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1 Introduction

We investigate the relation between monotone operators on Hilbert spaces,
the generated semi-group and their resolvent.

In the first part of our work we give conditions on the operator under
which the associated resolvent remains invariant on convex sets. Especially,
we consider perturbations of a monotone operator by an unbounded linear
operator. To this end, we use the invariance results on the sum of monotone
operators and a lower-semicontinous function proven by Barthélemy [Ba],
apply them to the perturbation results achieved by Stannat [St] and obtain
several new results.

More precisely, we show invariance results on closed convex sets in three
different settings. In the first basic setting we consider an operator A on
a Hilbert space H without any perturbation. We generalize a well-known
invariance result stated, for example, in [Br] and show that for an operator
A on H not necessarily monotone (Au, u − PCu) ≥ 0 implies invariance of
the resolvent of A on C. We show that the results of the basic setting can
be transferred to the setting of [Ba] and adopt the notion of a semilinear
monotone form a(· , · ).

Finally, we present our new results in the setting of [St]. We generalize
the setting V ↪→ H ↪→ V ′ to the case where V is a reflexive Banach space.
We consider a maximal monotone operator M perturbed by an unbounded
linear operator Λ generalizing the notion of a bilinear form E(· , · ) to the
form e(· , · ), monotone in the first variable and linear in the second one.
We show the existence of a resolvent of contractions Gα of the operator
A = M −Λ under some common assumptions and construct a semigroup of
contractions on D(A). In our main theorem we show that Gα(C) ⊂ C for
all α > 0 if we assume that

u ∈ F ⇒ PCu ∈ V, ‖PCu‖V ≤ ‖u‖V and a(PCu, u− PCu) ≥ 0 and

u ∈ D(Λ,H) ∩ V ⇒ 〈Λu, u− PCu〉 ≥ 0.

In the second part of our work we consider the porous medium equation as
posed in [Sh] and the p-Laplacian.

In the porous medium equation example we show some useful invari-
ance results while we shift the problem from the usual space H−1(G) to
L2(0, T ;H−1(G)). This seems to be a promising way to solve the prob-
lem, however, we are confronted with an unsolved problem in the end. We
describe the crucial issue so that future research might reveal new insights.

In the second example, we show that the p-Laplacian is a maximal mono-
tone operator on Lp(0, T ;Lp(G)) fulfilling the conditions of our main theo-
rem. So we can apply our invariance results and obtain that for an initial
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condition u0 ∈ Lp(0, T ;Lp(G)) which is contained in a closed, convex set C,
the unique solution to the Cauchy problem will be contained in C, too.

We relate mostly to the theory as summarized by Showalter in [Sh] and
Brézis in [Br]. Van Beusekom [Be] already showed that the p-Laplacian
is a maximal monotone operator even for p > 1, but only in the spaces
Lp(G) and Lp ′(G). The set of pure potentials investigated there may be an
example for more complex convex sets than the ones we consider here.

Cipriani and Grillo [CG] did a lot of work on the p-Laplacian and dis-
cussed nonlinear Dirichlet forms in a more general frame than we do. How-
ever, they consider only symmetric forms while we consider forms which are
not even sectorial. Future results might lead to combine these works and
point out deeper connections.
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2 Preliminaries

Let H always be a real Hilbert space and let (· , · ) denote its inner product.
Set ‖ · ‖ := (· , · )

1
2 . Often we will consider a real reflexive Banach space V,

densely and continuously embedded in H. If not stated otherwise, let 〈· , · 〉
always denote the dualization between V and V ′.

Identifying H with its dual H′ via the Riesz isometry we have

V ↪→ H ∼= H′ ↪→ V ′

continuously and densely and 〈· , · 〉V×H = (· , · )H.
We will present firstly some different types of operators on a Hilbert space

and some well-known properties. We leave out the proofs of the propositions
and refer to [Br] and [Sh] for the details.

The concept of monotone operators is fundamental in nonlinear operator
theory.

Definition 2.1: An operator A : H → H is called monotone if for
u, v ∈ D(A)

(Au−Av, u− v) ≥ 0.

Analogously, an operator A : V → V ′ is called monotone if

V ′〈Au−Av, u− v〉V ≥ 0.

It is called strictly monotone if the inequality is strict for all u 6= v and
strongly monotone if for all u, v ∈ H there is some c > 0 such that

(Au−Av, u− v) ≥ c ‖u− v‖2

Definition 2.2: The function A : V → V ′ is coercive if

A(u)(u)
‖u‖V

→∞, as ‖u‖V →∞.

Definition 2.3: An operator A on H (or on V, respectively) is called
maximal monotone if it is maximal in the set of monotone operators, where
maximality refers to the graphs of the operators.

Remark 2.1: An alternative definition of a maximal monotone operator
is the following more useful one:
A is maximal monotone if and only if A is monotone and Rg(A+ αI) = H
for all α > 0 (cf. [Br], Prop. 2.2, p. 23).
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We will often add monotone operators. It is important to know under
which circumstances the maximal monotonicity remains intact.

Proposition 2.1: Let A and B be two operators on H. If A is maximal
monotone and B is monotone and Lipschitz continuous on H, then A + B
is maximal monotone.

Proof: See [Sh], Lemma 2.1, p. 165.

The following not so widely used notions appear in the literature. We
will not use them to the same extent as the core concepts mentioned above.
We will refer to these facts later on and recommend the reader to return to
them when needed. However, the relations will be important to understand
the connections between [Ba] and [St].

Definition 2.4: An operator A : V → V ′ is called hemicontinuous if for
each u, v, w ∈ V the real-valued function t 7→ A(u+ tw)(v) is continuous.

Proposition 2.2: If A : V → V ′ is monotone and hemicontinuous then
A is maximal monotone.

Proof: See [Sh], Proposition 2.2 and Lemma 2.1, p. 38f.

Definition 2.5: An operator A : V → V ′ is called pseudo-monotone if
un ⇀ u and lim supAun(un−u) ≤ 0 imply Au(u− v) ≤ lim inf Aun(un− v)
for all v ∈ V.

Proposition 2.3: If A : V → V ′ is monotone and hemicontinuous then
A is pseudo-monotone.

Proof: See [Sh], Proposition 2.2, p.41.

We considered the different types of operators. To every maximal mono-
tone operator there exist two more objects: Its resolvent and its semigroup.

Definition 2.6: Let A be maximal monotone. The operator defined by
Jα = (I + αA)−1 on H is called the resolvent of A on H.

Proposition 2.4: Each Jα is a contraction on H. The family of resol-
vents (Jα)α>0 satsifies the resolvent equation

Jα = Jβ ◦ (
β

α
I + (1− β

α
)Jα), α, β > 0.

Proof: See [Sh], p.159.

Definition 2.7: Let A be maximal monotone on H. Then the Yosida
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approximation of A is the operator

Aα =
1
α

(I − Jα), α > 0.

Proposition 2.5: Let A be a maximal monotone operator on a Hilbert
space H. Then the following hold:

i) Each Aα is maximal monotone and Lipschitz continuous with constant
1
α , α > 0.

ii) (Aα)β = Aα+β, α, β > 0.

iii) For each u ∈ D(A), ‖Aαu‖ converges upward to ‖Au‖, limα→0Aα(u) =
Au, and

‖Aαu−Au‖2 ≤ ‖Au‖2 − ‖Aαu‖2, α > 0.

iv) For each u /∈ D(A), ‖Aαu‖ is increasing and unbounded as α→ 0.

Proof: See [Sh], Theorem IV.1.1, p.161.

Definition 2.8: LetK be a subset of a Hilbert spaceH and let {S(t)}t≥0

be a family of mappings from K to K dependent on a parameter t.
Then S(t) is called a strongly continuous semigroup of nonlinear contrac-

tions (or for convenience only semigroup) on K if it satisfies the following
properties:

(1) S(0) = Id and S(t1) ◦ S(t2) = S(t1 + t2) for all t1, t2 ≥ 0.

(2) lim t→0 ‖S(t)u− u‖ = 0 for all u ∈ K.

(3) ‖S(t)u− S(t)v‖ ≤ ‖u− v‖ for all u, v ∈ K and for all t ≥ 0.

Definition 2.9: We say that a semigroup of contractions is generated
by the operator −A : H → H if we have for all u ∈ D(A) that

lim
t→0

1
t
(u− S(t)u) = −Au

So S(t)u can be regarded as the solution of the Cauchy problem

d

dt
u = −Au.

by identifying S(t)u0 = u(t) for some initial condition u(0) = u0 ∈ H.
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To the well-known theorem about the correspondence between linear
semi-groups and linear operators by Yosida and Phillips there exists a non-
linear counterpart using maximal monotone operators instead.

Theorem 2.1: For every maximal monotone operator A on a Hilbert
space H there exists a unique semigroup S(t) on D(A) which is generated
by −A.

Conversely, let C be a closed, convex subset of H. Then for every semi-
group S(t) on C there exists a unique maximal monotone operator A such
that D(A) = C and S(t) coincides with the semi-group generated by −A.

Proof: See [Br], Theorems 3.1/4.1.

Remark 2.2: When speaking of abstract convex sets we recommend
the reader to think of a practical example. Typical examples for convex sets
in a function space like L2(R) would be the set of all positive functions

L2
+(R) := {f ∈ L2(R) | f ≥ 0}

or the set of all sub-markovian functions

L2
m(R) := {f ∈ L2(R) | 0 ≤ f ≤ 1}.

We shall use the following projection theorem for Hilbert spaces:

Theorem 2.2 (Projection Theorem): For each closed convex non-
empty subset C of H there is a projection operator PC : H → C for which
PC(u0) is that point of C with minimal distance to u0 ∈ H; it is characterized
by

PC(u0) ∈ H : (PC(u0)− u0, v − PC(u0)) ≥ 0, v ∈ C.

Proof: See [Sh], Cor. I.2.1, p.9.

It follows from this characterization that the function PC satisfies

‖PC(u0)− PC(v0)‖2 ≤ (PC(u0)− PC(v0), u0 − v0), u0, v0 ∈ H.

From this we see that PC is a contraction, i.e.,

‖PC(u0)− PC(v0)‖ ≤ ‖u0 − v0‖, u0, v0 ∈ H,

and that the operator PC is monotone

(PC(u0)− PC(v0), u0 − v0) ≥ 0, u0, v0 ∈ H.
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Remark 2.3: For our typical examples of a convex set L2
+(R) and

L2
m(R) we have the fairly obvious projections given by PCu : = u+ and

PCu : = u+ ∧ 1, where u+ : = max{u, 0} and u ∧ v : = min{u, v}.

Proposition 2.6 (Minty-Rockafellar): If A : H → H is maximal
monotone and (Jα)α>0 its resolvent thenD(A) is convex and limα→0 Jα(u) =
P

D(A)
(u) for each u ∈ H.

Proof: See [Sh], Prop. IV.1.7, p. 160.

Theorem 2.3 (Brézis): Let A be a maximal monotone operator on the
Hilbert space H and let S(t) be the semi-group generated by −A. Let C be
a closed convex subset of H, such that P

D(A)
(C) ⊂ C. Then the following

properties are equivalent:

i) (I + αA)−1C ⊂ C for all α > 0.

ii) (Au, u− PCu) ≥ 0 for all u ∈ D(A).

iii) S(t)(D(A) ∩ C) ⊂ C for all t ≥ 0.

Proof: See [Br], Prop. 4.5.

The last Theorem is an important fact that one should keep in mind
when we discuss the invariance of convex sets under some resolvent. By
the Theorem this invariance property of the resolvent implies directly the
invariance of the semigroup, which in turn gives the solutions of the Cauchy
problem (see Definition 2.9).
In our typical example L2

+(R) this means that if we have a positivity pre-
serving resolvent we can conclude immediately from a positive initial data
function that the solution of the corresponding Cauchy problem must be
positive, too.
Analogously, a sub-markovian input function u0 would mean that the solu-
tion u(t) to the problem will be sub-markovian again.
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3 Results

As we will show results in three different settings, this section is subdivided
in the corresponding subsections. Of course, these settings are closely related
to each other and do not stand apart.

General Setting as in [Br]

Since we can relax some of the assumptions of the last Theorem and since
the proof in [Br] is quite indirect, we give a direct proof for the relation
between an operator and its resolvent.

Proposition 3.1: Let H be a real Hilbert space, C ⊂ H a closed
convex set and PC the (orthogonal) projection onto C. Let A be an operator
on H and α > 0 such that I + αA : D(A) → H is one-to-one. Define
Jα : = (I + αA)−1. Assume that C ⊂ D(Jα) := Rg(I + αA).

Furthermore, let

(Au, u− PCu) ≥ 0, ∀u ∈ D(A). (1)

Then we have that Jα(C) ⊂ C.

Proof: Let u ∈ C. Then we have

(Jαu− PC(Jαu), Jαu− PC(Jαu))
(1)

≤ (Jαu− PC(Jαu), Jαu+ αAJαu)− (Jαu− PC(Jαu), PC(Jαu))
= (Jαu− PC(Jαu), u)− (Jαu− PC(Jαu), PC(Jαu))
= (Jαu− PC(Jαu), u− PC(Jαu))
≤ 0

by the Projection Theorem. Consequently,

‖Jαu− PC(Jαu)‖2
H ≤ 0.

And this implies that Jαu = PC(Jαu), i.e. Jαu ∈ C.

Note that we needed neither monotonicity of A nor the contraction prop-
erties of the resolvent for the proof.

The other direction of the desired equivalence is based on the statement
of the Theorem 2.3 (Brézis) that

(I + αA)−1C ⊂ C for every α > 0 ⇔ S(t)(D(A) ∩ C) ⊂ C for every t ≥ 0.
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We have to use the implication from left to right for our next proposition.
For that reason we have to make stronger assumptions on A.

Proposition 3.2: Let A be a maximal monotone operator on a real
Hilbert space H and let Jα = (I + αA)−1 be the corresponding resolvent.
Let S(t) denote the semigroup generated by −A.

Furthermore, let C ⊂ H be closed and convex, Jα(C) ⊂ C for all α > 0
and PC be the orthogonal projection in H onto C. Let PC(D(A)) ⊂ D(A).
Then we have

(Au, u− PCu) ≥ 0 for all u ∈ D(A).

Proof: Let u ∈ D(A). We know from Theorem 2.3 (Brézis) that
S(t)(D(A) ∩ C) ⊂ C for all t ≥ 0.

Thus we conclude that S(t)(PCu) ∈ C for all t ≥ 0, since PCu ∈ D(A)
by assumption. With the Projection Theorem we obtain

(u− S(t)PCu, u− PCu) = (u− PCu, u− PCu) + (PCu− S(t)PCu, u− PCu)
≥ ‖u− PCu‖2

H.

This leads to

(Au, u− PCu) = lim
t→0

1
t
(u− S(t)u, u− PCu)

= lim
t→0

1
t
((S(t)PCu− S(t)u, u− PCu) + (u− S(t)PCu, u− PCu))

≥ lim sup
t→0

1
t
((S(t)PCu− S(t)u, u− PCu) + (u− PCu, u− PCu))

≥ lim sup
t→0

1
t
(−‖S(t)u− S(t)PCu‖‖u− PCu‖+ ‖u− PCu‖2)

= lim sup
t→0

1
t
(‖u− PCu‖(‖u− PCu‖ − ‖S(t)u− S(t)PCu‖))

≥ 0,

since S(t) is a contraction on H, i.e. ‖S(t)u− S(t)PCu‖ ≤ ‖u− PCu‖.

Setting as in [Ba]

We will now move to a more special framework based on the work and the
notation of [Ba].

It is defined there a form a(· , · ) which is monotone in the first variable
and linear in the second one. While the work of [Ba] concentrates more on
the relations of this operator to its semigroup we are more interested in its
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relation to its resolvent. We investigate which conditions are sufficient and
necessary for the resolvent to be invariant on convex sets.

Let now V be a real reflexive Banach space densely and continuously
embedded in H and let a : V × V → R be an application satisfying the
following properties:

i) a(u, · ) ∈ V ′ for all u ∈ V.

ii) a(u, u− û) ≥ a(û, u− û) for all u, û ∈ V (monotonicity).

iii)

lim
t→0

a(u+ tv, w) = a(u,w) for all u, v, w ∈ V (hemicontinuity).

iv) For all u0 ∈ V we have that

lim
‖u‖V→∞

a(u, u− u0) + ‖u‖2
H

‖u‖V
= ∞ (coercivity)

To give the reader a better imagination of this setting we recommend to
think always of the typical example Lp(G) ↪→ L2(G) ↪→ Lp ′(G), where
G ⊂ Rn bounded and p ≥ 2.

Remark 3.1: Note that in the setting of [Ba] an operator (A,D(A)) on
H associated to a is defined as follows:

u ∈ D(A) ⇔ u ∈ V and there is some Au ∈ H satisfying (Au,w) = a(u,w)

for all w ∈ V. This is the definition of A by the Riesz isometry identifying
D(A) with the following set:

D(A) := {u ∈ V| V 3 w 7→ a(u,w) is continuous on H}

It is known that this operator A is maximal monotone on H (cf. [Br], Exem-
ple 2.3.7, p.26). This follows from the hemicontinuity and the monotonicity
of a (cf. Proposition 2.2).

We will now establish the above mentioned equivalence with the following
two propositions. A very similar and much more general equivalence is
proven in [Ba] between the semigroup and the operator. Our results fit in
nicely with those of [Ba].

Proposition 3.3: Let C be a closed convex subset of H, PC the pro-
jection from H onto C. Let Jα : = (I + αA)−1, α > 0, be the resolvent of A
on H.
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Suppose that u ∈ V ⇒ PCu ∈ V and a(u, u− PCu) ≥ 0.
Then we have

Jα(C) ⊂ C for all α > 0.

Proof: Let u ∈ D(A). Then by assumption u ∈ V and also by assump-
tion PCu ∈ V. Thus,

(Au, u− PCu) = a(u, u− PCu) ≥ 0.

Then the claim follows from Proposition 3.1.

As for the first two propositions the other direction turns out to be
harder to prove.

Proposition 3.4: Let C, PC and Jα, α > 0, be as in Proposition 3.3
and suppose that Jα(C) ⊂ C for all α > 0. Then we have

u ∈ V ⇒ PCu ∈ V and a(PCu, u− PCu) ≥ 0.

Remark 3.2: This implies also that a(u, u − PCu) ≥ 0, since a(u, u −
PCu) ≥ a(PCu, u− PCu) ≥ 0 by the monotonicity of a(·, ·) (property ii)).

Proof: Let u ∈ V, α > 0. From the properties of the resolvent we
conclude that Jα(PCu) ∈ D(A) ⊂ V. Furthermore, using the definition of
Jα we have that

a(JαPCu, JαPCu− u)
= (AJαPCu, JαPCu− u)

=
1
α

(PCu− JαPCu, JαPCu− u)

= − 1
α

(PCu− JαPCu, PCu− JαPCu) +
1
α

(PCu− JαPCu, PCu− u)

= − 1
α
‖PCu− JαPCu‖2 +

1
α

(JαPCu− PCu, u− PCu)

≤ 0

by the Projection Theorem since JαPCu ∈ C by assumption.
This implies that

a(JαPCu, JαPCu− u) + ‖JαPCu‖2 ≤ ‖JαPCu‖2 ≤ c‖PCu‖ ‖JαPCu‖V

for some constant c > 0, since ‖ · ‖ ≤ c ‖ · ‖V .
By the coercivity in iv) we conclude that (JαPCu)α>0 is bounded in V.

Since JαPCu
α→0−→ PCu in H by Lemma 3.1 stated and proven below, e.g. by

12



[MR], Lemma 2.12, we also know that PCu ∈ V. So, applying Lemma 3.1
with PCu replacing u we can conclude that

a(PCu, PCu− u) = lim
α→0

a(JαPCu, JαPCu− u) ≤ 0.

Hence,
a(PCu, u− PCu) ≥ 0.

The lemma we used for the proof above is part of Lemma 1.8 from
[Ba]. Some more general results are proven there, but we only quote the
statements needed for our work. As the proof of this part of Lemma 1.8 in
[Ba] is not very detailed we give a more explicit proof here.

Lemma 3.1: Let A be maximal monotone, let Jα = (I + αA)−1 be the
resolvent of A and let u ∈ V.

As α → 0 we have that Jαu → u in H, Jαu ⇀ u in V, a(Jαu,w) →
a(u,w) for every w ∈ V and a(Jαu, Jαu) → a(u, u). In particular, D(A) =
H.

Proof: Let u ∈ V and uα : = Jαu.
We know by the result of Minty-Rockafellar (cf. Proposition 2.6) that uα →
P

D(A)
u in H as α→ 0.

By definition of Jα we have that

a(uα, uα − u) =
1
α

(u− uα, uα − u) = − 1
α
‖u− uα‖2 ≤ 0. (2)

So by the coercivity we conclude that {uα}α>0 is bounded in V, hence by
monotonicity (2) implies that

0 = lim
α→0

αa(u, uα − u) ≤ lim sup
α→0

αa(uα, uα − u) = −‖u− P
D(A)

u‖2.

So, u = P
D(A)

u and therefore uα → u in H as α → 0 and hence e.g. by
[MR], Lemma 2.12, it follows that uα ⇀ u in V.

Let w ∈ V, t > 0. Then first using (2) and then monotonicity we obtain

lim inf
α→0

a(uα, w) ≥ 1
t

lim inf
α→0

a(uα, uα − u+ tw)

≥ 1
t

lim inf
α→0

a(u− tw, uα − u+ tw)

= a(u− tw,w),

where we used in the last step that uα ⇀ u in V. Letting t → 0 by hemi-
continuity it follows that

lim inf
α→0

a(uα, w) ≥ a(u,w).
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Replacing w by −w we obtain lim supα→0 a(uα, w) ≤ a(u,w), so

lim
α→0

a(uα, w) = a(u,w) (3)

for all w ∈ V. Furthermore,

a(uα, uα)− a(u, u) = a(uα, uα − u) + a(uα, u)− a(u, u). (4)

But by (2) and monotonicity

a(u, uα − u) ≤ a(uα, uα − u) ≤ 0,

hence by (3)
lim
α→0

a(uα, uα − u) = 0

and thus by (4)
lim
α→0

a(uα, uα) = a(u, u).

Since uα = Jαu ∈ D(A), it follows from the first assertion that u ∈ D(A).
Since u ∈ V was arbitrary, it follows that V ⊂ D(A). But V = H by
assumption.

Setting as in [St]

Following the framework of [St], we now consider a maximal monotone (non-
linear) operator M , perturbed by an unbounded, linear operator Λ. In gen-
eral, the operator obtained by adding these two operators is not maximal
monotone on H. We show firstly, that nonetheless the resolvent of this op-
erator has the usual properties and then give some criteria for which the
resolvent is invariant on convex sets.

We generalize his results to reflexive Banach spaces V and V ′.

Let A := M − Λ : F 7→ V ′, where M , Λ and F are defined as follows.

M : V → V ′ satisfies the properties

(M1) M is hemicontinuous.

(M2) 〈Mu −Mv, u − v〉 ≥ 0 for all u, v ∈ V with equality only if u = v
(strict monotonicity).

(M3) 〈Mu,u−u0〉
‖u‖V →∞ as ‖u‖V →∞ for all u0 ∈ V (coercivity).

Remark 3.3: Since M is defined on all of V, it follows by a result of
Browder and Rockafellar that its monotonicity implies its local boundedness,

14



i.e., M(B) is a bounded set in V ′ whenever B is a bounded set in V (cf. [R]).
We shall use this below without further notice.

Note also that our assumptions are more general than the ones made in
[St]. Still, the results carry over and we will show this below.

Let Λ : D(Λ,H) → H′ be a linear operator generating a C0-semigroup
(Ut)t≥0. We assume that (Ut)t≥0 can be restricted to a C0-semigroup in
V. Then this is the corresponding semigroup to the part of Λ on V. The
corresponding semigroup can be extended to a semigroup on V ′ and its
generator is the dual operator of Λ (cf. [St] and [Pa]).

Let (Vα)α>0 denote the resolvent corresponding to (Λ, D(Λ,H)) and let
(V̂α)α>0 denote the dual resolvent corresponding to the dual operator
(Λ̂, D(Λ̂,H′)) of Λ.

Let (Λ,F) denote the closure of the operator Λ : D(Λ,H) ∩ V → V ′.
Then F is a real Banach space with the norm

‖u‖2
F = ‖u‖2

V + ‖Λu‖2
V ′ .

Note that (A,F) as an operator from V to V ′ is monotone and F is dense
in V. For u ∈ F , v ∈ V we define

a(u, v) := 〈Mu, v〉 and e(u, v) := a(u, v)− 〈Λu, v〉

and for α > 0
eα(u, v) := α e(u, v) + (u, v)H.

Note that the definitions vary a bit from the ones used in [St]. This
difference has its origin in the different definitions of the resolvent. In the
linear case like in [St] one considers the resolvent Gα, where αGα is a con-
traction for all α > 0 and the strong continuity is assumed for α → ∞. In
the nonlinear case however, the resolvent Jα is a contraction right away and
strong continuity holds for α→ 0, so α always has to be thought of as being
’small’. As in [St], we will show that the resolvent is given by the inverse
mapping to eα.

Stannat showed the existence of a resolvent for the operator A in the
case that M is linear and the underlying space V a real Hilbert space. We
now show that this is even the case when M is nonlinear and V a reflexive
Banach space.

Lemma 3.2: Let M satisfy assumptions (M1) − (M3). Then M is a
bijection.

Proof: By [Sh], Corollary II.2.2, M is surjective since it is hemicontin-
uous, monotone, bounded and coercive on a reflexive Banach space. The
injectivity is obvious by (M2).
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Proposition 3.5: Let M satisfy assumptions (M1) − (M3) and f ∈
V ′. Then there exists one and only one solution u ∈ F to the equation
Mu− Λu = f .

Remark 3.4: Note that we consider here the case where A = M − Λ :
F ⊃ V → V ′ is monotone. So A is defined only on a subset of V. This
proposition corresponds to [St], Proposition I.3.2. The proof is very similar,
but since it has not been done before in this setting, we repeat it here.

Proof: Firstly, we will show the existence. We proceed in three steps.

Existence:
For α > 0 let the Yosida-approximations Λα : V → V ′ be defined by

〈Λαu, · 〉 : = 1
α(Vαu− u, · )H.

Step 1: ”Approximation” of the equation Mu − Λu = f through the
equation Mu− Λαu = f .

Since ‖Vα‖L(H) ≤ 1 we obtain that 〈Λαu, u〉 ≤ 0 for all u ∈ V. Λα is
linear and bounded (hence continuous) since

|〈Λαu, v〉| ≤
2
α
‖u‖H‖v‖H ≤ 2

α
‖u‖V‖v‖V

which implies ‖Λαu‖V ′ ≤ 2
α‖u‖V . Therefore, Λα is continuous on V and

thus M − Λα satisfies assumption (M1).
Since

〈(M − Λα)u− (M − Λα)v, u− v〉 ≥ 〈Mu−Mv, u− v〉

(M2) is obvious and (M3) is satisfied since 〈(M − Λα)u, u〉 ≥ 〈Mu, u〉.
By Lemma 3.2 there exists some element uα ∈ V such that Muα−Λαuα = f .

Step 2: Since 〈Muα, uα〉 ≤ 〈Muα − Λαuα, uα〉 = 〈f, uα〉 ≤ ‖f‖V ′‖uα‖V
we obtain that supα>0 ‖uα‖V <∞ by (M3) and consequently,
supα>0 ‖Muα‖V ′ <∞ by the boundedness of M . Hence for v ∈ V

〈Λαuα, v〉 = −〈Muα − Λαuα, v〉+ 〈Muα, v〉
= −〈f, v〉+ 〈Muα, v〉
≤ (‖f‖V ′ + ‖Muα‖V ′)‖v‖V

and therefore supα>0 ‖Λαuα‖V ′ <∞.
Hence there exists some subsequence (αn)n≥1 such that limn→∞ αn = 0,

uαn ⇀ u in V for some u ∈ V, Muαn ⇀ h in V ′ for some h ∈ V ′, and
Λαnuαn ⇀ g in V ′ for some g ∈ V ′ (cf. [Sh], Theorem II.1.1).

By the strong continuity of the dual resolvent (V̂α)α>0 in V ′ we obtain
that

lim
n→∞

〈v, Vαnuαn〉 = lim
n→∞

〈V̂αnv, uαn〉 = 〈v, u〉
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for all v ∈ V ′ and therefore, Vαnuαn ⇀ u in V.
Since ‖Vαnuαn‖V ≤ ‖uαn‖V and ‖ΛVαnuαn‖V ′ = ‖Λαnuαn‖V ′ we con-

clude that supn≥1 ‖Vαnuαn‖F <∞ which implies that u ∈ F and Λu = g.

Step 3: In this last part of the proof, [St] uses a stronger assumption
than (M2), namely strong monotonicity. We will show that this is not
needed - strict monotonicity is enough.
The claim is to show that h = Mu. By monotonicity we have for all v ∈
D(Λ,V) that

lim sup
n→∞

〈Λαnuαn , uαn〉 = lim sup
n→∞

〈Λαnuαn , uαn − v〉+ 〈Λαnuαn , v〉

≤ lim sup
n→∞

〈Λαnv, uαn − v〉+ 〈Λαnuαn , v〉

= 〈Λv, u− v〉+ 〈Λu, v〉.

Since D(Λ,V) ⊂ F dense this inequality holds for all u ∈ F , in particular,
for u = v which implies lim supn→∞〈Λαnuαn , uαn〉 ≤ 〈Λu, u〉. Again by
monotonicity we then obtain

0 ≤ lim sup
n→∞

〈Muαn −Mu, uαn − u〉

= lim sup
n→∞

(〈f −Mu, uαn − u〉+ 〈Λαnuαn , uαn − u〉)

≤ 〈Λu, u〉 − 〈Λu, u〉 = 0.

Thus we have that limn→∞〈Muαn , uαn〉 = 〈h, u〉.
It follows that for all v ∈ V

〈h−Mv, u− v〉 = lim
n→∞

〈Muαn −Mv, uαn − v〉 ≥ 0.

Choosing v : = u − λw, λ > 0, w ∈ V we get λ〈h −M(u − λw), w〉 ≥ 0, so
〈h −M(u − λw), w〉 ≥ 0, so by the hemicontinuity of M for λ → 0 we get
〈h−Mu,w〉 ≥ 0 for all w ∈ V, hence Mu = h.

Uniqueness: Mu − Λu = Mv − Λv implies 0 = 〈Mu −Mv, u − v〉 −
〈Λ(u− v), u− v〉 ≥ 〈Mu−Mv, u− v〉 and hence u = v by (M2).

Thus, the proof is complete.

Define now Mα : V → V ′ by 〈Mαu, · 〉 : = αa(u, · ) + (u, · )H. Then the
conditions (M1) − (M3) hold for Mα, so the above proposition applies to
Mα.

We show now that the resolvent – which Stannat only needed for the
linear case – also exists in the nonlinear case, but with the nonlinear resolvent
equation.
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Proposition 3.6: For all α > 0 there exists a bijection Wα : V ′ → F
which is monotone as a map from V ′ to V(= V ′′) such that

eα(Wαf, v) = 〈f, v〉 for all f ∈ V ′, v ∈ V.

(Wα)α>0 satisfies the resolvent equation

Wα = Wβ ◦ (
β

α
I + (1− β

α
)Wα), α, β > 0.

In particular, Rg(Wα) is independent of α > 0.

Proof: If α > 0 and f ∈ V ′ there exists a unique Wαf ∈ F such that

Mα(Wαf)− Λ(Wαf) = f

by the proposition before and therefore,

eα(Wαf, v) = 〈f, v〉 for all v ∈ V.

We have that

〈f − g,Wαf −Wαg〉 = 〈(Mα − Λ)(Wαf)− (Mα − Λ)(Wαg),Wαf −Wαg〉
≥ 0.

Thus the mapping f 7→ Wαf is monotone from V ′ to V(= V ′′). Wα :
V ′ → F is bijective by construction as we mentioned above.

Let f ∈ V ′, v ∈ V. We have

eβ(Wβ(
β

α
f +Wαf −

β

α
Wαf), v) =

β

α
〈f, v〉+ (Wαf, v)−

β

α
(Wαf, v)

=
β

α
eα(Wαf, v) + (Wαf, v)−

β

α
(Wαf, v)

=
β

α
(eα(Wαf, v)− (Wαf, v)) + (Wαf, v)

=
β

α
(αe(Wαf, v)) + (Wαf, v)

= β e(Wαf, v) + (Wαf, v)
= eβ(Wαf, v).

Hence from the uniqueness part in the preceding proposition we conclude
that Wαf = Wβ(β

αf + (1− β
α)Wαf).

By restricting the operator Wα to H we obtain an operator Gα : H → H
for all α > 0 since F ⊂ H.

18



Proposition 3.7: (Gα)α>0 as defined above defines a resolvent of mono-
tone contractions on H. Rg(Gα) is independent of α > 0 and for all
f ∈ Rg(G1)

lim
α→0

Gαf = f in H.

Proof: Clearly Proposition 3.6 implies that Gα satisfies the resolvent
equation for all α > 0, hence Rg(Gα) is independent of α > 0. For all
f, g ∈ H by the monotonicity of e we obtain that

‖Gαf −Gαg‖2 = (Gαf,Gαf −Gαg)− (Gαg,Gαf −Gαg)
≤ (Gαf,Gαf −Gαg)− (Gαg,Gαf −Gαg)

+α e(Gαf,Gαf −Gαg)− α e(Gαg,Gαf −Gαg)
= eα(Gαf,Gαf −Gαg)− eα(Gαg,Gαf −Gαg)
= (f,Gαf −Gαg)− (g,Gαf −Gαg)
≤ ‖f − g‖‖Gαf −Gαg‖.

So we obtain that

(Gαf −Gαg, f − g) ≥ ‖Gαf −Gαg‖2 ≥ 0

and
‖Gαf −Gαg‖ ≤ ‖f − g‖ for all f, g ∈ H.

Let f := G1h, h ∈ H. Then for all α > 0 by the monotonicity of e

1
α
‖Gαf − f‖2 ≤ 1

α
((Gαf,Gαf − f)− (f,Gαf − f)

+αe(Gαf,Gαf − f)− αe(f,Gαf − f))

=
1
α

(eα(Gαf,Gαf − f)− eα(f,Gαf − f))

=
1
α

(f,Gαf − f)− e(f,Gαf − f)− 1
α

(f,Gαf − f)

= − e1(G1h,Gαf − f) + (f,Gαf − f)
= (f − h,Gαf − f)
≤ ‖f − h‖ ‖Gαf − f‖.

Now consider the restriction of (A,F) to Rg(G1) and denote it by AH.
So, D(AH) = Rg(G1). Clearly, AH is then monotone on H and (I +
αAH)−1 = Gα as operators on H.

In particular, AH is maximal monotone on H, so by Theorem 2.1 it
generates a semigroup S(t) onD(AH). We know that (I+ t

nAH)−nu→ S(t)u
for n→∞ (cf. [Br], Cor. 4.4, p. 126).

19



Remark 3.5: Since (AH, D(AH)) is maximal monotone on H and
(Gα)α>0 is its associated resolvent, we know by Proposition 2.6 (Minty-
Rockafellar) that for all f ∈ H as α > 0 we have Gαf → P

D(AH)
f in H

which is even stronger than the last part of the preceding proposition.

We will now give some conditions under which the resolvent Gα is in-
variant on convex sets and try to split up the conditions required on the
corresponding operator AH. I.e., we try to elaborate the distinct assump-
tions one has to make on the operators M and Λ such that the resolvent is
invariant as desired.

Lemma 3.3: Let u ∈ F . Then Gαu ⇀ u in V as α→ 0. In particular,
D(AH) = H.

Proof: We have for α > 0

a(Gαu,Gαu− u) = e(Gαu,Gαu− u) + 〈ΛGαu,Gαu− u〉

=
1
α

(u−Gαu,Gαu− u) + 〈ΛGαu,Gαu− u〉 (5)

≤ − 1
α
‖u−Gαu‖2 + 〈Λu,Gαu− u〉

since 〈Λv, v〉 ≤ 0 for all v ∈ F by [St], Lemma 2.5.
Hence

a(Gαu,Gαu− u) ≤ ‖Λu‖V ′(‖Gαu‖V + ‖u‖V),

so by (M3) (Gαu)α>0 is bounded in V. It then follows by (5) and the
monotonicity of e that

0 = lim
α→0

α e(u,Gαu− u) ≤ lim sup
α→0

α e(Gαu,Gαu− u)

= −‖u− P
D(AH)

u‖2.

Hence u = P
D(AH)

u, so u ∈ D(AH), i.e. F ⊂ D(AH).
In particular, we conclude that Gαu → u in H as α → 0, so u ∈ V and
Gαu ⇀ u in V as α→ 0. Furthermore, since F is dense in V and V is dense
in H, the last assertion also follows.

We will now state our main theorems. Note that we always use the
projection mapping only on the ’ middle’ space H, which is a Hilbert space.
Thus we can relax our assumptions on V and work with reflexive Banach
spaces.

Theorem 3.2: Let C be a closed convex subset of H, PC the orthogonal
projection onto H.

Suppose we have that
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a) u ∈ F ⇒ PCu ∈ V, ‖PCu‖V ≤ c ‖u‖V for some c ∈ (0,∞) and
a(u, u− PCu) ≥ 0.

b) u ∈ D(Λ,H) ∩ V ⇒ (−Λu, u− PCu) ≥ 0.

Then we have that Gα(C) ⊂ C for all α > 0.

Proof: We have that D(AH) ⊂ F . It is then sufficient to show that for
all u ∈ F we have that

e(u, u− PCu) = a(u, u− PCu)− 〈Λu, u− PCu〉 ≥ 0,

for then we conclude from Proposition 3.1 that Gα(C) ⊂ C.
Let u ∈ F . By construction D(Λ,H)∩V is dense in F , so there exists a

sequence (un)n≥0 ⊂ D(Λ,H) ∩ V with un → u in V and Λun → Λu in V ′.
Moreover, we know that PCun → PCu in H due to the continuity of the

projection.
Since (PCun)n≥0 is bounded in V, we have that PCun ⇀ PCu in V.
Furthermore, using b) we have

−〈Λu, u− PCu〉 = − lim
n→∞

〈Λun, un − PCun〉 ≥ 0.

So by a), (Au, u− PCu) ≥ 0 and the claim follows by Proposition 3.1.

It is not clear if the opposite direction can be shown. We will now relax
the conditions a bit and make some stronger assumptions in order to be able
to prove an equivalence.

Theorem 3.3: Let the objects be defined as in Theorem 3.2. Then the
following are equivalent:

i) Gα(C) ⊂ C.

ii) u ∈ D(AH) ⇒ PCu ∈ V and e(u, u− PCu) ≥ 0.

Proof:
ii) ⇒ i) :
Let u ∈ D(AH). Then

(AHu, u− PCu) = e(u, u− PCu) ≥ 0,

and the claim follows by Proposition 3.1.
i) ⇒ ii):
We proceed similarly as in the proof of Proposition 3.4, but with the

form e(· , · ) instead of a(· , · ).
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Let u ∈ D(AH). Then Gα(PCu) ∈ D(AH) ∩ C ⊂ F ∩ C and

a(GαPCu,GαPCu− u) = e(GαPCu,GαPCu− u) + 〈ΛGαPCu,GαPCu− u〉
≤ 0 + 〈Λu,GαPCu− u〉
≤ ‖Λu‖V ′(‖GαPCu‖V + ‖u‖V),

where the second step follows as in the proof of Proposition 3.4 and since
〈Λv, v〉 ≤ 0 for all v ∈ F (cf. [St], Lemma 2.5).
Hence,

a(GαPCu,GαPCu− u)
‖GαPCu‖V

≤ ‖Λu‖V ′ +
‖Λu‖V ′‖u‖V
‖GαPCu‖V

.

This implies by the coercivity of a(· , · ) that (GαPCu)α>0 ⊂ V is bounded in
V. Since GαPCu → PCu in H as α → 0 by Remark 3.5 and Lemma 3.3, it
follows that PCu ∈ V. Since D(AH) = H by Lemma 3.3 we can now apply
Proposition 3.2 to complete the proof.
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4 Examples

We will now give two examples for our theory.
We will relate to the porous medium equation as posed in [Sh], p. 142.

We use the results proven there and show that we can apply our results to
the solutions of this equation. We achieve this by translating the problem
as posed in [Sh] to the more useful setting of [St]. We solve the problem
there and try to show that this is equivalent to solving it in the original
setting. However, this example has to remain incomplete as we are not able
to show that the projection on H−1 divides the support of a function u into
a positive and a negative part in the same way as the projection on L2.

In the second example, we show that our theory is applicable to the p-
Laplacian. We show that convex sets in L2 are invariant under the resolvent
of the p-Laplacian, perturbed by an unbounded linear operator Λ.

Porous Medium Equation

Firstly, we repeat the setting of the equation.

Let G be a bounded domain in Rn and let T > 0 be fixed. Suppose that
we are given a function d : [0, T ]× R → R such that

d(t, ξ) is measurable in t and continuous in ξ.

|d(t, ξ)| ≤ c|ξ| , for some c > 0 and all ξ ∈ R, 0 ≤ t ≤ T .

(d(t, ξ)−d(t, η))(ξ−η) ≥ 0 , for ξ, η ∈ R, with equality only for ξ = η.

d(t, ξ)ξ ≥ α|ξ|2, for some α > 0 and all ξ ∈ R, 0 ≤ t ≤ T .

Remark 4.1: We have to set the function k(t) used in [Sh], p. 142, to
zero. Furthermore, instead of permitting Lp(0, T ;H) for all 2n/(n + 2) ≤
p < ∞, we only consider the Hilbert space case where p = 2. Note that in
this case the condition on p is automatically fulfilled for all n ∈ N.

We will now give a brief summary of how the solution to the general
problem can be found (cf. [Sh] for more details). Then we will introduce
the notions of propagators and time-space-shifts needed for the results which
we will show in the last part of this section.

Consider the semilinear porous medium equation with Dirichlet boundary
conditions,

∂u(t, x)
∂t

−∆d(t, u(t, x)) = 0, x in G,

d(t, u(t, ξ)) = 0, ξ on ∂G,
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for t ∈ (0, T ], where the second equation is meant in the sense that d(t, u(t, · )) ∈
H1

0 (G) for all t ∈ (0, T ].

Remark 4.2: We set the outer force f(t) as used in [Sh], p. 142, to
zero. Despite these simplifications, the zero function is not necessarily the
only solution as an initial condition u0 ∈ H−1(G) as in [Sh] would only mean
one boundary condition with respect to the time direction, and this initial
condition need not be zero.

It is reasonable to search for this solution in the space H−1(G), the dual
space of the Sobolev space H1

0 (G). We identify H−1(G) with H from our
theory above.

The Riesz-identification of these Hilbert spaces R : H1
0 (G) → H−1(G) is

the isomorphism defined by Rϕ(ψ) = (ϕ,ψ)H1
0
, so we have that R = −∆.

The scalar product on H−1(G) is given by

(f, g)H−1 = (R−1f,R−1g)H1
0
, f, g ∈ H−1

and it satisfies the identities

(f, g)H−1 = H−1〈f,R−1g〉H1
0

= H1
0
〈R−1f, g〉H−1 , f, g ∈ H−1

If we take the scalar product of the equation in the space H−1(G) and
restrict it to L2(G) we obtain the following expression.

(ut, g)H−1 + (d(t, u), g)L2 = 0, g ∈ L2(G)

since
(−∆d(t, u), g)H−1 = (d(t, u), g)L2 , g ∈ L2(G)

Obviously, the function d(t, · ) is now strictly monotone in L2(G) for every
fixed t ∈ [0, T ]. So from now on we identify L2(G) = V from our theory
above.

Thus, we will apply our theoretical setting

V ↪→ H ∼= H′ ↪→ V ′

to the relation

L2(G) ↪→ H−1(G) ∼= H1
0 (G) ↪→ (L2(G))′

and then apply Theorem 3.1 in order to obtain some invariance results for
the resolvent.
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Remark 4.3: Note that as we assume that the outer force f(t) = 0, we
know by [Sh], p. 143, that given some initial condition u0 ∈ L2(G) there is
a unique solution u ∈ L2(0, T ;L2(G)) for the problem satisfying∫

G
(
∂u

∂t
)ϕdx+

∫
G
d(t, u)(−∆)ϕdx = 0, ϕ ∈ H1

0 : ∆ϕ ∈ L2,

lim
t→0

(−∆)−1u(t) = 0 in L2(G).

Especially, for almost every t ∈ [0, T ], u(t) is a function in L2(G).

The main obstacle we are confronted with now is the time-invariant
formulation of the problem. If we identified now Λ = − ∂

∂t and M = ∆d(t, ·)
we would easily see that −Λ is not positive definite as we do not integrate
over the time variable.

This brings yet another problem as now we cannot apply the theory of
[St]. It is not guaranteed that in this space the operator M −Λ generates a
semigroup.

For this reason, we will shift the problem into an environment more
suitable for our theory. Instead of looking at time as an exterior variable
we integrate it in our equations and consider the change of the time-space.
As M − Λ in general does not generate a semigroup in our actual setting
in H−1(G), we define a similar object – the propagator – on this space and
then define a semigroup on the space L2(0, T ;H−1(G)). We show that these
objects have similar properties operating on convex sets.

Definition 4.1: We call an operator-valued function U(· , · ) : D →
B(X), where

D : = {(s, t) ∈ [0, T ]× [0, T ]|0 ≤ s ≤ t},

X a Banach space and B(X) the set of all bounded operators on X, a
propagator (of class C0) if the following conditions are satisfied.

i) The function U(· , · ) is strongly continuous as a function of two vari-
ables in the region D.

ii) For every t ∈ (0, T ] the relation U(t, t) = I holds and for every point
(t, r, s) ∈ (0, T ]3, t ≥ r ≥ s > 0, the equality

U(s, r)U(r, t) = U(s, t)

is valid.

iii) The estimation
sup

(s,t)∈D
‖U(s, t)‖B(X) <∞

holds.
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In our notation U(s, t) will correspond to Ts,t, which we shall define now.

Definition 4.2: For (s, t) ∈ D define the operator Ts,t : H−1(G) →
H−1(G) by

Ts,tu = us(t, ·) u ∈ H−1(G)

where us denotes the unique solution of the porous medium equation with
initial condition u at time s, which is given by [Sh], p. 144. Defined in this
way, Ts,tu is the propagator of u.

We now claim that with this propagator on the space H−1(G) we can
construct a semigroup on the space L2(0, T ;H−1(G)).

Definition 4.3: For all t ∈ [0, T ] and v ∈ L2([0, T ],H−1(G)) let

T tv(s, ·) :=
{
Ts,s+t(v(s+ t, · )), if s+ t ≤ T
0, else

in H−1(G).

Proposition 4.1: Let T t be defined as in the definition above. Then
T t defines a semigroup on L2(0, T ;H−1(G)).

The proof is not difficult and will be left out here. The following result
is helpful and will also be used later in this work:

Proposition 4.2: Let the Banach space V be dense and continuously
embedded in the Hilbert space H; identify H = H′ so that V ↪→ H ↪→ V ′.
The Banach space Wp(0, T ) = {u ∈ Lp(0, T ;V) : du

dt ∈ Lp(0, T ;V ′)} is con-
tained in C([0, T ],H). Moreover, if u ∈ Wp(0, T ) then |u(· )|2H is absolutely
continuous on [0, T ],

d

dt
|u(t)|2H = 2u′(t)(u(t)) a.e. t ∈ [0, T ].

Proof: See [Sh], Prop. III.1.2, p. 106.

So we have that (T t)t≥0 defines a C0-semigroup of contractions onW2(0, T ) ⊂
L2(0, T ;H−1(G)). By construction this is the semigroup generated by−(M−
Λ).

We can now prove some basic relations between the two settings.

Proposition 4.3: Let C ⊂ H−1(G) be closed and convex. Let

C := {f ∈ L2(0, T ;H−1(G)) : f(t, · ) ∈ C ∀ t}
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Then the following are equivalent:

i) (T t)0≤t≤T is C-invariant.

ii) (Ts,s+t)0≤s≤s+t≤T is C-invariant.

Proof: ii) ⇒ i) :
Let f ∈ C. Then we have that f(s+ t, · ) ∈ C. So by assumption Ts,s+tf(s+
t, · ) ∈ C which in turn implies that (T tf)(s, · ) ∈ C for all s ∈ [0, T ], t ∈
[0, T − s].

i) ⇒ ii) :
Let g ∈ C. Then g ∈ C and by assumption T tg ∈ C. By definition we have
that (T tg)(s, ·) ∈ C for all s ∈ [0, T ] and the latter is equal to Ts,s+tg(s, ·)
which implies the assertion.

This leads to an easy conclusion for our porous medium equation exam-
ple.

Corollary 4.1: Let u ∈ H−1(G), C ⊂ H be closed and convex, PC the
usual projection on C.
Assume M(t)(PCu)(u− PCu) ≥ 0 for all t ∈ [0, T ].
Then the propagator (Ts,t)0≤s≤t≤T corresponding to (M(t))0≤t≤T is
C-invariant.

Proof: From Theorem 3.3 we have that under these assumptions the
resolvent of (M(t))0≤t≤T as an operator on L2(0, T ;H−1(G)) is C-invariant.
By Theorem 2.3 this implies that the semigroup generated by (−M(t))0≤t≤T

is C-invariant. Since the semigroup generated by (−M(t))0≤t≤T is equal
to the semigroup defined in Definition 4.3 by uniqueness we conclude by
Proposition 4.3 that the propagator (Ts,t)0≤s≤t≤T is C-invariant.

We would like to show now that these theoretical results are applicable
to the porous medium equation.

Let
M(t)(u) = −∆d(t, u(t)), Λ = − ∂

∂t
.

Let C be the closure of {f ∈ L2(G)|f ≥ 0} in H−1(G). Then C is closed
and convex in H−1(G). Then

C = {f ∈ L2(0, T ;H−1(G))|f(t, · ) ∈ C}.

Remark 4.4: Note that although we defined convex sets in H−1(G) we
will always talk about functions in L2(G). If we assume that the propagator
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is C-invariant, this follows from the preceding results. We obtain for s, t ≥ 0
that u ∈ C ⇒ Ts,s+tu ∈ C. Consequently, Ts,s+tu ≥ 0 and by Proposition
4.3 T tus ∈ C, where us is defined as in Definition 4.3. By definition, we
have that T tu(s, · ) ∈ C, i.e. T tu(s, · ) ≥ 0. By Remark 4.3 we know
that T tus as a solution of the porous medium equation is a function, i.e.
T tus ∈ L2(0, T ;L2(G)). Since T tus = Ts,s+tu, we have that Ts,s+tu ∈ L2(G),
too.

If we could show now the C-invariance of the propagator, we were done.
If we assume this, then by Corollary 4.1 M(t)− Λ is C-invariant. Thus by
Proposition 4.3 the corresponding semigroup is C-invariant. Theorem 2.3
implies that the corresponding resolvent is also C-invariant, which was what
we wanted.

However, we are faced with problems when checking the conditions re-
quired for Theorem 2.3.

For example, we have to check that

(−Λu, u− PCu)L2(0,T ; H−1(G)) ≥ 0.

Doing this calculus in L2(0, T ;L2(G)) with the standard projection PCu =
u+ and assuming appropriate boundary conditions is fairly easy. But how
does the projection PCu in H−1 look like? Does it have the same support as
u+? In the calculus we use the strict separation of the supports of u+ and
u−, but it is not clear whether this separation is the same when applying
the H−1–projection to u.

So, although there would be many useful applications of such a result
(cf. [Sh], p.243), we have to leave this problem open.

The p-Laplacian

Let throughout this subsection G be a bounded open set of Rn and p ≥ 2.

Van Beusekom already proved that the p-Laplacian is a Dirichlet form
on the Sobolev space H1,p

0 (G). Since we need a slightly different setting, we
will repeat the proofs important for us here.

Definition 4.4: For u ∈ H1,p
0 (G) define the p-Laplacian ∆pu as follows:

∆pu = −div(|∇u|p−2∇u) ∈ H−1, p
p−1 (G) = (H1,p

0 (G))′.

Generalised solutions of the variational equation∫
G
v∆pu dx = 0
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are found in the first order Sobolev space H1,p(G). Usually, we will carry
out the integration by parts and write for some v ∈ C∞(G)∫

G
|∇u|p−2(∇u,∇v) dx

instead of
∫
G v∆pu dx.

Consider now the space [0, T ]×G for some T > 0, where the first variable
represents the time component t. Let the p-Laplacian operate on functions
of the second variable x.

Proposition 4.5: The p-Laplacian is a strictly monotone operator on
Lp(0, T ;H1,p

0 (G)).

Proof: Since Lp(0, T ;C∞0 (G)), where C∞0 (G) denotes the space of in-
finitely differentiable functions with compact support, is dense in
Lp(0, T ;H1,p

0 (G)), it is sufficient to show monotonicity on this subset.
Let u, v ∈ Lp(0, T ;C∞0 (G)). Then using the Cauchy-Schwarz inequality

we obtain

〈∆pu−∆pv, u− v〉

=
∫ T

0

∫
G
(∆pu−∆pv, u− v) dx dt

=
∫ T

0

∫
G
|∇u|p−2(∇u,∇u) + |∇v|p−2(∇v,∇v)

−(|∇u|p−2 + |∇v|p−2)(∇u,∇v) dx dt

≥
∫ T

0

∫
G
(|∇u|p + |∇v|p − |∇u|p−1|∇v|

−|∇v|p−1|∇u|) dx dt

=
∫ T

0

∫
G
(|∇u|p−1 − |∇v|p−1)(|∇u| − |∇v|) dx dt. (6)

Both |∇u(t, x)| and |∇v(t, x)| are nonnegative for any point (t, x) ∈
[0, T ]×G, and raising to the power p− 1 is a monotone function on R, so

(|∇u|p−1 − |∇v|p−1)(|∇u| − |∇v|) ≥ 0 (7)

and hence ∫ T

0

∫
G
(|∇u|p−1 − |∇v|p−1)(|∇u| − |∇v|) dx dt ≥ 0.
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To prove strict monotonicity on Lp(0, T ;H1,p
0 (G)), assume u, v ∈

Lp(0, T ;C∞0 (G)) and
∫ T
0

∫
G(∆pu−∆pv, u− v) dx dt = 0. Then (6) and (7)

imply |∇u(t, x)| = |∇v(t, x)| dt⊗ dx – a.e.
Let x ∈ G, t ∈ [0, T ] be fixed. If |∇u(t, x)| = |∇v(t, x)| = 0 we have

∇u(t, x) = ∇v(t, x) = 0. Thus u(t, x) and v(t, x) are a.e. constant, hence
they are zero by Lemma 4.1 below.

Now let us assume |∇u(t, x)| = |∇v(t, x)| 6= 0. In this case, we can write

〈∆pu(t, x)−∆pv(t, x), u(t, x)− v(t, x)〉

=
∫ T

0

∫
G
|∇u(t, x)|p−2|∇u(t, x)−∇v(t, x)|2 dx dt = 0.

This yields ∇u(t, x) = ∇v(t, x) dt⊗ dx – a.e., and we can apply Lemma
4.1 stated below to conclude u = v dt⊗ dx – a.e. Resuming, we have∫ T

0

∫
G
(∆pu−∆pv, u− v) dx dt = 0 ⇒ u = v,

and hence we have strict monotonicity on Lp(0, T ;H1,p
0 (G)) by a density

argument.

Lemma 4.1: If u ∈ Lp(0, T ;H1,p
0 (G)) and ∇u(t, x) = 0 dt ⊗ dx – a.e.,

then u = 0 in Lp(0, T ;H1,p
0 (G)).

Proof: By [HKM], Lemma 1.17, we have that u(t, · ) = 0 for every fixed
t ∈ [0, T ]. This implies that u = 0 on [0, T ]×G.

Proposition 4.6: The p-Laplacian is hemicontinuous on Lp(0, T ;H1,p
0 (G)).

Proof: Let u, v, w ∈ Lp(0, T ;H1,p
0 (G)). We have to show that

lim
ε→0

∫ T

0

∫
G
|∇(u+ εw)|p−2(∇(u+ εw),∇v) dx dt =

∫ T

0

∫
G
|∇u|p−2(∇u,∇v).

For ε ≤ 1 the integrand is dominated by 2p(|∇u|p−1+ |∇w|p−1)|v|, which
is obviously in Lp(0, T ;Lp(G)).

Proposition 4.7: The p-Laplacian is coercive on Lp(0, T ;H1,p
0 (G)).

Proof: Let u ∈ Lp(0, T ;C∞0 (G)). We know there exists a positive con-
stant α such that ∫

G
|u|p dx ≤ α

∫
G
|∇u|p dx.

This is the Poincaré inequality. So we have

‖u‖p
1,p ≤ (1 + α)

∫
G
|∇u|p dx,
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and thus for some u0 ∈ Lp(0, T ;H1,p
0 (G))∫ T

0

∫
G
|∇u|p − |∇u|p−2(∇u,∇u0) dx dt

≥
∫ T

0

1
1 + α

‖u‖p
1,p dt−

∫ T

0

∫
G
|∇u|p−1|∇u0| dx dt

≥ 1
1 + α

‖u‖p

Lp(0,T ;H1,p
0 (G))

−
∫ T

0
‖∇u‖p−1

p ‖∇u0‖p dt

≥ 1
1 + α

‖u‖p

Lp(0,T ;H1,p
0 (G))

− 1
1 + α

‖u‖p−1

Lp(0,T ;H1,p
0 (G))

‖u0‖Lp(0,T ;H1,p
0 (G))

=
1

1 + α
‖u‖p

Lp(0,T ;H1,p
0 (G))

(
1−

‖u0‖Lp(0,T ;H1,p
0 (G))

‖u‖
Lp(0,T ;H1,p

0 (G))

)
,

and for ‖u‖
Lp(0,T ;H1,p

0 (G))
→∞ the last term in brackets vanishes.

Now let Λ = − ∂
∂t be an unbounded linear operator defined as in the

setting of [St] (see the corresponding subsection of Chapter 3 above). We
want to apply our theory to the operator ∆p + ∂

∂t and consider the convex
set C of all positive functions in H := L2(0, T ;L2(G)). Thus, our setting

V ↪→ H ↪→ V ′

translates to

Lp(0, T ;H1,p
0 (G)) ↪→ L2(0, T ;L2(G)) ↪→ (Lp(0, T ;H1,p

0 (G)))′.

As we will see later on, we have to make some boundary assumption on
Λ in order to be able to apply Theorem 3.2. We may consider one of the
following spaces:

V1 := {u ∈ Lp(0, T ;H1,p
0 (G))|u(0, x) = u(T, x)∀x ∈ G}.

V2 := {u ∈ Lp(0, T ;H1,p
0 (G))|u(0, x) = 0∀x ∈ G}.

So V1 would represent the periodic functions in the interval [0, T ], while
V2 corresponds to those functions starting in zero for time zero. Defined like
this V1 and V2 are closed subspaces of a reflexive Banach space, and as such
reflexive Banach spaces themselves with the same norm (cf. [A], Lemma
5.6). Define u+ := max{u, 0} and u− := max{−u, 0}. Thus we have that
u = u+ − u−.

We now have to check the necessary conditions for Theorem 3.2:

a) Obviously, u ∈ F implies that PCu = u+ ∈ Lp(0, T ;H1,p
0 (G)), since

‖PCu‖V = ‖u+‖V ≤ ‖u‖V , so c = 1.
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Finally, we have to check that (∆pu, u− PCu)H ≥ 0:

(∆pu, u− PCu)L2(0,T ;L2(G)) =
∫ T

0

∫
G

∆pu · (−u−) dx dt

= −
∫ T

0

∫
G
|∇u|p−2∇u · ∇u− dx dt

=
∫ T

0

∫
G
|∇u−|p−2∇u− · ∇u− dx dt

=
∫ T

0

∫
G
|∇u−|p dx dt

=
∫ T

0
‖∇u−(t)‖p

Lp(G) dt

≥ 0.

b) Let u ∈ D(− ∂
∂t , L

2(0, T ;L2(G))) ∩ Lp(0, T ;H1,p
0 (G)). Then we have

by Proposition 4.2 that

(−Λu, u− PCu)L2(0,T ;L2(G)) =
∫ T

0

∫
G

∂

∂t
u · −u− dx dt

=
∫ T

0

∫
G

∂u−

∂t
· u− dx dt

=
∫ T

0

∫
G

1
2
∂

∂t
|u−(t, x)| 2 dx dt

=
1
2

∫ T

0

∂

∂t
‖u−(t)‖2

L2(G) dt

=
1
2
(‖u−(T )‖L2(G) − ‖u−(0)‖L2(G)),

Now, in case of the periodic functions V1 we have that this is equal to zero,
while for the functions ’ starting in the origin’ V2 we only have that it is
greater or equal than zero. In both cases, the necessary requirements are
fulfilled and we may apply Theorem 3.2.

Note that this does not mean that u− = 0. As an example, consider
u(t, x) = sin(2π

T t) · x, where x ∈ G ⊂ R.

So, we can apply Theorem 3.2 to the operator ∆p + ∂
∂t and obtain that

for all u ∈ Lp(0, T ;H1,p
0 (G)) all convex sets in L2(0, T ;L2(G)) are invariant

under the corresponding resolvent. For example, we conclude that for every
positive input function u0 its resolvent remains positive, too. By Theorem
2.3 this implies that the corresponding semigroup S(τ) is positive for every
τ > 0, too. So we know that S(τ)u0 = u(τ) = u+(τ). This means that the
unique solution of the Cauchy problem is a positive function for every τ .
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Since C is not fixed, we can conclude that the solutions of the p-Laplacian
belong to any convex set which contains the initial condition u0. We could
construct or find the most suitable convex set for our purpose and find that
all solutions will also be contained in the same set. Since there exist many
convex sets far more complex than the ones we considered here, this result
opens a large field of possible application.
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[Ba] Barthèlemy, L., Invariance d’un Convexe Fermé par un Semi-Groupe
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