a strongly convergent subsequence of {u,,}.

Lemma 2.25. Assume that {&"} is asymptotically compact. Then {&"} T'-converges
to & if and only if {&™} Mosco converges to &.

Proof. The proof of [Mo0s94, Lemma 2.3.2] can be extended to our framework easily. [

Note that I'-convergence can be defined for arbitrary functionals on a topological space
with values in R (see for instance [DM93]) and every I'-limit is lower-semicontinuous.
In particular, it means that if the form & is a I'-limit, then it is closed.

It is a well-known fact that every sequence of functionals on a second-countable space
with values in R has a I'-convergent subsequence (see [DM93, Theorem 8.5]). So in our
case we have the following (see [KS03, Theorem 2.3]):

Theorem 2.26. Fvery sequence {&"} of symmetric, non-negative quadratic forms (with
values in R) has a T'-convergent subsequence whose I'-limit is a symmetric, non-negative,
closed quadratic form on H.

This just means that the space of symmetric, non-negative forms is relatively sequentially
compact w.r.t. the I'-topology.

Definition 2.27. We say that &" — & compactly if & — & Mosco and if {&"} is
asymptotically compact.

Lemma 2.25 and Theorem 2.26 together imply:

Corollary 2.28. If {&"} is asymptotically compact, it has a compact convergent subse-
quence.

With every non-negative symmetric closed form & we associate a non-negative self-

adjoint operator —A with Z(A) C 2(vV—A) = 2(&) and &(u,v) = (V—Au, v—Av),

27



2. General functional analytic theory

u,v € P(&). Let Ty := e, t > 0 be the associated semigroup and G, = (o — A)7%
a > 0 the associated resolvent (see [FOT94] for details).

For further reference for convergence problems of spectral structures (in the symmetric
case) we would again like to mention [KS03, Section 2]. The next Theorem (whose proof
has been reformulated for this paper and can be found in the Appendix) shows the

essential power of Mosco convergence, which is - as a variational convergence - necessary
and sufficient for strong convergence of resolvents and semigroups.

Theorem 2.29 (Mosco, Kuwae, Shioya). Let {&™ : H, — R} be a sequence of
non-negative, symmetric, closed forms and let & be a closed form on H. The following
statements are equivalent:

(1) {&™} Mosco converges to &,
(2) {G"} strongly converges to G, for all o > 0,

(3) {T}'} strongly converges to Ty for allt > 0.
Proof. See Appendix A. n

Now we shall state some useful conditions on a sequence of forms {&" : H,, — R}, which
can easily be checked in many applications and give us a nice criterion for Mosco conver-
gence. The idea is to restrict strong and weak convergence of vectors along the sequence
of domains {Z(&™)}, which contains enough information to verify Mosco convergence.

Definition 2.30. Suppose that we are given a convergent sequence of Hilbert spaces
H, — H and a sequence of non-negative symmetric closed forms {&" : H, — R}. We
say that a sequence of pairs {(H,,&")} converges to (H, &) if the following conditions
hold

(1) @,(C) C 2(&™) for every n € N.
(2) C C 2(&) is dense in (2(&), &7).

(3) lim,, & (P, (p)) = &(p) for every p € C.

If we have a convergent sequence {(H,, &™)} of pairs in the above sense, we have a con-
vergent sequence of Hilbert spaces {(Z2(&™), &"( , ))} which converges to (Z(&), &1( , ))

in the sense of Definition 2.3. Let us denote the space J, Z(&™)UZ(&) by . Hence
we can construct the corresponding isometries ¥4, n € N as in Theorem 2.10. Then for

every u € (&), V¢ (u) — u strongly in .

Lemma 2.31. Assume that {(H,, &™)} converges to (H,&). If u, — u strongly in A%,
then w,, — wu strongly in .
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2.2. Convergence of symmetric forms

Proof. Let u, — u, u, € (&™), n € N, u € Z(&) strongly in #%. Then there exists a
sequence {p,,} C C' with

llu — gom||§{ < const.& (v — @) — 0
as m — oo. Clearly,

lim lim ||, — @, ()|, < const.limlim & (u, — @p(om)) = 0,

hence u,, — u strongly in J#. The case Z(&™) — Z(&™0) for some arbitrary sequence
of natural numbers with limj n, — ng is trivial. O

The same is not true for weak convergence. More precisely, we have the following

Proposition 2.32. Assume that {(H,,&™)} converges to (H,&). If for any sequence
Up, — u weakly in A, u, € 2("), n € N, u € (&) we have that u, — u weakly in
JC, too, then &" — & Mosco.

For the proof, we need the following

Lemma 2.33. Assume that {(H,,&")} converges to (H,&) and (M1) holds. Then
E" — & Mosco (i.e., (M1) = (M2) in this case).

Proof. Let us take u € 2(&). Clearly, ¥¢ (u) — u He-strongly and also #-strongly by
Lemma 2.31. By Lemma 2.12 we have

lim &7 (¥ (u)) = ()

and
| 5 () 3, = [l

Therefore
lim &™ (V4 (u)) = & (u)

which gives us (M2) for u € 2(&). lf u € H\ 2(&) (M2) holds for any .7 -strongly
convergent sequence u, — u as a consequence of (M1). O

Proof of Proposition 2.32. We only have to prove (M1) by the preceding Lemma. Let
u, € Hy,, n € N, u € H with u,, — u J€-weakly. If im &"(u,,u,) = +oo there
is nothing to prove. So assume that lim,k &"(u,,u,) < 4oo, which gives that for a
subsequence {u,, } we have sup;, & (uy,, ) < +00. But by Lemma 2.14 (2) sup,,||un ||, <
+00. By extracting another subsequence if necessary we can use Lemma 2.14 (1) to force
that for some @ € Z(&) we have u,, — @ Hz-weakly and limy &™ (u,, ) = im,, &™(uy,).
By assertion w,, — @ J-weakly, too, which shows u = u. Now,
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2. General functional analytic theory

and by Lemma 2.31
1i]£n(unk7 \ij(u))Hn = (uv U)H

Combining the last two equalities, we get
lim & (1, W () = &(u, u).
Therefore,

& (u,u)* = Tim| 6™ (., W (1))
< h}gngnk(unk,unk)é’”"(\lff(u), U (1) < lim & (up, un)E (u, u),

n

which gives us (M1). O

2.3. Convergence of non-symmetric forms

2.3.1. Generalized forms

To analyze convergence of a sequence of non-symmetric forms defined on different Hilbert
spaces, we will assume our forms to be so called generalized (Dirichlet) forms, following
the framework of [Sta99, Section I|. In other words, we assume our form & to be
associated with some coercive closed form (&7", ;) and some properly chosen linear
operator (A", Z(A", H,)). We prove necessary and sufficient conditions on the forms
{&™} for strong convergence of the associated resolvents and semigroups. We also give
conditions for the Mosco-convergence of the symmetric parts {/"} of {&"} to the
symmetric part .« of &.

Now let 7 be a bilinear form on H with a domain ¥ C H. The symmetric part < of
o/ is defined by

o (u,v) = = [ (u,v) + o (v,u)], u,veV.

DO | —

The antisymmetric part o of < is defined by

A (u,v) = = [ (u,v) — o (v,u)], u,veV.

N| —

It is clear that & = o + <. For a > 0, set
o (u,v) = A (u,v) + a(u,v)y, u,veV.

o, is defined similarly. We suppose that (7, 7") is a coercive closed form with sector
constant K > 1, that is,

(1) (&7, 7) is a non-negative definite, symmetric, closed form,
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2.3. Convergence of non-symmetric forms

(2) (&, 7) satisfies the weak sector condition, i.e., there exists a sector constant K > 1
such that
.2t (u,v)| < Koy (u,u)et,(v,0)"/* for allu,v € ¥.

Equipped with the norm || || := 4"/?( ), % becomes a Hilbert space. Identifying H
with its dual H' we obtain a dense and continuous embedding ¥ € H = H' C ¥'. The
pairing between ¥ and #” is expressed by ,.(, ),.

Let A be a linear operator on H with a linear domain (A, H). We assume the following:

(1) A generates a Cy-semigroup of contractions (U)o on H.

(2) (Ut)i=o can be restricted to a Ch-semigroup of contractions on ¥

Denote the infinitesimal generator of the restricted semigroup by (A, Z(A,7)). Note
that the adjoint operator (A, 2(A, ")) of (A, 2(A,¥)) also satisfies the conditions
above. In particular, Z(A, H) N ¥ is dense in ¥. It follows from [Sta99, Lemma 1.2.3]
that A : (A, H)N¥ — ¥ is closable. Let us denote its closure by (A,.%). Then .#

is a Hilbert space with norm

1/2
Ill7 == (!HI?V + IIA-II?w> -

Furthermore, define .% := 2(A, %) N ¥ with norm

1/2
Il = (!HI?V + A3 ) -

F and .F are dense in ¥, o (Au,u)y , <0 forue Z, y,(/A\u, u)y; < 0forue ZF and
P(N, V) is dense in F (cf. [Sta99, Lemma [.2.5] and [Sta99, Lemma 1.2.6]).

Now for given o7 and A, define the bilinear form & associated with (<7, ") and (A, (A, H))
on H by

&(u,v) = A (u,v) = 4 (Au,v),, fueF ve?,
T A () = (Avu),, ifue ¥ veF.

We extend & to a form defined on H and taking values in R by setting & (u,v) = +o0
for every other case, even if u € H\ ¥ and v = 0.

We also define the co-form & by

(u,v) = %(U’u)_"jﬂ([\uyv)ﬂ//, fue Zvev,
T A () — y(Avyu),, fue Y ve F.
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2. General functional analytic theory

Remark 2.34. Let (<7, 7) be a coercive closed form and A = 0. Clearly F = ¥ = F
and & = o is a generalized form by [Sta99, Example 1.4.9 (i)]. This is the case of
(Dirichlet) forms as described in [MR92].

Let us recall some useful facts.

As usually, we define for a > 0
Eo(u,v) = &(u,v) + a(u,v)y.

Proposition 2. 35 For all o > 0 there exist continuous, linear bijections Wy, : V' — F
and Wy : V' — F such that

EaWafiv) = yi(fv)y = Ealv, Wa )
forallfe ¥ ve¥. (Wa)aso and (Wa)aso satisfy the resolvent equation (cf. [Sta99,
Proposition 1.3.4]).

Furthermore, there exists a unique Cy- resolvent (Ga)aso and a unique Cy-coresolvent
(Ga)a>0 on H (being the restrictions of W, W, resp. to H). such that for all o > 0,
feHandueV

~

G.(H) C &7, Ga( )cgf
of) =

(2.17)
So(Gaf,u) = E4(u,

(fa U)H

G, is the adjoint of G, and aG,, aG, are contraction operators. Also, we have for
u €V that
lim oG u = u

a—00

strongly in ¥ and thus in H.
Proof. See [Sta99, Section 1.3]. O

Note that the second line of (2.17) is equivalent with
'V/((Ma - A)Gafa g)// = (fv g)H = 'V/((Ma - A)Gafa g)'ya f € Ha g € 77

where for a > 0 we set M, : ¥ — ¥, ,,(Myu,-), = da(u,-) and M, : ¥ — ¥,
pr(Mau, )y = (-, ).

Define approximate forms &), 3 > 0 of & by
EP (u,v) = Blu — BGau,v)g, w,veH

and set @ﬁéﬂ)(u, v) = &P (u,v) + alu,v)q.

Proposition 2.36. (i) &9 (u,v) = &(BGsu,v) foruec H,v € V.

32



2.3. Convergence of non-symmetric forms
(i1) &P (u,u) = E(BGpu, BGsu) + Bllu — BGpully foru € H.
(i4) limg oo &P (u,v) = &(u,v) foru e F,ve V.
(iv) If supg.q gl(ﬁ)(u,u) <00, thenu e V.

Proof. For (i)—(iii), see [MR92, Lemma 1.2.11] and [Sta98, Proposition 2.7 (iii)].
(iv): Since &'(v,v) > &/ (v,v) for v € F and Gy is contractive, we have by (ii)

& (u,u) = E(BGsu, BGsu) + Bllu — BGaully + [[ull
> o, (BGgu, BGpu) + Bllu — BGaul|F;.

Hence the assumption supg.. é"l(ﬁ )(u, u) < oo implies that

sup . (BGpu, fGpu) < oo, (2.18)
30
sup f|lu — BGgul3 < oo. (2.19)
B8>0

From (2.19), fGsu — u in H as f — oo. Combining this and (2.18), we have that
u € ¥ by [MR92, Lemma 1.2.12]. O

Let (T3)s>o0, (Tt>t20 resp. be the Cy-semigroup of contractions, the Cy-cosemigroup of
contractions resp. associated with (G4)a>0, (Ga)a>o0 T€SP.

2.3.2. Criteria of convergence

In this section we shall give necessary and sufficient conditions on a sequence of gen-
eralized forms {&"} for the strong convergence of the associated resolvents {G”} and
equivalently the weak convergence of coresolvents {G"} (cf. Corollary 2.18). We point
out, that in a natural way we have to introduce a condition on the asymmetry of the
{&™}, which differs from (M1) and (M2), since clearly for symmetric forms all informa-
tion is contained on the diagonal. To this end, much stronger assumptions have to be
stated to obtain Mosco convergence of the symmetric parts {o7"}.

In order to handle double indexed sequences we need the following Lemma, which is just
an elegant way to apply standard diagonal arguments.

Lemma 2.37. Let X be a metrizable space with some metric d and {z,, | n,m € N}
a double indezxed sequence in X, {Tp}men C X, © € X such that

d— lim Z,., = Tm
n—+4oo

and

d— lim =z, ==
m—-+00
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2. General functional analytic theory

Then there ezists a mapping n — m(n) increasing to +00 so that

d— lim 2, mm) = .

n—oo

Proof. See Appendix A. O

Corollary 2.38. Suppose that double sequences {u;;}ijen C €, {ai;}ijen C R and
u € H, aeR satisfy that

dy — lim dy — lim u,; ; = u,
j—o0 1—00
11111 hm ;5 = Q.
j—00 i—00
Then there ezists a mapping i — {j(i)}, increasing to +o00, so that
dyw — 115(1)10 Ui j(i) = U,

lim ai,j(i) = Q.

Jj—00

Proof. Apply Lemma 2.37 to the product space S x R with the (1-product) metric
dl((hl,al), (hg,ag)) = d%(hl, hg) + |CL1 — (12|, hl, hz € jf, ai,as € R. Il

Now we shall finally come to the criteria of convergence. First we define a functional,
which measures the rate of asymmetry of our form &, and is, indeed, an equivalent norm
to || || # (cf. Lemma 2.39 below). So let

O(u) :== sup &(v,u) =& u)ly, for ue.Z,

llvll» =1

which is finite. If u € H \ .%, we extend O to a functional on H with values in R by
setting ©(u) := +o0.

Lemma 2.39. Foru € j, we have
(i) ©(u) < Klul #,
(i) |ully < O(w),
(iii) || Aullyr < (K +1)0(w),
(w) In particular, || || ~ ().
Proof.  (i):

O(w) < swp [ (w0 + sup |, (Au o), | < Klully + |Auly < Kllul 5,

llvll»=1 llvll»=1

recalling that K > 1.
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2.3. Convergence of non-symmetric forms

lully < &1(u, u) = |Jull»éi( u) < lully sup &i(v, u) = [[ullyO(w).

u
Jull’ ol =1

(ili): For v € ¥ we have by (ii)

i(Au,v), = o (v,u) — & (v, u)
< Kljollyllully + [lv]l»©(u)
< (K + Dfv[ly©(w).

Hence ||Aul|y < (K +1)0(u).
(iv): Obvious by (i)—(iii).
O

We arrive at the main convergence Theorem of this section. It is a generalization of
[Hin98, Theorem 3.1] by M. Hino. From now on, we consider that we are given forms
{&"}, & resp. on H,, H resp. The operators, spaces and norms related to &" are
denoted by supplementing a suffix n, such as G, ©" and ¥,. It is to be remarked,
that the sector constants K, of the .@/™’s are not necessarily assumed to be uniformly

bounded.

Definition 2.40. Suppose C' C .# densely w.r.t. || || #. Consider the following condi-
tions:

(F1) If a sequence {u,} weakly convergent to u in J# satisfies
lim, ©™(u,) < oo, then u € 7.

(F2) For any w € C, any u € ¥ and any sequence {u,} weakly convergent to u in JZ,
Up, € Y, n € N, there exists {w,}, w, € H,, n € N converging to w strongly in
S such that lim,, & (w,, u,) = & (w, u).

(F2’) There exists a linear subspace C of C such that C' C .% densely w.r.t || ||# and for
any sequence 1y, T oo and every w € C, u € ¥ and any sequence {uy}, uy € H,,,
k € N converging weakly to u and satisfying sup, ©™*(uy) < oo one has a sequence
{wr}, wi, € Hy,, k € N converging J#-strongly to w with lim, & (wy, u) <
E(w,u).

(R) {GZ} converges to G, strongly for a > 0.

(CR) {G"} converges to G weakly for a > 0.

Define also (Fla) (resp. (F1b)) by replacing ©"(u,) by [[un|| 2 (resp. |[ually,) in (F1)
and (F2’a) (resp. (F2’b)) by replacing ©" (uy) by ||uk||gnk (resp. [|ukllx,, ) in (F2').

35



2. General functional analytic theory

We have (F1b) = (F1) and (F2'b) = (F2’) by Lemma 2.39 (ii).
Theorem 2.41. Suppose that C C .% densely w.r.t. || ||#. Then
(F2) = (F2),

(F1)(F2) < (F1)(F2) & (R) < (CR).

Proof. The equivalence between (R) and (CR) follows immediately from Corollary 2.18
(1).

(F2) = (F2'):

By letting u,, = 0 for every n in (F2), we know that for each w € C there exists {w,}
converging to w strongly in 7 such that w, € ¥, for every n. Since C is dense in .#
and therefore also dense in ¥, we can find a sequence {w/,} converging to any w € ¥
with w!, € ¥, n € N by Corollary 2.38. Take an arbitrary sequence ny T oo and {uy},
ur € Hy,, k € N weakly convergent to u € H in s with sup, ©"(u;) < co. Then by
Lemma 2.39 (iv) uy € Zn, C ¥, u € ¥. Now take u/, weakly convergent to u with
u,, € ¥, and u,, = uy. Take an arbitrary w € C' C C. Then by the observations above
there exists a sequence {wy}, wy € ¥, converging strongly to w such that

lim & (wy, ug,) < lim &™(wp, u,) = &(w, ).
k n

(F1),(F2’) = (CR):

We follow the argument of Réckner and Zhang in [RZ97]. Choose a sequence {f,} -
weakly convergent to some f € H. Let a > 0. We shall prove that Gr " fn converges
FC-weakly to G f. It suffices to prove that for any sequence ny T oo we can extract a
subsequence {ng, } such that Ga't fnk converges to Gy f weakly in J#. Set u,, := G " fn

Since ||Ga||j gy < o~ and {f,} is uniformly bounded by Lemma 2.14 (2) one can
extract a subsequence u,, converging .J#-weakly to some u € H using Lemma 2.14 (1).

Note that for some constant ¢, > 0 depending only on « by Cauchy’s inequality and
the uniform boundedness of {f,} and since u,, = G* f,, € F,,

sup O™ (u,, ) =sup sup & (w,uy, )
k

b oy, =1

< sup o [0 (w, un, )| + |1 = el |(w, un, ) mr,, ]
w "Vnkzl

1-qf

<sup sup ||(fu,, W), |+

!l ez, [ g o1y
B ol =1

< Casup sup | folla [@llrm, = Cosupllfuglla, < o0

k- wllyg, =1

which yields w € ¥ by (F1).
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2.3. Convergence of non-symmetric forms

For any w € C’, by extracting a subsequence if necessary, we can choose {wy} strongly
convergent to w in ¢ such that wy, € 7;, and

lim ™ (wy, Up,,) < &(w, u)
k

by (F2’). Since &y (wy, un,) = (W, fu,)m,,, it follows that

0= hTm [(gggk(whunk) - (wka fnk)an} S éﬂa(w7u) - ('lU,f)H

Hence &, (w,u) > (w, f)g. By substituting —w for w, this becomes an equality. Now
we have by Proposition 2.35, using that C' C C' C .# densely and continuously, that for
every w € F

So(w,u) = (w, flu = Eo(w,Gaf).

G
Hence (Mo — A)w,u — Gof), = 0, but (M, — A)(F) = ¥ by [Sta99, Section 1.3],
hence u = Gaf.

This yields GZ fn — G f weakly in 2. Since f, was an arbitrary weakly convergent
sequence, we have G} — G, weakly in the sense of convergence of bounded operators.

(R) = (F1):
Let uw, — wu weakly in . and M := lim, ©"(u,) < oco. Choose a sequence {v,}
converging strongly to u in J#. From Proposition 2.36 (i),(ii), for a > 0,

a(vn — aGLvn, un) g, + (@Gov,, un)m,
EN (G, uy)
<9"(Un)||OéG"Un||vn
<O™(uy) [@‘""(aG"vn, aGu,)|?
<O™(un) & (vg, v)/2
(un)

n 1/2
=0 (1) [0 — G0, v, + 0allZ ]

Taking lim , on both sides, we have
7w u) = [[ull + (@Gau,w)m < ME (u,u)2

Hence

8 (u, u)V? < {M + /M2 + 4 (Jull} ~ (aGau, u)H)} ,

1
2
which implies that

1
sup & (u, u) < 5 [MJr \/ M? + 8||u||§{] < o0.
a>0

From Proposition 2.36 (iv), we obtain that u € 7.
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(R) = (F2):
Let u,, — u weakly in 5, u, € ¥,, u € ¥ and w € C. Since ®,(w) — w F-strongly,
we have

dyw — lim dy — lim aGL®,(w) = w,

a—0o0 n—oo
and

lim lim &™(®,(w),u,) = lim lim a(®,(w) — aG"®,(w), un) s,

a—00 N—00 a—00 N—00

= lim & (w,u) = &(w,u).

a— 00

Due to Corollary 2.38, we can take a nondecreasing sequence {«,}, o, — oo such that

dy — lim @,G? ®,(w) =w, lim &), (w),u,) = & (w, ).

n—oo n—oo

Recall that by Proposition 2.35 G2(H) C %, for any & > 0 and n € N. Setting
wy, = a,Gy ®n(w), we hence have w,, — w J-strongly and by Proposition 2.36 (i)
that

E™ (W, up) = E™O (D, (W), up) — & (w, )

as n — oo and (F2) is proved. O

Corollary 2.42. Suppose that C C % densely.

(i) (F1b),(F2’b) = (R),

(i1) If the sector constants K,, of the @/™’s are uniformly bounded, then (Fla),(F2’a)
< (R).

Proof.  (i): This is trivial, since clearly (F1b) = (F1) and (F2’b) = (F2’) by Lemma
2.39 (ii).

(ii): This is an consequence of Theorem 2.41 and Lemma 2.39.

]

Definition 2.43. We say that a sequence of generalized forms {&"} converges in the
generalized sense to a generalized form &, if C' C .% densely and (F1) and (F2) (or
equivalently (F1) and (F2’)) hold. We shall also use this notion, if (Fla) (or (F1b))
and (F2) (or (F2’a) or (F2'b)) hold, provided the sector constants K, of the &’s are
uniformly bounded.

Remark 2.44. According to Theorem 2.21, corresponding statements to (R), (CR) hold
also for the associated semigroups (1]")i>0, n € N, (T})i>0 resp. and the associated
cosemigroups (1{")i>0, n € N, (1})i>0 Tesp.
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2.3. Convergence of non-symmetric forms

Now we would like to prove some properties of convergence associated with the above
Theorem. First we want to point out that if C' C % densely, C' contains enough
elements to determine the behavior of a sequence &™ along particular strongly convergent
sequences, so that (F2) turns out to be not that restrictive in comparison with (M2) as
it might seem. This shall be illustrated by the following Proposition.

Proposition 2.45. Let &", n € N, & be as in Theorem 2.41 and C C % densely.
Assume that (F2) holds. Then the following stronger version of (F2) holds:

For any w € F and any u, € ¥, n € N, u € ¥ with u, — u J-weakly there exists a
sequence {w,}, w, € H,, n € N, w, — w J-strongly such that
lm &" (wp, uy,) = & (w, u).

n

This result also extends to (F2’) in an obvious way.

Proof. Let w € % and u, € ¥,,n € N, u € ¥ with u,, — u -weakly. Then there
exists a sequence {w™} C C such that w™ — w strongly in || ||.# (and therefore in || ||g).
Now pick by (F2) for every w™ a sequence {w]"} C 4, w € H,, n € N such that
wyt — w™ A -strongly and

lm & (w))', uy,) = & (W™, u). (2.20)

Clearly,
lim & (w™,u) = &(w, u).

By Theorem 2.10 and Corollary 2.38 there exists an increasing sequence of natural

numbers m(n) T oo with
m(n)

w — w J-strongly

and

lim & (w™™ u,) = &(w, u).

The proof is complete. O
In the case of coercive closed forms generalized convergence implies an even stronger
version of (F2) than in the above Proposition. More precisely, we have:

Proposition 2.46. Let & = &/™, n € N, & = o be coercive closed forms. Assume
that C C ¥ densely and for convenience that C° C D(L) (here L is the infinitesimal
generator). Then (F1),(F2) are equivalent with (F1) and the following condition:

(FF2) For every w € D(L) C ¥ there exists a J-strongly convergent sequence {w,},
w, € H,, n € N such that

lim 8" (wy, uy,) = &(w, u)

n

for any {u,}, u, € ¥, n € N, u € ¥ with u, — u J-weakly.
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Proof. 1t is clear that (F1),(FF2) = (F1),(F2). Let us prove the converse. Assuming
that (F1),(F2) hold, Theorem 2.41 tells us that (R) holds. Take w € D(L) and define
v 1 — L)w € H. We have GYV¥,v — Gyv #-strongly by (R). Set w,, := G}V¥,v €
D(L™). We have that

(1-L"w, =¥, v—v=(1-L)w
JC-strongly. Hence L"w, — Lw #-strongly. But for every n € N
gn(wn, un) = (_annu un)Hn

making sense for every u, € 7;,.

Now take any u,, € #,, n € N, u € ¥ with u,, — u #-weakly. Then,

lim &" (wy, uy,) = im(—L"wy,, u,) g, = (—Lw,u)y = &(w, u)

by strong convergence of L"w, — Lw. m

Dealing with generalized convergence we are interested in the question, whether the
convergence & — & in the sense of Theorem 2.41 is sufficient for the Mosco- or I'-
convegence of the symmetric parts A" — . Actually, to establish this, much stronger
assumptions on the forms have to be stated; in general we need to assume the sector
constants being uniformly bounded and conditions similar to (F1) and (F2) on the dual
forms &, & to hold.

Remark 2.47. [t is clear by Theorem 2.29 and Theorem 2.41 that in case of symmetric
forms and provided C' C ¥ densely (F1) and (F2) are just another characterization of
Mosco convergence.

If we compare Mosco convergence and generalized convergence, the main question is:
can we benefit from the fact, that the symmetric parts " of given forms &” converge
Mosco to a symmetric form & being the symmetric part of a form &? As we will
see later, the difficult part is to prove (M1) since (M2) can be obtained easily in the
most applications using Lemma 2.33. Accordingly, assuming Mosco convergence of the
symmetric parts, we end up verifying (F2), as the following Proposition shows.

Proposition 2.48. Let &", n € N, & be as in Theorem 2.41. Assume that C' C F
densely. If the symmetric parts /™, n € N, & resp. associated with 8", n € N, &
resp. fulfill (M1), then (F1) holds.

Proof. Let u,, — u ¢-weakly with lim , ©™(u,) < co. Using Lemma 2.39 (ii) and (M1)

o (u,u) < lim o™ (U, u,) < lim|u, |2, < lim(6"(u,))? < oo,

n n n

which yields u € 7. ]
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Remark 2.49. Obviously, if 4™ = 0, ¥, = H,, n € N, & =0, ¥V = H, i.e.,
our generalized forms {&"} depend only on operators (A", D(A", H,)) = (L™, D(L")),
n € N (see [Sta99, Remark 1.4.10] for details), condition (F1) can be omitted.

Remark 2.50. One can redo all of the steps above, if (™, 7;), n € N and (<, ¥)
are coercive closed forms in a wide sense, that is, for some bound constant A € R,
independent from n,

(1) (@, V) is a non-negative, symmetric, closed form.

(2) (@, V) satisfies the weak sector condition, i.e., there ezists a sector constant K > 1
such that

|1 (u,v)] < Koty i1 (u,u)2athgi(v,0)? for allu,v € V.

And similarly for the &/™’s (where the sector constants can depend on n but \ not). In
this case the resolvents G, n € N and G, are only defined for o > X. One can easily

(o2

verify that all the proofs above apply to this slight generalization.

2.4, Strong graph limits and generalized forms

Definition 2.51. For each n € N let A,, be a closed linear operator on H,, with dense
linear domain D(A,,). {A,} is said to be convergent in the strong graph sense, if for
each sequence {u,}, u, € D(A,), such that u, — 0 € H #-strongly and the .#-strong
limit of { A, u,} exists, we have that A,u, — 0 € H strongly in 7.

If {A,} converges in the strong graph sense, the following linear operator (A, D(A)) is
well-defined:

D(A) :={ue H | Hun}, u, € D(A,), u, — u € H S -strongly,
A,u, converges —strongly},
and for u € D(A)
Au :=lim A,u,, with {u,} such that u, € D(A,), u, — u J-strongly

and A,u, converges .7 -strongly.

(A, D(A)) is called strong graph limit (as an operator) of {A,} and we say that {A,}
converges to A in the strong graph sense.

Definition 2.52. For each n € N let A,, be a closed linear operator on H,, with dense
linear domain D(A,). The strong graph limit (as a linear space) ', of {A,} is defined
to be the set of pairs (u,v) € H x H such that there exists a sequence of vectors {u,},
u, € D(A,) with u,, — v and A, u, — v strongly in 7.
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2. General functional analytic theory

We immediately obtain: {A,} converges to some densely defined closed linear operator
A on H in the strong graph sense, if and only if Iy, coincides with the graph I'(A) :=
{(u,Au) C H x H | u € D(A)} of A, that is, I'n, = T'(A).

We remark that the conditions “closed” and “densely defined” can be relaxed, but turn

out to be reasonable in the following considerations.

The following Theorem, which has not been proved in this setting before, ensures that
strong graph convergence is powerful enough to characterize convergence of forms and
resolvents (even in the non-symmetric case). Unfortunately, this notion of convergence
is yet hard to handle, since in many cases the domains of the generators are difficult to
specify explicitly.

Theorem 2.53. Let &, n € N, & resp. be generalized forms on H,, n € N, H resp.
Suppose C C F densely. Denote by (G2)a>0, n € N, (Go)aso 1esp. the associated Cy-
contraction resolvents, by (T}")i>0, n € N, (T3)i>0 resp. the associated Cy-contraction
semigroups and by A", n € N, A resp. the associated infinitesimal generators. Then the
following statements are equivalent:

(1) G — G, strongly for a > 0.
(2) T} — T, strongly fort > 0.
(3) A, — A in the strong graph sense.

(4) & — & in the generalized sense.

Proof. (1) < (2) follows from Theorem 2.21.
(1) & (4) follows from Theorem 2.41.

Note that in our setting (0,00) C p(A) (where p(-) denotes the resolvent set) and A is
closed and densely defined. The same holds for A", n € N.

Let us prove (1) = (3):

Assume that G — G,, strongly for any o > 0. We would like to prove I'(A) = I'.. Let
u € D(A) and set u,, := G}V,,(1 — A)u. Then u, € D(A") for every n and

tn — Wpullg, = |GYV(1 — A)u — Vul m,.

V,u — uand ¥, (1—A)u — (1— A)u S -strongly and by assumption G}V, (1 — A)u —
G1(1 — A)u = u H-strongly. Thus by Lemma 2.8 u,, — u J-strongly. Now,

|A"u,, — U, Aul| g,
<J|A"GIY, (1 — A)u — ¥, Aul|m,
=[|-(1-A"GIV,(1 — A)u+ GI¥, (1 — A)yu — ¥, Aul|g,
<, Au — ¥, Aul|g, + [|GTVL(1 — A)u — V,ullg,,
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2.4. Strong graph limits and generalized forms

which clearly tends to 0 as n — oo. Therefore (u, Au) = lim, (u,, A™u,) in & x I,
hence I'(A4) C T's.

Now let (u,v) € I's,. Then there exist u,, € D(A"), n € N, u,, — u J-strongly and
A"u,, — v F-strongly. Furthermore (1 — A™)u,, — u — v J¢-strongly and

up, = G (1 — A")u,, — Gi(u—v) =1 w € D(A)

by strong convergence of resolvents. But since 7 is Hausdorff (e.g. by Theorem 2.10),
we must have u = w € D(A). Furthermore,

Au=Aw=AG(u—v)=—-1-A4)G(u—v)+Gi(u—v)=v—u+Gi(u—v)=w.
—_——

Hence I'o, C I'(A). The assertion is proved.

Let us now prove (3) = (1):

Let A,, — A in the strong graph sense. Let @ > 0 and v € H. We have that v = (o —A)u
with u := G,v € D(A). By assumption there exist u,, € D(A"), u, — u JZ-strongly
and A"u,, — Au. We would like to apply Lemma 2.20:

|GoV, 0 — U, G i,

=[GV, (0 — A)u — V,,Go(a — A)ul| g,

SHGZ‘PH(O‘ - A)u - unHHn + ”un - ‘I]nuHHn

=[|GoVn(a — A)u — G (o — A" )un| g, + [[un — Youllm,
1

Sall‘lfn(oz — Au — (o = A" un|m, + lun — Youllm,,

which clearly tends to 0 as n — oo, since (o — A™)u, — (o — A)u strongly and V,u — u
strongly. The proof is complete. m
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3. Examples of Mosco convergence

3.1. Finite dimensional symmetric case

We would like to shortly recall the results of A.V. Kolesnikov from [Kol05al, since the
convergence of elliptic non-symmetric forms can be proved using the Mosco convergence
of symmetric a; ;-forms, in particular, if the considered forms have Mosco-convergent
symmetric parts, we can apply Proposition 2.48.

Let d > 1 and let dx be the Lebesgue measure on R¢ and Z(R¢) the Borel o-algebra
of R%. Let || denote the d-dimensional Euclidean norm and (-,-) the d-dimensional
Euclidean inner product. Denote by Cg°(IR?) the set of all infinitely differentiable con-
tinuous (real valued) functions with compact support.

Assumption 2 (Convergence of speed measures). o, > 0 dz-a.e., 0, € L{ _(dz),

n € N and there exists a function o such that o > 0 dz-a.e., 0 € L} _(R%dz) and
{ttn = ondzx} tends to p = odx vaguely, i.e.,

lim Y opdr = / Y odx
R4

n Rd

for every continuous function ¢ with compact support.

Let H, = L*(R% p,), n € N, H := L*(R%p), C = C(R?) and @, the identity
operators on C. Then H,, — H in the sense of Defintion 2.3. As above 5 = J, H,UH.
Note that ®,, is well-defined since the measures p,, have full support.

Lemma 3.1. Consider the following statements:

(1) fn— f strongly (weakly) in L*(R% dx).

(2) % — \/LE strongly (weakly) in F.

Assume that \/a,, — /o weakly in L2 (R%dx). Then (1) implies (2) for the strong
convergence and (2) implies (1) for the weak convergence. If, in addition, \/o, — /o
strongly in LE_(R%; dx), then (1) and (2) are equivalent.

Proof. The proof is taken from [Kol05a, Lemma 3.1]. Suppose first that /o, — /o
weakly in L2 (R% dx). Let us prove (1) = (2) for the strong convergence. Therefore,

loc
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3. Examples of Mosco convergence

let f, — f in L?*(R% dx). Let us find a sequence ¢, € C3°(R?) such that ¢,\/oc — f in
L*(R% dx). Then ¢, — \/ig in L*(R% odz). Hence
. £\
lgln hrrln " (gpm — \/J_n) ondx
=il [ (/= ) = lim/d(gom\/_ e =0,
m n m R

by weak convergence of /o, — /o in L?

loc

(RY; dz) and Assumption 2.

Let us prove (2) = (1) for the weak convergence. Therefore, let j% — \/LE weakly in

€. Then for every J¢-strongly Convergent sequence u,, — u we have that

lim unandx = ——u odz.
m Jrd /O R4 \/_
Now let v, — v strongly in L?(R%; dx). Then by the assertion proved before we have

that \}’L — \F JC-strongly. Clearly,

lim fnUndr = lim LU—no dx —odr = fudx.

" Jra nJra VOn " mff R

Now suppose that /o, — /o strongly in L2

loc

(RY; dz). We would like to prove (2) =

(1) for the strong convergence. Therefore, let f;Ln — \/LE strongly in 2. Then there

exists a sequence of C5°(R?)-functions {p,,} such that ¢,,v/o — f in L?(R%; dx) and
3 T fn ? . I 2

lim1 m — ndr = lim1 mVOn — fn) dx = 0.

im lim » (gp = onda = lim lim » (PmOn — fn) dx

m n n

Since lim,, lim, ¢,,1/0, = f (all the limits are L?(R¢; dz)-limits), one can find a subse-
quence 7y such that ¢y,/0,, tends to f and

11’£I1||90k» vV Ony, — fnkHLz(Rd;dx) = 0.
Hence f,,, — f in L*(R% dx). Since we can do the same with every subsequence of {f,},
we get that f, — f in L?(R%; dx).
Let us prove (1) = (2) for the weak convergence. Therefore, let f, — f weakly in
L*(R% dx). Then for every u, — u strongly in L?(R%; dz) we have

lim fntndr = fu dx.
n R4 R

Now let v, — v strongly in . By the assertion proved before we have that v, /0, —
vy/o strongly in L?(R% dx). Then

h'ran o f—;_nvnand:v = linLn " frnUn/ondr = /Rd foodr = /Rd %v odx.

The proof is complete. O
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3.1. Finite dimensional symmetric case

For each n € N consider the following symmetric form:

89(37) 0o d
"(f,g9) = Z/]Rd (x) 8951 o, dz, f,g€ C°(R).

i,7=1

Here a}';, 1 < 14,7 < d, are Borel locally integrable functions and a;'; = a}, for 1 <4,75 <
d. We will denote by A™ the symmetric d X d-matrix (A"(z)); ; ( ) r € R% Then
our forms can be written as

&'(f.0) = [ (AVS. Vg da

We suppose that the A™’s are dz-a.e. positive definite. We denote the elements of the
inverse matrix (A")~" by (a™ )7, ((A")"Y(z))i; = (@™}, (2), = € R%

For an arbitrary Borel function f: RY — R let us define the set

d
de > 0, / 4 _ < oo} ,
|lz—y|<e ’f(y)‘

where we adopt the convention % := 4o00. Evidently, R(f) is the largest open set V' such
that 1 € LL.(V;dx). Let R(A) be the largest open set V such that (a™1);; € L .(V; dx)
for 1 § i,7 < d and define R(A™) similarly.

R = {o

We say that an arbitrary Borel function f satisfies Hamza’s condition if for dz-a.e.
x € R f(x) > 0 implies x € R(f). This is equivalent to dz(R¢\ R(f)) = 0.

The following Assumption ensures the closability of (6™, C$°(R%)) (this is weaker than
the standard Assumption made in [MR92, Section I1.2.b)]).

Assumption 3. R(A) C R(0), R(A") C R(0,), dv(R4\ R(A")) = dz(R4\ R(A)) = 0.

Lemma 3.2. The form (&, 2(&)) defined by

D(Ey) = {f c L*(R% odx) | f admits weak derivatives 0;f in R(A)

for everyi € {1,...,d}, Z/ 8:U 65;) :v<oo},

2,7=1

x)0
500=3 [ a2l e, g 96

1,7=1

1s closed.

Proof. See [Kol0ba, Lemma 3.4]. O
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3. Examples of Mosco convergence

(&, 2(&,)) is the so called “maximal” extension of (&, C5°(R%)). Let us denote by
P (&) the completion of C§°(RY) w.r.t. é"ll/Q(u) = (&(u) + ||U||L2(Rd;adx))l/2. The exten-
sion of (&, C$°(R?)) to this space, denoted by (&, 2(&)), is a closed form on L?(R%; odx)
and called the “minimal” extension. Let us extend our notation to (&', 2(&;')) and
(&7, 2(&7)) in the obvious way. A.V. Kolesnikov has proved in [Kol05a] that the Mosco
topology is generally not Hausdorff (not even in the one dimensional case), i.e., additional
geometric assumptions have to be stated to identify a unique Mosco limit. Particularly,
we need to assume that the minimal and maxmial extensions coincide.

Theorem 3.3. Let /7, — /o weakly in L} (R% dz),

loc

dz
sup/—<oo, sup/\<a—1)zj|d:c<oo, 1<ij<d
n 9] Q

n n

for every bounded domain Q0 € B(R?) and there exists a d x d matriz A with Borel
locally integrable coefficients, which is symmetric and dr-a.e. positive definite. Assume

that (a='),; € L (R% dz) and

loc
af jde — a;jdr, (o) de — (a7");dx
vaguely.
Let
8lp.0) = [ (Vo Vu)dr, g0 € CRE,
R

Suppose that the minimal and mazimal extensions of (&, Ce(R?)) in L*(R?; odz) coin-
cide. Then & — & and & — & Mosco.

Proof. See [Kol05a, Theorem 1.1]. O

3.2. Infinite dimensional symmetric case

The following results are mainly based on the work of A.V. Kolesnikov in [Kol06]. We
reduce the general case to the case of a “Gelfand triplet” which shall also be used in the
results on generalized convergence in Chapter 4.2.

Throughout this section we fix a separable real Hilbert space X with inner product
(, )x and norm || ||, = (, >§(/2 which is densely and continuously embedded into some
separable real Banach space E. With £’ we denote the topological dual of E and by
(s )g: B/ X E — R the corresponding dualization. Denote by #(FE) the Borel o-field

of E. Identifying X with its dual X’ we have that
E'c X'=X C E densely and continuously

and g, (, )p restricted to £ x X coincides with (, ). Here E' is endowed with the
operator norm || ||z == || |2z r)-
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3.2. Infinite dimensional symmetric case

Define the linear space of cylindrical test functions on E by
FOF(E) ={f(ly,...,ln) | meN, feCFMR™), li,...,ln € E'}.

Here C§°(R™) denotes the set of all infinitely differentiable (real-valued) functions on R™
with compact support and all partial derivatives continuous. Define for u € FC§°(FE)
and k € E the following Gateaux-type derivative

ou d
%(2) = EU(Z’ + Sk) 8:0, z € E

Observe that if u = f(ly,...,1), then
8u_ " Of PR
% - 1 —axi(ll, coislm) g (lis k) g € FCO(E).

1=

This shows that for fixed u € FC(E) and z € E, h — 5%(z) is a continuous linear
functional on X. Define Vxu(z) € X by
ou
(Vxu(z),h)y = %(2), h e X. (3.1)

To apply our results on Mosco convergence we fix a sequence {u,} of Borel probability
measures on F and a Borel probability measure p on E.

Assumption 4. pu, converges weakly to .

Note that by Prokhorov’s theorem {u,} is tight.

Assumption 5. p is h-quasi-invariant for every h € X, i.e., j o Th’1 15 absolutely
continuous with respect to p where Ty(z) := z — h.

This implies that supp u = FE.

Now consider following sequence of Hilbert spaces {H,} = {L*(E;u,)}. Set C :=
FC(F) and H := L*(E; u). Note that C' C H densely by the Hahn-Banach Theorem
and a monotone class argument (cf. [MR92, Section II.3.a)] or [AR90, Remark 3.1]).
Let ®,, be the identity operator. It is well-defined since p has full support. Set 7 :=
U, H.UH. {H,} converges to H by weak convergence of measures.

Now consider a weakly convergent sequence h,, — h of vectors from X, i.e.,

(hns 9y — (hy 9) x

for every g € X. Suppose additionally ||h,||x = 1 for every n, [|h]|x = 1. Fix some
| € E' such that ([, h,)y # 0 for every n, which exists by the Hahn-Banach Theorem.
Denote by P, the projection Py, : E — FEy:={x € E | l(z) =0}

/<Z7Z>E
Py (2) =2z E"TEp > cE.
{l; ) x
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3. Examples of Mosco convergence

It is well known that every probability measure p,, has a conditional distribution p,(x, -)
on the real line such that letting v, := p, o (P,)”" one has following disintegration
formula

/ () (dz) = / / (@ + sho) pu(, ds)vn(d), (3.2)
E Eo JR
(see [DMT8]).
Assumption 6. Every p, is h,-quasi invariant and h,, — h weakly.
It follows from this Assumption that the p,(z,ds) have densities w.r.t. the Lebesgue
measure, i.e. p,(z,ds) = pp(x + shy)ds for v,-a.e. x € Ey.
Assumption 7. The following sequence of Borel measures

ds
Pn(T + shy)
is uniformly bounded on all sets of the type EY :={z € E | |I(z)| < N}. That is, the

sequence
ds
u(z)dp," ::/ /u x4+ shy,)————— v, (dx
/E =) Eo JR ( )Pn($+3hn) (d)

is bounded for every bounded Borel function u : E — R with support in EY .

i = vn(dr)

In particular, for v,-almost every z (hence, P, (u,)-a.e.) the function (p,(-,x))~! is
locally integrable.

For every h,, consider following partial form
Do) = FCE(B),

and -
hn, o Uu _U o ales) E
Futolts ) /Eahnahnd“”’ wo € FCHE).

A sufficient condition for the closability of gjﬁ,o is that w,, admits a logarithmic derivative
along hy, i.e. there exists a measurable function 3" € L?(E; u,) such that

Iy
dpin = _/ 905und,un
/E‘ ahn E i

for every p € FC§°(E) (cf. [MR92, Section I1.3.a)]).

Denote the “minimal closed extension” by ((5’28, @((5":8)), which is by definition the

closure of (éjflﬂf"o, FC°(F)) in L*(E; iy,). Furthermore, define a “maximal” partial form
by

for vy,-a.e. x € Ey, s +— u(x + sh,) has an absolutely

@(éﬁ‘:) = {u € L*(E; )

0 du I
continuous (ds)-version @, and 8; = (%) € LQ(E;,un)} ,
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3.2. Infinite dimensional symmetric case

and 9 9
u v

—d &MY,
oh, o, G v € D(ET)

It follows from the local integrability of (p,(-,x))™", that & is closed (cf. [AR90]).

hn, ._
& (u,v) =

Lemma 3.4. For fired n set jp := iy, Vv := vy, p = pp and h := h,. For the minimal
and maximal partial forms defined as above following statement holds

(&

1,00

2(8,0) = (6,1, 2(8,))).

m

Proof. See [Kol06, Lemma 3.3] O

Now we formulate the main result for the Mosco convergence of partial Dirichlet forms.
Theorem 3.5. Let Assumptions 4-7 hold. Suppose that there exist disintegrations p, =
pn(x + shy,)ds v, (dx) such that

(1) pin — p weakly,

(2) v, — v weakly,

(3) there exists an increasing sequence of numbers {n;}, n; T oo such that {]lEgiﬂZ"} is
tight and moreover,
~hn ~h
lEgiMn - ]lEg’:u

weakly for every n; as n — oo.
Then éjf: — g}f Mosco.
Proof. See [Kol06, Theorem 3.4]. O

We shall now deal with the gradient case. For this purpose we fix an orthonormal basis
{e; | i € N} of the separable Hilbert space X. Furthermore we fix a sequence of vectors
hy, € X, ||ha]lx = 1 weakly converging to e;. Now construct a two index sequence {e’,}
such that

(1) for fixed n every {e’ | i € N} is an orthonormal basis of X,

(2) for fixed i every {e’} converges weakly to e;.

(To do so one can easily check that the following construction has the wanted properties.
Just set ' ‘
P = The unique orthogonal projection from X to lin(e"),

and
el .= P'(h,), € :=Pi(h,)+e, i>2)
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3. Examples of Mosco convergence

Recall that a sum of closed forms is closed (cf. [MR92, Proposition 1.3.7]). We will
consider a sequence of forms
=Y 6
i=1

with the domain of definition

which is the “maximal extension” of a gradient form. The “minmal extension” of
(8,,, FC(F)) denoted by (8, 0, Z(E,,.0)) is the closure of (&),,, FC(F)) in L*(E; py,).
Note that FZC°(E) C 2(&,,) since

S (hel) = llhlly < oo
=1

for every h € X (cf. [MR92, Proof of Proposition 11.3.4]).

This type of form coincides with the infinite dimensional Dirichlet integral in the sense
of the gradient introduced in (3.1), since by Parseval’s identity

= ou 0
éa”n(u,v):Z/Eag a;j /Z (Vxu,e,) (€, Vxv)  dpn
i=1 n

:/ (Vxu, Vxv)y dity, u,ve 2(8,,).
E

Theorem 3.6. Let {u,} and {e'} satisfy conditions (1)-(3) of Theorem 3.5 for ev-
ery i. Assume additionally, that i, is €',-quasi invariant for every i. Suppose that

(€10, 2(80)) = (8,4, D(8,)), i.e., FCL(E) is dense in D(&,) w.r.t. the norm (é"u)}/z.
Then &,, — &, Mosco.

Proof. Condition (M1) follows from the fact that (M1) is fulfilled for every sequence of
partial forms {&5"}. Let us verify (M2). Since .ZC°(E) is dense in (2(&,), (@@M)iﬂ),
Lemma 2.33 implies that it suffices to show that &, (f) — &,(f) for every f € FC§°(E).
It is clear that

o) 12
sup ) (h. e, )y =sup [l = ||hfly < oo (3:3)
[ n

for all h € X. Take f = ¢(Iy,...,l1), ¢ € CC(RY), Iy, ...,lq € E', then

z/z

J1,J2=1

i
or Xy ll""a d)8$j2<l1’ <J1’ n>X<J2’ n>Xd'u”

The claim follows form the Cauchy’s inequality, weak convergence p,, — p and (3.3). [
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3.2. Infinite dimensional symmetric case

3.2.1. Logarithmic derivatives

This Subsection is taken from [Kol06] with slight changes, since it turns out that this
result will be used to prove convergence in the non-symmetric case.

Now consider the same situation as above, but assume only that u, — p weakly. It is
clear by Prokhorov’s theorem that {u,} is tight. Recall that the well-known fact, that
L?-convergence of the logarithmic derivatives of measures implies strong convergence
of the corresponding semigroups. We fix some h € X such that every pu, has the
logarithmic derivative 8i™ € L*(E;p,) along h and consider the sequence of partial
forms {& } defined by

df dg

for f,g € FC5(FE). The condition 8™ € L*(E; u,) implies the closability of these forms
(in this case h is called well-yi,,-admissible, see [MR92, Section II.3.a)]). As usually, the
maximal closure of (&' ,. 7 C¢°(E)) is considered. It was proved in [RZ92] that .7 C5°(E)

is dense in (2(&})), (&, lf)}/ %) for every partial form & if i admits a logarithmic derivative
along h.

Proposition 3.7. Let sup,, [|5;,"[| ;2(z,,,,) < 00- Then p possesses a logarithmic deriva-
tive along h and {&" } T'-converges to &'. If, in addition, ||ﬁ}’f"||L2(E,“n) = Bell 2 (g
for some B, € L*(E; i), then g!fn — @ﬁf Mosco.

Proof. Condition (M2) resp. (G2) can be verified as in Lemma 2.33. Let us verify
condition (G1). Extract from {#,"} an J#-weakly convergent subsequence, denoted in
the following again by {3."}, such that 8/ — [, € L*(E;pu) s -weakly. Then by the
properties of weak convergence in ¢

. . Oy Oy
du =1 "du, = —1 D, = — | X4
[Ewﬂu lp/Jﬂwﬁhu lin[Eah“ [Eah“

for every p € FCg°(E). Hence p has the logarithmic derivative ) := 3, € L*(FE;p)
and, moreover, 3" — [ -weakly. Now let f,, — f strongly in # with sup,, & (f.) <
oo (since otherwise (G1) is trivial). W.lo.g. f, € Z(&!). Let K C E be a compact
set. Obviously the tightness of measures {p,} and Cauchy’s inequality

(/E\K dun)2 < (E\K) [ (%ih)du

imply that the sequence of measures {v,,} = is tight. Extract a weakly conver-

A fn

Oh

O fn
on'"
gent sequence (denoted in the following again by {v,,}) v, — v. The following relations
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3. Examples of Mosco convergence

show that v is absolutely continuous w.r.t. pu:

/ pdv = hm/ afnd,un

Oy
~tim |~ [ S8 fud — [ s “dun}
" { g Oh E "
O
—— [ Sordu— [ eroan
g Oh E "
FCF(E). We also observe that f admits a weak derivative along h and, moreover,

dv

dp ol

/@ du—llm/ %d/i (hm/ (%)2(1” >1/2.(/ S02dlu>1/2
o - an ) i .

Choosing a sequence p,, — g—i in L?(F; u) one can easily complete the proof.

Hence by Cauchy’s inequality

It can be easily seen form the proof that the stronger assumption HB;LMHL?(EM) —
HﬁhHLQ(E;M) implies that )" — [, =: §)' H-strongly and (M1) is fulfilled so that
éjfn — éjf Mosco. O

Remark 3.8. Note that Theorem 3.6 works now in the case of one common orthonormal
basis {e;}, if we assume that each p,, n € N, p admits a logarithmic derivative along
each e;, i € N denoted by ™ and that G — B F-strongly. The proof is essentially
the same as above (see also [MR92, Proof of Proposition I1.3.4]).
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4. Examples of general convergence

4.1. Finite dimensional ¢, ;-forms

Let o,dx = p,, n € N, odr = i as in Chapter 3.1. Let Assumption 2 hold.

Let d > 3. For n € N let a;, b}, d}',c" € L (R%dz), 1 < 4,7 < d and define for
u,v € C°(RY)

. a . Ou Ov d n Ou
& (U, ’U) = Z ai7ja—%a—l_jdl' + Z bz a—xiv dx
i=1

i.j=1

d
—l—Z/d?uaa;dij/cnuv dx.
i=1

Then for each n (6™, C5°(R?)) is a densely defined bilinear form on L*(R% o,dz). Set
ay; = s(af; +alty), ap; = 3(al; —al,), b == (by, ..., by) and d" := (dy,...,dy).

Theorem 4.1. Suppose that

(i) we have
d
> ancs = e
ij=1
dz-a.e. for all € = (&,...,&) € RY and for every n,

(ii) for some uniform constant M > 0 we have |ai;| < M for all 1 < i,j < d and for
every n,

(iii) " + d"| € LE (R% dx), ¢ € Ld/Q(le; dx) for every n,

loc loc

w) [b* — d*| € LYRE; dx) or b od' ¢ oo R% dx) for every n,
NG

(v) for some uniform ag > 0 we have (¢" + apo,)dr — 30 g(f: is a positive measure
on B(R?) for every n,

(vi) b = B" +~" such that |37, |y"| € LL (R dx) and (" + agoy)dz — 320 g:g is a
positive measure on B(R?) and |3 € LYR%; dx) or \/ﬁa € L*(RY; dx) for every
n.
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4. Examples of general convergence

Then there exists a € (0,00) (independent of n) such that each (&7, C§*(RY)) is closable
on L*(R%; 0,dx) and its closure (&%, 2(&™)) is a semi-Dirichlet form.

Proof. See the proof of [RS95, Theorem 1.2] and note the fact that all conditions above
are taken uniformly in n. O]

Let a;j,b;,d;,c € L (R%dx), 1 < 4,5 < d satisfy the conditions of Theorem 4.1. For

loc

u,v € C5°(RY) define

& (u,v) := i /a- -%ﬂdw—l—i/b-%v dx
’ o e 89@ al'j —1 ‘ 891;1

ij=1

d ov

E d;u—d dx.
+i:1/ uamix%—/cuv T

By Theorem 4.1 there exists a closed extension of (&,, C5°(R%)) on L?(R¢; odz) which
we shall denote by (&,, Z(&,)), for some a € (0,00) as in Theorem 4.1.

Theorem 4.2. Let for each 1 <1i,5 <d

a?. i 8@? _ 0 i, _ .
Lt T = S stngly o L (Résds)
b} bi 72 (mad.
— strongly in L, . (R%; dz),

3

Vo
dr d;  odr
\/O'_n \/E ’ 8:171

c” c

— —  strongly in LY _(R% dx),

NG

where the derivatives are taken in the distributional sense.

Assume that \/a, — /o weakly in L (R% dx).

loc

(Vo)™ = 2U()" strongly in L (R d),

Also assume that C3°(R?) is dense in 2(&,) w.r.t. gﬁﬁ

Then &' — &, in the generalized sense, more precisely, conditions (F1b) and (F2) of
Definition 2.40 hold.

Before we prove Theorem 4.2, we shall consider two Lemmas, which will firstly provide a
useful observation about “local” strong and weak convergence, and secondly illuminate
the underlying structure of approximation of our forms.

Lemma 4.3. Let p € C°(RY), u,, € L*(R% 0,dx), n € N, u € L*(R% 0dz). If u, — u
strongly (weakly) in €, then pu,, — pu strongly (weakly) in 2, too.

26



4.1. Finite dimensional a; ;-forms

Proof. Note that clearly ¢ € L*(R%; 0, dz) for any n and ¢ € L*(R% odx) (with corre-
sponding dz-classes respected), if ¢ € Cg°(R?). Let {¢,,} C C°(RY) such that ¢, — u
in L*(R% odz) and

hmmHgom — un||L2(Rd;Und$) =0.
Then by Holder inequality
”QOmgO - ULIOHL2(Rd;O'd£E) < ||(P||LOO(Rd;d$)||SOm - u”Lz(]Rd;UdI) —0

as m — oo and

||90m90 - UH@HLQ(Rd;o‘ndz) < ||90||L°°(]Rd;d:r;)||90m - un||L2(Rd;ondz) — 0

as m,n — oo. The case of weak convergence follows from Lemma 2.13 since ¢ - €

Cs°(RY) for any ¢, € CP(RY). O
Lemma 4.4. Consider (&, 7(&,)) as above. Suppose that the conditions of Theorem
4.2 hold. Then (L*(RY%; 0,dz), &) — (L*(R%; 0dz), &,) in the sense of Definition 2.30.

Proof. (1) is trivial. (2) follows from the assumption. For (3) just observe that for ¢ €
CP(RY), p\/0, — py/o weakly in L2 _(R%; dz) by Lemma 3.1 and the assumption that

\/Tn — /o weakly in L2 (R dz). Also note that \/i — \/i strongly in L2 (R%; dx)

for 1 <i,7 < d by linearity. Then clearly (using the product rule)

0p 0p AN~ (1009 1N~ [ 08
(. ) ]Z:l/ ', o +2;/biaxzd1‘ 2;/@8%61
+/ﬂ¢m+a/ﬁ%m
ij Oy Op b Op?
»J 1
_;/ﬁaxz%f Z/@ax#"_"dx
/7

1 dy Op? 2 2
+§Z/\/ﬁaxi \/U_go\/a_ndx—l—oz/goondx

a;; Op Op / b; 8@
n—00 Z / \/Eaxl 8% \/_d Z

On

d&p

\/de+/%gp2\/5dx+a/¢%dx
ag

l
2
The proof is complete. O
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4. Examples of general convergence

Proof of Theorem /.2. First note that we are in the situation of Remark 2.50 and that
the sector constants K, of the &™’s are uniformly bounded (since all closability conditions
are taken uniformly in n) and thus Corollary 2.42 applies. Let us first prove (F1b).
Let u, € Hy, v € H, u, — u J-weakly with lim (&, ,)"/?(u,) < co. By Lemma
4.4 we can consider the sequence of Hilbert spaces 7z = (J,cn 2(EMU2(E,). We
can extract a subsequence {u,,} converging weakly in J#; to some @ € 9( &,) with

lim, égjl(unk) > &,41(@). But clearly @ = u, thus we obtain (F1b) (here we have used
Lemma 2.14).

Now we would like to prove (F2). Let ¢ € Cg°(R?). We choose ®,(¢) = ¢ — ¢ as
the desired JZ-strongly convergent sequence. Then, if u,, € Z(&7}), u € D(&,), un — u
A -weakly with sup,, (6" ,)"/?(u,) < oo, we have by the assumption that \/a, — /&
weakly in L2 _(R% dz) and Lemma 3.1 that u,./0, — u\/c weakly in L?(R% dr) and
(“locally”) via partial integration:

3@ ou,

n —dx b
() le/ Y0, 0w, +Z/ o,
—l—Z/dnaun /c"udx+a/uad:c
‘ e Py Puno,

dar; dyp 02 d By
- b d n 2 d b
Z { Oz, &Eiun x+/a17jxixjun x} +;/ " Oz,
—Z {/ gi’ gpund:p%—/d?%undx} +/c"g0undx+a/g0unandx

d
oay ; %) a;;
— 2] —1
= Z { 7. (Von) —axium/andx + o o um/anda:]

dx

dx

—Z { / git(\/a_n)_lgoun\/a_ndx+ \;l—n_—um/ada:}
/\/_gpun\/adx%—a/gounand:v

d

=X |/ FvergE

1,j=1

Sy g;ufdx—i{ O oy [ 0

CLL]' 82(,0

\/E[EiQTj

uﬁdm}

|

=1

+/%gpu\/5dx+a/gpu odx
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4.2. Infinite dimensional a, j-forms

d d
da; ; Dip [t )
. 1[ oz, 8xiu x—l—/a,]xixju T +ZZI/ 0xiu T

d
d.
— [ 8Zgoudx%—/d,;a—gpudx]+/c<pudx+oe/gouadx
xA

i=1 Oz; i

d d
B dp Ou Op
=2 / i gy 0, T Z:l / b

- a(gp,u)
The proof is complete. O

4.2. Infinite dimensional q; ;-forms

Let £, X, {u.}, u be as in Chapter 3.2, i.e.,
E' c X'=X CE densely and continuously.

Considering this situation we would like to make the slight change that we consider
FCp(E) instead of FCF°(E). ZC°(F) is defined to be the linear space

FCX(E) ={f(l1,...,ln) |meN, feCXRM), li,...,l, € E'},

where Cp°(R™) denotes the space of all infinitely differentiable continuous and bounded
(real-valued) functions on R™ with all partial derivatives bounded. This does not af-
fect the general setting, since this choice is standard. Nevertheless note that we need
FC§(F) functions for the results of A.V. Kolesnikov in [Kol06]. Let Assumptions 4
and 5 hold. Then H,, := L*(E;u,) — L*(E;u) =: H in the sense of convergent Hilbert
spaces (here we set C':= .ZCy°(E)). As usually set # =, H,UH.

Assume that there exists an orthonormal basis Ky := {e; | i € N} of X whose elements
are well-p,-admissible for each n € N (see Chapter 3.2.1). Denote by 3! the logarithmic
derivative of u, along e;; n € N,7 € N.

Then next Lemma is analog to Lemma 4.3.

Lemma 4.5. Let ¢ € FC°(E), u, € L*(E;u,), n € N, u € L*(E;p). If u, — u
strongly (weakly) in €, then pu, — pu strongly (weakly) in F, too.

Proof. Note that clearly ¢ € L?(E; u,) for any n and ¢ € L*(E; ) (with corresponding
L?-classes respected), if ¢ € FCP(E). Let {¢n} C FC(F) such that ¢, — u in
L*(E;p) and

lgln h}LnHSDm - unHL2(E;un) =0.
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4. Examples of general convergence
Then by Holder inequality

leme = woll 2 < N @lleeenllem = wll 2z — 0

as m — oo and
”Spm@ - un(PHLQ(E;un) < H(PHLOO(E;#n)H(Pm - unHLQ(EQ;U'n) —0

as m,n — oo (note that sup,||¢||z=(gpu,) = sup, ess supi’é"bzgo( ) < 00). The case of
weak convergence follows from Lemma 2.13 since ¢ - ¢ € FC°(F) for any ¢,v¢ €

FCO>(E). O

Fix n € N. Let A™ = (agd))ueN, where each a”), i,j € N is a ZA(F)-measurable

function on E. For each z € E define a linear operator on X by

h—ZZafz )(h,e;)y e, heX.

=1 j=1

Assume that Z;’jzl|a§?|(z) < 00, z € E, so that each A™(z) is a bounded (even
trace class) operator. Assume that z — (A™(2)hy, hs) « 18 #(E)-measurable for all
hi,ho € X. Furthermore, assume that there exists a uniform ellipticity constant ¢ > 0
not depending on n with

(A™(2)h, ) = ZZ@“” (hyei)y thyes) > cllhll% (4.1)
i=1 j=1

for all h € X.

Set A = L(AM 4 AM) A0 = L(A0) — AM) where A®™)(2) denotes the adjoint of
A™(2), z € E. One easily observes that A and A resp. can be constructed as in (4.1)
with a(") = 3(a;; ™ 4 a( )) and a§j}> = %(agz) ag ")) resp. Assume that [|A®™)]| 4 x) €
LM(E; i), IIA ")Hz € L“(E'un)

Let ¢™ € L®(FE; u,) and b™ d™ € L*(E — X; u,) such that

/ (0™, Vxu) . + ™) dp, > 0,
E

/E(<d VXu>X+c )dunZO

for all w € FCP(E), u > 0.

60



4.2. Infinite dimensional a, j-forms
Define for n € N, u,v € FC°(E)
E"(u,v) = <A(n)(Z>VXU(Z), VXU(Z)>X pin (d2)
—i—/ <b(” ), Vxu(z >X 2) i (d2)
+ / u(z) <d(”)(z),VXv(z)>X fin(d2)
—l—/Ec(")(z)u(z)v(z)un(dz).

=

Then for n € N each (", ZC°(E)) is a densely defined positive bilinear form on
L*(FE; j1,) which is closable and whose closure (6™, 2(&™)) is a Dirichlet form. Each &
has a sector constant bounded by

Ky = sup [ AW (2) L) V 14 (2) = 80 (2) ]

z€EE

by the results of [MR92, Section I1.3.e)] (and also fulfills the (semi-)Dirichlet property).
Define
Q" (u,v) ::/ (Vxu(z), Vxv(2))x ttn(dz), u,v € FC(E).
E
Since each e;, i € N is well-u,-admissible, (Q",.#ZC°(F)) is closable and its closure

(Q", 2(Q")) is a symmetric Dirichlet form (cf. [MR92, Sections I1.3.a) and I1.3.b)]. Let
us define (@, Z(Q)) in the same way.

For each n € N, i, € N set bg") = (b, €i) dg") = (d", €;) and assume that

a4, 4 ) € [2(B; ).

4,7 071 i

Theorem 4.6. First assume that the sector constants of the &™’s are uniformly bounded,
i.e., sup,, I, < 0.

Then suppose that for i,j € N there are given a;;,b;,d;,c € L*(E;u) such that
a")
bg") — b;  IC-strongly,

d™ — d,  #-strongly,

)

— a;; JC-strongly,

A" = ¢ A -strongly,

fori,5 € N and that the limiting coefficients fulfill the same conditions as above.
Assume also that for i € N there exists a 3; € L*(E; ) such that

185" | 2222y — 11Bill L2(200)-
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4. Examples of general convergence

Also assume that there exists a uniform constant co > 0 such that

@ (u,u) < & (u,u)

for every u € Z(&™) C 2(Q™), n € N.
Assume that (&,. 7 Cy°(E)) defined as follows

ou Ov > ou
& (u,v) : Z/a”@ezaejdu Z-Zl/EbZa_eivd

i,7=1
+Z/ud~@du+/cuv du, wu,ve . FCrF(E)
— 5 Zaei = ) ) b ’

is closable with closure (&, 2(&)) and that FC;°(E) is dense in Z(&) w.r.t. &
Then &" — & in the generalized sense, in particular, (F1b) and (F2°b) hold and
(&, 9(&)) is a (semi-)Dirichlet form.

Lemma 4.7. Let the conditions of Theorem 4.6 hold. Then (L*(E; py), &™) — (L*(E; p), &)
in the sense of Definition 2.30.

Proof. (1) is trivial. (2) is a condition on &. To prove (3) let ¢ € ZC°(FE). Then
clearly

_(n) Op D¢ (n&ﬂ
"(, @) Z/”@aed+2/b
0
- (n) 9" (n), 2
+2Z/Edz ae,dmﬂr/c @ dpn
5906‘90 02
n—»ooz/alja 86] _Z/b d

1,j=1

+ = Z / du+ / cpidp
—& (90790),

where we have used Lemma 4.5 and the product rule for Gateaux derivatives. Note
that all sums are finite by the above conditions on the coefficients (cf. [MR92, Section
I1.3.a)]). O

Proof of Theorem 4.6. We would first like to prove (F'2'b). Note that by assumption the
sector constants K, are uniformly bounded. Set C' := C' = ZCy°(E). By assumption

C C 2(&) densely w.r.t. 5’11/2. Let ny € N, ny T 00, ngy1 > ny. Let uy € L*(E; piy,), u €
P(&) such that uy, — u . -weakly and sup,, (&7")"/?(u;,) < co. W.lo.gu, € 2(E™). By
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4.2. Infinite dimensional a, j-forms

coQ7 (u,u) < &M (u,u) for each u € 2(E™) C 2(Q™) we have that sup, (Q1*)Y2(uy,) < oo.
Clearly each uy admits a weak derivative in each direction e; denoted by % a“’“ Hence by
the proof of Proposition 3.7 and Remark 3.8 Q" — @ Mosco (since a subsequence of
B converges S -strongly to ! := (; being the logarithmic derivative of p in direction

e;) and we can extract a subsequence {uy, }, ux, € Z(&™*) such that uy, — u J-weakly

o
and u admits a weak derivative in each direction e; denoted by such that ukl — %

weakly in 7. Clearly for ¢ € FC°(FE) by Lemma 4.5

(i) Op Duy, - (k) Op
&M kl gp,ukl Z/ iy ael jl nkl —|—Z/EbZ Ky a_eiukldﬂnkl

2,7=1

+ Z/ d(nkl) aUkl d nkl / (k) goukzd:unkz
8g0 (9u o
22 Lo g X v
+Z/d190 4 /cwudu
i1 JE de; E

=8 (p,u).

Since this is the limit of a subsequence we immediately get

lim & (9, ur) < &(p,u).
k

(F2'b) is proved.

To prove (F1b) let u, € L2(E; ), u € L*(E; ), un — u S-weakly with lim,, (67)/?(u,,) <
00. By Lemma 4.7 we can consider the sequence of Hilbert spaces % = |J,,cy 2(£™)UZ(E).
We can extract a subsequence {u,, } converging weakly in . to some @ € 2(&) with
lim, &™ (u,,) > & (i) (here we have used Lemma 2.14). But clearly & = u, thus we
obtain (F1b).

The proof is complete. O
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5. Applications to stochastics

5.1. Convergence of laws

Let E be an infinite dimensional separable complete metric space (i.e., a Polish space)
resp. a locally compact space if finite dimensional. Define .#Cp°(E) as in the previous
Chapter. Denote by %,(E) the set of all bounded Borel-measurable (real-valued) func-
tions on E and by C,(E) the set of all bounded and continuous (real-valued) functions
on K.

Let 4 be a Borel probability measure on the Borel o-algebra #(F) of E. Let
M= (Qa M (Xt)t207 (]PZ)ZGE)

be a right process with lifetime ¢ = +oo (i.e., the process is conservative). Define a
probability measure P on (2, .#') by

P(I) ::/E]PZ(F)M(dz), Fes.

Let J := {t1,...,tx} C [0,00), 0 < t; < .-+ < tx, k € N. The finite dimensional
distribution P7 of P on (E7, Z(E7)) is defined by

P7/(A) :=P((Xy,,..., X;,) €A), Ac B(E).

Let m,, n € N, m resp. be fully supported Borel measures on E such that m, — m
weakly (resp. vaguely if E' is locally compact). Then

L*(E;my,) =: H, — H := L*(E;m)

in the sense of convergent Hilbert spaces, where C' := FC{°(F) C L*(E;m) is dense
(see e.g. [MR92, Section I1.3.a)]). As usually set ¢ := |J, H,UH. (If E is locally
compact, we take C' := C§°(E)).

Assume that for every n € N there exists a conservative right process

M™ = (Q,. 4, (X")iz0, (PM).cr)

z

on a common measure space (£2,.#) and with common state space E. Define P™),
P/ similarly w.r.t. some Borel probability measure p,, n € N on %(E).
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5. Applications to stochastics

Assumption 8. (1) u, — p weakly.

(2) Each p,, n € N, u resp. is absolutely continuous w.r.t. m,, n € N, m resp. with
positive densities h,, n € N, h resp.

(8) hy € L*(E;my), n € N, h € L*(E;m) resp. and sup,,||hn || r2(2im,) < 0.

Clearly by weak convergence,

lim/gphndmn:hm/godun:/gpdu:/gohdm
" JE nJE E E

for any ¢ € FC°(E) C Cy(E). Hence we get by Lemma 2.13 that h, — h weakly in
. (The argument is similar in the finite dimensional case with vague convergence and

C = C3*(E) C Co(E)).
Assumption 9. (1) {P™},cn is tight.

(2) The (common) path space 0 of the M™ s is Polish (provided the processes are
constructed canonically).

(1) can be verified in many cases with help of the so called Lyons-Zheng decomposition
(cf. [FOT94], [LZ93], [LZ94], [LZ96], [RZ96] and [Tak89]). For (2) we can use the so
called Skorokhod metric, since our considered processes are P(™-a.s. right continuous.

Theorem 5.1. Let M, n € N, M resp. be right processes as above associated with
(generalized) Dirichlet forms &™), n € N, & resp. on L*(E;m,), n € N, L*(E;m)
resp. Denote by (Tt(n))tzg, n € N, (T})>0 resp. the associated L*-semigroups. Let
Assumptions 8 and 9 hold. If Tt(") — T, strongly in € for any t > 0, then P — P
weakly.

Proof. Let J = {t1,...,tx}, 0 < t; < -+ < t, k € N be a subset of [0,00). De-

note by pi(-,dx), t > 0 the transition semigroup of (X;);>o. Let FCP(EY) 3 g(z) =
gi(x1) -~ gi(ax), 9 € FCP(E), 1 < i < k. Then

/gdlp‘]Z/gl(th)"'gk(th)dP
//91 Xi,) - gr(Xy,)dP, pu(dz)

// /91 x pm z d$1)92<33'2)29t2 n(xladf@)

gk Tk ptk —tp— 1(’7’?](2 1,dl'k) (dZ)

=/bmmm2ﬂm~4mtkgk~»@mw@.
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5.1. Convergence of laws

pif is a m-version of T, f for every f € B,(E) N L*(E;m). Then clearly

Dty 1—tp_o (gkflptkftk,lgk)

is a m-version of
T;fk—1—tk—2 (gk?—thk—tkqgk)

since gx—1pt,—t,_, 9k 15 bounded and contained in L?-class of Jk—114—t,_, 9. By an in-
duction argument

ptl (glpt2—t1 (g2 o 'ptk—tk,1gk e ))

is a m-version of
Ty (1 Togty (92 Thptr Gk ).

A similar statement holds for every n € N. Since h,, — h J¢-weakly as a consequence
of Assumption 8 and Tt(”) — T}, t > 0 strongly in the sense of Definition 2.15 we get

lim / g dP™-/
—1i 7 (g ™) D) Nd

17rln t (91 ta—t1 (92 ti—tr_19k ))ditn
=i T(”) T(”) .. .T(”) N d

lén t1 (gl to—1t1 (g2 tkftkflgk )) n @My
:/7—;51 (91Tt2—t1 (92 e 'Ttk—tk—19k T ))h dm

:/El (glﬂ2—t1 (92 e Ek_tk—lgk U ))d:u

by an induction argument, since
n(:—)tk_lgk - Ek—tk_lgk
JC-strongly by strong convergence of semigroups and
gk'*ljjt(knf)tkilgk - gkfthkftk,lgk

A -strongly by Lemma 4.5 (Lemma 4.3 resp.).

lim/g dP = /g dP’

for every g € & :=lin{g | g(z) = g1(x1) - - - g (zx), g: € FCFP(E), 1 <i < k}.

Note that Assumption 9 (1) claims the tightness of {PP™}. Now assume that P™ £ P
weakly. Then by Prokhorov’s Theorem (which can be applied by Assumption 9 (2))

there exists a subsequence {IP(™)} of {IP(™} which weakly converges to some probability
measure Py on (92, .#), P; # P. But

lim/f d]P(")’J:/fd]PJ

Hence we obtain
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5. Applications to stochastics

for every f € Z. On the other hand, by weak convergence P(™) — P; we have

liin/f dP(”k)’J:/fdP{

for every f € Cy(E”), J as above. Clearly

/fd]PJ:/fd]PJ

for every f € &2. We would like to show that o(2) = Z(E”’). We follow an argument
found in [MR92, Chapter IV.4.b)]. Therefore note that by the Hahn-Banach Theorem
(cf. [RS72, Theorem IIL5)) {f | f(x) =sinly(z1) - -sinlg(xy), L € E', 1 <i <k, x =
(21,...,7) € E7} separates the points of E7 i.e.,

(B/ x E)\d = | J (sinly---sinly,sinly - -sinly) (R x R) \ d)

l,eE’

1<i<k
where d,d" denotes the diagonal in £/ x E/, R x R resp. Since E’ x E7 is strongly
Lindelof as a separable metric space the above open cover of (E7 x E7)\ d has a
countable subcover, i.e., there exist [;, € E', 1 < i < k, n € N, such that K :=
{sinly, ---sinly, | n € N} separates the points of E/. Now by [Sch73, Lemma 18, p.
108] it follows that o(2?) = o(K) = o((E”)) = B(E’). Clearly & is an algebra. Now
by monotone class arguments (by setting

Hy = {f ‘ f € B, (E’) such that /fd]PJ:/fd]PJ}

as our monotone vector space) we get that

/fd]PJ:/fleJ

for every f € %, (E”7), J as above. Since the finite dimensional distributions of the
process determine the probability measure Py uniquely, we get Py = P on (Q,.#),
which creates a contradiction. Thus P — P weakly. O

Remark 5.2. If we had assumed instead, that h, — h F€-strongly, which in our case
would have followed from ||hy | 12(Em,) — ||PllL2(8m) by Lemma 2.12, weak convergence

of semigroups Tt(n) — T, t > 0 would be sufficient for the same result (using Lemma
4.5). This completes the above result in terms of Theorem 2.41, which grants the weak
convergence of co-semigroups and thus we get a sufficiently strong type of convergence
of the dual processes M("), n €N to M.
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A. Remaining proofs from Chapter 2

In this chapter we want to repeat some of the proofs from [KS03]. Some proofs might
also be taken from [Kol05a] or [Kol06]. Some of the proofs have been rewritten for this
paper, some even completely redone. All proofs that cannot be found in this form in
literature are left to read already in Chapter 2.

Please note that we still use the convention H := Hy, ®,, := ®, and C := C.

Proof of Lemma 2.7. (1): For the “if”-part assume that ||u,||g, — 0. Set ¢,, =0 € C
for every m € N. Then

lim lim||w,, — ©,,(0)|| g, = lim Lim||w,,|| g, = 0,

hence clearly u,, — 0 JZ-strongly.

For the “only if”-part assume that u, — 0 € H strongly in J#. There exists a
sequence {¢,,} C C with ¢, — 0 in H and

lim lim ||, — @, (o) || g, = 0.

Clearly,
T2, < Tl — Do (), + T 11, — 0
as m — oo.

(2): Obvious.

(3): Let u, € Hy, n € N, u € H such that u, — u S -strongly. Choose {¢,,} C C with
limy, || om — ul|lg = 0 and lim,, lim, ||, (¢.m) — sl g, = 0. Evidently,

Wwnllzr, = llullal < llun = @nlem) o, + [[®n(m) @, = [lullml-

The first term tends to zero as m,n — oco. Taking n — oo in the second term, one
obtains

llomlle = llullal < llom = wllu,

which tends to 0 as m — oo.
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A. Remaining proofs from Chapter 2

(4): Let {a,,} C C with @, — v in H and {0,,} C C with ¢,, — v in H. Then by
Cauchy’s inequality

|<um Un)Hn - (u7 U)H|
= [(tn — P (tm), vn) i, + (P (tim), vn — Pp(Om)) 1, + (Pr(lm), Pu(Om))m, — (u,v)m|
< a1t — P () | 1, + 1P () | 1, (07 — P (O[] 2,
+ (P (), Pr(Om))m, — (w,0)m| . (A1)

By (3) {||vnllm,} is uniformly bounded in n (and in m) as clearly is {||®y(@m)||m, },
too. So taking the limit m,n — oo the third line of (A.1) tends to 0. But by the
polarization identity and linearity of each &,

(®u(i), Bu()) i1, = § [[Pliin) + DTy, — [ i) — D), ]

1
— 7 e+l = e =vlla] = (w0)n

as m,n — oo, thus the fourth line of (A.1) tends to 0 as well.

]

Proof of Lemma 2.12. The “only if”-part follows from Lemma 2.7 (3) and (4) combined
with the fact that &, (¢) — ¢ strongly for every ¢ € C.

To prove the “if”-part, let ¢, — v in H, {¢,} C C.

. Yo . T 1/2
hqgl hgn”un - én(wm)”Hn = hrfln hrrln ‘HunH%{n - Q(Unv q)n(@m))Hn + H(I)n(gpm)H%{n‘ /

. 1/2 .
= tim [[|ull}; = 20w, m)n + llomlF ] = lim]lu = gl = 0.

]

Proof of Lemma 2.13. The “only if” part follows from the fact that ®,,(¢) — ¢ strongly.

To prove the “if” part, let {u,}, v as in the assertion and (u,, ®,(¢))n, — (u, )y for
all ¢ € C'. Take v,, — v strongly in 7. By strong convergence there exists a sequence
{om}, pm € C with ||¢mn — v|lg — 0. We have to prove (un,vn)m, — (u,v)g. By
Cauchy’s inequality one obtains
|(tn, Un) 11, — (u,0) |
< (uns Vo = Polom)) i1, | + [(Uns Pr(m)) 1, — (s 0)m|
<[l [vn = Pr(om)|m, + | (s Polom)m, — (w,0)ul.

{||vnllm,} is uniformly bounded in n by assumption, ||v, — ®,(¢m)| m, tends to zero
as m,n — oo by strong convergence. Furthermore, by assumption, (u,, ®,(¢m))m, —
(u, o) as n — 00, so the last expression yields by Cauchy’s inequality

(s om) i = (u,0) | = (w4 om — V)| < lullmllv—@mlla —0

as m — 0Q. O
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Proof of Lemma 2.14. (1): Pick a complete orthonormal basis {e;} of H. By uniform
boundedness of {u,} we can assume that

m(un, \Iln(el))Hn =:a1 € R
exists. Similarly, o
lm(up, ¥, (ex))m, =: ax € R.
By a diagonal argument we can find a common subsequence n; T 400 such that

h}n<unzv \Dnl(ek))Hnl = Qg

for every k € N.

Fix N € N. Let £ :=1lin{U,(ex) | k=1,...,N} C H, and Py~ : H, — £
be the orthogonal projection on the (finite-dimensional) linear subspace £~ of H,.
{W,(er) | k=1,...,N} clearly is an orthonormal basis of £V (recalling that the
U,,’s are unitary operators). Clearly for every n € N,

N

P_%{V (un) = Z(um W (er))m, Vnler),

and therefore (using the orthonormality of the W, (ex)’s),

N N

. 2 . .
> laxl* = hllfnz |ty Wy (e0)) i, | < T Py () [, < T, |7, < 00
k=1 k=1

for any NV € N. This gives us the existence of

[e.o]

U= Zakek € H.

k=1
Let ¢ € Uyslin{ex [k =1,...,N} = Co C H. It suffices to prove that
hlrn(unn \Ijnl(@))Hnl = (u> SO)H

for every such ¢, noting that Cy C H is dense.
So, let ¢ = chvzl(gp, ex)mer, (i-e., ¢ depends only on the first NV coordinates). Then,

(u, ) = Z ar (e, ex)n

N

= lim >ty U (€r)) 1, (W, (1), Wi (90)) 1,

— 1 (P (), V()
= h{n(unla \Ijnl (@))Hnl :
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A. Remaining proofs from Chapter 2

(2): Suppose sup,,||us||m, = co. Then there exists a subsequence {u,, } of {u,} such
that ||, ||m,, > k. Setting

1 Up,
Vp =
ko lun .,

one has ||vg|m, = 1/k — 0 and hence by Lemma 2.7 (1) vy, — 0 in J#, which

implies (up,, vk)m,, — (u,0)g = 0. On the other hand,

1
(s V) i1y, = T Nt [z, 2 1.

This is a contradiction and thus we obtain sup,, ||u, || #, < co.
Let {v,} be a sequence with v, € H,, which strongly converges to u (which exists
by Corollary 2.11). Then, (upn,vs)n, — (u,u)y. Hence,

0 S h_muun - Un”%—[n
n

= h_mmunH%{n — 2(Un, Vp)m, + HUHH%In)

= limunf7, — fJull%-
n

This completes the proof of the first assertion. The second follows from Lemma 2.7
(3) and Lemma 2.12.

(3): The “only if”-part is trivial. We prove the “if” part. The assumption implies
that u, — wu weakly. Setting v, := u, and v := u in the assumption, we have
l|unlla, — ||u||m, which proves the assertion by statement (2) of this Lemma.

O

Proof of Lemma 2.17. (1): For any ¢ > 0 there is a unit vector u € H such that
|Bullg > ||B|lg@) — €. Let u, € H, be strongly converging to u. Note that
|tn|| g, — 1. Since B,, — B strongly, we have ||B,u,| g, — ||Bu| g and therefore,

| Bptin || 1,

lim|| B, || #(m,) = lim = ||Bullg > || Bl z@m) — ¢,

vl m,,

which gives the desired statement.

(2): There is a sequence of unit vectors u,, € H,, such that ||| B, #(#,)— || Bntin || m,| — 0.
Replacing with a subsequence, we assume that w, weakly converges to a vector
u € H with ||u||g < 1. Since B,u,, — Bu strongly by the assumption, we have

1Bl > 1 Bullsr = || Byt |, = lim | B 1,

which together with (1) completes the proof.
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Proof of Lemma 2.19. Note that the compactness of B is equivalent to that of B. Let
{u,} C H, be a sequence of vectors in H weakly converging to a vector v € H. It
suffices to prove that Bu,, — Bu H -strongly. We easily see that Bu,, — Bu H -weakly.
For each m € N, there is a sequence u,, ,, with u,,,, € H,, such that lim,, u,, , = w,, J€-
strongly. Since B, — B strongly, we have lim,, Bnumm = Bu,, -strongly. A diagonal
argument yields (see Corollary 2.37) that there is a sequence of natural numbers n,, T co
such that

lim wp, p,, = u J-weakly, (A.2)

lgnlllénmum,nmﬂmm — || Bumllul = 0. (A.3)

The compact convergence B,, — B and (A.2) together show that lim,, Bnmummm = Bu
A -strongly. Hence, by (A.3), ||Bun||nx — ||Bullg and so Bu,, — Bu H-strongly. This
completes the proof. n

Proof of Theorem 2.29. The proof uses only our notions of convergence and basic facts
about symmetric closed forms, which can be found e.g. in [MR92] or [FOT94], in
particular, if we refer to Proposition 2.36 (which is stated after this Theorem), we shall
remark that the proof does not depend on the progress of this paper and can be found
in [MR92, Chapter 1.2]. We also use Lemma 2.37, whose proof is self-contained and can
be found later in this Appendix.

(2) < (3) is a special case of Theorem 2.21.

Let us prove (1) = (2). Let a > 0, {u,}, u, € Hp, u, — u € H strongly. Define
Zn = Glu,, z = Gau. The vector z, is characterized as the unique minimizer of
v E(v,0) + a(v,v)g, — 2(un, v) g, over Hy, (cf. [MR9I2, Proof of Theorem 1.2.6] and
also [MR92, Theorem 1.2.8]). Since sup,, |G%|| #(m,) < !, we can extract a subsequence
of {z,} by Lemma 2.14 (1), still denoted by {z,}, which converges weakly to some z € H.
For an arbitrary given v € H by condition (M2) we can find a sequence {v,}, v, € H,,
v, — v strongly such that lim,, &"(v,, v,) = &(v,v). Since for every n,

(gm(zn7 zn) + CY(Zn, Zn)Hn - 2(un7 Zn)Hn S éan(vna Un) + a(“n; Un)Hn - z(una Un)Hna (A4>

by taking condition (M1), Lemma 2.7 (3) and Lemma 2.14 (2) into account, we find in
the limit

EZ2)+a(z,2)g — 2w, 2)yg < E(v,v) + a(v,v)y — 2(u,v)y.

Therefore Z = G,u. By the uniqueness of such Z it proves that z, — 2z weakly. We now
prove that (z,,z,)m, — (2,2)y. By (M2) we choose {v,}, v, € H,, v, — z strongly
such that lim,, &"(v,, v,) = &(z, z), therefore, by rewriting (A.4) as

2 2

Un
Zp — —

Un
Up — —

E™(2ny 2n) +

< E™(vp,v,) +

Hy,

Hy
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A. Remaining proofs from Chapter 2

we get in the limit again by condition (M1) and Lemma 2.7 (3)

Up, 2
Zp — —
«Q

z — —
«

Y

2 U
H

lim
n

Hn
hence Hzn — %HZ — ||z — %”i{’ and this together with Lemma 2.7 (3) and Lemma
2.14 (2) concludes the proof.

Let us now prove (2) = (1). Suppose G converges strongly to G, for every a > 0. We
first want to prove (M1). For @ > 0, n € N define approximate forms

M u,) 1= alu — aGlu,v)m,, wv € H,

(cf. Proposition 2.36 and [MR92, Chapter 1.2]). Now let {v,}, v, € H,, v, — u € H
weakly. By the strong convergence of G7, we have

lim &™) (uy,, 1) = €@ (u, v)
for every u,, — u strongly. First observe that for every n, a > 0,

gn,(a) (Una Un) - éam(a) (Uny un) - 26”07(0[) (u”’ Un — Un)
= gm(a) (Una /Un) + gm(a) (urw Un) - 25”7((1) (Un, /Un)
= @@n,(a)(un = Up, Up — Un) > 0.

So for every n, a > 0,
E" (Uy, vy) > @@"’(a)(vn, Up) > @@”’(a)(un, Up) + 2 () (U, Uy — Up).

It is easy to see that v, — u,, — 0 weakly, thus, by strong convergence of {G”} we get
28 (up, vy — uy) = 20(ty — @G Uy, v, — uy) g, — 0. Taking lim, we get for every
a>0

lim & (vn, vn) > & (u, ).

n

Since this holds for any a > 0, we conclude

lim & (v, 1) > &(u, ).
(M1) is proved.
To prove (M2) let u,, — u strongly. By strong convergence of {G”} we have

&(u,u) = lim lim &™) (uy,, u,,)

a—0o0 N

and
N n
lim lim oG} u,, = u.

a—0o0 N

By Lemma 2.38 (for ¢ is metrizable) pick a sequence of natural numbers «,, T oo with

& (u,u) = lim &™) (u,, u,) and  lim o, G u, = .
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Set wy, := a, G, u,. Observe that w, — wu stongly. Using Proposition 2.36 (ii) we get
é"”’(a”)(un,un) = & (wy, wy) + ap||u, — wnH%,n > & (wy,, wy,)
for every n. Taking lim,, and using (M1) proves the assertion. O

Proof of Lemma 2.37. The proof is taken from [Att84, Lemma 1.15 and Corollary 1.18].
First, let {a,m} C R, n € N, m € N be a double indexed sequence. We will prove that
there exists a mapping n +— m(n) increasing to 400, such that

h_m An,m(n) > h_m h_m Anym - (A5>
n——4oo m—-+00 n—-+00

Let a,, :=lim, ., a,m, and a :=lim,_  _a,. If a = —oo, there is nothing to prove.
So, assume a > —oo and take (@,),en a sequence of real numbers defined as follows:

If a < +o0, take a, := a — 277, if a = +o00, take a, := p.

By definition of a, there exists an increasing sequence (my)pen, m, T +00 such that

am > ap forall m >m,.
This can be condensed in
A > (a—=2"P)Ap forall m>m,.
In the same way, there exists an increasing sequence (n,)pen, 1, 1 +00 such that
Unim, > (am, —27F)Ap forall n>n,.

Set m(n) :=m,, if n, <n < n, and verify that (A.5) is satisfied: when n, <n < n,.q,
we get by the above

Unm@m) > (m, —277)Ap > (((a —27F) Ap) —27P) Ap.

Thus, for all n > n,
Unmem) > (((@=27P) Ap) =277) A p.

It follows that
m  anmm) > (((@—=277) Ap) —277) Ap.

n—+oo
This being true for any p € N, using the fact that for any a € R,
(((a=277)Ap)=27F) Ap
increases to a as p goes to +00, we get:
lim apme) >a= lim lim a, ..

n—-+o0o m—-+00 n—-+00
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A. Remaining proofs from Chapter 2

This proves our first assertion. Clearly, replacing a,, ,, by —a,,» we obtain

Ty < T T g (A.6)
n—-o0o m—+00 n—-+00

Now let us prove the Lemma. Therefore, let {z, .}, {zm}, = as above. Set a,n, =
d(xpm, ) C R. By the above there exists an increasing map n — m(n) such that (A.6)
holds. By definition of ay, ,

lim a,, = lim d(z,m,7) = d(@m, )
n—-4o0o n—-—+o0o
and
lim lim a,, = lm d(z,,z)=0.
m—-—+00 n—-+00 m——+oo
So,
nl—{riloo d(xn,m(n)a I) =0,
which proves the assertion. O
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