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Abstract

We consider a discrete Schrodinger operator H = —A+V acting in
12(Z%), with periodic potential V' supported by the subspace ”surface”
{0} x Z. We prove that the spectrum of H is purely absolutely
continuous, and that surface waves (see [8] for definition) oscillate in
the longitudinal directions to the ”surface”. We find also an explicit
formula for the generalized spectral shift function introduced in [4].

1 Introduction

In this paper we will primarily discuss the discrete Schrodinger operator H

with a surface potential V acting on the Hilbert space 1?(Z9)

H:H0+V,

where
78 =7% x 7% = {X = (2,¢) |z € ZU, ¢ € 7%},
In other words

Hp(X)= > ) +@)v(@)p(X),

YezZd |y —X|=1

for all ¢ € 1?(Z?), where 6(z) is Kronecker symbol.

(1.1)

(1.2)

(1.3)

(1.4)



It is well known that Hy is a bounded self-adjoint operator on 1%(Z9),
and

oac(Ho) = o(Hy) =[—2d,2d],
O'pp(H()) = O'SC(H()):Q.

For every real-valued potential v, it is clear that the operator H is self-
adjoint in I2(Z?). Using Weyl’s criterion one can see that o (Hy) is contained
in the spectrum of H. Moreover, in [8] the authors prove that for bounded
potential v, o(Hp) is always contained in the absolutely continuous com-
ponent of the spectrum of H. This result was generalized for an arbitrary
unbounded potential v in [5, 12].

In fact, in this model we have two special parts of the spectrum o(H) of
the operator H

e Bulk branches of the spectrum whose generalized eigenfunctions (poly-
nomially bounded solutions of the equation Hy = A\, X € o(H))
are plane waves, i.e. they oscillate in all directions.

e Surface branches of the spectrum (or more simple “surface spectrum”)
whose generalized eigenfunction decay in the transversal directions x
and either oscillate or decay in the longitudinal directions £&. These
solutions are called surface waves (see [6, 8, 11] for results and refer-
ences).

There is a large literature on the spectral properties of H and the ge-
ometry of surface branches of the spectrum of H (see [2, 8, 11, 9, 10, 14]).
For example in [2] the authors study the case where v belongs to a special
class of unbounded quasiperiodic potentials. In that case they prove that
away from o(Hy) the surface spectrum of H is pure point dense and the
corresponding generalized spectral functions are exponentially localized. A
typical example of this class is

v(€) = Atan(ra - £+ 0)

with @ = (@, ,aq) € [0,1]¢ and 6 € R. In that case H is the Maryland
surface model. This model was also studied in [14] and [11]. In [14] the
authors prove that if o has typical Diophantine properties, i.e. if there exist
constants C, k > 0 such that

€-a—n|>ClEl ™k, VEeczZ® Vnez,



then the surface spectrum of H is dense and pure point outside o(Hy) for
any A # 0 and € € R and the corresponding surface waves are localized. In
[11] the authors proved that if aq,--- ,ag are Q-linearly independent, then
the spectrum of H is purely absolutely continuous on o (Hy).

Our goal in this paper is to study the geometry of the spectrum of H
in the case of a surface periodic potential, i.e. we assume that there exist
Ny,--- Ny, € N* such that

v+ Njej) =v(§)  Vi=1,--- ,dy (1.5)

where {e;} are the canonical basis of R%2. We prove in the first section, that
the spectrum of H is purely absolutely continuous, and that surface waves
oscillate in the longitudinal directions ¢ and are localized in the transversal
directions z. A similar problem in the continuous case was studied in [7].

In the second section we find an explicit formula for the generalized
spectral shift function which was introduced in [4] for a homogeneous sur-
face potential (periodic, quasi-periodic, random ergodic).
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2 Study of the spectrum:

In this section we will show that the spectrum of H is purely absolutely
continuous if v(¢) has property (1.5). Let Q92 be the periodic cell i.e.

O = (&= (&, ,€q) €Z2, 0<E<Nj =1, j=1,---,dy}.

Let T% = [0,27]% be the torus in R% and let us consider following spaces

Hi = 12(Q%) Hy = @H’ _
! ’ Td2 1(27r)d2

® do
Hy = 1P(ZD) x P(Q®),  Hy= » H’Z—(%)dz.
And let Uy be the following operator
U, o Pz —

(ULf)o(€) = D> e ™ f(+n|N), 6eT?,

nezZd2



where n|N = (ny Ny, -+ ,n4,Ng,) € Z%. Let Uy be the following operator

Uy : 1P(2% — Hy
U, = 10U,

1.e.

(U2f)o(x,€) = > e " f(,& +n|N).

nez2
Let us denote by hg the Laplacian on [?(Z%). Then we have the following

Lemma 2.1

UhoU; ! = @h 0 d6
ot "= [, O e

where ho(0) is the Laplacian on H) with the Bloch-Floquet conditions:

Yokt Njseos 1 €)= €Pp(€n, o500 Eay),
1:[)9(51"" aNj - la"' a£d2) = 619]‘,(/}(51’“_ a_la"' 7£d2)‘

Proof. The proof of this lemma, is the same proof for the continuous Lapla-
cian developed in [18]. m
It is clear that the spectrum of hy(#) is pure point, moreover

(ho(0)92) (&) = an(0)45(€),

where
- 0;  2min;
#n(6) = [ Lexpligs + =5 (2.1)
j=1
d>
0]' 27mj
an () = _22(;03(@ + N, ). (2.2)
j=1
Corollary 2.1 We have
@ do
HoUy,' = | Hy(0) =
U2 0U2 Tds 0( )(271_),127



where Hy(0) is the Laplacian on I?(Z%) x 12(Q%) with Bloch-Floquet condi-
tions for longitudinal directions &:

71/)0(]77617"' 7Nj7"' 7§d2) = 6%0]‘7:/)(1‘7517"' 707"' 7§d2)7
71/)0(337517"' 7N] - ]-7 7§d2) = ewj'lz/)(xagla"' 7_]-7"' 76(12)7

forall j=1,---,do.

It is clear that Hy (0) = (—A%)®1+1®hg (0) where —Ay, is the discrete
Laplacian on {?(Z%). Therefore the spectrum of Hy (6) is purely absolutely
continuous and

0ac(Ho (0)) = [-2dy + min ay(0),2d; + max a,(0)] C [-2d,2d]. (2.3)
neqdz neQdz

Lemma 2.2 The operator H defined in (1.1)-(1.4) is decomposable in direct
integral.

Proof. Let A be a multiplication operator on Hs by a measurable function
f, and let F be an operator of I2(Z%) into itself defined by F = UEIAUZ,
then one has

(Fo)(w, e +nIN) = S (@,€ +n|N)f(n—n),
n’EZd2
where
~ b do
fo= [ e 0

By a direct calculation one finds that the commutator [H, F'| = 0, this shows
that the operator H is decomposable according to the Theorem XIII.84 of
[18]. m

Lemma 2.3 We have

Uy HU, ' = ) H(9) 40
2 2 - Tds (271_),127

where H(0) = Hy(0) + Vp(X), and Vy(X) is the potential 6(z)v(€) on Hj.



Proof. In view of Corollary 2.1 It suffices to verify that

® db
UsVUy = Vy——.
2 /T " (2m)®

This follows from

(U2V f)a(X) = Vo(X)(U2f)o(X)
which is obvious from a direct calculation. m
Theorem 2.2 We have

0ac(H(0)) = 04c(Ho(#)) =[-2d; + min «,(0),2d; + max a,(0)],

nedz neQd2

USC(H(O)) = O,

and H(0) has at most a finite number of eigenvalues situated outside of

[—2d, — a(6),2dy + a(8)].

Proof. We have H(6) = Hy (0) + Vy(X) where V3(X) is the multiplication
operator by a finite-rank matrix whose rank

r = rankVy(X) = |Q%|
is the volume of Q2. Then by the Theorem XI.10 of [18] we have

Oac(H(0)) = 04c(Ho(0)) =[-2d1 + min a,(0),2d; + max a,(0)],
neNd2 neNd2

osc(H(0)) = @.

Moreover, H(f) has at most r eigenvalues. Let us show that o,,(H(#)) N
0uc(H(0)) = @. Fix E € opp(H(0)) N 0gc(Ho(#)). By the Green’s formula
for the pair H(0) and Hy(0) we obtain

up(z,€) = Y Gr(e,& —n, Ho(0))v(n)ur(0,1),

neQd2

where G is the Green function of Hy(f) and ug is the eigenfunction of
H(9) corresponding to E. We notice that up € [?(Z%) ® [?(29) if and
only if Gg(z,&, Ho(0)) decay sufficiently fast in z which is possible only if
E ¢ 0(Hy(0)) = [-2dy + min o, (0),2d; + max a,(0)] =

neQd2 neQd2

In fact a part of the eigenvalues of H(6) can be plunged in the spec-
trum of Hy, i.e. in [—2d,2d]. A priori the Theorem XIII.85-(f) of [18] does



not assure us that the spectrum of H is purely absolutely continuous on
[—2d, 2d], therefore first of all we will study these eigenvalues and show that
they generate an absolutely continuous spectrum for H.

Let E € o,,(H(0)). For all n € Q9 we define

B dp _
K (n) = (/le R ROEr U

where a,,(0) are the eigenvalues of hg(#) defined in (2.2), and

(2.4)

D4, (p) = —QZcosp]

k%.(n) is well defined because according to Theorem 2.2 one has E & o(Hy(6))
this means that Vn € Q%, &, (p) + ay(0) — E # 0. Let us now define the
following operator

Kh, + M —H (2.5)
(Kio¥)(n) = kp(n)pn)+ Y dn—n)p(n),

n/€Qd2
where
=Y #(E)v(©)

£eqdz

and ¢? (¢) are the eigenfunctions of ho(#) defined in the equation (2.1). The
spectrum of this operator is clearly pure point. Moreover we have

Lemma 2.4 We have
0€ Upp(K%,u) & E € opy(H(0)).

Proof. Let 1/’ 1 be the eigenfunction of K% corresponding to the eigenvalue
0. By a simple calculation and by using (2.4) and (2.5) we find that the
function

0 _ 1T, 0 kE'( ) 0
(.6 = [ doer > AT @B

is an eigenfunction of H(f) corresponding to the eigenvalue £. m
Let us suppose that § = 0(t) = a+tb where a and b are two fixed vectors
in R® and t € R.



Lemma 2.5 Let £ € 0,,(H(0)) and let Ap(t) = Kz(t). Then for any t € R

there exists a neighborhood of the real azxis where the eigenvalues {\%(-)} are
analytic not identically constant in t.

Proof. Let K%%) be the operator Kg(,?:o- Obviously, the eigenvalues of this
operator are

o), \ _ dp _
k" (n) = (/le Dy, (p) + anla + tb) — E) g

(2.6)

To show that A} () is analytic on a neighborhood of R it is enough to show
that they are bounded for a finite ¢ € R. Let ¢} (¢) be the normalized
eigenfunctions of Ag(t), i.e.

Ap(OYEt) = Ap®)9vEp(@),
lPe®l = 1L

Then we have

(ABOWR0O. 4(0) = X ().
And (see [13])
U R 0),
0

d
A URTAI0)

k" (n)
dt

o(t)
dk
And this last quantity Edit(n) is explicitly calculable. By deriving the

equation (2.6) in ¢ one finds

dk%‘(t) (n) _ do (a + tb) / dp (kﬂ(t) (n))—Q
dt dt ray (@g, (p) + an(a +tb) — E)2°F '

This derivative is obviously bounded. Thus there exists C' > 0 such that

dNg(t) _ dk" (n)
LY = |<C.
dt dt



Then A7 (t) can not grow up to infinity for a finite £ € R.

Thus, we can write A (7) where 7 € C belongs to a certain neighborhood
of t € R We have to show that A% (7) is not identically constant. Let us
suppose that A% (7) is constant

AL (7) = A, (2.7)

We have according to the relation (2.2)

a; +7b;  27mn;
an(a+7b) = =2) cos(—Z 1+ 2)
" 2 N; N;

Let us suppose that 7 = 4+ iy € C. So there exists C1,m two positive
constants such that

lan (a4 7b)| > Cy(e™¥ +1).

Then if y is big enough, there is C(yo) > 0 such that

| / dp < / dp < ! .
2 8 () anla +70) B = Ja, T80, (p) + anla +78) — B] = Clyo) (@1 + 1)

Thus
K97 ()| > Co(e™! + 1). (2.8)

And for any ¢ € C\R there exist a positive constant C' such that we have
the bound

0(7) —_0 1< c
I K5 -0 1< oy

By taking y to infinity we obtain

lim || (K55 — )7 [|=0. (2.9)

y—00 ’
Let © be the following operator

o HY—=H
(@)(n) = > d(n—n)p(n).
n’EQd2



This operator is a finite-rank matrix. Thus we have also

. ~ 9(7)_ -1
Jim (K - 07 =0, (2.10)

By (2.9), (2.10), and the resolvent identity one finds

lim || (K57 =) [|I=0. (2.11)

Yy—00

. o(r) . . . .
Since K E(::) is a finite dimensional operator we have

1
A=<l

where A is defined in (2.7). This relation contradicts (2.11). Therefore A7 (%)
cannot be constant function. m

o(r _
(BT =)t

Lemma 2.6 For any t € R the eigenvalues Nj,(t) are strictly monotonous
in E.

Proof. With the same notations of the proof of Lemma 2.5 one has (e.g.

13)
D) _ (AW ) g o)
dKo®

e AORHIG)

k2" (n)
dE

By the direct calculation of the derivative of kaE(t) (n) in E from the relation

(2.6) we obtain

i (n) _ / dp ( / dp 2
dE rar (g, (p) + an(a +tb) — E)?2" Jpay $g, (p) + an(a +1tb) — E"
Thus
d\(t)
1B < 0.

This yields the result. m

10



Theorem 2.3 Fiz 0(t) = a + tb where a,b are two vectors in R¥, and let
B(t) = H(0(t)). Then for any ty € R there exist a neighborhood of the real
azis in t such that the eigenvalues {Ey(t)}n of B(t) are analytic and not
identically constant in this neighborhood.

Proof. By Lemma 2.4 one has
E € opp(B(t)) <= 0 € app(Ag(2)),

where Agp(t) = Kg(t). Let {A7.(t)} the set of the eigenvalues of A(). Ac-
cording to Lemmas 2.5 and 2.6 A% (t) is an analytic function not identically
constant on a neighborhood of the real axis in ¢, and strictly monotonous
in F. By the theorem of implicit functions there exists F,(t) an analytic
function not identically constant in ¢ such that F = F,,(t). =

Now we can follow the schema the demonstration of the Theorem XII-
1.100 of [18]:

Theorem 2.4 The spectrum of H is purely absolutely continuous.

Proof. Let b, Ko,--- , K4, be a basis of R | thus T% = {0 = s1b+ s K +
84, Ky |s1 € M(s1),s1 = (s2,...,84,) € N}, then we have

dsldsl
H:/ / H(Slb-i—'--—l-Sde)i,
S1EN 51€M(SJ_) ? ? (271-)112

According to Theorem 2.2 and Theorem 2.3 the spectrum of B(s1) = H (s1b+
-+ +54,Kg,) is the union of a purely absolutely continuous spectrum and a
set of analytic eigenvalues not identically constant in si. According to the
two Theorems XII1.86 and XIII.85-(f) of [18] the spectrum of

d
/ H(sib+ -+ sqyKa,)—t
51€M(SJ_) 27

is purely absolutely continuous. By applying XIII1.85-(f) of [18] once again
to the direct integral on s; € N one finds the result. =

Remark. In fact the part of o(H) coming from the direct integral of the
eigenvalues of H(0) is the surface spectrum of H because the corresponding
generalized eigenfunctions decay in transversal directions z . This follows
from the fact that the direct integration of the eigenfunctions of H(#) does
not act on x. The other part of the spectrum of H(6) which comes from
the direct integration of the absolutely continuous spectrums of H(0) is the
bulk spectrum and is equal to [—2d, 2d]. The intersection of these two parts
is not necessary empty because a part of H(6)’s eigenvalues can be plunged
in [—2d, 2d).

11



3 Generalized spectral shift function:

The spectral shift function { was introduced by I.Lifchitz [16] and M.Krein
[15] for the trace class perturbations i.e. for a couple of operators (A, B)
such that Tr{B — A} < oco. This function verifies the trace formula (see
[3, 19] for more results and references), i.e. for any function f in certain
class of real functions (C*°(R) with compact support for example), one has

/R FVENAN = Tr{f(B) — F(A)}. (3.1)

We showed in [4] that when one perturbs the discrete Schrodinger opera-
tor by a surface homogeneous (ergodic or periodic for example) potential a
quantity ¢ exists in the distribution’s sense. This quantity is the analogue
of the spectral shift function, and we called it the generalized spectral shift
function. In the particular case of a periodic surface potential a formula
similar to the trace formula (3.1) exists and has the form

/ ' VENA = |Q—1d| Tv Po{f(H) — f(Ho)}, (3.2)

where Pq is the orthogonal projection on the slab Q = Z% x Q4.

Let Hy(0), H(A) be the two operators defined in the preceding section.
In fact the perturbation (H (@), Hy(f)) is of a finite-rank, and thus according
to [3] the spectral shift function £(X, @) of this couple exists.

In [4] we showed, in particular, that for the simplest case (v(¢) = Const.
the generalized spectral shift function € is a usual function (not distribution)
and is given by the relation

£ = /R £, (0 — 1) Ny, (dps) (3.3)

where &4, is the spectral shift function of the couple (—Ag4, + ad(x), —Ag,)
and Ny, is the integrated density of states of hg = —A,,. We will prove the
next Theorem which is a generalization of the relation (3.3) for a periodic
potential. We can rewrite (3.3) as following

= [ - a0) -2

Td2 (27T)d2 ’

da
where ®(0) = —22 cos ;.
7=1

12



Theorem 3.1 Let £()\) be the generalized spectral shift function of (H, Hy).
Then

_ 1 do
£ = o] T@f()\ 9)(2 )

Proof. As we mentioned before the theorem the spectral shift function
&(X,0) of the pair (H(0), Hy(#)) exists and verifies the trace formula (3.1),
thus Vf € C*°(R) with compact support

/f £\, 0)dx = Te{f(H(8) — f(Ho(0))}.

In the other hand

[ FOENA = T P ) = ()
1 do

B |Q2| [, (27r)d2 Tr{f(H(0) = f(Ho(0))}

1
‘|m4T@zw@/f

By applying Fubini’s Theorem one finds that for any function f € C*°(R)
with compact support

df
[ rove SW|T@ﬂ%m§BgMA—Q

This relation is equivalent to the assertion of the theorem. m

This theorem shows that studying the smoothness and asymptotic prop-
erties of £()\, #) allows us to study the smoothness and the asymptotic prop-
erties of £()\). This will be discussed in a later work.
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