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Introduction

In this diploma thesis we will solve a stochastic partial differential equation
with Lipschitz nonlinearities where the noise is a Hilbert space valued Lévy
process. We will also present applications of Lévy processes in Finance, in
particular in stochastic volatility models. The solution of the mentioned
equation may be useful to further improve such models which are up to now
mainly based on Ornstein-Uhlenbeck type processes.

Lévy process have in recent time become more and more important in
Finance applications. They have for example been used to model the volatil-
ity which is implicitly given in financial time series. In a model suggested
by O. E. Barndorff-Nielsen and N. Shepard [BN-S] the stochastic volatility
process is an Ornstein-Uhlenbeck type process, i.e. a solution to

dy(t) = ay(t)dt+ bdx(t)

on R1 (or finite combinations of those). Here a, b are real constants and
x is a Lévy process on R1. Due to the large number of influencing factors
it seems to be more appropriate to construct such processes on an infinite
dimensional state space. We will therefore construct a weak solution of the
analogous equation on a separable Hilbert space H, i.e.

dY (t) = JY (t)dt+ CdX(t)
Y (0) = Y0.

Here X is Lévy process on H, C a bounded linear operator on H and J the,
possibly unbounded, generator of a C0-semigroup on H. For a better fit to
observed implied volatility data it might be useful to add a nonlinear term
in this equation (see the discussion in section 5.4). Therefore we will extend
the equation to

dY (t) = (JY (t) + F (Y (t)))dt+ CdX(t)
Y (0) = Y0,

where F : H → H is a function that fulfills a Lipschitz condition. In
Theorem 4.3.3 we will show that under condition (4.1) (cf. chapter 4) this
equation has a unique mild solution and furthermore that this mild solution
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is also a weak solution. This result is, as far as we know, new for noises that
are Lévy processes with values in a separable Hilbert space. It is also the
central result in this diploma thesis.

In the following chapters we will first give an overview of the theory of
Lévy process and infinitely divisible distributions. Afterwards we present the
construction of the stochastic integral with respect to a martingale measure.
Then we turn to stochastic partial differential equations and prove the above
described existence and uniqueness result. Finally we give an insight to
applications of Lévy processes in Finance. A more detailed description of
the single chapters and sections will follow further below.

The stochastic integral will be constructed with respect to a Hilbert
space-valued martingale measure. Lévy processes as integrators are an im-
portant special case. Real-valued martingale measures were introduced by J.
B. Walsh [Wal] in order to solve stochastic partial differential equations. A
martingale measure is a mapping M : [0, t]×S×Ω → R where [0, t] is a time
interval, (Ω,F , P ) some probability space and S a Lusin topological space.
Simply speaking M is a martingale in the time component and a σ-finite
measure in the S-component. N. El Karoui and S. Méléard [ElKMel] also
studied vector-valued martingale measures. In [App b] by D. Applebaum
a corresponding definition of martingale measures with values in a separa-
ble Hilbert space was given (therein called martingale-valued measures). Of
special interest are martingale measures that fulfill a certain orthogonality
condition and have a covariance structure that can be described by a family
of trace class operators. (For further details and definitions see section 2.5).
The Lévy martingale measure, which corresponds to a Lévy process, has all
of these properties. We will focus on this example and show all important
results for the Lévy martingale measure. Moreover we give a detailed review
of martingale measures in general (see section 2.5).

Real valued stochastic integrals with Hilbert space-valued martingales as
integrators were constructed by H. Kunita [Kun]. We will refer to this as the
weak stochastic integral, since for simple functions it is a sum of inner prod-
ucts of integrands with increments of the martingale. Consequently there
is also a strong stochastic integral : This integral takes values in the same
Hilbert space as the integrator. The integrands are mappings with images
in a certain class of linear operators. For the case where the martingales are
continuous this kind of integral was constructed by B.L. Rozovskii [Roz].
More general is the construction of M. Métivier [Mét]. Here the integrators
are allowed to be semimartingales and discontinuous. Both types of stochas-
tic integrals, the weak and the strong one, are Itô integrals in the sense
that they are defined as L2-limits of the integrals of simple functions which
approximate the integrand in a proper L2-space. Another approach is to
define the stochastic integral as a limit in distribution. This was done by A.
Chojnowska-Michalik [ChM] for the semimartingales being Lévy processes
and with deterministic integrands. A stochastic integral with respect to
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martingale measures has already been developed in [Wal] for the real-valued
case. In [App b] this construction was carried forward to Hilbert spaces, i.e.
martingale measures and integrands are both Hilbert space-valued.

We turn back to the equation from above and add a time dependent
drift:

dY (t) = (JY (t) + f(t))dt+ CdX(t) (1)
Y (0) = Y0.

Again X is an H-valued Lévy process, where H shall denote a Hilbert space
which will be our state space. For some ε > 0 we impose the condition

sup
0≤t≤T̃

‖∆X(t)‖ ∈ L2+ε(R) = L2+ε(Ω → R)

on X, which is thereby in L2(H) = L2(Ω → H) at any time 0 ≤ t ≤ T . J
is the, possibly unbounded generator, of a C0-semigroup (S(t), t ≥ 0) on H
and C a bounded linear operator on H. f : [0, T ] → L2(H) is an adapted
stochastic process, which is Bochner integrable on [0, T ], and Y0 ∈ L2(H) is
a random initial value. We will construct a weak solution of this equation.
Y : [0, T ] → L2(H) is a weak solution of (1) if Y is Bochner integrable on
[0, T ] and for each y ∈ D(J∗) and every t ∈ [0, T ]

(Y (t)− Y0, y)H

=
∫ t

0
((Y (s), J∗y)H + (f(s), y)H)ds+ (X(t), C∗y)H .

(Here (·, ·)H denotes the inner product in H).
In the case that the integrator X is a Brownian motion this equation was

studied by G. Da Prato and J. Zabczyk in [DaPrZa], Chapter 5. They show
existence and uniqueness of a weak solution. For f ≡ 0 the solution of (1)
is called Ornstein-Uhlenbeck process. A. Chojnowska-Michalik [ChM] has
first studied this equation for an integrator X being a Hilbert space-valued
Lévy process. A unique weak solution (therein called mild solution) is con-
structed. The same result was obtained by D. Applebaum [App b] using
alternative methods. As mentioned above the stochastic integral with re-
spect to martingale measures is constructed there. The solution of equation
(1) is then found based on this integration theory. It is worth to mention
that this approach has the advantage that the Lévy Itô decomposition is pre-
served within the structure of the solution. We will pick up this construction
in this diploma thesis and fully work out the argumentation. Furthermore
in our equation we will also allow the additional drift term f .

Now we discuss the fundamentally new result. Compared with equation
(1) the situation is more complicated if non-linear drift terms are introduced.
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We consider the following equation with a Lipschitz drift:

dY (t) = (JY (t) + F (Y (t)))dt+ CdX(t) (2)
Y (0) = Y0.

The mapping F : H → H is measurable and Lipschitz on [0, T ]. Again we are
interested in a weak solution, i.e. a stochastic process Y : [0, T ] → L2(H),
Bochner integrable on [0, T ], such that for all y ∈ D(J∗) and all t ∈ [0, T ]

(Y (t)− Y0, y)H

=
∫ t

0
((Y (s), J∗y)H + (F (Y (s)), y)H)ds+ (X(t), C∗y)H .

The idea is, to show existence of a mild solution, i.e. a stochastic process Y
with

Y (t) = S(t)Y0 +
∫ t

0
S(t− s)F (Y (s))ds+

∫ t

0
S(t− s)CdX(s). (3)

It is then obtained that in our case a mild solution is also a weak solution.
For a Gaussian noise X problem (2) was also examined in [DaPrZa] (see
Chapter 7). For non-Gaussian noise these equations have recently been
studied, but mainly in the real-valued case. S. Albeverio, J.-L. Wu and T.-
S. Zhang [AlWuZh] give the solution to an equation of the type (2) (also
allowing a non-constant diffusion coefficient) driven by a pure Poisson noise.
Poisson noise usually is a compensated Poisson random measure (which is an
example for a real-valued martingale measure; for the definition see section
2.3). One should also mention C. Müller [Mül] and D. Applebaum and J.-L.
Wu [AppWu], where the latter also allow for a Gaussian part in the noise.
C. Knoche [Kno a] studies (2) (with non-constant diffusion coefficient) on
an infinite dimensional Hilbert space where the integrator is a compensated
Poisson random measure (see also [Kno b]).

To our knowledge there are no results on the equation (2) on infinite
dimensional Hilbert spaces where the integrator is a general Lévy process
with values in the same Hilbert space. We will show in this diploma thesis
that this equation has a unique weak solution, which is the central result.
This is done in the framework of [App b], where the stochastic integral is
constructed with respect to Hilbert space-valued martingale measures. We
are able to show existence and uniqueness of a weak solution to (2) under
certain condition. This condition is the already mentioned condition on the
jumps of the Lévy process X: For some ε > 0

sup
0≤t≤T̃

‖∆X(t)‖ ∈ L2+ε(R) = L2+ε(Ω → R). (4)

Our proof (see section 4.3) uses a fixed point argument.
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We will now give an overview over the single chapters of this diploma
thesis with special emphasis on contributions which are new compared to
the literature cited above. Apart from the description here we also refer
to the more detailed introductions at the beginning of every chapter. In
Chapter 1 the theory of infinitely divisible measures is developed. An un-
derstanding of infinitely divisible measures is important in the study of Lévy
processes as such measures are the distributions of the increments of Lévy
processes. The results presented here are mainly taken from [Lin]. The most
important one is the Lévy Khinchin Representation (section 1.4) by which
every infinitely divisible measure can be decomposed into a Dirac measure,
a Gaussian measure and a “jump”-part given by the generalized exponent
of a Lévy measure.

Lévy processes on a separable Hilbert space H will be studied in Chap-
ter 2. We will first give some useful properties of H-valued martingales
and mention some results for the Gaussian case before we come to general
Lévy processes in section 2.3. Given a Lévy process X we introduce the
corresponding Poisson random measure and the compensated Poisson ran-
dom measure which in the time component is a martingale. Following the
approach of S. Albeverio and B. Rüdiger [AlRü] we construct an integral
with respect to the compensated Poisson random measure with determin-
istic functions as integrands. We will also cite their main result in the
mentioned paper: the Lévy Itô decomposition on a separable Hilbert space
(therein shown for general separable Banach spaces). In the final section
of this chapter we will extend the definition of martingale measures to the
Hilbert space case. As mentioned this extension was first done in [App b]
and therefore we have taken most of the definitions from there. Note that we
will use a slightly different definition of orthogonality for martingale mea-
sures (compare the introduction to the chapter). A very important example
- and we will show that it really is an example - is the Lévy martingale
measure, since it describes the martingale part of a Lévy process. Of special
interest are nuclear martingale measures which in the martingale compo-
nent have covariance operators that are non-negative self-adjoint and trace
class. Each Lévy martingale measure has this property which is also proved
in detail.

In Chapter 3 stochastic integrals with respect to nuclear martingale mea-
sures are introduced. For the real-valued case this was also done in [Wal].
The construction in the H-valued situation follows the ideas of [App b].
However some details were left out there and we will give the precise argu-
mentation here. First we construct the strong stochastic integral, where the
integrands are certain operator-valued mappings, by an isometry. Next we
will also introduce the real-valued weak stochastic integral (in section 3.2)
with H-valued integrands. The construction is quite similar to the one of
the strong stochastic integral. However we are able to extend the result from
[App b] and obtain a larger class of integrands. The weak stochastic integral
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is very useful to solve the stochastic equations in Chapter 4, since one can
easily “switch” between weak stochastic integrals and an inner product of
some Hilbert space element with the strong stochastic integral. A Fubini
theorem was given in [App b] for a deterministic integral and a stochastic
integral with respect to a (real-valued) compensated Poisson random mea-
sure. We allow for arbitrary Hilbert space-valued martingale measures as
integrators for the stochastic integral in our version of the theorem.

Stochastic partial differential equations with Lévy process are then stud-
ied in Chapter 4. We introduce the stochastic convolution corresponding to
the C0-semigroup (S(t), t ≥ 0). In section 4.2 existence and uniqueness
of a weak solution to (1) is shown. As mentioned the result was obtained
in [App b] with methods similar to the ones in [DaPrZa]. We give a de-
tailed proof of the existence and the uniqueness guided by the arguments of
[DaPrZa] for the Gaussian case. In section 4.3 we come to the main result
of this diploma thesis which is stated in Theorem 4.3.3. We will prove the
existence of a unique weak solution to the following equation with Lipschitz
nonlinearity term F (Y ):

dY (t) = (JY (t) + F (Y (t)))dt+ CdX(t)
Y (0) = Y0.

(Compare equation (2) above). As mentioned the result can be established
under condition (4). The solution is a fixed point of the contraction Y 7→
ψ(Y ) given by

ψ(Y )(t) =
∫ t

0
S(t− s)F (Y (s))ds+ S(t)Y0 +XJ,C(t)

which is uniquely determined by Banach’s fixed point theorem.
Lévy processes have played an important role in Finance in recent time.

Whereas traditionally financial models use Brownian motions to model fi-
nancial time series many newer models use Lévy processes since they allow
for jumps. It is an observation that financial data, such as for example
stock prices, often contain bigger changes which can hardly be explained
by a normal distribution. These large changes can be seen as the result of
external shocks that force economic agents to sudden reactions at the mar-
ketplace. Chapter 5 is therefore devoted to the use of Lévy processes, which
may have both a Gaussian and a jump part, in Finance. We will present an
option pricing model with pure jump Lévy processes which was developed
by E. Eberlein and U. Keller in [Ebe] and [EbeKel] and give an overview
over stochastic volatility modelling as it was carried out by O. E. Barndorff-
Nielsen and N. Shepard [BN-S] as well as by E. Nicolato and E. Venardos
[NicVen]. We will start with a review of the classical Black Scholes model
which was set up by F. Black and M. Scholes [BlaSch]. A motivation for the
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use of Lévy processes follows which takes into account empirical and theo-
retical results. In section 5.3 we will then present the model of E. Eberlein
and U. Keller which is based on generalized hyperbolic Lévy motions. The
final section deals with the stochastic volatility model from [BN-S]. As for
the generalized hyperbolic Lévy motions we will give an option pricing for-
mula, a result from [NicVen]. Special focus is on the modelling of stochastic
volatility itself by a stochastic process. O. E. Barndorff-Nielsen and N. Shep-
ard suggest to represent stochastic volatility by an Ornstein-Uhlenbeck type
process. Since changes in volatility are interpreted as the result of external
shocks and these shocks can have various sources there are strong arguments
to consider processes in infinite dimensional state spaces. Here the results
of section 4.2 turn out to be useful. Empirical results from G. Bakshi, N.
Ju and H. Ou-Yang [BaJuYa] may give the motivation to introduce non-
linearities in the dynamics of stochastic volatility processes. The stochastic
equations studied in section 4.3 involve an additional Lipschitz drift term
compared to Ornstein-Uhlenbeck type processes in infinite dimension. This
may give rise for further progress in the modelling of stochastic volatility on
the basis of Lévy processes.

I would like to thank Prof. Dr. Michael Röckner who encouraged me to
study stochastic partial differential equations with Lévy noise. His lectures,
which I have visited since my first semester in Bielefeld, gave me a deep
insight into modern mathematics. I have learnt very much about the con-
cepts and methods of Stochastic Analysis from him. Moreover I am greatful
for many helpful discussions and proposals in connection with my diploma
thesis.

I also like to express my gratitude to Prof. Dr. Yuri Kondratiev for
giving a report on this thesis. During the visit of Prof. David Applebaum
from the University of Sheffield in Bielefeld I had the opportunity to present
him some of my results where I would like to thank him for. Dr. Wilhelm
Stannat I thank for answering some of my questions. I am indebted to
Claudia Knoche who was a very good support by making last corrections
on the text. Special thanks go to Stefanie Julia Pajak, Sven Struckmeier,
Lars Scheele and Sebastian Köhne. Lust but not least I thank my parents,
Annelore and Herbert Stolze.
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Chapter 1

Infinitely Divisible Measures

In this chapter we review the theory of infinitely divisible measures. The re-
sults presented here are mainly taken from [Lin]. Since we will introduce in-
finitely divisible measures on general separable Banach spaces we will shortly
review the construction and some useful properties of the Bochner integral
in section 1.1. In the following section an infinitely divisible measure will
be defined as a probability measure which can for any n ∈ N be written
as the n-fold convolution of another measure, the n-th root. Degenerated
measures and Gaussian measures are simple examples for infinitely divisible
measures. Section 1.3 gives the construction of exponents and generalized
exponents of so-called Lévy measures. With this construction infinitely di-
visible measures can be generated by a certain class of σ-finite measures
under a one-to-one mapping. Such a σ-finite measure, the Lévy measure,
can be interpreted as the intensity of jumps for a process whose increments
are distributed with the corresponding probability measure. The main result
of this chapter is then the Lévy Khinchin Representation (section 1.4) by
which every infinitely divisible measure can be decomposed in a degenerated
measure, a Gaussian measure and a “jump”-part given by the generalized
exponent of a Lévy measure.

1.1 The Bochner Integral

Let (E, ‖ · ‖) be a Banach space over R (or C). By E′ we will denote the
(topological) dual of E, i.e. the set of all linear continuous mappings from
E into R (or C). Let 〈 , 〉 : E × E′ → R (or C) denote the corresponding
dualization. Let B(E) be the σ-algebra of Borel sets of E, i.e. the σ-algebra
generated by the open subsets of E.

We will shortly repeat the construction and some basic properties of the
Bochner integral. Let (X,A, µ) be a measure space. A function f : X → E
is said to be strongly measurable if it is measurable with respect to A and
B(E) (for short: measurable) and has separable range f(X) ⊂ E. Note that

9
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if E is separable every E-valued measurable function is strongly measurable.

Lemma 1.1.1. Let (X,A) be a measurable space and E be a Banach space.
Then

• the collection of all measurable functions from X to E is closed under
the formation of pointwise limits.

• the collection of all strongly measurable functions from X to E is closed
under the formation of pointwise limits.

Proof. (cf. [Coh] Prop. E.1.).

A function f : X → E is Bochner integrable iff f is strongly measurable
and ∫

X
‖f(x)‖dµ <∞.

Then there exist simple functions fn, i.e. strongly measurable functions with
finitely many values (cf. [Coh] Prop. E.2.), which are Bochner integrable
such that

f(x) = lim
n→∞

fn(x) for all x ∈ X

and
‖fn(x)‖ ≤ ‖f(x)‖ for all x ∈ X.

For such a simple function g =
∑n

i=1 ai1Ai the Bochner integral can be
defined in the usual way by∫

X
gdµ =

n∑
i=1

aiµ(Ai).

Then for the approximating sequence {fn} of f∥∥∥∥∫
X
fndµ−

∫
X
fmdµ

∥∥∥∥ ≤ ∫
X
‖fn − f‖dµ+

∫
X
‖fm − f‖dµ

and by the dominated convergence theorem for real functions this tends to
0 for m,n → ∞. Hence {

∫
X fndµ} is a Cauchy sequence in E and we can

define ∫
X
fdµ = lim

n→∞

∫
X
fndµ

independent of the chosen sequence.
The Bochner integral has the following basic properties

Proposition 1.1.2. Let (X,A, µ) be a measure space and f : X → E
Bochner integrable, then ∥∥∥∥∫

X
fdµ

∥∥∥∥ ≤ ∫
X
‖f‖dµ.
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Proof. (cf. [Coh] Prop. E.5.).

For 1 ≤ p <∞ we define

‖f‖p :=
(∫

X
‖f‖pdµ

) 1
p

and for p = ∞
‖f‖∞ := inf

µ(N)=0
sup

x∈X\N
‖f(x)‖.

One can show that ‖f‖p = 0 implies that f = 0 µ-a.s. (compare for example
[Alt], 1.12 on p.45/46). Then we define for 1 ≤ p ≤ ∞

Lp((X,A, µ) → E) := {f : X → E; f strongly measurable and ‖f‖p <∞}

where by definition f = g in Lp((X,A, µ) → E) iff f = g µ-a.e.

Proposition 1.1.3 (Riesz-Fischer). Lp((X,A, µ) → E) is a Banach
space for every 1 ≤ p ≤ ∞. Let {fn} ⊂ Lp((X,A, µ) → E) with fn → f in
Lp((X,A, µ) → E) for some f . Then there exists a subsequence {fn′} with
fn′ → f µ-a.e.

Proof. The first assertion is the statement of [Alt] Lemma 1.13 and Propo-
sition (Satz) 1.17. The second assertion follows directly from the proofs of
these propositions.

Lemma 1.1.4 (Hölder-Inequality). Let p, q ∈ [1,∞] with 1/p+ 1/q = 1
(1/∞ := 0). Then for f ∈ Lp((X,A, µ) → E) and g ∈ Lq((X,A, µ) → E)
we have fg ∈ L1((X,A, µ) → E) and

‖fg‖1 ≤ ‖f‖p‖g‖q.

Proof. (cf. [Alt] Lemma 1.14).

Lemma 1.1.5 (Minkowski-Inequality). Let f, g ∈ Lp((X,A, µ) → E).
Then f + g ∈ Lp((X,A, µ) → E) and

‖f + g‖p ≤ ‖f‖p + ‖g‖p.

Proof. (cf. [Alt] Lemma 1.16).

Proposition 1.1.6 (Lebesgue’s dominated convergence Theorem).
Let (X,A, µ) be a measure space and g be a real valued integrable function
on X. Suppose f and f1, f2, . . . are strongly measurable E-valued functions
on X such that

f(x) = lim
n→∞

fn(x) for µ-a.e. x ∈ X

and ‖fn(x)‖ ≤ g(x) µ-a.e. Then f and f1, f2, . . . are Bochner integrable
and ∫

X
fdµ = lim

n→∞

∫
X
fndµ.
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Proof. (cf. [Coh] Thm. E.6.).

Proposition 1.1.7. Let (X,A, µ) be a measure space and f : X → E
Bochner integrable. Then for each a ∈ E′〈∫

X
fdµ, a

〉
=
∫

X
〈f(x), a〉dµ(x).

Proof. (cf. [Coh] Prop. E.11.).

This can be generalized to closed linear operators:

Proposition 1.1.8. Let E be separable, A be a closed linear operator on E
and f : X → E Bochner integrable. If Af is also Bochner integrable then

A

∫
X
f(x)dµ(x) =

∫
X
Af(x)dµ(x).

Proof. (cf. [DaPrZa], Prop. 1.6).

1.2 Definition of Infinitely Divisible Measures

Now let (E, ‖ · ‖) be a separable real Banach space, and E′ its topological
dual.

By M(E) we will denote the set of all finite measures on E (i.e. on B(E))
and by P(E) the set of all probability measures in M(E). For measures µ, ν
on E the convolution µ ∗ ν is defined by

(µ ∗ ν)(B) =
∫

E
µ(B − x)dν(x) for all B ∈ B(E).

Recall that the characteristic function of µ is the function µ̂ from E′ to
C given by µ̂(a) =

∫
E exp(i〈x, a〉)dµ(x).

Lemma 1.2.1. Let µ, ν ∈ M(E). Then µ = ν iff µ̂(a) = ν̂(a) for all a ∈ E′.

Proof. (cf. [Lin] Prop. 1.7.1.).

Lemma 1.2.2. Let µ, ν be measures on E. Then for each a ∈ E′ we have

(µ̂ ∗ ν)(a) = µ̂(a)ν̂(a).

Proof.

(µ̂ ∗ ν)(a) =
∫

E
exp(i〈x, a〉)d(µ ∗ ν)(x)

=
∫

E

∫
E

exp(i〈x+ y, a〉)dµ(x)dν(y)

=
∫

E
exp(i〈x, a〉)dµ(x)

∫
E

exp(i〈y, a〉)dν(y) = µ̂(a)ν̂(a).
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A probability measure µ ∈ P(E) is said to be infinitely divisible provided
that for each natural number n ∈ N there exists a measure µn ∈ P(E) such
that

µ = (µn)n (1.1)

where µn is the n-fold convolution of µ with itself.

Lemma 1.2.3. µ ∈ P(E) is infinitely divisible iff for each n ∈ N there
exists a measure µn ∈ P(E) such that

µ̂(a) = (µ̂n(a))n for all a ∈ E′.

Proof. Follows by Lemma 1.2.2.

Recall the definition of the weak topology on M(E). A basis of neigh-
borhoods of µ ∈ M(E) in the weak topology is given by{

ν ∈ M(E);
∣∣∣∣∫

E
fidµ−

∫
E
fidν

∣∣∣∣ < ε, 1 ≤ i ≤ n

}
,

where f1, . . . , fn ∈ Cb(E) (the set of all bounded continuous functions from
E to R). If a sequence of measures {µn} ⊂ M(E) converges with respect to
this topology, which is equivalent to∫

E
fdµn →

∫
E
fdµ for all f ∈ Cb(E),

we write µn ⇒ µ.
A set K ⊂ M(E) is weakly relatively compact if for every sequence

{µn} ⊂ K there exist a subsequence {µn′} and a measure µ such that
µn′ ⇒ µ.

This concept can be moderated: We will call a set K ⊂ M(E) relatively
shift compact if there exist elements {xµ}µ∈K ⊂ E such that {µ∗δxµ ;µ ∈ K}
is weakly relatively compact. If a sequence {µn} is relatively shift compact
then we call a sequence {xn} ⊂ E centralizing if {µn∗δxn} is weakly relatively
compact. In particular, every set K which is weakly relatively compact is
relatively shift compact since for any sequence in K the sequence which is
constantly equal to 0 is a centralizing sequence.

Lemma 1.2.4. A sequence {µn} in P(E) converges weakly iff {µn} is weakly
relatively compact and for each a ∈ E′ the limit limn→∞ µ̂n(a) exists in C.
Moreover if µn ⇒ µ then µ̂(a) = limn→∞ µ̂n(a) for every a ∈ E′.

Proof. (cf. [Lin] Prop. 1.8.2.).

Lemma 1.2.5. Let µ be an infinitely divisible measure. Then µ̂(a) 6= 0 for
all a ∈ E′ and there exists a uniquely determined function h from E′ into C
with the following properties:
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• h(0) = 0.

• h is continuous.

• µ̂(a) = exp(h(a)) for all a ∈ E′.

Moreover, the measures µn with (µn)n = µ are uniquely determined and
their characteristic functions are given by

µ̂n(a) = exp(h(a)/n), a ∈ E′.

Proof. µ̂(a) 6= 0 for all a ∈ E′ by [Lin] Prop. 5.1.1. Then by [Lin] Prop.1.9.1.
h exists and is uniquely determined. Finally the uniqueness of µ and µ̂ is
shown in [Lin] Prop. 5.1.4.

Now since the measure µn in (1.1) is uniquely determined we write µ1/n

instead of µn and call it the n-th root of µ. Then µα can be easily defined
for every nonnegative rational α by µm/n := (µ1/n)m if α = m/n. This
definition can be extended for any α ≥ 0 by approximation:

Lemma 1.2.6. Let µ be an infinitely divisible measure. Then for every α ≥
0 there exists a measure µα with characteristic function µ̂α(a) = (µ̂(a))α.
For any sequence {αn} ⊂ Q+ which converges to α we have µαn ⇒ µα. µα

has the following properties:

µα+β = µα ∗ µβ for all α, β ≥ 0,
µ0 = δ0.

Proof. (see [Lin] p.60/61: Remark and Prop. 5.1.7. and Corollary 5.1.8.).

A measure µ ∈ M(E) is said to be degenerated if there exists an element
x ∈ E with µ({x}) = µ(E). Then we also write δx instead of µ.

Proposition 1.2.7. Let µ be a degenerated measure. Then µ is infinitely
divisible.

Proof. If µ = δx then choose µn := δ(1/n) x.

Let Q be a bounded linear operator from E′ into E, i.e. Q ∈ L(E′, E).
It is said to be symmetric, if for all a1, a2 ∈ E′

〈Qa1, a2〉 = 〈Qa2, a1〉.

Q is called non-negative provided that 〈Qa, a〉 ≥ 0 for all a ∈ E′.
A probability measure % ∈ P(E) is called Gaussian symmetric if there

exists a non-negative and symmetric operator Q ∈ L(E′, E) such that

%̂(a) = exp(−〈Qa, a〉/2) for all a ∈ E′.
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Q is then called the covariance operator of %. By G(E) denote the set of
all Gaussian symmetric measures defined on E. In section 2.2 we will give a
more intuitive definition for Gaussian measures on Hilbert spaces. For the
moment it may be helpful to observe that in the finite dimensional case of
Rn the characteristic function of a Gaussian measure is formally given in
the same way as above, where Q can be represented by an n×n-matrix. We
have:

Lemma 1.2.8. G(E) is closed under convolutions.

Proof. Let %, σ ∈ G(E) and R,S be the corresponding covariance operators.
Then we have

%̂(a)σ̂(a) = exp(−(〈Ra, a〉+ 〈Sa, a〉)/2) = exp(−〈(R+ S)a, a〉/2).

As R+S is again non-negative and symmetric the result follows immediately
from Lemma 1.2.2.

Proposition 1.2.9. Each Gaussian symmetric measure is infinitely divisi-
ble.

Proof. (cf. [Lin] Prop. 5.2.2.).

1.3 Exponents of Lévy Measures

Now for any finite measure λ ∈ M(E) we define a mapping e(λ) on B(E)
by

e(λ)(B) := e−λ(E)
∞∑

k=0

λk(B)/k! for each B ∈ B(E).

We call e(λ) the exponent of λ.

Lemma 1.3.1. For each λ ∈ M(E) the exponent e(λ) is a probability mea-
sure on E. Moreover its characteristic function is given by

ê(λ)(a) = exp(λ̂(a)− λ̂(0)) = exp
(∫

E
(ei〈x,a〉 − 1)dλ(x)

)
.

Proof. Define µn by

µn(B) :=

(
n∑

k=0

λk(E)/k!

)−1 n∑
k=0

λk(B)/k! for all B ∈ B(E).

Note that λk(E) = (λ(E))k, therefore we have limn→∞ µn(B) = e(λ)(B)
for all B ∈ B(E). So, µn ⇒ e(λ) by Portmanteau’s theorem, hence for all
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a ∈ E′

ê(λ)(a) = lim
n→∞

µ̂n(a) = e−λ(E) lim
n→∞

(
n∑

k=0

∫
E
ei〈x,a〉d(λk/k!)(x)

)

= e−λ(E)
∞∑

k=0

λ̂k(a)/k! = e−λ(E)
∞∑

k=0

(λ̂(a))k/k!

= exp(λ̂(a)− λ̂(0)) = exp
(∫

E
(ei〈x,a〉 − 1)dλ(x)

)
.

Proposition 1.3.2. The probability measure e(λ) is infinitely divisible.

Proof. (cf. [Lin] Cor. 5.3.3.).

With degenerated measures, Gaussian symmetric measures and the ex-
ponent of a measure constructed above we have already seen three examples
of infinitely divisible measures. As the infinitely divisible measures are by
definition closed under convolution we get the following

Corollary 1.3.3. For x ∈ E, % ∈ G(E) and λ ∈ M(E) the convolution
δx ∗ % ∗ e(λ) is infinitely divisible.

We will now study limits of finite measures and their relation to limits
of the corresponding exponents. This will lead us to the central concept of
Lévy measures introduced at the end of this section.

Proposition 1.3.4. If {λn} ⊂ M(E) is weakly relatively compact then so
is {e(λn)} ⊂ P(E). Furthermore, if λn ⇒ λ in M(E) then e(λn) ⇒ e(λ) in
P(E).

Proof. (cf. [Lin] Prop. 5.3.4. and Cor. 5.3.5.).

Proposition 1.3.5. Let {λn} ⊂ M(E) be a sequence of finite measures such
that {e(λn)} is relatively shift compact. Then there exist a subsequence n′

and a σ-finite measure λ with the following properties:

1. For each δ > 0 we have λ{‖x‖ > δ} <∞.

2. λ({0}) = 0.

3. For each δ > 0 such that λ{‖x‖ = δ} = 0 it follows that

λn′
∣∣
{x∈E; ‖x‖>δ} ⇒ λ

∣∣
{x∈E; ‖x‖>δ}.

Proof. (cf. [Lin] Prop. 5.3.9.).
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Later on, λ will be interpreted as the intensity of jumps of a stochastic
process. Notice that property 2. above is accompanied with the intuition
that there might be no jumps of size zero. Property 1. means that “big”
jumps have a certain finite intensity and therefore only occur “from time
to time”. If we restrict the intensity measure λ to these jumps, property 3.
gives us that λ

∣∣
{x∈E; ‖x‖>δ} is a weak limit of finite measures.

In order to find a centralizing sequence for {λn} this gives the idea that
one has to “compensate” small jumps. Usually this is done by setting δ = 1
as an upper boundary. Then for λ ∈ M(E) we define

x(λ) := −
∫
{‖x‖≤1}

xdλ(x)

(where the integral is a Bochner integral).
Defining the generalized exponent es(λ) of λ ∈ M(E) by

es(λ) := e(λ) ∗ δx(λ)

we have the following

Proposition 1.3.6. Let {λn} ⊂ M(E) be such that {e(λn)} is relatively
shift compact. Then the centralizing sequence for {e(λn)} is {x(λn)}, i.e.
{e(λn) ∗ δx(λn)} = {es(λn)} is weakly relatively compact.

Proof. (cf. [Lin] Prop. 5.3.11.).

Lemma 1.3.7. For λ ∈ M(E)

ês(λ)(a) = exp
(∫

E
K(x, a)dλ(x)

)
,

where K(x, a) is defined by

K(x, a) := ei〈x,a〉 − 1− i〈x, a〉1{‖x‖≤1}(x) x ∈ E, a ∈ E′.

Proof. By Lemma 1.2.2 it is sufficient to prove that

ê(λ)(a) = exp
(∫

E
(ei〈x,a〉 − 1)dλ(x)

)
and

δ̂x(λ)(a) = exp

(∫
{‖x‖≤1}

−i〈x, a〉dλ(x)

)
.
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But the first statement follows by Lemma 1.3.1 and the second one by∫
E

exp(i〈y, a〉)dδx(λ)(y) = exp(i〈x(λ), a〉)

= exp

(
−i

〈∫
{‖x‖≤1}

xdλ(x), a

〉)

= exp

(∫
{‖x‖≤1}

−i〈x, a〉dλ(x)

)

(where the last step is justified by Lemma 1.1.7).

Proposition 1.3.8. If λn ⇒ λ and λ{‖x‖ = 1} = 0 then es(λn) ⇒ es(λ).

Proof. (cf. [Lin] Prop. 5.3.15.).

Now we also want to define exponents of σ-finite measures. Therefore we
will define the following class of measures: A symmetric (i.e. λ(B) = λ(−B)
for all B ∈ B(E)) σ-finite measure λ on E is called a Lévy measure iff

1. λ({0}) = 0 and

2. the function a 7→ exp
(∫

E(cos〈x, a〉 − 1)dλ(x)
)

is the characteristic
function of a probability measure ν.

For a measure µ define µ̄ by µ̄(B) := µ(−B). Then it is easy to check
that, if µ is finite, the characteristic function of µ̄ is the complex conjugated
characteristic function of µ. So, for symmetric measures, i.e. µ = µ̄, the
characteristic function only takes real values. Then the characteristic func-
tion a 7→ exp

(∫
E(cos〈x, a〉 − 1)dλ(x)

)
is of the usual form for exponents of

finite symmetric measures and therefore we will denote the corresponding
measure ν by e(λ) and call it the exponent of λ. An arbitrary σ-finite mea-
sure λ is called a Lévy measure iff the symmetric measure λ + λ̄ is a Lévy
measure. L(E) denotes the set of all Lévy measures on E.

Proposition 1.3.9. Let λ be a σ-finite measure on E with λ{0} = 0. Then
the following statements are equivalent:

1. λ ∈ L(E).

2. For each a ∈ E′ the integral
∫
E |K(x, a)|dλ(x) is finite and the mapping

a 7→ exp
(∫

E
K(x, a)dλ(x)

)
is the characteristic function of a probability measure.

3. There exists a sequence {λn} ⊂ M(E) such that λn ↑ λ and {es(λn)}
is weakly relatively compact.
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4. For each δ > 0 we have λ{‖x‖ > δ} < ∞ and for some (for each)
sequence δn ↓ 0 the sequence {es(λ

∣∣
{x∈E; ‖x‖>δn})} is weakly relatively

compact.

Proof. (cf. [Lin] Prop. 5.4.8.).

So, for any λ ∈ L(E) by Prop. 1.3.9 (2) we may define

es(λ)(a) := exp
(∫

E
K(x, a)dλ(x)

)
.

Proposition 1.3.10. 1. If λ1, λ2 ∈ L(E) then λ1 + λ2 ∈ L(E) and
es(λ1 + λ2) = es(λ1) ∗ es(λ2)

2. If λ ∈ L(E) then λ̄ ∈ L(E) and es(λ̄) = es(λ).

3. For each λ ∈ L(E) the generalized exponent is an infinitely divisible
measure and es(λ)α = es(αλ) for all α ≥ 0.

Proof. 1. We have to show that λ̃ := λ1+λ2+λ1 + λ2 is a Lévy measure.
But λ̃({0}) = 0 and

exp
(∫

E
(cos〈x, a〉 − 1)dλ̃(x)

)
= exp

(∫
E
(cos〈x, a〉 − 1)d(λ1 + λ̄1)(x)

)
exp

(∫
E
(cos〈x, a〉 − 1)d(λ2 + λ̄2)(x)

)
= ̂e(λ1 + λ̄1)(a) ̂e(λ2 + λ̄2)(a) = (e(λ1 + λ̄1) ∗ e(λ2 + λ̄2)̂)(a).

And then

(es(λ1) ∗ es(λ2)̂)(a) = ês(λ1)(a)ês(λ2)(a)

= exp
(∫

E
K(x, a)dλ1(x) +

∫
E
K(x, a)dλ2(x)

)
= [es(λ1 + λ2)̂](a) for all a ∈ E′.

2. Follows by taking the complex conjugation of the characteristic func-
tion.

3. Let α ≥ 0 then with Lemma 1.2.6 we have

ês(λ)
α
(a) =

(
exp

(∫
E
K(x, a)dλ(x)

))α

= exp
(∫

E
K(x, a)αdλ(x)

)
= ês(αλ)(a) for all a ∈ E′.

Particularly es(λ) is infinitely divisible, since es(λ) = es(1/nλ)n.
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1.4 Lévy-Khinchin Representation

In order to show that every infinitely divisible measure can be represented
by the convolution of measures of the above mentioned types we first need
a uniqueness statement:

Proposition 1.4.1. Let λ, σ ∈ L(E) and x ∈ E with

es(λ) = es(σ) ∗ δx

then λ = σ and x = 0.
Moreover if for %1, %2 ∈ G(E), λ1, λ2 ∈ L(E) and x1, x2 ∈ E

%1 ∗ es(λ1) ∗ δx1 = %2 ∗ es(λ2) ∗ δx2 (1.2)

then %1 = %2, λ1 = λ2 and x1 = x2.

Proof. (cf. [Lin] Thms. 5.5.3. and 5.5.5.).

Note that in [Lin] Lemma 5.5.2., which is used to prove Thm. 5.5.3. the
condition λ({0}) = 0 is necessary to obtain uniqueness. Therefore, we have
included this condition in our definition for Lévy measures. The existence
of representation (1.2) is a consequence of the next two propositions.

Proposition 1.4.2. Suppose for µ ∈ P(E) there exists a sequence {λn} ⊂
M(E) with e(λn) ⇒ µ. Then there are λ ∈ L(E), % ∈ G(E) and x ∈ E such
that

µ = es(λ) ∗ % ∗ δx.

Proof. (cf. [Lin] Prop. 5.6.3.).

Proposition 1.4.3. Let µ be an infinitely divisible measure then

e(nµ1/n) ⇒ µ.

Proof. (cf. [Lin] Prop. 5.7.2.).

Now we obtain the Lévy-Khinchin representation for infinitely divisible
measures:

Theorem 1.4.4. A measure µ ∈ P(E) is infinitely divisible iff there exist a
Lévy measure λ, a Gaussian symmetric measure % and an element x0 ∈ E,
each uniquely determined, such that

µ = es(λ) ∗ % ∗ δx0

or equivalently

µ̂(a) = exp
(∫

E
K(x, a)dλ(x)− 1

2
〈Qa, a〉+ i〈x0, a〉

)
,

where Q ∈ L(E′, E) is the covariance operator of the Gaussian measure %.
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Proof. Follows from propositions 1.4.2, 1.4.3 and 1.4.1.

With notations as above one often writes µ = [x0, %, λ]. Then [x0, %, λ]
or equivalently [x0, Q, λ] is called the generating triplet of µ.

Corollary 1.4.5. Let µ ∈ P(E) be an infinitely divisible measure with gen-
erating triplet [x0, Q, λ]. Then for any t ≥ 0 the probability measure µt is
infinitely divisible and has generating triplet [tx0, tQ, tλ].

Proof. Let % be the Gaussian symmetric measure with covariance operator
Q. By Proposition 1.3.10 we have

µt = (es(λ) ∗ % ∗ δx0)
t = es(λ)t ∗ %t ∗ (δx0)

t = es(tλ) ∗ %t ∗ δtx0 .

But

%̂t = %̂t = exp
(
−1

2
〈Qa, a〉〉

)t

= exp
(
−1

2
〈tQa, a〉

)
,

hence %t is also Gaussian symmetric with covariance operator tQ.

The following Proposition is useful to calculate the Lévy measure λ.

Proposition 1.4.6. Let µ = [x0, %, λ] and δ > 0 with λ{‖x‖ = δ} = 0.
Then

(nµ1/n)|{x∈E;‖x‖>δ} ⇒ λ|{x∈E;‖x‖>δ}.

Proof. Together with 1.4.3 and part (i) of Thm. 5.6.2. from [Lin] the asser-
tion follows.

Remark 1.4.7. Note that such a δ always exists. Let λ be a σ-finite measure
on E and set

C(λ) = {δ > 0;λ{‖x‖ = δ} = 0}.

Then, according to [Lin] p. 65, we even have that R+ \ C(λ) is at most
countable.

There is also the following form of the Lévy-Khinchin representation,
which is valid if E is a Hilbert space.

Theorem 1.4.8. Let H be a separable Hilbert space with inner product
(·, ·)H and norm ‖ · ‖ and µ ∈ P(H). Then µ is infinitely divisible iff its
characteristic function has the unique representation

µ̂(a) = exp
(∫

E
L(x, a)dλ(x)− 1

2
(Qa, a)H + i(x0, a)H

)
where x0 ∈ H, Q ∈ L(H) is the covariance operator of a Gaussian sym-
metric measure and λ is a σ-finite measure with finite mass outside every
neighborhood of the origin and∫

{‖x‖≤1}
‖x‖2dλ(x) <∞.
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Here L(x, a) is given by

L(x, a) := ei(x,a)H − 1− i(x, a)H

1 + ‖x‖2
x, a ∈ H.

Proof. (cf. [Par], section VI, Thm. 4.10).

Below we will need a characterization for Lévy measures on separable
Hilbert spaces. Therefore we introduce the following definitions (cf. [ArGi],
p. 158, 186): A separable Banach space E is of type p if there exists a
constant c > 0 such that for all n ∈ N and any centered independent random
variables X1, . . . , Xn in Lp(E) = Lp((Ω,F , P ) → E)

E

∥∥∥∥∥
n∑

i=1

Xi

∥∥∥∥∥
p

≤ c

n∑
i=1

E‖Xi‖p.

E is of cotype p if there exists a constant c > 0 such that for all n ∈ N and
any centered independent random variables X1, . . . , Xn in Lp(E)

E

∥∥∥∥∥
n∑

i=1

Xi

∥∥∥∥∥
p

≥ c
n∑

i=1

E‖Xi‖p.

Lemma 1.4.9. Let H be a separable Hilbert space. Then H is of type 2 and
cotype 2.

Proof. First observe that for any independent H-valued random variables
X,Y ∈ L2(H) we have E((X,Y )H) = (E(X),E(Y ))H since for independent
elementary random variables X =

∑n
i=1 αi1Ai , Y =

∑m
j=1 βj1Bj we have

E((X,Y )H) = E

∑
i,j

(αi, βj)H1Ai∩Bj

 =
∑
i,j

(αi, βj)HP (Ai ∩Bj)

=
∑
i,j

(P (Ai)αi, P (Bj)βj)H = (E(X),E(Y ))H

and by approximation in L2(H) this follows for general X,Y . But then if
X, Y are also centered we obtain

E‖X + Y ‖2 = E‖X‖2 + 2E((X,Y )H) + E‖Y ‖2

= E‖X‖2 + 2(E(X),E(Y ))H + E‖Y ‖2

= E‖X‖2 + E‖Y ‖2.

By induction we have

E

∥∥∥∥∥
n∑

i=1

Xi

∥∥∥∥∥
2

=
n∑

i=1

E‖Xi‖2
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for any centered independent random variables X1, . . . , Xn ∈ L2(H) and
hence the assertion is shown.

Proposition 1.4.10. A separable Banach space E is of type 2 iff every σ-
finite measure λ on E with

∫
E(1 ∧ ‖x‖2)dλ(x) < ∞ and λ({0}) = 0 is a

Lévy measure.

Proof. (cf. [ArGi], chapter 3, Thm. 7.6.).

Note that the condition λ({0}) = 0 was added to be consistent with
the definition of Lévy measures given above, which gives a one-to-one cor-
respondence of Lévy measures with their generalized exponents (compare
Prop. 1.4.1).

Proposition 1.4.11. A separable Banach space E is of cotype 2 iff for every
Lévy measure λ on E the integral

∫
E(1 ∧ ‖x‖2)dλ(x) is finite.

Proof. (cf. [ArGi], chapter 3, Thm. 8.16.).

So we obtain the following property of Lévy measures on separable
Hilbert spaces:

Corollary 1.4.12. Let H be a separable Hilbert space. Then a σ-finite
measure λ with λ({0}) = 0 is in L(H) iff∫

H
(1 ∧ ‖x‖2)dλ(x) <∞. (1.3)

Proof. The assertion follows directly from Lemma 1.4.9 and Propositions
1.4.10 and 1.4.11.
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Chapter 2

Lévy Processes in Hilbert
Space

Lévy processes on a separable Hilbert spaceH will be studied in the following
sections. We will first give some useful properties of H-valued martingales
and mention some results for the Gaussian case before we come to general
Lévy processes in section 2.3. Here, for a Lévy process X, the Poisson
random measure N(t, dx) is introduced which is for any A ∈ B(H \ {0})
with 0 /∈ Ā given by

N(t, A) = #{0 < s ≤ t;∆X(s) ∈ A} =
∑

0<s≤t

1A(∆X(s))

where ∆X(s) is the “jump” of the process X at time s. By centralization
one obtains the compensated Poisson random measure Ñ with respect to
which we will construct an integral∫

A
f(x)Ñ(t, dx)

of H-valued functions. This construction is taken from [AlRü] and can
be found in section 2.4. Any Lévy process can then (similar to the Lévy
Khinchin representation for distributions) be written as the sum of a de-
terministic part, a Brownian motion part, an integral with respect to the
compensated Poisson random measure and an integral with respect to the
Poisson random measure. This is the Lévy Itô decomposition which was
shown in [AlRü] on general separable Banach spaces. In the final section
of this chapter we will extend the definition of martingale measures to the
Hilbert space case. Martingale measures were first introduced in [Wal] as
real-valued set functions depending on a time component, a Borel set de-
scribing a certain type of jumps and a random component. A martingale
measure is in the time component a stochastic process and in the set com-
ponent locally a measure. For a fixed Borel set the corresponding stochastic

25
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process is then a martingale. In [App b] this concept was generalized to
H-valued martingales (where it was called martingale-valued measure; nev-
ertheless we will keep the denomination martingale measure). Most of the
definitions in this section are therefore taken from [App b]. As the central
example we will treat the Lévy martingale measure M given by

M(t, A) = BQ(t)δ0(A) +
∫

A\{0}
xÑ(t, dx)

for t ≥ 0 and A a Borel subset of the unity ball in H which “stays away”
from zero. BQ denotes a Brownian motion with covariance operator Q.
The example was already mentioned in [App b], but we will give a de-
tailed proof that this is in fact a martingale measure. The Lévy martingale
measure corresponds to the martingale part of a Lévy process as repre-
sented in the Lévy Itô decomposition. In [App b], section 2.2., an orthogo-
nal martingale(-valued) measure is defined as a martingale measure where
((M(t, A),M(t, B))H , t ≥ 0) for any disjoint A,B is a martingale. However
it seems that the stronger definition of orthogonality as given in section 2.5
here is necessary to construct stochastic integrals with respect to martingale
measures in sections 3.1 and 3.2. See in particular the proofs of Proposi-
tion 3.1.3 and Proposition 3.2.4. Of special interest are nuclear martingale
measures which in the martingale component have covariance operators that
are non-negative, self-adjoint and trace class. Each Lévy martingale measure
has this property which is also proved in detail.

2.1 Martingales in Hilbert Space

Let (Ω,F , P ) be a complete probability space, i.e. for each N1 ⊂ Ω such
that there exists some N ∈ F with N1 ⊂ N and P (N) = 0 it follows that
N1 ∈ F . We will take H as a real separable Hilbert space with inner product
(·, ·)H and associated norm ‖ · ‖. From now on if not otherwise stated all
random variables and stochastic processes shall be H-valued. (An H-valued
random variable is a strongly measurable function from Ω to H). Let G be a
σ-field contained in F . Then we can define the conditional expectation with
respect to G using the following

Proposition 2.1.1. Let X be a Bochner integrable H-valued random vari-
able. Then there exists a P -a.s. unique Bochner integrable random variable
Z, measurable with respect to G such that∫

A
XdP =

∫
A
ZdP ∀A ∈ G.

Proof. A proof for random variables on general separable Banach spaces is
given in [DaPrZa], Prop. 1.10.
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We will then write E(X|G) instead of Z.

Lemma 2.1.2. Let X, Y be Bochner integrable H-valued random variables
with E(‖X‖ · ‖Y ‖) <∞ and X is G-measurable. Then

E((X,Y )H |G) = (X,E(Y |G))H P -a.s..

Proof. Let {en} be an orthonormal basis of H. With Lemma 1.1.7 for every
A ∈ G ∫

A
E((en, Y )H |G)dP =

∫
A
(en, Y )HdP =

(
en,

∫
A
Y dP

)
H

=
(
en,

∫
A

E(Y |G)dP
)

H

=
∫

A
(en,E(Y |G))HdP.

Hence E((en, Y )H |G) = (en,E(Y |G))H . Then by Lebesgue’s dominated con-
vergence theorem

E((X,Y )H |G) = E
( ∞∑

n=1

(X, en)H(en, Y )H

∣∣∣G)
=

∞∑
n=1

E((X, en)H(en, Y )H |G) =
∞∑

n=1

(X, en)HE((en, Y )H |G)

=
∞∑

n=1

(X, en)H(en,E(Y |G))H = (X,E(Y |G))H .

Now let (Ft, t ≥ 0) be a filtration that is complete and rightcontinuous,
i.e. Ft =

⋂
s>tFs. The predictable σ-algebra P ⊂ B(R+) ⊗ F is the σ-

algebra generated by the strongly left continuous and adapted processes on
H.
A process X = (X(t), t ≥ 0), adapted to (Ft, t ≥ 0) is a martingale if
E(‖X(t)‖) < ∞ for each t ≥ 0 and E(X(t)|Fs) = X(s) P -a.s. for all
0 ≤ s ≤ t <∞. We need the following

Proposition 2.1.3 (cf. [DaPrZa] Prop. 3.7.). Let M be a martingale
then:

1. (‖M(t)‖, t ≥ 0) is a submartingale.

2. For each increasing convex function g from R+ to R+ with

E(g(‖M(t)‖)) <∞ for each t ≥ 0

(g(‖M(t)‖), t ≥ 0) is a submartingale.
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Proof. Let {xi; i ∈ N} be a countably dense subset of ∂S := {x ∈ H; ‖x‖ =
1}. Then supi∈N(x, xi)H = (x, x)H = 1 for every x ∈ ∂S, because of the
continuity of y 7→ (x, y)H and since supi∈N(x, xi)H ≤ 1. Hence for general
x ∈ H

sup
i∈N

(x, xi)H = ‖x‖ sup
i∈N

(
x

‖x‖
, xi

)
H

= ‖x‖.

Let s < t, then by Lemma 2.1.2

E(‖M(t)‖|Fs) = E
(

sup
i∈N

(M(t), xi)H

∣∣∣∣Fs

)
≥ sup

i∈N
E((M(t), xi)H |Fs)

= sup
i∈N

(E(M(t)|Fs), xi)H = sup
i∈N

(M(s), xi)H = ‖M(s)‖.

The second assertion follows easily from the first one by Jensen’s inequality.

Hence if X is square-integrable, i.e. E(‖X(t)‖2) < ∞, then the real-
valued process (‖X(t)‖2, t ≥ 0) is a submartingale. LetX be strongly càdlàg.
Then the Doob-Meyer decomposition gives us a unique adapted, increasing,
predictable and rightcontinuous process (〈X〉(t), t ≥ 0) with 〈X〉(0) = 0
such that (‖X(t)‖2 − 〈X〉(t), t ≥ 0) is a real-valued martingale.

If Y = (Y (t), t ≥ 0) is another strongly càdlàg square-integrable martin-
gale we will define 〈X,Y 〉 by polarization:

〈X,Y 〉(t) =
1
4
(〈X + Y 〉(t)− 〈X − Y 〉(t)).

By definition 〈X,Y 〉 is also rightcontinuous and since 〈X +Y 〉 and 〈X −Y 〉
are both increasing it is of bounded variation.

Lemma 2.1.4. If X and Y are strongly càdlàg square-integrable martingales
then 〈X,Y 〉(0) = 0 and (X,Y )H − 〈X,Y 〉 is a martingale. And 〈X,Y 〉 is
the unique predictable and rightcontinuous process of bounded variation with
this property. In particular, (X,Y ) 7→ 〈X,Y 〉 is bilinear.

Proof. The first part follows as

(X(t), Y (t))H − 〈X,Y 〉(t)

=
1
4
(
(X(t) + Y (t), X(t) + Y (t))H − (X(t)− Y (t), X(t)− Y (t))H

)
− 1

4
(
〈X + Y 〉(t)− 〈X − Y 〉(t)

)
=

1
4
(
‖X(t) + Y (t)‖2 − 〈X + Y 〉(t)− (‖X(t)− Y (t)‖2 − 〈X − Y 〉(t))

)
.

The uniqueness can be seen as follows. Let Z be another process with
the same properties. Then 〈X,Y 〉 − Z is a real-valued rightcontinuous and
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predictable martingale. Hence by [vWeWin] Theorem 6.4.11 it is P -a.s.
continuous. Since 〈X,Y 〉 and Z are both of bounded variation the same is
valid for 〈X,Y 〉 − Z and it is thereby constant. Hence for any t ≥ 0

〈X,Y 〉(t)− Z(t) = 〈X,Y 〉(0)− Z(0) = 0.

Lemma 2.1.5. If X and Y are strongly càdlàg square-integrable martingales
then

E((X(t)−X(s), Y (t)− Y (s))H |Fs) = E(〈X,Y 〉(t)− 〈X,Y 〉(s)|Fs).

Proof. By the martingale properties of X, Y and (X,Y )H − 〈X,Y 〉 we get

E((X(t)−X(s), Y (t)− Y (s))H |Fs)
= E((X(t), Y (t))H − (X(s), Y (s))H |Fs)
= E(〈X,Y 〉(t)− 〈X,Y 〉(s)|Fs).

2.2 Gaussian Measures on Hilbert Space

A probability measure µ on H is called Gaussian if for any h ∈ H there
exist m ∈ R and q ≥ 0 such that

µ{x ∈ H; (h, x)H ∈ A} = N (m, q)(A) for all A ∈ B(R)

where N (m, q) denotes the normal distribution on R, with mean m and
variance q.

Proposition 2.2.1. For each Gaussian measure µ on H there exist m ∈ H
and a self-adjoint non-negative bounded linear operator Q such that for all
h, h1, h2 ∈ H∫

H
(h, x)Hµ(dx) = (h,m)H∫

H
(h1, x)H(h2, x)Hµ(dx)− (h1,m)H(h2,m)H = (Qh1, h2)H .

Then the characteristic function of µ is given by

µ̂(a) =
∫

H
exp(i(a, x)H)µ(dx) = exp

(
i(a,m)H − 1

2
(Qa, a)H

)
.

Proof. (cf. [DaPrZa] p.53-55).
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In the Proposition above m is called the mean and Q is called the co-
variance operator of µ. As m and Q are uniquely determined one may also
write µ = N (m,Q). In the case that m = 0 we obtain

(Qh1, h2)H =
∫

H
(h1, x)H(h2, x)Hµ(dx)

and µ̂(a) = exp
(
−1

2
(Qa, a)H

)
.

Hence this definition for Gaussian measures on Hilbert spaces is consistent
with the rather abstract definition of Gaussian symmetric measures which
was made in section 1.2. Therefore we will also refer to measures of the kind
N (0, Q) as Gaussian symmetric measures and denote the set of all Gaussian
symmetric measures by G(H).

We will need trace class operators and some of their properties. We refer
to [ReeSim], p.207-210. Let {ek} be an orthonormal basis of H. Then define
the trace of some bounded linear operator Q on H as

tr(Q) =
∞∑

k=1

(ek, Qek)H

if the series converges. By Theorem VI.18 in [ReeSim] this definition is
independent of the chosen orthonormal basis. Let Q∗ be the adjoint operator
of Q then Q∗Q is non-negative since

(Q∗Qx, x)H = ‖Qx‖2 ≥ 0.

By the square root lemma (compare [ReeSim] Theorem VI.9) for every non-
negative bounded linear operator R on H the square root

√
R exists, i.e. a

unique non-negative bounded linear operator S with S2 = R. Then for any
bounded linear operator Q we can define

|Q| =
√
Q∗Q.

A bounded linear operator Q on H is called trace class iff

tr|Q| <∞.

Proposition 2.2.2. Let µ ∈ G(H) with covariance operator Q. Then Q is
trace class.

Proof. (cf. [DaPrZa] Prop. 2.15).
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2.3 Lévy Processes and Poisson Random Measure

Now we will introduce the concept of Lévy processes. A stochastic process
X is said to be stochastically continuous if for every t ≥ 0 and ε > 0

lim
s→t

P (‖X(s)−X(t)‖ > ε) = 0.

We will call a stochastic process X = (X(t), t ≥ 0) with values in H and
adapted to (Ft, t ≥ 0) a Lévy process iff

• X(0) = 0.

• X has increments independent of the past, i.e. X(t) − X(s) is inde-
pendent of Fs for all 0 ≤ s < t <∞.

• X has stationary increments, i.e. X(t)−X(s) has the same distribution
as X(t− s) for all 0 ≤ s < t <∞.

• X is stochastically continuous.

• X has strongly càdlàg paths.

The following proposition shows the relation between Lévy processes and
infinitely divisible measures.

Proposition 2.3.1. Let X = (X(t), t ≥ 0) be a Lévy process and µt be the
distribution of X(t). Then µt is infinitely divisible.

Proof. For any natural number n let µn be the distribution of the increment
X( 1

n t) − X(0). As the increments are stationary and independent we can
write X(t) as sum of i.i.d. random variables:

X(t) =
(
X

(
1
n
t

)
−X(0)

)
+ · · ·+

(
X(t)−X

(
n− 1
n

t

))
.

Hence for the distribution of X(t) we have µt = (µn)n.

Corollary 2.3.2. Let X = (X(t), t ≥ 0) be a Lévy process. Then there
exists a unique exponent

b(a) = i(x0, a)H − 1
2
(Qa, a)H +

∫
H
ei(x,a)H − 1− i(x, a)H1{‖x‖≤1}(x)dλ(x)

with x0 ∈ H, λ a Lévy measure and Q the covariance operator of a Gaussian
symmetric measure, such that for every t ≥ 0, a ∈ H

E(exp(i(a,X(t))H)) = etb(a).

Or equivalently the distribution of X(t) has generating triplet [tx0, tQ, tλ].
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Proof. Denote the distribution of X(1) by µ and let a 7→ b(a) be such that
µ̂(a) = exp(b(a)) for each a ∈ E′. Then by the proof of Proposition 2.3.1
µ1/n is the distribution of X(1/n) and hence for any α ∈ Q+ the distribution
of X(α) is µα with characteristic function a 7→ exp(αb(a)). Since X is
stochastically continuous {µαn} converges for each sequence {αn} ⊂ Q+

converging in R. But then by Lemma 1.2.6 the distribution of X(t) is µt for
every t ≥ 0. Hence the assertion follows from Corollary 1.4.5.

Example 2.3.3. For H = R let N = (N(t), t ≥ 0) be a Poisson process with
intensity c, i.e. N(0) = 0 and

P (N(t)−N(s) = n) = e−c(t−s) (c(t− s))n

n!
for all n ∈ N ∪ {0}.

Then N is a Lévy process adapted to (Ft = σ(N(t)), t ≥ 0): The indepen-
dent and stationary increments property holds by definition. Also N has
càdlàg paths and N is stochastically continuous as for every m ∈ N ∪ {0}

P (|N(t)−N(s)| > m) = 1− e−c(t−s)
m∑

n=0

(c(t− s))n

n!

which converges to 0 for t → s. Note that Poisson processes have the
property V ar(N(t)) = tV ar(N(1)).

For a Lévy process X the “jump” at time t is given by ∆X(t) := X(t)−
X(t−). Define for all t > 0 and A ∈ B(H \ {0}) with 0 /∈ Ā

N(t, A) = #{0 < s ≤ t;∆X(s) ∈ A} =
∑

0<s≤t

1A(∆X(s)). (2.1)

Proposition 2.3.4. Let A ∈ B(H \ {0}) with 0 /∈ Ā be fixed. Then the
process N(·, A) = (N(t, A), t ≥ 0) is a Poisson process. In particular,∑

0<s≤t 1A(∆X(s)) is a finite sum for every t ≥ 0 P -a.s..

Proof. (cf. [AlRü] Thm. 2.7, where the result is shown for arbitrary sepa-
rable Banach spaces).

Proposition 2.3.5. Let ω ∈ Ω and t ≥ 0 be fixed. Then N(t, ·)(ω) can be
interpreted as a set function from {A ∈ B(H \ {0}); 0 /∈ Ā} to R+ ∪ {+∞}.
Then for P -a.e. ω there exists a unique σ-finite measure νt on B(H\{0}) or
equivalently a σ-finite measure νt on B(H) with νt({0}) = 0 which extends
this set function.

Proof. (cf. [AlRü] Thm. 2.13, Cor. 2.14).

We will write N(t, dx) instead of νt(dx).
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Proposition 2.3.6. If we define ν̃(A) := E(N(1, A)) for all A ∈ B(H \{0})
with 0 /∈ Ā then ν̃ can be uniquely extended to a σ-finite measure ν on
B(H \ {0}) or equivalently a σ-finite measure ν on B(H) with ν({0}) = 0.

Proof. (cf. [AlRü] Thm. 2.17, Cor. 2.18).

Proposition 2.3.7. Let µ be the distribution of X(1) and [x0, Q, λ] be the
generating triplet of µ (like in Corollary 2.3.2). Then the measure ν on H
from Proposition 2.3.6 is equal to the Lévy measure λ.

Proof. Let δ > 0 with λ{‖x‖ = δ} = 0. Then Bδ := {x ∈ H; ‖x‖ > δ} ∈
B(H \ {0}) and by Proposition 1.4.6

(nµ1/n)|Bδ
⇒ λ|Bδ

.

Let A be an open subset of Bδ. Then

ν(A ∩Bδ) = E(N(1, A ∩Bδ))

= E

 ∑
0<s≤1

1A∩Bδ
(∆X(s))


= E

(
lim

n→∞

n−1∑
k=0

1A∩Bδ

(
X

(
k + 1
n

)
−X

(
k

n

)))

≤ lim inf
n→∞

n−1∑
k=0

E
(

1A∩Bδ

(
X

(
k + 1
n

)
−X

(
k

n

)))
= lim inf

n→∞
nP

(
X

(
1
n

)
∈ A ∩Bδ

)
= lim inf

n→∞
(nµ1/n)(A ∩Bδ).

Hence by Portmanteau’s theorem (nµ1/n)|Bδ
⇒ ν|Bδ

, thus λ|Bδ
= ν|Bδ

. As
λ is σ-finite by Remark 1.4.7 there always exists a sequence {δm} fulfilling
λ{‖x‖ = δm} = 0 and δm ↓ 0, i.e. Bδm ↑ H \ {0}. Then we obtain identity
of λ and ν on B(H \ {0}), hence by λ({0}) = 0 on B(H).

Adopting the terminology of [AlRü] we will call N a Poisson random
measure. In the usual terminology a Poisson random measure is more than
we have shown above (cf. for example [Kno b], p.5): Let (U,U) be a measur-
able space. Let M be the space of non-negative (possibly infinite) integer-
valued measures on (U,U) and

BM := σ(M → Z+ ∪ {+∞}, µ 7→ µ(B)|B ∈ U).

Then a random variable Π : (Ω,F) → (M,BM) is called Poisson random
measure on (U,U) if the following conditions hold:
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• For all B ∈ U : Π(B) : Ω → Z+ ∪ {+∞} is Poisson distributed with
parameter E(Π(B)), i.e.:

P (Π(B) = n) = exp(−E(Π(B)))(E(Π(B)))n/n!, n ∈ N ∪ {0}.

If E(Π(B)) = +∞ then Π(B) = +∞ P -a.s.

• If B1, . . . , Bm ∈ U are pairwise disjoint then Π(B1), . . .Π(Bm) are
independent.

However we will keep our first definition for the remainder of the text.
Set Ñ(t, A) = N(t, A) − tλ(A). Then Ñ is called compensated Poisson
random measure.

Lemma 2.3.8. For every A ∈ B(H \{0}) with 0 /∈ Ā the process Ñ(·, A) =
(Ñ(t, A), t ≥ 0) is a martingale and E(Ñ(t, A)) = 0.

Proof. By Proposition 2.3.4 N(·, A) is a Poisson process and for s < t

E(Ñ(t, A)|Fs) = E(N(t, A)− tλ(A)|Fs)
= N(s,A)− sλ(A) + E(N(t, A)−N(s,A)− (t− s)λ(A)|Fs)
= Ñ(s,A) + E(N(t− s,A))− (t− s)λ(A) = Ñ(s,A).

As E(N(0, A)) = 0 the second part follows.

Lemma 2.3.9. Let A,B ∈ B(H \ {0}) be disjoint with 0 /∈ Ā and 0 /∈ B̄.
Then

E(Ñ(t, A)Ñ(t, B)) = 0 for every t ≥ 0.

Proof. The proof follows the idea of the proof for Theorem 38 (p.28/29) in
[Pro]. Let {τn} be a sequence of partitions 0 = t

(n)
0 < · · · < t

(n)
n = t of [0, t]

for which the mesh tends to 0. Then by the martingale property of Ñ(·, A)
and Ñ(·, B)

E(Ñ(t, A)Ñ(t, B))

= E

 ∑
t
(n)
j ∈τn,j<n

(Ñ(t(n)
j+1, A)− Ñ(t(n)

j , A))

∑
t
(n)
k ∈τn,k<n

(Ñ(t(n)
k+1, B)− Ñ(t(n)

k , B))


= E

 ∑
t
(n)
j ∈τn,j<n

(Ñ(t(n)
j+1, A)− Ñ(t(n)

j , A))(Ñ(t(n)
j+1, B)− Ñ(t(n)

j , B))

 .
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We have ∑
t
(n)
j ∈τn,j<n

∣∣∣(Ñ(t(n)
j+1, A)− Ñ(t(n)

j , A))(Ñ(t(n)
j+1, B)− Ñ(t(n)

j , B))
∣∣∣

≤

 ∑
t
(n)
j ∈τn,j<n

(Ñ(t(n)
j+1, A)− Ñ(t(n)

j , A))2


1
2

 ∑
t
(n)
k ∈τn,k<n

(Ñ(t(n)
k+1, B)− Ñ(t(n)

k , B))2


1
2

.

Since N(·, A) and t 7→ tλ(A) (and the same for B) are increasing it is easy
to deduce that

lim
n→∞

∑
t
(n)
j ∈τn,j<n

(Ñ(t(n)
j+1, A)− Ñ(t(n)

j , A))(Ñ(t(n)
j+1, B)− Ñ(t(n)

j , B))

= lim
n→∞

∑
t
(n)
j ∈τn,j<n

(N(t(n)
j+1, A)−N(t(n)

j , A))(N(t(n)
j+1, B)−N(t(n)

j , B))

+ lim
n→∞

∑
t
(n)
j ∈τn,j<n

(N(t(n)
j+1, A)−N(t(n)

j , A))(t(n)
j+1 − t

(n)
j )λ(B)

+ lim
n→∞

∑
t
(n)
j ∈τn,j<n

(t(n)
j+1 − t

(n)
j )λ(A)(N(t(n)

j+1, B)−N(t(n)
j , B))

+ lim
n→∞

∑
t
(n)
j ∈τn,j<n

(t(n)
j+1 − t

(n)
j )λ(A)(t(n)

j+1 − t
(n)
j )λ(B)

=
∑

0<s≤t

∆N(s,A)∆N(s,B)

= 0,

where the last equation is valid, because A and B are disjoint. But since∑
t
(n)
j ∈τn,j<n

(Ñ(t(n)
j+1, A)− Ñ(t(n)

j , A))2 ≤ 3(Ñ(t, A)2 + t2λ(A)2)

and the same for Ñ(t, B) we can apply Lebesgue’s dominated convergence
theorem and obtain

E(Ñ(t, A)Ñ(t, B)) = E

 ∑
0<s≤t

∆N(s,A)∆N(s,B)

 = 0.
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2.4 The Lévy Itô Decomposition

The goal of this section is to define integrals with respect to Poisson random
measures and compensated Poisson random measures and to give a repre-
sentation of the non-Gaussian part of a Lévy process by such integrals. This
representation will give us the so-called Lévy Itô decomposition. Let X be
a Lévy process and N the corresponding Poisson random measure, Ñ the
corresponding compensated Poisson random measure.

Let A ∈ B(H \ {0}) with 0 /∈ Ā and f : A→ H measurable. Define the
following integral∫

A
f(x)N(t, dx) =

∑
0<s≤t

f(∆X(s))1A(∆X(s)) (2.2)

This is a finite sum P -a.s. since the number of summands is finite P -a.s.
For f ∈ L1(A, λ|A;H) = L1((A,B(A), λ|A) → H) one could define the

integral with respect to the compensated Poisson random measure as follows∫
A
f(x)Ñ(t, dx) =

∫
A
f(x)N(t, dx)− t

∫
A
f(x)λ(dx). (2.3)

However we will choose a different definition which allows us to show
some useful properties for the integral. We will then observe that this def-
inition is compatible with the one given in (2.3). This construction of the
integral is taken from [AlRü].

Let S(H) be the set of all simple functions f of the form

f(x) =
N∑

k=1

ak1Ak
(x), (2.4)

where ak ∈ H and the Ak are disjoint sets in B(H \ {0}) with 0 /∈ Ak.
The integral with respect to Ñ(t, dx) on any set A ∈ B(H \ {0}) can

then by Proposition 2.3.5 be defined for f ∈ S(H), given by (2.4), as∫
A
f(x)Ñ(t, dx) :=

N∑
k=1

akÑ(t, Ak ∩A).

Note that this is a strongly càdlàg process.
Now let f be in L2

λ := L2(H \ {0}, λ|H\{0};H). Then it is said to be
strongly 2-integrable on some set A ∈ B(H \ {0}) with respect to Ñ(t, dx)
if for any sequence {fn} ⊂ S(H) with fn → f in L2

λ the limes∫
A
f(x)Ñ(t, dx) := lim

n→∞

∫
A
fn(x)Ñ(t, dx) (2.5)

exists in L2(H) = L2((Ω,F , P );H) and does not depend on the chosen se-
quence {fn}. Note that by Doob’s inequality and the Borel-Cantelli Lemma
it follows that this process has a strongly càdlàg modification.
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Lemma 2.4.1. Let f ∈ L2
λ. Then there exists a sequence {fn} ⊂ S(H)

approximating f in L2
λ.

Proof. (cf. [AlRü] Proposition 3.8.).

Proposition 2.4.2. If f ∈ L1
λ ∩ L2

λ then f is strongly 2-integrable on all
A ∈ B(H \ {0}) with respect to Ñ(t, dx).

Proof. (cf. [AlRü] Theorem 3.22).

The next Proposition shows the consistency with the “natural” definition
of the integral:

Proposition 2.4.3. Let f be strongly 2-integrable with respect to Ñ(t, dx)
and f ∈ L2

λ. Then for any A ∈ B(H \ {0}) with 0 /∈ Ā the strong integral
from (2.5) coincides with the “natural” definition from (2.3), i.e. P -a.s.∫

A
f(x)Ñ(t, dx) =

∑
0<s≤t

f(∆X(s))1A(∆X(s))− t

∫
A
f(x)λ(dx). (2.6)

Proof. (cf. [AlRü] Prop. 3.26).

Proposition 2.4.4. Let f ∈ L2
λ be strongly 2-integrable on some A ∈ B(H \

{0}) and t ≥ 0 then for any y1, y2 ∈ H

E
((∫

A
f(x)Ñ(t, dx), y1

)
H

(∫
A
f(x)Ñ(t, dx), y2

)
H

)
= t

∫
A
(f(x), y1)H(f(x), y2)Hλ(dx).

Proof. First we will prove the assertion for f ∈ S(H). So let f be given by

f(x) =
N∑

k=1

ak1Ak
(x)

with disjoint Ak, k ∈ {1, . . . , N}. We will need the fact that N(·, A) for
given A ∈ B(H \ {0}) with 0 /∈ Ā is a Poisson process (Prop. 2.3.4). From
this it is easy to deduce that

E(Ñ(t, A)2) = V ar(Ñ(t, A)) + E(Ñ(t, A))2 = V ar(N(t, A))
= tV ar(N(1, A)) = tλ(A).
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But then by Lemma 2.3.9 for any y1, y2 ∈ H

E
((∫

A
f(x)Ñ(t, dx), y1

)
H

(∫
A
f(x)Ñ(t, dx), y2

)
H

)
= E

((
N∑

k=1

akÑ(t, A ∩Ak), y1

)
H

(
N∑

k=1

akÑ(t, A ∩Ak), y2

)
H

)

=
N∑

j,k=1

(aj , y1)H(ak, y2)HE(Ñ(t, A ∩Aj)Ñ(t, A ∩Ak))

=
N∑

k=1

(ak, y1)H(ak, y2)HE(Ñ(t, A ∩Ak)2)

=
N∑

k=1

(ak, y1)H(ak, y2)Htλ(A ∩Ak)

= t

N∑
j,k=1

(aj , y1)H(ak, y2)H

∫
A

1Aj (x)1Ak
(x)λ(dx)

= t

∫
A

 N∑
j=1

(aj , y1)H1Aj (x)

( N∑
k=1

(ak, y2)H1Ak
(x)

)
λ(dx)

= t

∫
A

 N∑
j=1

aj1Aj (x), y1


H

(
N∑

k=1

ak1Ak
(x), y2

)
H

λ(dx)

= t

∫
A
(f(x), y1)H(f(x), y2)Hλ(dx).

Now let f ∈ L2
λ be arbitrary. There exists a sequence {fn} ⊂ S(H) with

fn → f ∈ L2
λ. Set Xn :=

∫
A fn(x)Ñ(t, dx) and X :=

∫
A f(x)Ñ(t, dx). Then

{Xn} converges to X in L2(H). Hence by the Cauchy-Schwartz and Hölder’s
inequality we obtain

lim
n→∞

|E((Xn, y1)H(Xn, y2)H)− E((X, y1)H(X, y2)H)|

≤ lim
n→∞

(E(|(Xn −X, y1)||(Xn, y2)H |) + E(|(X, y1)||(Xn −X, y2)|))

≤ ‖y1‖‖y2‖ lim
n→∞

(E(‖Xn −X‖‖Xn‖) + E(‖Xn −X‖‖X‖))

≤ ‖y1‖‖y2‖ lim
n→∞

E(‖Xn −X‖2)
1
2 (E(‖Xn‖2)

1
2 + E(‖X‖2)

1
2 )

= 0

and by the same arguments

lim
n→∞

∣∣∣∣∫
A
(fn(x), y1)H(fn(x), y2)H − (f(x), y1)H(f(x), y2)Hλ(dx)

∣∣∣∣
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≤ ‖y1‖‖y2‖ lim
n→∞

(∫
A
‖fn(x)− f(x)‖2λ(dx)

) 1
2

((∫
A
‖fn(x)‖2λ(dx)

) 1
2

+
(∫

A
‖f(x)‖2λ(dx)

) 1
2

)
= 0.

So, we have shown the equation for general strongly 2-integrable f ∈ L2
λ.

Proposition 2.4.5 (cf. [AlRü] Theorem 3.25). Let f ∈ L2
λ then for any

A ∈ B(H \ {0}) the integral ∫
A
f(x)Ñ(t, dx)

exists and

E

(∥∥∥∥∫
A
f(x)Ñ(t, dx)

∥∥∥∥2
)

= t

∫
A
‖f(x)‖2λ(dx) <∞.

Proof. Let f ∈ S(H) then by definition f is strongly 2-integrable with re-
spect to Ñ(t, dx). Let {ek} be an orthonormal basis of H then with Prop.
2.4.4 it follows

E

(∥∥∥∥∫
A
f(x)Ñ(t, dx)

∥∥∥∥2
)

= E

( ∞∑
k=1

∣∣∣∣(∫
A
f(x)Ñ(t, dx), ek

)
H

∣∣∣∣2
)

=
∞∑

k=1

E

(∣∣∣∣(∫
A
f(x)Ñ(t, dx), ek

)
H

∣∣∣∣2
)

=
∞∑

k=1

t

∫
A
|(f(x), ek)H |2λ(dx)

= t

∫
A

∞∑
k=1

|(f(x), ek)H |2λ(dx) = t

∫
A
‖f(x)‖2λ(dx).

Now let f ∈ L2
λ be arbitrary and {fn} ⊂ S(H) be a sequence with fn → f ∈

L2
λ. Then

E

(∥∥∥∥∫
A
(fn(x)− fm(x))Ñ(t, dx)

∥∥∥∥2
)

= t

∫
A
‖fn(x)− fm(x)‖2λ(dx).

−−−−−→
n,m→∞

0

Hence the sequence of the integrals
∫
A fn(x)Ñ(t, dx) forms a Cauchy se-

quence in L2(H) and we can thereby define
∫
A f(x)Ñ(t, dx) as the limit in

L2(H). It can be checked that this limit does not depend on the chosen
sequence. Therefore every f ∈ L2

λ is strongly 2-integrable and the integral
fulfills the given equation.
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Let S = {x ∈ H; ‖x‖ < 1} and A0 = {A ∈ B(S); 0 /∈ Ā}, A = A0 ∪{A∪
{0};A ∈ A0}. Note that id|S ∈ L2

λ by Corollary 1.4.12.

Proposition 2.4.6. Let f ∈ L2
λ and A ∈ A0 then M = (M(t), t ≥ 0) with

M(t) =
∫

A
f(x)Ñ(t, dx)

is a strongly càdlàg square integrable martingale with M(0) = 0.

Proof. By Prop. 2.4.5 M(t) is square-integrable and obviously M(0) = 0.
Let s < t. There exists a sequence {fn} ⊂ S(H) which converges to f in
L2

λ. For fn like in (2.4) we have∫
A
f(x)Ñ(t, dx) = lim

n→∞

Nn∑
k=1

an
kÑ(t, A ∩An

k)

and ∫
A
f(x)Ñ(s, dx) = lim

n→∞

Nn∑
k=1

an
kÑ(s,A ∩An

k),

where the limits are in L2(H). Then by Lemma 2.3.8 for every B ∈ Fs

E(1BM(t)) = lim
n→∞

Nn∑
k=1

an
k

∫
B

(Ñ(t, A ∩An
k))dP

= lim
n→∞

Nn∑
k=1

an
k

∫
B

(Ñ(s,A ∩An
k))dP = E(1BM(s)).

By [Kun] Proposition 3 every square-integrable martingale is strongly càdlàg
P -a.s..

A very important representation for Lévy processes is the so-called Lévy-
Itô decomposition:

Theorem 2.4.7. Let X = (X(t), t ≥ 0) be a Lévy process (on H) where
the distribution of X(t) has generating triplet [tx0, tQ, tλ] for each t ≥ 0
(compare Corollary 2.3.2). Then for every t ≥ 0

X(t) = tx0 +BQ(t) +
∫
{‖x‖<1}

xÑ(t, dx) +
∫
{‖x‖≥1}

xN(t, dx), (2.7)

where BQ = (BQ(t), t ≥ 0) is a Brownian motion with covariance operator
Q independent of N(·, A) for all A ∈ B(H \ {0}) with 0 /∈ Ā.

Proof. This follows from [AlRü] Thm. 4.1 where the result is shown for
any separable Banach space of type 2 and Lévy measures for which (1.3) is
fulfilled. Notice that a Hilbert space is also of cotype 2 and therefore this
condition is fulfilled by every Lévy measure.
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Corollary 2.4.8. For each A ∈ A the process M(·, A) given by

M(t, A) = BQ(t)δ0(A) +
∫

A\{0}
xÑ(t, dx)

is a strongly càdlàg square-integrable martingale.

Proof. Follows from Prop. 2.4.6.

2.5 Martingale Measures

Let (S,Σ) be a Lusin topological space, i.e. a continuous one-to-one image
of a Polish space and Σ a sub-σ-algebra of B(S). Furthermore, let A ⊂ Σ
be a ring and {Sn, n ∈ N} ⊂ A with Sn ↑ S and Σn := Σ|Sn ⊂ A for all
n ∈ N.

The definition given now is generalizing the definition of real-valued mar-
tingale measures in [Wal], p. 287, to such with values in Hilbert space. A
martingale measure is a set function M : R+ × A × Ω → H fulfilling the
following properties: M(0, A) = M(t, ∅) = 0 a.s., for all A ∈ A, t ≥ 0. For
t > 0 M(t, ·) is

1. finitely additive, i.e. M(t, A ∪ B) = M(t, A) + M(t, B) a.s., for all
disjoint A,B ∈ A,

2. σ-finite, i.e. sup{E(‖M(t, A)‖2), A ∈ Σn} <∞ for all n ∈ N,

3. countably additive on each Σn, n ∈ N, i.e. if {Aj} ⊂ Σn is a sequence
decreasing to the empty set then limj→∞ E(‖M(t, Aj)‖2) = 0.

Finally M(·, A) = (M(t, A), t ≥ 0) is a strongly càdlàg square-integrable
martingale for each A ∈ A. In particular, the zero set in 1. is independent
of t.

We call a martingale measure M orthogonal (compare the definition in
[Wal], p. 288) iff for any disjoint A,B ∈ A and any orthonormal basis {en}
of H the process

((M(t, A), en)H(M(t, B), em)H , t ≥ 0)

is a martingale for all n,m ∈ N. In particular ((M(t, A),M(t, B))H , t ≥ 0)
then is a martingale.

Now for each t ≥ 0 the set function 〈M〉(t, ·) given by 〈M〉(t, A) =
〈M(·, A)〉(t) is well defined and for disjoint sets A,B ∈ A by Lemma 2.1.4
and since M is orthogonal

〈M〉(t, A ∪B) = 〈M(·, A ∪B)〉(t) = 〈M(·, A) +M(·, B)〉(t)
= 2〈M(·, A),M(·, B)〉(t) + 〈M〉(t, A) + 〈M〉(t, B)
= 〈M〉(t, A) + 〈M〉(t, B).
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A martingale measure M is said to have independent increments iff
M((s, t], A) is independent of Fs for all A ∈ A, 0 ≤ s < t < ∞, where
M((s, t], ·) := M(t, ·)−M(s, ·).

The following definitions are all taken from [App b], section 2.2.
Let T = {TA, A ∈ A} be a family of bounded non-negative self-adjoint

operators on H. We call T a positive-operator valued measure on (S,Σ) iff

• T∅ = 0,

• TA∪B = TA + TB for all disjoint A,B ∈ A.

If every TA, A ∈ A, is trace class, we will say that T is trace class.
T is said to be decomposable iff there exist a σ-finite measure ν on (S,Σ)

and a family {Tx, x ∈ S} of bounded non-negative self-adjoint operators on
H such that for all y ∈ H x 7→ Txy is measurable and

TAy =
∫

A
Txyν(dx) for all A ∈ A, y ∈ H.

LetM be a martingale measure and T = {TA, A ∈ A} a positive-operator
valued measure which is trace class. Moreover let % be a Radon measure on
(0,∞). M is nuclear with (T, %) iff

E((M((s, t], A), x)H(M((s, t], A), y)H) = (x, TAy)H%((s, t]) (2.8)

for all 0 ≤ s < t <∞, A ∈ A, x, y ∈ H.
If T is decomposable then we call M decomposable.

Proposition 2.5.1 (cf. [App b] Proposition 2.1). Let M be an orthog-
onal martingale measure, nuclear with (T, %). Then

E(〈M〉(t, A)) = tr(TA)%((0, t]) for all t ≥ 0, A ∈ A.

Proof. Let {en} be an orthonormal basis of H. Then

E(〈M〉(t, A)) = E(‖M(t, A)‖2) = E

( ∞∑
n=1

|(M(t, A), en)H |2
)

=
∞∑

n=1

E(|(M((0, t], A), en)H |2) =
∞∑

n=1

(en, TAen)H%((0, t])

= tr(TA)%((0, t]).

Now as above let S = {x ∈ H; ‖x‖ < 1} and A0 = {A ∈ B(S); 0 /∈ Ā},
A = A0 ∪ {A ∪ {0};A ∈ A0}. Note that (S,Σ) with Σ := B(S) is a Lusin
topological space and for Sn := {x ∈ S; 1

n ≤ ‖x‖ < 1} we have

S =
⋃
n∈N

Sn
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and
Σn := B(Sn) ⊂ A.

Theorem 2.5.2. Let X be a Lévy process and consider its Lévy Itô decom-
position (2.7). The set function M given by

M(t, A) = BQ(t)δ0(A) +
∫

A\{0}
xÑ(t, dx) (2.9)

for all t ≥ 0, A ∈ A is an orthogonal martingale measure with independent
increments.

For the proof we need the following Lemma

Lemma 2.5.3. Let A,B ∈ A be disjoint and X,Y be given by

X(t) = BQ(t)δ0(A) +
∫

A\{0}
f(x)Ñ(t, dx)

Y (t) = BQ(t)δ0(B) +
∫

B\{0}
g(x)Ñ(t, dx)

for some f, g ∈ L2
λ and BQ, Ñ as given in Theorem 2.5.2. Then for all

t ≥ 0 and an orthonormal basis {en} of H

E((X(t), en)H(Y (t), em)H) = 0 for all n,m ∈ N.

In particular,
E((X(t), Y (t))H) = 0.

Proof. Fix n,m ∈ N. Define

X1(t) := BQ(t)δ0(A)

X2(t) :=
∫

A\{0}
f(x)Ñ(t, dx)

and in the same way Y1, Y2. First let f, g ∈ S(H). Then X1 is indepen-
dent of Y2 and Y1 independent of X2. But then since A,B are disjoint,
(X1(t), en)H(Y1(t), em)H = 0 and thereby

E((X(t), en)H(Y (t), em)H)
= E((X1(t) +X2(t), en)H(Y1(t) + Y2(t), em)H)
= E((X1(t), en)H)E((Y2(t), em)H) + E((X2(t), en)H)E((Y1(t), em)H)
+ E((X2(t), en)H(Y2(t), em)H)
= E((X2(t), en)H(Y2(t), em)H).
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But for f and g of the form (2.4) by Lemma 2.3.9 we have

E((X2(t), en)H(Y2(t), em)H)

= E

 N∑
j=1

(aj , en)HÑ(t, Aj ∩A)
N∑

k=1

(ak, em)HÑ(t, Ak ∩B)


=

N∑
j,k=1

(aj , en)H(ak, em)HE(Ñ(t, Aj ∩A)Ñ(t, Ak ∩B)) = 0.

Now let f, g ∈ L2
λ be arbitrary. Then there exist sequences {fN} ⊂ S(H)

and {gN} ⊂ S(H) with fN → f and gN → g in L2
λ. Hence if we write

XN
2 (t) :=

∫
A\{0}

fN (x)Ñ(t, dx)

Y N
2 (t) :=

∫
B\{0}

gN (x)Ñ(t, dx),

then XN
2 (t) converges to X2(t) and Y N

2 (t) to Y2(t) in L2(H). With the same
arguments as in the proof of Prop. 2.4.4 (Cauchy-Schwartz and Hölder’s
inequality) we obtain

E((X2(t), en)H(Y2(t), em)H) = lim
N→∞

E((XN
2 (t), en)H(Y N

2 (t), em)H) = 0

and also

E((X(t), en)H(Y (t), em)H)
= E((X1(t), en)H)E((Y2(t), em)H) + E((X2(t), en)H)E((Y1(t), em)H)
= 0.

Proof of Theorem 2.5.2. By Corollary 1.4.12 λ|A\{0} is again a Lévy mea-
sure and the Lévy process with generating triplet [0, δ0(A)tQ, tλ|A\{0}] can
by the Lévy Itô decomposition be written as M(·, A). Hence M(·, A) has
independent increments.

We are going to show that M is a martingale measure:

1. Clearly M(0, A) = M(t, ∅) = 0 for all A ∈ A, t ≥ 0.

2. M is finitely additive since for disjoint sets A,B ∈ A one obtains

M(t, A) +M(t, B)

= BQ(t)δ0(A ∪B) +
∫

A\{0}
xÑ(t, dx) +

∫
B\{0}

xÑ(t, dx)

= M(t, A ∪B).
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3. Next we will show that M is σ-finite. Simply because A \ {0} and {0}
are disjoint we can apply Lemma 2.5.3 to

M1(t, A) := BQ(t)δ0(A)

M2(t, A) :=
∫

A\{0}
xÑ(t, dx).

We have

E(‖M(t, A)‖2) = E(‖M1(t, A) +M2(t, A)‖2)
= E(‖M1(t, A)‖2) + 2E((M1(t, A),M2(t, A))H) + E(‖M2(t, A)‖2)
= E(‖M1(t, A)‖2) + E(‖M2(t, A)‖2).

But by Proposition 2.2.1

sup{E(‖BQ(t)δ0(A)‖2), A ∈ Σn} ≤ E(‖BQ(t)‖2)

=
∞∑

k=1

(tQek, ek)H = tr(tQ) <∞.

And by Proposition 2.4.5 for each A ∈ A

E

∥∥∥∥∥
∫

A\{0}
xÑ(t, dx)

∥∥∥∥∥
2
 = t

∫
A\{0}

‖x‖2λ(dx)

≤ t

∫
S
‖x‖2λ(dx) <∞.

4. M is also countably additive. Let n ∈ N and {Aj} ⊂ Σn be a sequence
decreasing to ∅. Then

lim
j→∞

E(‖M(t, Aj)‖2)

= lim
j→∞

(E(‖M1(t, Aj)‖2) + E(‖M2(t, Aj)‖2))

= lim
j→∞

(
δ0(Aj) tr(tQ) + t

∫
Aj\{0}

‖x‖2λ(dx)

)
≤ lim

j→∞
(δ0(Aj) tr(tQ) + tλ(Aj \ {0})) = 0.

5. By Corollary 2.4.8 M(·, A) is a strongly càdlàg square-integrable mar-
tingale for every A ∈ A.

Let {en} be an orthonormal basis of H. With M(·, A) also (M(·, A), en)H is
a martingale for every n ∈ N. As a Lévy process M(·, A) has stationary and
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independent increments and therefore (M(·, A), en)H has the same property.
Then M is also orthogonal since by Lemma 2.5.3

E((M(t, A), en)H(M(t, B), em)H − (M(s,A), en)H(M(s,B), em)H |Fs)
= E((M(t, A)−M(s,A), en)H(M(t, B)−M(s,B), em)H |Fs)
= E((M(t, A)−M(s,A), en)H(M(t, B)−M(s,B), em)H)
= E((M(t− s,A), en)H(M(t− s,B), em)H) = 0,

if A,B ∈ A disjoint.

The orthogonal martingale measure in (2.9) is called Lévy martingale
measure.

Proposition 2.5.4. Let M be a Lévy martingale measure given by

M(t, A) = BQ(t)δ0(A) +
∫

A\{0}
xÑ(t, dx) for all t ≥ 0, A ∈ A.

Then M is nuclear with (T, %) where % is the Lebesgue measure on R+ and
T = {TA;A ∈ A} with

TAy = Qyδ0(A) +
∫

A\{0}
(x, y)Hxλ(dx).

In particular, T is decomposable with ν = λ+ δ0 and

Tx =
{
Q if x = 0
(x, ·)Hx if x 6= 0.

Proof. Let the family F = {FA;A ∈ A0} of linear operators on H be given
by

FAy =
∫

A
(x, y)Hxλ(dx).

First we will show that F with F∅ = 0 and F{0} = 0 is a positive-operator
valued measure on (S,Σ). For any A ∈ A0 the operator FA is bounded since

‖FA‖ = sup
‖y‖≤1

∥∥∥∥∫
A
(x, y)Hxλ(dx)

∥∥∥∥ ≤ sup
‖y‖≤1

∫
A
|(x, y)H |‖x‖λ(dx)

≤
∫

A

∣∣∣∣(x, x

‖x‖

)
H

∣∣∣∣ ‖x‖λ(dx) =
∫

A
‖x‖2λ(dx) <∞.

Moreover, it is non-negative:

(FAy, y)H =
(∫

A
(x, y)Hxλ(dx), y

)
H

=
∫

A
|(x, y)H |2λ(dx) ≥ 0.
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And for any y, z ∈ H

(FAy, z)H =
(∫

A
(x, y)Hxλ(dx), z

)
H

=
∫

A
(x, y)H(x, z)Hλ(dx)

=
(
y,

∫
A
(x, z)Hxλ(dx)

)
H

= (y, FAz)H ,

hence FA is self-adjoint. Clearly FA∪B = FA + FB for disjoint A,B ∈ A0.
By Propositions 2.2.1 and 2.2.2 Q is non-negative, self-adjoint and trace

class.
Observing that

TA = Qδ0(A) + FA\{0} for all A ∈ A,

we obtain that T is a positive-operator valued measure.
We will now find that T is trace class. Since we already know that Q is

trace class we only have to show this for FA. Let {en} be an orthonormal
basis of H then by Corollary 1.4.12

tr(FA) =
∞∑

n=1

(en, FAen)H =
∞∑

n=1

∫
A
|(x, en)H |2λ(dx)

=
∫

A
‖x‖2λ(dx) <∞.

The decomposability of T follows as T0 = Q and

FA\{0}y =
∫

A\{0}
(x, y)Hxλ(dx) =

∫
A\{0}

Txyλ(dx).

It remains to show that M fulfills (2.8), i.e. for every y1, y2 ∈ H and
A ∈ A

E((M((s, t], A), y1)H(M((s, t], A), y2)H) = (t− s)(y1, TAy2)H .

As M(·, A) has stationary increments it is sufficient to show this for s = 0.
By Lemma 2.5.3 for M1(t) := BQ(t)δ0(A) and M2(t) :=

∫
A\{0} xÑ(t, dx)

E((M(t, A), y1)H(M(t, A), y2)H)

=
∑

i,j=1,2

E((Mi(t, A), y1)H(Mj(t, A), y2)H)

= E((M1(t, A), y1)H(M1(t, A), y2)H)
+ E((M2(t, A), y1)H(M2(t, A), y2)H).

But by Prop. 2.2.1 and Corollary 2.3.2

E((BQ(t), y1)H(BQ(t), y2)H) = t(y1, Qy2)H ,
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and with Prop. 2.4.4 for every A ∈ A0

E
((∫

A
xÑ(t, dx), y1

)
H

(∫
A
xÑ(t, dx), y2

)
H

)
= t

∫
A
(x, y1)H(x, y2)Hλ(dx)

= t

(
y1,

∫
A
(x, y2)Hxλ(dx)

)
H

= t(y1, FAy2)H .

Hence (2.8) follows.



Chapter 3

Stochastic Integration

We will now introduce stochastic integrals with respect to nuclear martingale
measures. For the real-valued case this was done in [Wal]. The construction
in the H-valued situation follows the ideas of [App b]. However, not all the
proofs are given there which we will therefore state in this diploma thesis. In
section 3.1 we begin with the strong stochastic integral. This is an H-valued
stochastic integral where the integrands are operator-valued mappings. As
usual the stochastic integral is first defined for simple functions by an isome-
try. These simple functions are dense in a certain space N2(T ) on which the
stochastic integral can be defined by L2-limits. The proof that these simple
functions are dense in N2(T ) is not given in [App b] and therefore a proof
is given here. We are able to show this by a Hilbert space argument. By
a linear extension of the isometry the integral is then defined on the whole
space. Finally, we show that the obtained stochastic integral process is a
strongly càdlàg martingale.

In section 3.2 the weak stochastic integral is defined as a real valued pro-
cess. The construction is quite similar to the one for the strong integral. The
integrands are H-valued functions and for simple functions the integral is
an inner product in the Hilbert space H. We show that the weak stochastic
integral can also be defined by an isometry and thereby obtain a larger class
of integrands than in [App b]. There the integral was constructed with a
contracting mapping into a smaller space of integrands instead of the isome-
try. The last section of this chapter is devoted to properties of the stochastic
integral. Very central is the connection between weak and strong stochas-
tic integrals which will be very useful in Chapter 4. Moreover, we show
a Fubini theorem for strong stochastic and deterministic integrals. If the
integrands are compensated Poisson random measures, such a theorem can
also be found in [App b]. We prove the result more generally for arbitrary
martingale measures.

In the whole chapter let M be an orthogonal martingale measure with
independent increments, nuclear with (T, %) and decomposable with TAy =

49
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∫
A Txyν(dx). (One could for example keep in mind the Lévy martingale

measure). Note that then (S,Σ) is some Lusin topological space. Let the
time T̃ > 0 be fixed.

3.1 Strong Stochastic Integrals

Next we will define the H-valued strong stochastic integral of some operator-
valued mapping with respect to the martingale measure M .

By L(H) we denote the space of all bounded linear operators on H
with operator norm ‖T‖ := sup‖x‖≤1 ‖Tx‖. (L(H), ‖ · ‖) is a Banach space
(compare [ReeSim] Thm. III.2.). However the norm topology generated by
‖ · ‖ is too strong for our purposes. Therefore we will consider the strong
topology on L(H), i.e.

Rn
s→ R iff Rnh→ Rh for all h ∈ H.

The corresponding Borel σ-algebra L is generated by sets of the form

{R ∈ L(H);Rh ∈ A} with h ∈ H,A ∈ B(H).

Let (G,G) be a measurable space. Then an operator-valued mapping R :
G → L(H) is G/L-measurable or strongly measurable iff R(·)h is G/B(H)-
measurable for all h ∈ H. Given a measure µ on (G,G) we can construct
a Bochner integral for such operator-valued mappings: (compare [DaPrZa],
p.24) R : G → L(H) is Bochner integrable iff for any h ∈ H the function
R(·)h is Bochner integrable and there exists an operator S ∈ L(H) such
that ∫

G
Rhdµ = Sh for all h ∈ H.

Then we write ∫
G
Rdµ := S.

Since H is separable we have (with {ek} being an orthonormal basis of H)∥∥∥∥∫
G
Rdµ

∥∥∥∥ = sup
k∈N

∥∥∥∥∫
G
Rekdµ

∥∥∥∥ ≤ ∫
G

sup
k∈N

‖Rek‖dµ =
∫

G
‖R‖dµ.

We will also consider the following class of operators: An operator
S is Hilbert-Schmidt iff tr(S∗S) < ∞. The space L2(H) of all Hilbert-
Schmidt operators with inner product (S1, S2)2 := tr(S∗1S2) and induced
norm ‖S‖2 =

√
tr(S∗S) is a separable Hilbert space and a two sided L(H)-

ideal (cf. [Wei] p.133/34): Let C ∈ L2(H), S1, S2 ∈ L(H) then

‖S1CS2‖2 ≤ ‖S1‖‖S2‖‖C‖2.
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Moreover ‖C‖ ≤ ‖C‖2. L2(H) is a strongly measurable subset of L(H) (cf.
[DaPrZa] p.25). For simplicity we will also denote the trace σ-algebra of L
on L2(H) by L. For 1 ≤ p <∞ we can now define

Lp((G,G, µ) → (L2(H),L))
:= {R : G→ L2(H);R is L-measurable and ‖R‖p <∞},

where

‖R‖p :=
(∫

G
‖R‖p

2dµ

) 1
p

and R1 = R2 in Lp((G,G, µ) → (L2(H),L)) iff R1h = R2h for all h ∈ H
µ-a.s. Of course the Riesz-Fischer Theorem is also valid for Lp((G,G, µ) →
(L2(H),L)).

For 0 ≤ t ≤ T̃ define N2(T ; t) := N2(T ; ν, %; t) as the space of all operator
valued mappings R on [0, t]×Ω×S such that (s, ω, x) 7→ R(s, ω, x)y is P⊗Σ-
measurable for every y ∈ H and

‖R‖N2(T ;t) := E
(∫ t

0

∫
S

∥∥∥R(s, x)
√
Tx

∥∥∥2

2
ν(dx)%(ds)

) 1
2

<∞.

(The square root of the bounded non-negative and self-adjoint operators Tx

exists as described on page 30 and is also selfadjoint, cf. [Wei] p.186, Satz
7.20a). Two mappings R1, R2 ∈ N2(T ; t) are defined to be equal in N2(T ; t)
if ∥∥∥(R1(s, x)−R2(s, x))

√
Tx

∥∥∥
2

= 0 %⊗ P ⊗ ν-a.e..

For N2(T ; T̃ ) just write N2(T ).

Lemma 3.1.1. N2(T ) with inner product

(R1, R2)N2(T ) := E

(∫ T̃

0

∫
S
tr(R1(s, x)TxR2(s, x)∗)ν(dx)%(ds)

)

is a Hilbert space.

Proof. Let {Rn} be a Cauchy sequence in N2(T ). Then by the Riesz-Fischer
Theorem there exist some S ∈ L2(([0, T̃ ] × Ω × S,P ⊗ Σ, % ⊗ P ⊗ ν) →
(L2(H),L)) and a subsequence {Rn′} such that Rn′(s, ω, x)

√
Tx converges

to S(s, ω, x) in ‖ · ‖2 %⊗P ⊗ν-a.e. For (s, ω, x) fixed choose an orthonormal
basis {ek} of H where each ek is either in ker(

√
Tx) or in its orthogonal

complement (ker(
√
Tx))⊥ (where ker(

√
Tx) := {y ∈ H;

√
Txy = 0}). Now

define

R(s, ω, x)h :=

{
S(s, ω, x)

√
Tx

−1
h if h ∈

√
Tx(H)

0 if h ∈
(√
Tx(H)

)⊥
,



52 CHAPTER 3. STOCHASTIC INTEGRATION

where√
Tx

−1
:
√
Tx

((
ker(

√
Tx)
)⊥)

=
√
Tx(H) →

(
ker

(√
Tx

))⊥
is the pseudo inverse of

√
Tx. But then∥∥∥(Rn(s, ω, x)−R(s, ω, x))

√
Tx

∥∥∥2

2

=
∞∑

k=1

∥∥∥(Rn(s, ω, x)−R(s, ω, x))
√
Txek

∥∥∥2

=
∞∑

k=1

∥∥∥Rn(s, ω, x)
√
Txek − S(s, ω, x)

√
Tx

−1√
Txek

∥∥∥2

=
∑

ek∈(ker(
√

Tx))⊥

∥∥∥Rn(s, ω, x)
√
Txek − S(s, ω, x)ek

∥∥∥2

≤
∞∑

k=1

∥∥∥(Rn(s, ω, x)
√
Tx − S(s, ω, x))ek

∥∥∥2

=
∥∥∥Rn(s, ω, x)

√
Tx − S(s, ω, x)

∥∥∥2

2
.

Hence {Rn′(s, ω, x)
√
Tx} converges to R(s, ω, x)

√
Tx in ‖ · ‖2 %⊗ P ⊗ ν-a.e.

and therefore {Rn} converges to R in N2(T ).

The construction of the integral is started from simple functions. Let
S2(T ) := S2(T ; ν, %) be the subspace of all R ∈ N2(T ) which are of the form

R =
N1∑
i=0

N2∑
j=0

Rij1(ti,ti+1]1Aj , (3.1)

whereN1, N2 ∈ N and 0 = t0 < t1 < · · · < tN1+1 = T̃ . Here A0, . . . , AN2+1 ∈
A are disjoint sets (which by being in A have finite measure) and each Rij is
an Fti/L-measurable random variable taking values in L(H) (equivalently
Rijh is Fti-measurable for each h ∈ H).

Lemma 3.1.2. The subspace S2(T ) is dense in N2(T ).

Proof. Let {en} be an orthonormal basis of H and for k, l ∈ N the operator
Skl ∈ L(H) shall be defined by

Sklen =
{
el if n = k
0 if n 6= k.

Then the adjoint of Skl is S∗kl = Slk. Note that

tr(SklTxSlk) ≤ tr(Tx)
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and hence the mapping with constant value Skl is in N2(T ). Consider the
simple function S ∈ S2(T ) given by

S(s, ω, x) = 1B(s)1F (ω)1A(x)Skl,

where B = (t1, t2] with t1, t2 ∈ [0, T̃ ], A ∈ A and F ∈ Fti . Now choose a
mapping R ∈ (S2(T ))⊥ (which shall denote the orthogonal complement of
S2(T ) in N2(T )). Then (R,S)N2(T ) = 0 and thereby

E

(∫ T̃

0

∫
S
tr(R(s, x)TxS(s, x)∗)ν(dx)%(ds)

)

= E

(
1F

∫
B

∫
A

∞∑
n=1

(R(s, x)TxSlken, en)Hν(dx)%(ds)

)

= E
(

1F

∫
B

∫
A
(R(s, x)Txek, el)Hν(dx)%(ds)

)
= 0.

For any G ∈ P ⊗ Σ set

µ(G) :=
∫

G
(R(s, x)Txek, el)Hd(%⊗ P ⊗ ν).

Then this defines a signed measure µ on P ⊗ Σ. Now µ(G) = 0 for every
G ∈ P ⊗ Σ of the type B × F ×A. Since the system of all sets of this type
is closed against intersection and generates the σ-algebra P ⊗ Σ we obtain
µ = 0 on P⊗Σ. Hence (R(s, x)Txek, el)H = 0 %⊗P ⊗ν-a.e. for any k, l ∈ N
and therefore R(s, x)Tx = 0 %⊗ P ⊗ ν-a.e. But then

‖R‖2
N2(T ) = E

(∫ T̃

0

∫
S
‖R(s, x)

√
Tx‖2

2ν(dx)%(ds)

)

= E

(∫ T̃

0

∫
S
tr(R(s, x)TxR(s, x)∗)ν(dx)%(ds)

)
= 0

and S2(T )⊥ = {0}.

Now define for 0 ≤ t ≤ T̃ and every R ∈ S2(T ) (like in (3.1))

Jt(R) =
N1∑
i=0

N2∑
j=0

RijM((t ∧ ti, t ∧ ti+1], Aj). (3.2)

It is easy to show that Jt(R) is independent of the representation of R.
Obviously, all results from above are also valid for N2(T ; t) for 0 ≤ t ≤ T̃

and R|(0,t]×S×Ω ∈ N2(T ; t) for every R ∈ N2(T ).
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Proposition 3.1.3 (cf. [App b] p. 11/12). Jt, given by (3.2) for every
R ∈ S2(T ), can be extended to an isometry from N2(T ; t) to L2(H) :=
L2((Ω,F , P ) → H).

Proof. Let R ∈ S2(T ) be given by (3.1). Notice that with Rij also R∗
ij is

Fti/L-measurable. Since

E(‖Jt(R)‖2) = E

∥∥∥∥∥∥
N1∑
i=0

N2∑
j=0

RijM((t ∧ ti, t ∧ ti+1], Aj)

∥∥∥∥∥∥
2 ,

we will study the individual terms under the sum. For i < k such that
ti, tk < t we obtain

E((RijM((ti, t ∧ ti+1], Aj), RklM((tk, t ∧ tk+1], Al))H)
= E((R∗

klRijM((ti, t ∧ ti+1], Aj),E(M((tk, t ∧ tk+1], Al)|Ftk))H)
= 0

by the martingale property of M(·, Al). (Notice that this expression exists
by Hölder’s inequality). And for j 6= l and Nij := M((ti, t∧ ti+1], Aj), since
M is orthogonal, (Nij , en)H(em, Nil)H is a martingale for every n,m ∈ N
and

E((RijM((ti, t ∧ ti+1], Aj), RilM((ti, t ∧ ti+1], Al))H)

= E

( ∞∑
n=1

(RijNij , en)H(en, RilNil)H

)

= E

( ∞∑
n=1

(Nij , R
∗
ijen)H(R∗

ilen, Nil)H

)

=
∞∑

n,m,r=1

E((Nij , em)H(em, R∗
ijen)H(R∗

ilen, er)H(er, Nil)H)

=
∞∑

n,m,r=1

E((em, R∗
ijen)H(R∗

ilen, er)HE((Nij , em)H(er, Nil)H |Fti))

= 0.

By the independent increments property of M and since M is nuclear we
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have

E(‖RijM((ti, t ∧ ti+1], Aj)‖2)

=
∞∑

n,m,r=1

E((em, R∗
ijen)H(R∗

ijen, er)H)E((Nij , em)H(er, Nij)H)

=
∞∑

n,m,r=1

E((em, R∗
ijen)H(R∗

ijen, er)H)(er, TAjem)H%((ti, t ∧ ti+1])

=
∞∑

m=1

E((Rijem, RijTAjem)H)%((ti, t ∧ ti+1])

= E(tr(R∗
ijRijTAj ))%((ti, t ∧ ti+1]).

Moreover, for every A ∈ A and some operator S ∈ L(H)

tr(STA) =
∞∑

n=1

(en, STAen)H =
∞∑

n=1

(
S∗en,

∫
A
Txenν(dx)

)
H

=
∫

A
tr(STx)ν(dx).

Using these calculations we find

E(‖Jt(R)‖2) = E

∥∥∥∥∥∥
N1∑
i=0

N2∑
j=0

RijM((t ∧ ti, t ∧ ti+1], Aj)

∥∥∥∥∥∥
2

=
N1∑
i=0

N2∑
j=0

E(‖RijM((t ∧ ti, t ∧ ti+1], Aj)‖2)

=
N1∑
i=0

N2∑
j=0

E(tr(R∗
ijRijTAj ))%((t ∧ ti, t ∧ ti+1])

=
N1∑
i=0

N2∑
j=0

E

(∫
Aj

tr(R∗
ijRijTx)ν(dx)

)
%((t ∧ ti, t ∧ ti+1])

= E

(∫ T̃

0

∫
S
‖1(0,t](s)R(s, x)

√
Tx‖2

2ν(dx)%(ds)

)
= ‖R|(0,t]×Ω×S‖2

N2(T ;t).

Now let R ∈ N2(T ). Then R can be approximated in N2(T ) by a sequence
{Rn} ⊂ S2(T ). Hence

lim
n,m→∞

E(‖Jt(Rn)− Jt(Rm)‖2) = lim
n,m→∞

‖(Rn −Rm)|(0,t]×Ω×S‖2
N2(T ;t) = 0,

and therefore {Jt(Rn)} is a Cauchy sequence in L2(H). Now we can define
Jt(R) as the limit of Jt(Rn) in L2(H).
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Now for any R ∈ N2(T ) = N2(T ; T̃ ) the strong stochastic integral of R
with respect to the orthogonal and nuclear martingale measure M is defined
as ∫ t

0

∫
S
R(s, x)M(ds, dx) := Jt(R)

for any 0 ≤ t ≤ T̃ .

Remark 3.1.4. A sufficient condition for R with (s, ω, x) 7→ R(s, ω, x)y is
P ⊗ Σ-measurable for every y ∈ H to be in N2(T ) is

‖R‖N2(T ) = E

(∫ T̃

0

∫
S

∥∥∥R(s, x)
√
Tx

∥∥∥2

2
ν(dx)%(ds)

) 1
2

≤ E

(∫ T̃

0

∫
S
‖R(s, x)‖2 tr(Tx)ν(dx)%(ds)

) 1
2

<∞.

Theorem 3.1.5. The process (
∫ t
0

∫
S R(s, x)M(ds, dx), t ≥ 0) is an H-valued

strongly càdlàg square-integrable martingale. Furthermore

E

(∥∥∥∥∫ t

0

∫
S
R(s, x)M(ds, dx)

∥∥∥∥2
)

(3.3)

= E

(∫ T̃

0

∫
S

1(0,t](s)R(s, x)
√
Tx‖2

2ν(dx)%(ds)

)
.

Proof. Let R ∈ S2(T ) be given by (3.1). For s ≤ t set i0 := max{i; ti ≤ s}.
Without loss of generality we can assume that tN1 < t and have

E
(∫ t

0

∫
S
R(s, x)M(ds, dx)

∣∣∣∣Fs

)
=

N1∑
i=0

N2∑
j=0

E(RijM((ti, t ∧ ti+1], Aj)|Fs)

=
N1∑
i=0

N2∑
j=0

∞∑
n=1

E((M((ti, t ∧ ti+1], Aj), R∗
ijen)Hen|Fs)

=
N1∑
i=0

N2∑
j=0

∞∑
n=1

E((M((ti, t ∧ ti+1], Aj), R∗
ijen)H |Fs)en

=
N2∑
j=0

i0−1∑
i=0

∞∑
n=1

(M((ti, ti+1], Aj), R∗
ijen)Hen

+
N2∑
j=0

∞∑
n=1

(E(M((ti0 , t ∧ ti0+1], Aj)|Fs), R∗
i0jen)Hen
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+
N2∑
j=0

N1∑
i=i0+1

∞∑
n=1

E((E(M((ti, t ∧ ti+1], Aj)|Fti), R
∗
ijen)H |Fs)en

=
N2∑
j=0

(
i0−1∑
i=0

RijM((ti, ti+1], Aj) +Ri0jM((ti0 , s], Aj)

)

=
∫ s

0

∫
S
(F (s, x),M(ds, dx))H .

Now the result can be extended to any R ∈ N2(T ): R can be written as the
limit of some {Rn} ⊂ S2(T ) in N2(T ). Then the corresponding integral can
by Prop. 3.1.3 be written as a limes of martingales in L2(H), hence it is
also a martingale. Again by Proposition 3 in [Kun] every square-integrable
martingale is strongly càdlàg P -a.s..

3.2 Weak Stochastic Integrals

Apart from the strong stochastic integral another (real-valued) stochastic
integral can be constructed. The weak stochastic integral of an H-valued
function F with respect to M will be written as∫ t

0

∫
S
(F (s, x),M(ds, dx))H .

Remark 3.2.1. Alternatively to the construction which we will give in this
section, the weak stochastic integral can also be obtained as a special case
of the strong stochastic integral. In the last section we have constructed the
strong stochastic integral for integrands R for which R(s, ω, x) is a linear
operator from H into the same space. If the construction is generalized
to integrands for which R(s, ω, x) is a linear operator from H to another
Hilbert space H̃ then in particular, one can choose H̃ = R. Hence by
the Riesz isomorphism one can construct a stochastic integral for H-valued
functions which takes values in R. For such a function F : [0, T̃ ]×Ω×S → H
we can identify F (s, ω, x) ∈ H with the operator SF (s,ω,x) defined by

SF (s,ω,x)y = (F (s, ω, x), y)H

for any y ∈ H. Let L2(H,R) denote the space of all Hilbert-Schmidt opera-
tors from H to R and ‖ · ‖L2(H,R) the corresponding Hilbert-Schmidt norm.
Then for an orthonormal basis {ek} of H we have

‖SF (s,ω,x)

√
Tx‖2

L2(H,R) =
∞∑

k=1

∣∣∣(F (s, ω, x),
√
Txek)H

∣∣∣2
=

∞∑
k=1

∣∣∣(√TxF (s, ω, x), ek)H

∣∣∣2 = ‖
√
TxF (s, ω, x)‖2.
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Hence

E

(∫ T̃

0

∫
S

∥∥∥SF (s,x)

√
Tx

∥∥∥2

L2(H,R)
ν(dx)%(ds)

) 1
2

is equal to ‖F‖Nw
2 (T ) as it is defined in equation (3.4) below. Moreover, it

can easily be seen that for simple functions F the definition of It(F ) in (3.6),
i.e.

It(F ) =
N1∑
i=0

N2∑
j=0

(Fij ,M((t ∧ ti, t ∧ ti+1], Aj))H ,

coincides with the one for Jt(R) in (3.2) if R(s, ω, x) = SF (s,ω,x). Taking
L2-limits yields that for the weak stochastic integral as constructed below
and general integrands F we have

∫ t

0

∫
S
(F (s, x),M(ds, dx))H =

∫ t

0

∫
S
SF (s,x)M(ds, dx).

We will now give an own construction for the weak stochastic integral.

The space of weakly stochastically integrable functions will be denoted
by Nw

2 (T ) := Nw
2 (T ; ν, %). It is the collection of all F : [0, T̃ ]× Ω× S → H

which are P ⊗ Σ-measurable and for which

‖F‖Nw
2 (T ) := E

(∫ T̃

0

∫
S

∥∥∥√TxF (s, x)
∥∥∥2
ν(dx)%(ds)

) 1
2

<∞. (3.4)

F = G in Nw
2 (T ) iff ‖

√
TxF (s, x) −

√
TxG(s, x)‖ = 0 % ⊗ P ⊗ ν-a.e. As in

section 3.1Nw
2 (T ; t) is defined as the space of the restrictions on [0, t]×Ω×S.

Lemma 3.2.2. Nw
2 (T ) with inner product

(F1, F2)Nw
2 (T ) := E

(∫ T̃

0

∫
S

(√
TxF1(s, x),

√
TxF2(s, x)

)
H
ν(dx)%(ds)

)

is a Hilbert space.

Proof. Let {Fn} be a Cauchy sequence in Nw
2 (T ). Then with the Riesz-

Fischer Theorem there exists a function G ∈ L2(%⊗ P ⊗ ν) := L2(([0, T̃ ]×
Ω × S,P ⊗ Σ, % ⊗ P ⊗ ν) → H) such that

√
T·Fn → G in L2(% ⊗ P ⊗ ν).

Since for fixed (s, x)
√
TxFn(s, x) only takes on values in

√
Tx(H), which is

a closed subspace of H, this is also the case for G(s, x). Hence we can define
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F (s, x) :=
√
Tx

−1
G(s, x). But then

E

(∫ T̃

0

∫
S

∥∥∥√Tx(Fn(s, x)− F (s, x))
∥∥∥2
ν(dx)%(ds)

)

= E

(∫ T̃

0

∫
S

∥∥∥√TxFn(s, x)−
√
Tx

√
Tx

−1
G(s, x)

∥∥∥2
ν(dx)%(ds)

)

= E

(∫ T̃

0

∫
S

∥∥∥√TxFn(s, x)−G(s, x)
∥∥∥2
ν(dx)%(ds)

)
.

Hence Fn → F in Nw
2 (T ).

As before the construction of the stochastic integral will be done for
simple functions first. As Sw

2 (T ) define the subspace of all F ∈ Nw
2 (T )

which are of the form

F =
N1∑
i=0

N2∑
j=0

Fij1(ti,ti+1]1Aj (3.5)

with N1, N2 ∈ N, 0 = t0 < t1 < · · · < tN1+1 = T̃ , each Fij being a bounded
Fti-measurable random variable and A0, . . . , AN2+1 ∈ A disjoint.

Lemma 3.2.3. The subspace Sw
2 (T ) is dense in Nw

2 (T ).

Proof. The proof can be given along the lines of the proof of Lemma 3.1.2.
Let {en} be an orthonormal basis of H. For some k ∈ N define G(s, ω, x) :=
ek1B(s)1C(ω)1A(x) where B = (t1, t2] with t1, t2 ∈ [0, T̃ ], A ∈ A and C ∈
Fti . Choose some F ∈ (Sw

2 (T ))⊥. Then

0 = (F,G)Nw
2 (T )

= E

(∫ T̃

0

∫
S

(√
TxF (s, x),

√
TxG(s, x)

)
H
ν(dx)%(ds)

)

= E
(

1C

∫
B

∫
A
(TxF (s, x), ek)Hν(dx)%(ds)

)
.

Again

µ(G) :=
∫

G
(TxF (s, x), ek)Hd(%⊗ P ⊗ ν), G ∈ P ⊗ Σ

defines a signed measure on P ⊗Σ. As in Lemma 3.1.2 (TxF (s, x), ek)H = 0
for all k ∈ N %⊗ P ⊗ ν-a.s. Then

‖F‖2
Nw

2 (T ) = E

(∫ T̃

0

∫
S
(TxF (s, x), F (s, x))Hν(dx)%(ds)

)

= E

(∫ T̃

0

∫
S

∞∑
k=1

(TxF (s, x), ek)H(ek, F (s, x))Hν(dx)%(ds)

)
= 0,
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hence (Sw
2 (T ))⊥ = {0}.

For F ∈ Sw
2 (T ) and 0 ≤ t ≤ T̃ define

It(F ) =
N1∑
i=0

N2∑
j=0

(Fij ,M((t ∧ ti, t ∧ ti+1], Aj))H . (3.6)

It is again easy to show that this is independent of the representation of F .

Proposition 3.2.4. It, for F ∈ Sw
2 (T ) given by (3.6), can be extended to

an isometry from Nw
2 (T ; t) to L2(Ω,F , P ).

Proof. Let F ∈ Sw
2 (T ) be like in (3.5), i.e.

F =
N1∑
i=0

N2∑
j=0

Fij1(ti,ti+1]1Aj .

Then

E(|It(F )|2) = E

∣∣∣∣∣∣
N1∑
i=1

N2∑
j=1

(Fij ,M((ti ∧ t, ti+1 ∧ t], Aj))H

∣∣∣∣∣∣
2 ,

and for i < k with ti, tk < t we have

E((Fij ,M((ti, ti+1 ∧ t], Aj))H(Fkl,M((tk, tk+1 ∧ t], Al))H)
= E((Fij ,M((ti, ti+1 ∧ t], Aj))HE((Fkl,M((tk, tk+1 ∧ t], Al))H |Ftk))
= E((Fij ,M((ti, ti+1 ∧ t], Aj))H(Fkl,E(M((tk, tk+1 ∧ t], , Al)|Ftk))H)
= 0.

(Notice that this expression exists by Hölder’s inequality). Take an orthonor-
mal basis {en} of H and set Nij := M((ti, ti+1 ∧ t], Aj). Now let j 6= l, then
since M is orthogonal (Nij , en)H(em, Nil)H is a martingale and

E((Fij ,M((ti, ti+1 ∧ t], Aj))H(Fil,M((ti, ti+1 ∧ t], Al))H)

=
∞∑

n,m=1

E((Fij , en)H(en, Nij)H(Fil, em)H(emNil)H)

=
∞∑

n,m=1

E((Fij , en)H(Fil, em)HE((en, Nij)H(emNil)H |Fti))

= 0.
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Since M has independent increments

E(|(Fij ,M((ti, ti+1 ∧ t], Aj))H |2)

=
∞∑

n,m=1

E((Fij , en)H(Fij , em)H)E((en, Nij)H(emNij)H)

=
∞∑

n,m=1

E((Fij , en)H(Fij , em)H)(en, TAjem)H%((ti, ti+1 ∧ t])

=
∞∑

m=1

E((Fij , TAjem)H(Fij , em)H)%((ti, ti+1 ∧ t])

= E((TAjFij , Fij)H)%((ti, ti+1 ∧ t])

= E

(∫
Aj

(TxFij , Fij)Hν(dx)

)
%((ti, ti+1 ∧ t]).

Hence with the calculations from above

E(|It(F )|2)

= E

∣∣∣∣∣∣
N1∑
i=1

N2∑
j=1

(Fij ,M((ti ∧ t, ti+1 ∧ t], Aj))H

∣∣∣∣∣∣
2

=
N1∑
i=1

N2∑
j=1

E
(
|(Fij ,M((ti ∧ t, ti+1 ∧ t], Aj))H |2

)

=
N1∑
i=1

N2∑
j=1

E

(∫
Aj

(TxFij , Fij)Hν(dx)

)
%((ti ∧ t, ti+1 ∧ t])

= E

(∫ T̃

0

∫
S

∥∥∥1(0,t](s)
√
TxF (s, x)

∥∥∥2
ν(dx)%(ds)

)
= ‖F|(0,t]×Ω×S‖2

Nw
2 (T ;t).

But then for arbitrary F ∈ Nw
2 (T ) there exists a sequence {Fn} ⊂ Sw

2 (T )
which converges to F in Nw

2 (T ) and

lim
n,m→∞

E(|It(Fn)− It(Fm)|2) = lim
n,m→∞

‖(Fn − Fm)|(0,t]×Ω×S‖2
Nw

2 (T ;t) = 0.

So we can define It(F ) to be the limit of It(Fn) in L2(Ω,F , P ) and of course
the equality still holds.

Let F ∈ Nw
2 (T ). Then define the weak stochastic integral of F with

respect to the orthogonal martingale measure M as∫ t

0

∫
S
(F (s, x),M(ds, dx))H := It(F ). (3.7)
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Proposition 3.2.5. Let F ∈ Nw
2 (T ). Then (

∫ t
0

∫
S(F (s, x),M(ds, dx))H ,

t ≥ 0) is a centered square-integrable martingale.

Proof. First let F ∈ Sw
2 (T ) be like in (3.5). Let s ≤ t and set i0 :=

max{i; ti ≤ s}. Without loss of generality assume tN1 < t. Then

E
(∫ t

0

∫
S
(F (s, x),M(ds, dx))H

∣∣∣∣Fs

)
=

N1∑
i=0

N2∑
j=0

E((Fij ,M((ti, t ∧ ti+1], Aj))H |Fs)

=
N2∑
j=0

i0−1∑
i=0

(Fij ,M((ti, ti+1], Aj))H

+
N2∑
j=0

(Fi0j ,E(M((ti0 , t ∧ ti0+1], Aj)|Fs))H

+
N2∑
j=0

N1∑
i=i0+1

E((Fij ,E(M((ti, t ∧ ti+1], Aj)|Fti))H |Fs)

=
N2∑
j=0

(
i0−1∑
i=0

(Fij ,M((ti, ti+1], Aj))H + (Fi0j ,M((ti0 , s], Aj))H

)

=
∫ s

0

∫
S
(F (s, x),M(ds, dx))H .

Now if F ∈ Nw
2 (T ) then it can be approximated by a sequence {Fn} ⊂

Sw
2 (T ) in Nw

2 (T ). Then by Proposition 3.2.4 the weak stochastic inte-
gral

∫ t
0

∫
S(F (s, x),M(ds, dx))H can be approximated by the weak integrals∫ t

0

∫
S(Fn(s, x),M(ds, dx))H in L2(Ω,F , P ). Hence it is also a martingale. It

is obvious that this martingale is centered and square-integrable.

3.3 Properties of the Stochastic Integral

In this section we will show some useful properties of the weak and the
strong stochastic integral which were constructed above.

Proposition 3.3.1 (cf. [App b] Theorem 3). Let C ∈ L(H) and R ∈
N2(T ). Then CR ∈ N2(T ) and for every 0 ≤ t ≤ T̃

C

∫ t

0

∫
S
R(s, x)M(ds, dx) =

∫ t

0

∫
S
CR(s, x)M(ds, dx) P -a.s..
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Proof. CR ∈ N2(T ) since

E

(∫ T̃

0

∫
S
‖CR(t, x)

√
Tx‖2

2ν(dx)%(dt)

) 1
2

≤ E

(∫ T̃

0

∫
S
‖C‖2‖R(t, x)

√
Tx‖2

2ν(dx)%(dt)

) 1
2

= ‖C‖‖R‖N2(T ).

Moreover, for R ∈ S2(T ) like in (3.1) we have

C

∫ t

0

∫
S
R(s, x)M(ds, dx) = C

N1∑
i=0

N2∑
j=0

RijM((t ∧ ti, t ∧ ti+1], Aj)

=
∫ t

0

∫
S
CR(s, x)M(ds, dx).

Now let {Rn} ⊂ S2(T ) with Rn → R in N2(T ). Then by Proposition 3.1.3

E

(∫ T̃

0

∫
S
‖1(0,t](s)C(R(s, x)−Rn(s, x))

√
Tx‖2

2ν(dx)%(dt)

)

≤ ‖C‖2E

(∫ T̃

0

∫
S
‖1(0,t](s)(R(s, x)−Rn(s, x))

√
Tx‖2

2ν(dx)%(dt)

)
,

and by definition the sequence of the integrals
∫ t
0

∫
S CRn(s, x)M(ds, dx)

converges to
∫ t
0

∫
S CR(s, x)M(ds, dx) in L2(H). Also

E

(∥∥∥∥C ∫ t

0

∫
S
(Rn(s, x)−R(s, x))M(ds, dx)

∥∥∥∥2
)

≤ ‖C‖2E

(∫ T̃

0

∫
S
‖1(0,t](s)(Rn(s, x)−R(s, x))

√
Tx‖2

2ν(dx)%(dt)

)
.

Hence

E

(∥∥∥∥∫ t

0

∫
S
CR(s, x)M(ds, dx)− C

∫ t

0

∫
S
R(s, x)M(ds, dx)

∥∥∥∥2
) 1

2

≤ lim
n→∞

E

(∥∥∥∥∫ t

0

∫
S
C(R(s, x)−Rn(s, x))M(ds, dx)

∥∥∥∥2
) 1

2

+ lim
n→∞

E

(∥∥∥∥C ∫ t

0

∫
S
(Rn(s, x)−R(s, x))M(ds, dx)

∥∥∥∥2
) 1

2

= 0.
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Proposition 3.3.2 (Compatibility of weak and strong integration;
cf. Thm. 4 in [App b]). Let R ∈ N2(T ). Then R∗y ∈ Nw

2 (T ) for every
y ∈ H and for each 0 ≤ t ≤ T̃(

y,

∫ t

0

∫
S
R(s, x)M(ds, dx)

)
H

=
∫ t

0

∫
S
(R(s, x)∗y,M(ds, dx))H (3.8)

P -a.s..

Proof. Let R ∈ N2(T ) and y ∈ H, then

‖R∗y‖2
Nw

2 (T )

= E

(∫ T̃

0

∫
S

∥∥∥√TxR(s, x)∗y
∥∥∥2
ν(dx)%(ds)

)

≤ ‖y‖2E

(∫ T̃

0

∫
S

∥∥∥√TxR(s, x)∗
∥∥∥2
ν(dx)%(ds)

)

≤ ‖y‖2E

(∫ T̃

0

∫
S

∥∥∥R(s, x)
√
Tx

∥∥∥2

2
ν(dx)%(ds)

)
= ‖y‖2‖R‖2

N2(T ) <∞.

Hence both integrals exist. Now (3.8) can be shown for every R ∈ S2(T ):(
y,

∫ t

0

∫
S
R(s, x)M(ds, dx)

)
H

=
N1∑
i=0

N2∑
j=0

(y,RijM((t ∧ ti, t ∧ ti+1], Aj))H

=
N1∑
i=0

N2∑
j=0

(R∗
ijy,M((t ∧ ti, t ∧ ti+1], Aj))H

=
∫ t

0

∫
S
(R(s, x)∗y,M(ds, dx))H .

But for R ∈ N2(T ) there can be chosen a sequence {Rn} ⊂ S2(T ) with
Rn → R in N2(T ). Obviously {R∗

ny} ⊂ Sw
2 (T ). Then for

It(R∗y) =
∫ t

0

∫
S
(R(s, x)∗y,M(ds, dx))H

and

Jt(R) =
∫ t

0

∫
S
R(s, x)M(ds, dx),
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we have

E
(
|(y, Jt(R))H − It(R∗y)|2

) 1
2

≤ lim
n→∞

(
E
(
|(y, Jt(R)− Jt(Rn))H |

2
) 1

2 + E
(
|It(R∗

ny)− It(R∗y)|2
) 1

2

)
≤ ‖y‖ lim

n→∞
E
(
‖Jt(R)− Jt(Rn)‖2

) 1
2 + lim

n→∞
‖R∗y −R∗

ny‖Nw
2 (T )

≤ 2‖y‖ lim
n→∞

‖R−Rn‖N2(T ) = 0.

Remark 3.3.3. Using a slightly generalized version of Prop. 3.3.1 and with
the notations from Remark 3.2.1 we can give an alternative proof:(

y,

∫ t

0

∫
S
R(s, x)M(ds, dx)

)
H

= Sy

(∫ t

0

∫
S
R(s, x)M(ds, dx)

)
=

∫ t

0

∫
S
SyR(s, x)M(ds, dx) =

∫ t

0

∫
S
SR(s,x)∗yM(ds, dx)

=
∫ t

0

∫
S
(R(s, x)∗y,M(ds, dx))H .

Now a useful stochastic version of the Fubini theorem will be shown.
Introduce a measure space (W,W, µ) with µ finite. By G2(W ) denote the
space of all operator valued mappings R on [0, T̃ ] × Ω × S ×W such that
(s, ω, x, w) 7→ R(s, ω, x, w)y is P ⊗ Σ⊗W-measurable for each y ∈ H and

‖R‖G2(W ) :=

[
E

(∫
W

∫ T̃

0

∫
S
‖R(s, x, w)

√
Tx‖2

2ν(dx)%(ds)µ(dw)

)] 1
2

<∞.

Again two mappings are identified in G2(W ) if they are equal %⊗P ⊗ ν⊗µ-
a.e..

Theorem 3.3.4 (Stochastic Fubini). Let R ∈ G2(W ). Then for each
0 ≤ t ≤ T̃ ∫

W

(∫ t

0

∫
S
R(s, x, w)M(ds, dx)

)
µ(dw)

=
∫ t

0

∫
S

(∫
W
R(s, x, w)µ(dw)

)
M(ds, dx)

where the left hand side is meant as an L2(H)-valued Bochner integral.

Proof. Note that by Jensen’s inequality∥∥∥∥∫
W
R(s, x, w)µ(W )−1µ(dw)

∥∥∥∥2

≤
∫

W
‖R(s, x, w)‖2µ(W )−1µ(dw).
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R(·, ·, w) is in N2(T ) for µ-a.e. w ∈W and then by Prop. 3.1.3

E

(∫
W

∥∥∥∥∫ t

0

∫
S
R(s, x, w)M(ds, dx)

∥∥∥∥2

µ(dw)

)

=
∫

W
E

(∥∥∥∥∫ t

0

∫
S
R(s, x, w)M(ds, dx)

∥∥∥∥2
)
µ(dw)

=
∫

W
E

(∫ T̃

0

∫
S
‖1(0,t](s)R(s, x, w)

√
Tx‖2

2ν(dx)%(ds)

)
µ(dw) <∞.

Hence
∫ t
0

∫
S R(s, x, ·)M(ds, dx) is Bochner integrable with respect to µ. For

an orthonormal basis {ek} of H∥∥∥∥(∫
W
R(s, x, w)µ(dw)

)√
Tx

∥∥∥∥2

2

=
∞∑

k=1

∥∥∥∥∫
W
R(s, x, w)

√
Txekµ(dw)

∥∥∥∥2

≤ µ(W )
∞∑

k=1

∫
W
‖R(s, x, w)

√
Txek‖2µ(dw)

= µ(W )
∫

W
‖R(s, x, w)

√
Tx‖2

2µ(dw),

and then
∫
W R(s, x, w)µ(dw) ∈ N2(T ), since

E

(∫ T̃

0

∫
S

∥∥∥∥(∫
W
R(s, x, w)µ(dw)

)√
Tx

∥∥∥∥2

2

ν(dx)%(ds)

)

≤ µ(W )E

(∫ T̃

0

∫
S

∫
W
‖R(s, x, w)

√
Tx‖2

2µ(dw)ν(dx)%(ds)

)
<∞.

Thereby, the second integral also exists by definition of the stochastic inte-
gral. By S2(W ) denote the space of all R of the form

R =
N1∑
i=0

N2∑
j=0

N3∑
k=0

Rijk1(ti,ti+1]1Aj1Bk
,

where N1, N2, N3 ∈ N, 0 = t0 < t1 < · · · < tN1+1 = T̃ , A0, . . . , AN2+1

are disjoint sets in A and B0, . . . , BN3+1 ∈ W are disjoint and each Rijk is
an Fti/L-measurable random variable with values in L(H). Since S2(T ) is
dense in N2(T ) it follows that S2(W ) is dense in G2(W ). But for R ∈ S2(W )
the left and the right side of the equation to show are equal to

N1∑
i=0

N2∑
j=0

N3∑
k=0

RijkM((t ∧ ti, t ∧ ti+1], Aj)µ(Bk).
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If R ∈ G2(W ) is arbitrary, it can be approximated by a sequence {Rn} ⊂
S2(W ). But then

E

(∥∥∥∥∫
W

(∫ t

0

∫
S
(R(s, x, w)−Rn(s, x, w))M(ds, dx)

)
µ(dw)

∥∥∥∥2
)

≤ µ(W )‖R−Rn‖2
G2(W ) → 0

for n→∞ and

E

(∥∥∥∥∫ t

0

∫
S

(∫
W

(R(s, x, w)−Rn(s, x, w))µ(dw)
)
M(ds, dx)

∥∥∥∥2
)

≤ µ(W )‖R−Rn‖2
G2(W ) → 0

for n→∞.
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Chapter 4

Stochastic Equations with
Lévy Noise

Now we apply the developed integration theory from the last chapter and
consider stochastic partial differential equations driven by a Lévy process.
If (S(t), t ≥ 0) is a C0-semigroup (S(t), t ≥ 0) with generator J and C
a bounded linear operator acting on H then we can define the stochastic
convolution

XJ,C(t) :=
∫ t

0
S(t− s)CdX(s)

for any H-valued Lévy process X (see section 4.1). In the subsequent section
4.2 we will find a weak solution to the following Ornstein-Uhlenbeck type
stochastic differential equation

dY (t) = (JY (t) + f(t))dt+ CdX(t)
Y (0) = Y0.

Here f is an adapted process and Y0 some initial value. In [DaPrZa] existence
and uniqueness is shown for the case where X is a Brownian motion with
drift. [App b] has generalized the result (in the case f ≡ 0) to Lévy processes
with similar methods. We show existence of a weak solution following the
approach of [DaPrZa]. The compatibility of weak and strong integration as
well as the stochastic Fubini theorem, which were shown before, are very
useful tools.

In section 4.3 a non-linear drift term is added to the Ornstein-Uhlenbeck
equation. For a function F : H → H fulfilling a Lipschitz condition we have
the equation

dY (t) = (JY (t) + F (Y (t)))dt+ CdX(t)
Y (0) = Y0.

The idea of section 4.3 is to prove existence and uniqueness of a weak solution
by a fixed point argument as in Chapter 7 of [DaPrZa]. However, this is not
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straightforward. Since for a Lévy process first and second moments may not
exist we have to impose an additional condition on the jumps of the Lévy
process X: For some ε > 0

sup
0≤t≤T̃

‖∆X(t)‖ ∈ L2+ε(R) = L2+ε(Ω → R).

We find that a stochastic process Y is a weak solution of the considered
equation if and only if Y is a fixed point under the mapping Y 7→ ψ(Y ) with

ψ(Y )(t) =
∫ t

0
S(t− s)F (Y (s))ds+ S(t)Y0 +XJ,C(t)).

Existence and uniqueness is then proved by an application of Banach’s fixed
point theorem on a suitable space. Different from [DaPrZa] we do not have
to put together the solution from solutions on single subintervals of [0, T̃ ] by
using a weighted norm on the corresponding Banach space, as in [Kno b].

Assumption 4.0.1. In the whole chapter we take the following objects and
properties as given:

• Let X be a Lévy process with Lévy Itô decomposition (2.7) and for
some ε > 0

sup
0≤t≤T̃

‖∆X(t)‖ ∈ L2+ε(R) = L2+ε(Ω → R). (4.1)

• (S(t), t ≥ 0) shall be a C0-semigroup with infinitesimal generator J .

• C ∈ L(H).

• f : [0, T̃ ] → L2(H) = L2(Ω → H) a stochastic process, adapted to
(Ft; t ≥ 0) which is (as L2(H)-valued function) Bochner integrable on
[0, T̃ ].

• Y0 ∈ L2(H) = L2(Ω → H) and F0-measurable.

Remark 4.0.2. Let N = (N(t), t ≥ 0) be a real-valued Poisson process with
intensity c > 0. Then for any 1 ≤ p < ∞ we have N(t) ∈ Lp(R) for t ≥ 0
and t 7→ N(t) is continuous in Lp(R): Since for n ∈ N with n ≥ p

E(|N(t)−N(s)|p) ≤ E(|N(t)−N(s)|n)

it is sufficient to consider p = n ∈ N. But the moment generating function
of a random variable Y which is Poisson distributed with parameter α > 0
is

ϕα(t) = E
(
etY
)

=
∞∑

k=0

e−αα
ketk

k!
= exp(α(et − 1)).
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Since ϕα ∈ C∞(R) all moments E(Y n) = ϕ
(n)
α (0), n ∈ N exist. Moreover for

any n ∈ N the n-th derivative of ϕα is of the form

ϕ(n)
α (t) = αgn(α, t)

where α 7→ gn(α, t) is continuous and therefore bounded in α on each com-
pactum [−ε, ε]. Hence

lim
α→0

ϕ(n)
α (0) = lim

α→0
αgn(α, 0) = 0.

Now the continuity of N in Ln(R) for every n ∈ N follows, because

lim
s→t

E((N(t)−N(s))n) = lim
s→t

E((N(t− s))n) = lim
s→t

(t− s)gn(t− s, 0) = 0.

We obtain that by (4.1) X(t) ∈ L2(H) for any 0 ≤ t ≤ T̃ : Let p > 1
be given with 1/p + 1/(2 + ε) = 1/2. Then by the generalized Hölder’s
inequality

E

∥∥∥∥∥∥
∑

0<s≤t

∆X(s)1{‖x‖≥1}(∆X(s))

∥∥∥∥∥∥
2

1
2

≤ E

( sup
0≤t≤T̃

‖∆X(t)‖

)2

N(t, {‖x‖ ≥ 1})2
 1

2

≤ E

( sup
0≤t≤T̃

‖∆X(t)‖

)2+ε
 1

2+ε

E (N(t, {‖x‖ ≥ 1})p)
1
p

< ∞

since N(·, {‖x‖ ≥ 1}) is a Poisson process and therefore in Lp(R). But the
martingale part in the Lévy Itô decomposition is in L2(H) by construction.
Therefore we will treat X as a mapping X : [0, T̃ ] → L2(H).

4.1 The Stochastic Convolution

First we will define the stochastic convolution. Some preparations on C0-
semigroups are needed (compare [Paz] sections 1.1. and 1.2.):

A strongly continuous semigroup of bounded linear operators or a C0-
semigroup is a one parameter family (S(t), t ≥ 0) of bounded linear operators
S(t) ∈ L(H) with

• S(0) = Id, where Id is the identity operator on H,

• S(s+ t) = S(t)S(s) for every s, t ≥ 0 (semigroup property),
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• limt↓0 S(t)x = x for every x ∈ H (strong continuity).

Lemma 4.1.1. Let (S(t), t ≥ 0) be a C0-semigroup. Then there exist con-
stants β ≥ 0 and M ≥ 1 such that

‖S(t)‖ ≤Meβt for all t ≥ 0. (4.2)

Proof. (cf. [Paz] Ch. 1, Theorem 2.2.).

Lemma 4.1.2. If (S(t), t ≥ 0) is a C0-semigroup then for every x ∈ H,
t 7→ S(t)x is a strongly continuous function from R+ into H.

Proof. (cf. [Paz] Ch. 1, Cor. 2.3.).

Define the infinitesimal generator of a C0-semigroup (S(t), t ≥ 0) as the
operator J with domain

D(J) =
{
x ∈ H; lim

t↓0

S(t)x− x

t
exists

}
and

Jx = lim
t↓0

S(t)x− x

t
for all x ∈ D(J).

Proposition 4.1.3. Let (S(t), t ≥ 0) be a C0-semigroup with infinitesimal
generator J . Then

• for every x ∈ H and t ≥ 0

lim
h→0

1
h

∫ t+h

t
S(s)xds = S(t)x,

• for every x ∈ H and t ≥ 0∫ t

0
S(s)xds ∈ D(J)

and

J

(∫ t

0
S(s)xds

)
= S(t)x− x,

• for every x ∈ D(J) and t ≥ 0

S(t)x ∈ D(J)

and
d

dt
S(t)x = JS(t)x = S(t)Jx,
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• for every x ∈ D(J) and s, t ≥ 0

S(t)x− S(s)x =
∫ t

s
S(τ)Jxdτ =

∫ t

s
JS(τ)xdτ.

Proof. (cf. [Paz] Ch. 1, Thm. 2.4.).

Proposition 4.1.4 (Properties of the infinitesimal generator). The
infinitesimal generator J of a C0-semigroup (S(t), t ≥ 0) is densely defined,
i.e. D(J) is dense in H, and J is a closed linear operator.

Proof. (cf. [Paz] Ch. 1, Cor. 2.5.).

Proposition 4.1.5 (The dual semigroup and its generator). Given
a C0-semigroup (S(t), t ≥ 0) with infinitesimal generator J , (S(t)∗, t ≥ 0)
is a C0-semigroup with infinitesimal generator J∗ which therefore is again
densely defined and closed.

Proof. (cf. [Paz] Ch. 1, Cor. 10.6.).

Proposition 4.1.6. Let (S(t), t ≥ 0) and (T (t), t ≥ 0) be C0-semigroups
with infinitesimal generators J and K respectively. If J = K then S(t) =
T (t) for each t ≥ 0.

Proof. (cf. [Paz] Ch. 1, Thm. 2.6.).

Given the objects from Assumption 4.0.1 we are going to define the
stochastic convolution XJ,C as

XJ,C(t) :=
∫ t

0
S(t− s)CdX(s) for every t ≥ 0. (4.3)

If XJ,C shall be well-defined we have to give sense to the stochastic integral
in (4.3). By the Lévy Itô decomposition (Theorem 2.4.7) the Lévy process
X can be written as

X(t) = tx0 +BQ(t) +
∫
{‖x‖<1}

xÑ(t, dx) +
∫
{‖x‖≥1}

xN(t, dx) (4.4)

Recall that here S = {x ∈ H; ‖x‖ < 1}, A0 = {A ∈ B(S); 0 /∈ Ā} and
A = A0 ∪ {A ∪ {0};A ∈ A0}. We will define the stochastic integral in (4.3)
by ∫ t

0
S(t− s)CdX(s) :=

∫ t

0
S(t− s)Cx0ds (4.5)

+
∫ t

0
S(t− s)CdBQ(s) (4.6)

+
∫ t

0

∫
{‖x‖<1}

S(t− s)CxÑ(ds, dx) (4.7)

+
∫ t

0

∫
{‖x‖≥1}

S(t− s)CxN(ds, dx), (4.8)
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where the individual terms in (4.5), (4.6), (4.7) and (4.8) are defined as
follows:

We can define the integral in (4.5) as a Bochner integral. By (4.2) this
exists since∫ t

0
‖S(t− s)Cx0‖ds ≤ ‖Cx0‖

∫ t

0
‖S(t− s)‖ds

≤ ‖Cx0‖M
∫ t

0
eβ(t−s)ds <∞.

The integrators in (4.6) and (4.7) are Lévy martingale measures like in
(2.9). By Theorem 2.5.2 and Proposition 2.5.4 a Lévy martingale measure
is an orthogonal martingale measure with independent increments which is
nuclear and decomposable. Hence one can construct the strong stochastic
integral with respect to such a Lévy martingale measure. Set for A ∈ A

M1(t, A) = BQ(t)δ0(A)

and
M2(t, A) =

∫
A\{0}

xÑ(t, dx).

Now define∫ t

0
S(t− s)CdBQ(s) :=

∫ t

0

∫
{‖x‖<1}

S(t− s)CM1(ds, dx). (4.9)

Usually the stochastic integral with respect to a Brownian motion is defined
different from (4.9). See for example [DaPrZa], section 4.2., for the con-
struction. We believe that for our class of integrands (i.e. the ones from
N2(T )) both integrals coincide. In any case in this text we will always use
the definition from (4.9). This is well defined since by Proposition 2.5.4
(where ν = δ0, T0 = Q and % the Lebesgue measure on R+)

‖S(t− ·)C‖2
N2(T ;t) =

∫ t

0

∫
{‖x‖<1}

‖S(t− s)C
√
Tx‖2

2δ0(dx)ds

≤ tr(Q)
∫ t

0
‖S(t− s)C‖2ds

≤ ‖C‖2M2tr(Q)
∫ t

0
e2β(t−s)ds <∞.

By Lemma 4.1.2 t 7→ S(t)y is strongly continuous for every y ∈ H. Hence
t 7→ S(t)y is P-measurable. So S(t− ·)C ∈ N2(T ; δ0, ds; t).

In the same way set∫ t

0

∫
{‖x‖<1}

S(t− s)CxÑ(ds, dx) :=
∫ t

0

∫
{‖x‖<1}

S(t− s)CM2(ds, dx),
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where, with ν = λ, Tx = (x, ·)Hx and % the Lebesgue measure on R+,

‖S(t− ·)C‖2
N2(T ;t) =

∫ t

0

∫
{‖x‖<1}

‖S(t− s)C
√
Tx‖2

2λ(dx)ds

≤
∫ t

0

∫
{‖x‖<1}

‖S(t− s)C‖2‖x‖2λ(dx)ds

≤ ‖C‖2M2

∫ t

0
e2β(t−s)

∫
{‖x‖<1}

‖x‖2λ(dx)ds <∞,

hence S(t− ·)C ∈ N2(T ;λ, ds; t).
Finally, the term in (4.8) will be defined as a random sum:

∫ t

0

∫
{‖x‖≥1}

S(t− s)CxN(ds, dx)

:=
∑

0<s≤t

S(t− s)C∆X(s)1{‖x‖≥1}(∆X(s)).

This is in L2(H) since

E

∥∥∥∥∥∥
∑

0<s≤t

S(t− s)C∆X(s)1{‖x‖≥1}(∆X(s))

∥∥∥∥∥∥
2

≤ M2e2βT̃ ‖C‖2E

( sup
0≤t≤T̃

‖∆X(t)‖

)2

N(t, {‖x‖ ≥ 1})2


< ∞.

Theorem 4.1.7 (cf. [App b] Thm. 6). For a Lévy process X, C ∈
L(H) and (S(t), t ≥ 0) a C0-semigroup with infinitesimal generator J the
stochastic convolution XJ,C : [0, T̃ ] → L2(H) given by

XJ,C(t) :=
∫ t

0
S(t− s)CdX(s) for every t ≥ 0

exists. Furthermore under Assumption 4.0.1 t 7→ XJ,C(t) is (as an L2(H)-
valued mapping) continuous.

Proof. The existence follows from the construction above. We will investi-
gate the continuity for the individual integrals from equations (4.5) to (4.8).
First the continuity of t 7→

∫ t
0 S(t − s)Cx0ds is obvious since this is con-

tinuous as an H-valued Bochner integral. Consider t 7→
∫ t
0

∫
{‖x‖≥1} S(t −
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s)CxN(ds, dx). We have

E

(∥∥∥∥∥
∫ t

0

∫
{‖x‖≥1}

S(t− r)CxN(dr, dx)

−
∫ s

0

∫
{‖x‖≥1}

S(s− r)CxN(dr, dx)

∥∥∥∥∥
2
 1

2

≤ E

∥∥∥∥∥∥
∑

0<r≤t

(S(t− r)− S(s− r ∧ s))C∆X(r)1{‖x‖≥1}(∆X(r))

∥∥∥∥∥∥
2

1
2

+E

∥∥∥∥∥∥
∑

t∧s<r≤t∨s

S(s− r ∧ s)C∆X(r)1{‖x‖≥1}(∆X(r))

∥∥∥∥∥∥
2

1
2

.

But t 7→ S(t)y is strongly continuous for any y ∈ H and∥∥∥∥∥∥
∑

0<r≤t

(S(t− r)− S(s− r ∧ s))C∆X(r)1{‖x‖≥1}(∆X(r))

∥∥∥∥∥∥
≤ 2MeβT̃ ‖C‖ sup

0≤t≤T̃

‖∆X(t)‖ (N(t, {‖x‖ ≥ 1})) ∈ L2(R)

which can be seen as in Remark 4.0.2 by the generalized Hölder’s inequality
(sup0≤t≤T̃ ‖∆X(t)‖ ∈ L2+ε(R)). Hence we can apply Lebesgue’s dominated
convergence theorem and obtain that the first summand vanishes for s→ t.
The second summand can be estimated by

MeβT̃ ‖C‖E

( sup
0≤t≤T̃

‖∆X(t)‖

)2+ε
 1

2+ε

E((N(t ∨ s, {‖x‖ ≥ 1})−N(t ∧ s, {‖x‖ ≥ 1}))p)
1
p

for p with 1/p + 1/(2 + ε) = 1/2. But the Poisson process N(·, {‖x‖ ≥ 1})
is (as an Lp(R)-valued mapping) continuous.

Set

M(t, A) = BQ(t)δ0(A) +
∫

A\{0}
xÑ(t, dx)

for any A ∈ A. We will show the continuity of t 7→
∫ t
0

∫
{‖x‖<1} S(t −
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r)CM(dr, dx) in L2(H). For 0 ≤ s, t ≤ T̃ and ν = λ+ δ0 we have

E

(∥∥∥∥∥
∫ t

0

∫
{‖x‖<1}

S(t− r)CM(dr, dx)

−
∫ s

0

∫
{‖x‖<1}

S(s− r)CM(dr, dx)

∥∥∥∥∥
2
 1

2

≤ E

∥∥∥∥∥
∫ t

0

∫
{‖x‖<1}

(S(t− r)− S(s− r ∧ s))CM(dr, dx)

∥∥∥∥∥
2
 1

2

+E

∥∥∥∥∥
∫ t∨s

t∧s

∫
{‖x‖<1}

S(s− r ∧ s)CM(dr, dx)

∥∥∥∥∥
2
 1

2

=

(∫ t

0

∫
{‖x‖<1}

‖(S(t− r)− S(s− r ∧ s))C
√
Tx‖2

2ν(dx)dr

) 1
2

+

(∫ t∨s

t∧s

∫
{‖x‖<1}

‖S(s− r ∧ s)C
√
Tx‖2

2ν(dx)dr

) 1
2

.

But

lim
s→t

∫ t∨s

t∧s

∫
{‖x‖<1}

‖S(s− r ∧ s)C
√
Tx‖2

2ν(dx)dr

≤ lim
s→t

M2e2βT̃ ‖C‖2

∫ t∨s

t∧s

(
trQ+

∫
{‖x‖<1}

‖x‖2λ(dx)

)
dr = 0.

For fixed x ∈ {‖x‖ < 1} let {ek} be an eigenbasis of the Hilbert-Schmidt
operator

√
Tx with eigenvalues αk. Then we obtain

‖(S(t− r)− S(s− r ∧ s))C
√
Tx‖2

2

=
∞∑

k=1

α2
k‖(S(t− r)− S(s− r ∧ s))Cek‖2.

Since
∑∞

k=1 α
2
kδek

is a finite measure on {ek} ⊂ H and for any k ∈ N
‖(S(t − r ∧ t) − S(s − r ∧ s))Cek‖ ≤ MeβT̃ ‖C‖ we can apply Lebesgue’s
dominated convergence theorem:

lim
s→t

∫ t

0

∫
{‖x‖<1}

‖(S(t− r)− S(s− r ∧ s))C
√
Tx‖2

2ν(dx)dr

≤ lim
s→t

∫ T̃

0

∫
{‖x‖<1}

∞∑
k=1

α2
k‖(S(t− r ∧ t)− S(s− r ∧ s))Cek‖2ν(dx)dr
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=
∫ T̃

0

∫
{‖x‖<1}

∞∑
k=1

α2
k lim

s→t
‖(S(t− r ∧ t)− S(s− r ∧ s))Cek‖2ν(dx)dr

= 0

by the strong continuity of the semigroup (S(t), t ≥ 0).

Proposition 4.1.8. Given property (4.1) we have

sup
0≤t≤T̃

E(‖XJ,C(t)‖2) <∞.

In particular, with Theorem 4.1.7 it follows that XJ,C is Bochner integrable
on [0, T̃ ].

Proof. Again consider the Lévy Itô decomposition and set

M(t, A) = BQ(t)δ0(A) +
∫

A\{0}
xÑ(t, dx)

for any A ∈ A. Then

E

∥∥∥∥∥
∫ t

0

∫
{‖x‖<1}

S(t− s)CM(ds, dx)

∥∥∥∥∥
2
 1

2

= ‖1(0,t]S(t− s)C‖N2(T ) ≤MeβT̃ ‖C‖N2(T ) <∞.

For the deterministic part we have∥∥∥∥∫ t

0
S(t− s)Cx0ds

∥∥∥∥ ≤MeβT̃ T̃‖Cx0‖ <∞.

Finally, again by the generalized Hölder’s inequality for p with 1/p+1/(2+
ε) = 1/2

E

∥∥∥∥∥
∫ t

0

∫
{‖x‖≥1}

S(t− s)CxN(ds, dx)

∥∥∥∥∥
2
 1

2

≤ MeβT̃ ‖C‖E

( sup
0≤t≤T̃

‖∆X(t)‖

)2+ε
 1

2+ε

E(N(t, {‖x‖ ≥ 1})p)
1
p

≤ MeβT̃ ‖C‖E

( sup
0≤t≤T̃

‖∆X(t)‖

)2+ε
 1

2+ε

E(N(T̃ , {‖x‖ ≥ 1})p)
1
p

< ∞.
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4.2 Ornstein-Uhlenbeck Type Processes

Given Assumption 4.0.1 the following stochastic differential equation will be
solved:

dY (t) = (JY (t) + f(t))dt+ CdX(t) (4.10)
Y (0) = Y0.

A stochastic process Y : [0, T̃ ] → L2(H), adapted to (Ft; t ≥ 0) with
Y (0) = Y0 is a weak solution of (4.10) iff Y (as L2(H)-valued function) is
continuous and Bochner integrable on [0, T̃ ] and for every y ∈ D(J∗) and
every t ∈ [0, T̃ ]

(Y (t)− Y0, y)H (4.11)

=
∫ t

0
((Y (s), J∗y)H + (f(s), y)H)ds+ (X(t), C∗y)H .

(This equation is meant to be in L2(R) = L2(Ω → R)).

Theorem 4.2.1 (Existence and uniqueness of a weak solution). Un-
der Assumption 4.0.1 the stochastic differential equation (4.10) has a unique
weak solution Y given by

Y (t) = S(t)Y0 +
∫ t

0
S(t− s)f(s)ds+

∫ t

0
S(t− s)CdX(s). (4.12)

The result will be shown with methods similar to the ones in [DaPrZa]
Theorem 5.4, which deals with the case where X is Gaussian with drift.
For X being a Lévy process and f ≡ 0 this result was obtained in [App b],
Theorem 7.

For the proof we will use the following proposition on differential equa-
tions on the Hilbert space L2(H):

Proposition 4.2.2. For each U0 ∈ L2(H) there exits a unique weak solution
to

dU(t) = (JU(t) + f(t))dt (4.13)
U(0) = U0

given by

U(t) = S(t)U0 +
∫ t

0
S(t− s)f(s)ds.

Proof. (cf. [Bal] where the result is shown on general Banach spaces).
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Proposition 4.2.3. The stochastic convolution XJ,C , i.e. the process given
by

XJ,C(t) =
∫ t

0
S(t− s)CdX(s)

is a weak solution of (4.10) for Y0 = 0 and f ≡ 0.

Proof. Let y ∈ D(J∗). We will find an expression for (y,XJ,C(t))H −
(C∗y,X(t))H which will give us that XJ,C is a weak solution. By the Lévy
Itô decomposition we can write X as the sum of two processes X1 and X2

with

X1(t) = tx0 +
∫
{‖x‖≥1}

xN(t, dx)

and

X2(t) = BQ(t) +
∫
{‖x‖<1}

xÑ(t, dx).

Define a Lévy martingale measure M by

M(t, A) = BQ(t)δ0(A) +
∫

A\{0}
xÑ(t, dx), A ∈ A.

Then the stochastic convolution can be written as

XJ,C(t) =
∫ t

0
S(t− s)CdX1(s) +

∫ t

0
S(t− s)CdX2(s)

=
∫ t

0
S(t− s)Cx0ds+

∑
0<s≤t

S(t− s)C∆X(s)1{‖x‖≥1}(∆X(s))

+
∫ t

0

∫
{‖x‖<1}

S(t− s)CM(ds, dx).

We will also use that

(S(t− r)C − C)∗y = C∗(S(t− r)∗y − y) = C∗
∫ t−r

0
S(s)∗J∗yds

= C∗
∫ t

r
S(s− r)∗J∗yds =

∫ t

0
1[0,s](r)C

∗S(s− r)∗J∗yds

=
(∫ t

0
1[0,s](r)S(s− r)Cds

)∗
J∗y.

Now by the compatibility of weak and strong stochastic integration (Prop.
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3.3.2) and by the stochastic Fubini Theorem (cf. Thm. 3.3.4) we obtain(
y,

∫ t

0
S(t− r)CdX2(r)

)
H

− (C∗y,X2(t))H

=
(
y,

∫ t

0
S(t− r)CdX2(r)

)
H

−

(
y, C

∫ t

0

∫
{‖x‖<1}

M(dr, dx)

)
H

=

(
y,

∫ t

0

∫
{‖x‖<1}

(S(t− r)C − C)M(dr, dx)

)
H

=
∫ t

0

∫
{‖x‖<1}

((S(t− r)C − C)∗y,M(dr, dx))H

=
∫ t

0

∫
{‖x‖<1}

((∫ t

0
1[0,s](r)S(s− r)Cds

)∗
J∗y,M(dr, dx)

)
H

=

(
J∗y,

∫ t

0

∫
{‖x‖<1}

(∫ t

0
1[0,s](r)S(s− r)Cds

)
M(dr, dx)

)
H

=

(
J∗y,

∫ t

0

(∫ t

0

∫
{‖x‖<1}

1[0,s](r)S(s− r)CM(dr, dx)

)
ds

)
H

=
∫ t

0

(
J∗y,

∫ s

0
S(s− r)CdX2(r)

)
H

ds.

Using once again that

(S(t− r)C − C)∗y =
(∫ t

0
1[0,s](r)S(s− r)Cds

)∗
J∗y

and by the (deterministic) Fubini Theorem we have(
y,

∫ t

0
S(t− r)CdX1(r)

)
H

− (C∗y,X1(t))H

=
∫ t

0
((S(t− r)C − C)∗y, x0)H dr

+
∑

0<r≤t

(
(S(t− r)C − C)∗y,∆X(r)1{‖x‖≥1}(∆X(r))

)
H

=
∫ t

0

((∫ t

0
1[0,s](r)S(s− r)Cds

)∗
J∗y, x0

)
H

dr

+
∑

0<r≤t

((∫ t

0
1[0,s](r)S(s− r)Cds

)∗
J∗y,∆X(r)1{‖x‖≥1}(∆X(r))

)
H

=
∫ t

0

∫ t

0
1[0,s](r)(J

∗y, S(s− r)Cx0)Hdsdr
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+

J∗y, ∑
0<r≤t

(∫ t

0
1[0,s](r)S(s− r)Cds

)
∆X(r)1{‖x‖≥1}(∆X(r))


H

=
∫ t

0

∫ t

0
1[0,s](r)(J

∗y, S(s− r)Cx0)Hdrds

+

J∗y,∫ t

0

 ∑
0<r≤t

1[0,s](r)S(s− r)C∆X(r)1{‖x‖≥1}(∆X(r))

 ds


H

=
∫ t

0

(
J∗y,

∫ s

0
S(s− r)CdX1(r)

)
H

ds.

Hence

(y,XJ,C(t))H − (C∗y,X(t))H

=
(
y,

∫ t

0
S(t− s)CdX1(s) +

∫ t

0
S(t− s)CdX2(s)

)
H

− (C∗y,X(t))H

=
∫ t

0

(
J∗y,

∫ s

0
S(s− r)CdX1(r) +

∫ s

0
S(s− r)CdX2(r)

)
H

ds

=
∫ t

0
(J∗y,XJ,C(s))Hds,

and thereby XJ,C is a weak solution of (4.10) with Y0 = 0 and f ≡ 0.

Proof of Theorem 4.2.1. Let y ∈ D(J∗) and Y be given as in (4.12), i.e.

Y (t) = S(t)Y0 +
∫ t

0
S(t− s)f(s)ds+XJ,C(t).

By Prop. 4.2.3 XJ,C is a weak solution of

dỸ (t) = JỸ (t)dt+ CdX(t)
Ỹ (0) = 0.

But

Y (t)−XJ,C(t) = S(t)Y0 +
∫ t

0
S(t− s)f(s)ds

is the unique weak solution of (4.13) for U0 = Y0. Hence

(Y (t)−XJ,C(t), y)H − (Y0, y)H

=
∫ t

0
((Y (s)−XJ,C(s), J∗y)H + (f(s), y)H)ds,
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and therefore by Proposition 4.2.3 and (4.11)

(Y (t), y)H − (Y0, y)H

=
∫ t

0
((Y (s)−XJ,C(s), J∗y)H + (f(s), y)H)ds

+ (XJ,C(t), y)H

=
∫ t

0
((Y (s)−XJ,C(s), J∗y)H + (f(s), y)H)ds

+
∫ t

0
(XJ,C(s), J∗y)Hds+ (X(t), C∗y)H

=
∫ t

0
((Y (s), J∗y)H + (f(s), y)H)ds+ (X(t), C∗y)H .

Hence Y as given in (4.12) is a weak solution of (4.10) and it is unique: For
any solutions Y, Z and 0 ≤ t ≤ T̃ we have by (4.11)

(Y (t)− Z(t), y)H =
∫ t

0
(Y (s)− Z(s), J∗y)Hds.

Hence Y − Z is the weak solution of (4.13) for U0 = 0 and f ≡ 0, but then
Y − Z ≡ 0.

The weak solution of (4.10) with f ≡ 0, i.e. Y given by

Y (t) = S(t)Y0 +
∫ t

0
S(t− s)CdX(s)

is called Ornstein-Uhlenbeck process.

4.3 Lipschitz Nonlinearities

We will now solve a type of stochastic differential equation which has an
additional nonlinear term. In section 7.1 of [DaPrZa] these equations with
Lipschitz nonlinearities are treated in the case where the integrator is a
Brownian motion.

Again given Assumption 4.0.1 we introduce the following equation:

dY (t) = (JY (t) + F (Y (t)))dt+ CdX(t) (4.14)
Y (0) = Y0,

where F : H → H is measurable and Lipschitz, i.e. there exists a constant
L > 0 such that

‖F (x)− F (y)‖ ≤ L‖x− y‖ for all x, y ∈ H.
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A stochastic process Y : [0, T̃ ] → L2(H), adapted to (Ft; t ≥ 0) with
Y (0) = Y0 is a weak solution of (4.14) iff Y (as L2(H)-valued function) is
continuous and Bochner integrable on [0, T̃ ] and for all y ∈ D(J∗) and all
t ∈ [0, T̃ ]

(Y (t)− Y0, y)H (4.15)

=
∫ t

0
((Y (s), J∗y)H + (F (Y (s)), y)H)ds+ (X(t), C∗y)H .

(Again we interpret this equation as an equation in L2(R) = L2(Ω → R)).

Proposition 4.3.1. Let Y with Y (0) = Y0 (as L2(H)-valued function) be
continuous and Bochner integrable on [0, T̃ ]. Then Y is a weak solution of
(4.14) iff it is a mild solution, i.e. Y fulfills

Y (t) = S(t)Y0 +
∫ t

0
S(t− s)F (Y (s))ds+XJ,C(t) (4.16)

for every 0 ≤ t ≤ T̃ .

Proof. Set

γ(Y )(t) =
∫ t

0
S(t− s)F (Y (s))ds.

Let Y satisfy (4.16) and 0 ≤ t ≤ T̃ . Then

Y (t)− γ(Y )(t) = S(t)Y0 +XJ,C(t).

Hence by Theorem 4.2.1 Y − γ(Y ) is a weak solution of (4.10) with f ≡ 0.
Now by (4.11) for each y ∈ D(J∗) :

(Y (t)− γ(Y )(t), y)H − (Y0, y)H

=
∫ t

0
(Y (s)− γ(Y )(s), J∗y)Hds+ (X(t), C∗y)H .

And ∫ t

0
(γ(Y )(s), J∗y)Hds

=
∫ t

0

∫ t

0
(1[0,s](r)S(s− r)F (Y (r)), J∗y)Hdrds

=
∫ t

0

((∫ t−r

0
S(s)ds

)
F (Y (r)), J∗y

)
H

dr

=
∫ t

0

(
F (Y (r)),

∫ t−r

0
S(s)∗J∗yds

)
H

dr

= (γ(Y )(t), y)H −
(∫ t

0
F (Y (r))dr, y

)
H

.
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Hence for every y ∈ D(J∗)

(Y (t)− Y0, y)H

= (γ(Y )(t), y)H +
∫ t

0
(Y (s)− γ(Y )(s), J∗y)Hds+ (X(t), C∗y)H

=
∫ t

0
(Y (s), J∗y)Hds+

(∫ t

0
F (Y (s))ds, y

)
H

+ (X(t), C∗y)H ,

thus Y is a weak solution of (4.14).
Now let Y be a weak solution. Then for every y ∈ D(J∗):

(Y (t), y)H − (Y0, y)H

=
∫ t

0
(Y (s), J∗y)Hds+

∫ t

0
(F (Y (s)), y)Hds+ (X(t), C∗y)H

= (γ(Y )(t), y)H +
∫ t

0
(Y (s)− γ(Y )(s), J∗y)Hds+ (X(t), C∗y)H .

Hence (Y − γ(Y )) fulfills (4.11) with f ≡ 0. Thereby we obtain that (Y −
γ(Y )) is a weak solution of (4.10) with f ≡ 0. But then Theorem 4.2.1
implies (4.16).

To find a weak solution of (4.14) we will construct a contraction on the
following space

Z := {Z : [0, T̃ ] → L2(H) continuous;
Z(t)Ft-measurable for all t ∈ [0, T̃ ], ‖Z‖Z <∞}

with

‖Z‖Z :=

(
sup

0≤t≤T̃

e−ctE(‖Z(t)‖2)

) 1
2

and c := 2(M2L2T̃ + β).

Proposition 4.3.2. (Z, ‖ · ‖Z) is a Banach space.

Proof. Note that ‖ · ‖Z is equivalent to the supremum norm on the space
of all bounded mappings from [0, T̃ ] to L2(H) = L2((Ω,F , P ) → H). This
space is complete (cf. for example [Die] (7.1.3.)). Therefore, for the limit Z
of a Cauchy sequence {Zn} ⊂ Z it remains to show that Z is adapted. But
since for every t ∈ [0, T̃ ] Zn(t) converges in L2(H) it converges P -a.s. for a
subsequence, hence the limit Z(t) is Ft-measurable again.

Theorem 4.3.3 (Weak solution of SDE with Lipschitz nonlinear-
ities). Under Assumption 4.0.1 the stochastic equation (4.14) has exactly
one weak solution Y .
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Proof. For Z ∈ Z set

ψ(Z)(t) :=
∫ t

0
S(t− s)F (Z(s))ds+ S(t)Y0 +XJ,C(t).

Now ψ(Z) is adapted and ψ maps Z into itself: By Proposition 4.1.8 we
have ‖XJ,C‖Z < ∞. Also ‖S(·)Y0‖Z < ∞, since ‖S(t)‖ ≤ M exp(βT̃ ) and
Y0 ∈ L2(H). It remains to show that ‖γ(Y )‖Z <∞ for

γ(Z)(t) =
∫ t

0
S(t− s)F (Z(s))ds.

But

‖γ(Y )‖2
Z = sup

0≤t≤T̃

e−ctE(‖γ(Z)(t)‖2)

≤ sup
0≤t≤T̃

e−ctE
(
t

∫ t

0
‖S(t− s)‖2‖F (Z(s))‖2ds

)
≤ sup

0≤t≤T̃

e−ctE
(
t

∫ t

0
M2e2β(t−s)‖F (Z(s))‖2ds

)
= M2 sup

0≤t≤T̃

te(2β−c)t

∫ t

0
e−2βsE(‖F (Z(s))‖2)ds

≤ M2 sup
0≤t≤T̃

te(2β−c)t

∫ t

0
e−2βsE((L‖(Z(s))‖+ ‖F (0)‖)2)ds

≤ M2 sup
0≤t≤T̃

te(2β−c)t

(∫ t

0
e(c−2β)s3L2‖Z‖2

Zds+ 3‖F (0)‖2

∫ t

0
e−2βsds

)
< ∞.

Now we will show that ψ is strongly contracting: Let Z1, Z2 ∈ Z. Then

‖ψ(Z1)− ψ(Z2)‖2
Z = sup

0≤t≤T̃

e−ctE(‖ψ(Z1)(t)− ψ(Z2)(t)‖2)

≤ sup
0≤t≤T̃

e−ctE

(
t

∫ t

0
‖S(t− s)‖2‖F (Z1(s))− F (Z2(s))‖2ds

)

≤ sup
0≤t≤T̃

e−ctE
(
t

∫ t

0
M2e2β(t−s)L2‖Z1(s)− Z2(s)‖2ds

)
= M2L2 sup

0≤t≤T̃

te(2β−c)t

∫ t

0
e−2βsE(‖Z1(s)− Z2(s)‖2)ds

≤ M2L2 sup
0≤t≤T̃

te(2β−c)t

∫ t

0
e(c−2β)s‖Z1 − Z2‖2

Zds

= M2L2

(
sup

0≤t≤T̃

t

c− 2β

(
1− e(2β−c)t

))
‖Z1 − Z2‖2

Z
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≤ 1
2
‖Z1 − Z2‖2

Z .

By Banach’s Fixed Point Theorem there exists one and only one adapted
process Y ∈ Z which is (as L2(H)-valued function) continuous such that
ψ(Y )(t) = Y (t) for all t ∈ [0, T̃ ]. Hence we obtain a process which fulfills
(4.16). Then by Proposition 4.3.1 Y is a weak solution of (4.14).
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Chapter 5

Applications in Finance

This final chapter presents some applications of Lévy processes in Finance.
In particular, we will see that the results of Chapter 4 and especially section
4.3 can be useful. First we give a review of the classical Black Scholes
model which is the basis of all option pricing formulas that are presented
afterwards. In section 5.2 a motivation for the use of Lévy processes in
financial modelling is given. While the imagination that prices are the result
of a large number of market actions is an argument for the normality of log
price returns, empirical findings do not support this. The results of [Fam]
suggest to model log prices by a Lévy process. It is then the idea of [Gem]
we pick up and point out that a Lévy process can be written as a time
changed Brownian motion and the stochastic time change can be interpreted
as a measure of economic activity. A certain class of Lévy processes, the
generalized hyperbolic Lévy motion is studied in [Ebe] and [EbeKel]. Some of
the main results of these papers are given here, including an option pricing
formula. The final section introduces stochastic volatility in the modelling.
While in the Black Scholes model and also in the model of [Ebe] the volatility
of the stock was constant it is now described itself by a stochastic process.
We present the model of [BN-S] where the log-price dynamics are given by

dX(t) = (µ+ βσ2(t))dt+ σ(t)dW (t) + %dZ(t)

with W being a standard Brownian motion and Z a (pure jump) Lévy
process. Here the volatility σ2 is the solution of an Ornstein-Uhlenbeck
type stochastic differential equation:

dσ2(t) = −λσ2(t)dt+ dZ(λt).

Since the volatility may be influenced by a large number of factors we will
now go over to the infinite dimensional case. This leads to the well-known
equation

dY (t) = JY (t)dt+ CdZ(t)

89
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and we can construct an Ornstein-Uhlenbeck process with the methods of
Chapter 4. The stochastic volatility process can now be obtained by choosing
L2([0, 1], dx) as state space and then simply integrating over [0, 1]. The
empirical findings of [BaJuYa] on the dynamics of implied volatility suggest
to introduce an additional non-linear term in the drift. In our context this
gives the equation

dY (t) = (JY (t) + F (Y (t)))dt+ CdZ(t).

For non-linear functions F that fulfill a Lipschitz condition we can now
apply the new results from section 4.3 where we have shown existence and
uniqueness of a weak solution to this equation.

5.1 The classical Black-Scholes Model

Before we turn to applications of general Lévy processes in Finance Theory
we will (heuristically) review the classical option pricing formula by Fischer
Black and Myron Scholes which was first introduced in [BlaSch]. Apart from
[BlaSch] which gives the microeconomic foundation of the formula we also
refer to [Bjö] and [Irl].

Consider the stock of a firm. We will derive a pricing formula for a
European call option. This option gives the owner of the option the right to
buy one share of the stock at a certain time T , the so-called maturity date,
for a fixed price K, the striking price. Of course the holder does not need to
exercise the option, so he or she will only do this if the stock price at time
T is greater than K.

Again let (Ω,F , P ) be a complete probability space with a complete and
rightcontinuous filtration (Ft, t ≥ 0). In the sequel all processes shall be
adapted to (Ft, t ≥ 0). The price of the stock, at different times t ≥ 0 shall
be modelled as a real-valued stochastic process S = (S(t), t ≥ 0). In the
set-up of the Black Scholes model “the distribution of stock prices at the
end of any finite interval is log-normal”. Hence it is convenient to define S
by

S(t) = S(0) exp(X(t)) for all t ≥ 0 (5.1)

where S(0) is some initial value and X is a Brownian motion with drift and
start in X(0) = 0. If we set X(t) = µt− σ2

2 t+σW (t) (with W being a stan-
dard Brownian motion) then S is the solution of the stochastic differential
equation

dS(t) = S(t)(µdt+ σdW (t)) (5.2)

which is also called stochastic exponential. (For the relation between ordi-
nary and stochastic exponential see also [ConTan] section 8.4). The param-
eter µ, the drift, is the expected return on the stock, σ is the volatility, which
measures “how risky” an investment in this stock is.
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Later on we will extend this model to price processes for which X with
X(0) = 0 is a Lévy process. Since for Lévy processes the stochastic expo-
nential might be negative we will usually define the stock price process by
(5.1) and refer to X as the log-price (the logarithm of the price).

The short-term interest rate r shall for simplicity be constant over time.
In order to derive a price for the call option we can calculate what the net
present value of the corresponding claim would be if it could be observed at
time t = 0. Since the option will only be exercised if S(T ) > K and the stock
could immediately be sold for S(T ) by the owner of the option the discounted
value of the claim (with interest rate r) is exp(−rT )(S(T )−K) ∧ 0.

So far we have investigated the price process S on the probability space
(Ω,F , P ) where P is the “real-world” probability measure. Suppose all
economic agents where risk neutral : Then they would not distinguish be-
tween a safe (deterministic) payment of some amount c and an uncertain
(stochastic) payment which has the expectation c. In this case the price of
the option would just be given by the expectation of the net present value
exp(−rT )(S(T )−K) ∧ 0. But for most agents it can not be expected that
they are risk-neutral - many of them might be risk-averse, some of them
might be risk-loving.

However we can find a probability measure Q equivalent to P under
which the option price can be derived as if agents were risk-neutral. This is
not the “real-world” probability measure, but an implicit probability mea-
sure that one would obtain if it was derived from the prices of financial
assets. Usually risk-adjustments will be made in the prices of financial as-
sets, in our case the stock and the option. If these adjustments are already
made with the measure Q, which has by the Radon-Nykodym Theorem a
density with respect to P , all agents should behave risk-neutral under this
measure. But in this case the price of the option should be the expectation
of the net present value of the claim (under Q), i.e.

EQ(exp(−rT )(S(T )−K) ∧ 0).

Otherwise speculators could gain arbitrage profits: If the price of the option
would for example be lower than this expectation then they could buy the
option from borrowed money and the expected payout at time T would be
larger than the amount they will have to pay back at time T . Vice versa
they could short-sale the option and put the money on a savings account
with interest rate r and in expectation the claim at time T will be lower
than the deposit on the account.

Absence of such arbitrage strategies under Q can only be achieved if
(exp(−rt)S(t); t ≥ 0) is a martingale under Q, since then the expectation
with respect to Q is constant over time. As we shall see now it is a conse-
quence of Girsanov’s theorem that such a probability measure Q which is
equivalent to P exists. Q is then often called the risk-neutral measure or a
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martingale measure (the latter name we will not use to avoid confusion with
the martingale measure as defined in section 2.5). For S given by (5.2) the
risk-neutral measure Q has Radon-Nykodym density

dQ

dP
= exp

(
r − µ

σ
W (T )− (r − µ)2

2σ2
T

)
.

We obtain

S(t) = S(0) exp
(
σW (t) +

(
µ− σ2

2

)
t

)
P -a.s.

and

S(t) = S(0) exp
(
σW̄ (t) +

(
r − σ2

2

)
t

)
Q-a.s.

where W̄ = (W̄ (t); t ≥ 0) = (W (t) − r−µ
σ t; t ≥ 0) is a standard Brownian

motion under Q. This means that S solves (5.2) under Q for µ = r, hence it
behaves like a stock with drift equal to the interest rate. Now we calculate
that the price of the option is

EQ(exp(−rT )(S(T )−K) ∧ 0)

= exp(−rT )EQ

((
S(0) exp

(
σW̄ (T ) +

(
r − σ2

2

)
T

)
−K

)
∧ 0
)
.

But for Z with distribution N(a, γ2) one can calculate (cf. for example [Irl],
p.155):

E((b exp(Z)−K) ∧ 0)

= b exp
(
a+

γ2

2

)
Φ

(
log
(

b
K

)
+ a+ γ2

γ

)
−KΦ

(
log
(

b
K

)
+ a

γ

)

where Φ is the distribution function of N(0, 1). Hence for b = S(0), a =
(r − σ2

2 )T and γ = σ
√
T we obtain that the price of the option is

pBS(S(0), 0, σ2)

:= e−rT EQ

((
S(0) exp

(
σW̄ (T ) +

(
r − σ2

2

)
T

)
−K

)
∧ 0
)

= S(0)Φ

 log
(

S(0)
K

)
+ (r + σ2

2 )T

σ
√
T

 (5.3)

−Ke−rT Φ

 log
(

S(0)
K

)
+ (r − σ2

2 )T

σ
√
T

 .
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This formula is the famous Black-Scholes formula (which is equation (13) in
[BlaSch]). Notice that the price of the option is independent of the expected
return on the stock µ. The parameters are the initial value of the stock
S(0), its volatility σ, the striking price K, the maturity date T of the option
and the constant short-term interest rate r. The price of the European call
option on S is then at any time 0 ≤ t ≤ T given by

p(S(t), t) := pcall(S(t), t) := EQ

(
e−r(T−t)(S(T )−K) ∧ 0

∣∣∣Ft

)
= S(t)Φ

 log
(

S(t)
K

)
+ (r + σ2

2 )(T − t)

σ
√
T − t

 (5.4)

−Ke−r(T−t)Φ

 log
(

S(t)
K

)
+ (r − σ2

2 )(T − t)

σ
√
T − t

 .

A European put option gives its holder the right to sell one share of the stock
at maturity date T for the striking price K. Similar arguments as above or
just the put-call-parity

S(t) + pput(S(t), t) = pcall(S(t), t) +Ke−r(T−t)

lead to the pricing formula

pput(S(t), t) := EQ

(
e−r(T−t)(K − S(T )) ∧ 0

∣∣∣Ft

)
= Ke−r(T−t)Φ

− log
(

S(t)
K

)
+ (r − σ2

2 )(T − t)

σ
√
T − t

 (5.5)

−S(t)Φ

− log
(

S(t)
K

)
+ (r + σ2

2 )(T − t)

σ
√
T − t

 .

More generally, one may derive a pricing formula for claims that can be
expressed by a measurable function H applied to S(T ):

pclaim(S(t), t) := EQ

(
e−r(T−t)H(S(T ))

∣∣∣Ft

)
.

5.2 Asset Price Models with Lévy Processes

One of the assumptions in the Black-Scholes model is that the log-prices of
stocks shall be described by a Brownian motion. It can be asked if this is
the proper class of processes to model such prices or if it might be more
appropriate to represent log-prices by a Lévy process. There are several
empirical studies about the distributions of the increments of log-prices.
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Many of these conclude that not the normal distribution but others lead to
a much better representation.

In [Fam] time series of daily prices for the thirty titles in the Dow-Jones
Industrial Average of some five years were taken for the research. The
frequency of changes of certain sizes in log-prices were compared to the fre-
quency predicted by a normal distribution. Also the independence of such
increments was tested. The result was that the assumption of independent
increments can be justified, but the log-prices do not seem to behave like
a Brownian motion. For each single stock the empirical distributions “con-
tained more relative frequency in the central bell than would be expected
under a normality hypothesis” and “in every case the extreme tails of the
distributions contained more relative frequency than would be expected un-
der the Gaussian hypothesis.” This means that very small and very large
changes in the log-prices are more likely to occur than it would be under a
normal distribution. Hence the results are a strong argument to departure
from the normal distribution and to use other infinitely divisible distribu-
tions, i.e. log-prices should be modelled by a Lévy process.

Very soon after the release of [BlaSch] a pricing formula for discontinu-
ous processes with a certain kind of jumps was developed in [Mer]. Many
other publications from various authors which described log-prices by Lévy
processes followed, especially in recent years. It has to be emphasized that
this does not decrease the importance of the findings in [BlaSch]. The for-
mula given therein was the first pricing formula for derivatives of stocks and
the basis for further developments later on.

Normal distributed log-price returns by the central limit theorem can be
interpreted as the result of infinitely many - or a large number of - inde-
pendent market transactions. But this intuitive argument for the normality
assumption in the Black Scholes model does not stand in contradiction to
the empirical results mentioned above: Every local semimartingale can in
distribution be described by a time changed Brownian motion as was shown
in [Mon]. It is pointed out in [Gem] that the existence of a risk-neutral mea-
sure under which the discounted stock prices are martingales implies that
these stock prices and also the log-prices have to be semimartingales under
the real world probability measure P . Log-prices can therefore be described
by a time changed Brownian motion. One may write

logS(t) = X(t) = W (T (t)) (5.6)

where W is a Brownian motion. The stochastic time change can be inter-
preted as a measure of economic activity. [Gem] writes that (5.6) “illumi-
nates how asset prices respond to the arrival of information. Some days,
very little news, good or bad is released; trading is typically slow and prices
barely fluctuate. In contrast, when new information arrives and traders
adjust their expectations accordingly, trading becomes brisk and the price
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evolution accelerates.” Two classes of pure jump Lévy processes are inves-
tigated in [Gem], the generalized hyperbolic Lévy motion and the CGMY
process. A nice special case is the normal inverse Gaussian process (NIG)
which can be written as

X(t) = W (T (t))

where W is a Brownian motion and T is an inverse Gaussian process in-
dependent of W , i.e. T (t) is the first arrival time of a Brownian motion
independent of W at the level t. The class of generalized hyperbolic Lévy
motions, where the normal inverse Gaussian process belongs to, was inves-
tigated in detail in [Ebe] which we will review in the next section.

5.3 Generalized Hyperbolic Lévy Motions

The results of this section are taken from [Ebe]. A generalized hyperbolic
distribution is a probability distribution on R which has a density with
respect to the Lebesgue measure - depending on parameters λ, α, β, δ, µ -
given by

dGH(x) := dGH(x;λ, α, β, δ, µ)

:= a(λ, α, β, δ)
(
δ2 + (x− µ)2

)(λ− 1
2
)/2
Kλ− 1

2

(
α
√
δ2 + (x− µ)2

)
eβ(x−µ)

where

a(λ, α, β, δ) =
(α2 − β2)λ/2

√
2παλ− 1

2 δλKλ(δ
√
α2 − β2)

is a normalizing constant and Kν is a so-called modified Bessel function with
index ν which has integral representation

Kν(z) =
1
2

∫ ∞

0
yν−1 exp

(
−1

2
z
(
y + y−1

))
dy.

Note that Kν cannot always be expressed explicitly and therefore has to be
treated numerically. (For the exact definition of modified Bessel functions,
representations and approximation results see [AbrSte], section 9.6). The
parameters of dGH have the following properties: α > 0 determines the
shape, β with 0 ≤ |β| < α the skewness and µ ∈ R the location. δ > 0 is a
scaling parameter, λ ∈ R characterizes certain subclasses. µ and δ can be
compared to the parameters µ, σ of N(µ, σ).

[Ebe] defines a generalized hyperbolic Lévy motion as the Lévy process
X = (X(t), t ≥ 0) generated by a generalized hyperbolic distribution (which
is infinitely divisible) for which the distribution of X(1) has density dGH .



96 CHAPTER 5. APPLICATIONS IN FINANCE

A normal inverse Gaussian distribution (NIG) is a distribution belong-
ing to the subclass for λ = −1/2. The density of an NIG can also be
expressed as

dNIG(x) =
α

π
exp

(
δ
√
α2 − β2 + β(x− µ)

) K1

(
αδ

√
1 +

(x−µ
δ

)2)
√

1 +
(x−µ

δ

)2 .

In [Gem] it is shown that the generated process can be written as a time
changed Brownian motion as described in section 5.2. The characteristic
function ϕNIG is derived in [Ebe]:

ϕNIG(u) = exp(iµu)
exp(δ

√
α2 − β2)

exp(δ
√
α2 − (β + iu)2)

.

It follows that for any t ≥ 0 the distribution of X(t) is also an NIG with
parameters α, β, tδ, tµ.

Now we will describe the asset pricing model. Let X = (X(t), t ≥ 0) be
a generalized hyperbolic Lévy motion. The price process is then given by

S(t) = S(0) exp(X(t)) (5.7)

for some initial value S(0) = s ∈ R and X(0) = 0. In general the risk-neutral
measure for this model is not unique, but in [EbeKel] at least the existence
of such a measure is shown. We will shortly repeat the construction here.

With d∗tGH denote the density of the distribution of X(t) (which is the
density of the t-fold convolution of the distribution with density dGH). For
any θ ∈ R with

E(exp(θX(t))) <∞ for all t ≥ 0

define a new density d∗tGH(·; θ) by

d∗tGH(x; θ) =
exp(θx)d∗tGH(x)∫∞

−∞ exp(θy)d∗tGH(y)dy
. (5.8)

Under the corresponding probability measure P θ, for which the distribution
of X(t) has density d∗tGH(·; θ), the process X is again a Lévy process, the
so-called Esscher transform of X. Let the short term interest rate be r > 0.
If we choose θ such that

S(0) = exp(−rt)EP θ(S(t)) (5.9)

for every t ≥ 0 then the discounted price process (exp(−rt)S(t); t ≥ 0) is a
martingale under P θ. Since for any independent random variables Y1, . . . , Yn

E

(
exp

(
n∑

k=1

Yk

))
=

n∏
k=1

E(exp(Yk))
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and with similar arguments like in [Lin] Corollary 5.1.8. (compare Lemma
1.2.6) we have by the independence and stationarity of the increments of X∫ ∞

−∞
exp(ux)d∗tGH(x; θ)dx = EPθ

(exp(uX(t)))

= EPθ
(exp(uX(1)))t =

(∫ ∞

−∞
exp(ux)dGH(x; θ)dx

)t

.

Hence (5.9) translates to

exp(r) = EP θ(exp(X(1))) =
∫ ∞

−∞
exp(x)dGH(x; θ)dx

=
(∫ ∞

−∞
exp(θy)dGH(y)dy

)−1 ∫ ∞

−∞
exp(x) exp(θx)dGH(x)dx

and

r = log
(∫ ∞

−∞
exp((θ + 1)x)dGH(x)dx

)
− log

(∫ ∞

−∞
exp(θx)dGH(x)dx

)
= log E

(
e(θ+1)X(1)

)
− log E

(
eθX(1)

)
. (5.10)

According to [EbeKel] there exists a unique solution θ∗ for θ in (5.10) which
can be derived by numerical methods.

By [Ebe] equation (3.5), we know that∫ ∞

−∞
exp(ux)dGH(x)dx

= exp(µu)
(

α2 − β2

α2 − (β + u)2

)λ/2 Kλ

(
δ
√
α2 − (β + u)2

)
Kλ

(
δ
√
α2 − β2

) .

In the case where X is an NIG process this can be reduced to a simple form.
By equations 9.6.2 and 9.6.10 in [AbrSte] it follows that

K−1/2(z) =
π

2

( ∞∑
k=0

(z/2)2k+1/2

k! + Γ(k + 3/2)
−

∞∑
k=0

(z/2)2k−1/2

k! + Γ(k + 1/2)

)

=
π

2

√
2
z

( ∞∑
k=0

(z/2)2k+1

Γ(2k + 2)
√
π/(22k+1)

−
∞∑

k=0

(z/2)2k

Γ(2k + 1)
√
π/(22k)

)

=
√

π

2z
(sinh z − cosh z) = −

√
π

2z
exp(−z).

Hence∫ ∞

−∞
exp(ux)dGH(x)dx = exp

(
µu− δ

(√
α2 − (β + u)2 −

√
α2 − β2

))
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and

r = µ+ δ
(√

α2 − (β + θ)2 −
√
α2 − (β + θ + 1)2

)
if X is an NIG.

Now for any generalized hyperbolic Lévy motion and corresponding θ∗

we can derive a pricing formula for a European call option with maturity
date T and striking price K. Set γ := log( K

S(0)). Then with (5.10) we obtain

p(S(0)) := EP θ∗
(
e−rT (S(T )−K) ∧ 0

)
= EP θ∗

(
e−rT

(
S(0)eX(T ) −K

)
1{X(T )≥γ}

)
= e−rTS(0)

∫ ∞

γ
exd∗TGH(x; θ∗)dx− e−rTK

∫ ∞

γ
d∗TGH(x; θ∗)dx

= e−rTS(0)E
(
eθ

∗X(T )
)−1

∫ ∞

γ
e(θ

∗+1)xd∗TGH(x)dx

−e−rTK

∫ ∞

γ
d∗TGH(x; θ∗)dx

= exp
(
−T

(
r + log E

(
eθ

∗X(1)
)))

S(0)
∫ ∞

γ
e(θ

∗+1)xd∗TGH(x)dx

−e−rTK

∫ ∞

γ
d∗TGH(x; θ∗)dx

= exp
(
−T log E

(
e(θ

∗+1)X(1)
))

S(0)
∫ ∞

γ
e(θ

∗+1)xd∗TGH(x)dx

−e−rTK

∫ ∞

γ
d∗TGH(x; θ∗)dx

= E
(
e(θ

∗+1)X(T )
)−1

S(0)
∫ ∞

γ
e(θ

∗+1)xd∗TGH(x)dx

−e−rTK

∫ ∞

γ
d∗TGH(x; θ∗)dx

and the pricing formula is

p(S(0))

= S(0)
∫ ∞

γ
d∗TGH(x; θ∗ + 1)dx− e−rTK

∫ ∞

γ
d∗TGH(x; θ∗)dx. (5.11)

In [EbeKel] the fit of a certain class of generalized hyperbolic Lévy mo-
tions to financial data is tested. Ten titles from the German DAX index
were investigated. The hypothesis of a hyperbolic distribution could be ac-
cepted for all stocks at the level 0.01. An estimation of parameters α, β, δ, µ
for theses stocks can also be found there.
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The NIG process also gives a good fit to financial data as it is pointed
out in [Ryd]. An algorithm for the simulation of NIG processes and an
approximation procedure is given.

5.4 Stochastic Volatility

So far we have dealt with models in which the volatility of the stock, i.e.
σ is constant over time. From an economical point of view this is a very
restricting assumption. It seems more realistic that the volatility may change
over time depending on several factors of influence. The crucial point will
then be to find an adequate stochastic process representing the volatility.

We will assume that Q is a given risk-neutral measure. This could for
example be obtained by the construction via an Esscher transform as it was
described in section 5.3.

Again consider a European call option on a given stock with striking
price K and maturity date T . A method to derive a price for this option in
the case that the stock price process has stochastic volatility is developed in
[HulWhi]. The stock price S is there described by

dS(t) = µS(t)dt+ σ(t)S(t)dW (t)

where σ(t) =
√
σ2(t) and σ2 is a certain non-negative stochastic process

modelling the volatility, which we will therefore call the stochastic volatility
process. If σ was constant we would be back in the context of section 5.1.
The mean variance over the time period [0, T ] is defined as

V̄ =
1
T

∫ T

0
σ2(s)ds. (5.12)

Now in the model of [HulWhi] the price of the option is given by

p(S(0)) = EQ(pBS(S(0), 0, V̄ )) (5.13)

where pBS(S(0), 0, V̄ ) is the Black Scholes price of the option as derived in
(5.3) for σ2 = V̄ . Hence the option price under stochastic volatility may be
derived as a mixture of Black Scholes prices.

Ole E. Barndorff-Nielsen and Neil Shepard have introduced a model
where the stochastic volatility is the solution of a stochastic differential
equation driven by a Lévy process. We will describe the so-called BN-S
model following the ideas of [BN-S]. The log-price X shall be given by

dX(t) = (µ+ βσ2(t))dt+ σ(t)dW (t) + %dZ̄(t) (5.14)

and the stochastic volatility process shall be the solution of

dσ2(t) = −λσ2(t)dt+ dZ(λt). (5.15)
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Here W is a standard Brownian motion. The parameter µ can be interpreted
as the drift of the stock if β = −1/2 like in the Black Scholes model. To
obtain more flexibility β can be any real value. By Z we denote the so-called
background driving Lévy process (BDLP) and set Z̄(t) = Z(t)− E(Z(t)) as
a centered version of Z. We choose λ > 0 and % any real number.

Equation (5.15) is of Ornstein-Uhlenbeck type, i.e. the same type of
stochastic differential equation as (4.10) for f ≡ 0 where the Hilbert space
H is in this case R. The solution σ2 is therefore given by

σ2(t) = e−λtσ2(0) +
∫ t

0
e−λ(t−s)dZ(λs).

In order to have that σ2 is non-negative we assume that Z is a non-Gaussian
Lévy process with non-negative increments, a so-called subordinator.

Now (5.15) can be interpreted as follows. Caused by external shocks the
volatility of the stock increases suddenly. The proportion of the increase is
given by a jump of the BDLP. This can be seen as an immediate reaction
of the market on new relevant information. Depending on how important
investors valuate the information the jump may be of different sizes. When
time is elapsing the activity of the market becomes lower again. Therefore
volatility decays exponentially, where the rate is determined by the param-
eter λ.

Following the approach of [HulWhi] a pricing formula for European call
options in the context of the BN-S model is constructed in [NicVen]. Here
equation (5.14) was modified: Now Z̄ is equal to the subordinator Z and
% ≤ 0. By M′ denote the set of all risk-neutral measures Q, such that the
log-price and the stochastic volatility may under Q again be described by
(5.14) and (5.15), perhaps with different parameters and another law for Z.

Let Q ∈M′. We define the effective log-price by

Seff = S(0) exp(XT + %Z(λT )− λTκQ(%))

where κQ is given by

κQ(θ) =
∫

R+

(eθx − 1)λQ(dx)

with λQ denoting the Lévy measure of Z under Q. According to [NicVen]
the price of the option can now be derived as

p(S(0)) = EQ(pBS(Seff ), 0, V̄ )). (5.16)

[NicVen] also determine the range of prices depending on the risk-neutral
measure Q.

It is suggested in [BN-S] and [NicVen] to use stochastic volatility pro-
cesses given by (5.15) as “building blocks” for more general processes.
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The approach taken there is to define the stochastic volatility process σ2

as a weighted sum of independent Ornstein-Uhlenbeck processes where each
of these may represent the volatility changes caused by a single influencing
factor:

σ2(t) =
N∑

j=1

σ2
j (t)

dσ2
j (t) = −λjσ

2
j (t)dt+ dZj(λjt).

By this set-up the stochastic volatility is the result of external shocks
coming from different sources. As the number of such sources, which may
be macroeconomic developments or actions of individual agents, can be as-
sumed to be very large it seems appropriate to choose an infinite dimensional
model.

In the situation described in section 4.2, i.e. on any separable Hilbert
spaceH (and under Assumption 4.0.1), Theorem 4.2.1 gives the unique weak
solution of the Ornstein-Uhlenbeck type stochastic differential equation

dY (t) = JY (t)dt+ CdZ(t) (5.17)

where Z is an H-valued Lévy process. The solution is given by

Y (t) = S(t)Y0 +
∫ t

0
S(t− s)CdZ(s). (5.18)

(Recall that (S(t), t ≥ 0) is a C0-semigroup with infinitesimal generator
J and C ∈ L(H)). Now much richer stochastic volatility processes can
be constructed by choosing for example H = L2([0, 1], dx) (dx denoting
the Lebesgue measure). If Y is an L2([0, 1], dx)-valued Ornstein-Uhlenbeck
process we can define a real valued process σ2 by

σ2(t) =
∫ 1

0
Y (t)(x)dx (5.19)

for any t ≥ 0.
In [BN] stochastic volatility processes are constructed by integration over

a continuum of real-valued Ornstein-Uhlenbeck processes. Hence the ap-
proach there is similar to the one suggested above. However the single
Ornstein-Uhlenbeck processes there have to fulfil a certain independence
condition. This indicates that the model described here might be more
flexible as the influencing factors are allowed to interact with each other.

Recent empirical results indicate that a non-linear drift term should be
added in the dynamics of the stochastic volatility process. In [BaJuYa] it has
been tried to estimate the dynamics of stochastic volatility. The authors ex-
amined the Chicago Board Option Exchange Market Volatility Index (VIX).
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This index represents implied volatilities, i.e. volatilities derived from real-
ized option prices and prices of the corresponding stocks by the Black Scholes
formula. Underlyings are eight stocks from the S&P 100 index and corre-
sponding options. The VIX is the average of the eight implied volatilities.
[BaJuYa] use the index as a proxy for stochastic volatility. Different models
for the dynamics of stochastic volatility are ranked by their goodness of fit
to the data of the VIX in an empirical survey. One of the results is that
models which include non-linear drift terms are preferred against models
from the same model class without any non-linear term in the drift.

If we incorporate these results in the infinite dimensional context from
above this leads to equations of the type

dY (t) = (JY (t) + F (Y (t)))dt+ CdZ(t) (5.20)

for a non-linear function F : H → H.
If in addition F fulfills a Lipschitz condition then we are in the context

of section 4.3. For a Lévy process Z such that condition (4.1) is valid there
exists a solution to (5.20) by Theorem 4.3.3. From the solution Y one may
now obtain the stochastic volatility process σ2 like in (5.19).



Symbols

B(E) Borel σ-algebra of a Banach space E p.9
Lp((X,A, µ) → E) L2-space of E-valued functions p.11
M(E) set of all finite measures on E p.12
P(E) set of all probability measures on E p.12
L(E,F ) space of bounded linear operators from E to

F
p.14

G(E) set of all Gaussian symmetric probability
measures on E

p.15

e(λ) the exponent of a finite measure λ p.15
es(λ) the generalized exponent of a finite measure

λ
p.17

λ a Lévy measure p.18
L(E) set of all Lévy measures on E p.18
[x0, Q, λ], [x0, %, λ] generating triplets of an infinitely divisible

measure
p.21

K(x, a) kernel p.17
L(x, a) classical kernel p.22
Lp(E) Lp((Ω,F , P ) → E) p.22
E(X|G) conditional expectation of a real- or H-

valued random variable X with respect to
G

p.27

P the predictable σ-algebra on R+ × Ω p.27
trQ trace of a bounded linear operator Q p.30√
R square root of a non-negative bounded lin-

ear operator R
p.30

N(t, A) Poisson random measure p.33
Ñ(t, A) compensated Poisson random measure p.34
L2

λ L2(H \ {0}, λ|H\{0};H) p.36
BQ Brownian motion with covariance operator

Q
p.40

(S,Σ) a Lusin topological space p.41
A0,A rings on (S,Σ) p.41
A0,A in the case S = {x ∈ H; ‖x‖ < 1} see p.40
M(t, A) martingale measure p.41
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T a positive-operator valued measure p.42
L(H) L(H,H) p.50
L Borel σ-algebra generated by the strong

topology on L(H)
p.50

N2(T ) space of strongly integrable mappings p.51
S2(T ) subspace of the simple functions in N2(T ) p.52
Nw

2 (T ) space of weakly integrable functions p.58
Sw

2 (T ) subspace of the simple functions in Nw
2 (T ) p.59

G2(W ) space of functions integrable with respect to
“M(ds, dx)⊗ µ(dw)”

p.65

D(J) domain of an operator J p.72
XJ,C stochastic convolution p.73
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