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Chapter 1

Introduction

Background & Objective

A commonly posed question in demand theory asks for properties of indi-
vidual demand that are inherited by aggregate demand. A discussion of this
question may for example be found in [Mas-Colell et al., 95].

However, as declared in the preface to [Hildenbrand, 94], one should
rather ask for properties that are satisfied by aggregate demand but not
necessarily by individual demands, i.e. properties that are created by ag-
gregation. The idea that is mainly followed is to obtain “well behaved” ag-
gregate demand for “sufficiently heterogeneous” agents in large economies,
as “creation” of demand structure is an effect of infinite populations. This
perception is conducted for example in [Hildenbrand, 94], [Trockel, 92] or
[Trockel, 84]. One may ask for the purpose of “nicely behaved” market de-
mand: Several structural properties are needed to show existence, unique-
ness or stability of market equilibrium. Although the properties of market
demand that are achieved differ from those that we want to obtain within
this diploma thesis, a justification for seeking after structural properties of
market demand may be found in [Trockel, 84], pp. 3-5.

For our analysis of market demand, we assume an economic agent to be
characterized by a demand-income-pair. In [Hildenbrand, 83], heterogene-
ity of agents is obtained by dispersion of income. However, the approach
that we follow here originates from [Grandmont, 92], where the analysis of
aggregate demand relies on the diversification of demand: For this pur-
pose, Grandmont introduces transforms of the commodity space, so called
α-transforms. In this context, the “better behaved” market demand be-
comes, the more spread out the distribution of demand; more precisely of
α-transforms. Nevertheless, both approaches show that market demand “is
close to” satisfy the uncompensated law of demand and thus the weak axiom
of revealed preference, the “more heterogeneous” the agents are. However,
in both approaches, the distributions of income or demand, respectively, are
given exogenously.
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6 CHAPTER 1. INTRODUCTION

In this thesis, we obtain an economic model where the distribution of
individual states, i.e. demand functions, is obtained endogenously by virtue
of a local interaction structure. We then apply the analysis conducted in
[Grandmont, 92] to this economy and encounter the parameters relevant
for aggregate demand to satisfy the weak axiom of revealed preference.
We see that interaction has to be “sufficiently small” for the results in
[Grandmont, 92] to hold.

Outline of the Proceeding

As we will see, there is a close relation of socioeconomics with statistical
mechanics. This motivates the use of Gibbsian theory. Therefore, we re-
fer to our approach to model interacting agents as Gibbsian, although it
traces back to Dobrushin, Lanford and Ruelle and is hence called the DLR
approach in statistical mechanics: We are given some graph S with agents
“sitting” at each site. The edges represent possible social interconnections.
The local interaction structure is generated by a family of conditional distri-
butions of states for finite subpopulations given the states of the remainders.
We then obtain a global distribution of individual states just as a distri-
bution that is consistent with local distributions. Such consistent global
distribution is then called a Gibbs measure.

When conducting this approach to aggregate demand analysis, we have
to be very specific with the notion of economy under consideration: In
[Grandmont, 92], we are given a distribution economy, i.e. a probability
measure on the space of individual states E. However, the model intro-
duced in this thesis is a global random economy, i.e. a family (σs)s∈S of
random variables or random agents with values in E. Hence, a global ran-
dom economy is given by a probability measure on ES.

We introduce the local unbounded spin Ising economy as an application
of the harmonic oscillator that we conceive as a generalization of the Ising
ferromagnet. In this sense, the economy that we consider here is a ge-
neralization of the famous Ising economy in [Föllmer, 74], when individual
states consist of all possible demand functions; more precisely, of the space
of α-transforms.

The economic rationale for the local interaction structure in the har-
monic oscillator is the assumption that agents prefer to be similar to their
peers. In other words, we assume that agents exhibit what we call a pre-
ference for conformity. Nevertheless, the Gibbsian approach is much more
general. We could even assume random agents to have preference for anta-
gonism in demand for some goods; or we could just assume agents to behave
independent as done in [Hildenbrand, 71]. In this sense, the model discussed
there is a special case of our model.

The local unbounded spin Ising economy leads to the global unbounded
spin Ising economy, a special type of Gibbsian random economies, i.e. global
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random economies rules by a distribution of states that is Gibbsian with
respect to an appropriately chosen interaction structure. In case of the
global unbounded spin Ising economy, the local interaction structure is given
by a “product” of harmonic oscillators. We furthermore assume the Gibbs
measure that rules the economy to be ergodic. From this ergodic global
unbounded spin Ising economy we obtain the so called unbounded spin Ising
distribution economy by a proposition from [Hohnisch, 03]. We thus have
eventually achieved a distribution economy where the distribution of agents
demand is obtained endogenously and we may apply Grandmont’s analysis
to this distribution economy. We obtain that coupling should be weak for
aggregate demand to satisfy the weak axiom of revealed preference.

Incentives for the Application of Gibbsian Theory

An integral part of this thesis is the application of random economies with
a local interaction structure. This generates insights in economic behavior
by enriching models in general equilibrium theory with social aspects. We
hence obtain equilibrium models with agents not only interacting via the
price system. Beyond doubt there are more interdependencies going on in
society than generated by the market. An elaborate discussion on the social
multiplier as an indicator of and a measure for the extent of local interactions
is given in [Glaeser & Scheinkman, 01]. In [Glaeser et al., 96] the authors
present a study of measuring social interactions for commitment of crimes.

Our approach stems from the belief in a formalizable social or local struc-
ture. Thus, we are enabled to savagely formalize concepts as for example
preference for conformity. Social or local interactions1 are mediated by a
social structure, not by the market.

Here, we do not consider a strategic approach to model interactions.
Instead, we apply the probabilistic Gibbsian framework utilizing concepts
from statistical mechanics. In light of this approach, we explain situations
in large socioeconomic systems where global behavior is not uniquely deter-
mined by local data. This is the case when the set of Gibbs measures is not
singleton or, as denoted in statistical mechanics, when the system exhibits
a phase transition.2 In Chapter 3, we consider Föllmer’s Ising economy as
an example of phase transition.

However, there is a rich variety of socioeconomic models based on strate-
gic interaction. A fundamental example in sociology was Schelling’s neigh-
borhood model. Here, individually optimal behavior leads to a globally
suboptimal outcome. The model explains segregation of neighborhoods in
ethnic and social classes. A formal strategic setup of this model can be found
in [Young, 98]. It is shown that segregated neighborhoods are most likely to

1Henceforth, we use these notions synonymous.
2A short but very explanatory compendium of notions from statistical mechanics can

be found in [Durlauf, 01].
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emerge even if every agent prefers to live in a mixed neighborhood. Other
examples of such social pathologies are smoking behavior or commitment of
crimes.

There are several ways to motivate the use of Gibbsian theory for so-
cioeconomic systems. One is presented in [Kindermann & Snell, 80] and
is predicated on the study of social networks by Holland, Leinhardt and
Wassermann. Kindermann and Snell show that the probability measures
describing aggregate behavior in Holland’s, Leinhardt’s and Wassermann’s
model are Gibbs measures induced by a nearest neighbor potential. A second
fundamental model that leads to Gibbs measures as an appropriate notion
of aggregate states in an economy with local interactions is the binary choice
model as discussed in [Brock & Durlauf, 00a].

The objective of interactions-based models is best formulated as follows:

The object of a typical exercise using these models is to un-
derstand the behavior of a population of economic actors rather
than that of a single agent. [. . .] Interactions models typically
specify an explicit probability measure characterizing individual
behavior conditional on exogenous (to the individual) character-
istics [. . .] and an interaction structure that specifies who affects
whom. [. . .] The goal of the analysis is to characterize a joint
probability measure over all agents in the population that is
compatible with the conditional probability measures. [. . .] The
reasoning from probabilistic descriptions of individual behavior
to population wide aggregates provides a way to explicitly un-
derstand the emergence of collective properties in an economy.
([Brock & Durlauf, 01], pp. 18-20)

We have already stated that Gibbsian theory was first encountered in
statistical mechanics. Hence, if we can show analogies of socioeconomic
models and models in statistical mechanics, we have a motivation for the
use of Gibbsian theory: In statistical mechanics, the question considered
is for the aggregate behavior of a collection of correlated particles. One
famous example is the Ising ferromagnet: For a piece of iron to be a magnet
we need the alignment of a great majority of atoms’ spins. An atom can
either exhibit spin “up” or “down”. However, there does not seem to be
any tendency for spinning in one direction when considering one atom on
its own. Assuming independence, the law of large numbers would imply
that the existence of magnets in nature is very unlikely. The fundamental
assumption in statistical mechanics is that there exist interdependencies for
spins; more concretely, the likelihood of an atom to exhibit a specific spin
is increasing in the number of neighboring atoms with the same spin. We
elaborately discuss on the Ising ferromagnet in Section 2.7.

Thus, we see that the considerations in both, socioeconomics and sta-
tistical mechanics are the same. Both analyze the aggregate behavior of a
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system with interdependent particles or agents. This motivates the appli-
cation of the same mathematical tools: the theory of Gibbs measures. In
both disciplines, the modeler conjectures an interaction structure, here in
form of conditional probabilities, and then obtains a (global) probabilistic
description of the system consistent with the local distributions.

Notation & Structure

This thesis constitutes an interdisciplinary approach to market demand,
applying concepts form economics, sociology and statistical mechanics. Al-
though identical, some concepts are denoted different contingent on the sci-
entific field. This of course has implications on the notation used here. Thus,
we do not distinguish between the notions “microscopic”, “microeconomic”
or “local”; analogously for the terms “macroscopic”, “macroeconomic” or
“global”. Aggregate demand or market demand is a macroeconomic con-
cept. However, from the perspective of statistical mechanics, it should be a
macroscopic observable. We will just use the notation that seems appropri-
ate in the respective context.

When analyzing aggregate demand, we are concerned with its structural
properties or structure for short. Here, structural properties represent ra-
tionality assumptions like the uncompensated law of demand or the weak
axiom of revealed preference.

Chapter 2 gives a comprehensive overview of Gibbsian theory. We give
basic definitions and results, in particular extreme and ergodic decompo-
sition of Gibbs measures. In most instances, this chapter is adapted from
[Georgii, 88]. We also introduce the notion of a product specification and
its corresponding Gibbs measures. This concept is indispensable for the
economic models considered within this work. A small but nevertheless im-
portant paragraph contains a discussion showing that only extremal Gibbs
measures should be considered in physical as well as social systems. The
last part of the chapter is devoted to the Ising model.

Chapter 3 is a survey of demand theory. Again, we state basic definitions
and results. We then consider large economies and appropriate notions for
their characterization: We define distribution and random economies and
draw their conceptual distinction. However, we discuss a result connecting
these concepts when random agents are independent. The last part of the
chapter deals with Föllmer’s analysis of interacting agents as it can be found
in [Föllmer, 74]. In the course of this, we discuss the famous Ising economy.

In Chapter 4 we examine the concepts and results in [Grandmont, 92]
in extenso. Grandmont introduces transforms of the commodity space, so
called α-transforms. Thus, transformations of demand functions are ob-
tained and it is shown that market demand is “well behaved” if the dis-
tributions of α-transforms of demand are spread out; in this sense, agents
are called heterogeneous. Besides elaborating technical but nevertheless im-
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portant proofs from [Grandmont, 92], we generalize a uniqueness result for
market exchange equilibria in [Arrow & Hahn, 71] and conduct a further
discussion on connections between distinct structural properties of demand.
Grandmont states a result that gives necessary and sufficient conditions for
a demand function to be invariant with respect to α-transforms; we state a
proof here, that follows the idea in [Trockel, 89].

Based on [Georgii, 88], we define a particular kind of local interaction
structure in the first part of Chapter 5: Gaussian specifications. We expli-
citly characterize the set of homogeneous Gibbs measures for homogeneous
Gaussian specifications. We then consider the harmonic oscillator as a ge-
neralization of the Ising ferromagnet. In the second part, we introduce
the economic concepts that are needed for our approach to market demand
analysis: We first introduce local random economies, i.e. a configuration
space together with a specification, and then consider l-fold local random
economies. These give rise to Gibbsian random economies, basically given
by a distribution on the configuration space that is Gibbsian with respect
to a (product) specification of the corresponding (l-fold) local random eco-
nomy. As a particular example, we introduce the global unbounded spin
Ising economy. We interpret this economic notion as a generalization of
Föllmer’s Ising economy taking into account individual states as assumed in
Grandmont’s analysis, i.e. the space of all demand-income-pairs.

In Chapter 6 we first discuss the connection of random economies with
distribution economies. We apply a result in [Hohnisch, 03] to obtain an
identification of ergodic random economies with distribution economies.
This gives rise to the unbounded spin Ising distribution economy correspon-
ding to the ergodic global unbounded spin Ising economy. The unbounded
spin Ising distribution economy is what we were looking for: For this type of
economy, where the distribution of demand behavior is endogenized, we can
conduct Grandmont’s analysis . We then discuss two different approaches
to the aggregation problem: The first is related to the thermodynamic limit
as commonly considered in statistical mechanics. The second is a direct
application of Grandmont’s analysis and in a way the antipode of the first.
However, the second approach establishes a stronger result in the sense that
the weak axiom for market demand is created, whereas the first approach
“only” allows for the weak axiom to be inherited by market demand.



Chapter 2

Theory of Gibbs Measures

2.1 Introduction

We have already mentioned the close relationship between statistical me-
chanics and socioeconomic models when agents interact locally. In analogy
to statistical mechanics this suggests the use of Gibbs measures as an ap-
propriate framework for modeling equilibria in socioeconomic models. Since
Gibbsian theory results from considerations in statistical mechanics the ex-
amples given in this chapter mainly refer to physics, as the famous Ising
model. In the course of this thesis, we motivate economic interpretations of
notions introduced here. However, a rigorous definition of several physical
concepts would confuse more than help understanding the general theory
needed in economics; in these cases we give an intuition and refer the in-
terested reader to [Georgii, 88], [Georgii, 79], [Preston, 74] or [Preston, 76].
This chapter serves as a very brief introduction to Gibbsian theory. Besides
a rigorous discussion, the aim is to generate some intuition for Gibbsian
theory.

In this chapter basic definitions and properties of Gibbs measures are
stated. These will lead us to some remarkable results that are useful for
socioeconomic models in explaining apparently puzzling social phenomena.
The subsequent survey on Gibbsian theory is based on [Georgii, 88]. An
elaborate historical introduction can be found in [Kindermann & Snell, 80]
and [Kindermann & Snell, 80b]. Here, we introduce the notion of a product
specification and consider Gibbs measures for these product specifications
given by product measures, each factor a Gibbs measure with respect to
a corresponding factor of the product specification. Product specifications
and corresponding Gibbs measures turn out to be vital for the unbounded
spin Ising economy considered in Section 5.3.

11



12 CHAPTER 2. THEORY OF GIBBS MEASURES

Basic Ideas

As introduced by Dobrushin, Lanford and Ruelle the basic idea of a Gibbs
measure is that of being an appropriate notion of a (macroscopic) equilib-
rium in a system consisting of a huge number of interacting components.
When the first steps were done in developing the theory of Gibbs measures,
research was concentrated on models in statistical mechanics. In recent years
there seems to be interest in this theory by sociologists thinking of systems
where components (agents) interact locally.

A Gibbs measure is a mathematical idealization of an equilibrium
state of a physical system which consists of a very large number
of interacting components. In the language of Probability The-
ory, a Gibbs measure is simply the distribution of a stochastic
process which, instead of indexed by time, is parametrized by the
sites of a spatial lattice, and has the special feature of admitting
prescribed versions of the canonical distributions with respect to
the configurations outside finite regions. ([Georgii, 88], p. 5)

For an example from Physics consider the famous Ising ferromagnet as
introduced in a Section 2.7: We are given a piece of ferromagnetic metal
consisting of a large number of atoms each showing spin “up” or “down”.
Adjacent atoms interact in the way that their spins have the tendency to con-
form. For high enough temperatures the thermal motion of atoms circum-
vents the system from the state where all spins are parallel since interaction
is not strong enough relative to thermal motion. However, as temperature
falls below some critical value the spins align and there can be seen the phe-
nomenon of spontaneous magnetization. When there is no external field, we
do not know a priori how the magnet is poled. Global distributions of spins
that are consistent with the local interaction structure constitute equilibria
of the model.

Following our intuition that equilibrium states are described by Gibbs
measures:

We thus expect that the physical phenomenon of phase transi-
tion should be reflected in our mathematical model by the non-
uniqueness of the Gibbs measures for a prescribed specification.
([Georgii, 88], p. 6)

Here, a specification is the appropriate way of describing local interactions
via conditional distributions.

2.2 Specification of Random Fields

Let S be a countably infinite set and (E, E) an arbitrary measurable space.
Later on, we assume S to exhibit some graph structure.
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Definition 2.1. ([Georgii, 88], Definition 1.1) A family (σi)i∈S of random
variables which are defined on some probability space (Ω,F , µ) and take val-
ues in (E, E) is called a random field. The index set S is called the parameter
set and (E, E), or E for short, the state space of the random field.

We will use a canonical version of a random field by assuming

Ω := ES := {ω = (ωi)i∈S : ωi ∈ E},
F := ES,

σi : Ω → E, ω 7→ ωi,

the projection on the ith coordinate. Thus, a random field is equivalently
defined as a probability measure µ on (Ω,F) and the set of random fields is
denoted by the set P(Ω,F) of probability measures on (Ω,F).

Furthermore, for Λ ⊂ S let σΛ : Ω → EΛ be the projection on Λ, i.e.
σΛ(ω) := ωΛ := (ωi)i∈Λ for ω = (ωi)i∈S ∈ Ω.
Now, let

S := {Λ ⊂ S : 0 < |Λ| <∞},

where |Λ| denotes the cardinality of Λ. Λ ∈ S is called a finite volume.
For ∆ ⊂ S we consider F∆ to be the σ-algebra generated by

{σΛ ∈ A} (Λ ∈ S,Λ ⊂ ∆, A ∈ EΛ),

i.e. by the events in ∆. F is the smallest σ-algebra containing the cylinder
sets {σΛ ∈ A}, (Λ ∈ S, A ∈ EΛ).

Definition 2.2. ([Georgii, 88], pp. 13,14) (a) Let (X,X , µ) be a measure
space, g : X → R measurable. We write

µ(g) :=
∫
gdµ

and analogously µ(f |C) for the conditional expectation, where C is a sub-σ-
algebra of X .
(b) Let (X,X ) and (Y,Y) be measurable spaces. A function π : X × Y →
[0,∞] is called a (measure) kernel from (Y,Y) to (X,X ) (or simply from Y
to X ) if

1. π(·|y) is a measure on (X,X ) for all y ∈ Y , and

2. π(A|·) is Y-measurable for each A ∈ X

If, in addition, π(X|·) = 1 then π is called a probability kernel. A prob-
ability kernel π from a sub-σ-algebra C of X to X is called proper if the
condition π(C|·) = 1C(·) holds for all C ∈ C. Intuitively, properness means
when starting in C ∈ C the kernel leads back to C for sure.
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Remark 2.3. ([Georgii, 88], p. 13) Such a kernel π “shifts” a measure µ
on (Y,Y) to a measure µπ on (X,X ) when defined by

µπ(A) :=
∫
π(A|·)d(µ) ∀A ∈ X .

Remark 2.4. ([Georgii, 88], Remark 1.20) Let (X,X ) be a measurable
space, C a sub-σ-algebra of X , π a proper probability kernel from C to X ,
and µ ∈ P(X,X ). Then

µ(A|C) := µ(1A|C) = π(A|·) µ-a.s. ∀A ∈ X

if and only if µπ = µ.

Proof. [Georgii, 88], p. 15

Remark 2.5. ([Georgii, 88], p. 14) Let (Z,Z) be a third measurable space
and let π1 and π2 be kernels from Z to Y and Y to X , respectively. Then

π1π2(A|z) :=
∫
π2(A|y)π1(dy|z) (A ∈ X , z ∈ Z)

is a kernel from Z to X

Having in mind our considerations on systems with interacting compo-
nents our main interest should be in random fields where the spin vari-
ables σi are not necessarily independent. This dependence is formalized
in a probabilistic manner: We consider distributions of finite collections of
spins conditional on the values of remainder spins, i.e. we consider a fam-
ily of distributions conditional on TΛ := FS\Λ, Λ ∈ S. We furthermore
set T := ∩Λ∈STΛ as the tail-field-σ-algebra. One may think of TΛ as the
σ-algebra generated by boundary conditions for Λ or in other words by the
information contained in configurations outside of Λ.

Definition 2.6. ([Georgii, 88], Definition 1.23) A specification with parame-
ter set S and state space (E, E) is a family γ = (γΛ)Λ∈S of proper probability
kernels γΛ from TΛ to F which satisfy the consistency condition γ∆γΛ = γ∆

when Λ ⊂ ∆. The random fields in the set

G(γ) = {µ ∈ P(Ω,F) : µ(A|TΛ) = γΛ(A|·) µ-a.s. ∀ A ∈ F and Λ ∈ S}

are then said to be specified or to be admitted by γ.1

Let ω ∈ Ω such that 1ω is TΛ measurable. Then γΛ(·|ω) is a probability
distribution on (Ω,F) conditional on the boundary condition ω. One may

1Often times, these are already called Gibbs Measures.
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think of the consistency condition as it is given in [Georgii, 79] in a more
special context but generating much more intuition than that above:

γ∆(ξ|ω) = γΛ(ξΛ|ξωS\∆)γ∆(ξ∆\Λ|ω)

for Λ ∈ ∆, ξ ∈ Ω∆, ω ∈ Ω.
In the economic model that will be analyzed in Chapter 6 we actually

do not consider a system with local interactions given by a specification but
a “product” of l ∈ N of those. Thus, we have to undertake the following
digression. Given an arbitrary set X, X2 denotes the product set X ×
X := {(x1, x2) : x1, x2 ∈ X}. Similarly, for a σ-algebra X , X 2 denotes the
product-σ-algebra.

Proposition 2.7. Let γ1 := (γ1Λ)Λ∈S and γ2 := (γ2Λ)Λ∈S be specifications
on S with state space (E, E). The product specification γ := γ1 ⊗ γ2 defined
by

γΛ(A1 ×A2|ω) = γ1Λ(A1|ω1)γ2Λ(A2|ω2), (A1, A2 ∈ F , ω1, ω2 ∈ Ω),

ω := (ω1, ω2) := (ω1i, ω2i)i∈S ∈ Ω2, is a specification on S with state space
(E2, E2).

Proof. We first have to show that each γΛ, Λ ∈ S, is a proper probability
kernel from T 2

Λ to F2. However, the conditions needed are inherited when
taking products: γΛ(·|ω) is a measure on (Ω,F) for every ω ∈ Ω, γΛ(A, ·)
is T 2

Λ -measurable for each A ∈ F since each γiΛ(Ai|·) is TΛ-measurable.
Furthermore, we have γΛ(Ω2|·) = γ1Λ(Ω|·)γ2Λ(Ω|·) = 1. At last, for any
B1, B2 ∈ TΛ we have γΛ(B1 ×B2|·, ·) = 1B1(·)1B2(·) = 1B1×B2(·, ·). Thus, γ
is a proper probability kernel.

Second, we have to verify the consistency condition for γ: Let A =
A1 ×A2 ∈ F , ω = (ω1, ω2) ∈ Ω2, Λ ⊂ ∆. Then

γ∆γΛ(A|ω) =
∫

Ω2

γΛ(A|ω̃)γ∆(dω̃|ω)

=
∫

Ω
γ1Λ(A1|ω̃1)γ1∆(dω̃1|ω1)

∫
Ω
γ2Λ(A2|ω̃2)γ2∆(dω̃2|ω2)

= γ1∆(A1|ω1)γ2∆(A2|ω2) = γ∆(A|ω).

Proposition 2.8. Let γ1 := (γ1Λ)Λ∈S and γ2 := (γ2Λ)Λ∈S be specifications
on S with state space (E, E). Define γ := γ1 ⊗ γ2 as in Proposition 2.7. Let
µi ∈ G(γi), i = 1, 2. Then µ := µ1 ⊗ µ2 ∈ G(γ), where this product measure
is defined as usual by

µ(A1 ×A2) = µ1(A1)µ2(A2), (A1, A2 ∈ F).
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Proof. Let A1, A2 ∈ F and thus A := A1 ×A2 ∈ F2, Λ ∈ S.

µγΛ(A1 ×A2) =
∫

Ω2

γΛ(A|·)dµ

=
∫

Ω
γ1Λ(A1|·)dµ1

∫
Ω
γ2Λ(A2|·)dµ2

= (µ1γ1Λ)(A1)(µ2γ2Λ)(A2)
= µ1(A1)µ2(A2) = µ(A1 ×A2).

Thus, Remark 2.4 yields the assertion.

Corollary 2.9 (of Remark 2.4). Given a specification γ, we have

µ ∈ G(γ) ⇔ µγΛ = µ ∀Λ ∈ S

From [Georgii, 88], Notation 1.26, we take the following definitions: For
any given a priori or reference measure λ ∈ M(E, E), the set of all σ-finite
measures on (E, E) with λ(E) > 0, define the family λ· = (λΛ)Λ∈S of measure
kernels λΛ from TΛ to F by

λΛ(·|ω) := λΛ × δωS\Λ(·) (Λ ∈ S, ω ∈ Ω), (2.1)

where λΛ is defined as the product measure of λ on (EΛ, EΛ). Obviously,
this constitutes a kernel. Let ρ = (ρΛ)Λ∈S be a family of densities. We then
define ρΛλΛ by

ρΛλΛ(A|·) :=
∫
A
ρΛ(x)λΛ(dx|·) (A ∈ F) (2.2)

The a priory measure λ reflects the tendency of each particle to exhibit some
specific spin when there would be no interaction among particles. Thus,
when assuming that components should not exhibit any tendency, one should
assume λ to be the counting measure or Lebesgue measure, depending on
the state space E.

Definition 2.10. ([Georgii, 88], Definition 1.27) Let λ ∈ M(E, E). A λ-
modification is a family ρ = (ρΛ)Λ∈S of measurable functions ρΛ : Ω →
[0,∞) such that the family ρλ· = (ρΛλΛ)Λ∈S is a specification. A λ-specifica-
tion is a specification γ of the form γ = ρλ· for some λ-modifications ρ.

Definition 2.11. ([Georgii, 88], Definition 2.2) An interaction potential is a
family Φ = (ΦA)A∈S of functions ΦA : Ω → R with the following properties:

1. For all A ∈ S,ΦA is FA-measurable.

2. For all Λ ∈ S and ω ∈ Ω, the series

HΦ
Λ (ω) =

∑
A∈S
A∩Λ6=∅

ΦA(ω)

exists.
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HΦ
Λ (ω) is called the (total) energy of ω in Λ for Φ, and HΦ

Λ the Hamiltonian
in Λ for Φ. Furthermore, we write

hΦ
Λ(ω) = e−H

Φ
Λ (ω).

As in [Georgii, 79], one often thinks of ΦA as a measurable function on
(EA, EA).

We may now use interaction potentials to define specifications: Let λ ∈
M(E, E) be an a priori measure. A potential Φ is called λ-admissible if

ZΦ
Λ (ω) =

∫
e−H

Φ
Λ (ξωS\Λ)λΛ(dξ)

is finite for all Λ ∈ S and ω ∈ Ω. ZΦ
Λ (ω) is called partition function. Let Φ

be a λ-admissible potential. Then define ρΦ
λ := hΦ

Λ

ZΦ
Λ

for all Λ ∈ S. We obtain

that (ρΦ
Λ)Λ∈S is a λ-modification. For an elaborate discussion, we refer to

[Georgii, 88], pp. 18-28.

Definition 2.12. ([Georgii, 88], Definition 2.9) Suppose Φ is a λ-admissible
potential and ω ∈ Ω,Λ ∈ S. Then the probability measure

F 3 A 7→ γΦ
Λ (A|ω) := ρΦ

ΛλΛ(A|ω)
(2.2)
= ZΦ

Λ (ω)−1

∫
EΛ

e−H
Φ
Λ (ξωS\Λ)1A(ξωS\Λ)λΛ(dξ)

on (Ω,F) is called a Gibbs distribution in Λ with boundary condition ωS\Λ,
interaction potential Φ and single spin or a priory measure λ. The λ-
specification γΦ = (γΦ

Λ )Λ∈S is called the Gibbsian specification for Φ and
λ. Each random field µ ∈ G(Φ) := G(γΦ) is called Gibbs measure, Gibbs
state or Gibbs random field for Φ and λ. We reconsider this definition is
Section 5.2.

In [Georgii, 79], the author uses a slightly different framework. However,
the underlying idea is the same:

In order to completely formulate the models [...] it is necessary to
specify the interaction between the particles. The [...] commonly
accepted ansatz of Gibbs yields the probability distributions for
local configurations conditioned with respect to a fixed environ-
ment. The objects of our study are probability measures on Ω
whose local behavior is determined by the Gibbs distributions.
([Georgii, 79], p. 1)

Our considerations on phase transition at the beginning of the current
chapter suggests the following definition.
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Definition 2.13. ([Georgii, 88], Definition 2.10) A potential Φ will be said
to exhibit a phase transition if |G(γΦ)| > 1. We refer to this case as non-
uniqueness of Gibbs measures.

When thinking of a Gibbs measure as an appropriate way to describe an
equilibrium state of the system, this means that equilibrium is not unique.

Example 2.14 (Nearest-neighbor potentials on Zd, d ≥ 1). ([Georgii, 88],
pp. 29,30) Let S = Zd, then Φ is called a nearest neighbor potential or
Markov potential if ΦA = 0 whenever A /∈ {{i, j} ⊆ Zd : |i− j| = 1} ∪ {i ∈
Zd}. Thus, Φ is the pair-potential of range 1. A potential Φ is called a
pair-potential if ΦA = 0 whenever |A| > 2. Φ is called a self-potential if
ΦA = 0 whenever |A| 6= 1. A potential Φ is said to be of range r ∈ R+ if
ΦA = 0 whenever the diameter of A, diam(A) > r.

Markov Specifications

When having a look at our approach to Gibbsian theory, one may con-
jecture that there is a relation to the theory of Markov processes. This
intuition is formalized in [Georgii, 88], Theorem 3.5. This theorem shows
that a positive homogeneous Markov specification as defined below uniquely
determines a Gibbs measure µ that constitutes a Markov chain. For explicit
characterizations we refer to this theorem. The considerations on Markov
specifications are not necessary for our further analysis. However, we may
yield some intuition for Gibbs measures generated by nearest-neighbor po-
tentials. Throughout this paragraph let S = Z, ∅ 6= E be finite, E = 2E, the
power set of E, and let λ be the counting measure.

Definition 2.15. ([Georgii, 88], Definition 3.1) Let γ be a specification with
parameter set Z and state space E. We say γ is a positive homogeneous
Markov specification if there is a function g(·, ·, ·) > 0 on E3 such that

γ{i}(σi = y|ω) = g(ωi−1, y, ωi+1)

for all i ∈ Z, y ∈ E and ω ∈ Ω.

As shown in [Georgii, 88], Theorem 1.33, by virtue of the consistency
condition posed on specifications, g suffices to characterize a specification γ.
Thus, g is called the determining function of γ.

For the following result we need some further notation.

Definition 2.16. ([Georgii, 88], p. 46) A nearest-neighbor potential Φ is
called homogeneous if there are two functions ϕ1 : E → R and ϕ2 : E×E →
R such that

ΦA =
{
ϕ1(σi) if A = {i},
ϕ2(σi, σi+1) if A = {i, i+ 1}.
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We are now fully equipped to state a proposition that relates Markov
chains and Gibbs measures.

Proposition 2.17. ([Georgii, 88], Corollary 3.9) A specification γ is a po-
sitive homogeneous Markov specification if and only if γ is Gibbsian for some
homogeneous nearest-neighbor potential Φ, i.e. γΛ = γΦ

Λ for all Λ ∈ S.

Proof. [Georgii, 88], pp. 46,47

Thus, the notion of a “Markov potential” makes sense. An Application
of these results will be given in the section on the Ising economy.

Markov Chains

In this section we are interested in specifications γ such that G(γ) contains
a Markov chain. For the rest of this section let S = Z.

Definition 2.18. ([Georgii, 88], Definition 10.2) A specification γ on Z is
said to be a Markov specification if γ]i,k[(A|·) is F{i,k}-measurable for all A ∈
F]i,k[ and all i, k ∈ Z with i+1 < k. A λ-modification ρ is called Markovian
if ρ]i,k[ is F{i,k}-measurable whenever i, k ∈ Z are such that i+ 1 < k.

Of course, a positive homogeneous Markov specification is a Markov
specification, too.

More intuitively, γ is called Markovian if for each interval Λ = {i, i +
1, ..., k}, k > i, and each A ∈ FΛ, γΛ(A|ω) only depends on ω through ωi−1

and ωk+1. By Definition 2.6 we have that

µ(A|TΛ) = µ(A|F{i−1,k+1}) µ− a.s

for all A ∈= FΛ, Λ as above, µ ∈ G(γ), whenever γ is a Markov specification.
We call this property of µ the two-sided Markov property and µ a Markov
field.

From Proposition 2.17, we obtain:

Corollary 2.19. If γ is Gibbsian for some homogeneous nearest-neighbor
potential Φ then each µ ∈ G(γ) is a Markov field.

A similar result can also be found in [Kindermann & Snell, 80].
Every Markov chain µ constitutes a Markov field, where a Markov chain

µ is given by
µ(A|F]−∞,i[) = µ(A|F{i−1}) µ− a.s.

This condition is called the one-sided Markov property.
The question is whether G(γ) does not only contain Markov fields when

γ is Markovian but also Markov chains.
To gain more intuition for the difference between the two-sided and the

one-sided Markov property, let us consider the following remark.
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Remark 2.20. ([Georgii, 88], Remark 10.9) (a) The two sided Markov pro-
perty is equivalent to the local Markov property on Z which asserts that

µ(A|TΛ) = µ(A|F∂Λ) µ− a.s. for all A ∈ FΛ

whenever Λ ⊂ Z is finite. Here we set

∂Λ := {i ∈ Z \ Λ : |i− j| = 1 for some j ∈ Λ}.

(b) The one-sided Markov property is equivalent to the global Markov pro-
perty on Z which is defined by the requirement that the above property holds
for all Λ ⊂ Z.

Proof. [Georgii, 88], pp. 194,195

Definition 2.21. ([Georgii, 88], Definition 4.7) A measurable space (E, E)
is called a standard Borel space if there exists a metric d on E which turns
E into a complete separable metric space and is such that E is the Borel
σ-algebra with respect to d.

We eventually obtain the following result.

Proposition 2.22. ([Georgii, 88], Corollary 10.22) Suppose (E, E) is a stan-
dard Borel space, and let ρ be a Markovian λ-modification and γ = ρλ·. If
G(γ) 6= ∅ then G(γ) contains a Markov chain.

2.3 Existence of Gibbs Measures

In [Georgii, 88], we can find a very elegant way to establish existence. Even
though the existence problem of Gibbs measures µ ∈ G(γ) for a given spe-
cification γ is fundamental and generates insights in the nature of Gibbs
measures, a closer look at this problem would be beyond the scope of this
diploma thesis. Thus, we state the main results without going much into
detail. The answer to the question whether a specification γ admits Gibbs
measures follows the subsequent pattern:

1. Choose an appropriate topology on P(Ω,F). This will turn out to be
the topology of weak convergence if E is finite. For infinite state spaces
we need the topology of local convergence. These topologies coincide
for finite E.

2. Specify a boundary condition ω ∈ Ω.

3. Show that the net (γΛ(·|ω))Λ∈S has a cluster point with respect to the
chosen topology.

4. Show that each of those cluster points belongs to G(γ).
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We will now use the following shortcut suggested in [Georgii, 88]: Let’s
assume that we are only interested in the case of a finite state space E. In
this case (3) holds without any further conditions on γ and ω since P(Ω,F)
is compact with respect to the topology of weak convergence. The hard part
will now be to show (4).

Definition 2.23. (a) A net of a set S is a mapping from a directed set D
into S. D is directed if there exists a relation “≥” that is transitive and
reflexive and satisfies: for all a, b ∈ S, there exists c ∈ S such that c ≥ a
and c ≥ b.
(b) ([Georgii, 88], Definition 4.6) A net (µα)α∈D in P(Ω,F) is said to be
locally equicontinuous if for each Λ ∈ S and each sequence (Am)m≥1 in FΛ

with Am ↓ ∅
lim
m→∞

lim sup
α∈D

µα(Am) = 0.

We will now concentrate on a special type of specifications. These distri-
butions are motivated by the physical assumption that each single parameter
has a microscopic horizon of interaction. This notion will separate micro-
scopic and macroscopic quantities.

Definition 2.24. A function g : Ω → R describes a macroscopic ob-
servable if g is measurable with respect to the σ-algebra at infinity T =
∩Λ∈SFS\Λ ∩Λ∈S TΛ, i.e. g does not depend on finite sets of spins.

A function g describes a microscopic quantity if g is arbitrarily close to
functions which only depend on finitely many coordinates; these are called
cylinder functions or local functions. To give a rigorous meaning to this
intuitive notion of microscopic states, we consider the following definition.

Definition 2.25. ([Georgii, 88], pp. 31,32) (a) A function g : Ω → R is
called local if there exists Λ ⊂ S such that g is FΛ-measurable.
(b) A function g : Ω → R is called quasi local if there is a sequence (gn)n≥1

of local functions gn such that limn→∞ ||g−gn||sup = 0, where ||·||sup denotes
the sup-norm. L̄ denotes the space of all bounded quasi local functions.
(c) A specification γ is called quasi local if, for each Λ ∈ S and g ∈ L̄ we
have that γΛg ∈ L̄, where γΛ is a proper probability kernel from TΛ to F and
we let

γΛg := γΛ(g|·) =
∫
g(x)γΛ(dx|·).

Definition 2.26. ([Georgii, 88], pp. 59,97) (a) A net (µα)α∈D ⊂ P(Ω,F)
converges to µ with respect to the topology of local convergence, locally for
short, if and only if limD µα(A) = µ(A) for all A ∈ ∪Λ∈SFΛ.
(b) We say, a net of specifications (γα)α∈D converges uniformly in the local
topology to a specification γ, if

lim
α∈D

||γαΛf − γΛf ||sup = 0
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for all Λ ∈ S and bounded local functions f . We write γα → γ.

Now, we can state a general existence result for Gibbs measures.

Proposition 2.27. ([Georgii, 88], Theorem 4.22) Let (E, E) be a standard
Borel space and γ a quasi local specification. Suppose there is a locally
equicontinuous net (µα)α∈D of random fields of the form µα = ναγ

α
Λ, α ∈ D,

where (να)α∈D is a net in P(Ω,F), (γα)α∈D a net of specifications with
γα → γ, and (Λα)α∈D a net in S with Λα → S. Then G(γ) contains a
cluster point of (µα)α∈D and is therefore non-empty.

Proof. [Georgii, 88], p. 71

2.4 Symmetries

One way to obtain non-uniqueness of Gibbs measures is the so called sym-
metry breaking or symmetry breakdown. An example of symmetry breaking
will be given in the section on the two-dimensional Ising model.

Throughout this thesis, we consider transformations in the set T :=
{τ : Ω → Ω | τ : ω 7→ (τiωτ−1

∗ i)i∈S (ω ∈ Ω)}, where τ∗ : S → S is a
bijection (spatial transformation), and τi : E → E, i ∈ S, invertible and
measurable (spin transformation) with measurable inverses. For τ ∈ T we
write τ = (τ∗; τi, i ∈ S)

Example 2.28. ([Georgii, 88], Example 5.2) Let S = Zd for some d ≥ 1.
Then for each j ∈ S the transformation

θj : ω 7→ (ωi−j)i∈S (ω ∈ Ω)

of Ω is called the (lattice) shift or (lattice) translation by j. Furthermore,
we write Θ := (θj)j∈S.

Definition 2.29. ([Georgii, 88], pp. 82,83) Let τ ∈ T . The τ -image τ(γ) =
(τ(γ)Λ)Λ∈S of a family γ = (γΛ)Λ∈S of measure kernels is defined by

τ(γ)Λ(A|ω) = γτ−1
∗ Λ(τ−1A|τ−1ω)

for all Λ ∈ S, A ⊂ Ω and ω ∈ Ω or, equivalently,

τ(γ)τ∗Λ(τA|τω) = γΛ(A|ω).

Of course, if γ is a specification, then τ(γ) is a specification, too.

Definition 2.30. ([Georgii, 88], Definition 5.7) Let τ ∈ T .
(a) A function ϕ on Ω is called τ -invariant if ϕ ◦ τ = ϕ. More generally,
a family ϕ = (ϕΛ)Λ∈S of functions ϕΛ on Ω is said to be τ -invariant, τ is
called a symmetry of ϕ, if τ(ϕ) = ϕ, i.e. ϕτ∗Λ ◦ τ = ϕΛ for all Λ ∈ S.
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(b) A measure µ on (Ω,F) is said to be τ -invariant, and τ is called µ-
preserving or a symmetry of µ, if τ(µ) := µ ◦ τ−1 = µ. A specification γ is
called τ -invariant if τ(γ) = γ, i.e. for all Λ ∈ S, ω ∈ Ω

γτ∗Λ(·|τω) = τ(γΛ(·|ω)).

(c) The set of all symmetries of an object ϕ, µ or γ is called the symmetry
group of this object.

To verify the consistency of part (b) above, we should have in mind that
γΛ(·|ω) is a measure. Let A ∈ F , then for any ω ∈ Ω, Λ ∈ S

γ = τ(γ)
⇔ γΛ(A|ω) = γτ−1

∗ Λ(τ−1A|τ−1ω)

⇔ γτ∗Λ(A|τω) = γΛ(τ−1A|ω) = (γΛ(·|ω) ◦ τ−1)(A)
= τ(γΛ(·|ω))(A).

Example 2.31. ([Georgii, 88], Example 5.8) Let S = Zd for some d ≥ 1. A
specification γ is called shift-invariant or translation-invariant or (spatially)
homogeneous if γ is invariant under the shift-group Θ, i.e. if

γΛ+j(θjA|θjω) = γΛ(A|ω)

for all Λ ∈ S, j ∈ S, A ∈ F and ω ∈ Ω. Similarly, a potential Φ is called
homogeneous if

ΦA+j ◦ θj = ΦA

for all j ∈ S and A ∈ F .

Definition 2.32. Let S = Zd, d ≥ 1. A measure µ on (Ω,F) is said
to be homogeneous if µ is invariant with respect to the shift-group Θ. Let
PΘ(Ω,F) := {µ ∈ P(Ω,F) : θj(µ) = µ, ∀j ∈ S} denote the set of all
homogeneous random fields.

In a subsequent chapter we need the following inspection.

Remark 2.33. ([Georgii, 88], Remark 5.10) Let γ be a specification and
τ ∈ T . If µ ∈ G(γ) then τ(µ) ∈ G(τ(γ)). In particular, G(γ) is invariant
with respect to all symmetries of γ.

Proof. By definition of G(γ), we have µ ∈ G(γ) if and only if µγΛ = µ for
all Λ ∈ S. Thus, we obtain

τ(µ)τ(γ)Λ(·) =
∫
τ(γ)Λ(·|ω)τ(µ)(dω)

=
∫
τ(γ)Λ(·|τω)µ(dω)

=
∫
γΛ(τ−1 · |ω)µ(dω)

= τ(µγΛ) = τ(µ).
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If τ is a symmetry for γ, we have

τ(µ) ∈ G(τ(γ)) = G(γ)

and the last assertion follows since τ is invertible.

Corollary 2.34. ([Georgii, 88], Corollary 5.11) If G(γ) = {µ}, then µ is
preserved by all symmetries of γ, i.e. µ is invariant with respect to all of
γ’s symmetries.

Definition 2.35. ([Georgii, 88], Definition 5.21) Let γ be a specification. A
symmetry τ of γ is said to be broken if there exists some µ ∈ G(γ) such that
τ(µ) 6= µ, i.e. µ is not invariant with respect to τ .

The following remark is directly implied by Corollary 2.34 and alludes
to the importance of symmetry breaking.

Remark 2.36. If γ has a broken symmetry then |G(γ)| > 1.

2.5 Extreme Decomposition

In this section we encounter the structure of G(γ). The first observation
follows immediately from Definition 2.6: For any specification γ, the set
G(γ) is convex, i.e. µ1, µ2 ∈ G(γ) then [ςµ1 + (1− ς)µ2] ∈ G(γ) for any ς ∈
[0, 1]. In particular, whenever |G(γ)| > 1, then G(γ) is uncountably infinite.
We eventually obtain the extreme decomposition of Gibbs measures: Every
Gibbs measure can be obtained as the barycenter of a unique probability
measure on the set of extreme Gibbs measures. Thus, we first have to
characterize the set of extreme Gibbs measures. Again, this Section is based
on [Georgii, 88]. However, we also refer to [Georgii, 79], pp. 11-15.

Definition 2.37. µ ∈ G(γ) is said to be extreme in G(γ) if for any two
µ1, µ2 ∈ G(γ), µ1 6= µ2, ς ∈ R, µ = ςµ1 + (1 − ς)µ2 implies that ς ∈ {0, 1}.
The set of all extreme elements in G(γ) is denoted by exG(γ)

The following remark will be used in a subsequent chapter.

Remark 2.38. ([Georgii, 88], Remark 7.2) Let τ be a transformation in T
and γ a specification. We then have τ(µ) ∈ exG(τ(γ)) whenever µ ∈ exG(γ).
In particular, each symmetry τ of a specification γ, maps exG(γ) onto itself,
i.e. we have τ(µ) ∈ exG(γ), whenever µ ∈ exG(γ).

Proof. By Remark 2.33, we have τ(µ) ∈ G(τ(γ)). Assume τ(µ) not to be
extremal, i.e. τ(µ) = ςµ1 + (1 − ς)µ2, ς ∈]0, 1[, µ1, µ2 ∈ G(τ(γ)), µ1 6= µ2.
Remark 2.33 shows that τ−1(µi) ∈ G(γ), i = 1, 2. Thus,

µ = τ−1(τ(µ)) = ςτ−1(µ1) + (1− ς)τ−1(µ2)

contradicting the extremality of µ.
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Proposition 2.39. ([Georgii, 88], Theorem 7.7(a)) Let γ be a specification.
A Gibbs measure µ ∈ G(γ) is extreme in G(γ) if and only if µ is trivial on
the tail-σ-field T , i.e. µ(A) ∈ {0, 1} for all A ∈ T . This property is also
called tail triviality.

Proof. [Georgii, 88], pp. 116-118, Remark 7.6 and Corollary 7.4

At this point, Georgii states a comment that helps to understand the
significance of extreme Gibbs measures:

Suppose we are observing a well-defined state of a real physical
system in equilibrium. We will find that the microscopic quan-
tities are subject to rapid fluctuations, whereas the macroscopic
quantities remain constant. [...]

We shall try do describe the state by a probability measure µ.
Of course, µ should be consistent with the observed empirical
distributions of the microscopic variables. According to the ba-
sic principles of Statistical Mechanics, this can be achieved by
assuming that µ is a Gibbs measure for a suitably chosen Gibbs
specification γ. [...] [Moreover,] µ should be such that the
macroscopic quantities are not random. [...] We have
argued that the macroscopic quantities are just the tail
measurable functions. Consequently, the tail measur-
able functions should be constant µ-almost surely and
this means that µ should be trivial on T . [Proposition
2.39] [...] thus tells us that the system’s state will be described
by a suitable extreme element of G(γ). [...]

From this we conclude that only extreme Gibbs measures are
suitable to describe an equilibrium state of a real system. In
more catching terms we may say that a physical system will
always pick an extreme Gibbs measure for its equilibrium state.
For this reason an extreme Gibbs measure is often called a phase.
([Georgii, 88], p. 119)

In this sense, non-extreme Gibbs states correspond to some uncertainty
about the true underlying state of the system.

Let V (exG(γ)) denote the evaluation-σ-algebra on exG(γ): Let eA :
µ 7→ µ(A), A ∈ F , µ ∈ exG(γ), be the evaluation mapping on exG(γ). Then
V (exG(γ)) is the σ-algebra generated by the sets {eA ≤ c}, A ∈ F , c ∈ [0, 1].

We now state the main result of this section known as extreme decom-
position of Gibbs measures.

Proposition 2.40. ([Georgii, 88], Theorem 7.26) Given a standard Borel
space (E, E) and a specification γ, such that G(γ) 6= ∅. Then exG(γ) 6=
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∅, and for each µ ∈ G(γ) there exists a unique probability measure ψµ on
(exG(γ),V (exG(γ))) such that

µ =
∫
exG(γ)

νψµ(dν).

Proof. [Georgii, 88], p. 133

As argued above, an equilibrium of a physical state will always be given
by some extremal element in G(γ). However, there may be situations, when
we are not aware of the actual state of the system and we have to guess. This
uncertainty is reflected by choosing a weight ψµ on extreme Gibbs measures
and saying that the system’s state is just the barycenter of extreme Gibbs
measures with respect to ψµ. In this sense, Proposition 2.40 says that the
state of a system will always be given by a phase (an extreme Gibbs measure)
but an observer may not be sure which phase has emerged and thus “mixes”.

The following Corollary of Proposition 2.40 is needed in a subsequent
chapter.

Corollary 2.41. ([Georgii, 88], Corollary 7.28) Let (E, E) be a standard
Borel space and γ a specification with G(γ) 6= ∅. If τ ∈ T is a symmetry
of γ, then ψτ(µ) = τ(ψµ) for all µ ∈ G(γ). In particular, µ ∈ G(γ) is
τ -invariant if and only if ψµ is τ -invariant.

Proof. [Georgii, 88], p. 134

2.6 Ergodic Decomposition

In this section we let S = Zd, d ≥ 1. Similar to PΘ(Ω,F), GΘ(γ) denotes the
set of all homogeneous Gibbs measures. Let extreme elements in PΘ(Ω,F)
and GΘ(γ) be defined as in Definition 2.37, i.e. elements are extreme if they
can only be obtained as trivial convex combinations.

Definition 2.42. An extreme homogeneous random field µ ∈ exPΘ(Ω,F)
is called ergodic (with respect to the shift-group Θ). Similarly, µ ∈ exGΘ(γ)
is called an ergodic Gibbs measure.

In this section the aim is to encounter the structure of exGΘ(γ) and show
the ergodic decomposition of an element µ ∈ GΘ(γ) that coincides with its
extreme decomposition.

We first obtain a characterization of ergodic random fields.

Definition 2.43. ([Georgii, 88], p. 291) The σ-algebra of shift invariant or
homogeneous events is defined by

I := {A ∈ F : θi(A) = A ∀i ∈ S}
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Proposition 2.44. ([Georgii, 88], Theorem 14.5(a)) A probability measure
µ ∈ PΘ(Ω,F) is extreme in PΘ(Ω,F) if and only if µ is trivial on the
σ-algebra I of invariant events.

Proof. [Georgii, 88], p. 291

Remark 2.45. The proposition above gives rise to an equivalent definition
of ergodic random fields as it is done in [Georgii, 88], Definition 14.6: A
probability measure µ ∈ PΘ(Ω,F) is said to be ergodic (with respect to the
lattice shift-group Θ) if µ is trivial on I. In the language of mathematical
physics, any such µ is often called a pure state.

Proposition 2.46. Let a random field µ be homogeneous. If µ is extreme,
then µ is ergodic.

Proof. Let µ ∈ PΘ(Ω,F). In Proposition 14.9 in [Georgii, 88], it is shown
that I ⊂ T µ-a.s. Thus, if µ is trivial on T , then so on I.

The following proposition is a version of Theorem 14.10 in [Georgii, 88].
It shows that any homogeneous random field µ can uniquely be decomposed
in ergodic random fields.

Proposition 2.47. Let (E, E) be a standard Borel space and µ ∈ PΘ(Ω,F).
Then there exists a unique probability measure ψµ on
(exPΘ(Ω,F),V (exPΘ(Ω,F))) such that

µ =
∫
exPΘ(Ω,F)

νψµ(dν).

Proof. [Georgii, 88], p. 294

Definition 2.48. The set GΘ(γ) of all homogeneous Gibbs measures with
respect to a homogeneous specification γ is given by

GΘ(γ) := G(γ) ∩ PΘ(Ω,F).

The following proposition will be needed later on. It furthermore shows
that the second part in Definition 2.42 is well defined.

Proposition 2.49. ([Georgii, 88], Theorem 14.15(a)) Let γ be a homoge-
neous specification. A Gibbs measure µ ∈ GΘ(γ) is extreme in GΘ(γ) if and
only if µ is ergodic, i.e. trivial on I. Thus

exGΘ(γ) = GΘ(γ) ∩ exPΘ(Ω,F).

Proof. [Georgii, 88], p. 297
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It should be stated that in general there are ergodic Gibbs measures
which are not trivial on T , i.e. µ ∈ exGΘ(γ) but µ /∈ exG(γ). In other
words, µ ∈ exGΘ(γ) is a pure state but not necessarily a phase.

We now obtain that the ergodic decomposition of µ ∈ GΘ(γ) coincides
with its extreme decomposition.

Proposition 2.50. ([Georgii, 88], Theorem 14.17) Suppose (E, E) is a stan-
dard Borel space and γ a homogeneous specification with GΘ(γ) 6= ∅. Let
µ ∈ GΘ(γ) and ψµ the unique probability measure on exPΘ(Ω,F) which
represents µ as in Proposition 2.47. Then ψµ is supported on exGΘ(γ).
Consequently, µ has a unique extreme decomposition within GΘ(γ), i.e. an
ergodic decomposition, namely

µ =
∫
exGΘ(γ)

νψµ(dν).

Proof. [Georgii, 88], p. 298

The following remark summarizes the several notions introduced and
thus helps us keeping track.

Remark 2.51. Elements in G(γ) are called Gibbs states. We refer to ele-
ments in exG(γ) as phases and to those in exGΘ(γ) as pure states or ergodic
Gibbs states. These are just the extreme homogeneous Gibbs states. It is im-
portant to note, that a homogeneous phase is a pure state but in general not
vice versa; more precisely, any homogeneous extreme Gibbs state is ergodic,
i.e. extreme homogeneous. However an extreme homogeneous Gibbs state
does not have to be homogeneous extreme. Differing from the notation in
[Georgii, 88], we call homogeneous extreme Gibbs states pure phases.

2.7 The Ising Model

Let us now consider a fundamental example from statistical mechanics: the
so called Ising model. A more elaborate and in particular historical survey
on the Ising model can be found in [Kindermann & Snell, 80b].

After defining the baseline model we state some fundamental results on
the properties of Gibbs measures emerging within this model. This section
is considered as a comprehensive introduction to the Ising model. A rigorous
approach to the Ising model can be found in [Georgii, 88], [Georgii, 79] or
[Preston, 76]. Here, the section on the one-dimensional Ising model is taken
from [Georgii, 88], Section 3.2, the section on the two-dimensional Ising
model from [Georgii, 88], Section 6.2.

As already mentioned, in a physical context, the Ising model may help
us to understand the emergence of magnets in nature. However, the Ising
model is general enough to be applied not only to problems in physics but
also to those in sociology and economics:
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[Ising] tried to explain, using this model, certain empirical
facts about ferromagnetic materials. [...]
While Ising discussed only the magnetic interpretation, the same
model has since been found applicable to a number of other phy-
sical and biological systems such as gases, binary alloys, and cell
structures. A sociologically orientated application has been sug-
gested by Weidlich [...]. Here one considers a group of people,
each of whom at a given moment is a ‘conservative’ (‘up’) or a
liberal (‘down’). The energy [...] might better be called ‘ten-
sion’. The first term [...] [in the interaction potential] is the
tension caused by people interacting. [The second term repre-
sents the effect of an external magnetic field of intensity h.] The
external field represents, for example, the current state of the
government, liberal or conservative. Minimum tension (maxi-
mum boredom) occurs if all people agree and agree with the
government. ([Kindermann & Snell, 80b], p. 5)

In Section 3.5, we encounter an economic interpretation of this model. More-
over, the analysis of market demand in Chapter 6 is based on a model that
generalizes the Ising model discussed here with respect to the state space.
We refer to that model as the unbounded spin Ising economy. Thus, it seems
worthwhile to obtain some “feeling” for the Ising model to have a clue what
is going on there.

The one-dimensional Ising Model

To formalize the model we let S = Z, E = {−1, 1} and the a priory measure
be the counting measure. The specification that describes the interaction is
given by the Ising potential ΦJ,h: with coupling constant J ∈ R and external
field h ∈ R, the Ising potential is given by the following homogeneous nearest
neighbor potential

ΦJ,h
A =


−Jσiσi+1 if A = {i, i+ 1},
−hσi if A = {i},
0 else.

The idea of this one-dimensional Ising model is that we are given a chain
of spins on Z with two possible orientations: “up” (1) or “down” (-1). Given
a coupling constant J , the interaction energy of two adjacent spins σi and
σj is given by −Jσiσj . We distinguish two cases: The attractive case, i.e.
J > 0. In this case two adjacent spins generate minimal energy if they
are parallel. This is often called the ferromagnetic case. In socioeconomic
terms this assumption means that local interaction is ruled by the agents’
preference for conformity in the sense that agents obtain “positive utility”
from behaving similar to their neighbors. The repulsive case is characterized
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by J < 0. In this case adjacent spins exhibit minimal energy when pointing
in opposite directions. This case is often called the anti ferromagnetic case.
Furthermore there exists an external field given by h. The energy caused by
the external field is minimized when spins align with the external field, i.e.
spins are “+1” if h > 0, “-1” if h < 0.

By Proposition 2.17, γΦJ,h
:= γJ,h is a positive homogeneous Markov

specification. Theorem 3.5 in [Georgii, 88] implies the uniqueness of a Gibbs
measure for γJ,h, i.e. G(γJ,h) = {µJ,h} Furthermore, it endows us with an
explicit characterization of µJ,h as the distribution of a homogeneous Markov
chain. For this characterization, I refer to [Georgii, 88], pp. 50,51.

An interesting question in statistical mechanics is the behavior of the
system for “low temperatures” or in the “thermodynamic limit”. Here,
we only consider the ferromagnetic case J > 0. We introduce the inverse
absolute temperature β to our model by just multiplying ΦJ,h by β and
obtain βΦJ,h = ΦβJ,βh. Furthermore, we let J = 1.

Then, the question is how µβ,βh behaves as β tends to ∞. We will see,
that the thermodynamic limit is closely related to the set of ground states:
A configuration ω ∈ Ω is called a ground state for a potential Φ if ω exhibits
minimal Φ-energy. More rigorously:

Definition 2.52. ([Georgii, 88], Definition 6.18) Let Ψ be a potential. A
configuration ω ∈ Ω is called a ground state of Ψ if

HΨ
Λ (ξ) ≥ HΨ

Λ (ω)

for all Λ ∈ S and ξ ∈ Ω such that ξS\Λ = ωS\Λ. We then call ξ a local
perturbation of ω.

For rigorous derivations of the following limiting results, we refer to
[Georgii, 88], pp. 51,52. Whenever h > 0

µβ,βh
β→∞−→ δ+ weakly,

where δ+ denotes the Dirac measure on ω+ := (ω+
i )i∈Z ∈ Ω, ω+

i := 1 for
all i. However, we should also notice, that ω+ is a ground state for Φβ,βh

whenever h > 0.
In the case h < 0, we obtain that µβ,βh weakly converges to δ−, the Dirac

measure on ω− := −ω+, as β → ∞ Again, in this case ω− is the unique
ground state for Φβ,βh.

For the case h = 0 it turns out that the limiting distribution is given by
the uniform distribution on {ω+, ω−}, i.e.

µβ,0
β→∞−→ 1

2
δ+ +

1
2
δ− weakly

and in this case {ω+, ω−} is the set of ground states for Φβ,0.
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The intuition behind these results is immediate: Given a positive di-
rected external field h in a ferromagnetic model. The lower the temperature
and thus the stronger the coupling βJ among agents and the stronger the
external field βh, a great majority of spins will be positive directed, ap-
proaching the case where all spins are positive directed as β → ∞. When
there is no external field present, i.e. h = 0, even for strong coupling there
is no significant majority of spins that align.

When discussing the one-dimensional Ising model, Georgii gives a
prospect on what is different in multi-dimensional Ising model:

We will see later that the loss of tail triviality2 is far more
dramatic for the Ising model in two or more dimensions. In
higher dimensions the set G(Φβ,0) is so strongly attracted by
the two ground states ω+ and ω− that for sufficiently large (but
finite!) β there exist two distinct Gibbs measures for Φβ,0 which
are close to δ+ resp. δ−. Thus for these β a phase transition
occurs [...]. ([Georgii, 88], p. 52)

The two-dimensional Ising Ferromagnet

In this section we introduce the ferromagnetic Ising model on a square lat-
tice. The Ising specification exhibits phase transition by virtue of symmetry
breaking. In [Georgii, 88], Section 6.2, phase transition is shown by applying
a device introduced by Peierls. For a rigorous application of Peierls’ device,
we refer to [Georgii, 88], Proof of Theorem 6.9. However, the heuristics are
quite intuitive: The device can be applied to potentials with multiple dis-
tinct ground states also for more general state spaces than we consider here.
To recall, a ground state of a potential is a configuration of minimal energy.
Consider any ground state ω ∈ Ω and any local perturbation η of ω, i.e. any
configuration η, such that |{i ∈ S : ηi 6= ωi}| < ∞. Let a contour of η be
given by the outer boundaries of connected subsets of {i ∈ S : ηi 6= ωi}. One
now has to verify some kind of stability of the ground state ω: The amount
of additional energy needed to obtain configuration η from configuration ω
shall be at least proportional to the length of the contour of η. By convexity,
G(βΦ) is uncountably infinite. Now, for sufficiently low temperatures (large

β) G(βΦ) contains a measure µβω that satisfies µβω
β→∞−→ δω locally. Thus,

if there are at least two distinct stable ground states ω for Φ and if β is
sufficiently large, we have that |G(βΦ)| > 1.

For the Ising ferromagnet, we let E = {−1, 1}, S = Z2, the a priory
measure λ be the counting measure on E and the interaction potential given

2Since µβ,0 is the unique Gibbs measure for γβ,0 it is extremal and thus, by Proposition
2.39, it exhibits tail triviality. However, limβ→∞ µβ,0 puts weight 1

2
on the tail events

{σ = ω+} ∈ T and {σ = ω−} ∈ T . Thus, it is not trivial on T .
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by

ΦA =
{
−σiσj if A = {i, j}, |i− j| = 1,
0 else.

For simplicity, we have already assumed coupling J = 1 and to obtain the
interesting case exhibiting phase transition the external field h to vanish.

The Ising potential Φ is equivalent to the potential

ΨA =
{

(σi − σj)2 if A = {i, j}, |i− j| = 1,
0 else,

in that γΦ = γΨ (cf. Definition 2.33 and Theorem 2.34 in [Georgii, 88]) since
(σi − σj)2 = −2σiσj + 2. In particular, we see that ground states for Φ and
Ψ coincide. Stating the equivalence of these two potentials is not crucial for
our further analysis but for the sake of completion: The form of the Ising
potential depends on the literature. Moreover, the Ising potential Ψ directly
shows that the local interaction structure implies preference for conformity
among agents in an economic context: The interaction energy HΨ gets
smaller, the more agents agree on a specific spin, i.e. (σi(ω)− σj(ω))2 = 0.

Φ is homogeneous, i.e. lattice shift invariant, and spin flip invariant3

and again, ω+ and ω− are ground states for Φ. In the two-dimensional Ising
ferromagnet, the ground states ω+ and ω− are stable in the sense introduced
above, i.e. a minimal amount of additional energy is needed to achieve a
local perturbation of ground states. We thus obtain, by following Peierls’
device, that G(βΦ) contains elements weakly converging to δ+ and δ− as β
approaches ∞:

Proposition 2.53. ([Georgii, 88], Theorem 6.9) Let τ denote the spin flip
transformation. In the ferromagnetic Ising model on Z2 as described above,

lim
β→∞

d(GΘ(βΦ), δ+) = lim
β→∞

d(GΘ(βΦ), δ−) = 0, (2.3)

where GΘ is the set of homogeneous Gibbs measures and d denotes any metric
induced by the weak topology on P(Ω,F).4 In particular, for all sufficiently
large β there exist two homogeneous Gibbs measures µβ−, µβ+ ∈ GΘ(βΦ) with
τ(µβ+) = µβ− and for all i ∈ S

µβ−(σi) = µβ−(σ0) < 0 < µβ+(σ0) = µβ+(σi),

where again µβ+(σi) :=
∫
Ω σidµ

β
+ and analogously for µβ−.

Proof. [Georgii, 88], pp. 101-105

3The spin flip transformation τ is given by τ : ω 7→ (−ωi)i∈S for all ω ∈ Ω.
4In [Georgii, 88] the theorem is stated for the topology of local convergence. However,

as already mentioned, the local and the weak topology coincide for finite E.
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Remark 2.54. Since µβ+ 6= µβ−, Proposition 2.53 shows in particular that
the spin flip transformation is the broken symmetry in the two-dimensional
Ising ferromagnet.

Outright, Georgii interprets this result:

In physical terms, µβ+(σ0) is the magnetization of the Ising
spin system when µβ+ is its state. The last sentence of the theo-
rem above can thus be rephrased as follows: At sufficiently low
temperatures, the two-dimensional Ising ferromagnet admits an
equilibrium state of positive magnetization,5 although there is
no action of an external field. This phenomenon is called spon-
taneous magnetization. ([Georgii, 88], p.100)

At last, I mention two well known results for the two-dimensional Ising
ferromagnet from [Georgii, 88], pp. 100,101, just to give the whole picture:
At first, there exists a critical inverse temperature βc ∈ R++ such that
|G(βΦ)| = 1 for β < βc and |G(βΦ)| > 1 for β > βc. In more catching terms,
if β < βc, thermal motion of particles is “stronger” than local interaction in
that it prevents the system from exhibiting phase transition. Georgii states
that µβ+(σ0) ≥ 0 for all β ≥ 0 and µβ+(σ0) > 0 if and only if |G(βΦ)| > 1.
Thus, we obtain the following remark.

Remark 2.55. For all i ∈ S, we have µβ+(σi) = µβ+(σ0) = 0 whenever
β < βc: There is no magnetic orientation of the Ising ferromagnet when the
system is sufficiently “hot”, as the law of large numbers would have told us
in case of independent particles, i.e. no interaction among spins. In other
words: Thermal motion is too strong for particles to couple.

The existence of the critical temperature βc is rigorously proved in
[Georgii, 72], 4.1.

Second, it can be shown that exG(βΦ) = {µβ+, µ
β
−} whenever β > βc. In

particular, G(βΦ) = [µβ+, µ
β
−].

5As well as an equilibrium state µβ
− of negative magnetization.
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Chapter 3

Large Economies & Local
Interactions

3.1 Introduction

We are now enabled to rigorously introduce an economy with locally non-
strategically interacting agents. In Chapter 1, we have suggested the exis-
tence of another form of interaction among agents besides indirect interac-
tion via market prices.

In this chapter, we first have a look at Hildenbrand’s approach to large
economies: roughly speaking, economies are given by a probability measure
on the space of agents’ characteristics. After having introduced these distri-
bution economies, we motivate a distinct economic notion: the random eco-
nomy. We then reconsider Föllmer’s approach to random economies, where
agents interact locally in a Gibbsian manner. This generalizes the approach
in [Hildenbrand, 71] where agents are thought to act independently in the
sense that the random variables describing the agents behavior are stochasti-
cally independent. The idea in [Föllmer, 74] is that each agent’s distribution
of preferences depends on the actual preferences in her peer group. Föllmer’s
intuition was that the correlation of preferences may represent social inter-
actions. This immediately leads us to Föllmer’s fundamental Ising economy
and thus to a non-physical interpretation of the Ising model, where the local
interaction structure is ruled by preference for conformity among agents.

In this chapter, we have to be very precise in emphasizing the (con-
ceptual) distinction of distribution and random economies. The chapter
is structured as follows: We first recall fundamental notions from demand
and general equilibrium theory. Thereafter, distribution economies are intro-
duced. The third part is devoted to a brief introduction of random economies
and a first approach to link distribution and random economies. The last
part of this chapter is a survey on Föllmer’s approach to locally interacting
agents.

35
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It is important to note that the economic concepts in this chapter are
preference-based: The primitives of individual agent’s behavior are given by
preference relations on the commodity space. We may then generate indi-
vidual demand functions by virtue of preference optimization given budget
restrictions. However, the subsequent chapters turn out to be demand-based
in that the primitives of individual behavior are demand functions. These
do not necessarily originate from preferences.

3.2 Basic Definitions

Let us first state some fundamental notions from demand theory. The stan-
dard definitions below are recalled here since several definitions, as those
of preferences and their properties, vary in standard literature. Moreover,
it may be helpful to have a look at these fundamental concepts in a basic
context that is purely deterministic.

Definition 3.1. (a) A binary relation % on an arbitrary set X is a subset
of X×X. When saying that two elements x, y ∈ X are in relation, we write
x % y for (x, y) ∈%.
(b) A binary relation % on X is said to be

• total or complete if

x % y or y % x for all x, y ∈ X;

• reflexive if
x % x for all x ∈ X;

• transitive if

x % y and y % z imply x % z for all x, y, z ∈ X;

• asymmetric if

x % y ⇒ ¬y % x for all x, y ∈ X.

(c) The asymmetric part � of the relation % is defined as

x � y ⇔ [x % y and ¬y % x],

x, y ∈ X.

We now consider a binary relation for each agent i on her set of possible
consumption vectors. The idea is that specific binary relations reflect an
agent’s “taste”. When saying that a consumption bundle x is in relation
to or relates to a consumption bundle y, or formally x %i y, it is meant
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that agent i considers consumption bundle x at least as good as consump-
tion bundle y; stated in another way, she weakly prefers x to y. We say
that an agent i strictly prefers x to y if x �i y. The subsequent defini-
tions basically follow the lines in [Hildenbrand, 74], pp. 83-93. However,
later on, we have to confine ourselves to special cases for several results to
hold. In this chapter, an agent is entirely characterized by a consumption
set, a preference and a commodity endowment. Elaborate discussions on
these primitives of an economic model may be found in [Hildenbrand, 74] or
[Hildenbrand & Kirman, 76].

Definition 3.2. (a) Let M be a finite set of agents. A consumption set Xi

of agent i ∈ M is a non-empty subset of the commodity space Rl that is
furthermore closed, convex and bounded below. For convenience, we assume
the consumption space to be common among agents, i.e. Xi = X for all
i ∈ M.
(b) We define the following relations on Rl: For x, y ∈ Rl let

• x ≥ y if xk ≥ yk for k = 1, ..., l; x is greater than or equal to y.

• x > y if x ≥ y but x 6= y; x is semi-greater than y.

• x� y if xk > yk for k = 1, ..., l; x is strictly grater than y.

(c) A binary relation % on a consumption set X ⊂ Rl is

• a preordering if it is a transitive binary relation,

• continuous if it is upper- and lower-hemi-continuous, i.e. the upper
contour set %x := {y ∈ X : y % x} and the lower contour set x% :=
{y ∈ X : x % y} are closed in X for all x ∈ X. Equivalently: For
all sequences (xn)n ⊂ X and (yn)n ⊂ X such that xn → x ∈ X and
yn → y ∈ X, it holds: xn % yn ∀n ⇒ x % y.

• strongly monotone if, for all x, y ∈ X = Rl
+, x > y implies x � y,

• monotone if, for all x, y ∈ X = Rl
+, x� y implies x � y,

• weakly convex if, for all x ∈ X, the upper contour set %x is convex,

• strongly convex if, for all x, y, z ∈ X such that y % x, z % x and
y 6= z, it holds: for all θ ∈]0, 1[ we have (θy + (1− θ)z) � x.

• locally non-satiated if, for every x ∈ X and every neighborhood V ⊂ X
of x, there exists y ∈ V such that y � x.

Definition 3.3. (a) A preference %i of agent i ∈ M is a continuous, com-
plete preordering on her consumption set Xi ⊂ Rl. Let P denote the set of
all preferences.
(b) The strict preference relation �i for agent i ∈ M is the asymmetric part
of %i.
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Remark 3.4. (a) In most introductory textbooks, a preference is defined as
a reflexive, complete and transitive binary relation. Our definition assumes
a preference to be a continuous, complete and transitive binary relation.
However, completeness implies reflexivity.
(b) Of course, we could have defined preferences the other way around: Let
x, y ∈ X. Instead of saying x is at least as good as y and writing x % y,
we could have defined preferences by saying x is at most as good as y and
writing x - y. However, now we define the preference - by

x - y :⇔ ¬x � y.

All properties of a preference are satisfied.

Definition 3.5. Agent i’s initial (commodity) endowment is given by a
vector wi ∈ Rl. Let w =

∑
i∈Mwi denote the aggregate endowment.

Definition 3.6. A simple (pure exchange) economy is a tuple E s = ((Xi,%i

,wi)i∈M), where M denotes the finite set of agents.

Definition 3.7. (a) Given a simple economy E s, a family (xi)i∈M is an
allocation for E s if xi ∈ Xi for all i ∈ M. An allocation (xi)i∈M is called
feasible for E s if

∑
i∈M xi = w.

(b) Given a price system p ∈ Rl and an endowment wi ∈ Rl, the ith agent’s
Walrasian demand correspondence χi : P × Rl × Rl → 2Rl

, the power set
on Rl, is given by

χi(%i, wi, p) = {xi ∈ Xi|∀x̂i ∈ Xi : (x̂i �i xi ⇒ p · x̂i > p · wi)},

where · denotes the scalar product in Rl. Of course, the functional form is
the same for all agents and thus, we set χi = χ for all i ∈ M.
(c) Given an exchange economy E s, a tuple ((xi)i∈M, p) ∈ Rl|M| × Rl is a
competitive equilibrium if

1. xi ∈ χ(%i, wi, p) for i ∈ M,

2. (xi)i∈M is a feasible allocation for E s.

When specifying an agent’s preference, we have also determined her con-
sumption set. Letting P denote the set of preferences, an economic agent
is given by an element in P × Rl. Thus, we may rephrase Definition 3.6:

Definition 3.8. ([Hildenbrand & Kirman, 76], Definition 2.6) A simple
pure exchange economy E s is given by a mapping

E s : M → P × Rl.
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In this sense, preferences are given by a mapping %: M → P, i 7→%i,
initial endowments by w : M → Rl, i 7→ wi and analogously for allocations.

To define measures on P×Rl, we are faced with the problem of obtaining
a suitable σ-algebra on P. We therefore consider the “topology of closed
convergence” that turns P into a separable metric space and use the Borel-
σ-algebra with respect to that metric.

Remark 3.9. ([Hildenbrand, 70], p. 163 and [Hildenbrand, 71], p. 415)
Let P denote the set of all preferences, i.e. of all continuous, complete,
transitive (and thus reflexive) binary relations on the consumption set X.
The graph P = {(x, y) ∈ X × X : x % y} of % is called the preference
set associated with the consumption set X and preference relation %. Then
P is the set of all closed preference sets in Rl × Rl. In this sense P is a
collection of closed subsets in Rl × Rl.

Let (Pn)n∈N be a sequence in P. We say that the sequence (Pn)n∈N
converges to some P ∈ P with respect to the topology of closed convergence,
if

LimInfPn = P = LimSupPn,

where

LimInfPn := {x ∈ Rl × Rl : ∃n0 such that for every neighborhood
U(x) of x and every n ≥ n0 it holds
U(x) ∩Pn 6= ∅} and

LimSupPn := {x ∈ Rl × Rl : for every neighborhood U(x) of x
it holds U(x) ∩Pn 6= ∅ infinitely often}.

It is now stated in [Hildenbrand, 71] that there exists a metric on P such
that P is a separable metric space and convergence with respect to that
metric coincides with the closed convergence above. A more elaborate dis-
cussion can be found in [Hildenbrand, 70], pp. 164,165. We are now enabled
to consider distributions on the measurable space (P ×Rl,B(P)×B(Rl)),
where B denotes the Borel-σ-algebra for the respective topology chosen.

The economic rationale of this metric is that agents with similar prefer-
ences with respect to that metric behave similar in the sense that the demand
correspondence χ is upper hemi-continuous. For a rigorous statement, we
refer to [Hildenbrand, 71], Appendix 2.

We have already seen how to generate a demand correspondence χ for
given preference %. In general, the demand correspondence is not a func-
tion. Thus, we ask for properties of preferences such that the demand sets
χ(%, w, p) are singleton. Let Psmo,sco denote the set of all strongly monotone
and strongly convex preferences.

Henceforth, we consider X ⊂ Rl
+ closed and convex, W ⊂ Rl

++ closed
and bounded. We furthermore assume price systems p ∈ Rl

++.1

1We assume prices to be strictly positive since demand might be unbounded otherwise.
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Proposition 3.10. ([Hildenbrand, 74], p. 170) Let %∈ Psmo,sco, price sys-
tem p ∈ Rl

++ and initial endowment w ∈ W. The demand correspondence
χ : Psmo,sco ×W × Rl

++ → 2Rl
is a demand function.

Proof. Theorem 2, Chapter 1.2, in [Hildenbrand, 74] ensures that χ(%, p, w)
is non-empty for every triplet (%, p, w) ∈ Psmo,sco × Rl

++ × Rl
++. Assume

x, y ∈ χ(%, p, w), x 6= y, for some (%, p, w). Then x % y and y % y. By
convexity of the consumption set X, we have 1

2x + 1
2y ∈ X. Moreover,

1
2x+ 1

2y ≤ p · w. However, the strong convexity of % yields

1
2
x+

1
2
y � y

and thus a contradiction.

One major assumption in Walrasian theory is the price-taking behavior
of agents, none exhibits market power. If we were to justify this behavior,
we would tend to say that the economy is large, i.e. it consists of infinitely
many agents. A convenient way to describe such an economy is given in the
next chapter.

3.3 Distribution Economies

The purpose of this section is to introduce distribution economies that are
tailor-made for modeling large economies, i.e. economies with (uncount-
ably) infinitely many agents. Moreover, we consider sequences of simple, i.e.
finite, economies converging to economies with an infinite set of agents. Of
course, we have to define an appropriate notion of convergence: Since we
conceive economies as distributions of agents’ characteristics, convergence of
economies is just given by weak convergence of corresponding distributions.

We may again identify an agent characterized by (X,%, w) with an el-
ement (%, w) ∈ C := P × W. As in [Hildenbrand, 70], p. 166, a sim-
ple pure exchange economy E s is given by a finite family of elements in
C.2 This already motivates to identify an economy with its distribution
in C. Consequently, we will now consider a probability measure ν on
(C,B(C)) := (P × Rl,B(P) × B(W)) and thus also allow for economies
with (uncountably) infinitely many agents.

Nevertheless, if we want to achieve economies as distributions on the set
of agents’ characteristics, abstracting from the set of agents, we should do so
in a way that is motivated by the basic definitions in section 3.2. However,
the next definition is not necessary for our models and one may go ahead to
Definition 3.12. We generalize Definition 3.6:

2The primitives in [Hildenbrand, 70] are more general. However, later on we would
have to confine ourselves to this case.
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Definition 3.11. ([Hildenbrand, 74], p. 125) Let M̄ be a not necessarily
finite set of agents.
(a) A (pure exchange) economy E is a random variable on a probability
space (M̄,M̄, Q) with values in C of agent’s characteristics such that the
mean endowment

∫
projw◦E dQ is finite. Here, projw denotes the projection

mapping on the space of initial endowments W. In this sense, projw ◦ E is
the initial endowment.3

(b) A (per capita) allocation for the economy E is an integrable function f
of M̄ into Rl such that a.e. in M̄ the consumption vector f(i) belongs to the
consumption set of agent i ∈ M̄. An allocation is called attainable for E if∫

fdQ =
∫
projw ◦ E dQ.

Thus, we see that the initial endowment projw ◦ E is well defined as an
allocation.
(c) An economy E is called simple if M̄ is a finite set, M̄ is the power set
and Q(E) = |E|

|M̄| for all E ⊂ M̄. E is called atom-less if (M̄,M̄, Q) is

atom-less, i.e. for every E ∈ M̄ with Q(E) > 0 there exists E ⊃ Ẽ ∈ M̄
such that 0 < Q(Ẽ) < Q(E).

Note, that the notion of a simple economy as defined in Definition 3.6
coincides with the notion in (c) above. Motivated by Definition 3.11, a
measure ν on C,B(C) is called simple if ν is the uniform distribution on a
finite subset of C.

Due to measurability, E is “well behaved”, so that we may equivalently
consider the image distribution ν := Q ◦ E −1 of Q under the mapping E .
This motivates the following equivalent definition, where we abstract from
the set M̄ of agents.

Definition 3.12. A distribution (pure exchange) economy E d is a probabi-
lity distribution ν on the space of individual characteristics (C,B(C)), such
that initial endowment w : C → W is ν-integrable. In analogy to Definition
3.11, E d is called simple or atom-less if ν is simple or atom-less, respectively.
An allocation f for E d is given by a ν-integrable function f : supp(ν) → Rl

such that f(i) ∈ Xi ν-a.e. in supp(ν). An allocation f is called attainable
if
∫
C(f − w)dν = 0.

In case of a simple economy, per capita or mean initial endowment is
given by ∫

M̄
projw ◦ E dQ =

∫
C
wdν =

1
|supp(ν)|

∑
a∈M

wa.

3In [Hildenbrand, 74], the definition is posed for measurable spaces; however, we confine
ourselves to probability spaces. Although, we use the term “random variable” for the
economy, there is no stochastics involved so far! Thus, we should just think of a measurable
mapping.
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LetM0(C) denote the set of all probability measures on C with compact
support.

Definition 3.13. ([Hildenbrand, 74], Definition 3, p. 129) An allocation f
for the economy E d and a price vector p ∈ Rl is called a Walras equilibrium
for E d if f(i) ∈ χi(�i, p, w) ν-a.e. and

∫
fdν =

∫
wdν. A price vector

p ∈ Rl is called an equilibrium price for the economy E d if there exists an
allocation f for E d such that (f, p) is a Walras equilibrium.

In terms of the market excess demand X(p) :=
∫
C(χ − w)dν,4 p is an

equilibrium price if and only if 0 ∈ X(p).
The price-taking behavior of agents can now be described by considering

atom-less measures ν ∈ M0(C): Here, ν(i) = 0 for all i ∈ supp(ν). This
may be interpreted as the fact that no individual agent exhibits “market
power”.

When we have introduced economies in the first section of this chapter,
we were thinking of a finite population of agents. One may object that
economies with a continuum of agents, i.e. given by an atom-less measure,
are heuristically not well motivated by economic considerations. However, if
we could show that atom-less economies are just limits of “growing” simple
economies, the notion of a distribution economy would make sense at all.
This is stated in the next theorem.

Theorem 3.14. ([Hildenbrand, 70], Theorem 1) Let ν ∈ M0(C) be atom-
less. There exists a sequence (νn)n∈N of simple measures on C converging
weakly to ν and such that supp(νn) ⊂ supp(νn+1) ⊂ supp(ν)

Proof. [Hildenbrand, 70], pp. 169,170

This theorem shows that every atom-less economy E d can be obtained
as a limit of a sequence (E s

n )n∈N of simple economies. In particular, any
distribution economy can be obtained in this manner.

We now have motivated to consider economies with a continuum of
agents since we have shown that each of those, at least as long as ν ∈M0(C),
can be obtained by a “growing” finite population of economic agents.

3.4 Random Economies

So far, no stochastics was involved in our economic model. This section is
based on [Hildenbrand, 71], wherein the underlying idea is that certain con-
sistency requirements that are assumed in general equilibrium theory, e.g.
budget balancedness, cannot be posed in absolute terms but in a stochastic
manner: Despite choosing a commodity vector in X, the individual agent

4The introduction of an integral for correspondences is straightforward. For a rigorous
definition we refer to [Ellickson, 93], p. 350.
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determines a probability to choose a vector from a subset of X. This idea
has come into account when experiments have shown that agents do not nec-
essarily make the same choices when all parameters are held constant. The
question why non-deterministic behavior arises is a philosophical one and
beyond the scope of this diploma thesis. We just assume that such stochastic
behavior arises. Nevertheless, as mentioned for example in [Hohnisch, 03],
the question is whether stochastic behavior is an intrinsic property of human
behavior or if it just arises because of hidden parameters the experimenter is
not aware of. However, these considerations suggest to conceive preferences
as random and thus, we obtain random choices.

Hildenbrand introduces the notion of random preferences, i.e. preference
valued random variables. This approach will eventually lead to the notion of
a random economy. Of course, in this context individual demand and total
excess demand will be random, too. With the notation from the preceding
section, an agent is completely described by an element in P ×W. Again,
we endow P with the topology of closed convergence. We moreover consider
an arbitrary underlying probability space (Ω,F , P ).

Definition 3.15. ([Hildenbrand, 71], p. 416) (a) Given (Ω,F , P ). A ran-
dom preference ϑi of agent i ∈ M̄ is a random variable, i.e. a measurable
mapping, ϑi : Ω → P. Equivalently, a random preference for agent i is
described by the image measure P ◦ ϑ−1

i on (P,B(P)).
(b) A random agent σi, i ∈ M̄, is a random variable σi : Ω → P × W.
Equivalently, random agent i is described by the image measure µi := P◦σ−1

i .
In this sense, a random preference is just the projection of a random agent
on the space of preferences.
(c) (Random) demand of agent σi, i ∈ M̄, is given by the random vari-
able χ(σi(·), p) for the prevailing price system p ∈ Rl, where χ is given in
Definition 3.7.

This setup calls for a new type of economy: The random economy. Later,
we have to distinguish between local and global random economies. As long
as random agents are assumed to be independently distributed, local data
uniquely specifies global data. Thus, no global data is needed to specify the
global distribution of the economy. In this sense, we do not have to distin-
guish between local and global random economies at this point. However, in
terms of Section 5.3, the following definition is of macroeconomic character
and we will thus refer to it as a global random economy:

Definition 3.16. A global random (pure exchange) economy E gr := {σi}i∈M̄

is a family of random agents σi on (Ω,F , P ); equivalently, a probability mea-
sure µ on the measurable space (P × Rl,B(P) × B((R)l))M̄. A random
economy is called simple if M̄ is finite. Using the equivalent characteriza-
tion, E gr is called simple if its distribution µ is the uniform distribution with
finite support.
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What follows is not necessarily needed for our further analysis. However,
for the sake of completion, it is stated here.

Definition 3.17. Given a price system p ∈ Rl the (random) total excess
demand X for the simple global random economy E gr is defined by ζ(·, p) :=∑

i∈M̄[χ(σi(·), p) − projw(σi(·))], where projw(·) denotes the projection of
C on W. Again, a price system p̃ is an equilibrium price system if 0 ∈∫
X(·, p̃)dP .

Let now X = Rl
+. We then consider random agents σi with distribution

µi that has support in Psmo,sco ×W.

Proposition 3.18. ([Hildenbrand, 71], Theorem 1) Let E gr
n = {σni }i∈Mn,

n ∈ N, be a sequence of simple global random economies such that

• |E gr
n | := |Mn| → ∞ as n→∞,

• for every n, the family {σni }i∈Mn is stochastically independent,

• there is a weakly compact set in P(Psmo,sco×W,B(Psmo,sco)×B(W))
which contains every distribution of σni , i ∈Mn, n ∈ N.

Then for every economy E gr
n there exists a price system p̄n ∈ Rl

++ such that
(1) the expected total excess demand of En with respect to p̄n is zero, i.e.∫

ζE r
n
(·, p̄n)dP = 0,

(2) the total excess demand per capita of E gr
n with respect to p̄n converges in

probability to zero, i.e. for every δ > 0,

P

{
ω ∈ Ω :

∣∣∣∣ζE gr
n

(ω, p̄n)
|E gr
n |

∣∣∣∣ ≤ δ

}
→ 1 as n→∞

Proof. [Hildenbrand, 71], pp. 421,422

Part (1) states that there exists an equilibrium for E gr
n . Part (2) gives us

some kind of limiting equilibrium state of the economy in probability. We
obtain stronger results when considering a particular class of sequences of
economies.

However, for our purposes it is not only the result of the above theorem
that is remarkable but the independence assumption that is necessary to
establish this result. In the random economy with independent random
agents interaction only comes into account as global (market) interaction
via price systems. In other words, there is a (global) market structure, but
a (local) social structure is not introduced to the model so far.
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Connecting Random & Distribution Economies for Independent
Agents

In this section, we obtain a result that links random and distribution econo-
mies if the random agents are independent and identically distributed. In
Chapter 6 we obtain a stronger result that combines distribution and random
economies when the random economy is ruled by an ergodic distribution.

Given ω ∈ Ω we consider the family of realizations {σi(ω)}i∈M̄. The
sample or empirical distribution νE gr(ω) of the simple global random eco-
nomy E gr for the sample ω is defined by

νE gr(ω) =
1
|M̄|

∑
i∈M̄

δσi(ω). (3.1)

Note that νE gr(ω) is a probability distribution on (C,B(C)). Thus, νE gr

is a distribution valued random variable and νE gr(ω) is actually a simple
distribution economy.

We now try to obtain a result showing some kind of “stability” of νE gr(ω)
in the sense that for economies with “growing populations” νE gr(ω) gets
more and more independent of the particular chosen ω and thus weakly
converges to some distribution ν on (C,B(C)), the limiting empirical dis-
tribution as given in Definition 6.2.

Consider a sequence (E gr
n )n∈N of simple random economies. Two agents

i and j are said to be of the same type k ∈ N if the random variables σni
and σnj are equally distributed on C, i.e. µi = µj = ςk for some ςk. Let Cnk
be the number of all agents in E gr

n that are distributed by ςk on C, i.e. the
number of type k agents in economy E gr

n . The sequence (E gr
n )n∈N is said to

be steadily increasing if

1. |E gr
n | := |M̄n| is strictly increasing in n,

2. Cnk is non-decreasing in n, limn→∞
Cn

k

|E gr
n | = ck exists and

∑∞
k=1 ck = 1,

i.e. ck is the fraction of type k agents in the limiting economy.

The measure ν on C, given by ν =
∑∞

k=1 ckςk, independent of ω ∈ Ω, is
called the asymptotic distribution of (E gr

n )n∈N.

Proposition 3.19. ([Hildenbrand, 71], Theorem 2) Let (E gr
n )n∈N be a stea-

dily increasing sequence of simple global random economies. If in every
economy E gr

n , the random agents of the same probabilistic type are stochas-
tically independent, then the sequence (νE gr

n
(ω))n∈N of sample distributions

converges in probability to the asymptotic distribution ν. Formally, for all
ε > 0

P ({ω ∈ Ω : d(νE r
n
(ω), ν) > ε}) → 0 (3.2)

as n→∞, where d denotes the metric of weak convergence on P(C,B(C)).
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Proof. [Hildenbrand, 71], pp. 424,425

As already mentioned, this theorem establishes a relation between ran-
dom and distribution economies for the independent case. At this point, we
are not going to apply Proposition 3.19. However, we should have in mind
this result since we discuss a generalization for the ergodic case in Chapter
6.

Proposition 3.20. ([Hildenbrand, 71], Theorem 3) Let (E gr
n )n∈N be a stea-

dily increasing sequence of simple global random economies where every dis-
tribution is concentrated on the set Psmo,sco × W. Assume that in every
economy E gr

n the agents of the same type are stochastically independent.
Then for every economy E gr

n there is a price system p̄n such that expected
total excess demand with respect to p̄n is zero, every adherent point p of the
sequence p̄n is a price-equilibrium for the asymptotic distribution ν, and total
excess demand per capita of E gr

n with respect to p̄n converges in probability
to zero.

Proof. [Hildenbrand, 71], pp. 425-427

A special case of the above theorems is of course a simple random eco-
nomy with independent and identically distributed random agents. Propo-
sition 3.20 gives us the adherent points of the sequence of price equilibria as
price equilibria of the limiting economy.

As mentioned at the beginning of this chapter, the approaches so far are
preference-based in the sense that the state space consists of preferences.
However, we may consider more general models when generalizing the state
space to any economic or social characteristic we can think of.

3.5 Föllmer’s Interacting Agents

In the preceding section it is assumed that agent’s preferences are random
but independent (within each type). Föllmer generalizes this approach by
allowing the probability distributions of an agent’s preferences to depend on
her environment. Relaxing from independence is one approach taking into
account locally interacting agents. We thus obtain another kind of interac-
tion besides market interaction via the price system. The primitives of the
model, the conditional distributions that govern the randomness of indivi-
dual preferences with respect to an agent’s environment, are microscopic
and given by specifications as defined in Chapter 2. In this sense, the mod-
els in this section are of microeconomic type. However, we are interested in
the emerging macroeconomic state of an infinite economy with interacting
agents. In particular, Föllmer poses the question if equilibrium prices may
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be derived solely on the knowledge of local data. Due to spontaneous emer-
gence of macroscopic states, we will see that the answer to this question is
negative.

Stated another way: “The microeconomic characteristics may no longer
determine the macroeconomic phase, that is, the global probability law which
governs the joint behavior of all economic agents.” ([Föllmer, 74], p.52)

3.5.1 Primitives of the Model

The notation that we use differs from that in [Föllmer, 74] and may seem
a little odd to economists. However, the rationale for this notation is the
conformity with statistical mechanics. Let ∅ 6= S be a countably infinite set
of economic agents.5 Individual consumption sets are closed convex subsets
Xs ⊂ Rl

+, s ∈ S. Assume identical consumption sets Xs = X. An agent
s ∈ S is characterized by an element in the state space E ⊂ Psmo,sco ×W
with appropriate σ-algebra E . For technical convenience, Föllmer assumes
E to be finite.

Remark 3.21. (a) Assume throughout some underlying probability space
(Ω,F , P ). A random agent at site s ∈ S, called s, is again given by a ran-
dom variable σs : Ω → E.
(b) As in Chapter 2, we canonically set Ω := ES and F := ES. We further-
more define σs : Ω → E by the projection mapping Ω 3 ω 7→ σs(ω) := ωs.
Thus, random agent s ∈ S is given by some ωs ∈ E.

In terms of Chapter 2, S is the parameter set, E is the state space and
Ω the configuration space, with ω ∈ Ω a configuration.

In a deterministic context, an economy is given by a configuration ω,
whereas in our context, an economy may be thought to be given by a pro-
bability distribution µ on Ω as seen in the last section. However, if we
would define a random exchange economy by a probability space (Ω,F , µ),
the model would not be microeconomic any longer: Under the independence
assumption of the last section, µ would be given by the product measure
µ = ⊗s∈Sµ ◦ σ−1

s . However, when relaxing the independence assumption,
we have to know the distributions of states for subeconomies in order to
determine µ and hence aggregate data.

Thus, to keep the model microeconomic, we define the economy via
specifications on Ω. In this setup, we are not given specifications in the
general form of chapter 2 but as probability distributions γs(·|·), s ∈ S, on
E conditional on the states of all other agents, the “singleton parts” (γ{s})s∈S

of a specification (γΛ)Λ∈S as given in Definition 2.6. However, Theorem 1.33
in [Georgii, 88] justifies this approach for the Ising model. The distributions
µ on (Ω,F) that specify the macroeconomic state of the economy will then

5We do not use M̄ for the set of agents here, since we want to emphasize that now the
graph structure of the set of agents is crucial for the model.
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be given by the corresponding Gibbs measures, i.e. by measures that are
consistent with specifications in the sense that the finite volume projections
of µ coincide with the conditional distributions.

Definition 3.22. ([Föllmer, 74], Definitions 2.1 & 2.2) (a) An environment
of an economic agent s ∈ S is a mapping η : S \ {s} → E which specifies the
states of the other agents; η ∈ Ω{s}c.
(b) Let E be an appropriate σ-algebra on E. The characteristic γs of agent
s ∈ S is given by a probability kernel γs from T{s} to E, such that γs(·|η) is
a probability distribution on the state space E conditional on agent s’ envi-
ronment η.
(c) A local random (pure exchange) economy is a triple E lr = (S,E, γ)
where γ = (γs)s∈S is a collection of characteristics. γ is called (microeco-
nomic, microscopic or local) characteristics of E lr.
(c) A probability measure µ on (Ω,F) is called a (macroeconomic, macro-
scopic or global) Gibbs state for the economy, if µ is consistent with γ in
the following sense:

µ[ωs = e|η] = γs(e|η) µ− almost surely.

for all s ∈ S and e ∈ E. Local characteristics γ is called consistent if it
admits at least one Gibbs state. Let us denote the set of all Gibbs states of
E lr by G(E lr).6

Again, by Theorem 1.33 in [Georgii, 88], G(E ) is the set of Gibbs mea-
sures with respect to specification γ, G(γ).

In Hildenbrand’s context, where preferences are random but indepen-
dent, the unique Gibbs state µ is given by the product measure µ(·) =
⊗s∈Sγs(·|η) on ES. In particular, the Gibbs state is uniquely determined by
microeconomic characteristics. However, as we have already seen in chapter
2, there may be consistent characteristics that admit more than one Gibbs
state.

As in the last section, we assume E ⊂ Psco,smo × W. Thus, demand
χ(ω(s), p) of agent s facing price system p given by preference maximization
with respect to budget constraint is a function.

Definition 3.23. ([Föllmer, 74], p. 55) Let S0 be a finite subpopulation of
S. The per capita excess demand for subpopulation S0 for ω ∈ Ω and price
system p ∈ Rl

++ is given by

1
|S0|

∑
s∈S0

ζ(ωs, p),

where ζ : E×Rl
++ → Rl, ζ(ωs, p) := χ(ωs, p)−ws, is defined as the individual

excess demand and ws denotes the initial endowment of s.7

6Note that µ ∈ G(E lr) defines a global random economy E gr.
7Unlike Föllmer, I assume p ∈ Rl

++. In light of our assumptions on preferences, demand
might be unbounded otherwise.
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In keeping an eye out for an equilibrium price system, the question arises
if we can find a price system such that the global per capita excess demand is
approximately zero for sequences of subpopulations approaching the count-
ably infinite set S.

We consider finite subeconomies Sn ⊂ S. A sequence (Sn)n∈N exhausts
S if ∪n∈NSn = S and Sn represent S in a sense that depends on the specific
structure of S. In case S := Zd let Bn := {s ∈ S : |s| ≤ n}. A sequence of
finite subpopulations (Sn)n∈N exhausts S if Sn ⊂ Bn and there exist N ∈ N
and δ > 0 such that Sn = ∪̇i≤mB̃i, where m ≤ N , B̃n is a “box” parallel
to the axes of S and |Sn||Bn|−1 ≥ δ. Intuitively, this means that (Sn)n∈N
exhausts S in approximately the same way as (Bn)n∈N.

Definition 3.24. ([Föllmer, 74], Definition 2.6) Given E lr, we say that a
price p ∈ Rl

++ equilibrates, or stabilizes, the Gibbs state µ of the economy
E lr if

lim
n→∞

1
|Sn|

∑
s∈Sn

ζ(ωs, p) = 0 µ-almost surely (3.3)

whenever (Sn)n∈N is an increasing sequence of coalitions which exhausts S.
p equilibrates, or stabilizes, the economy E lr if p equilibrates each Gibbs state
of E lr.

Föllmer now poses the following two questions: Can we stabilize any
given Gibbs state? Can we stabilize a local random economy E lr when we
only know the microscopic characteristics?

3.5.2 Markov Economies

In Chapter 2 we have already stated the close relation between the Markov
property and a nearest-neighbor potential. We again follow this idea.

Definition 3.25. ([Föllmer, 74], p. 56) Let the finite set N(s) ⊂ S denote
the set of neighbors or peers of agent s.

Assumption 3.26. (a) We assume that agent s ∈ S directly interacts only
with agents b ∈ N(s), i.e.

γs(·|η) = γs(·|η̃s)

if η|N(s) = η̃s|N(s) (s ∈ S).
(b) Let S = Zd for some d ≥ 1 and assume N(s) = {b ∈ S : |b − s| = 1},
i.e. N(s) is the set of nearest neighbors in Zd.

Definition 3.27. (a) ([Föllmer, 74], Definition 3.4) A local random economy
E lr = (S,E, γ) where S and N(s) are defined as in Assumption 3.26(b) and
which local characteristics are consistent and satisfy Assumption 3.26(a) is
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called a Markov economy. We say that E lr is homogeneous if γ is homoge-
neous.
(b) Given a homogeneous Markov economy E lr, let GΘ(E lr) denote the set
of all homogeneous Gibbs states of E lr. In accordance to chapter 2 the ex-
treme elements in GΘ(E lr), exGΘ(E lr), are called pure states. The case
|G(E lr)| > |GΘ(E lr)| is called symmetry breakdown, the case |G(E )lr| > 1
phase transition.

Recall that the set of pure states is just the set of ergodic Gibbs states.
From now on, let us consider E lr to be a homogeneous Markov economy. In
this case, γ is consistent by definition and we have |G(E lr)| ≥ |GΘ(E lr)| ≥ 1.
Symmetry breakdown “means that, although the individual agents are all
governed by the same conditional probability law, the global phase may be
inhomogeneous, and in particular the individual distributions µs may vary”
([Föllmer, 74], p. 57) among agents. The existence of phase transition
may be interpreted as the possibility of spontaneous changes of phases even
though the local characteristics remain fixed. Recall that Remark 2.36 shows
that symmetry breaking implies phase transition.

Proposition 3.28. ([Föllmer, 74], Theorem 3.6) Let E lr be a homogeneous
Markov economy. Then, any pure phase can be stabilized.

Proof. By Proposition 2.49, a Gibbs state µ ∈ GΘ(E lr) is extreme in GΘ(E lr)
if and only if µ is ergodic. Thus, a pure state is ergodic and we may apply an
ergodic theorem. Let θa denote the spatial shift by a, then the ergodic the-
orem in [Georgii, 72], pp. 125,126, yields for a sequence (Sn)n∈N exhausting
S in the sense defined for Zd

lim
n→∞

1
|Sn|

∑
s∈Sn

ζ(ωs, p) = lim
n→∞

1
|Sn|

∑
s∈Sn

(ζ ◦ θs)(ω0, p)

= µ(ζ(ω0, p)) µ-a.s.

Existence of a price system p such that µ(ζ(ω0, p)) =
∫
ζ(ω0, p)dµ = 0

directly follows from Proposition 3.18(1) for |E lr
n | = 1.

Corollary 3.29. Let E lr be a homogeneous Markov economy. If |G(E lr)| =
1, then E lr can be stabilized.

Proof. In this case G(E lr) = exGΘ(E lr) = {µ}. Proposition 3.28 shows the
assertion.

Thus, if there is no phase transition, i.e. |G(E lr)| = 1, we can stabilize a
homogeneous Markov economy knowing only the microscopic data. In light
of this result, it may be interesting to encounter conditions ensuring absence
of phase transition:
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Assumption 3.30. For all agents s ∈ S and environments η ∈ ES\{s},
γs(·|η) > 0.

Proposition 3.31. ([Föllmer, 74], p. 58) Let E lr be a homogeneous Markov
economy and Assumption 3.30 hold. Then local characteristics γ can be
written as

γs(e|η) = Z(s, η)−1eψ(s,e)+
P

b∈N(s) U(s,b,e,η(b)), (3.4)

where Z(·, ·) is a partition function. U satisfies U(s, b, ·, ·) = 0 whenever
|s−b| 6= 1. Moreover, U(s+b, s̃+b, ·, ·) = U(s, s̃, ·, ·) and ψ(s+b, ·) = ψ(s, ·).

Proof. 2.17 Changing slightly our notation in Chapter 2, the assertion fol-
lows directly from Definition 2.15 and Corollary 2.17 together with Defini-
tion 2.12. However, the latter definition is more general than needed for this
proof and alternatively, the assertion can be seen directly in [Preston, 74],
Theorem 1.1 or Theorem 4.1 if one is used to the notation therein.

Let us gain more intuition for this result: The condition U(s, b, ·, ·) =
0 whenever |s − b| 6= 1 takes account of the Markov property, whereas
U(s+ b, s̃+ b, ·, ·) = U(s, s̃, ·, ·) and ψ(s+ b, ·) = ψ(s, ·) reflects homogeneity
of local characteristics.

Having a look at Definition 2.12 and equation (5.1) we may reinterpret
ψ and U in terms of a nearest neighbor potential in the following way: ψ re-
presents the one body potential and the external field, whereas U represents
the two body potential, i.e. the coupling among two distinct nearest neigh-
bors. In this sense ψ(s, ·) is the inner direction of agent s and U(s, ·, ·, ·) the
outer direction, i.e. the intensity of correlation with her neighbors.

Föllmer now states a theorem due to Spitzer and Dobrushin

Theorem 3.32. ([Föllmer, 74], Theorem 3.12) |G(E lr)| = 1 if

max|U(·, ·, ·, ·)| is small enough (relative to ψ),

i.e. if the economic agents are sufficiently inner directed, or

d = 1,

i.e. if the structure of interaction is one-dimensional.

Proof. [Spitzer, 71a], Example 5

Intuitively, the theorem says that microscopic data may not be enough
to determine the macroscopic state when interaction is both, complex and
strong: In this case there may be more than one pure state and thus, due
to convexity of G(E lr), uncountably many Gibbs states.

In Section 2.7, we have already seen this result for the Ising model. We
are now able to answer the second question posed at the end of the foregoing
section in a limited context: Considering a homogeneous Markov economy
that satisfies at least one of the properties in the theorem above, we can
stabilize the economy since it exhibits a unique Gibbs state.
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3.5.3 The Ising Economy

The type of economy introduced here is basically an economic reinterpreta-
tion of the Ising model from Section 2.7. However, the approach is different.
Recall that the Ising ferromagnet was introduced by its potential motivated
by the preference of agents to conform. We again fix a homogeneous Markov
economy E lr = (S,E, γ). To be conform with Section 2.7, we assume S = Z2.
This is not assumed in [Föllmer, 74], but allows us to apply results already
shown for the two-dimensional Ising ferromagnet. However, some assertions
here are stated for the general case d ≥ 2.

Definition 3.33. (a) ([Föllmer, 74], p. 59) E lr is called egalitarian if for
all s ∈ S, ws = w ∈ W and γs is rotation invariant, i.e. γs(·|η) = γs(·|η̃) if
η̃ = η ◦ φ for some permutation φ on the set of neighbors.
(b) ([Föllmer, 74], Definition 4.3) An Ising economy is an egalitarian homo-
geneous Markov economy with two goods and two exclusive preferences.

By definition of an Ising economy, we may set E = {+1,−1}. Thus, the
configuration space becomes Ω = {−1,+1}Zd

. In case of ωs = +1, agent
s exhibits an exclusive preference for commodity 1 and for commodity 2 in
case ωs = −1.

Using constants ψ and J , we rephrase representation (3.4) of local char-
acteristics for the Ising economy as

γs(±1|η) = Z(η)−1e±(ψ+J
P

b∈N(s) η(b)), (3.5)

where ±Jη(b) := U(·, ·,±1, η(b)) and ±ψ := ψ(·,±1).
We have already seen that local characteristics in a homogeneous Markov

economy are generated by a nearest neighbor potential. Having a look at
the local characteristics (3.5), we note that these are generated by an Ising
potential as defined in Section 2.7.8 In this sense, the approach here and
the one in Section 2.7 coincide.

Definition 3.34. ([Föllmer, 74], Definition 4.5) An Ising economy is called
cyclic if J > 0 and anti cyclic if J < 0. It is called outer directed if ψ = 0.

In economic terms, this means:

• J > 0: preference for conformity among neighbors,

• J < 0: preference for antagonism among neighbors,

• ψ = 0: no individual tendency in an agent’s behavior.

Proposition 3.35. Let d ≥ 2 and J > 0. Then |G(E lr)| = 1 if ψ 6= 0

8However, when introducing the two-dimensional Ising ferromagnet, we have assumed
the external field to vanish, i.e. ψ = 0.
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Proof. [Spitzer, 71b]

Corollary 3.36. ([Föllmer, 74], Proposition 4.8) Let d ≥ 2 and J > 0.
Then E lr can be stabilized as long as ψ 6= 0.

Proof. The proof follows directly from Proposition 3.35 and Corollary 3.29.

Thus, to construct an interesting (ferromagnetic) case with phase tran-
sition, we assume d ≥ 2, J > 0 and ψ = 0 from now on. Henceforth, we let
d = 2.

As it was mentioned at the end of Section 2.7, there exists a Jc ∈ R++

such that for J > Jc we have |exGΘ(E lr)| = 2.9

Let {µ1, µ2} = exGΘ(E lr). Proposition 2.53 then implies

µ1
1

µ1
2

=
µ2

2

µ2
1

> 1, (3.6)

where µi1 := µi[ω0 = +1] and µi2 := µi[ω0 = −1], i = 1, 2. Using the notation
introduced in Section 2.7, µ1 is the Gibbs state posing more mass on the
ground state ω+ and µ2 the distribution posing more mass on ω−.

For a given price system p ∈ R2
++ and individual state in E, the deriva-

tion of an agent’s excess demand is straightforward since an agent with state
“+1” spends her whole income for the first commodity and an agent with
state “-1” for the second:

ζs(+1, p) =
(
p1

p1
w1 +

p2

p1
w2, 0

)
− (w1, w2)

=
(
p2

p1
w2,−w2

)
,

ζs(−1, p) =
(
−w1,

p1

p2
w1

)
.

Given a Gibbs state µ ∈ GΘ(E lr) we would like to find a price system
p = (p1, p2) ∈ R2

++ such that the expected excess demand of an agent s ∈ S
is zero, i.e.

µ(ζ(ωs, p)) = (0, 0) (3.7)

⇔ µ[ωs = +1]︸ ︷︷ ︸
=:µ1

(
p2

p1
w2,−w2

)
+ µ[ωs = −1]︸ ︷︷ ︸

=:µ2

(
−w1,

p1

p2
w1

)
= (0, 0),

9In Section 2.7 we have done the analysis in terms of the inverse temperature β. Here,
the coupling constant J is defined in a way that takes account of β. In the general case,
i.e. d ≥ 2, Jc depends on dimension d.
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where µ1 and µ2 do not depend on s due to homogeneity. We obtain

(3.7) ⇔ p2

p1
=
w1

w2

µ2

µ1
(3.8)

As in [Hildenbrand, 71] we are now interested in per capita excess de-
mand as the number of agents tends to infinity: Since extremal homogeneous
probability distributions are ergodic, we may again apply the ergodic the-
orem from the proof of Proposition 3.28. Let (Sn)n∈N be a sequence of
subpopulations that exhausts S, then

1
|Sn|

∑
s∈Sn

ζ(ωs, p)
n→∞−→ µi(ζ(ω0, p)) µi − a.e. for i = 1, 2. (3.9)

Assume that there exists some price system p̃ ∈ Rl
++ such that the right

hand side in (3.9) is zero for both, µ2 and µ1, i.e. p̃ stabilizes µ2 and µ1.
Such a price system would necessarily imply (3.8) to hold for µ2 and µ1

and would thus generate a contradiction in light of (3.6). Hence, we cannot
stabilize the economy E lr.

It is even more concussive. Ergodic decomposition, see Proposition 2.50,
allows us to rewrite each homogeneous Gibbs state µ ∈ GΘ(E lr) as the
barycenter of pure states.

Thus, we can write any µ ∈ GΘ(E lr) as

µ = ςµ1 + (1− ς)µ2 (3.10)

for an appropriately chosen ς ∈ [0, 1]. Since µ1 6= µ2 by Proposition 2.53
and µ1 and µ2 are ergodic, it follows that µ1⊥µ2, i.e. there exist Ω1 ⊂ Ω and
Ω2 ⊂ Ω such that Ω1∩Ω2 = ∅, Ω1∪Ω2 = Ω and µ1(Ω1) = 1 and µ2(Ω2) = 1.

Hence, extreme ergodic decomposition (3.10) implies that

1
|Sn|

∑
s∈Sn

ζ(ωs, p)
n→∞−→ µi(ζ(ω0, p)) (3.11)

µ-almost surely on Ωi, i = 1, 2.
This yields the following proposition.

Proposition 3.37. ([Föllmer, 74], Proposition 4.13) Let d ≥ 2, J > J0(d)
and ψ = 0. E lr can “almost never” be stabilized, i.e.

∀µ ∈ GΘ(E lr) \ exGΘ(E lr) @p ∈ R2
++ : µ(ζ(ω0, p)) = 0.

Proof. Let {µ1, µ2} = exGΘ(E lr). Then, for every µ ∈ GΘ(E lr), there exists
ς ∈ [0, 1] such that µ = ςµ1 + (1 − ς)µ2. For µ ∈ GΘ(E lr) \ exGΘ(E lr) we
have ς ∈]0, 1[.

Now assume that there actually exists some price vector p ∈ R2
++ that

equilibrates µ. We have µ|Ω1 = ςµ1 and µ|Ω2 = (1− ς)µ2. Again, combining
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equations (3.8) and (3.6) with (3.11) we see that whenever p is such that
µ(ζ(ω0, p)) vanishes µ-a.s. on Ω1, it cannot vanish µ-a.s. on Ω2, vice versa,
and we obtain a contradiction. Hence, whenever ς ∈]0, 1[, we cannot stabilize
µ.

3.5.4 Remarks

Let us reconsider the questions posed. We have seen that we can stabilize a
given Gibbs state as long as it is a pure state. However, we cannot equilibrate
a Gibbs state that is not ergodic. In particular, we cannot stabilize a local
random economy E lr on the basis of microscopic knowledge when phase
transition occurs.

It remains the question whether the results obtained in Föllmer’s model
are as bad news as indicated. Consider an economy with |exGΘ(E lr)| ≥ 2.
In particular, there exist uncountably many Gibbs states.

We have seen that we can stabilize any pure state. Thus, the problematic
states are those not in exGΘ(E lr). The (philosophical) question is whether
these will emerge at all even though they are consistent with local charac-
teristics in the sense of Definition 3.22. We have already argued in Chapter
2 that the only relevant Gibbs states are phases, i.e. extreme Gibbs states.
In [Hohnisch, 03] it is furthermore mentioned that it is commonly assumed
in statistical mechanics that systems are ruled by pure states, i.e. ergodic
Gibbs measures. Again, by ergodic decomposition we obtain any non-pure
(homogeneous) state as a “mixture” of pure states. In this sense, we may
think of a non-pure state as black box: The system actually is in a pure
state but we cannot observe for sure in which one. Gibbs states that are not
pure reflect some kind of uncertainty about the true state of the system.

Assuming now that the only Gibbs states to emerge are pure, one could
object that even in this case it is not possible to equilibrate the economy
E lr whenever the set of pure states is not singleton. A priori, i.e. by the
knowledge of the local characteristics, we are not able to determine the
pure state that eventually will emerge. Thus, it is not possible to a priori
determine some price system p that equilibrates the resulting pure phase
although we have seen that any pure phase can be equilibrated.

Nevertheless, in general equilibrium theory one is often faced with the
problem of multiple competitive equilibria and thus multiple equilibrium
price systems. In this case, the modeler does not know which of these
equilibria will actually be chosen, since every equilibrium exhibits some kind
of stability. In this sense we are faced with the same problem: Given the
pure state, we can find an equilibrium price system but we do not know
which pure state will emerge.
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3.6 A Digression: Heterogeneity

We have already mentioned in the Introduction that structural properties of
aggregate demand will be obtained when assuming agents to be “sufficiently
heterogeneous”. So far, we have not rigorously introduced this notion. In-
tuitively, we call a population of economic agents heterogeneous if the dis-
tribution of characterizing variables, or of at least one variable, is dispersed
in that the variance is high. In terms of the next chapter, where the distri-
bution of a specific characteristic is given by a density, this means that the
density shall be “flat”. In that case, curvature of the density is a measure
for heterogeneity in the sense that the population is more heterogeneous the
less curved the density.

However, a rigorous way to introduce the notion of “heterogeneity” can
for example be found in [Kneip, 99].

Another approach is followed in [Hildenbrand & Kneip, 05]: Here, an
agent’s individual characteristics are given by a demand function and an
income. It is then savagely defined the degree of behavioral heterogene-
ity of the population. It is beyond the scope of this diploma thesis to
mimic this introduction of a rigorous concept. However, it should be men-
tioned that this degree of behavioral heterogeneity is zero if all agents
have the same demand function and income or if individual demand is of
Cobb-Douglas-type, a concept that we introduce in Definition 4.12. One
should bear this in mind: Within the next chapter, heterogeneity comes
into account through the distribution of so called α-transforms: We say
that heterogeneity among agents increases if the variance of the distri-
bution of α-transforms increases. We show that Cobb-Douglas demand
functions are invariant with respect to α-transforms, i.e. we cannot in-
crease behavioral heterogeneity via α-transforms, when the underlying de-
mand is of Cobb-Douglas-type. Thus, the degree of behavioral heterogene-
ity in the sense of [Hildenbrand & Kneip, 05] stays zero when applying α-
transforms. This indicates that the concept of behavioral heterogeneity in
[Hildenbrand & Kneip, 05] is not entirely consistent with our intuitive no-
tion of heterogeneity. Moreover it shows a shortcoming of our intuition of
heterogeneity. Given Cobb-Douglas demand, the behavior of agents does not
change when variance of the distribution of α-transforms increases, however,
we would say that heterogeneity increases.

However, what we want to “create” by aggregation is the uncompensated
law of demand and the weak axiom of revealed preference. Both properties
are already satisfied by Cobb-Douglas type demand functions and due to
homotheticity of those by aggregate demand when individual demand is
of Cobb-Douglas type. Hence, we may discount this case and only consider
increasing heterogeneity via α-transforms for demand functions not of Cobb-
Douglas type; in the “Cobb-Douglas-case”, we do not need heterogeneity for
our purpose. This may help us reconciling with our intuition.



Chapter 4

The Aggregation Problem

4.1 Introduction

Within the present chapter we turn to the analysis of structural properties
of aggregate demand in context of an economy, where the distribution of
agents’ characteristics is given exogenously.

In the foregoing chapter we have assumed that an individual agent’s
demand is generated by preference maximizing behavior. In this sense, we
may say that demand is rational as Walrasian demand satisfies properties
that indicate rational behavior. Thus, one primitive of the models in the last
chapter were preferences. In terms of [Mas-Colell et al., 95], a preference as
given in Definition 3.3 is referred to as rational.

If demand is generated by preference maximization, it satisfies the weak
axiom of revealed preference as a rationality property. Posing some stronger
assumptions, as for example homotheticity of preferences, the (uncompen-
sated) law of demand property is satisfied. For an exhaustive discussion on
these attributes of demand we refer to [Mas-Colell et al., 95] or
[Shafer & Sonnenschein, 82] among others. However, we savagely introduce
concepts and results concerning the structure of individual demand in the
subsequent section.

In this approach, the primitives of agents demand behavior are not pref-
erences but demand functions that do not necessarily have to originate in
preference maximizing behavior. A major problem arises when individual
demand shall be aggregated, i.e. when analyzing market demand. It is
shown for simple economies in [Mas-Colell et al., 95], Example 4.C.1, that
even if all agents satisfy the weak axiom of revealed preference as a minimal
assumption of rationality, aggregate demand does not necessarily have to do
so. Thus, the weak axiom is in general not preserved by aggregation. How-
ever, a property that aggregates is the law of demand and moreover, the law
of demand implies the weak axiom. Again, a discussion of market demand
for simple economies can be found in [Mas-Colell et al., 95], pp. 105-116.

57
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One may now conjecture that an appropriate analysis of market demand
structure asks for structural properties of individual demand that are “in-
herited” by aggregate demand. However, when considering large economies,
the question that is tackled is whether aggregation of demand may enhance
its structure. In the preface to [Hildenbrand, 94], we read:

I believe that the relevant question is not to ask which pro-
perties of the individual demand behavior are preserved by going
from individual to market demand, but rather to analyze which
new properties are created by the aggregation procedure.

More concretely, the crucial question is the following: Even if we do not
pose any structural assumptions on individual demand, is it possible to ob-
tain such properties for market demand. Here, we try to obtain the weak
axiom of revealed preference for market demand without assuming for indi-
vidual demand. This would be a modern economic interpretation of Edmund
Burke’s cognition: The individual is foolish, but the species is wise.

There are several answers to the question above: We obtain convexifying
effects of aggregation or market demand being continuous or even differen-
tiable if, for a continuum of consumers, types are sufficiently dispersed. For
a thorough discussion, we refer to [Trockel, 84]. In this chapter we follow
an approach by Jean-Michel Grandmont: In [Grandmont, 92] the author
considers (atom-less) distributions on the space of agents’ types. Here, we
discuss the model in detail. However, the idea is given as follows: For each
type there corresponds a demand function ξ and an initial income w. Het-
erogeneity in a type’s demand is basically formalized by a distribution on a
family of demand functions (ξα)α∈Rl generated from ξ by a specific trans-
formation. The space of transformations may be identified with Rl, where
l denotes the number of distinct commodities. The fundamental result in
[Grandmont, 92] is the emergence of the weak axiom of revealed preference
for aggregate demand whenever individual demand is sufficiently dispersed,
i.e. the density of the distribution of α-transforms for all types is “flat
enough”. We may then use this structural property of market demand to
obtain uniqueness of equilibrium. Moreover, stability of equilibrium could
be shown. However, this would be beyond the scope of this diploma the-
sis. In particular, the results show that individual rationality, as for ex-
ample preference maximizing behavior, is not crucial for the aggregate to
behave rational. This model is a special case of the framework discussed
in [Hildenbrand, 94], as seen in Example 2 of Chapter 2. Another model
considering heterogeneity in income can be found in [Hildenbrand, 83].

In Grandmont’s distribution economy, the distribution of demand is
given exogenously. The further question of this diploma thesis is whether
the same results can be obtained when the distribution of demand is de-
termined endogenously by virtue of Gibbsian interaction. For this purpose
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we introduce a random exchange economy that generalizes Föllmer’s Ising
economy with respect to the state space.

Besides elaborating the proofs in [Grandmont, 92], we generalize a
uniqueness result for market exchange equilibrium and discuss further con-
nections of distinct notions of market demand structure.

4.2 Grandmont’s Approach to Market Demand

As already mentioned in the introduction to this chapter, the fundamental
question is which properties of (per capita) market demand can be generated
by aggregation. We see that, without severe rationality assumptions on
individual demand, market demand may satisfy the weak axiom of revealed
preference when basically the distribution of individual demand approaches
the uniform distribution.

Even if we would suppose individual demand to arise by preference ma-
ximization, one could show that this would not allow for particular proper-
ties of market demand, as e.g. the weak axiom of revealed preference. This
result can be found in [Shafer & Sonnenschein, 82], Theorem 5 and 6, p.
680: It is shown that any demand function that is homogeneous of degree
zero and satisfies Walras’ law can be achieved as a market demand function
generated by preference maximizing agents. Thus, market demand does not
have to satisfy the weak axiom of revealed preference. However, in the proof
of this theorem a major assumption is that of an arbitrary distribution of
agents’ preferences. The idea followed in [Grandmont, 92] is to place re-
strictions on the shape of the distribution of demand. In [Hildenbrand, 83]
the weak axiom is obtained for the aggregate by posing restrictions on the
distribution of income.

4.2.1 Transformations of Demand Functions

Before rigorously introducing Grandmont’s concept of “α-transforms” on
the space of demand functions let us have a look at the intuition of this
approach. Thus, we first motivate α-transforms when demand is gener-
ated by preference maximizing behavior. Having done so, we generalize the
approach to arbitrary demand functions. Assumptions on those may take
account of distinct degrees of rationality: The “least rational” case would
be to assume a demand function to satisfy Walras’ law and homogeneity.
The “most rational” would be assuming demand generated by preference
maximization.

Let %⊂ Rl
+ × Rl

+ be a preference relation on the commodity space Rl
+

with l ≥ 2 distinct commodities. Let α ∈ Rl and consider a fixed income w ∈
R++.1 We now consider the family (%α, w)α∈Rl of preference-income-pairs.

1In the last chapter an agent was given an initial commodity endowment. Now we may
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The preference %α is obtained from % by the following procedure: Given α ∈
Rl. For every commodity h ≤ l, we expand the commodity-h-axis by eαh .
A similar transformation can be found in [Dierker, Dierker & Trockel, 84].
This yields for every preference % an equivalence class of preferences indexed
by α ∈ Rl.

Given a distribution on Rl
+×Rl

+×R++, the set of all preference-income-
pairs, we define a distribution on the set of all α-transforms {(%α, w)α :
α ∈ Rl} conditional on preference-income-pair (%, w). However, this is
equivalent to defining a distribution on the space of parameters Rl. In this
approach heterogeneity among agents is basically given by the variance of
these conditional distributions on Rl.

Let us now turn to a rigorous introduction:

Definition 4.1. ([Grandmont, 92], p. 8) Given x ∈ Rl
+ and α ∈ Rl, we set

eα ⊗ x := (eα1x1, ..., e
αlxl),

the α-transform of x.

For a given x ∈ Rl we consider the equivalence class (eα ⊗ x)α∈Rl of
α-transforms eα ⊗ x of x. It holds (xα1)α2 = xα1+α2 for the composition of
α-transforms.

We start by considering strongly convex and locally non-satiated pre-
ferences %⊂ Rl

+ × Rl
+ on the non-negative orthant. Let the set of those be

denoted by Psco,lns.

Definition 4.2. ([Grandmont, 92], p. 9) Given a preference %∈ Psco,lns

and α ∈ Rl, the α-transform %α of % is defined by

x %α y :⇔ (e−α ⊗ x) % (e−α ⊗ y)

for all x, y ∈ Rl
+. An α-transform is called homothetic if α is a multiple of

the unit vector, i.e. αi = αj for all i, j ≤ l.

The α-transform %α of the preference % is the preference %α that coin-
cides with % if one unit of commodity h is multiplied by eαh .

Definition 4.3. A preference % on the consumption set Rl
+ is called ho-

mothetic if for every x, y ∈ Rl
+ and θ ∈ R++ we have

x % y ⇔ θx % θy.

We immediately see that homothetic preferences are invariant with re-
spect to homothetic α-transforms: Let % be homothetic, α = a(1, ..., 1),
a ∈ R. Then we have for all commodity bundles x and y: x %α y ⇔
(e−αx) % (e−αy) ⇔ x % y.

Having discussed α-transforms of preferences we now have a closer look
on α-transforms of demand functions.
think of initial income w in money metric terms.
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Definition 4.4. (a) Let m,n ∈ N. A function g : Rn
++ → Rm is called

homogeneous of degree k ∈ Z if, for all x ∈ Rn
++ and λ ∈ R++, it holds

g(λx) = λkg(x).

(b) ([Grandmont, 92], p. 10) A function ξ : Rl
++ × R++ → Rl

+ assigning a
commodity bundle ξ(p, w) ∈ Rl

+ to each price-income pair (p, w) ∈ Rl
++ ×

R++ is called demand function if it is homogeneous of degree 0 in (p, w) and
satisfies Walras’ law, i.e. for all p ∈ Rl

++ and w ∈ R++ we have

p · ξ(p, w) = w,

where “·” denotes the scalar product on Rl. Walras’ law states that an
agent’s chosen consumption bundle ξ(p, w) lies on the budget line p · x = w
or that the budget balance condition is satisfied.2

We start by having a look at Walrasian demand χ that originates from
a preference %∈ Psco,lns as given in Definition 3.7.

Remark 4.5. χ(%, ·, ·) is a demand function in the sense of Definition 4.4
on Rl

++ × R++.

Proof. By definition χ(%, ·, ·) : Rl
++ × R++ → 2Rl

is a correspondence.
First, due to positive income and strong monotonicity, χ(%, p, w) ⊂ Rl

+. If
a preference relation is locally non-satiated, then it is strictly convex. Thus,
we may apply Proposition 3.10 and obtain that the demand correspondence
χ(%, ·, ·) is actually a function.

χ(%, ·, ·) satisfies Walras’ law: Assume x ∈ χ(%, p, w) for some (p, w) ∈
Rl

++ × R++ and p · x < w. Then there exists an η > 0 such that p · y < w
for all y ∈ Bη(x), the η-Ball around x with respect to the Eucledian norm.
Since % is assumed to be locally non-satiated there exists z ∈ Bη(x) such
that z � x. But this contradicts the fact that x ∈ χ(%, p, w).

It leaves to show that χ(%, ·, ·) is homogeneous of degree 0: Let (p, w) ∈
Rl

++ × R++ and λ ∈ R++, then

χ(%, λp, λw) = {x ∈ Rl
+|∀y : (y � x⇒ λpy > λw)}

= {x ∈ Rl
+|∀y : (y � x⇒ py > w)}

= χ(%, p, w).

2We have to be a careful when using this scalar product here: Rigorously defined,
we are not talking about a price vector p ∈ Rl but about a linear price functional p on
the commodity space Rl. That is, p is actually an element of Rl?, the dual space of Rl.
However, a well known result from functional analysis allows us to identify the Hilbert
space Rl with its dual space Rl? via the Riesz isomorphism. Thus, instead of evaluating
the linear price functional p ∈ Rl? at some commodity bundle x ∈ Rl

+, we may just
consider the scalar product p · x. However, one should be aware of this technical problem
when talking about the price of a commodity bundle.
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Let χα(·, ·) := χ(%, ·, ·) denote the Walrasian demand function generated
by the preference relation %α, when χ(·, ·) := χ(%, ·, ·) is generated by %.
Now, χα : Rl

++ ×R++ → Rl
+ is a demand function as in Definition 4.4. We

then get the following relation of χ and χα for (p, w) ∈ Rl
++ × R++:

χα(p, w) = {x ∈ Rl
+|∀y ∈ Rl

+ : (y �α x⇒ py > w)}
= {x ∈ Rl

+|∀y ∈ Rl
+ : (e−α ⊗ y � e−α ⊗ x

⇒ (eα ⊗ p)(e−α ⊗ y) > w)}
= eα ⊗ χ(eα ⊗ p, w).

Using these heuristics for χα, we pose the following definition for general
demand functions as given in Definition 4.4:

Definition 4.6. ([Grandmont, 92], p. 10) Let α ∈ Rl. Given a demand
function ξ, we define the α-transform ξα of ξ by

ξα(p, w) := eα ⊗ ξ(eα ⊗ p, w) (4.1)

for all (p, w) ∈ Rl
++ × R++.

Remark 4.7. In Definition 4.6, α ∈ Rl is a parameter. Thus, when the
demand at (p, w) ∈ Rl

++×R++ is given by ξ(p, w), the transformed demand
is denoted by ξα(p, w) and ξα : Rl

++×R++ → Rl
+ is again a demand function

for every α ∈ Rl in the sense of Definition 4.4 as shown below. However,
formally we now consider the function ξ : Rl × Rl

++ × R++, (α, p, w) 7→
ξ(α, p, w) := ξα(p, w) and the “original” demand ξ(·, ·) is given by ξ(0, ·, ·).
Moreover, we consider partial derivatives with respect to αh. Thus, α is a
variable and not a parameter. Nevertheless, for notational convenience, we
write ξα(·, ·) for ξ(α, ·, ·) and consider partial derivatives

∂ξα

∂αh
(p, w) :=

∂ξ

∂αh
(a, p, w).

Given α ∈ Rl, the α-transform ξα of ξ is again a demand function: Let
(a, p, w) ∈ Rl × Rl

++ × R++, λ ∈ R++. Then

ξα(λp, λw) = eα ⊗ ξ(λeα ⊗ p, λw)
= eα ⊗ ξ(eα ⊗ p, w) = ξα(p, w).

p · ξα(p, w) = p · (eα ⊗ ξ(eα ⊗ p, w))
= (eα ⊗ p) · ξ(eα ⊗ p, w) = w

Thus, ξα : Rl
++ × R++ → Rl

++ is homogeneous of degree zero and satisfies
Walras law. In the last chapter we will see that ξα satisfies the weak axiom
of revealed preference whenever ξ does.
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For fixed ξ the collection (ξα)α∈Rl defines an equivalence class of demand
functions. When considering distributions on this equivalence class of α-
transforms of ξ, we may equivalently consider distributions on Rl.

For the proof of Lemma 4.8 below, we need the following identity named
after Euler: Let g : Rl

++ → R be homogeneous of degree k ∈ N and differ-
entiable at x ∈ Rl

++, then the following identity holds:

kg(x) =
l∑

i=1

∂g

∂xi
(x)xi. (4.2)

This equation is obtained by differentiating λkg(x) = g(λx) with respect to
λ applying the chain rule and evaluating the derivative at λ = 1. Note, that
ξh, h ≤ l, is homogeneous of degree zero.

In [Grandmont, 92] the following lemma is stated. Here, we provide a
proof by straightforward calculations:

Lemma 4.8. ([Grandmont, 92], Lemma 1.2) The α-transform ξα of a de-
mand function ξ is (continuously) partially differentiable with respect to p if
and only if it is (continuously) partially differentiable with respect to α. In
that case we have for every h ≤ l, (α, p, w) ∈ Rl × Rl

++ × R++

∂ξαh
∂αh

(p, w) = ξαh (p, w) + ph
∂ξαh
∂ph

(p, w), (4.3)

while for every k 6= h,

∂ξαh
∂αk

(p, w) = pk
∂ξαh
∂pk

(p, w). (4.4)

Moreover,

w
∂ξαh
∂w

(p, w) = ξαh (p, w)−
l∑

k=1

∂ξαh
∂αk

(p, w). (4.5)

Proof. Rewriting equation (4.1) as

ξαh (p, w) = eαhξh(eα ⊗ p, w) ∀h ≤ l

and then differentiating with respect to αk for k ≤ l yields

∂ξαh
∂αk

(p, w) = δhke
αhξh(eα ⊗ p, w) + eαh

∂ξh
∂αk

(eα ⊗ p, w)︸ ︷︷ ︸
=

∂ξh
∂pk

(eα⊗p,w)eαkpk

= δhkξ
α
h (p, w) + eαh+αkpk

∂ξh
∂pk

(eα ⊗ p, w)

= δhkξ
α
h (p, w) + pk

∂ξαh
∂pk

(p, w), since

∂ξαh
∂pk

(p, w) = eαh
∂ξh
∂pk

(eα ⊗ p, w)eαk ,
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by product and chain rule, where δhk denotes the Kronecker symbol, i.e.

δhk =
{

1 if h = k,
0 if h 6= k.

This verifies equations (4.3) and (4.4). Now, equation (4.5) can be shown
by applying Euler’s identity: Homogeneity of degree zero yields

0 =
l∑

k=1

∂ξαh
pk

(p, w)pk +
∂ξαh
∂w

(p, w)w.

Thus, we obtain using equations (4.3) and (4.4)

w
∂ξαh
∂w

(p, w) = −
l∑

k=1
k 6=h

∂ξαh
∂pk

(p, w)pk −
∂ξαh
∂ph

(p, w)ph

= −
l∑

k=1
k 6=h

∂ξαh
∂αk

(p, w)−
∂ξαh
∂αh

(p, w) + ξαh (p, w)

= ξαh (p, w)−
l∑

k=1

∂ξαh
∂αk

(p, w).

In particular, we have shown the equivalence of continuously partial deriv-
atives with respect to αk and pk.

Definition 4.9. ([Grandmont, 92], p. 11) Given a demand function ξ and
a price-income pair (p, w) ∈ Rl

++×R++, we define the expenditure function
εh for commodity h by εh(p, w) := phξh(p, w). The expenditure function ε
is given by the scalar product ε(p, w) := p · ξ(p, w). Analogously, we define
the expenditure function εαh for commodity h and α-transform by εαh(p, w) :=
phξ

α
h (p, w).

Equivalently, we could have defined the α-transform εαh of εh by

εαh(p, w) = εh(eα ⊗ p, w). (4.6)

This is well defined since

εαh(p, w) = phξ
α
h (p, w)

= phe
αhξh(eα ⊗ p, w)

= (eα ⊗ p)hξh(eα ⊗ p, w)
= εh(eα ⊗ p, w).
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Definition 4.10. ([Grandmont, 92], p. 12) A demand function ξ is called
α-transform invariant if

ξα(p, w) = ξ(p, w) (4.7)

for all (α, p, w) ∈ Rl × Rl
++ × R++.

The invariance property of a demand function can equivalently be defined
via the expenditure function: For all (α, p, w) ∈ Rl × Rl

++ × R++

(4.7)
ph>0⇔ phξ

α
h (p, w) = phξh(p, w) ∀h ≤ l

⇔ εh(eα ⊗ p, w) = εαh(p, w) = εh(p, w) ∀h ≤ l. (4.8)

In particular, for α-transform invariant demand functions the expenditures
for each commodity are independent of prices: For every p ∈ Rl

++ the set
{eα ⊗ p : α ∈ Rl} is isomorphic to Rl

++, in that for every p, p̃ ∈ Rl
++ there

exists exactly one α ∈ Rl such that eα ⊗ p = p̃. Thus, for any p ∈ Rl
++, as

α passes through Rl, {eα ⊗ p : α ∈ Rl} exhausts Rl
++ and, vice versa, for

fixed α ∈ Rl as p passes through Rl
++.

Since we have assumed a demand function to be homogeneous of degree
0 in (p, w), we get for all (α, p, w) ∈ Rl × Rl

++ × R++ and λ ∈ R++

εαh(p, λw)
independence of prices

= εαh(λp, λw)
= λphξ

α
h (λp, λw)

= λphξ
α
h (p, w)

= λεαh(p, w), (4.9)

whenever ξ is α-transform invariant. We can thus state the following remark:

Remark 4.11. Let ξ be an α-transform invariant demand function. Then
the corresponding expenditure functions εh are homogeneous of degree 1 in
income and independent of prices.

Due to these properties of the expenditure functions εh, the α-transform
invariant demand function ξ belongs to an important class of demand func-
tions:

Definition 4.12. ([Grandmont, 92], p. 12) A demand function ξ is of
Cobb-Douglas type if there exists a family (rh)h≤l, rh ≥ 0, with

∑l
h=1 rh = 1

such that
ξh(p, w) = rh

w

ph
∀(p, w) ∈ Rl

++ × R++.

In particular, for Cobb-Douglas type demand functions budget shares
phξh(p, w) are independent of prices. There may arise the question for the
relevance of Cobb-Douglas type demand functions:
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Remark 4.13. Let us assume that an agent’s demand is generated by pre-
ference maximizing behavior. Thus, the primitive is a preference %. We call
this a Cobb-Douglas preference if it can be represented by a utility function
u : Rl

+ → R, i.e. for all x, y ∈ Rl
+ we have

x % y ⇔ u(x) ≥ u(y),

of Cobb-Douglas type, i.e. u is defined as follows: For all x ∈ Rl
+ and

(rh)h≤l, rh > 0, let

u(x) =
l∏

h=1

xrhh .

Note that a Cobb-Douglas preference relation is homothetic. To generate
the Walrasian demand χ, we have to maximize utility u with respect to the
budget constraint p · x ≤ w. Since χh(p, w) > 0 for all h3 we do not have
to worry about non-negativity constraints. Representing utility functions are
unique up to strictly increasing transformations. Thus, we may rewrite u as

u(x) =
l∑

h=1

rh log xh.

Using the Lagrangeian technique with multiplier λ ≥ 0, we get the La-
grangeian term

L(x, λ) =
l∑

h=1

rh log xh − λ(p · x− w)

This yields the first order conditions

rh
xh

− λph = 0 ∀h ≤ l

w − p · x ≥ 0, λ ≥ 0, λ(w − p · x) = 0.

Since rh > 0, we have λ > 0 and thus w − p · x = 0. Solving the first order
conditions for xh yields xh = rh

λph
. Then we get w−

∑l
h=1

rh
λ = 0. Since the

second order conditions hold we get

χh(p, w) = rh
w

ph
∑l

i=1 ri

for h = 1, ..., l.

The proof of the following lemma follows the idea in [Trockel, 89].

Lemma 4.14. ([Grandmont, 92], Lemma 1.3) A demand function ξ is α-
transform invariant if and only if it is of Cobb-Douglas type.

3Otherwise utility would be zero and could be increased.
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In light of this lemma, the remarks in Section 3.6 show an appreciation.

Proof. Let (p, w) ∈ Rl
++ × R++. Assume that the demand function ξ is α-

transform invariant. Then we know by Remark 4.11 that the corresponding
expenditure functions εh, h ≤ l, are independent of prices and homogeneous
of degree 1 in income, i.e.

ε(p, w) = ε(p̃, w) ∀p, p̃ ∈ Rl
++, w ∈ R++, (4.10)

ε(p, λw) = λε(p, w) ∀p ∈ Rl
++, w, λ ∈ R++. (4.11)

By Definition 4.9 and equations (4.10) and (4.11), the demand function ξh
for commodity h is given by

ξh(p, w) =
εh(p, w)
ph

(4.11)
= εh(p, 1)

w

ph

(4.10)
= εh(1, 1)

w

ph
.

Thus, we can see that ξ is of Cobb-Douglas type if we can show that∑l
h=1 εh(p, 1) = 1. However, this follows immediately from Walras’ Law:

p · ξ(p, 1) = 1 ⇔
l∑

h=1

phξh(p, 1) = 1

⇔
l∑

h=1

ph
εh(p, 1)
ph

= 1

⇔
l∑

h=1

εh(p, 1) = 1.

On the contrary, let ξ be of Cobb-Douglas type. Then for all h ≤ l

ξh(p, w) = rh
w

ph
⇔ εh(p, w) = rhw.

Thus, expenditure εh for commodity h is independent of prices and for all
(α, p, w) ∈ Rl × Rl

++ × R++ and h ≤ l, we obtain

εαh(p, w) = εh(eα ⊗ p, w) = εh(p, w).

Equation (4.8) implies the α-transform invariance of ξ.

For a better understanding of α-transforms, we have sketched a ho-
mothetic α-transform of a general demand function (Figure 4.1) and a
Cobb-Douglas demand function (Figure 4.2). The first figure is taken from
[Grandmont, 92], p. 14. The bold line DE is the Engel curve, i.e. the set of
all demands ξ(p, w) with fixed price system p and varying income w. Fur-
thermore, we set m = eα2 and n = eα1 . We start at point A = ξ(p, w). First,
we go from point A to point B = ξ(eα⊗ p, w). This is done by following the
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Figure 4.1: α-transform with α1 = α2 > 0

Figure 4.2: α-transform with α1 = α2 > 0 for Cobb-Douglas demand

Engel curve since the price ratio does not change when applying homothetic
transformations but the relative income. Then we have to rescale demand at
price system eα⊗ p to get back to the original budget line. Thus, we obtain
C = eα ⊗ ξ(eα ⊗ p, w) = ξα(p, w). Figure 4.2 depicts the case of a Cobb-
Douglas demand function. Here the Engel curve is a straight line through
the origin since the underlying preferences are homothetic. In this case,
the α-transform C coincides with the original demand A. Thus demand is
α-transform invariant as already shown in Lemma 4.14.

4.2.2 Analysis of Market Demand

The purpose of this section is to analyze how the shape of the
distribution of demand functions [...] can influence the manner
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in which price and/or income changes affect aggregate demand.
([Grandmont, 92], p. 13)

As already mentioned, if we consider a distribution on the equivalence
class of α-transforms of some demand ξ, we may equivalently consider a dis-
tribution on Rl. The question that we pose is the following: Are there any
restrictions on the distributions within each equivalence class that induce
some structural properties of market demand? The analysis will lead to the
following result: If there is “enough heterogeneity” among agents, we can
obtain strong structural properties of aggregate demand. The concept of
α-transforms from the previous section equips us with a measure of hetero-
geneity by considering the variance of distributions within the equivalence
classes of demand functions. These distributions are given by densities.
Thus, “enough heterogeneity” means that densities are “sufficiently flat”.
The main insight turns out to be that the structure of aggregate demand
does not rely on strong structural assumptions on individual demand. We
obtain market demand satisfying the law of demand and the weak axiom
of revealed preference due to assumptions on the distribution of agents’ de-
mand, whereas individual demand is “only” assumed to satisfy homogeneity
and Walras’ law.

In [Hildenbrand, 70] an agent is completely characterized by a preference
% and a commodity endowment. Now, the primitives have changed: an
agent is characterized by a demand function ξ and an income w ∈ R++ that
is, at least in this subsection, independent of the revealing price system.

Grandmont considers distribution economies. Thus, we have to come
up with a probability distribution on the space of individual characteristics
{(ξ, w)|ξ : Rl

++ × R++ → Rl
+, w ∈ R++}. The construction will be done in

two steps: First, let A be a separable metric space of types a ∈ A, B(A) the
Borel-σ-algebra on A and P(A,B(A)) be the set of all probability distrib-
utions on A. We specify a distribution µ ∈ P(A,B(A)) that is absolutely
continuous with respect to the Lebesgue measure. For each type a ∈ A
there exists a corresponding demand-income-pair (ξa, wa). Second, for each
type a ∈ A, we specify a conditional probability distribution ν(·|a) on the
space of α-transforms {ξαa |α ∈ Rl} of ξa or equivalently a probability distrib-
ution on (Rl,B(Rl)). We assume that this distribution is given by a density
f(·|a) : Rl → R+. Thus, we have for all B ∈ B(Rl) and a ∈ A

ν(B|a) =
∫
B
f(α|a)dα =: f(B|a).

We now define the probability distribution P := µ⊗ f on the set of agents’
characteristics in the following way: Let C ∈ B(A) and B ∈ B(Rl), then we
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set

P (C ×B) :=
∫
C
f(B|a)µ(da)

=
∫
B×C

f(α|a)dαµ(da).

We may then think of a Grandmont type distribution economy as a tuple
((f(·|a))a∈A, µ), where µ ∈ P(A,B(A)) and f(·|a) is a density conditional on
Rl for every a ∈ A. Let g be B(A)⊗B(Rl) := σ({A1×A2|A1 ∈ B(A), A2 ∈
B(Rl)})-measurable. Then we set

P (g) :=
∫
A×Rl

gdP :=
∫
A

∫
Rl

g(a, α)f(α|a)dαµ(da).

Assumption 4.15. ([Grandmont, 92], pp. 15,17) Let a ∈ A, (p, w) ∈
Rl

++ × R++ and α ∈ Rl.

A 1 The demand function ξa(p, w) is continuous in (a,p,w).4

A 2 The conditional density f(α|a) is continuous in (α, a). Moreover, it
is partially differentiable with partial derivatives ∂f

∂αk
(α|a); these are

continuous in (a, α).

A 3 For each type a ∈ A, partial derivatives are in L 1(Rl, dα), i.e.

vk(a) :=
∫

Rl

∣∣∣∣ ∂f∂αk (α|a)
∣∣∣∣ dα <∞

for all k = 1, ..., l.

A 4 For every commodity k, vk(a) is bounded above by vk for µ-almost all
a ∈ A.5

A 5 Income level wa > 0 is continuous in a. Per capita income w̄ is finite.
Stated in functional terms when conceiving income as a mapping w :
A → R++, a 7→ wa, w ∈ L 1(A, µ) and thus

0 < w̄ =
∫
A
waµ(da) <∞.

vk(a) is a measure for the variance of f(·|a) “in direction k”: The smaller
vk(a), the less curved f(·|a) in direction k and thus, the higher the variance.

For some results on continuity and differentiability of conditional and
total market demand we need Lebesgue’s dominated convergence theorem.
For our purposes, we may directly apply a version in [Dieudonné, 69].

4Here, we again consider ξ·(·, ·) : A× Rl
++ × R++. By continuity and Walras’ law, we

can show ξ, as a function of a, p, w, to be integrable applying Lebesgue’s theorem in the
respective contexts. Hereby, we should not forget to mention that integration is conceived
component-wise.

5From proposition 4.16 we can infer that vk(a) is continuous.
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Proposition 4.16. ([Dieudonné, 69], 13.8.6) (a) Let (Ω,F , ψ) be an arbi-
trary measure space, E a metric space and let z0 ∈ E. Consider (ω, z) 7→
g(ω, z) a mapping of Ω×E into R̄. Suppose that

1. for each z ∈ E, the function ω 7→ g(ω, z) is integrable;

2. for almost all ω ∈ Ω, the function z 7→ g(ω, z) is continuous at z0;

3. there exists an integrable function g̃ ≥ 0 such that, for all z ∈ E, we
have |g(ω, z)| ≤ g̃(ω) for ψ-almost all ω ∈ Ω.

Then h(z) :=
∫
Ω g(ω, z)ψ(dω) is continuous at z0.

(b) Suppose furthermore that E is an open interval in R and that g satisfies
the following conditions:

4. for ψ-almost all ω ∈ Ω, the function z 7→ g(ω, z) is finite and admits a
partial derivative with respect to the second component, i.e. ∂g

∂z (ω, z);

5. there exists an integrable function g̃1 ≥ 0 on Ω such that, for all z ∈ E,
we have |∂g∂z (ω, z)| ≤ g̃1(ω) ψ-almost everywhere in Ω.

Then h is differentiable at every point of E, and we have

dh

dz
(z) =

∫
Ω

∂g

∂z
(ω, z)ψ(dω).

Proof. [Dieudonné, 69], p. 125

Definition 4.17. ([Grandmont, 92], p. 15) (a) For each type a ∈ A we
define market demand conditional on type a, conditional market demand
for short, by

X(a, p, w) :=
∫

Rl

ξαa (p, w)f(α|a)dα. (4.12)

(b) Then we define (total) market demand by

X(p) :=
∫
A
X(a, p, wa)µ(da) =

∫
A

∫
Rl

ξαa (p, wa)f(α|a)dαµ(da), (4.13)

where wa denotes the income corresponding to type a ∈ A.

The terms in (4.12) and (4.13) are well-defined in the following sense:
Since 0 ≤ phξ

α
ah(p, w) ≤ w for all h by Walras’ law, we have

0 ≤ phXh(a, p, w) = ph

∫
Rl

ξαah(p, w)f(α|a)dα

≤
∫

Rl

wf(α|a)dα = w <∞,

0 ≤ phXh(p) = ph

∫
A
Xh(a, p, wa)µ(da)

≤
∫
A
waµ(da) = w̄ <∞.
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Since ph > 0 for all h we have X(a, p, w) and X(p) finite. Both, conditional
market demand X(a, p, w) and total market demand X(p) are non-negative,
continuous and satisfy Walras’ law: Continuity follows directly from Propo-
sition 4.16. Walras’ law can be obtained as follows:6

p ·X(a, p, w) = p ·
∫

Rl

ξa(α, p, w)f(α|a)dα

=
∫

Rl

wf(α|a)dα = w,

p ·X(p) = p ·
∫
A
X(a, p, wa)µ(da)

=
∫
A
waµ(da) = w̄,

One should note that total market demand X is not a demand function in
the sense of Definition 4.4.

Some Heuristics

To gain some intuition for the approach to market demand structure by
increasing variance of α-transforms, let us consider the following heuristic
inspection: Let a ∈ A and (p, w) ∈ Rl

++ × R++. Given conditional market
demand X(a, p, w) and ᾱ ∈ Rl, the ᾱ-transform X ᾱ(a, p, w) of X(a, p, w) is
given by

X ᾱ(a, p, w) = eᾱ ⊗X(a, eᾱ ⊗ p, w)

= eᾱ ⊗
∫

Rl

ξαa (eᾱ ⊗ p, w)f(α|a)dα

(ξα)ᾱ=ξα+ᾱ

=
∫

Rl

ξα+ᾱ
a (p, w)f(α|a)dα

β:=α+ᾱ
=

∫
Rl

ξβa (p, w)f(β − ᾱ|a)dβ (4.14)

Thus, we obtain the α-transform X ᾱ(a, ·, ·) of the conditional market de-
mand X(a, ·, ·) by shifting the conditional density f(·|a) within the equiva-
lence class of α-transforms by ᾱ. In this token, conditional demand X(a, ·, ·)
is “arbitrarily” α-transform invariant in the sense of Definition 4.10 if the
conditional density f(·|a) is “arbitrarily” invariant with respect to shifts.
In this case, Lemma 4.14 would imply that conditional market demand is
“arbitrarily close” to being of Cobb-Douglas type.

Heuristics may be stated as follows: The more heterogeneous agents
in the sense of an increasing variance, i.e. the “closer” the distribution of

6We have to be a little cautious when using the term “Walras’ law”: We have only
defined this notion for demand functions as in Definition 4.4. However, we refer to the
analogous concepts in the respective contexts.
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agents’ characteristics within each equivalence class {ξαa : α ∈ Rl}, a ∈ A, to
uniform distribution, and thus the “flatter” the conditional densities f(·|a)
for each a ∈ A, the “closer” f(·|a) to being invariant. As seen above,
conditional market demand would then be “close” to being of Cobb-Douglas
type

Assuming conditional market demand X(a, ·, ·) to be of Cobb-Douglas
type for all a ∈ A, i.e. Xh(a, p, w) = rha

w
ph

, where rha > 0 such that∑l
h=1 rha = 1 for all a ∈ A, we obtain total market demand as follows:

Assume rha = rh for all a ∈ A.

Xh(p) =
∫
A
Xh(a, p, wa)µ(da)

=
∫
A
rh
wa
ph
µ(da)

= rh
w̄

ph

for h = 1, ..., l. Thus, total market demand is of Cobb-Douglas type. Hence,
total market demand is close to being of Cobb-Douglas type if densities
for α-transforms are sufficiently flat. We should note that Cobb-Douglas
type demand has the properties that we are seeking for: uncompensated
law of demand and weak axiom of revealed preference. Thus, total market
demand is close to satisfying the weak axiom when agents are sufficiently
heterogeneous.

Price Effects

In this section we state the main theorem in [Grandmont, 92]: We encounter
that total market demandX satisfies structural properties as the weak axiom
of revealed preference when agents are sufficiently heterogeneous but before
approaching the “Cobb-Douglas limit” above.

It should be noted that given type a ∈ A, the conditional market demand
X(a, ·, ·) : Rl

++ × R++ → Rl
+ is actually a demand function: It was already

shown above that X(a, ·, ·) satisfies Walras’ law. Thus it suffices to show
homogeneity of degree 0 in (p,w):

X(a, λp, λw) =
∫

Rl

ξαa (λp, λw)f(α|a)dα

=
∫

Rl

ξαa (p, w)f(α|a)dα = X(a, p, w)

for all λ ∈ R++ and (α, p, w) ∈ Rl × Rl
++ × R++.

Next, we see that conditional market demand has continuous partial
derivatives and obtain bounds on those.
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Proposition 4.18. ([Grandmont, 92], p. 19) Let (A1) to (A3) hold. For
every a ∈ A conditional market demand X(a, ·, ·) is continuously partially
differentiable with respect to prices. For every (p, w) ∈ Rl

++ ×R++ we have

∂Xh

∂pk
(a, p, w) = − 1

pk

(
δhkXh(a, p, w) +

∫
Rl

ξαah(p, w)
∂f

∂αk
(α|a)dα

)
for all h, k = 1, ..., l, where δhk again denotes the Kronecker symbol.

Proof. We will first show that the ᾱ-transform X ᾱ(a, p, w) is continuously
partially differentiable with respect to ᾱ. Using Proposition 4.16(2) in con-
nection with (A2) and (A3) we obtain

∂X ᾱ
h

∂ᾱk
(a, p, w) =

∂

∂ᾱk

∫
Rl

ξβah(p, w)f(β − ᾱ|a)dβ

=
∫

Rl

ξβah(p, w)
∂f

∂ᾱk
(β − ᾱ|a)dβ

= −
∫

Rl

ξβah(p, w)
∂f

∂βk
(β − ᾱ|a)dβ.

In light of (A1) to (A3) we may again apply Proposition 4.16(1) to show
the continuity of these partial derivatives in (ᾱ, a, p, w) with respect to ᾱk.
Thus, Lemma 4.8 implies that conditional market demand X ᾱ(a, ·, ·) is con-
tinuously partially differentiable with respect to prices ph for all h = 1, ..., l.

Evaluating the above expression at ᾱ = 0, we get

∂X ᾱ
h

∂ᾱk
(a, p, w)

∣∣∣∣
ᾱ=0

= −
∫

Rl

ξαah(p, w)
∂f

∂αk
(α|a)dα.

By Definition 4.6 we know that X ᾱ
h (a, p, w)|ᾱ=0 = Xh(a, p, w). Hence, we

have ∂Xᾱ
h

∂pk
(a, p, w)

∣∣∣
ᾱ=0

= ∂Xh
∂pk

(a, p, w). and equations (4.3) and (4.4) in
Lemma 4.8 can be rephrased as

pk
∂Xh

∂pk
(a, p, w) + δhkXk(a, p, w) = −

∫
Rl

ξαah(p, w)
∂f

∂αk
(α|a)dα. (4.15)

Since ph > 0 for all h = 1, ..., l, the assertion follows.

Proposition 4.19. ([Grandmont, 92], p. 19) Let (A1) to (A3) hold. For
all (a, p, w) ∈ A× Rl

++ × R++ the following inequality holds:∣∣∣∣pk ∂Xh

∂pk
(a, p, w) + δhkXh(a, p, w)

∣∣∣∣ ≤ w
vk(a)
ph

. (4.16)

Proof. Demand ξ is non-negative and satisfies Walras’ law. We thus obtain

0 ≤ ξαah(p, w) ≤ w

ph
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for all h and equation (4.15) yields

∣∣∣∣pk ∂Xh

∂pk
(a, p, w) + δhkXh(a, p, w)

∣∣∣∣ =
∣∣∣∣∫

Rl

ξαah(p, w)
∂f

∂αk
(α|a)dα

∣∣∣∣
≤

∫
Rl

ξαah(p, w)
∣∣∣∣ ∂f∂αk (α|a)

∣∣∣∣ dα
≤ w

ph

∫
Rl

∣∣∣∣ ∂f∂αk (α|a)
∣∣∣∣ dα

=
w

ph
vk(a).

Analogous results hold for total market demand:

Proposition 4.20. ([Grandmont, 92], p. 20) Suppose assumptions (A1)
to (A5) hold. Then total market demand X(p) is continuously partially
differentiable with

∂Xh

∂pk
(p) =

∫
A

∂Xh

∂pk
(a, p, wa)µ(da),

and these partial derivatives satisfy

∣∣∣∣pk ∂Xh

∂pk
(p) + δhkXh(p)

∣∣∣∣ ≤ w̄
vk
ph
. (4.17)

Proof. In light of (A1), (A2) and (A3) we have shown that X(a, ·, ·) has
continuous partial derivatives. Using this result and Proposition 4.16(2)
together with (A4) and (A5), we may change the order of integration and
differentiation in equation (4.13) and obtain

∂Xh

∂pk
(p) =

∫
A

∂Xh

∂pk
(a, p, wa)µ(da)

for all h, k = 1, ..., l, a ∈ A and (p, w) ∈ Rl
++ × R++. Again by Proposition

4.16 this expression is continuous. Using Lemma 4.8 we obtain, as in the
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derivation of equation (4.15),

pk
∂Xh

∂pk
(p) + δhkXh(p) =

∂X ᾱ
h

∂αk
(p)
∣∣∣∣
ᾱ=0

=
∫
A

∂X ᾱ
h

∂αk
(a, p, wa)

∣∣∣∣
ᾱ=0

µ(da)

= −
∫
A

∫
Rl

ξαah(p, wa)
∂f

∂αk
(α|a)dαµ(da).∣∣∣∣pk ∂Xh

∂pk
(p) + δhkXh(p)

∣∣∣∣ =
∣∣∣∣∫

A

∫
Rl

ξαah(p, wa)
∂f

∂αk
(α|a)dαµ(da)

∣∣∣∣
≤

∫
A

∫
Rl

ξαah(p, wa)
∣∣∣∣ ∂f∂αk (α|a)

∣∣∣∣ dαµ(da)

≤ 1
ph

∫
A
wa

∫
Rl

∣∣∣∣ ∂f∂αk (α|a)
∣∣∣∣ dαµ(da)

(A3)
=

1
ph

∫
A
wavk(a)µ(da)

(A4)

≤ vk
ph

∫
A
waµ(da)

(A5)
=

w̄

ph
vk.

The Law of Demand in the Aggregate

Recall from (A4) that

vk := sup
a∈A

{
vk(a) :=

∫
Rl

∣∣∣∣ ∂f∂αk (α|a)
∣∣∣∣ dα <∞

}
is well defined. The smaller vk the less curved f uniformly in a in direction k;
thus the “flatter” f in direction k and the more heterogeneous agents. Since
we want to obtain increasing heterogeneity among agents, the question is
whether we can get vk arbitrarily small for all k = 1, ..., l. The following pro-
cedure based on density transformations can be found in [Grandmont, 92],
p. 42:

Note 4.21. ([Grandmont, 92], p. 42) Let X be a random variable with
density g : Rl → R+ that has partial derivatives in L 1(Rl, dx). Consider
the transformation h : Rl → Rl given by y = h(x) = σx, where σinR++.
By density transformation, the density gσ of h(X) is given by gσ(y) = g( y

σ
)

σ .
Thus varying the value of σ, we can get∫

Rl

∣∣∣∣∂gσ∂yk
(y)
∣∣∣∣ dy =

1
σ2

∫
Rl

∣∣∣∣ ∂g∂xk (x)
∣∣∣∣ dx

arbitrarily small.
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From Proposition 4.20 we may infer that ceteris paribus the cross partial
derivatives ∂Xh

∂pk
(p) for all h 6= k tend to zero as vk tends to zero. Moreover,

own-price-elasticity of market demand ph
Xh(p)

∂Xh
∂ph

(p) tends to −1 as vk tends
to zero for all k; of course, we have to ensure market demand Xh(p) to be
positive for every commodity h at any price system p. This again suggests
the emergence of Cobb-Douglas type demand in the aggregate as vk gets
arbitrarily small since for Cobb-Douglas demand cross partial derivatives
with respect to prices are zero and own-price-elasticity is −1, too. In this
sense, market demand would be well behaved in the “high heterogeneity
limit”.7

We now pose assumptions that ensure market demand Xh(·) for every
commodity to be strictly positive.

Assumption 4.22. ([Grandmont, 92], pp. 22) Let a ∈ A, (p, w) ∈ Rl
++ ×

R++ and α ∈ Rl.

A 6 Independence: For µ-a.e. a ∈ A the conditional density f(α|a) does
not depend on a. Thus, we may set f(α) = f(α|a) µ-a.s.

A 7 Non-vanishing Expenditure: For every h = 1, ..., l, there exists $h > 0,
with

∑l
h=1$h ≤ 1, such that for all price systems p ∈ Rl

++ we have

ph

∫
A
ξah(p, wa)µ(da) ≥ $hw̄ > 0.

Assumptions (A6) and (A7) may be applied to show aggregate desirabil-
ity for every commodity h ≤ l:

phXh(p) =
∫
A

∫
Rl

phξ
α
ah(p, wa)f(α|a)dαµ(da)

(A6)
=

∫
Rl

f(α|a)
∫
A
phξ

α
ah(p, wa)µ(da)dα

(A7)

≥
∫

Rl

$hw̄f(α|a)dα = $hw̄ > 0 ∀h

ph>0⇒ Xh(p) > 0 ∀h. (4.18)

(A7) allows for types of agents that do not consume any amount of
commodity h at price system p but in the aggregate, there is positive con-
sumption.

So far, we have mentioned the weak axiom of revealed preference several
times but have not rigorously introduced this concept. This will be done
within the next paragraphs.

7In In this token, the model that is introduced in the next chapter this is just the
opposite of the “low temperature limit” considered in Section 2.7.
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Definition 4.23. ([Ellickson, 93], p. 63) A subset D ∈ Rl is called a cone if
x ∈ D and λ > 0 imply λx ∈ D. A cone D is a proper cone if D ∩ (−D) ∈
{{0}, ∅}. A proper cone D is called a pointed cone if 0 ∈ D. We say that a
cone is open, convex, ... if the set D is open, convex, ... in Rl.

The second part of the following definition calls for further explanation:
We define definiteness of a matrix. In standard textbooks in linear alge-
bra this notion is defined for symmetric matrices. However, in economic
applications this concept is of interest in more general contexts. Thus we
introduce definiteness for not necessarily symmetric matrices and refer to
this as quasi-definiteness, although in many economics textbooks as for ex-
ample in [Mas-Colell et al., 95], it is called definiteness.

Definition 4.24. Let A ∈M(l×l,R) be an l×l-matrix with entries aij ∈ R.
(a) ([Mas-Colell et al., 95], Definition M.D.2) We say that A has a dominant
diagonal if there exists q ∈ Rl

++ such that for every i = 1, ..., l we have

|qiaii| >
l∑

j=1
j 6=i

|qjaij |. (4.19)

(b) ([Mas-Colell et al., 95], Definition M.D.1) We call A negative quasi-
semidefinite if for all x ∈ Rl

txAx :=
l∑

i,j=1

xiaijxj ≤ 0. (4.20)

If this inequality is strict for all x 6= 0 we call A negative quasi-definite.
For reversed inequalities we call the matrix A positive quasi-semidefinite
and positive quasi-definite, respectively. As already mentioned above, for
symmetric matrices we just drop the term “quasi”.

Definition 4.25. Let ξ be a demand function, (pi, wi) ∈ Rl
++ × R++.

(a) ([Mas-Colell et al., 95], Definition 2.F.1) ξ satisfies the weak axiom of
revealed preference (WARP) if the following property holds for any to price-
income pairs (p1, w1) and (p2, w2):

[p1 · ξ(p2, w2) ≤ w1 and ξ(p1, w1) 6= ξ(p2, w2)] ⇒ p2 · ξ(p1, w1) > w2.
(4.21)

(b) ([Mas-Colell et al., 95], Definition 4.C.2) ξ satisfies the uncompensated
law of demand (ULD) property if

(p1 − p2) · [ξ(p1, w)− ξ(p2, w)] ≤ 0 (4.22)

for any p1, p2 ∈ Rl
++ and w ∈ R++ with strict inequality if ξ(p1, w) 6=

ξ(p2, w).
(c) ([Grandmont, 92], p. 23) ξ is called strictly monotone if

(p1 − p2) · [ξ(p1, w)− ξ(p2, w)] < 0 (4.23)



4.2. GRANDMONT’S APPROACH 79

for p1 6= p2 ∈ Rl
++ and w ∈ R++.

Remark 4.26. (a) Due to fixed aggregate per capita income w̄, the notions
introduced in Definition 4.25 are rephrased for market demand X as follows:
The weak axiom of revealed preference holds in the aggregate if, for all p, q ∈
Rl

++

[p ·X(q) ≤ w̄ and X(p) 6= X(q)] ⇒ q ·X(p) > w̄.

Market demand satisfies the uncompensated law of demand property if

(p− q) · [X(p)−X(q)] ≤ 0

for all p, q ∈ Rl
++ with strict inequality if X(p) 6= X(q). Strict monotonicity

is satisfied in the aggregate if, for all p 6= q ∈ Rl
++,

(p− q) · [X(p)−X(q)] < 0.

(b) Having a look at the definition above, we immediately note that strict
monotonicity of demand (4.23) implies the uncompensated law of demand
property (4.22), but in general not vice versa. As a counterexample we may
consider a demand function that is generated by an exclusive preference as
in [Föllmer, 74].

The uncompensated law of demand property states that, without any in-
come compensation or wealth adjustment, price- and demand-changes point
in opposite directions.

The weak axiom of revealed preference is a rationality assumption on
demand in the following sense: Assume that an agent’s demand satisfies
WARP. Whenever the choice ξ(p2, w2) at price-income pair (p2, w2) is also
affordable at price-income pair (p1, w1), p1 · ξ(p2, w2) ≤ w1, but is not cho-
sen, i.e. the choices at those different price-wealth pairs are not identical,
ξ(p1, w1) 6= ξ(p2, w2), then we will necessarily have that the choice ξ(p1, w1)
at price-income pair (p1, w1) is not affordable at price-income pair (p2, w2),
p2 ·ξ(p1, w1) > w2. If the choice ξ(p1, w1) at price-income pair (p1, w1) would
also be affordable at price-income pair (p2, w2) we would have to pose the
question why the agent prefers ξ(p1, w1) over ξ(p2, w2) when the budget is
given by (p1, w1) and after a budget change to (p2, w2) even though ξ(p1, w1)
is still affordable the agent chooses the less preferred bundle ξ(p2, w2). This
would violate what we would call “rational behavior”.

A good intuition for the term “weak axiom of revealed preference” is
given in [Mas-Colell et al., 95], p. 29:

In the consumer demand setting, the idea behind the weak
axiom can be put as follows: If p1 · ξ(p2, w2) ≤ w1 and
ξ(p1, w1) 6= ξ(p2, w2), then we know that when facing prices
p1 and wealth w1, the consumer choses consumption bundle
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ξ(p1, w1) even though bundle ξ(p2, w2) was also affordable. We
can interpret this choice as “revealing” a preference for ξ(p1, w1)
over ξ(p2, w2). Now, we might reasonably expect the consumer
to display some consistency in his demand behavior. In par-
ticular, given his revealed preference, we expect that he would
chose ξ(p1, w1) over ξ(p2, w2) whenever they are both afford-
able. If so, bundle ξ(p1, w1) must not be affordable at price-
wealth combination (p2, w2) at which the consumer chooses bun-
dle ξ(p2, w2). That is, as required by the weak axiom, we must
have p2 · ξ(p1, w1) > w2.

Let us now state a fundamental result.

Proposition 4.27. ([Hildenbrand, 94], p. 170) Let ξ be partially differen-
tiable. If the Jacobian matrix (∂ξh∂pk

(p, w))h,k=1,...,l of demand ξ is negative
quasi-definite for all p ∈ Rl

++, w ∈ R++, then ξ satisfies strict monotonicity.
Analogously for market demand X.8

Proof. Let p, q ∈ Rl
++, p 6= q and w ∈ R++. Furthermore define x := p− q,

p(α) := αp− (1− α)q for α ∈ [0, 1] and g : [0, 1] → R by

g(α) = x · (ξ(p(α), w)− ξ(q, w)).

Then we have

g(0) = 0,
g(1) = (p− q) · [ξ(p, w)− ξ(q, w)],

dg

dα
(α) = x ·

(
∂ξh
∂pk

(p(α), w)
)
h,k=1,...,l

x =
l∑

h,k=1

xh
∂ξh
∂pk

(p(α), w)xk,

where the last equation follows by chain rule. By assumption, we have
dg
dα(α) < 0 for all α ∈ [0, 1]. Since g(0) = 0 this yields g(1) < 0 and we have
obtained the strict monotonicity of ξ. The proof for market demand X is
identical when substituting ξ(p, w) by X(p).

Proposition 4.28. ([Mas-Colell et al., 95], p. 111) Let ξ be a demand func-
tion and (p, w) ∈ Rl

++ ×R++. If the Jacobian matrix (∂ξh∂pk
(p, w))h,k=1,...,l is

negative quasi-definite for all p, w, then ξ satisfies the uncompensated law
of demand property. Analogously for market demand X.

Proof. We have seen in proposition 4.27 that negative quasi-definiteness of
the Jacobian matrix of demand implies strict monotonicity of demand. On
the other hand, strict monotonicity of demand implies the uncompensated
law of demand property.

8In [Hildenbrand, 94] the result is shown for market demand; here, we apply the proof
to our context of demand functions ξ where income w is fixed.
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Remark 4.29. It is noted in [Mas-Colell et al., 95], 4.C.2, that homothetic
preferences imply Walrasian demand χ to satisfy the uncompensated law of
demand property. It is well known that the uncompensated law of demand
property is inherited by market demand. For simple economies this is shown
in [Mas-Colell et al., 95], 4.C.1. The following proposition then shows that
aggregate demand satisfies the weak axiom of revealed preference if it is gen-
erated by homothetic preference maximizing agents.

In the proposition that follows, we encounter the connection between the
uncompensated law of demand and the weak axiom.

Proposition 4.30. ([Mas-Colell et al., 95], p. 112) Let ξ be a demand func-
tion. If ξ satisfies the uncompensated law of demand property, then ξ satisfies
the weak axiom of revealed preference.

Proof. Let (p1, w1), (p2, w2) ∈ Rl
++ × R++ such that ξ(p1, w1) 6= ξ(p2, w2)

and p1 · ξ(p2, w2) ≤ w1. Set p3 := w1

w2 p
2. Due to homogeneity of ξ we have

ξ(p3, w1) = ξ(
w1

w2
p2, w1) = ξ(p2, w2).

Furthermore, we have

(p3 − p1) · [ξ(p3, w1)− ξ(p1, w1)] < 0 by (ULD),
p1 · ξ(p3, w1) = p1 · ξ(p2, w2) ≤ w1 and
p3 · ξ(p3, w1) = w1, p1 · ξ(p1, w1) = w1 by Walras’ law.

Using the above (in-)equalities we may establish the weak axiom:

p3 · ξ(p3, w1)− p3 · ξ(p1, w1)− p1 · ξ(p3, w1) + p1 · ξ(p1, w1) < 0
⇔ p3 · ξ(p1, w1) > 2w1 − p1 · ξ(p3, w1)

⇔ w1

w2
p2 · ξ(p1, w1) = p3 · ξ(p1, w1) > 2w1 − p1 · ξ(p3, w1) ≥ w1

⇔ p2 · ξ(p1, w1) > w2.

Thus, the weak axiom of revealed preference holds.

Remark 4.31. To summarize, we have shown the following chain of impli-
cations: Negative quasi-definiteness implies strict monotonicity (Proposition
4.27) which in turn implies the uncompensated law of demand property that
implies the weak axiom of revealed preference (Proposition 4.30).

Definition 4.32. ([Jehle & Reny, 01], Definition 1.6) Let ξ be a demand
function, strictly positive at (p, w) ∈ Rl

++ × R++, and h, k = 1, . . . , l.
(a) The price elasticity ηhk for commodity h and price pk of commodity k
at price-wealth pair (p, w) ∈ Rl

++ × R++ is given by

ηhk(p, w) :=
pk

ξh(p, w)
∂ξh
∂pk

(p, w) =
∂logξh
∂logpk

(p, w).
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If h 6= k we call ηhk cross-price elasticity; otherwise own-price elasticity.
(b) The income elasticity ηhw for commodity h is given by

ηhw(p, w) :=
w

ξh(p, w)
∂ξh
∂w

(p, w) =
∂logξh
∂logw

(p, w).

Analogous for total market demand X.9

Remark 4.33. Intuitively, price elasticity measures the percentage change
of the quantity of commodity h demanded when the price of commodity k
changes by one percent; income elasticity measures the change in percent
when income changes by one percent.

The next theorem shows that, ceteris paribus, market demand has the
desired properties when conditional densities f(α|a) are “sufficiently flat”
and X is strictly positive. This constitutes the main result in this chapter
and serves as a corner stone of this diploma thesis. We have worked out
the proof here elaborately. Since some assertions are stated in a slightly
different manner, not all assumptions in [Grandmont, 92] are needed.

Theorem 4.34. ([Grandmont, 92], Theorem 2.3) Let (p, w) ∈ Rl
++×R++,

h, k = 1, ..., l, and $h > 0 be chosen as in (A7). Assume that (A1) to (A7)
hold.10 Then phXh(p) ≥ $hw̄ for every h and p. Price elasticities ∂ logXh

∂ log pk
(p)

of market demand Xh satisfy∣∣∣∣∂ logXh

∂ log pk
(p) + δhk

∣∣∣∣ ≤ vk
$h

. (4.24)

for all h and k. In particular, we get:
(a) For each commodity h, total market demand Xh is strictly decreasing in
its own price, i. e.

∂Xh

∂ph
(p) < 0

if vh < $h.
(b) Define the proper open cone

D(m,$) := {p ∈ Rl
++|

l∑
k=1

vk
pk

<
$h

ph
for every h}.

Then the Jacobian matrix
(
∂Xh
∂pk

(p)
)
h,k=1,...,l

has dominant diagonal on

D(m,$).

9Of course, income elasticity for total market demand is not relevant here but in the
next section.

10We need (A1) to (A5) in order to apply equation (4.17) and (A6) and (A7) to obtain
non-vanishing demand.
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(c) Assume vkl < $h for all commodities h, k. Then total market de-
mand X has a negative quasi-definite Jacobian matrix for every price system
p ∈ Rl

++. Thus total market demand is strictly monotone and in particular
it satisfies the weak axiom of revealed preference.

The theorem shows that market demand may satisfy the weak axiom
of revealed preference even though we have not assumed the weak axiom
to hold for individual demand. As already argued, even if we would do so,
the weak axiom would not necessarily hold in the aggregate. Thus, we have
created some structural properties of market demand by assumptions on the
distribution of individual demand, or more precisely on the distribution of
α-transforms, but without assuming individuals to behave rational except
satisfying homogeneity of degree zero and Walras’ law.

Proof of Theorem 4.34. After stating Assumption 4.22, we have already
shown aggregate desirability, i.e. phXh(p) ≥ $hw̄ > 0 for all p ∈ Rl

++,
h ≤ l.

Using equation (4.17), we get∣∣∣∣∂logXh

∂ log pk
(p) + δhk

∣∣∣∣ =
∣∣∣∣pk ∂ logXh

∂pk
(p) + δhk

∣∣∣∣
=

∣∣∣∣ pk
Xh(p)

∂Xh

∂pk
(p) + δhk

∣∣∣∣
=

1
Xh(p)

∣∣∣∣pk ∂Xh

∂pk
(p) + δhkXh(p)

∣∣∣∣
≤ w̄

vk
phXh(p)

≤ vk
$h

and have thus established equation (4.24).
Let 0 < vh < $h for all h = 1, ..., l, then∣∣∣∣∂ logXh

∂ log ph
(p) + 1

∣∣∣∣ ≤ vh
$h

< 1

⇔ −1 <
∂ logXh

∂ log ph
(p) + 1 < 1

⇔ −2 <
∂ logXh

∂ log ph
(p) < 0

⇔ −2
Xh(p)
ph

<
∂Xh

∂ph
(p) < 0

for all h = 1, ..., l and p ∈ Rl
++. This completes the proof of (a).

Let us now turn to (b): For k 6= h, equation (4.24) yields∣∣∣∣ pk
Xh(p)

∂Xh

∂pk
(p)
∣∣∣∣ ≤ vk

$h

⇔ 1
Xh(p)

∣∣∣∣∂Xh

∂pk
(p)
∣∣∣∣ ≤ vk

$hpk
.
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If h = k, we obtain from equation (4.24)

1
Xh(p)

∣∣∣∣∂Xh

∂ph
(p)
∣∣∣∣ ≥ 1

ph

(
1−

∣∣∣∣ ph
Xh(p)

∂Xh

∂ph
(p) + 1

∣∣∣∣)
(4.24)

≥ 1
ph

(
1− vh

$h

)
=
$h − vh
ph$h

.

To summarize, we have

1
Xh(p)

∣∣∣∣∂Xh

∂pk
(p)
∣∣∣∣
{
≥ $h−vh

ph$h
if h = k,

≤ vk
pk$h

if h 6= k.
(4.25)

We may now proceed and show that the Jacobian matrix (∂Xh
∂pk

(p))h,k=1,...,l

has dominant diagonal on D(m,$):11 Let h ≤ l. Then

l∑
k=1
k 6=h

1
Xh(p)

∣∣∣∣∂Xh

∂pk
(p)
∣∣∣∣ (4.25)

≤
l∑

k=1
k 6=h

vk
pk$h

=
1
$h

l∑
k=1
k 6=h

vk
pk

<
1
$h

$h − vh
ph

(4.25)

≤ 1
Xh(p)

∣∣∣∣∂Xh

∂ph
(p)
∣∣∣∣

Xh(p)>0⇔
∣∣∣∣∂Xh

∂ph
(p)
∣∣∣∣ >

l∑
k=1
k 6=h

∣∣∣∣∂Xh

∂pk
(p)
∣∣∣∣ .

This shows the assertion in (b).
We are now enabled to prove the main result within this theorem: Let

p ∈ Rl
++. Assume that for all h, k = 1, . . . , l we have vkl < $h. In particular,

we have vhl < $h for all h and thus vh < $h. Hence by part (a) we have
∂Xh
∂ph

(p) < 0. Let v ∈ Rl \ {0} and p ∈ Rl
++. Assuming

∣∣∣∣∣
l∑

h=1

v2
h

∂Xh

∂ph
(p)

∣∣∣∣∣ >
l∑

h,k=1
k 6=h

∣∣∣∣vhvk ∂Xh

∂pk
(p)
∣∣∣∣ , (4.26)

11Note that
Pl

k=1
k 6=h

vk
pk

< $h−vh
ph

for p ∈ D(m,$) since
Pl

k=1
k 6=h

vk
pk

+ vh
ph

=
Pl

k=1
vk
pk

<

$h
ph

⇔
Pl

k=1
k 6=h

vk
pk

< $h−vh
ph

.
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we obtain
l∑

h,k=1

vh
∂Xh

∂pk
(p)vk =

l∑
h=1

v2
h︸︷︷︸
≥0

∂Xh

∂ph
(p)︸ ︷︷ ︸

<0︸ ︷︷ ︸
≤0

+
l∑

h,k=1
h 6=k

vh
∂Xh

∂pk
(p)vk

< 0 by inequality (4.26).

Thus, if we can show inequality (4.26) to hold, we have obtained the negative
quasi-definiteness of (∂Xh

∂pk
(p))h,k=1,...,l. For the terms in inequality (4.26)

equation (4.17) implies

l∑
h,k=1
h 6=k

|vh||vk|
∣∣∣∣∂Xh

∂pk
(p)
∣∣∣∣ ≤ w̄

l∑
h,k=1
h 6=k

|vh||vk|
vk
phpk

and (4.27)

∣∣∣∣∣
l∑

h=1

v2
h

∂Xh

∂ph
(p)

∣∣∣∣∣ ≥ w̄

l∑
h=1

v2
h

$h − vh

p2
h

> 0 since v 6= 0. (4.28)

These equations are obtained as follows:

l∑
h,k=1
h 6=k

|vh||vk|
∣∣∣∣∂Xh

∂pk
(p)
∣∣∣∣ =

l∑
h,k=1
h 6=k

1
pk
|vh||vk|

∣∣∣∣pk ∂Xh

∂pk
(p) + δhkXh(p)

∣∣∣∣
≤ w̄

l∑
h,k=1
h 6=k

1
pk
|vh||vk|

vk
ph
.

Thus, (4.27) is shown and we deduce (4.28): Since the summands on the left-
hand side of (4.28) are all non-positive and the summands on the right-hand
side non-negative, it suffices to show∣∣∣∣∂Xh

∂ph
(p)
∣∣∣∣ =

∣∣∣∣−Xh

ph
(p) +

∂Xh

∂ph
(p) +

Xh

ph
(p)
∣∣∣∣

|x|−|y|≤|x+y|
≥

∣∣∣∣Xh

ph
(p)
∣∣∣∣− ∣∣∣∣∂Xh

∂ph
(p) +

Xh

ph
(p)
∣∣∣∣

Xh(p)ph>0
=

phXh(p)
p2
h

−
∣∣∣∣∂Xh

∂ph
(p) +

Xh

ph
(p)
∣∣∣∣

phXh(p)≥$hw̄

≥ w̄
$h

p2
h

−
∣∣∣∣∂Xh

∂ph
(p) +

Xh

ph
(p)
∣∣∣∣

(4.17)

≥ w̄
$h

p2
h

− w̄
vh

p2
h

= w̄
$h − vh

p2
h

.

Multiplying by v2
h ≥ 0 and summing up yields (4.28).
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Considering inequalities (4.27) and (4.28), we have shown negative quasi-
definiteness of (∂Xh

∂pk
(p))h,k=1,...,l if we have

w̄

l∑
h=1

v2
h

$h − vh

p2
h

> w̄

l∑
h,k=1
h 6=k

|vh||vk|
vk
phpk

Defining vh := phuh this is equivalent to

l∑
h=1

u2
h($h − vh) =

l∑
h=1

u2
h$h −

l∑
h=1

u2
hvh >

l∑
h,k=1
h 6=k

|uh||uk|vk

⇔
l∑

h=1

u2
h$h >

l∑
h,k=1

|uh||uk|vk (4.29)

A fundamental inequality in linear algebra tells us that for all u ∈ Rl, we
have l

∑l
h=1 u

2
h ≥

∑l
h,k=1 |uh||uk|. Assuming vkl < $h for all h and k and

defining $ := mini$i and m := maxj vj , we get

$i

vj

l∑
h=1

u2
h >

l∑
h,k=1

|uh||uk|
$i

vj
> l for all i, j ≤ l

⇒ $i

l∑
h=1

u2
h > vj

l∑
h,k=1

|uh||uk| for all i, j ≤ l

⇒
l∑

h=1

u2
h$h ≥

l∑
h=1

u2
h$ >

l∑
h,k=1

|uh||uk|m ≥
l∑

h,k=1

|uh||uk|vk.

Thus, equation (4.29) holds.
Having established negative quasi-definiteness of the Jacobian matrix

(∂Xh
∂pk

(p))h,k=1,...,l of market demand for all price systems p ∈ Rl
++, we ob-

tain strict monotonicity of market demand and the weak axiom of revealed
preference by Proposition 4.27 and Remark 4.31.

A closer look at part (c) of the foregoing theorem reveals the effect of
increasing dispersion of α-transforms: Increasing individual heterogeneity
for every type a ∈ A means decreasing the vk’s for all k. Thus, we obtain
the uncompensated law of demand property and the weak axiom of revealed
preference for market demand.

Income Effects

Up to now we have not considered income effects, neither for individual nor
for market demand. Analysis did not rely on income effects so far because
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income was fixed and independent of prices. However, what if income is not
independent of the price system? One might for example think of an initial
commodity endowment as done in Chapter 3. Thus, we now have a look at
the effect of income changes on market demand. In more catching terms:
“... how [does] dispersion of the conditional densities f(a|α) influence the
partial derivatives of aggregate demand with respect to per capita income
w̄.”([Grandmont, 92], p. 25)

In the following discussion we allow per capita income w̄ to vary but we
assume the distribution of incomes to be fixed, i.e. we assume θ : A → R++,
a 7→ θa, such that

∫
A θaµ(da) = 1 and wa = θaw̄, the income of type a agent.

Thus, an agent of type a always gets a fraction θa of aggregate per capita
income. We still have as in (A5)

w̄ =
∫
A
waµ(da) =

∫
A
θaw̄µ(da)

Definition 4.35. ([Grandmont, 92], p. 25) Given a ∈ A, (p, w) ∈ Rl
++ ×

R++ and α ∈ Rl. Again, conditional market demand is defined as in Defi-
nition 4.17:

X(a, p, w) :=
∫

Rl

ξαa (p, w)f(α|a)dα.

But now, total market demand X : Rl
++ × R++ → Rl

+ is given by

X(p, w̄) :=
∫
A
X(a, p, θaw̄)µ(da), (4.30)

where the distribution of income (θa)a∈A is a fixed parameter of the system
but per capita income w̄ may vary.

Of course, the (in-)equalities shown so far, as for example (4.17) and
(4.24), still hold. Again by Proposition 4.16, (A1) to (A3) imply that con-
ditional market demand X(a, ·, ·) has continuous partial derivatives with
respect to ph, h = 1 . . . l, and w.

Lemma 4.36. For all (a, p, w) ∈ A×Rl
++ ×R++ and h = 1, . . . l, we have∣∣∣∣w∂Xh

∂w
(a, p, w)−Xh(a, p, w)

∣∣∣∣ ≤ w

l∑
k=1

vk(a)
ph

. (4.31)

Proof. As we have already seen in the last section, conditional market de-
mand is homogeneous of degree 0 in (p, w). Thus, using Euler’s identity
(4.2), we obtain

0 =
l∑

k=1

pk
∂Xh

∂pk
(a, p, w) + w

∂Xh

∂w
(a, p, w).
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This yields

w
l∑

k=1

vk(a)
ph

(4.16)

≥
l∑

k=1

∣∣∣∣pk ∂Xh

∂pk
(a, p, w) + δhkXh(a, p, w)

∣∣∣∣
≥

∣∣∣∣∣
l∑

k=1

pk
∂Xh

∂pk
(a, p, w) +Xh(a, p, w)

∣∣∣∣∣
=

∣∣∣∣w∂Xh

∂w
(a, p, w)−Xh(a, p, w)

∣∣∣∣ .

Analogously to equations (4.17) and (4.24), we obtain the following
proposition when considering income effects.

Proposition 4.37. ([Grandmont, 92], Proposition 2.4) Assume (A1) to
(A5) and let (p, w̄) ∈ Rl

++ × R++. Then total market demand X as de-
fined in equation (4.30) is continuously partially differentiable. Upper and
lower bounds for derivatives with respect to per capita income w̄ are obtained
by ∣∣∣∣w̄ ∂Xh

∂w̄
(p, w̄)−Xh(p, w̄)

∣∣∣∣ ≤ w̄
l∑

k=1

vk
ph

(4.32)

for all h = 1, . . . , l. Assuming (A1) to (A7), then income elasticity
∂ logXh
∂ log w̄ (p, w̄) of total market demand satisfies

∣∣∣∣∂ logXh

∂ log w̄
(p, w̄)− 1

∣∣∣∣ ≤ l∑
k=1

vk
εh

(4.33)

for all h = 1, . . . , l. In particular,

∂Xh

∂w̄
(p, w̄) > 0,

if
∑l

k=1 vk < εh. In this case, commodity h is called a normal good.

Proof. In light of (A1), (A2) and (A3) we have already shown by Proposition
4.16(1) that X(a, ·, ·) has continuous partial derivatives. Using this result
and again Proposition 4.16 together with (A4) and(A5), we may change the
order of integration and differentiation and thus obtain continuous partial
derivatives

∂Xh

∂w̄
(p, w̄) =

∫
A
θa
∂Xh

∂w
(a, p, θaw̄)µ(da)
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for all h = 1, . . . , l. Posing (A1) to (A7), we have shown equations (4.17)
and (4.24). For all h = 1, . . . , l, we have

w̄
l∑

k=1

vk
ph

(4.17)

≥
l∑

k=1

∣∣∣∣pk ∂Xh

∂pk
(p, w̄) + δhkXh(p, w̄)

∣∣∣∣
≥

∣∣∣∣∣
l∑

k=1

pk
∂Xh

∂pk
(p, w̄) +Xh(p, w̄)

∣∣∣∣∣
=

∣∣∣∣∂Xh

∂w̄
(p, w̄)w̄ −Xh(p, w̄)

∣∣∣∣ ,
where the last equation follows by Euler’s theorem. Thus, we have shown
equation (4.32). The following (in-)equalities yield equation (4.33):

l∑
k=1

vk
εh

(4.24)

≥
l∑

k=1

∣∣∣∣∂ logXh

∂ log pk
(p, w̄) + δhk

∣∣∣∣
≥

∣∣∣∣∣
l∑

k=1

∂ logXh

∂ log pk
(p, w̄) + 1

∣∣∣∣∣
=

∣∣∣∣∣
l∑

k=1

pk
Xh(p, w̄)

∂Xh

∂pk
(p, w̄) + 1

∣∣∣∣∣
Euler=

∣∣∣∣− w̄

Xh(p, w̄)
∂Xh

∂w̄
(p, w̄) + 1

∣∣∣∣
=

∣∣∣∣∂ logXh

∂ log w̄
(p, w̄)− 1

∣∣∣∣ .
In particular, we have

l∑
k=1

vk
εh

< 1 ⇒ 0 <
w̄

Xh(p, w̄)
∂Xh

∂w̄
(p, w̄) < 2

⇒ ∂Xh

∂w̄
(p, w̄) > 0

4.2.3 Existence & Uniqueness of Equilibrium

We now consider a distribution economy E d as in Definition 3.12. In this con-
text an individual agent’s income does actually depend on the price system
as it is given by an initial commodity endowment. Agent’s characteristics are
now given by a demand function ξ and an initial endowment τ ∈ Rl

+ \ {0}.
An individual agent’s income can be obtained by w = p · τ .

The aim of this section is to show existence and uniqueness of equi-
librium in E d when individual characteristics are sufficiently dispersed. For
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this purpose we introduce the gross substitute property for market excess de-
mand. Moreover, we obtain the weak axiom of revealed preference between
an equilibrium price system and any other price vector when densities are
sufficiently flat. The weak axiom may be applied to show stability of equi-
librium. However, stability is not discussed in this diploma thesis.

We obtain a probability distribution on the space of agents characteris-
tics in the same way as in Section 4.2.2: First consider a marginal distri-
bution µ on the set A of agents’ types. For each type a ∈ A we depict a
conditional distribution f(dα|a) on the space of α-transforms {ξαa |α ∈ Rl},
where ξa and wa denote the demand-income pair corresponding to type
a ∈ A.

Again, we suppose (A1) to (A4) to hold but replace (A5) by (A5’):

Assumption 4.38. ([Grandmont, 92], p. 28) Let a ∈ A.

A 5’ The initial endowment a 7→ τa ∈ Rl
+\{0} is continuous in a. Per capita

initial endowment τ̄ is finite and strictly positive in all components, i.e.

τ̄ :=
∫
A
τaµ(da) ∈ Rl

++.

We then define per capita income w̄ := p · τ̄ .

Definition 4.39. ([Grandmont, 92], pp. 28,29) (a) Let a ∈ A, (p, τ) ∈
Rl

++ × Rl
+ \ {0} and ξ a demand function. Conditional market demand

X : A× Rl
++ × Rl

+ \ {0} is given by

X(a, p, p · τ) := X(a, p, w) :=
∫

Rl

ξαa (p, w)f(α|a)dα,

where w := p·τ . Note that conditional market demand has all properties that
were stated in Section 4.2.2, in particular continuous partial derivatives.
(b) Conditional market excess demand Z(a, ·) given a ∈ A is defined by

Z(a, p) := X(a, p, p · τa)− τa.

(c) For any price system p we define total market excess demand
Z : Rl

++ → Rl by

Z(p) :=
∫
A
Z(a, p)µ(da).

Remark 4.40. (a) Conditional market excess demand Z(a, ·) obviously in-
herits the following properties from conditional market demand X(a, ·, ·):
Z(a, p) is

• well defined in the sense that
∫

Rl ξ
α
a (p, p · τa)f(α|a)dα− τa <∞,
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• continuously partially differentiable; in particular continuous,

• bounded below by −τa since Xh(a, p, p · τa) ≥ 0 for all h = 1, . . . , l,

• homogeneous of degree zero in price p ∈ Rl
++ since conditional market

demand is homogeneous of degree zero in (p, w)12 and

• satisfies Walras’ law, i.e. p ·Z(a, p) = 0 for all a ∈ A and p ∈ Rl
++.13

(b) We can rewrite total market excess demand as

Z(p) =
∫
A

(X(a, p, p · τa)− τa)µ(da)

(A5’)
=

∫
A
X(a, p, p · τa)µ(da)− τ̄

=
∫
A

∫
Rl

ξαa (p, p · τa)f(α|a)dαµ(da)− τ̄ .

Posing (A1) to (A4) and (A5’) we note that total market excess demand has
the properties given in part (a) of this remark. Most properties are obvious,
the others are shown in subsequent remarks and propositions.

Definition 4.41. ([Grandmont, 92], p. 29) A price system p∗ ∈ Rl
++ such

that Z(p∗) = 0 is called an equilibrium price system or equilibrium for short.

Applying the chain rule yields that Z(a, ·) is continuously partially dif-
ferentiable: Let a ∈ A and p ∈ Rl

++, then for all h, k = 1, . . . , l, we have

∂Zh
∂pk

(a, p) =
∂Xh

∂pk
(a, p, p · τa) +

∂Xh

∂w
(a, p, p · τa)τak.

Lemma 4.42. ([Grandmont, 92], p. 29) Let a ∈ A and p ∈ Rl
++. Then for

all h, k = 1, . . . , l, we have

phpk

∣∣∣∣∂Zh∂pk
(a, p)

∣∣∣∣ ≤ (p · τa)(1 + vk) + pkτak(1 +
l∑

j=1

vj).

12We have for all a ∈ A, p ∈ Rl
++ and λ ∈ Rl

++

Z(a, λp) = X(a, λp, λp · τa)− τa = X(a, p, p · τa)− τa = Z(a, p).

13For all p ∈ Rl
++ and a ∈ A

p · Z(a, p) = p ·X(a, p, p · τa)− p · τa = 0.
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Proof. Using the chain rule, we get

phpk

∣∣∣∣∂Zh∂pk
(a, p)

∣∣∣∣ ≤ phpk

∣∣∣∣∂Xh

∂pk
(a, p, p · τa)

∣∣∣∣︸ ︷︷ ︸
=:I

+ phpk

∣∣∣∣∂Xh

∂w
(a, p, p · τa)τak

∣∣∣∣︸ ︷︷ ︸
=:II

.

By equation (4.31), we obtain the following series of inequalities:

p · τa
ph

l∑
k=1

vk
(A4)

≥ (p · τa)
l∑

k=1

vk(a)
ph

4.31
≥

∣∣∣∣(p · τa)∂Xh

∂w
(a, p, p · τa)−Xh(a, p, p · τa)

∣∣∣∣
⇔

l∑
k=1

vk ≥
∣∣∣∣ph∂Xh

∂w
(a, p, p · τ)− ph

p · τ
Xh(a, p, p · τ)

∣∣∣∣
≥

∣∣∣∣ph∂Xh

∂w
(a, p, p · τ)

∣∣∣∣ − ph
p · τ

Xh(a, p, p · τ)︸ ︷︷ ︸
≥− p·τ

p·τ =−1

≥
∣∣∣∣ph∂Xh

∂w
(a, p, p · τ)

∣∣∣∣− 1

⇔ 1 +
l∑

j=1

vj ≥
∣∣∣∣ph∂Xh

∂w
(a, p, p · τ)

∣∣∣∣
⇔ II = pkτak

∣∣∣∣ph∂Xh

∂w
(a, p, p · τ)

∣∣∣∣ ≤ pkτak(1 +
l∑

j=1

vj).

Now, let h 6= k, then by equation (4.16) we get∣∣∣∣pk ∂Xh

∂pk
(a, p, p · τa)

∣∣∣∣ ≤ (p · τa)
vk
ph

⇔ I ≤ (p · τa)vk ≤ (p · τa)(1 + vk).

In case that h = k, we again apply equation (4.16) and obtain∣∣∣∣ph∂Xh

∂ph
(a, p, p · τa) +Xh(a, p, p · τa)

∣∣∣∣ ≤ (p · τa)
vh
ph

⇔ (p · τa)vh ≥
∣∣∣∣p2
h

∂Xh

∂ph
(a, p, p · τa) + phXh(a, p, p · τa)

∣∣∣∣
phXh≥0
≥

∣∣∣∣p2
h

∂Xh

∂ph
(a, p, p · τa)

∣∣∣∣− phXh(a, p, p · τa)︸ ︷︷ ︸
≤p·τa

≥
∣∣∣∣p2
h

∂Xh

∂ph
(a, p, p · τa)

∣∣∣∣− p · τa

⇔ I ≤ (p · τa)(1 + vh).
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This completes the proof.

The following proposition allows to “differentiate under the integral”:

Proposition 4.43. ([Grandmont, 92], Proposition 3.1) Let p ∈ Rl
++. As-

sume that (A1) to (A4) and (A5’) hold. Then total market excess demand
is continuously partially differentiable and for every h, k = 1, . . . , l, it holds

∂Zh
∂pk

(p) =
∫
A

∂Zh
∂pk

(a, p)µ(da).

Proof. By Lemma 4.42 we see that
∣∣∣∂Zh
∂pk

(a, p)
∣∣∣ < ∞ for all a, p, h, k with

integrable majorant function. Moreover, we have already stated that the
partial derivatives ∂Zh

∂pk
(a, p) of conditional market excess demand Zh(a, p)

are continuous in (a, p). Thus, the assertion follows from Proposition 4.1614

using Definition 4.39.

We now tackle the problem of existence and uniqueness of equilibrium.
However, first we have to think about the term “uniqueness”.

Remark 4.44. We have seen that total market excess demand is homoge-
neous of degree zero in prices. Hence, when talking about uniqueness of an
equilibrium price system p∗ we always mean uniqueness up to a scalar mul-
tiple: If p∗ is an equilibrium then λp∗, λ ∈ R++ is an equilibrium, too. In
light of homogeneity, not the absolute price system p is the relevant entity
but rather relative prices are important. This allows us to consider normal-
ized prices and we will do so whenever it seems appropriate. Moreover, when
considering specific sets G ⊂ Rl

++ of prices, as for example convex sets, we
may without loss of generality consider cones generated by those sets, i.e.
{p̃ ∈ Rl

++ : ∃p ∈ G and λ ∈ R++ such that p̃ = λp}.

In the foregoing section we have posed assumptions (A6) and (A7) to
ensure aggregate desirability for every commodity. Again, we will pose as-
sumption (A6) stating that the conditional density f(·|a) does almost surely
not depend on type a ∈ A. Following Grandmont, we slightly modify as-
sumption (A7) in view of the fact that each type a ∈ A corresponds to a
demand-endowment pair (ξa, τa). We reconsider the primitives of the model
in the following way: Let the type space A be given by

A ⊂ B× Rl
+ \ {0}, A 3 a = (b, τ),

where B is the space of types b of demand functions ξb and Rl
+ \ {0} the

space of corresponding initial endowments τ .
We now specify the distribution µ on A in a way similar to the definition

of the distribution on agents characteristics in Section 4.2.2:
14Differentiability from part (b), continuity from part (a).
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Definition 4.45. Let (Ω,F) be a standard Borel space. Let P be a proba-
bility distribution on (Ω,F) and F0 ⊂ F be a sub-σ-algebra. A probability
kernel KF0 from (Ω,F0) to (Ω,F) such that for all F ∈ F it holds

KF0(ω, F ) = P (F |F0)(ω) for P -almost all ω ∈ Ω

is called a regular conditional probability given F0. For existence and
uniqueness we refer to [Bauer, 74], Proposition 56.5.

Let ν be a probability distribution on the space of endowments
(Rl

+,B(Rl
+)). Given initial endowment τ , we depict a regular conditional

probability ν(·|τ) on (B,B(B)), where B(B) denotes the Borel σ-algebra
induced by the L 1-norm.15 Now, a Grandmont type distribution economy
is a tuple ((f(·|(b, τ)))b∈B,τ∈Rl

+
, (ν(·|τ))τ∈Rl

+
, ν).

Together with assumption (A6) we obtain aggregate desirability of every
commodity by assuming a stronger version of (A7):

Assumption 4.46. ([Grandmont, 92], p. 30) The following assumption
states that the budget shares for every commodity are strictly positive:

A 7’ For each commodity h = 1, . . . , l, there exists $h > 0, with
∑l

k=1$k ≤
1, such that for ν-almost every initial endowment τ ∈ Rl

+ \{0}, for all
price systems p ∈ Rl

++ and incomes w = p · τ ∈ R++ we have

ph

∫
B
ξbh(p, w)ν(db|τ) ≥ $hw > 0.

We can thus show aggregate desirability for each commodity: For all
h = 1, . . . , l and p ∈ Rl

++, we have

phXh(p) =
∫
A
phXh(a, p, p · τa)µ(da)

=
∫

Rl
+

∫
B
phXh(a, p, p · τ)ν(db|τ)ν(dτ)

=
∫

Rl
+

[∫
B

[∫
Rl

phξ
α
bh(p, p · τ) f(α|(b, τ))︸ ︷︷ ︸

(A6)
= :f(α) µ-a.s.

dα

]
ν(db|τ)

]
ν(dτ)

=
∫

Rl

[∫
Rl

+

[∫
B
phξ

α
bh(p, p · τ)ν(db|τ)

]
ν(dτ)

]
f(α)dα

≥ $hp ·
∫

Rl

[∫
Rl

+

τν(dτ)︸ ︷︷ ︸
=τ̄<∞

]
f(α)dα

= $h(p · τ̄) = $hw̄ > 0.
15In terms of definition 4.45, conditioning on τ actually means conditioning on the σ-

algebra that is generated by the constant random variable τ . Note that by positivity of
individual demand and the satisfaction of Walras’ law we may conclude that a demand
function ξ as defined in 4.4 is in L 1.
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Since ph > 0 for all h = 1, . . . , l, this yields

Xh(p) ≥ $h
w̄

ph
> 0.

Using aggregate desirability, we can now show the following existence
result for equilibria using a slightly different proof than in [Grandmont, 92]:

Proposition 4.47. ([Grandmont, 92], Proposition 3.2) Let (A1) to (A3),
(A5’), (A6) and (A7’) hold.
(a) For every p ∈ Rl

++ and h = 1, . . . , l, it holds

ph(Zh(p) + τ̄h) ≥ $h(p · τ̄).

(b) There exists an equilibrium price system p∗ ∈ Rl
++. For all h = 1, . . . , l,

p∗ satisfies
p∗hτ̄h ≥ $h(p∗ · τ̄). (4.34)

Proof. Subsequent to Assumption 4.46 we have shown

ph(Zh(p) + τ̄h) = phXh(p) ≥ $h(p · τ̄).

Thus part (a) is shown.
Let (pn)n∈N ∈ Rl

++ be a sequence of prices such that pn n→∞−→ p̄ 6= 0 and
there exists k ≤ l such that p̄k = 0. For convenience we normalize prices in
the following way: We only consider price systems p ∈ {p ∈ Rl

++|p · τ̄ = 1}.
Using part (a), we obtain for all n ∈ N

Zk(pn) ≥ $k

pnk
(pn · τ̄)− τ̄ =

$k

pnk
− τ̄k

−→ ∞ whenever n→∞.

Proposition 4.48 below, shows the existence of an equilibrium price system
p∗. Furthermore, we have

p∗hτ̄h = p∗h(Zh(p
∗) + τ̄h) ≥ $h(p∗ · τ̄).

A version of [Mas-Colell et al., 95], Proposition 17.C1.1,16 for our con-
text may be given as follows:

Proposition 4.48. Let Z : Rl
++ → Rl be a total market excess demand

function as defined in 4.39.17 Let (pn)n∈N ∈ Rl
++ be a sequence of prices

such that pn n→∞−→ p 6= 0 and there exists k ≤ l such that pk = 0. If

max
k≤l

Zk(pn)
n→∞−→ ∞,

then there exists p∗ ∈ Rl
++ such that Z(p∗) = 0.

16A more general version of this existence theorem in case of demand correspondences
is given in [Debreu, 82], Theorem 8.

17In particular, we have shown that Z(·) is continuous, homogeneous of degree zero,
bounded below and satisfies Walras’ law.
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Proof. [Mas-Colell et al., 95], pp. 586,587

Unless otherwise stated, we expect all assumptions in Proposition 4.47
to hold that imply existence of equilibrium. Now that we have established
the existence of equilibrium, we may turn our attention to the uniqueness
problem. Here, uniqueness will be implied by the gross substitute property
of market excess demand.

Definition 4.49. (a) ([Moore, 04] Definition 10.11) Let Z be a total market
excess demand function and p ∈ Rl

++. We say that two commodities k and
h, h 6= k ≤ l, are gross substitutes at price system p if

∂Zh
∂pk

(p) > 0,
∂Zk
∂ph

(p) > 0 (4.35)

and these partial derivatives exist.
(b) We say that the total market excess demand function Z satisfies the gross
substitutes property if all commodities h are gross substitutes at all price
systems p ∈ Rl

++. In addition, we say that Z exhibits the gross substitutes
property on some subset G ⊂ Rl

++ if all commodities h are gross substitutes
at all price systems p ∈ G.

Intuitively, two commodities are gross substitutes whenever an increase
in price of one good causes an increase in demand of the other good.

We now show that the gross substitutes property implies uniqueness of
equilibrium. The following proposition is a version of [Arrow & Hahn, 71],
Theorem 9.7.7: We do not state the result for prices in Rl

++ but moreover for
prices in any convex subset of Rl

++. The proof, that we provide here, follows
an idea in [Moore, 04], Proposition 10.13, but in a more general context. It
crucially relies on the satisfaction of the gross substitutes property on a
convex set of prices.

Proposition 4.50. Let Z be a total market excess demand function that
satisfies the gross substitutes property on some convex set G ⊂ Rl

++ of
prices. Without loss of generality assume G to be a convex cone. Let p∗ ∈ G
be an equilibrium price vector if any such exists in G. Then p∗ is the unique
equilibrium price vector in G up to scalar multiples.

Proof. Let p̃ ∈ G be a further equilibrium price system for Z and

m := min
1≤h≤l

p∗h
p̃h
.

Now assume that p∗ 6= mp̃, mp̃ ∈ G. We show that p∗ cannot be an equi-
librium price system and thus obtain a contradiction. Because of convexity
of G we have that the whole “line” [p∗,mp̃] is contained in G: Define the
map p(·) of convex combinations, i.e.

p(η) := ηp∗ + (1− η)mp̃ for all η ∈ [0, 1].
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Then p(η) ∈ G, p(1) = p∗ and p(0) = mp̃.
By definition of m, we have p∗ ≥ mp̃. Moreover, there exists some k ≤ l

such that p∗k > mp̃k and some r ≤ l such that p∗k = mp̃k. Due to the gross
substitutes property of total market excess demand Z on [p∗,mp̃] ⊂ G it
follows

0 = Zk(mp̃) < Zk(p∗) :

Consider the hth component of p(·). Sine p(·) is the linear interpolation of p∗

and mp̃, we know that ph(η) may not decrease in η, i.e. for all h = 1, . . . , l,
we have

dph
dη

(η) ≥ 0 for all η ∈ [0, 1].

But by definition of k, it holds

dpk
dη

(η) > 0 for all η ∈ [0, 1],

i.e. pk(·) is strictly increasing along η ∈ [0, 1]. The chain rule yields

dZk
dη

(p(η)) =
l∑

h=1

∂Zk
∂ph

(p(η))
dph
dη

(η)

≥ ∂Zk
∂pk

(p(η))(p∗k −mp̃k) > 0

for all η ∈ [0, 1]. Thus it follows

Zk(p∗) = Zk(p(1)) > Zk(p(0)) = Zk(mp̃) = Zk(p̃) = 0

and hence, p∗ cannot be an equilibrium price system.

Corollary 4.51. Posing the standard assumption in Proposition 4.47, let Z
be a total market excess demand function that satisfies the gross substitutes
property. Then there exists a unique equilibrium price system p∗ ∈ Rl

++ up
to scalar multiples.

Proof. The existence follows from Proposition 4.47. Uniqueness is implied
by Proposition 4.50 since Rl

++ is a convex cone.

Remark 4.52. Total market excess demand function Z satisfies the weak
axiom of revealed preference if, for any p1, p2 ∈ Rl

++, it holds

[Z(p1) 6= Z(p2) and p1 · Z(p2) ≤ 0] ⇒ p2Z(p1) > 0.

The following proposition is a version of Theorem 9.7.9 in
[Arrow & Hahn, 71]. The proof basically follows the lines therein.



98 CHAPTER 4. THE AGGREGATION PROBLEM

Proposition 4.53. Let Z be a total market excess demand function that
satisfies the gross substitutes property and the assumptions in Proposition
4.47. Let p∗ ∈ Rl

++ be the unique equilibrium price system. Then for any
p ∈ Rl

++ that is not collinear to p∗, i.e. there is no λ ∈ R++ such that
p∗ = λp, we have

p∗ · Z(p) > 0.

By Remark 4.52 this inequality states that the weak axiom of revealed pref-
erence holds for total market excess demand between the equilibrium price
system p∗ ∈ Rl

++ and any other price system p ∈ Rl
++.

Proof. Existence and uniqueness of equilibrium is given by Corollary 4.51.
Again, we apply a normalizing device for price systems in this proof. We

will only consider price systems p ∈ ∆ := {p ∈ Rl
++|

∑l
k=1 pk = 1}. Thus,

for every price system p, we have eliminated all collinear price systems and
now “uniqueness really means uniqueness” on ∆. Note that ∆ is a bounded
open subset of Rl−1.

Let us have a look at the map κ : ∆ → R, p 7→ κ(p) := p∗ · Z(p) =∑l
j=1 p

∗
jZj(p). We know that κ(p∗) = 0. Thus, the assertion follows if we

can show that p∗ is the unique minimizer of κ(·).
Since total market excess demand Z(·) is continuous and bounded below,

as the feasible price systems p are, we know that there exists a lower bound
for κ and κ is continuous. In a foregoing proof we have already seen that
maxk≤l Zk(pn)

n→∞−→ ∞, whenever the sequence (pn)n∈N ⊂ ∆ is such that
pnk

n→∞−→ 0 for some k ≤ l. Since p∗ ∈ Rl
++ is fixed we get that κ(pn) n→∞−→ ∞

for sequences (pn)n∈N ⊂ ∆ that approach the boundary of ∆. In this sense,
κ “explodes at the boundary”. Hence, we see that the minimization problem
for κ(·) on ∆ exhibits an interior solution and a necessary condition for a
price system p̃ to be a minimizer is given by

∇(κ)(p̃) :=
(
∂κ

∂p1
, . . . ,

∂κ

∂pl

)
=

 l∑
j=1

p∗j
∂Zj
∂pk

(p̃)


k≤l

= 0. (4.36)

Applying Walras’ law, we see that for all p ∈ ∆ and all k = 1, . . . , l, we have

∂[p · Z(p)]
∂pk

= 0.

For p∗ and k ≤ l this yields

0 =
∂[p∗ · Z(p∗)]

∂pk
=

l∑
j=1

p∗j
∂Zj
∂pk

(p∗) + Zk(p∗)︸ ︷︷ ︸
=0

.

Thus, equation (4.36) holds at the unique equilibrium p∗.



4.2. GRANDMONT’S APPROACH 99

We finish the proof by showing that equation (4.36) does not hold for
any price system p ∈ ∆ other than p∗:18 Let ∆ 3 p 6= p∗ and assume that p
satisfies equation (4.36). Set

m := min
1≤h≤l

p∗h
ph

and consider r ≤ l such that p∗r
pr

= m. We know that Zr(p∗) = 0; this implies

Zr(p) < 0 :

Let p1 := p∗

p∗r
and p2 := p

pr
. By homogeneity of degree zero, we obtain

Z(p1) = Z(p∗) and Z(p2) = Z(p). This yields

0 = Zr(p∗) = Zr(p1) > Zr(p2) = Zr(p),

where the inequality follows from the gross substitute property: We have
p1 =

(
p∗1
p∗r
, . . . , 1, . . . , p

∗
l
p∗r

)
and p2 =

(
p1
pr
, . . . , 1, . . . , pl

pr

)
. By definition of r, it

holds p∗k
pk
≥ p∗r

pr
for all k = 1, . . . , l and since p∗ 6= p there exists k0 such that

p∗k0
pk0

> p∗r
pr

. But these properties are equivalent to:

p∗k
p∗r
≥ pk
pr

∀k = 1, . . . , l and ∃k0 such that
p∗k0
p∗r

>
pk0
pr
.

As in the proof of 4.50, this yields Zr(p1) > Zr(p2) and thus Zr(p) < 0.
Now Walras’ law implies

0 =
∂[p · Z(p)]

∂pr
=

l∑
j=1

pj
∂Zj
∂pr

(p) + Zr(p)︸ ︷︷ ︸
<0

.

Thus,
l∑

j=1

pj
∂Zj
∂pr

(p) > 0.

But then we obtain

0 =
1
m

l∑
j=1

p∗j
∂Zj
∂pr

(p) = pr
∂Zr
∂pr

(p) +
1
m

∑
j 6=r

p∗j
∂Zj
∂pr

(p)

>

l∑
j=1

pj
∂Zj
∂pr

(p) > 0,

18In terms of the assertion this means that (4.36) may not hold for any price system p
that is not collinear to p∗.
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which yields a contradiction.19 Hence, there is no p 6= p∗ in ∆ such that
equation (4.36) is satisfied. We have a continuous function κ on a convex
open bounded subset ∆ of Rl−1 that is bounded below and tends to infinity
when approaching the boundary of ∆. Since there is only one element p∗ in
∆ satisfying the necessary condition (4.36) for an extreme point, p∗ has to
be the unique minimizer of κ(·).

Corollary 4.54. Let Z be a total market excess demand function that satis-
fies the gross substitutes property on some convex open set G ∈ Rl

++, without
loss of generality a convex cone. Let G contain an equilibrium price system
p∗ that is then unique in G by Proposition 4.50. Then for any p ∈ G that
is not collinear to p∗ we have

p∗ · Z(p) > 0,

if we furthermore suppose Z to be such that κ : p 7→ p∗ · Z(p) is twice
continuously differentiable on G and the Hessian matrix

(
∂κ2

∂2phpk
(p)
)
h,k=1,...,l

is positive definite at p∗.

Proof. The proof basically uses the same arguments as the foregoing proof:
We can show that there is no price system p 6= p∗ in G such that the
necessary condition (4.36) for an extremum is satisfied by any p ∈ G not
collinear to p∗: In the proof of Proposition 4.53 we have used that the set
Rl

++ where gross substitutes property holds is a convex cone.
The problem that we face is that κ does not necessarily have to increase

when approaching the boundary of G. However, by positive definiteness of
the Hessian matrix at p∗, p∗ is the unique minimizer of κ on G.

By equation (4.34) we can see that equilibrium price systems are bounded
away from zero. Using (A7’), we show that the set where the gross substi-
tutes property holds will eventually contain any compact subset of Rl

++ as
individual behavior gets more and more heterogeneous. The set of equili-
bria is thus eventually be contained in such a set and there will be a unique
equilibrium by Proposition 4.50.

The theorem that follows originates in [Grandmont, 92], Theorem 3.3.
The difference is that we do not pose an assumption to get the weak axiom
of revealed preference between an equilibrium price system and any other

19The second to last inequality can be obtained straightforward: By definition of r and
since p 6= p∗, we get

p∗k
pk

≥ p∗r
pr

∀k = 1, . . . , l and ∃k0 such that
p∗k0

pk0

>
p∗r
pr

⇔ p∗kpr

p∗r
≥ pk ∀k = 1, . . . , l and ∃k0 such that

p∗k0pr

p∗r
> pk0 .

Applying these inequalities yields the result.
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price system in Rl
++ but between an equilibrium price system and any other

price system in a set that eventually contains any compact set of prices
when agents become sufficiently heterogeneous. The proof basically follows
the lines in [Grandmont, 92], pp. 34,35.

Theorem 4.55. Let assumptions (A1) to (A4), (A5’), (A6) and (A7’) hold.
For $ = ($1, . . . , $l), v = (v1, . . . , vl) ∈ Rl

++ as chosen in (A4) and (A7),
we set for all h

G (v, $) :=

p ∈ Rl
++|pkτ̄k

$h −
l∑

j=1

vj

 > vk(p · τ̄) for all k 6= h

 .

(4.37)
(a) Total market excess demand Z exhibits the gross substitutes property on
G (v, $). In particular, whenever κ, as defined in the proof of Proposition
4.53, is twice continuously differentiable and has a positive definite Hessian
matrix at the unique equilibrium price system p∗ in G (v, $), given existence,
the weak axiom of revealed preference holds for total market excess demand
between the unique equilibrium price system p∗ ∈ G (v, $) and any other
price system p ∈ G (v, $) that is not collinear to p∗. That is, we have
p∗ · Z(p) > 0.
(b) For all h = 1, . . . , k, assume that

$k

$h −
l∑

j=1

vj

 > vk (4.38)

holds for all k 6= h. Then {p ∈ Rl
++|pkτ̄k ≥ $k(p · τ̄) ∀k} ⊂ G (v, $). By

equation (4.34) this implies that the set of equilibrium prices is contained in
G (v, $) and thus the uniqueness of equilibrium up to scalar multiples follows
by Proposition 4.50.

Proof. First, we note that G (v, $) is a convex cone: Let λ ∈ R++ and
p ∈ G (v, $). Then for all k = 1, . . . , l

pkτ̄k

$h −
l∑

j=1

vj

 > vk(p · τ̄)

⇔ λpkτ̄k

$h −
l∑

j=1

vj

 > vk(λp · τ̄).

Thus, λp ∈ G (v, $). Furthermore let η ∈ [0, 1] and p, q ∈ G (v, $). Then for
all k = 1, . . . , l

(ηpk − (1− η)qk)τ̄k

$h −
l∑

j=1

vj

 > vk((ηp+ (1− η)q) · τ̄).
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This shows convexity.
We now turn to the proof of part (a): Equation (4.16) implies for all

k 6= h

∣∣∣∣phpk ∫
A

∂Xh

∂pk
(a, p, p · τa)µ(da)

∣∣∣∣ ≤ ph

∫
A

∣∣∣∣pk ∂Xh

∂pk
(a, p, p · τa)

∣∣∣∣︸ ︷︷ ︸
(4.16)

≤ vk
ph

(p·τa)

µ(da)

≤ vk(p · τ̄)

⇔ −vk(p · τ̄) ≤ phpk

∫
A

∂Xh

∂pk
(a, p, p · τa)µ(da) ≤ vk(p · τ̄). (4.39)

By equation (4.31) we obtain

∫
A
pkτakph

[
∂Xh

∂w
(a, p, p · τa)−

Xh(a, p, p · τa)
p · τa

]
µ(da)

4.31
≥
∫
A
pkτakph

[
−

(p · τa)
∑l

j=1 vj

ph(p · τa)

]
µ(da)

= −pk
l∑

j=1

vj

∫
A
τakµ(da) = −pkτ̄k

l∑
j=1

vj .

Reordering of this inequality and further estimation yields

∫
A
pkτak

[
ph
∂Xh

∂w
(a, p, p · τa)

]
µ(da)

≥
∫
A
pkτak

[
ph
Xh(a, p, p · τa)

p · τa

]
µ(da)− pkτ̄k

l∑
j=1

vj

(A6)
=

∫
Rl

[∫
Rl

+

pkwk

[∫
B
ph
ξαbh(p, p · τ)

p · τ
ν(db|τ)

]
ν(dτ)

]
f(α)dα

−pkτ̄k
l∑

j=1

vj

(A7’)

≥
∫

Rl

[∫
Rl

+

$hpkτk ν(dτ)

]
f(α)dα− pkτ̄k

l∑
j=1

vj

= $hpkτ̄k − pkτ̄k

l∑
j=1

vj = pkτ̄k($h −
l∑

j=1

vj). (4.40)
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Proposition 4.43 and inequalities (4.39) and (4.40) then imply ∀k 6= h

phpk
∂Zh
∂pk

(p) 4.43= phpk

∫
A

∂Zh
∂pk

(a, p)µ(da)

= phpk

∫
A

[
∂Xh

∂pk
(a, p, p · τa) +

∂Xh

∂w
(a, p, p · τa)τak

]
µ(da)

≥ pkτ̄k($h −
l∑

j=1

vj)− vk(p · τ̄) > 0 if p ∈ G (v, $).

Since phpk > 0 for all h, k = 1, . . . , l, we obtain for all h:

∂Zh
∂pk

(p) > 0

for all k 6= h and p ∈ G (v, $). Thus, Z satisfies the gross substitute property
on G (v, $).

Applying Corollary 4.54 to the convex set G (v, $) yields the weak ax-
iom of revealed preference for total market excess demand Z in the special
form stated in part (a), whenever there exists an equilibrium p∗ ∈ G (v, $).
Uniqueness of such a p∗, if it exists, follows from Proposition 4.50.

Let us now turn to the proof of part (b): Assume that inequality (4.38)
holds and consider price systems p ∈ Rl

++ such that

pkτ̄k ≥ $k(p · τ̄) for all k.

Merging these inequalities, we obtain for all h ≤ l

pkτ̄k$k

$h −
l∑

j=1

vj

 > $kvk(p · τ̄)

⇔ pkτ̄k

$h −
l∑

j=1

vj

 > vkp · τ̄

for all k 6= h. Thus, we have

{p ∈ Rl
++|pkτ̄k ≥ $k(p · τ̄) ∀k} ⊂ G (v, $).

Hence, the set of equilibrium price systems is contained in the convex cone
G (v, $). Proposition 4.47 yields existence and Proposition 4.50 uniqueness
of equilibrium.

So far, we have shown that the weak axiom is satisfied in the form of
Theorem 4.55 on a set of prices that eventually contains all equilibrium
prices. In [Grandmont, 92] we can find a stronger result in the sense that
no assumptions are posed on the functional form of market excess demand
Z. However, stronger assumptions are posed on the distributions.
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Proposition 4.56. ([Grandmont, 92], Theorem 3.3(3)) Let assumptions
(A1) to (A4), (A5’), (A6) and (A7’) hold and $ = ($1, . . . , $l),
v = (v1, . . . , vl) ∈ Rl

++ be chosen as in (A4) and (A7). We now pose
the following condition: For all h ≤ l,

$2
k($h −

l∑
j=1

vj) > vk (4.41)

for all k 6= h. Then the weak axiom of revealed preference holds for total
market excess demand between the unique equilibrium price system p∗ and
any other price system p ∈ Rl

++ not collinear to p∗, i.e. p∗ · Z(p) > 0 if
there does not exist any λ ∈ R such that p∗ = λp.

In our analysis of market demand, when the distribution of demand is
endogenized, we do not directly apply this theorem. Thus, we will only
sketch the proof here.

Proof. Existence and uniqueness of the equilibrium price system p∗ follows
by the fact that (4.38) is implied by (4.41) since by definition 0 < $k < 1
for all k ≤ l. As in the proof of Proposition 4.53, the idea is to show that
the mapping κ : Rl

++ → R defined by

p 7→ κ(p) := p∗ · Z(p)

is uniquely minimized at p∗ up to scalar multiples, where κ(p∗) = 0. The
main difference of this proof and the proof of Proposition 4.53 is that total
market excess demand Z satisfies the gross substitute property on G (v, $)
but not necessarily on the whole Rl

++. Thus, we have to generalize Corollary
4.54 in that p∗ · Z(p) > 0 not only for p ∈ G (v, $) but for all p ∈ Rl

++.
For a formal proof we refer to [Grandmont, 92], pp. 35,36.

This completes our analysis of market demand for Grandmont type dis-
tribution economies.



Chapter 5

Economies with Gaussian
Interaction

5.1 Introduction

In section 4.2 it is shown that market demand satisfies strong structural
properties when individual demand is sufficiently dispersed. However, the
distribution of demand is a primitive of that model. In this chapter we
introduce a model where the distribution of demand is not given exogenously
by the modeler but is generated endogenously by virtue of a local interaction
structure. The basic idea is to generalize Föllmer’s Ising economy with
respect to the spin space: Whereas Föllmer has assumed E = {−1,+1},
representing exclusive preferences in a two-commodity exchange economy,
we come up with a model where the spin space E represents the space of all
demand-income pairs. The main point of this chapter is to generalize the
local interaction structure in the Ising model to some potential that takes
account of an unbounded spin space.

We now have to be very specific in distinguishing the different economic
concepts introduced in Chapter 3: Grandmont’s model is given by a dis-
tribution economy, i.e. a probability distribution on E. In this chapter
we consider a random economy, i.e. a family (σs)s∈S of random agents or
random variables on some underlying probability space (Ω,F , P ), each of
which assumes values in E. In this sense the random economy is given by a
probability measure µ on ES. However, as seen in Section 3.5, in context of
locally interacting agents, this turns out to be a macroeconomic concept.

When using a Gibbsian approach to model local interactions, the pri-
mitives of the model turn out to be

• a graph S, where each site of S represents an agent and edges are used
to define the microscopic interaction structure;

• a spin space Es of individual states for every agent s ∈ S and a ten-

105



106 CHAPTER 5. ECONOMIES WITH GAUSSIAN INTERACTION

dency for every agent to exhibit some spin given the agent does not
interact;1

• a microscopic interaction structure given by a specification, in turn
generated by a potential as in Definition 2.12.

As in the Ising economy we assume S to be the d-dimensional integer lattice
Zd, d ≥ 1. The choice of the spin space E = {−1,+1} is a major objection
to the Ising economy. A spin space that consists of just two elements only
admits two different individual states. When assuming the consumption
set to be equal to Rl

+ and agents to be specified by demand-income pairs,
this assumptions cannot be maintained as the set of preferences or demand
functions is uncountably infinite: We have stated that any equivalence class
of α-transforms for a given demand-income-pair can be identified with Rl. In
the new model that we refer to as unbounded spin Ising economy2, we assume
an underlying type, or more concretely a demand-income-pair, and then the
spin space for every agent is given by the space of all α-transforms: E = Rl,
where l denotes the number of distinct goods available. The underlying
type may be thought of as some sort of consensus within society. However,
we will argue that this assumption is not an improper restriction. In this
model, we do not want an agent to exhibit some a priori tendency for a
specific demand function, i.e. for some specific α ∈ Rl. Thus, we choose the
Lebesgue measure as reference or a priori measure.

The last crucial primitive of the model is the local interaction structure.
In Föllmer’s Ising economy this structure was generated by the Ising poten-
tial taking account of preference for conformity. The objects of study were
the pure states. By the same token, the interaction structure in the new
model will be given by an interaction potential, too. Since we have changed
the spin space drastically from a model exhibiting two spins to a model with
unbounded and uncountably infinite spin space, we have to consider a more
general interaction structure. In a first step, we consider so called Gaussian
potentials generating Gaussian specifications with state space R. More pre-
cisely, we consider the potential that is assumed for the harmonic oscillator.
Then we take the product specification as introduced in Proposition 2.7 with
spin space E = Rl. In this sense, the unbounded spin Ising economy that
we consider is a “product” of harmonic oscillators.

We have chosen this special type of local interaction structure, that we
refer to as Gaussian interaction, for several reasons: First of all, it directly
generalizes the Ising potential used by Föllmer to state space E = Rl. A
second motivation is mathematical convenience; there are many well known
and elegant results for Gibbs states when interaction is specified by homo-
geneous Gaussian potentials.

1We assume a common spin space E and a common reference or a priori measure λ
among agents.

2The name originates from the unbounded spin Ising model in statistical mechanics.
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Justifiably so, the skeptical reader may now object that such a model is
hardly to accommodate with the “real world”. However, this objection may
be refuted by the fact that the specific Gaussian interaction potential under
consideration is equivalent to an interaction potential that accommodates
for “preference for conformity”. Thus, assuming that an agent wants to be
similar to her peers, our choice of interaction structure is warrantable.

The present chapter is divided into two main sections. The first section
states fundamental results for Gaussian specifications as the mathematical
cornerstone of the models that are introduced in the second section. These
models generalize the Ising economy with respect to spin space. The results
obtained in the first section are crucial for the analysis that is carried out
in the next chapter.

5.2 Gaussian Specifications

This section serves as a comprehensive introduction to Gaussian specifica-
tions and thus, provides a basis for further modeling and analysis of market
demand. This discussion originates in [Georgii, 88], Chapter 13.

We assume that the local interaction structure is given by a Gaussian
potential, i.e. a pair potential ΦJ,h with a quadratic part given by some
symmetric and positive definite coupling function J : S × S → R and a
linear part given by some external field h : S → R. We then consider the set
G(γJ,h) of Gibbs measures with respect to the specification γJ,h, induced by
the interaction potential ΦJ,h as in Definition 2.12. For our economic model,
we confine ourselves to homogeneous coupling functions and external field
0. Two questions are of interest:

1. Does there exist a Gibbs measure for the Gaussian potential ΦJ,h, i.e.
G(γJ,h) 6= ∅?

2. If so, do we obtain an explicit characterization of ergodic elements in
G(γJ,h) when J and h are assumed to be homogeneous?

5.2.1 Basic Definitions

The first definition recalls basic concepts from probability theory; parts
(b) to (d) are taken from [Röckner, 05]. Let (Ω,F , P ) be an underlying
probability space.

Definition 5.1. (a) ([Bauer, 74], Definition 47.7) Let µ be a probability
measure on (Rn,B(Rn)), n ∈ N. We define the Fourier transform µ̂ : Rn →
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C of µ by

µ̂(u) :=
∫

Rn

eιu·yµ(dy)

=
∫

Rn

cos (u · y)µ(dy) + ι

∫
Rn

sin (u · y)µ(dy)

for all u ∈ Rn, where ι denotes the imaginary unit.
(b) Let σ : Ω → Rn be a random variable, i.e. F/B(Rn)-measurable, and
σ(P ) := µσ := P ◦ σ−1 denote the distribution of σ with respect to P ;
particularly, µσ ∈ P(Rn,B(Rn)). We then define the characteristic function

ϕσ := µ̂σ

of σ. By the transformation formula for image measures (cf. [Bauer, 74],
Proposition 18.1), we may equivalently define the characteristic function by

ϕσ(u) =
∫

Rn

eιu·yµσ(dy) =
∫

Ω
eιu·σdP = P (eιu·σ) ,

the expectation with respect to P , for all u ∈ Rn.
(c) Let σ : Ω → Rn be a random variable. We say that σ is Gaussian
distributed (with respect) to P if there exists a real, symmetric, positive
semi-definite n× n-matrix C and some m ∈ Rn such that

ϕσ(u) = eιu·m−
1
2
u·Cu ∀u ∈ Rn.

In this case C is called the covariance and m the mean of σ. We call µσ a
Gauss measure or Gaussian (measure).
(d) Let S be an arbitrary index set. A family of R-valued random variables
(σi)i∈S on Ω is called (jointly) Gaussian if for all n ∈ N and i1, . . . , in ∈ S,
the random vector σ := (σi1 , . . . σin) : Ω → Rn is Gaussian distributed;
equivalently, if all finite dimensional marginal distributions µ(σi1

,...,σin ) =
P ◦ (σi1 , . . . , σin)−1 are Gauss measures.

Remark 5.2. The Fourier transform uniquely determines the corresponding
probability measure. Thus, a Gaussian measure is uniquely determined by
its covariance C and mean m.

Proof. [Bauer, 74], Proposition 48.4

From Chapter 2 we know that we first have to specify a parameter set
S, a state space E and a reference or a priori measure λ: We assume S to
be countably infinite. Henceforth, let E = R and E be the Borel-σ-algebra
B(R). The reference measure λ on E is assumed to be the Lebesgue measure.

As in Chapter 2 we choose the following canonical representation for
the underlying measurable space (Ω,F): Ω := ES and F := ES. Thus,
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we write (Ω,F) := (E, E)S := (RS,B(R)S). Again, a random field (σi)i∈S

as introduced in Definition 2.1 is equivalently given by some probability
measure µ ∈ P(Ω,F).

The following definition is consistent with Definition 5.1(d):

Definition 5.3. (a) ([Georgii, 88], Definition 13.1) A probability measure
µ on (E, E)S is called a Gaussian field if all finite dimensional marginal
distributions σΛ(µ) := µ ◦ σ−1

Λ , Λ ∈ S, are Gaussian. The vector m :=
(mi)i∈S := (µ(σi))i∈S, where µ(σi) :=

∫
ES σidµ, is then called the mean of

µ, and the symmetric function C : S× S → R,

C(i, j) := µ((σi −mi)(σj −mj)) = µ(σiσj)−mimj ∀i, j ∈ S,

is called the covariance function of µ. µ is said to be centered if m = 0.
(b) A specification γ as given in Definition 2.6 is called Gaussian if, for all
ω ∈ Ω and Λ ∈ S, γΛ(·|ω) is a Gaussian field.

Remark 5.4. ([Georgii, 88], p. 257) In terms of Definition 5.1 we can
restate Definition 5.3 in the following way: µ on (E, E)S is Gaussian with
mean m and covariance function C if and only if

ϕσ(u) :=
∫
ES

eι
P

i∈S uiσiµ(dω) = µ(eι
P

i∈S uiσi)

= eι
P

i∈S uimi− 1
2

P
i,j∈S uiC(i,j)uj

for all u := (ui)i∈S, ui ∈ R, such that |{i ∈ S : ui 6= 0}| < ∞. Moreover,
the symmetric covariance function C interpreted as an infinite dimensional
matrix can be shown to be positive semi-definite, i.e.∑

i,j∈S

uiC(i, j)ūj ≥ 0

for all sequences (ui)i∈S in C with |{i ∈ S : ui 6= 0}| <∞, where ūi denotes
the complex conjugate of ui.

Definition 5.5. ([Georgii, 88], pp. 260-265) (a) Let (Ω,F) be given as
above, J : S× S → R and h ∈ Ω. We set

ΩJ :=

ω ∈ Ω :
∑
j∈S

|J(i, j)ωj | <∞ for all i ∈ S

 .

If J has finite range, i.e. {j ∈ S : J(i, j) 6= 0} ∈ S for all i ∈ S, then
ΩJ = Ω.
(b) We define the potential

ΦJ,h
A :=


1
2J(i, i)σ2

i + hiσi if A = {i},
J(i, j)σiσj if A = {i, j}, i 6= j,
0 else.

(5.1)
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J is called coupling function and h external field. ΦJ,h is called a Gaussian
potential if J is symmetric and positive definite.3 Let HJ,h

Λ := HΦJ,h

Λ denote
the Hamiltonian and ZJ,hΛ the partition function with respect to ΦJ,h.4

(c) Given Λ ∈ S and J : S× S → R, we define the matrix

JΛ := (J(i, j))i,j∈Λ.

(d) For J : S× S → R and h ∈ Ω, we set

MJ,h :=

m ∈ ΩJ : hi +
∑
j∈S

J(i, j)mj = 0 for all i ∈ S

 .

We now characterize the specification γJ,h := γΦJ,h
generated by ΦJ,h

whenever J is symmetric and positive definite.

Proposition 5.6. ([Georgii, 88], Proposition 13.13 & Definition 13.18) Let
J : S × S → R be symmetric and positive definite and h ∈ Ω. Then, for
ω ∈ ΩJ , Z

J,h
Λ (ω) <∞. γJ,h, given by

γJ,hΛ (A|ω) :=

{
1

ZJ,h
Λ (ω)

λΛ(1Ae−H
J,h
Λ |ω) if ω ∈ ΩJ ,

δ0ΛωS\Λ(A) else,

for all Λ ∈ S, A ∈ F and ω ∈ Ω, defines a Gaussian specification. Here,
δ0ΛωS\Λ denotes the Dirac measure on the configuration 0ΛωS\Λ that is equal

to zero on Λ and to ω everywhere else. γJ,hΛ (·|ω) is the unique Gaussian field
with mean

mi(Λ, ω) =


−

∑
k∈Λ J −1

Λ (i, k)
(
hk +

∑
j /∈Λ J(k, j)ωj

)
if i ∈ Λ and
ω ∈ ΩJ ,

0 if i ∈ Λ and
ω /∈ ΩJ ,

ωi if i /∈ Λ,

and covariance function

CΛ(i, j) =
{

J −1
Λ (i, j) if i, j ∈ Λ and ω ∈ ΩJ ,

0 else.

3We show in Proposition 5.6 that in this case γΦJ,h

is a Gaussian specification.
4In fact, ΦJ,h is not a potential as defined in 2.11, where a potential is given by a

family of functions ΦA : Ω → R: The reason is that HJ,h
Λ (ω) may not exist for all ω ∈ Ω.

Nevertheless, the Hamiltonian exists for all ω ∈ ΩJ . Thus, ΦJ,h is a potential as in
Definition 2.11 if J exhibits finite range. In general, we have to generate a specification

in a slightly different way than in Definition 2.12: We obtain γΦJ,h

Λ (A|ω) as in Definition
2.12 if ω ∈ ΩJ and thus the partition function and the Hamiltonian are well-defined;
for ω /∈ ΩJ , we just assume some distribution. However, the procedure can be seen in
Proposition 5.6.
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Proof. By definition of γJ,h, µ(ΩJ) = 1 for all µ ∈ G(γJ,h). In [Georgii, 88],
p. 265, there is an outline for proving that γJ,h is indeed a specification
The Gaussian property and the explicit form of mean and covariance when
ω ∈ ΩJ is shown in the proof of [Georgii, 88], Proposition 13.13. For ω /∈ ΩJ ,
the assertion is immediate by definition of γ as a specific Dirac measure.

Assumption 5.7. Henceforth, if we consider a Gaussian specification, we
always refer to a specification γJ,h as defined in the foregoing proposition
with symmetric and positive definite coupling function J .

When considering the terms in Proposition 5.6, one should always be
aware of the formal definitions as introduced in Chapter 2. To recall: For
Λ ⊂ S let λΛ denote the Lebesgue measure on (E, E)Λ, i.e. the |Λ|-fold
product of the Lebesgue measure on (E, E). In equation (2.1), λΛ(A|ω) is
defined as

λΛ(A|ω) := λΛ(1A|ω) := λΛ × δωS\Λ(A)

=
∫

Ω
1A(λΛ ⊗ δωS\Λ)(dω)

=
∫
EΛ

1A(ξωS\Λ)λΛ(dξ)

for Λ ∈ S, A ∈ F , ω ∈ Ω, ξ ∈ ΩΛ := EΛ, where δωS\Λ denotes the Dirac
measure on (E, E)S\Λ with mass on ωS\Λ. ωΛ : Ω 3 ω 7→ (ωi)i∈Λ is the
projection mapping on EΛ. Thus, we obtain

λΛ(1Ae−H
J,h
Λ |ω) =

∫
EΛ

1A(ξωS\Λ)e−H
J,h
Λ (ξωS\Λ)λΛ(dξ).

And thus, Proposition 5.6 and Definition 2.12 are consistent.
Let δm denote the Dirac measure with mass in m ∈ Ω. Since∫

Ω
eι
P

i∈S uiσi(ω)δm(dω) = eι
P

i∈S uimi ,

we say that δm is Gaussian with mean m and covariance 0.

5.2.2 Characterization of Gibbs States

The following proposition provides us with a characterization of Gaussian
Gibbs measures in terms of mean m and “inverse” J of covariance C.

Proposition 5.8. ([Georgii, 88], Theorem 13.22) Let µ be a Gaussian field
with mean m and covariance function C. Also, let h ∈ Ω and J : S×S → R
be a positive definite symmetric function. Then the following conditions are
equivalent.



112 CHAPTER 5. ECONOMIES WITH GAUSSIAN INTERACTION

1. µ ∈ G(γJ,h),

2. µ(ΩJ) = 1, m ∈ MJ,h and∑
j∈S

J(i, j)C(j, k) = δik for all i, k ∈ S.

Proof. [Georgii, 88], pp. 266,267

We now tackle the problem of characterizing the set of Gibbs measures
G(γJ,h) for the Gaussian specification γJ,h, J symmetric and positive defi-
nite. Since E is a linear space, the following notion analogous to the spin
flip in the Ising model is well defined. Recall: In the Ising model, spin flip
is the broken symmetry.

Definition 5.9. Given m ∈ Ω we define the spin translation T 3 τm : Ω →
Ω by m as follows:

τmω := ω +m := (ωi +mi)i∈S

for all ω ∈ Ω.

Remark 5.10. Let µ ∈ P((E, E)S) be Gaussian with mean m̃ and covari-
ance C. Consider the transformation τm. Then τm(µ) := µ ◦ (τm)−1 =
µ ◦ τ−m is Gaussian with mean m̃+m and covariance C.

Proof. By Remark 5.4 we have that µ is Gaussian with mean m̃ and covari-
ance C if and only if

µ
(
eι
P

i∈S uiσi

)
=
∫
eι
P

i∈S uiσidµ = eι
P

i∈S uim̃i− 1
2

P
i,j∈S uiC(i,j)uj

for all u ∈ RS, such that |{i ∈ S : ui 6= 0}| <∞. Applying the transforma-
tion formula for image measures, we obtain

τm(µ)
(
eι
P

i∈S uiσi

)
=

∫
eι
P

i∈S uiσid(τm(µ))

=
∫
eι
P

i∈S ui

=mi+σi(ω)︷ ︸︸ ︷
(σi ◦ τm)(ω)µ(dω)

=
∫
eι
P

i∈S uimi+ι
P

i∈S uiσidµ

= eι
P

i∈S ui(m̃i+mi)− 1
2

P
i,j∈S uiC(i,j)uj .

The proof of the following remark is an elaborate version of that in
[Georgii, 88].
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Remark 5.11. ([Georgii, 88], Remark 13.23) Let J : S × S → R be sym-
metric and positive definite. Let h, h̃ ∈ Ω.
(a) If m ∈ MJ,h, we have

γJ,h+h̃Λ (·|τmω) = τm(γJ,h̃Λ (·|ω)) ∀Λ ∈ S, ω ∈ ΩJ .

(b) For each m ∈ MJ,h, we have

G(γJ,h) = {τm(µ) : µ ∈ G(γJ,0)}.

(c) G(γJ,h) is invariant under τm, m ∈ MJ,0. In this case, τm is a symmetry
of γJ,h.
(d) If MJ,0 contains an element m 6= 0, then either G(γJ,h) = ∅ or exG(γJ,h)
is uncountably infinite.

Proof. (a) From Proposition 5.6 we infer that γJ,h+h̃Λ (·|τmω) and γJ,h̃Λ (·|ω)

are Gaussian fields. Thus, τm(γJ,h̃Λ (·|ω)) is a Gaussian field by Remark 5.10.
In light of Remark 5.2, it suffices to show that the left and the right hand
side of the assertion have the same mean and covariance. Proposition 5.6
and Remark 5.10 imply the covariances to be identical. The explicit form
of the mean in Proposition 5.6 shows consilience of means.
(b) “⊃” Let µ ∈ G(γJ,0) and m ∈ MJ,h. Then Remark 2.33 and part (a)
imply

τm(µ) ∈ G(τm(γJ,0))
(a)
= G(γJ,h).

“⊂” Let µh ∈ G(γJ,h) and m ∈ MJ,h. We then have to find µ0 ∈ G(γJ,0)
such that τm(µ0) = µh. But again,

µh ∈ G(γJ,h) :⇔ µhγJ,hΛ = µh ∀Λ ∈ S.

As in the proof of Remark 2.33, this yields

τ−m(µh)τ−m(γJ,hΛ ) = τ−m(µh) ∀Λ ∈ S.

By part (a), we have τ−m(γJ,h) = γJ,0 and we set µ0 := τ−m(µh). We then
have µ0 = τ−m(µh) ∈ GγJ,0.
(c) Let m ∈ MJ,0. In this case, part (a) yields

τm(γJ,h) = γJ,h,

i.e. τm is a symmetry of γJ,h:

γJ,0+h̃
Λ (·|τmω) = γJ,h̃Λ (·|τmω)

(a)
= τm(γJ,h̃Λ (·|ω)).

By Definition 2.30(b), τm is a symmetry; Remark 2.33 yields the assertion.
(d) Note that MJ,0 is a linear subspace of Ω.5 Let us now assume there

5Having a look at the definition of MJ,0, we see that 0 ∈ MJ,0, and, for m1,m2 ∈ MJ,0,
k ∈ R, we have (m1 +m2) ∈ MJ,0 and km1 ∈ MJ,0.
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exists 0 6= m ∈ MJ,0. Then MJ,0 is uncountable. We have already shown
that in this case τm(γJ,h) = γJ,h, that is γJ,h exhibits the symmetries τm,
m ∈ MJ,0. Since MJ,0 is uncountable, the set of symmetries is uncountable
(and thus G(γJ,h) has to be uncountable whenever G(γJ,h) 6= ∅ by Remark
2.33). Let now G(γJ,h) 6= ∅. By Proposition 2.40 we have exG(γJ,h) 6= ∅.
Remark 2.38 yields that exG(γJ,h) is uncountable: Let µ ∈ exG(γJ,h), then
{τm(µ) : m ∈ MJ,0} ⊂ exG(γJ,h) is already uncountable.

The next definition is needed for the main result in this section stating
that µ ∈ G(γJ,h) if and only if µ is a random translation of some Gaussian
field µC .

Definition 5.12. ([Georgii, 88], p. 268) Let µ1, µ2 ∈ P(Ω,F). We define
the convolution µ1 ∗ µ2 by

µ1 ∗ µ2(f) :=
∫ ∫

f(ξ + η)µ1(dξ)µ2(dη)

for all bounded measurable functions f , where ξ + η := (ξi + ηi)i∈S ∈ Ω.

Remark 5.13. Given a random field µ ∈ P(Ω,F). Let δm denote the Dirac
measure with mass in m ∈ Ω. Then µ ∗ δm = τm(µ).

Proof. Let f be a bounded measurable function. Then

µ ∗ δm(f) =
∫ [∫

f(ξ + η)µ(dξ)
]
δm(dη)

=
∫
f(ξ +m)µ(dξ)

=
∫

(f ◦ τm)(ξ)µ(dξ)

=
∫
f(ξ)[τm(µ)](dξ)

= τm(µ)(f).

Remark 5.14. Given random fields µ, ν ∈ P(Ω,F). Let δm denote the
Dirac measure with mass in m ∈ Ω. Then

µ ∗ ν =
∫

Ω
τm(µ)ν(dm) 5.13=

∫
Ω
(µ ∗ δm)ν(dm).

Thus, µ ∗ ν is a random translation of µ when randomness is ruled by ν.
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Proof. Let f be a bounded measurable function. Then

µ ∗ ν(f) =
∫ [∫

f(ξ + η)µ(dξ)
]
ν(dη)

=
∫ [∫

(f ◦ τη)(ξ)µ(dξ)
]
ν(dη)

=
∫ [∫

fd(τη(µ))
]
ν(dη)

=
∫
τη(µ)(f)ν(dη)

5.13=
∫

(µ ∗ δη)(f)ν(dη)

The following proposition gives us a characterization for Gibbs states
with respect to Gaussian specifications. We elaborately state the proof here.
Particularly, the proof of the second part exhibits a good intuition for the
set of Gibbs states.

Proposition 5.15. ([Georgii, 88], Theorem 13.24) Let J : S × S → R be
symmetric and positive definite and let h ∈ Ω. Suppose that G(γJ,h) 6= ∅.
Then the limits

C(i, j) := lim
Λ∈S

J −1
Λ (i, j) (5.2)

exist for all i, j ∈ S. A random field µ belongs to exG(γJ,h) if and only if µ
is a Gaussian field with covariance C and mean m ∈ MJ,h. Hence,

G(γJ,h) = {µC ∗ ν : ν ∈ P(Ω,F), ν(MJ,h) = 1}, (5.3)

where µC is the unique centered Gaussian field with covariance function C.

Proof. Proposition 2.40 ensures exG(γJ,h) 6= ∅. Let µ ∈ exG(γJ,h) and
(Λn)n≥1 ⊂ S be increasing and cofinal in S, i.e. for each ∆ ∈ S there exists
n0 with Λn ⊃ ∆ for all n ≥ n0. Theorem 7.12 in [Georgii, 88] implies that
there exists an ω ∈ ΩJ such that the Gaussian field γJ,hΛn

(·|ω) converges to µ
locally as n→∞. Propositions 5.6 and 5.16 below imply that µ is Gaussian
with mean m and covariance C(i, j) = limΛ∈S J −1

Λ (i, j) ∀i, j ∈ S. In
particular, this limit exists. By Proposition 5.8 we obtain m ∈ MJ,h.

To keep track of the results obtained so far: µ ∈ exG(γJ,h) is Gaussian
with mean m ∈ MJ,h and covariance C given by equation (5.2).

Let µC be the centered Gaussian field with this covariance C. Remark
5.13 implies µC ∗ δm = τm(µC). By Remark 5.10 we obtain µC ∗ δm to
be a Gaussian field with mean m and covariance C. Thus, for µ as above,
µ = µC ∗ δm by Remark 5.2.
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So far, we have shown ∅ 6= exG(γJ,h) ⊂ {µC ∗ δm : m ∈ MJ,h}, i.e. for
each µ ∈ exG(γJ,h) we can find m ∈ MJ,h such that µ = τm(µC). Thus, we
have contrariwise µC = τ−m(µ). Remark 2.38 then implies

µC ∈ exG(τ−m(γJ,h)) = exG(γJ,0),

where the equality of sets follows from Remark 5.11(b):

exG(γJ,h) = ex{τm(µ) : µ ∈ G(γJ,0)}
⇔ exG(τ−m(γJ,h)) = ex{µ : µ ∈ G(γJ,0)} = exG(γJ,0)

And again by Remarks 2.38 and 5.11(b), we have

µC ∗ δm = τm(µC) ∈ exG(τm(γJ,0)) = exG(γJ,h) ∀m ∈ MJ,h.

Thus, we have {µC ∗ δm : m ∈ MJ,h} ⊂ exG(γJ,h).
Hence, we have shown

exG(γJ,h) = {µC ∗ δm : m ∈ MJ,h}

with µC the unique centered Gaussian field with covariance C.
Having characterized the extreme Gibbs states for γJ,h explicitly, we may

now use Proposition 2.40 to obtain the set of Gibbs measures:

G(γJ,h) =

{∫
exG(γJ,h)

νψ(dν) : ψ ∈ P(exG(γJ,h),V (exG(γ)))

}
Note5.17=

{∫
Ω
(µC ∗ δm)ν(dm) : ν ∈ P(Ω,F), ν(MJ,h) = 1

}
5.14= {µC ∗ ν : ν ∈ P(Ω,F), ν(MJ,h) = 1}.

The notation “
∫
τm(µC)ν(dm)” for “µC∗ν” exhibits a precious intuition:

We see that a measure µ is Gibbsian if and only if it is a random translation
of µC . In the foregoing proof we have used the following result:

Proposition 5.16. ([Georgii, 88], Proposition 13.A5) Let (U (k))k≥1 be a
sequence of Rn-valued Gaussian random vectors U (k) with mean m(k) and
covariance C(k). Suppose U (k) converges in distribution to a random vector
U . Then the limits m := limk→∞m(k) and C := limk→∞C

(k) exist, and U
is Gaussian with mean m and covariance C.

Proof. [Georgii, 88], p. 285
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Note 5.17. Considering µC ∗ ν ∈ exG(γJ,h), Remark 5.14 and the explicit
characterization of exG(γJ,h) allow us to identify ν with the probability dis-
tribution ψ on exG(γJ,h) that represents µC ∗ ν in Proposition 2.40:∫

exG(γJ,h)
ηψ(dη) 2.40= µC ∗ ν

5.14=
∫
MJ,h

(µC ∗ δm)ν(dm)

Assuming G(γJ,h) 6= ∅, Proposition 5.15 provides us with a complete
description of exG(γJ,h). Thus, we have to find conditions ensuring the ex-
istence of Gibbs measures. In [Georgii, 88], p. 269, the following conditions
are given. We state a proof here.

Proposition 5.18. Let J : S × S → R be symmetric and positive definite.
G(γJ,h) 6= ∅ if and only if MJ,h 6= ∅ and J has inverse C given by equation
(5.2) such that µC(ΩJ) = 1.

Proof. “⇒” This implication follows directly from Proposition 5.15 since
µC(ΩJ) = 1 by Proposition 5.8 as µC ∈ G(γJ,h).
“⇐” Since 0 ∈ MJ,0, µC(ΩJ) = 1 and J has inverse C, Proposition 5.8
implies µC ∈ G(γJ,0). Let now m ∈ MJ,h, then by Remark 5.11(b), we
obtain

G(γJ,h) = {τm(µ) : µ ∈ G(γJ,0)} 3 τm(µC).

If J has finite range, we have ΩJ = Ω and thus µC(ΩJ) = 1. In this
case, Proposition 5.18 reduces to

G(γJ,h) 6= ∅ ⇔ MJ,h 6= ∅ ∧ the limit (5.2) exists.

The next proposition improves condition (5.2) in case of finite range.
Later, we are only interested in a coupling function that exhibits finite range.

Proposition 5.19. ([Georgii, 88], Theorem 13.26) Let h ∈ Ω and J : S ×
S → R be a positive definite symmetric function such that {j ∈ S : J(i, j) 6=
0} ∈ S for all i ∈ S. Then G(γJ,h) 6= ∅ if and only if MJ,h 6= ∅ and

sup
Λ∈S

J −1
Λ (i, i) <∞ ∀i ∈ S. (5.4)

Proof. [Georgii, 88], pp. 269,270

The following example is a generalization of the Ising ferromagnet in
Section 2.7. This is explicitly shown in Example 5.33.

Example 5.20 (The harmonic oscillator). ([Georgii, 88], Example 13.29)
Let d ≥ 1, S = Zd, β > 0 and define the coupling function

J(i, j) =

 − β
2d if |i− j| = 1,
β if i = j,
0 else.
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For all h ∈ Ω we obtain that G(γJ,h) = ∅ if d ≤ 2 and G(γJ,h) 6= ∅ if d ≥ 3.
Thus, whenever d ≥ 3, we may apply the characterization of Gibbs states
in Proposition 5.15. For t ∈ R define the constant configuration mt ∈ Ω
by mt

i = t for all i ∈ S. MJ,0 contains all constant configurations and thus
γJ,h exhibits the (spin translation) symmetry τm

t
: ω 7→ (ωi + t)i∈S, t ∈ R.

Moreover, we have MJ,h 6= ∅ for all h and hence, whenever d ≥ 3, γJ,h

exhibits breakdown of the symmetry τm
t
, t ∈ R \ {0}.

Proof. J is symmetric, i.e. J(i, j) = J(j, i) for all i, j ∈ S, exhibits finite
range and satisfies

1. J(i, j) ≤ 0 ∀i 6= j and

2.
∑

j∈S J(i, j) ≥ 0 ∀i

Thus, we may follow that J is positive definite: Let (ui)i∈N be a sequence
in C such that |{i ∈ S : ui 6= 0}| <∞. Then∑

i,j∈S

uiJ(i, j)ūj
2
≥ −1

2

∑
i6=j

J(i, j)|ui − uj |2
1
≥ 0.

The term on the right hand side equals 0 if and only if ui = uj whenever
|i − j| = 1, i.e. J(i, j) < 0. By definition of J , this can only be the case if
ui = uj for all i 6= j ∈ S. Since we assumed {i ∈ S : ui 6= 0} to be finite,
this can only be the case if ui = 0 for all i ∈ S.

We now define a stochastic matrix Q := (Q(i, j))i,j∈S̄, where S̄ := S ∪
{∞}, by

Q(i, j) =


− J(i,j)

J(i,i) if i 6= j ∈ S,∑
j∈S

J(i,j)
J(i,i) if i ∈ S, j = ∞,

1 if i = j = ∞,
0 else.

Now let (Xi
n)n∈N be the symmetric random walk on S̄ with transition matrix

Q and starting point i. Let Pi denote the underlying probability measure,
i.e. Pi ◦ (X0, . . . Xn)−1 := δi ⊗Q ⊗ . . . ⊗Q for all n ∈ N. For Λ ∈ S define
τΛ, the time of first exit from Λ, by

τΛ := min {n ∈ N : Xn ∈ S̄ \ Λ}.

The following equivalence holds:

sup
Λ∈S

J −1
Λ (i, i) <∞ ∀i ∈ S ⇔ ∀i ∈ S i is transient for Q,

(5.5)
i.e. ∑

n≥0

Qn(i, i) = Pi

∑
n≥0

1{Xn=i}

 <∞ ∀i ∈ S :
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For all i, j ∈ Λ ∈ S, we have

J −1
Λ (i, j) =

Pi(
∑τΛ−1

n=0 1{Xn=j})
J(j, j)

. (5.6)

Equation (5.6) will not be shown here. An outline of the proof can be found
in [Georgii, 88], p. 271. Applying this representation for J −1

Λ to condition
(5.4), we obtain the equivalent condition

sup
Λ∈S

Pi

(
τΛ−1∑
n=0

1{Xn=i}

)
<∞ ∀i ∈ S. (5.7)

By definition of τΛ, equivalence (5.5) follows since

sup
Λ∈S

Pi

(
τΛ−1∑
n=0

1{Xn=i}

)
= Pi

∑
n≥0

1{Xn=i}

 .

By Theorem 5.19 this yields:

G(γJ,h) 6= ∅ ⇔ MJ,h 6= ∅ ∧ ∀i ∈ S, i is transient for Q.

As it is well known (e.g. in [Röckner, 05], Example 7.7.4), every i ∈ Zd is
recurrent for Q if and only if d ≤ 2 and transient if and only if d ≥ 3. Thus
it follows G(γJ,h) = ∅ if and only if d ≤ 2. G(γJ,h) 6= ∅ whenever MJ,h 6= ∅
and d ≥ 3. Proposition 5.15 yields that MJ,h and exG(γJ,h) are isomorphic
in this case.

Since J exhibits finite range we have ΩJ = Ω. If m ∈ Ω is constant,
i.e. mi = mj for all i, j ∈ S, we have

∑
j∈S J(i, j)mj = mi

∑
j∈S J(i, j) = 0

for all i ∈ S. Consequently, we obtain that MJ,0 contains all constant
configurations.

By Remark 5.11(c), τm, m ∈ MJ,0, is a symmetry for γJ,h. Thus, τm
t

defined by ω 7→ τm
t
(ω) := (ωi + t)i∈S, t ∈ R, is a symmetry for γJ,h.

Obviously, MJ,h 6= ∅ for all h ∈ Ω. Moreover, since MJ,h = m + MJ,0

for m ∈ MJ,h, we see that MJ,h is uncountable. Thus, by Proposition
5.15 a Gaussian field µ with covariance C and mean m ∈ MJ,h belongs to
exG(γJ,h) ⊂ G(γJ,h) if d ≥ 3. We have seen that τm

t
is a symmetry for

γJ,h since mt ∈ MJ,0. Let µ ∈ exG(γJ,h), then µ is Gaussian with mean
m ∈ MJ,h and covariance C. By Remark 5.10, τm

t
(µ) is Gaussian with

mean (mi + t)i∈S 6= m for t 6= 0. Thus, τm
t
(µ) 6= µ for t 6= 0 by Remark

5.2 and hence, τm
t

is not a symmetry for µ ∈ exG(γJ,h): γJ,h exhibits
uncountably many symmetry breakdowns.

Remark 5.21. In the setting of Example 5.20, equations (5.6) and (5.2)
show that the covariance function C is given by

C(i, j) =

∑
n≥0Q

n(i, j)
J(j, j)

∀i, j ∈ S.
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The coupling functions discussed in the next section are designed for
tackling the existence problem when J may exhibit infinite range. We have
seen that the harmonic oscillator, that constitutes the corner stone of our
economic model, exhibits finite range. Nevertheless, coupling in the har-
monic oscillator is homogeneous and thus, the next section may generate
some more insights in the structure of Gibbs states for the harmonic oscil-
lator. In particular, we characterize homogeneous extreme Gibbs states.

5.2.3 Homogeneous Coupling Functions

For the rest of this section assume S = Zd, d ≥ 1, and J and h being
homogeneous in the sense given below. Recall from Example 2.28 that
θj , j ∈ S, denotes the (lattice) shift or (lattice) translation. Moreover,
homogeneity of a specification was introduced in Example 2.31.

Definition 5.22. ([Georgii, 88], p. 273) Coupling function J : S × S → R
and external field h ∈ Ω are called homogeneous if there exists an even
function J̃ : S → R, i.e. J̃(s) = J̃(−s) for all s ∈ S, and h̃ ∈ R such that

J(i, j) = J̃(i− j) and hj = h̃ ∀i, j ∈ S.

Note that the coupling function J as defined in 5.20 is homogeneous.

Remark 5.23. ([Georgii, 88], p. 273) Let J : S×S → R be symmetric and
positive definite, h ∈ Ω. A Gaussian specification γJ,h is homogeneous if
and only if J and h are homogeneous.

Proof. Since a Gaussian field is uniquely determined by mean and covari-
ance, we have to assure that the means and covariances of γΛ+j(θjA|θjω)
and γΛ(A|ω) coincide. Applying the explicit characterization of mean and
covariance in Proposition 5.6 to Example 2.31 yields the assertion.

Given an even function J̃ : S → R and h̃ ∈ R we can determine the
corresponding homogeneous coupling function J and external field h. Thus,
we call J̃ positive definite, whenever the corresponding J is positive definite.
By definition, a homogeneous function is symmetric. The notions ΩJ̃ , MJ̃ ,h̃

and γJ̃ ,h̃ are well defined for J̃ and h̃ as they are for J and h.
We have assumed J and h to be homogeneous. Thus, we may identify J

with its corresponding J̃ and h with its corresponding h̃. By this token and
following [Georgii, 88], we henceforth denote J̃ by J and h̃ by h.

We want to achieve a result similar to Proposition 5.15 when γJ,h is a
homogeneous Gaussian specification. In particular, we want to characterize
the elements in GΘ(γJ,h). We would like to obtain a characterization of
exGΘ(γJ,h), the set of all pure states. However, we obtain all homogeneous
extreme Gibbs states. Since homogeneous extreme distributions are also
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extreme homogeneous, we obtain the set of all pure states (ergodic Gibbs
states) that are phases (extreme Gibbs states). Thus, we obtain

exG(γJ,h) ∩ GΘ(γJ,h) ⊂ exGΘγ
J,h.

However, extreme homogeneous Gibbs states (pure states) do not necessarily
have to be homogeneous extreme Gibbs states (homogeneous phases). Thus,
we do not necessarily obtain the set of all pure states.

The results in this section rely on Fourier analysis. Thus we need some
further notation. However, we do not go much into detail. Let now K =
{z ∈ C : |z| = 1}. Then, set G = Kd.

Definition 5.24. ([Georgii, 88], p. 274) Let J : S → R be such that∑
i∈S

|J(i)| <∞. (5.8)

The Fourier transform Ĵ : G → C of J is given by

Ĵ(z) :=
∑
i∈S

ziJ(i)

for all z ∈ G, where zi := (zi11 , . . . , z
id
d ) for i = (i1, . . . , id) ∈ S and z =

(z1, . . . , zd) ∈ G.

Remark 5.25. ([Georgii, 88], p. 274) Let J be even. Then J is positive
definite if and only if Ĵ ≥ 0 and there exists z ∈ G such that Ĵ(z) 6= 0.

We can now turn to the main result in this section. It provides a nec-
essary and sufficient condition for existence of Gibbs measures. However,
our main interest is in the explicit characterization of homogeneous Gibbs
states.

Proposition 5.26. ([Georgii, 88], Theorem 13.36) Let S = Zd, h ∈ R and
J : S → R be a positive definite even function satisfying

∑
i∈S |J(i)| < ∞.

Then G(γJ,h) 6= 0 if and only if MJ,h 6= 0 and∫
G
Ĵ(z)−1dz <∞,

where dz denotes the image measure on G of the normalized Lebesgue mea-
sure λ̃ on ]− 1,+1]d with respect to the mapping

]− 1,+1] 3 p = (p1, . . . , pd) 7→ zp := (eιπp1 , . . . , eιπpd) ∈ G,

i.e. dz = zp(λ̃)(dp). In this case we have

G(γJ,h) = {µC ∗ ν : ν ∈ P(Ω,F), ν(MJ,h) = 1}
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as in Proposition 5.15 and

GΘ(γJ,h) = {µC ∗ ν : ν ∈ PΘ(Ω,F), ν(MJ,h) = 1},

where µC denotes the unique centered Gauss field with covariance function

C(i, j) =
∫
G
zj−iĴ(z)−1dz ∀i, j ∈ S.

Proof. [Georgii, 88], pp. 275,276, shows that G(γJ,h) 6= ∅. The characteri-
zation of Gibbs states then follows as in Proposition 5.15.

The characterization of GΘ(γJ,h) is shown immediately: µC ∗ν ∈ G(γJ,h)
is homogeneous if and only if ν ∈ PΘ(Ω,F). This equivalence directly
follows from Corollary 2.41 and Note 5.17.

Remark 5.27. ([Georgii, 88], Remark 13.39) Let h ∈ R and J : S → R
be a positive definite even function exhibiting finite range. Then MJ,h 6= ∅.
Assuming there exists i 6= 0 such that J(i) 6= 0, then MJ,h is uncountable.

Proof. [Georgii, 88], pp. 276,277

We now proof a remark given in [Georgii, 88].

Remark 5.28. ([Georgii, 88], p. 277) Let J : S → R be even, positive
definite and exhibit finite range. Then we have three distinct cases:

1. G(γJ,h) = ∅,

2. |G(γJ,h)| = 1,

3. exG(γJ,h) is uncountable.

Proof. Remark 5.27 shows MJ,h 6= ∅. By Theorem 5.26, the first case occurs
whenever Ĵ−1 is not integrable, i.e.

∫
G Ĵ(z)−1dz = ∞.

Second, assume MJ,h to be countable. Then, by Remark 5.27, J(i) = 0
for all i 6= 0, i.e. there is no interaction. Since MJ,h = m + MJ,0 for
each m ∈ MJ,h, MJ,0 is countable, and thus, as a linear subspace of Ω,
we obtain MJ,0 = {0}. From the proof of Proposition 5.15, we infer that
|exG(γJ,0)| = 1 and hence |G(γJ,0)| = 1. Remark 5.11(b) yields |G(γJ,h)| = 1.

The last case occurs whenever J is non-trivial, i.e. there actually exists
interaction among agents, and Ĵ−1 is integrable. Remark 5.27 shows that
MJ,h is uncountable in this case. But then, since G(γJ,h) 6= ∅, we obtain
exG(γJ,h) to be uncountable by Remark 5.11(d).

As in the Ising economy in Section 3.5, we set h = 0. The following three
remarks that can be found within the lines of [Georgii, 88], p 278, motivate
this assumption of a vanishing external field.
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Remark 5.29. Let h 6= 0 and Ĵ(1) = 0. Then MJ,h does not contain any
constant element.

Proof. Assume there exists m ∈ MJ,h and c ∈ R such that mi = c for all
i ∈ S. Then for all i ∈ S

0 = hi +
∑
j∈S

J(i− j)mj

= hi + c
∑
k∈S

J(k)︸ ︷︷ ︸
=Ĵ(1)=0

.

Thus, hi = 0 for all i ∈ S. This contradicts h 6= 0.

Remark 5.30. Let h 6= 0 and Ĵ(1) = 0. In this case, there does not exist
any µ ∈ GΘ(γJ,h) such that µ(|σ0|) <∞.

Proof. Taking into account the result of Remark 5.29, Georgii refers to the
proof of Proposition 5.8, [Georgii, 88], pp. 266,267.

Remark 5.31. Coupling J of the harmonic oscillator satisfies Ĵ(1) = 0:

Ĵ(z) =
∑
i∈S

ziJ(i)

∣∣∣∣∣
z=1

=
∑
i∈S

J(i) = β − 2d
β

2d
= 0.

Thus, when considering the harmonic oscillator, in light of Remarks 5.29
and 5.30, it makes sense to confine ourselves to h = 0.

Roots of Ĵ on GΘ(γJ,h) exhibit even stronger consequences when h = 0:

Corollary 5.32 (of Proposition 5.26). ([Georgii, 88], Corollary 13.40) Let
J : S → R be even, positive definite and absolutely summable in the sense
of equation (5.8). If Ĵ−1 is integrable and there exists some z ∈ G such
that Ĵ(z) = 0, then exGΘ(γJ,0) contains uncountably many Gibbs measures
with finite second moment, i.e. µ(σ2

i ) < ∞ for all i ∈ S. Conversely, if Ĵ
has no root in G then µC is the only element of GΘ(γJ,0) with finite second
moment.

Proof. [Georgii, 88], pp. 278,279

We again consider the harmonic oscillator but restate the homogeneous
coupling function J in terms of the corresponding even function J̃ , denoted
by J , too. We have already motivated to assume h = 0.

Example 5.33. ([Georgii, 88], pp. 281,282) Let S = Zd, d ≥ 1, β > 0 and

J(i) =

 − β
2d if |i| = 1,
β if i = 0,
0 else.



124 CHAPTER 5. ECONOMIES WITH GAUSSIAN INTERACTION

We have already mentioned that the harmonic oscillator can be seen as
a generalization of the Ising ferromagnet: By Proposition 5.6 we can show
that γJ,0Λ = ρΛλΛ, where

ρΛ(ω) = ZJ,0Λ (ω)−1 exp

− β

4d

∑
{i,j}∩Λ6=∅
|i−j|=1

(ωi − ωj)2



for all Λ ∈ S and ω ∈ Ω = ΩJ : Using Proposition 5.6 we obtain for A ∈ F

∫
A
ρΛ(x)λΛ(dx|ω)

(2.2)
= ρΛλΛ(A|ω)

= γJ,0Λ (A|ω)
5.6= ZJ,0Λ (ω)−1λΛ(1Ae−H

J,0
Λ |ω)

= ZJ,0Λ (ω)−1

∫
ΩΛ

1A(x)e−H
J,0
Λ (x)λΛ(dx|ω)

= ZJ,0Λ (ω)−1

∫
A
e−H

J,0
Λ (x)λΛ(dx|ω).

Thus,

ρΛ(x) = ZJ,0Λ (ω)−1e−H
J,0
Λ (x).

Moreover, we have

ΦJ,0
A (ω) =


1
2βω

2
i if A = {i},

− 1
2dβωiωj if A = {i, j}, |i− j| = 1,
0 else.

by equation (5.1) and the assumption of a vanishing external field, i.e. h =
0. For E = {−1,+1}, this potential is equivalent to the Ising potential
given for the Ising ferromagnet in Section 2.7: On first view, the main
difference is that the potential for the Ising ferromagnet was given just by
a two-body-potential and here, we also have a self-potential. Moreover, we
have multiplied the potential by β

2d . However, for E = {−1,+1}, 1
2βω

2
i = β

2
and thus constant. This shows the equivalence of these potentials and hence,
the coincidence of corresponding sets of Gibbs states.
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However, here E = R. The Hamiltonian is obtained as

HJ,0
Λ (ω) =

∑
A∈S
A∩Λ6=∅

ΦJ,0
A (ω)

=
β

2

∑
i∈Λ

ω2
i −

β

2d

∑
{i,j}⊂S:
{i,j}∩Λ6=∅,
|i−j|=1

ωiωj

=
β

2

∑
i∈Λ

ω2
i −

β

4d

∑
i,j∈S:

{i,j}∩Λ6=∅,
|i−j|=1

ωiωj

=
β

4

∑
i∈Λ

ω2
i +

β

4

∑
j∈Λ

ω2
j −

β

8d

∑
i,j∈S:

{i,j}∩Λ6=∅,
|i−j|=1

2ωiωj

=
β

8d


∑
i∈Λ

2dω2
i +

∑
j∈Λ

2dω2
j −

∑
i,j∈S:

{i,j}∩Λ6=∅,
|i−j|=1

2ωiωj


=

β

8d

∑
i,j∈S:

{i,j}∩Λ6=∅,
|i−j|=1

(ωi − ωj)2

=
β

4d

∑
{i,j}⊂S:
{i,j}∩Λ6=∅,
|i−j|=1

(ωi − ωj)2.

Thus, the present model coincides with “Shlosman’s stair case model” as
defined in [Georgii, 88], chapter 6.3, if we would set E = Z and λ the
counting measure. Considering the above, the harmonic oscillator may be
seen as a generalization of the Ising ferromagnet in Section 2.7.

Having a look at the Hamiltonian, we see that energy in the system is
minimal when spins align.6 Thus, in economic terms, a model based on
the harmonic oscillator exhibits preference for conformity among agents.
Consequently, an economy based on the harmonic oscillator would generalize
Föllmer’s Ising economy.

We now could use some results from Fourier analysis and in particular
Proposition 5.26 to show that G(γJ,0) 6= ∅ if and only if d ≥ 3: Obviously, J

6In section 2.7, we have motivated the connection between Gibbs states and states of
minimal energy.
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is absolutely summable, i.e.
∑

i∈S J(i) <∞. We have shown that MJ,0 6= ∅.
We can furthermore show that Ĵ−1 is integrable for d ≥ 3. Then Theorem
5.26 implies that G(γJ,0) 6= ∅. Although the proof is quite elegant, we have
already shown the assertion in Example 5.20.

We obtain that GΘ(γJ,0) ∩ exG(γJ,0) contains uncountably many Gibbs
states breaking the symmetry τm

t
, t ∈ R , of γJ,0: As in Example 5.20 we

have that MJ,0 contains all constant configurations. From Proposition 5.26
we obtain a characterization of GΘ(γJ,0) and from the proof of Proposition
5.15 one of exG(γJ,0). We see that uncountably many Gaussian fields belong
to GΘ(γJ,0)∩exG(γJ,0), namely all µC ∗δm, with m a constant configuration;
the Dirac measure with mass on a constant configuration is homogeneous.
However, the characterization of GΘ(γJ,0)∩exG(γJ,0) will explicitly be shown
in the next chapter. As shown in Example 5.20, the symmetries τm

t
, t ∈ R,

for γJ,0 are broken for Gaussian fields in G(γJ,0) if and only if t 6= 0.

We have obtained the tools to introduce an economic model taking into
account locally interacting agents with an unbounded and uncountable state
space.

5.3 Modeling Local Interactions

In this this section we introduce a local random economy E lr generalizing the
model in Section 3.5 with respect to the space of individual agents’ states.
Within this new model, we endogenize the distribution of α-transforms that
is given exogenously in the distribution economy introduced in
[Grandmont, 92]. Grandmont suggests:

An important issue to investigate would then be how such
macroeconomic distributions might arise endogenously from spe-
cific socioeconomic interactive processes at the micro-level. One
could for instance envision a more ‘adaptive’ viewpoint [...] in
which the decision rule [...] of an individual [...] (is) influ-
enced in a stochastic (Markovian) fashion by those (decision
rules) of his immediate neighbor(s), and generate endogenously
a macroeconomic distribution by looking for invariant distribu-
tions. ([Grandmont, 92], p.40)

In formalizing these lines, we use the concepts and insights from Gibbsian
theory by appropriately generalizing Föllmer’s model.

The Baseline Model

To carry out an analysis of market demand when the global distribution of
individual demand functions is endogenized, we adopt the notion of a Gibbs-
ian random (pure exchange) economy from [Hohnisch, 03]. As a global ran-
dom economy, this concept turns out to exhibit a macroeconomic character.
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To explicitly describe how the global distribution of demand arises by
virtue of a local interaction structure, we introduce the notion of a local un-
bounded spin Ising economy as a generalization of Föllmer’s Ising economy
when the state space is given by Rl. This type of economy is an applica-
tion of the harmonic oscillator in Example 5.20. As in [Föllmer, 74] the
model is purely microeconomic in the sense that only local data is needed
to completely determine the economy.

The procedure is the following: First, we specify a local random economy,
i.e. basically a configuration space with specification. Our special type of
economy will be called the local unbounded spin Ising economy and is given
by the state space E = Rl and a family of specifications each with spin
space R and determined as for the harmonic oscillator. In this sense the
local unbounded spin Ising economy turns out to be a so called l-fold local
random economy. We then specify a resulting global random economy, i.e. a
probability measure on ES. Here, we consider Gibbsian random economies:
the probability distribution is given by a Gibbs state with respect to the
specification of the corresponding local random economy. In this sense, the
Gibbsian random economy corresponding to the local unbounded spin Ising
economy is an l-fold Gibbsian random economy as the emerging distribution
is Gibbsian with respect to a product specification, where the factors are
the specifications in the local unbounded spin Ising economy.

In order to apply Grandmont’s analysis, we have to find a way to link
global random economies with distribution economies. In Chapter 6 we
encounter a solution to this problem.

Local Random Economies

Again, we assume an arbitrary underlying probability space (Ω,F , P ).
We first specify the primitives needed for a Gibbsian approach to locally

interacting agents when individual states or characteristics are given by
demand-income pairs: Let the parameter set S := Zd be the set of economic
agents.

In Grandmont’s setup each agent is determined by some individual de-
mand function ξ : Rl

++ × R++ → Rl
+ and income w ∈ R++. Thus,

E = {(ξ, w)|ξ : Rl
++ × R++ → Rl

+, (p, w) 7→ ξ(p, w), w ∈ R++}

would make sense as state space but exhibits insufficient structure for our
attempt. As in [Grandmont, 92], we consider the equivalence class of α-
transforms for a given demand function ξ, a distribution on which is equi-
valently given by a distribution on Rl. As already mentioned in the intro-
duction to this chapter, we assume an underlying demand function for the
economy. This reflects some kind of consensus on a specific consumption
pattern within society. We furthermore assume a fixed underlying type, i.e.
not only a demand function but also a fixed income w ∈ R++.
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Thus, since income is fixed and the set of all possible demand functions
may now be identified with the set of α-transforms of the underlying demand,
we set

E = Rl, E = B(Rl). (5.9)

Definition 5.34. A random state σs of agent s ∈ S is a random variable
σs on (Ω,F , P ) with values in (E, E). We assume the random variable σs
to be integrable with respect to P . Since an agent is entirely characterized
by her state, we also call σs a random agent.

Here, we always consider E as defined above. Thus, σs(ω) corresponds
to some α-transform of the underlying demand function. However, the (eco-
nomic) concepts introduced in this chapter are applicable to all kinds of
spin spaces, as for example spaces of preferences, utility functions or sites
of residence, among many others.

Remark 5.35. As in Chapter 2, we use the following canonical represen-
tation:

Ω = ES = {ω = (ωs)s∈S : ωs ∈ E},
F = ES,

σs : Ω → E, ω 7→ σs(ω) = ωs.

Ω is called the configuration space, S the parameter set and E the (indivi-
dual) state or spin space. In a deterministic context an economy is given by
a configuration ω ∈ Ω, i.e. a map ω : S → E.

Following the approach laid out in Chapter 2, the local interaction struc-
ture in an economy or social system is given by a specification γ, i.e. by a
family γ = (γΛ)Λ∈S of probability kernels satisfying the consistency condi-
tions in Definition 2.6. This methodology endogenizes the global distribution
of agents’ states; in our context, the distribution of consumption behavior.

The following definition is a general version of Definition 3.22.

Definition 5.36. (a) A local random pure exchange economy E lr is given
by a tuple E lr = (ES, γ), where ES is the configuration space and γ a speci-
fication with state space E as introduced in Definition 2.6.
(b) The set of Gibbs measures G(γ) of a random pure exchange economy E lr

with specification γ is denoted by G(E lr). An element µ ∈ G(E lr) is called
Gibbs state of E lr.
(c) We call a local random pure exchange economy E lr homogeneous when-
ever γ is homogeneous. We call E lr Gaussian whenever γ is Gaussian.
(d) When there is not necessarily an economic meaning of the elements in
E, we refer to E lr as a local (random) system.
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We are now faced with the problem of determining a specification for
state space E = Rl that is justifiable in economic terms. We want to use
this specification to generate distributions of α-transforms, i.e. distributions
on Rl. We have obtained explicit characterizations of Gibbs states in case of
Gaussian specifications. However, these are only admissible for spin space
R. We have already indicated that we obtain the distribution of α ∈ Rl as
follows: For every i ≤ l, we consider the distribution µi of αi ∈ R given by
a Gibbs measure generated by the harmonic oscillator as in Example 5.20,
i.e. µi ∈ G(γJi,hi), where the homogeneous Gaussian specification γJi,hi

can be inferred from Example 5.20 together with Proposition 5.6. Then, the
distribution µ of α ∈ Rl is given by the product distribution µ = µ1⊗. . .⊗µl.
This implicitly assumes the distributions of αi’s to be mutually independent.
Note, that the independence of these marginal distributions does not imply
demand to be independent across commodities in any reasonable economic
meaning, as e.g. vanishing price effects or the like. It just means that the
mechanisms used to obtain the distributions of demand for a commodity are
independent.

In the next chapter, we show that this procedure leads to a distribu-
tion economy as considered in [Grandmont, 92], where the distribution of
demand is obtained endogenously.

To recall: Let γJ,h be a specification as given in Proposition 5.6. There,
we have shown that γJ,h is Gaussian if J is positive definite and symmetric.
In this case, the potential ΦJ,h, as defined in (5.1) and generating γJ,h, is
called Gaussian, too. Moreover, the Gaussian specification γJ,h was shown
to be homogeneous if and only if J and h are homogeneous. Henceforth,
we assume γJ,h to be a homogeneous Gaussian specification as obtained in
Proposition 5.6; Thus, assume the coupling function J to be symmetric and
positive definite and, as the external field h, homogeneous

Definition 5.37. An l-fold local random pure exchange economy is a tuple
E llr = (ES, γ1, . . . , γl), where E = Ẽ1×. . .×Ẽl and ((Ẽk)S, γk), k = 1, . . . , l,
is a local system, i.e. γk is a specification with state space Ẽk. E llr is called
(homogeneous) Gaussian whenever the family of specifications (γk)k=1,...,l is
a family of (homogeneous) Gaussian specifications. When γ1 = . . . = γl =: γ
and thus Ẽ1 = . . . = Ẽl, we write E llr = (ES, γ).

As already mentioned, our framework leaves the opportunity to consider
distinct mechanisms to obtain a distribution for the transform αk of each
commodity k: One may use the harmonic oscillator for the distribution of
demand for the first good to indicate a preference for conformity in this com-
modity. The transform for second good may be represented by a preference
for antagonism and for a further good independence among agents. How-
ever, in our approach we assume preference for conformity among agents in
all goods.

The following definition is an application of the harmonic oscillator.
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Definition 5.38. Let E = Rl, S = Zd, d ≥ 1. A homogeneous Gaussian
l-fold local random pure exchange economy E llr = (EZd

, γJβ1
,h1 , . . . , γJβl

,hl)
is called a local unbounded spin Ising economy if the homogeneous Gaussian
specification γJβk

,hk is generated by ΦJβk
,hk , given in equation (5.1), as in

Proposition 5.6, where hk ∈ RZd
, constant, and

Jβk
(i, j) =

 − βk
2d if |i− j| = 1,
βk if i = j,
0 else

for some constants βk > 0, k ≤ l. If βk = β for some β > 0 and hk = h for
some h ∈ RZd

, constant, for all k ≤ l, we write E β,h := (EZd
, γJβ ,h).

In other words, the local unbounded spin Ising economy is an “l-fold
harmonic oscillator” where each spin in Rl represents an α-transform of the
underlying demand function and thus represents some demand function.
For the analysis of this type of random economy we may apply the results
obtained in Section 5.2. Henceforth, as in Section 3.5, we assume (hk)i = 0
for all i ∈ S and k ≤ l, i.e. the “grand external field” vanishes.

Global Random Economies

So far, we have established a microeconomic framework for the analysis of
macroeconomic variables as market demand. Using this microeconomic con-
cept, we can determine the set of Gibbs states that may emerge. In view
of l-fold local random economies, we may consider the product specifica-
tion as introduced in Proposition 2.7 and then consider the corresponding
Gibbs states as obtained in Proposition 2.8. Thus, assuming the emergence
of a specific Gibbs state, we may evaluate macroscopic observables. The
following definition is the economic analogon to Definition 2.1.

Definition 5.39. Given a probability space (Ω,F , P ), a global random
(pure exchange) economy E gr is given by a family of random variables
σ := (σs)s∈S on (Ω,F , P ) with values in (E, E). The distribution of σ is
denoted by µ ∈ P(ES, ES).7

Applying the canonical representation in Remark 5.35, a global random
economy E gr is equivalently defined by a probability measure µ on (ES, ES).

Recall, we denote probability measure µ ergodic if it is ergodic with
respect to the lattice shift group Θ on S = Zd.

Definition 5.40. (a) ([Hohnisch, 03], Definition 1) A Gibbsian random
(pure exchange) economy with specification γ is a global random (pure ex-
change) economy σ := (σs)s∈S, the distribution µ of which is a Gibbs mea-
sure with respect to γ. Thus, a Gibbsian random economy is a family (σs)s∈S

7Again, we assume each σs to be “sufficiently integrable”.
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with distribution µ ∈ G(E lr), where E lr = (ES, γ) is called the correspon-
ding local random economy.
(b) A Gibbsian random economy is called homogeneous if the ruling Gibbs
measure µ is homogeneous. The economy is called ergodic if µ is ergodic.

A Gibbsian random economy with specification γ is equivalently defined
by a probability measure µ on (ES, ES), where µ ∈ G(γ).

If γ is such that |G(γ)| = 1, Definition 5.40(a) is again of microeconomic
character since no knowledge of aggregates is necessary to determine the
economy. On the other hand, if we do not have uniqueness of Gibbs mea-
sures, i.e. G(γ) is not singleton, γ does not uniquely determine the Gibbs
measure that emerges as the ruling distribution for (σs)s∈S. Stated another
way, a local random economy does not uniquely specify a global random
economy. Then we need some knowledge of the aggregate in order to de-
termine the emerging Gibbs state and thus the Gibbsian random economy.
In this sense, the concept is not purely microeconomic and thus, we call it
macroeconomic.

Definition 5.41. (a) An l-fold Gibbsian random (pure exchange) economy
with a family of specifications (γk)k=1,...,l is a global random pure exchange
economy σ = (σi)i∈S on (Ω,F , P ) with values in E = Ẽ1 ⊗ . . . ⊗ Ẽl, the
distribution µ of which is of product form µ := µ1 ⊗ . . . ⊗ µl, where µk ∈
G(γk); γk is a specification with state space Ẽk.
(b) A global unbounded spin Ising economy is an l-fold Gibbsian random
(pure exchange) economy where E = Rl and γk = γJβk

,hk is given as in
Definition 5.38.

Remark 5.42. By virtue of Propositions 2.7 and 2.8 an l-fold Gibbsian
random economy is a Gibbsian random economy with product specification
γ = γ1 ⊗ . . . ⊗ γl, where the distribution of (σs)s∈S is of the form µ =
µ1 ⊗ . . .⊗ µl ∈ G(γ).

Given the l-fold local random economy E llr = (ES, γ1, . . . , γl), E =
Ẽ1 ⊗ . . . ⊗ Ẽl, µ ∈ G(γ1 ⊗ . . . ⊗ γl) defines an (l-fold) Gibbsian random
economy. Then we call E llr the corresponding l-fold local random economy
for a Gibbsian random economy ruled by µ, vice versa.

In this token, a global unbounded spin Ising economy is just a global
random economy that corresponds to the local unbounded spin Ising eco-
nomy.

Summary

Based on the notion of a random economy, we have introduced several new
economic concepts in this section. To keep account of these concepts, let us
summarize the notions used in the next chapter: Let S be a parameter set,
l ∈ N, (Ẽk)k≤l a family of state spaces, (γk)k≤l a family of specifications,
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each γk with state space Ẽk. Furthermore let γ be a specification with state
space E.

Then we have defined the local random economy E lr by (ES, γ) and a
corresponding Gibbsian random economy by µ ∈ G(γ). A Gibbsian random
economy is a specific global random economy.

Furthermore, we have defined the l-fold local random economy E llr by
(ES, γ1, . . . γl), E = Ẽ1 × . . . × Ẽl, and a corresponding (l-fold) Gibbsian
random economy by µ = µ1 ⊗ . . . ⊗ µl, where µk ∈ G(γk), k ≤ l. Thus,
µ ∈ G(γ1 ⊗ . . .⊗ γl) and this in turn yields a Gibbsian random economy.

In our analysis in the next chapter we consider a special class of local and
global economies: the local unbounded spin Ising economy and the global
unbounded spin Ising economy. Here, the parameter set S was assumed
to be Zd, d ≥ 1, and the state space E = Rl. Interaction is given by an
l-fold harmonic oscillator to take into account preference for conformity. In
view of [Grandmont, 92], a probability distribution on E is a distribution
on the equivalence class of α-transforms for an underlying type; in this
sense, a distribution on the space of admissible demand functions. Thus, the
global unbounded spin Ising economy is a global random economy specified
by an overall distribution of demand functions for all agents in S, that is
consistent with the specifications in the corresponding local unbounded spin
Ising economy when there is assumed an underlying type of agent. In this
sense, the global unbounded spin Ising economy is the “random analogon”
of the distribution economy in [Grandmont, 92], when only one equivalence
class of α-transforms is admissible.

For a further analysis of market demand in spirit of Grandmont, we need
a result combining Gibbsian random economies and distribution economies.
Such a result is given in [Hohnisch, 03] in terms of a convergence theorem
for empirical distributions of ergodic Gibbsian random economies.



Chapter 6

Analysis of Market Demand

6.1 Introduction

In the last chapter, we have defined the concept under consideration: The
global unbounded spin Ising economy. Given an underlying type a = (b, w) ∈
A as in Section 4.2, E = Rl represents the space of all individual demand
functions ξαb : Rl

++ × R++ → Rl obtained from ξb by an α-transform with
α ∈ E, and these are the admissible ones. By this token, the unbounded spin
Ising economy allows to endogenize the distribution of α-transforms that is
given exogenously in [Grandmont, 92]. To conclude, the global unbounded
spin Ising economy is an overall distribution on demand, whenever the ad-
missible demand functions are those obtained from an underlying demand
by α-transforms.

However, we have to be very diligent with the different economic concepts
introduced so far: In Section 5.3 we consider (Gibbsian) global random
economies, i.e. families (σs)s∈S of random variables with state space (E, E)
distributed by µ ∈ P(ES, ES). In [Grandmont, 92], we are faced with a
distribution economy, i.e. a probability distribution ν ∈ P(E, E).

For a distribution economy, an observable is introduced as a bounded
continuous function on E. As argued in Section 2.5, in context of a global
random economy, a (macroeconomic) observable is given by a tail-measurable
function on Ω. Throughout, we assume the canonical representation in Re-
mark 5.35.

When trying to apply Grandmont’s analysis to our set-up, we have to
explore the linkage between random and distribution economies. In case of
independent and identically distributed random agents σs, a convergence
result based on the law of large numbers is given in Proposition 3.19. In a
more general case, an elegant way is presented in [Hohnisch, 03]. The proof
is based on a multidimensional ergodic theorem, an elaborate discussion
of which can be found in [Georgii, 88], pp. 302-307. An ergodic theorem
usually comes along with the catchphrase “time average equals space av-
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erage”. However, in our context it should be rephrased as “average over
agents (parameter average) equals space average”.

The chapter is structured as follows: First, we encounter the relation
between random and distribution economies. Then, we consider a specific
class of global unbounded spin Ising economies and generate the correspon-
ding distribution economies for which we mimic Grandmont’s analysis. The
question at hand is: Do we obtain enough behavioral heterogeneity when
assuming particular Gaussian specifications to endogenize consumption be-
havior that imply preference for conformity? At first glance, this seems to be
quite paradox. However, in Section 5.2 we have seen an explicit characteriza-
tion of (ergodic extremal) Gibbs states induced by Gaussian specifications.

Moreover, we will have a look at another approach to demand analysis re-
lated to the “low temperature limit” as already discussed in Section 2.7. For
this thermodynamic limit, we see that the strong result in [Grandmont, 92],
where the weak axiom is actually “created”, cannot be obtained, but the
weak axiom is “inherited” by market demand.

6.2 Ergodic Global Random Economies

This section is actually tailored for a more general state space than E = Rl.
Here, we assume E to be a polish space and S = Zd.

A distribution economy ν ∈ P(E, E) generates a global random eco-
nomy, when considering random agents σs, s ∈ S, that are independent and
identically distributed with law ν. The question at hand is whether we can
construct a corresponding distribution economy for a given global random
economy. The result in [Hohnisch, 03] is motivated as follows:

As far as aggregate variables of the economy [...] are con-
cerned, any infinite random exchange economy with converging
limiting empirical distribution ν is equivalent to a Hildenbrand
distribution economy characterized by the same distribution ν.
[...] The linkage between a distribution economy and an ergodic
random exchange economy [...] is provided by a convergence re-
sult for the empirical distribution [...]. ([Hohnisch, 03], pp. 2,3)

Convergence of the empirical distribution for ergodic random economies is
obtained by means of a multidimensional ergodic theorem.

Recall that a homogeneous distribution µ on (EZd
, EZd

) is called ergodic
if it is trivial on the σ-algebra of lattice-shift-invariant events.

We say a sequence (Λn)n∈N of finite volumes in S exhausts S, if Λn ⊂
Λn+1, and

⋃
n∈N Λn = S.1 The following ergodic theorem is a version of

Theorem 14.A8 in [Georgii, 88].
1Proposition 6.1 is stated for sequences of cubes in [Georgii, 88]. However, it is stated

that the result still holds for sequences of arbitrary finite volumes.
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Proposition 6.1. Let µ be an ergodic probability measure on (Ω,F) and f ∈
L 1(Ω, µ). Then for any sequence (Λn)n∈N of finite volumes that exhausts
S, we have

lim
n→∞

1
|Λn|

∑
s∈Λn

f ◦ θs = µ(f |I ) = µ(f) µ-a.s.,

where I := {A ∈ F : θs(A) = A ∀s ∈ S} is the σ-algebra of lattice-shift-
invariant or homogeneous sets. µ(·|I ) denotes the expectation with respect
to µ conditional on I and µ(·) the expectation with respect to µ.

Proof. The first equality is shown in [Georgii, 88], pp. 306,307. The second
follows immediately since µ(f |I ) is I -measurable and thus µ-a.s. constant.
Hence, we obtain for some c ∈ R

µ(f |I ) = c = µ(µ(f |I )) = µ(f) µ-a.s.

The following definitions are generalized versions of Definitions 2 and 3
in [Hohnisch, 03]. Recall, S = Zd, d ≥ 1.

Definition 6.2. (a) Let Λ ∈ S be a finite volume and σ := (σs)s∈Λ be a
family of random variables on some probability space (Ω,F , P ) with values
in (E, E). The empirical distribution of σ, denoted by YΛ(·, ·), is a random
distribution on (E, E), i.e. a map YΛ : E × Ω → [0, 1] which is specified by

YΛ(B, ·) =
1
|Λ|
∑
s∈Λ

1B ◦ σs(·) ∀B ∈ E .

Note that YΛ(·, ω) is a probability distribution on (E, E) for all ω ∈ Ω, i.e.
YΛ is a distribution-valued random variable.
(b) Let σ := (σs)s∈S be a random field on some probability space (Ω,F , P )
with values in (E, E). If there exists a probability measure Y on (E, E) such
that for any sequence (Λn)n∈N of finite volumes in S that exhausts S, the
sequence of empirical distributions (YΛn)n∈N, where YΛn is the empirical
distribution of the family (σs)s∈Λn, converges to Y with respect to the weak
topology for P -a.e. ω ∈ Ω , i.e.

P{ω ∈ Ω|YΛn(·, ω)
weakly→ Y (·)} = 1,

then Y is called limiting empirical distribution of σ (or simply empirical
distribution of σ).

The following result is a generalization of Proposition 3.19.
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Proposition 6.3. ([Hohnisch, 03], Proposition 2) Let (σs)s∈S denote an
ergodic Gibbsian random economy with distribution µ on (ES, ES). Let ν
denote the marginal distribution σs(µ) = µ◦σ−1

s of each σs on (E, E). Then
for any sequence of finite volumes (Λn)n∈N that exhausts S the limiting em-
pirical distribution Y exists and is equal to ν µ-a.s. on Ω.

Proof. The complete proof can be read after in [Hohnisch, 03], pp. 14,15.
However, it seems worthwhile to elaborately reconsider the first part of the
proof: Note that the marginal distributions ν := µ ◦ σ−1

s of σs, s ∈ S, are
identical: Let µ be ergodic, s ∈ Zd and µk denote the marginal distribution
of σk, µk = µ ◦ σ−1

k , k ∈ Zd. By homogeneity of µ we obtain

µ ◦ θ−s = µ ◦ θ−1
s = µ

⇒ µk+s = µ ◦ (σk ◦ θs)−1 = (µ ◦ θ−s) ◦ σ−1
k = µk.

Let g : E → R bounded and continuous. Then g ◦ σs : Ω → R is integrable
as σs is assumed to be. Then, we have

YΛn(g) =
∫
E
gdYΛn

=
1
|Λn|

∑
s∈Λn

g ◦ σs =
1
|Λn|

∑
s∈Λn

(g ◦ σ0) ◦ θs

6.1−→ µ(g ◦ σ0) =
∫

(g ◦ σ0)dµ

=
∫
gd(µ ◦ σ−1

0 ) =
∫
gdν = ν(g).

For the rest of the proof, we refer to [Hohnisch, 03].

This result only takes care of ergodic Gibbsian random economies. How-
ever, as already mentioned in section 3.5:

Whereas for our present argument we take ergodicity as an
assumption, it is argued elsewhere using a dynamical frame-
work (Hohnisch and Kondratiev (2003)) that ergodic Gibbs mea-
sures are the only appropriate measures within the class of shift-
invariant Gibbs measures to represent equilibrium states of real
economic systems. ([Hohnisch, 03], p. 14)

Proposition 6.3 has a deep impact on the analysis of market demand in
Gibbsian economies:

The convergence of the empirical distribution of an ergodic
Gibbsian random exchange economy allows to associate to any
such economy a Hildenbrand distribution economy [...] in the



6.3. THE WEAK AXIOM OF REVEALED PREFERENCE 137

sense that properties of the latter, e.g. equilibrium prices, per-
capita aggregate demand [...], could be as well obtained from a
random economy with the same distribution ν as limiting em-
pirical distribution. ([Hohnisch, 03], p. 15)

Corollary 6.4. Given an ergodic Gibbsian random economy σ = (σs)s∈S

with state space E, distribution µ on (ES, ES) and limiting empirical distri-
bution ν. Then the economy is equivalent to a distribution economy ν on
(E, E) in the sense that (per capita) macroeconomic variables of the distri-
bution economy can be approximated by variables of sufficiently large sample
populations in the random economy.

Let us give an example for the statement in Corollary 6.4: Let E be
the space of demand functions ξ. Then (per capita) market demand for the
distribution economy ν ∈ P(E, E) is given by ν(ξ) =

∫
E ξdν. Consider now

an ergodic Gibbsian random economy with marginal distributions ν. Then
by Proposition 6.3, we have YΛn(ξ) n→∞−→ ν(ξ), where YΛn(ξ) =

∫
E ξdYΛn is

the (per capita) market demand of the sample population Λn.
The crucial part in the proof of Proposition 6.3 is ergodicity not the

Gibbsian property. Thus, we may apply this theorem to all global random
economies with ergodic distribution:

Corollary 6.5. Given an ergodic global random economy σ with distribution
µ and limiting empirical distribution ν. Then the economy is equivalent to
a distribution economy ν on (E, E) in the sense of Corollary 6.4.

Corollary 6.4 allows for the following procedure: First specify a local
random economy, as for example the local unbounded spin Ising economy.
Have a look at the set of Gibbs states that may emerge. Consider the
pure states, i.e. ergodic Gibbs states, and construct a corresponding ergodic
Gibbsian random economy, as for example an ergodic global unbounded
spin Ising economy. Specify the limiting empirical distribution by means of
Proposition 6.3. Apply Grandmont’s analysis to the distribution economy
determined by this limiting empirical distribution. The local unbounded
spin Ising economy allows for the theory of Gaussian fields and we thus
obtain explicit characterizations of the resulting distribution economies in
terms of mean and covariance.

6.3 The Weak Axiom of Revealed Preference

On first glance, our model does not seem as general as Grandmont’s since we
assume an underlying type (b, w) ∈ A for the economy. Nevertheless, this
restriction is not restrictive at all:2 The distribution of α-transforms within

2If b is such that ξb is of Cobb-Douglas type, then market demand satisfies all properties
we are seeking for, irrespective of the distribution of α-transforms.
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the equivalence class of α-transforms for the underlying type is generated
endogenously. If we would assume the distribution of types being exogenous
as done in [Grandmont, 92], it would not make any difference to the analysis
conducted there, as it is stated in [Hildenbrand, 94], p. 46. In other words,
when doing an analysis as in [Grandmont, 92], one may without loss of
generality consider the one-type-case. This is already motivated by (A6).
For our approach we only consider local interactions in demand behavior
among agents. Assuming distribution of types being exogenous, if we would
allow for more than one type, we would not consider interaction in types
and in particular in income among agents.

If we would like to endogenize the distribution of types via local inter-
actions, we would have to come up with an appropriate local interaction
structure for types among agents and moreover with an interaction struc-
ture between a specific type and corresponding α-transforms for each agent
and among the agents. This calls for a more complex interaction structure
than we consider here and is beyond the scope of this diploma thesis: In
particular, one would first have to answer the question how interaction in in-
come across agents should be modeled and how an individual agent’s income
interacts with her other economic variables α1, . . . , αl.

To summarize: We consider the case |A| = 1 and thus, total market
demand equals conditional market demand as introduced in Definition 4.17.

The Unbounded Spin Ising Distribution Economy

We consider the global unbounded spin Ising economy and make use of the
notions and results in Section 5.2. We would like to apply Proposition 6.3.
Thus, the question at hand is: Can we characterize ergodic Gibbs states for
homogeneous Gaussian specifications? Recall, that we assume E = Rl and
S = Zd. Furthermore, assume d ≥ 3 for the rest of the chapter, to have
existence of Gibbs measures for the harmonic oscillator.

Assumption 6.6. Henceforth, let the specification γJ,h be given as in Propo-
sition 5.6, i.e. generated by the “potential” in equation (5.1), where J :
S × S → R is symmetric and positive definite and h ∈ RS. Thus, γJ,h is a
Gaussian specification. Moreover, we assume J and h to be homogeneous.
In this case, we have shown that γJ,h is a homogeneous Gaussian specifica-
tion. Again, we identify J : S × S → R with the even function J̃ : S → R
and h ∈ RS with h̃ ∈ R and write J for J̃ and h for h̃. Here, we consider
an “l-fold harmonic oscillator”; thus, we consider homogeneous positive de-
finite coupling functions Jβk

=: Jk as given in Definition 5.38 and assume
hk = 0 for each harmonic oscillator k ≤ l.

In Theorem 5.15 it is shown that a random field µ belongs to exG(γJ,h)
if and only if µ is Gaussian with covariance function C as in equation (5.2)
and mean m ∈ MJ,h. Moreover, in Theorem 5.26 we have obtained that



6.3. THE WEAK AXIOM OF REVEALED PREFERENCE 139

GΘ(γJ,h) = {µC ∗ ν : ν ∈ PΘ(Ω,F), ν(MJ,h) = 1} in the homogeneous case.
We then see that µ is extremal in G(γJ,h) and ergodic, i.e. extremal in
GΘ(γJ,h), if and only if µ is Gaussian with covariance C as in equation (5.2)
and homogeneous mean m ∈ MJ,h.

In light of Remark 5.29 and the significance of the harmonic oscillator
for our approach, we assume h = 0 for the rest of this chapter.

The next proposition formalizes these ideas in completely characterizing
ergodic extreme Gibbs states for a homogeneous Gaussian specification γJ,0.
Again, Gibbs states are ergodic extreme if they are homogeneous extreme,
since homogeneous extreme distributions are also extreme homogeneous.
The following result originates in the explicit characterization of Gibbs states
given in Proposition 5.26. Recall the proof of Proposition 5.15 for a better
understanding.

Proposition 6.7. Suppose G(γJ,0) 6= ∅. Then an element µ ∈ G(γJ,0) is
extreme in G(γJ,0) and ergodic if and only if µ belongs to the set

{µC ∗ δm︸ ︷︷ ︸
=:µC,m

: m ∈ MJ,0,m constant},

i.e. µ is Gaussian with constant mean m ∈ MJ,0 and covariance C as given
in equation (5.2). A mean m = (ms)s∈S ∈ Ω is said to be constant if
mi = mj for all i, j ∈ S.

Proof. From the proof of Proposition 5.15, we know that

exG(γJ,0) = {µC ∗ δm : m ∈ MJ,0}.

Since µC ∗ δm ∈ exG(γJ,0) and GΘ(γJ,0) ⊂ G(γJ,0) we have that µC ∗ δm is
ergodic if it is homogeneous.

µc ∗ ν ∈ G(γJ,0), ν ∈ P(Ω,F), is homogeneous if and only if ν ∈
PΘ(Ω,F):3 By Note 5.17, we may identify ν with the probability mea-
sure ψ on exG(γJ,0) representing µC ∗ ν in Proposition 2.40. By Corollary
2.41, we have that a Gibbs measure µ ∈ G(γ) is homogeneous if and only if
the representing measure ν is homogeneous.

Thus, it leaves to show that δm is homogeneous if and only if m is
constant: Let s ∈ Zd, m ∈ MJ,0, A ∈ B(RZd

). Then

θs(δm)(A) = (δm ◦ θ−1
s )(A) = δ(mi+s)i∈S

(A)

=
{

1 if (mi+s)i∈S ∈ A,
0 if (mi+s)i∈S /∈ A.

Thus,

δm = θs(δm) ∀s ∈ S

⇔ [(mi)i∈S ∈ A⇔ (mi+s)i∈S ∈ A] ∀s ∈ S, ∀A ∈ B(RZd
)

⇔ m is constant.
3This was already shown in the proof of Proposition 5.26.
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Actually, we have characterized the homogeneous extreme Gibbs states.
Again, homogeneous extreme Gibbs states are extreme homogeneous and
thus ergodic, but in general not vice versa.

Remark 6.8. In chapter 2.6, we have introduced the notion phase for ele-
ments in exG(γ) and pure state for elements in exGΘ(γ). Thus, let us now
call elements in exG(γ) ∩ exGΘ(γ), i.e. ergodic extremal Gibbs states, pure
phases.

In case of the harmonic oscillator, we have seen that MJ,0 contains all
constant configurations and G(γJ,0) 6= ∅ whenever d ≥ 3.

In Chapter 2.6 we have discussed why we may confine the analysis to
phases, i.e. extreme Gibbs states. Moreover, in [Hohnisch, 03] it is argued
that only pure states, i.e. ergodic Gibbs states, shall be considered. As
shown in the foregoing section, ergodicity generates some kind of stability
of the empirical distribution of a random economy. Such an empirical distri-
bution as a state of a finite subpopulation is the entity that can be observed
(within empirical studies) in our “finite real world”.

Remember that γJ,0 is assumed to be homogeneous. Thus, it makes sense
to consider the set of all homogeneous extreme4 and thus ergodic extreme
Gibbs states. For our analysis of market demand, we assume that such a
pure phase emerges within a local random economy and gives rise to an
ergodic Gibbsian random economy.

So far the framework is elaborated for local random economies and re-
sulting Gibbsian random economies with distribution µ that is extreme and
ergodic. However, the economy under consideration, the local unbounded
spin Ising economy, is an l-fold local random economy and the resulting
global unbounded spin Ising economy is l-fold, too. We have shown in
Proposition 2.8, that the product of Gibbs states is again Gibbsian with
respect to the product specification. For our analysis, we need to show
that the product of ergodic distributions is again ergodic and analogous for
phases. This is done within the following two lemmata. Given two sets A1

and A2, we define A1 × A2 := {(a1, a2) : ai ∈ Ai} and analogously for the
product of σ-algebras.

Lemma 6.9. Let µi, i = 1, 2, be ergodic measures on (RZd
,B(RZd

)). Then,
the product measure µ := µ1 ⊗ µ2 is ergodic on ((R× R)Zd

,B((R× R)Zd
)).

Proof. Within this proof, we use the same term “θs” for the lattice-shift on
RZd

and on (R×R)Zd
. By definition, µi is ergodic if and only if µi(A) ∈ {0, 1}

for every event A in

I := {A ∈ B(RZd
) : θs(A) = A ∀s ∈ Zd},

4We have to be very exact in distinguishing the terms “extreme homogeneous” and
“homogeneous extreme”.
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the σ-algebra of homogeneous events. Now, consider µ := µ1 ⊗ µ2 on ((R×
R)Zd

,B((R×R)Zd
)) given by µ(E1×E2) := µ1(E1)µ2(E2) for all E1×E2 ∈

B((R× R)Zd
). Then define

I ∗ := {A ∈ B((R× R)Zd
)|θs(A) = A ∀s ∈ Zd}.

Since θs(A1 ×A2) = A1 ×A2 if and only if θs(Ai) = Ai, i = 1, 2, s ∈ Zd, we
obtain I ∗ = I ×I .

Hence, µ(A) = µ1(A1)µ2(A2) ∈ {0, 1} for all A = A1 ×A2 ∈ I ∗.

Lemma 6.10. Given specifications γ1 and γ2, let µ1 ∈ exG(γ1) and µ2 ∈
exG(γ2). Then µ1 ⊗ µ2 ∈ exG(γ1 ⊗ γ2).

Proof. The proof is conducted as the foregoing when applying Proposition
2.39.

For the local unbounded spin Ising economy we consider a family
(γJk,hk)k≤l of specifications each with state space R, generated as in Propo-
sition 5.6. Here, hk ∈ RZd

, constant, and Jk given by

Jk(i) =

 − βk
2d if |i| = 1,
βk if i = 0,
0 else

for βk > 0. However, we confine ourselves to the case hk = 0 for k ≤ l.
We now consider µC,m := µC1,m1 ⊗ . . . ⊗ µCl,ml

, mk ∈ MJk,0, constant,
and Ck as given in Proposition 5.15 for γJk,0. Here, µCk,mk

:= µCk
∗δmk

is the
homogeneous extreme, and thus ergodic, Gaussian measure on (RS,B(RS))
obtained in Proposition 6.7. By Lemma 6.9, µC,m defines an ergodic Gibbs-
ian random economy with product specification γJ,0 := γJ1,0⊗. . .⊗γJk,0 with
state space E = Rl, i.e. µC,m ∈ exGΘ(γJ,0). We may now apply Proposition
6.3 to obtain the corresponding distribution economy νC,m := νC1,m1 ⊗ . . .⊗
νCl,ml

as the one-dimensional marginal distribution νC,m := µC,m ◦ σ−1
0 of

µC,m on (Rl,B(Rl)), when (σs)s∈S := ((σks)k≤l)s∈S with state space Rl is
the corresponding global random economy ruled by µC,m. Equivalently, we
may say that the corresponding distribution economy νC,m is given by the
random variable σ0 and its marginal distribution νC,m = νC1,m1⊗. . .⊗νCl,ml

under µC,m = µC1,m1 ⊗ . . . ⊗ µCl,ml
. Furthermore, each νCk,mk

is the one-
dimensional marginal distribution of the ergodic Gaussian field µCk,mk

, i.e.
νCk,mk

= µCk,mk
◦ σ−1

k0
.

We now characterize these one-dimensional marginal distributions
νCk,mk

∈ P(R,B(R)). Recall the assumption S = Zd.

Proposition 6.11. Let (σks)s∈S be a Gaussian field in RS with mean mk :
S → R, i 7→ (mk)i, and covariance Ck : S⊗ S → R, (i, j) 7→ (Ck)i,j. Then,
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for each i ∈ S, σki
is Gaussian with mean (mk)i and variance (Ck)i,i. In

particular, σki
is distributed with density

fk(x) =
1√

2π(Ck)i,i
e
− (x−(mk)i)

2

2(Ck)i,i

Proof. Let u ∈ R and y ∈ S with yj = 1 for i = j and yj = 0 else. Then

ϕσki
(u) =

∫
eιuσkidP

=
∫
e
ιu
P

j∈S yjσkj dP

= eι
P

j∈S uyj(mk)j− 1
2

P
j,l∈S uyj(Ck)i,luyl

= eιu(mk)i− 1
2
u2(Ck)i,i ,

where again ι denotes the imaginary unit.

The proposition shows that each νCk,mk
is a Gaussian measure on R with

mean (mk)i and variance (Ck)i,i, where i ∈ S may be chosen arbitrarily due
to homogeneity of µCk,mk

.
Due to Gaussian property, νCk,mk

is uniquely characterized by (Ck)0
and (mk)0, as µCk,mk

by Ck and mk. For our purposes we do not need to
characterize the entire covariance function Ck but just the diagonal elements,
i.e. (Ck)i,i for all i ∈ S, and, due to homogeneity, it suffices to specify (Ck)0,0.

Applying equation (5.2) we obtain (Ck)0,0 = 1
Jk(0,0) . In case of the

unbounded spin Ising economy as defined in 5.38, this yields (Ck)0,0 = 1
βk

,
βk > 0, k ≤ l.

The above discussion shows the following definition to be consistent with
the concepts introduced in the last chapter.

Definition 6.12. (a) The ergodic (extreme) global unbounded spin Ising
economy is given by a family (σs)s∈Zd of random variables each with state
space Rl, the distribution of which is of the form µC,m = µC1,m1⊗. . .⊗µCl,ml

with ergodic extremal Gaussian distributions µCk,mk
∈ G(γJk,0), γJk,0, k =

1, . . . , l, as given in Definition 5.38, where mean mk ∈ MJk,0 is a constant
configuration and covariance function Ck is as given in equation (5.2) for
Jk.
(b) A distribution economy νC,m ∈ P(Rl,B(Rl)) corresponding to the er-
godic global unbounded spin Ising economy is given by a probability distri-
bution νC,m := νC1,m1⊗ . . .⊗νCl,ml

on Rl, νCk,mk
mutually independent and

Gaussian on R, each with variance (Ck)(0,0) = 1
βk
∈ R++ and mean (mk)0 ∈

R, k ≤ l. Thus, νC,m is Gaussian with mean m = ((m1)0, . . . , (mk)0) and
covariance

Cj,k =
{ 1

βk
if j = k,

0 if j 6= k,
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j, k ≤ l. νC,m is called the unbounded spin Ising distribution economy with
parameters β1, . . . , βl,m1, . . . ,ml.

Proof of consistency. The proof of part (a) just summarizes the discussion
above: The relevant Gibbs states for the Gaussian specification γJk,0 as
defined by 5.38 are given by the ergodic extremal elements in G(γJk,0) that
are characterized in Proposition 6.7. mk ∈ MJk,0 is well defined by Example
5.20. Note, µC,m ∈ G(⊗k≤lγJk,0) by Proposition 2.8 and ergodic since each
µCk,mk

is ergodic. Part (b) then follows directly by Proposition 6.3 and
Proposition 6.11.

Intuitively, an unbounded spin Ising distribution economy specifies the
distribution νC,m of demand functions, more precisely of α-transforms on
the underlying demand function.

For convenience let us consider β1 = . . . = βl =: β. In terms of
Section 2.7, β is the “inverse temperature” of the system. As done in
[Grandmont, 92] we want to achieve more heterogeneity among agents, i.e.
we basically want to increase variance (Ck)(0,0) = 1

β and thus decrease β.
In other words, we want to raise temperature. This is exactly the opposite
of what was done in Section 2.7, where we had a look at the low tempera-
ture or thermodynamic limit. Intuitively, it is clear that more heterogeneity
among agents corresponds to a decreasing β in our approach: The lower β,
the weaker coupling among agents and thus the less possibilities for “pre-
ference for conformity” to be transmitted. When β approaches zero, there is
no coupling and random agents are independently distributed with a priory
measure; as assumed the Lebesgue measure on R. The unique Gibbs state
is the given by the product measure. Thus, heuristically we obtain the weak
axiom of revealed preference in the aggregate for the unbounded spin Ising
distribution economy the “more independent” agents and thus the weaker
local interactions.

At first view, one may remark that this would contradict our assumption
of preference for conformity. However, we do not think that this objection
is admissible: It is not the assumption of preference for conformity that is
weakened when β decreases. It is more that “social links” among agents get
weaker as β decreases.

Since we only consider unbounded spin Ising economies, we henceforth
assume γJk,0 to be the specification introduced in Definition 5.38 and d ≥ 3
to assure existence of Gibbs states. We have already seen that the existence
of Gibbs states in G(γJk,0) does not depend on the value of β > 0. We could
even set β = 0.5 In this case, random agents are independent an identically
distributed with reference measure. As already mentioned in Section 3.5,
the unique Gibbs state is then given by the product distribution of reference
measures.

5Of course, this contradicts Definition 5.38.
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Cooling down Society

In light of Grandmont’s analysis, we have argued heuristically that market
demand gets closer to satisfying the weak axiom of revealed preference the
higher temperature. The common question in statistical mechanics is the
opposite one: What happens when a system reaches the thermodynamic
or low temperature limit? Stated in other words: What can be said about
satisfaction of the weak axiom for market demand when β converges to
infinity?

We may infer from the specific form of the Hamiltonian HJ,0 in Example
5.33 that constant configurations are ground states, i.e. configurations of
minimal energy. In chapter 2.7 we have seen the connection between ground
states and Gibbs measures in the low temperature limit for the 2-dimensional
Ising ferromagnet: When β approaches infinity, the set of Gibbs measures
gets arbitrarily close to the Dirac measures with mass on ground states; this
is shown in Proposition 2.53. In this sense, the system gets more and more
static as β approaches ∞ since coupling gets arbitrarily strong. In other
words, the system is attracted by states of minimal energy.

For our purposes, the analysis of thermodynamic limit is only admissible
if it admits an economic interpretation: In case of the local unbounded spin
Ising economy, an increase in β means that coupling among agents gets
stronger and agents prefer more and more to be similar. Thus, we obtain the
opposite situation as needed for Grandmont’s analysis. The interpretation of
this limit might be that society settles down in the sense that agents are more
and more consensus orientated. Thus, β →∞ literally means “cooling down
society”. In terms of [Kindermann & Snell, 80b], p.5: Minimum tension
(caused by agents’ interaction) means maximum boredom and occurs when
agents agree, i.e. when the configuration is constant.

Let ωck , ck ∈ R, denote the constant configuration with ωcks = ck for
all s ∈ S. The potential ΦJk,0 in Example 5.336 exhibits a ground state
degeneracy in that all ωck are ground states for ΦJk,0. This would imply
phase transition if G(γJk,0) is attracted by each δωck when β →∞; in other
words ωck ’s are stable. However, we have already shown the existence of
phase transition in Example 5.20.

We now obtain a result analogous to Proposition 2.53: Given the ergodic
extremal Gaussian Gibbs measure µCk,ω

ck = µCk
∗ δωck ∈ G(γJk,0), γJk,0 as

given in Definition 5.38, we have

µCk,ω
ck → δωck

weakly as β → ∞. This weak convergence is immediate since µCk,ω
ck is

Gaussian on Rl with mean ωck and covariance Ck as given above. Thus,
νCk,ω

ck → δck weakly as β →∞, In other words, the distribution of αk ∈ R

6Here, ΦJk,0 is a potential since Jk,0 exhibits finite range.
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converges to a Dirac measure with mass in ck ∈ R.7 Let the one-dimensional
marginal distribution νCk,ω

ck of µCk,ω
ck be denoted by νCk,ck , i.e. νCk,ck :=

µCk,ω
ck ◦ (σk)−1

0 .
We have shown that the unbounded spin Ising distribution economy

νC,c := νC1,c1 ⊗ . . . ⊗ νCl,cl weakly converges to δc := δc1 ⊗ . . . ⊗ δcl as
β →∞ and for conditional (in our case total) market demand the following
convergence result holds: Let c = (c1, . . . , cl) ∈ Rl

X(p, w) =
∫

Rl

ξα(p, w)νC,c(dα)

β→∞−→
∫

Rl

ξα(p, w)δc(dα) = ξc(p, w). (6.1)

Proposition 6.13. Given an unbounded spin Ising distribution economy.
Assume the underlying individual demand ξ to satisfy the weak axiom of
revealed preference, then market demand X approaches a demand function
satisfying the weak axiom as the inverse temperature β approaches infinity,
i.e. X satisfies the weak axiom in the low temperature limit.

Proof. Using the discussion above and in particular equation (6.1), it leaves
to show that any α-transform of ξ satisfies the weak axiom of revealed pre-
ference: Let ξ satisfy the weak axiom and recall ξα(p, w) := eα⊗ξ(eα⊗p, w),
α ∈ Rl. Let (p, w), (p̃, w̃) ∈ Rl

++ × R++ be given. Assuming

[eα ⊗ p] · ξ(eα ⊗ p̃, w̃) = p · [eα ⊗ ξ(eα ⊗ p̃, w̃)] = p · ξα(p̃, w̃) ≤ w

and

ξα(p̃, w̃) = eα ⊗ ξ(eα ⊗ p̃, w̃) 6= eα ⊗ ξ(eα ⊗ p, w) = ξα(p, w),

the weak axiom for ξ implies

p̃ξα(p, w) = p̃ · [eα ⊗ ξ(eα ⊗ p, w)] = [eα ⊗ p̃] · ξ(eα ⊗ p, w) > w̃.

Thus, ξα satisfies the weak axiom of revealed preference.

This result is weaker than that in [Grandmont, 92]: Whereas Grandmont
shows that the weak axiom for market demand is “created”, we have shown
that it is “inherited” by market demand in the low temperature limit. Even
though we have not assumed identical demand functions for agents, we have
posed assumptions that imply identical α-transforms in the low temperature
limit. In other words: Every agent exhibits the same demand function
represented by α = (c1, . . . , cl), although, due to phase transition, we do not

7Here, we have obtained the result by first applying the low temperature limit to the
harmonic oscillator and then consider the one-dimensional marginal distribution. However,
we could turn this approach upside down and first consider the one-dimensional marginal
distribution νC,ωck and then apply the low temperature limit.
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know a priori which one. Of course, when every agent has the same demand
function that satisfies the weak axiom of revealed preference, per capita
aggregate demand will satisfy the weak axiom, too. However, the strength
of this result is that we do not know a priori which pure phase emerges, but
in the low temperature limit it forces market demand to satisfy the weak
axiom.

Grandmont’s Analysis for Unbounded Spin Ising Economies, or:
Heating up Society

In view of the discussion so far, we apply the following procedure: Con-
sider the set of α-transforms {α|α ∈ Rl} of the underlying demand function.
The crucial assumption is that we obtain the distribution of every αk ∈ R
independently within a social system that is given by an harmonic oscil-
lator with specification γJk,0 as in Example 5.20, representing preference
for conformity. This is just the local unbounded spin Ising economy and
we consider a corresponding ergodic (extreme) global unbounded spin Ising
economy, i.e. an ergodic (extreme) Gibbs state µC1,m1 ⊗ . . . ⊗ µCk,mk

∈
exGΘ(γJ1,0⊗ . . .⊗ γJk,0), where Ck is again as given in Proposition 5.15 for
Jk as in Definition 5.38 and mk ∈ MJk,0 constant.

To recall, we then apply Proposition 6.3 to obtain a distribution economy
νC,m := νC1,m1⊗. . .⊗νCl,ml

on the space of individual characteristics α ∈ Rl,
where νCk,mk

:= µCk,mk
◦ σ−1

0 is the distribution of αk ∈ R, k ≤ l. We have
called νC,m the unbounded spin Ising distribution economy and may now
apply Grandmont’s analysis to this economy.

Recall β := β1 = . . . = βl. Intuitively this assumption means that
the willingness to conform with neighboring agents is equal not only across
agents but also across distinct commodities. Then, the analysis of market
demand is done for an unbounded spin Ising distribution economy νC,m, i.e.
νC,m is Gaussian with mean m = ((m1)0, . . . , (ml)0) and covariance C given
by

Cj,k =
{ 1

β if j = k,
0 if j 6= k,

j, k ≤ l.
Let ϕ2 := 1

β . By Proposition 6.11, each νCk,mk
= N((mk)0, ϕ2), the Nor-

mal distribution with mean (mk)0 and variance ϕ2. Thus, the distribution
of αk is given by the density

fk(αk) =
1√
2πϕ

e
− (αk−(mk)0)2

2ϕ2 .

Due to the independence assumption, the distribution of α as a random
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variable with values in Rl is ruled by the product density

f(α) =
1

(2πϕ2)
l
2

e
−
Pl

k=1(αk−(mk)0)2

2ϕ2 . (6.2)

We now have to check whether the density f satisfies the assumptions in
[Grandmont, 92]: We have assumed that there exists only one type a ∈ A for
the unbounded spin Ising distribution economy, i.e. one underlying demand-
income-pair (ξ, w) or simply |A| = 1. Thus, we may set f(α) = f(α|a), the
density conditional on type a ∈ A. Assuming w ∈ R++ to be the fixed
income, Definition 4.17 implies conditional market demand to equal total
market demand, i.e.

X(a, p, w) =
∫

Rl

ξαa (p, w)f(α)dα

=
∫

Rl

ξαa (p, w)f(α|a)dα

=
∫
A

∫
Rl

ξαb (p, w)f(α|b)dαδa(db)

= X(p).

Obviously, f is continuous in α. Moreover, its partial derivatives ∂f
∂αj

,
j = 1, . . . , l, are given by

∂f

∂αj
(α) = −αj − (mj)0

(2π)
l
2ϕl+2

e
−
Pl

k=1(αk−(mk)0)2

2ϕ2 .

These are again continuous. Thus, (A2) holds.
Satisfaction of (A3) and (A4) can be seen as follows:

vj(a) = vj =
∫

Rl

∣∣∣∣ ∂f∂αj (α)
∣∣∣∣ dα

=
∫

R
. . .

∫
R

∣∣∣∣∣(mj)0 − αj

(2π)
l
2ϕl+2

∣∣∣∣∣ e
Pl

k=1(αk−(mk)0)2

2ϕ2 dα1 . . . dαl

=
1√

2πϕ3

∫
R
|(mj)0 − αj |e

−
(αj−(mj)0)2

2ϕ2 dαj

=
1
ϕ

√
2
π

=

√
2β
π
.

It is worth noting that vj does not depend on the particular commodity
j when assuming βk = β > 0 for all k = 1, . . . , l. Also note that vj is
independent of m. Again, vj is a measure for the concentration of the
distribution of α around the mean ((m1)0, . . . , (ml)0): the higher the value
of each vj , the more concentrated the distribution.
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Due to the one-type-assumption, (A6) and (A5) hold trivially. (A1) and
(A7) are not posed in terms of f ; these will just be assumed as done in
[Grandmont, 92]. Due to the one-type-assumption, (A7) is rephrased as:
For every k = 1, ..., l, there exists $k > 0, with

∑l
k=1$k ≤ 1, such that for

all price systems p ∈ Rl
++ we have

pkξk(p, w) ≥ $kw > 0.

The following Corollary of Theorem 4.34 can equivalently be stated for
corresponding local or ergodic global unbounded spin Ising economies.

Corollary 6.14 (of Theorem 4.34). Given the unbounded spin Ising dis-
tribution economy with parameters 1

β ,m1, . . . ,ml. Let $k > 0 be given as
in (A7). If 0 < β < $2

k
π
2 , market demand is strictly decreasing in its own

price, i.e. ∂Xk
∂pk

(p) < 0.

If the coupling constant 0 < β <
$2

kπ

2l2
for all k = 1, . . . , l, then market

demand satisfies the weak axiom of revealed preference.

Proof. Apply Theorem 4.34 when vk =
√

2β
π , β > 0 by Definition 5.38.

Irrespective of the emerging phase that rules the economy, aggregate
demand satisfies the weak axiom for specific values of the parameter β.
This is just because vj is independent of m. For market demand to satisfy
the weak axiom of revealed preference coupling has to be smaller the more
goods available in the economy. We could also have stated the remaining
assertions in Theorem 4.34 for our model

A further analysis of existence and uniqueness of market exchange equi-
librium as conducted in Section 4.2 for our set-up does not seem appropriate
within this diploma thesis: Varying income w, and moreover allowing for
several types, would either call for a more complex interaction structure as
already laid out or one would just repeat the analysis in [Grandmont, 92] for
an exogenously given distribution of types and obtain the same results with
just applying the normal distribution for α-transforms that we have obtained
endogenously. Nevertheless, this would be an approach to show existence,
uniqueness and stability of equilibrium in a private ownership competitive
exchange economy with not necessarily rational agents when (at least) the
distribution of demand is specified endogenously by virtue of Gibbsian local
interaction.

Thus, if we would go further in our analysis and would show uniqueness of
equilibrium for an unbounded spin Ising distribution economy, the problem
of non-uniqueness of equilibrium would only arise because of non-uniqueness
of Gibbs states. In other words, we can show uniqueness of equilibrium for
a given pure phase. However, if the set of pure phases is not singleton, we
have a priori multiplicity of equilibrium due to phase transition.
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Applying a mechanism to endogenize the distribution of demand beha-
vior leading to a set of Gibbs states that is singleton would imply a priori
uniqueness of equilibrium in a local random pure exchange economy.

Let us just for a moment consider how one may generalize the local
interaction structure as given in the local unbounded spin Ising economy to
an interaction structure that takes account of income or more general, of
types. Two main problems have to be solved: First, one has to specify an
appropriate local interactions structure of income among agents and then an
interaction structure between demand functions and income for each agent
on her own. However, the question arises, whether the functional form of
demand depends on the level of income. Considering our approach, we might
say that the functional form of demand is independent of income. Thus, an
appropriate interaction structure between demand and income for our model
might be independence. Nevertheless, we still have to find an interaction
structure for income among agents. Since income is not (always) chosen by
an agent herself it does not make sense to endogenize the distribution of
income using preference for conformity.

However, it would make sense to come up with a model where agents are
given a fixed income and then choose where to be sited on Zd. This model
would be similar to Shelling’s neighborhood segregation model. As argued
in [Georgii, 88], under specific assumptions, such a model is equivalent to a
model where agents choose their states on fixed sites. But still, this model
of endogenous income formation would then have to be combined with our
model of endogenous demand formation.
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Chapter 7

Conclusions

In this thesis, we followed a fundamental idea by Grandmont:

An alternative research strategy might be indeed to rely more
on particular features of the distribution of behavioral charac-
teristics [. . .]. An important issue to investigate would then be
how such macroeconomic distributions might arise endogenously
[. . .]. One could for instance envision a more ‘adaptive’ view-
point [. . .] in which the decision rule [. . .] of an individual (is)
influenced [. . .] by those of his immediate neighbor(s), and gen-
erate endogenously a macroeconomic distribution by looking for
invariant distributions. The properties of these invariant distri-
butions might in turn generate enough strong macroeconomic
structure [. . .]. ([Grandmont, 92], p. 40)

We have modeled a framework to endogenize the distribution of demand
behavior: In light of Föllmer’s Ising economy, we came up with a model
taking account of a more general state space that, in a sense, represents
the space of all demand functions. This model, that we refer to as the
global unbounded spin Ising economy, is based on the harmonic oscillator
and thus formalizes “preference for conformity” among agents. We then
have obtained the unbounded spin Ising distribution economy that enabled
us to apply Grandmont’s analysis to our framework of endogenous demand
formation. We have seen that, for market demand to satisfy the weak ax-
iom of revealed preference, coupling among agents has to be smaller than
some constant, without assuming the weak axiom for individual demand.
This result makes intuitively sense when having in mind that Grandmont’s
analysis calls for heterogeneous agents whereas our interaction structure
assumes agents to exhibit a desire for conforming with peers. In particu-
lar, we obtain a unique market exchange equilibrium for every pure phase.
Non-uniqueness of market exchange equilibrium then emerges due to non-
uniqueness of Gibbs states. However, we have not explicitly conducted the
uniqueness analysis for our set-up.
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We should be conscious that this result has an impact on social sciences:
Individual rationality is not at all fundamental to achieve a rationally be-
having society. Further investigation should be carried out on the empirical
content of this model: Do we actually obtain distinct structural properties
of market demand for societies that are more consensus-based than for those
with less social ties?

Furthermore, we have conducted an analysis of market demand that re-
lies on the thermodynamic limit: Since coupling constant coincides with
inverse temperature, this is just the opposite of Grandmont’s analysis. Let-
ting the inverse temperature approach infinity, we have shown that market
demand satisfies the weak axiom of revealed preference if individual demand
is assumed to do so. This result was immediate since in thermodynamic limit
all agents exhibits the same demand function.

Our model relies on very restrictive assumptions:First, we have assumed
preference for conformity for all commodities. Then, the product specifica-
tions used in the model imply independence of the distribution of demand
for different commodities. and we have assumed this distribution to be in-
dependent of the exogenously given distribution of income. However, the
model can be generalized in several directions: We do not have to assume
preference for conformity for each commodity. Within the Gibbsian ap-
proach we can develop models with different local interaction structures for
distinct commodities. Among many other concepts, we may model “prefe-
rence for antagonism” or just “independence” in demand behavior for several
goods. Our concept of product specifications implies that the distribution
of demand for specific commodities is obtained independently. Thus, to
overcome this assumption, we have to design an entirely new interaction
structure. One way would be to assume Zd not to be just the graph of
agents but to consist of disjoint boxes with l sites. Each box represents an
agent; each site within such a box represents the demand of that agent for
a specific commodity. Then, the difficulty is to find an appropriate inter-
action structure among l-boxes, i.e. among agents, and within each box,
i.e. among demand for distinct goods. A simpler way may be conducted for
the unbounded spin Ising distribution economy: If we would like to obtain
correlation among goods, we could just assume the distribution to be mul-
tivariate normal with an appropriate correlation. Within the text, we have
already argued which difficulties may arise when endogenizing the exoge-
nously given distribution of income and particularly of types: We have to
come up with a local interaction structure not only specifying interactions
in income among agents, but also interactions between income and demand
for each agent on her own. Then we have to combine this set-up with our
model of endogenous demand formation.

However, we hope that our model reveals a fruitful analysis of market
demand with endogenous demand formation.
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