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Abstract

A new theory of generalized continued fractions for infinite-dimensional
vectors with integer components is constructed. The results of this theory
are applied to the classical problem on the distribution of quadratic residues
and non-residues modulo a prime number and based on the study of ergodic
properties of some infinite-dimensional transformations.

Introduction

While usual continuous fractions enable to approximate real numbers by rational
ones, it is the mission of generalized continuous fractions to approximate more com-
plicated objects through the elements of a countable dense subset in the relevant
space.

Generalized continued fractions are a classic object of mathematics. The gener-
alizations of continued fractions for number vectors were studied by Euler, Dirichlet,
Jacobi, Perron, Poincaré, Hermite, Hurwitz, Klein, Minkowski, Solotaryov, Voronoi
and many other mathematicians [1]-[17].

In papers [18] [22] the notion of an (A, w)-continued fraction was introduced for
an arbitrary real n-dimensional vector depending on a map A of n-dimension space
and on a vector w that belongs to the unit n-dimensional torus. This notion was
applied in [18]-[21] to solutions of problems of analysis and number theory, which
were set up by Weyl [24] on finding strong estimates of Weyl sums and the remainder
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term in the law of distribution of fractional parts of the values of polynomial. In
the special case where z is number (n = 1) and A has the form A :  — 1, the
(A, w)-continued fraction is an ordinary continued fraction [25].

In this paper we use the construction of an (A, w)-continued fraction for the def-
inition of an (A, p,w)-continued fraction of an arbitrary infinite-dimensional vector
x = (x1,xq,...) with integer components z,(n = 1,2,...). (4, p,w)-continued frac-
tion depends on infinite-dimensional map A, on infinite sequence p = (py, po, . ..) of
pairwise relative prime natural numbers p;, po, ... and on a vector w = (wy,ws, . ..)
that belongs to some infinite-dimensional torus 7', which is defined with the help
of the sequence p. We establish the basic properties of (A, p, w)-continued fractions
which are connected with ergodic properties of the map A obtained from map A by
the projection onto the torus 7.

This theory is applied to classical problem of the distribution of quadratic residues
and non-residues modulo a prime number going from Euler and Gauss. It is well-
know that if p is prime more than 2 then there are the same number of quadratic
residues and quadratic non-residues in the row 1,...,p — 1 [26]. The main problem
is to prove the analogue of this assertion for arbitrarily slowly increasing lengths
of intervals X; = (z; + 1,..., 25 + ;) of sequentically placed integer numbers as
p — oo. It means that for p — oo the number @} of quadratic residues and the
number Q7 of quadratic non-residues modulo p which are contained in X; have the
forms

Tp

r__'p ~ //7@ _
Q=Z+olm), Q=L+l (1

°o5) _ (), Thre are no many results obtained in the direction of

where lim;_, e
solution of this problem.

First of all we mention that if the sequence of numbers r; is bounded as p — oo
then for many number of intervals Xj; the equalities (1) are not valid as p — oo ([28],
29]). If r; = p, and € > 1 then the equalities (1) were proved in [30] for intervals
X; with arbitrary value z; and originally this assertion was proved in [27] for € > %
The main result of this paper is theorem 8 (section 5) in which the equalities (1)
are proved for arbitrarily slowly increasing function ¢ (p) = rp, for any subsequence
of prime numbers p, (instead of all prime p) such that its speed of growth more
then some function depended on the function ¥ (p), and for almost all collections of
interval X,,, in sense of natural measure on torus 7.

Moreover, the assertion of theorem 8 is valid for any collection of intervals X,
but concrete lengths 7, of these intervals are defined by means of expansion of



vector & = (Zp,, Tp,, - -.) € T (the n-th component of x is z,,,) in (A, p, w)-continued
fraction in which A = A, is the some concrete map, p = (p1, pa, . ..) is the sequence
consisting of prime numbers p,,, and the vector w € €2, where () is some subset of
torus 1" which is explicitly constructed in section 5.

If for w € Q the (A,, p,w)-continued fraction of vector z is finite (it is true for
almost all x € T') then equalities (1) are valid for all elements p,, of the sequence p,
but if for w € Q the (A, p, w)-continued fraction of vector x is infinite then equalities
(1) are valid for arbitrarily long initial interval of numbers of the sequence p, which
is defined by means of (A., p, w)-convergents of the continued fractions of the vector
x. Theorem 8 is the corollary of theorem 7 having independent significance on
the estimates of shot sums of Legendre symbols by means of (A, p,w)-continued
fractions.

Ergodic theory plays important role in theory of (A, p,w)-continued fraction.
It is applied to the map A on torus 7. In section 2 it is proved that the map
A is ergodic on T with respect natural measure and the Birkhoff ergodic theorem
is valid everywhere for the characteristic function of a cylinder (the definition of
cylinder is given at the beginning of section 2). The map A is the group shift on
the compact group with respect to topology for which all cylinders are closed and
open sets simultaneously, and therefore according to general ergodic theory ([31])
the unique ergodicity of the map A is the corollary of its ergodicity. It means that
the map A has the unique Borel normalized invariant measure. In theorem 1 we use
the following main conditions which are necessary for ergodicity of map A: any two
numbers in the sequence p = (p1, pe, .. .) are pairwise relatively prime and for any n
the number p,, is relatively prime to the number ~, which is used in the definition
of the map A (§ 1). In the opposite case the map A can be not ergodic.

The paper contains five sections . In sections 3 and 4 the theory of (A, p,w)-
continued fraction is constructed, in section 2 the ergodic properties of the map A
are studied and section 5 is devoted to quadratic residues and non-residues.

We present the list of notation and definitions used in this paper in section 1. In
addition, other notation and definitions having the meaning for some sections are
introduced there.

The numbering of formulas, theorems, lemmas, corollaries, remarks and defini-
tions is throughout the paper.

The main results of this paper were announced in [23].
The author thanks Forschungszentrum Bielefeld-Bonn-Stochastik for the support.



1 General definitions and notation

We introduce the following objects:

1) asequence p = (py, pa, . . .) of infinitely many pairwise distinct, pairwise relatively
prime natural numbers p,(n = 1,2,...);

2) a vector v = (71,72, ...) with integer components such that the number =, is
relatively prime to p,, for every n =1,2,..;

3) the discrete circle S,, of the residues 0,1, ..., p,—; modulo p, and the measure
i, on S, such that the measure of every element of S, inequal to p, !;

4) the torus T that is the Cartesian product of the circles S, for all n = 1,2,...,
a point of which is a vector w = (w1, ws, ...) such that w, € S, (n=1,2,...),
and the measure mes on 7' that is the product of measures p, for all n;

5) the map A that sends a vector x = (x1,29,...) to the vector 2’ = Azx =
(x), 25, ...) with components z/, =z, + v, (n=1,2,...);

6) the map A of T that sends w = (wi,wy,...) € T to @, = w, + Y,mod p,
(n=1,2,...);

7) the map A of T which is the invers of A and sends w = (w1, ws,...) € T to
W= Aw = (&1, Ws,...) with components w,, = w,, —y,mod p,(n=1,2,...);

8) for a real number z, the symbol [z] means the integer part of z and the symbol
{z} is its fractional part;

9) for any vector x = (x1,2,...) with integer components z,(n = 1,2,...) we

introduce the vectors [[z]] = ([[z]]1, [[z]]2,--.) {{z}} = {{z}}1, {{z}}2,...),

where for n = 1,2, ... the components [[z]],, = [i—ﬂ and {{z}}, = 2, —pallz]]n;

10) the assertion which is valid everywhere on 7" means that it holds for all vectors
x € T and the assertion which is valid for almost all € T" means that it holds
for all vectors & € T', except for a set of measure mes zero.



2 Ergodic properties of the map A
Let s be a natural number and k4, ..., ks be pairwise distinct natural numbers.

Definition 1. We introduce s-dimensional torus Ty, . = Sk, X ... X Sk, that is

the direct product of the circles Si,,...,Sk,, and the measure p, x, on Ty, . k.

S

that is the direct product of measures pg,, ..., i,

Definition 2. Let ¢, ., be a subset of torus T}, . k. We introduce the cylinder
Chy....k. C T that is the subset of T consisting of all such vectors x = (1, 2, . . .) for
which s-dimensional vector zy,, ...,z for with components xy,, ..., zx, belongs to
subset cg, ... k.-

Remark 1. From the definitions of torus T and measure mes on 7" it follows that
o-algebra of mes-measurable sets is generated by all cylinders Cy, ., and for any
cylinder Cy, ., the equality mes Cy, g, = fy.. ko (Chy....k.) holds.

Definition 3. The characteristic function of a set is the function that takes the
value 1 on this set and the value 0 in other points.

Lemma 1. Let Q C T, Q be a mes-measurable set. Then the set A(Q) is mes-
measurable on 7" and mes € = mes A(Q).

Proof. If Q) - a cylinder, then the statement of lemma 1 follows from the definition
of map A in section 1 and from the Definition 2. For arbitrary mes-measurable set
() this statement is corollary of the remark 1. Lemma 1 is proved.

Definition 4. The map acting in a space with a finite measure and conserving this
measure is called ergodic if there are no subsets having the measure differing from
0 and the measure of all space, which are invariant with respect to this map.

We formulate the Birkhoff ergodic theorem relating to the transformation A
acting on the torus T" with measure mes, which is used in what follows.

Birkhoff ergodic theorem ([31]). Let f(z) be a function on 7" such that |f(x)]
is integrable function on T" with respect to measure mes. Then for almost all z € T
there exists lim, o > p f (ka) = f(z), and if the transformation A is ergodic
then the function f(z) is a constant which is equal to the integral of the function
f(x) over the torus T' with respect to measure mes.
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Now we prove Theorem 1 from which it follows that the map A is ergodic and
consequently the second part of Birkhoff ergodic theorem is valid.

Theorem 1. The transformation A on the torus 7' is ergodic with respect to
measure mes, and if f(z) is the characteristic function of a cylinder then for it the
Birkhoff ergodic theorem is valid everywhere on 7'

Proof.

Lemma 2. Let ky, ..., ks be pairwise distinct natural numbers, numbers py, , . . ., Dk,
are differed from 1, ¢, (v = 1,..., s) are integer numbers such that 1 < ¢, < p;, —1.
Then the sum Ry, x. = >5_; % cannot be integer.

Proof of lemma 2. Let ‘g—: = ;’“—“ be the fraction in which the numerator a, and

v

the denominator b, are pairwise relatively simple numbers. Then by virtue of the

numbers v, and p,, are relatively simple and the numbers py,, ..., py, are pairwise
relatively simple, we obtain that the quantity Ry, _, = Y,_) "p~ = Ty M1 IEI.I.J.Z: btk

is the fraction in which the denominator divides by number b; # 1 and the numerator
does not divide by by, because its first term does not divide by b; and second ones
L divides by by. Therefore, the number Ry, _;, cannot be integer.

Lemma 2 is proved.

According to Remark 1 the orthogonal basis of the space L, on T with respect
to measure mes consists of the functions

o Tt Tt
Jrr k() =exp <2m <M + .+ M)) , (2)

Pk, Dk
where © = (1,29,...) € T; ky,..., ks are pairwise distinct natural numbers; 0 <
tk, < pg, —1; tx, is integer; v = 1,...,s. We consider the operator ¢/ which is conju-

gated to A and acts in Ly on T so that if f(x) € Ly then (Uf)(x) = f(Ax). From the
definition of A in the section 1 it follows that the functions fy, _x. () from (2) are the
eigenfunctions of the operator I and their eigenvalues Ay, i, = exp(2miRy,  k.)

where Ry, . r, are numbers introduced in the formulation of Lemma 2. By virtue

S

of Lemma 2, if the numbers py, , ..., pg, are differed from 1 and numbers ty,, ...,

s

are differed from 0 then Ay, ., # 1. Therefore, there is no function differing from a
constant which is invariant with respect to the operator U, and the map A is ergodic

([31)-



Now we prove that for characteristic function xy, . . (x) of a cylinder Cy, . .
the Birckhoff ergodic theorem is valid everywhere. According to definitions 1, 2 and
to Remark 1 it means that for any vector x € T’

lim — ZXkl, Lk = 1mes Ckl = M,k (Ck1,---,k's) ) (3)

n—o0 n

where cg, .., is the subset of torus Ty, ., corresponding to the cylinder Cy, . .
by virtue of Definition 2. As any function of a finite number variables zy,, ..., z,
taking the finite number of values zy, € Si, (v = 1,...,s) can be represented by
the finite linear combination of the functions fy, . (z) introduced in (2), then for
the proof of the equality (3) it is sufficiently to prove the following statement: if
the numbers py,,...,pxr, are differed from 1 and tg,,..., ¢, are integer numbers
satisfying the inequalities

1§th§pku_1 (7/:1,...,8) (4)

then the function fi, k. (x) satisfies equalities

Hm, 2 Z fra.. =0, (5)
/ Sk (Thys -+ oy Th )by ke, = 0, (6)

Ty ... ks
where fi, k. (Tk,...,2x,) is the function introduced in (2) and considered as the
function of arguments zy,, . .., 2y, only. To prove the equality (5) we use the Lemma
2 according to which the number Ry, ., = ¥ (a and b are integer numbers) is

irreducible fraction differing from integer (b # 1), and we use the equality

fk],...,ks(zkx) = eXP(27TikRk],...,ks)fk],...,ks(x) .

By virtue of this equality for any natural m the equality 37" T ks (ka) =0
holds. Therefore there exists a constant M depending on the function fg, .. ()
only such that for all natural numbers n the inequality | Y71 fi . k. (kaﬂ < M
holds, and the equality (5) is proved. Now we prove (6). As the numbers py,, . .., Pk,
are differed from 1 and the numbers t,, ..., tx, satisfy the inequality (4) then from
the Definition 1 of measure py,, ., we obtain:

»ivs

s Pr, —1
L T,k
/T fk17---7ks (Ilﬂ S 7Iks)d,uk1,---,ks - H (pkyl Z exXp <27TZ )) =0.
Ky, ik

Lsenes s v=1




Theorem 1 is proved.

Corollary 1. Any trajectory of the map A is everywhere dense on the torus 7' in
the following sense: the trajectory intersects any cylinder.

3 Generalized continued fractions of infinite-di-
mensional vectors with integer components

Let © = (21,29,...) be a vector with integer components z,(n = 1,2,...). We

represent x in the form of (A, p, w)-continued fraction which can be finite or infinite.

We denote it by = = [q(o), e ,q(")}A if (A, p,w)-continued fraction of z is finite
w

and by @ = [g, ¢, ] it it s infinite. Let 2@ = 2, @ = [20]], 6 =

{{z@}}. If 6O = w, then the process of constructing of the (A,p,w)-continued

fraction is completed, = = [q(o)h and the (A, p,w)-continued fraction is finite.
7p7w

Otherwise, if 60 # w, then we suppose (V) = Az,

We suppose now that for some integer & > 0 the infinite-dimensional vectors
g9, qW, ..., ¢™ with integer components and infinite-dimensional vectors (0, ..., z(!)
are constructed so that ¢*) = Hx(S)H and 6©) = {{z®}} £ wfor s =0,... k.

Let ¢*+D = Hx(k“)ﬂ 6D = LY I §HD = () then the process of

constructing of (A, p,w)-continued fraction is completed, x = [q(o), .. ,q(k“)h ,

7p7w
and the [A,p,w)-continued fraction of vector z is finite. Otherwise, if 6§ # w,
we suppose that z(*+2 = A§*+D_ If 5 £ o for all integers k& > 0, then z =

g9, qm, ... , and the (A, p,w)-continued fraction of vector z is infinite. The
A,pw

Wy

representation of vector z in the form of an (A, p,w)-continued fraction if fully de-
scribed.

It follows from the constructing of (A, p,w)-continued fraction that it is sufficient
to have a map A of the set T\w only. In the special case where x is a real number,
[[z]] = [z], {{z}} = {z}, A is the map of interval 0 < y < 1, which has the form
Ay — i, and w = 0, the (A, p,w)-continued fraction is the ordinary continued

fraction [25].

Theorem 2. The (A, p,w)-continued fraction of z is finite if and only if {{z}}
belongs to the trajectory Afw (k = 0,1,...), where A is the map introduced in
Definition 7) of section 1 (A° is the identitiy map of T).



Proof. Suppose that the (A, p,w)-continued fraction z = {q(o), .. .,q(m)]A of
7p7w

vector z is finite. By virtue of Definition 6) of map A (section 1) for k = 0,...,m
we have: §*) = Zk{{w}} and 60" = w, where §*) are the quantities introduced in
the process of constructing of (A, p,w)-continued fraction. Therefore, according to
the definition of the map A we have {{z}} = A™w. Conversely, suppose that for
some integer m > 0 the equality {{z}} = A™w holds, and for all nonnegative s < m

w # {{z}}. Then we have 6™ = w and §*) # w for s < m. This proves the
finiteness of (A, p, w)-continued fraction of the vector z.

Theorem 2 is proved.

Theorem 3. For any distinct vectors, their (A, p, w)-continued fraction are distinct.

Proof. Let T = (T1,Ty,...) and T = (Z1, Ta, . . .) are two distinct vectors with integer
components T, and T,, (n = 1,2,...), 7 = [[7]], 6 = {{z}}, 7 = [@], 0 = {{T}},

where 7 = (4,,qy,--.), 0 = (01,02,-..), ¢ = (q4, Qs ---); 0 = (01,09,...). Suppose
that the (A, p,w)-continued fraction is finite for at least one of the vectors Z,Z. If
G # @, then the assertion of theorem 3 follows from constructing of the (A, p,w)-
continued fraction. If § = 7, then we have 6 # 5. Therefore, assuming that the
(A, p,w)-continued fraction of vectors T and T coincide, by virtue of theorem 2 we
have § = 0 = A’“w, where £ is a natural number. This contradiction proves Theorem
3 in the case where the (A, p, w)-continued fraction of a least one of the vectors T, T
is finite.

Let us suppose that the (A, p,w)-continued fraction of both vectors T, T are

infinite, 7 = [5(0),5(1), .. .}A T = {5(0),?1), .. .]A . Assuming that the (A, p,w)-
Dw D

sPw

continued fraction of the vectors T and T coincide, we find that g* = ﬁ(k) for all
integers k > 0 and, hence, d # .

Let s be the smallest natural number for which 5, # 33 For £ = 0,1,... we

_ e (k) — =)  _
introduce the vectors 3" — A" = (5§k),5ék), ), 6( - — A5 = (65 ),(5; ), ...) and

the vectors z®) = (xgk),_(k), ), T TH = (fgk) = (f(k) xgk),...) with components
)

T = p,g® + 5( k) _(k + 5 (n = 1,2,...). From the construction of
(A,p, w)-continued fractlon and the definition of map A (Section 1) for any k =
1,2,... we have

—(f— —(f— (k—1
Oy L L N Ly Y

=(k) =(k)

M <z® <pg® +p,  pg® <7 < pg" +p,,



W) 7" =5, — 5, #£0. (7)

Suppose, for definiteness, that

=2l
=2l
@

(8)

By virtue of Corollary 1 of Theorem 1 (section 2) and the definition of the vectors

S(k), there exists a natural number ky such that

st <5, -3, . (9)
Since ) )
( ) psqsk) + 5.2 ) .s pngk +gé - ps_(k +g
— = k — =
for all £ > 1, in accordance with (7) and (8) we have: 55 fo) _ 52, Y =3,-0, >0,

and this contradicts inequality (9). Theorem 3 is proved.

Theorem 4. The infinite (A, p, w)-continued fraction x = [q(o), g, .. .}A of the
’p7w
vector x cannot be periodic, i.e. there are no natural numbers k; and h such that

¢"t" = q® for any natural k > k.

Proof. Let us suppose the contrary, i.e. that the infinite (A, p, w)-continued fraction
r = [q(o), g, .. .]pr is such that ¢**t") = ¢®) for k > ky. From the definition of
the sequence p (secvti’on 1) it follows that there exists a natural number s such that
ps > 1 and if n > s then the number p, is relatively prime to h. For any vectors
T = (T1,To,...) € T, T = (T1,T2,...) € T such that their components T, and T,
satisfy the equalities T, = 0, T, = ps — 1 their images § = (7,7, ...) = AT, 7Y =
(U1, 7o, - - .) = AT with respect to the map A satisfy the inequality

7, 7,
HEE R
Ps Ps
We introduce the vectors § = {{z}}.5® = A", two sets M ¢ T M C T such
that

M:{y:(ylay%"'):ys:()}?ﬁ:{y: (Y1,Y2,--+) 1 Ys = ps — 1} (11)

the torus T that is the Cartesian product of the circles S, for all n > s and the
map A of T® that sends a vector y = (Yss Yst1, - --) € T to the vector § = Ay =

10



(Us, Ys+1, - - -) with components 3, = vy, + hy,mod p, (n > s). As according to
definitions of numbers 7, (section 1) and the number s the number hvy,, is relatively
prime to p, for every n > s then the assertion of Corollary 1 (section 2) is applied to
map A on the torus 7). Therefore, by virtue of Corollary 1 there exist the natural
numbers 77 and 7 such that

A5 7T, AT e 7T (12)

From the construction of (A, p,w)-continued fractions, it follows that the vectors

kD) — (q§hﬁ+k+1);q§hﬁ+k+1)7.“)’ qa+k+D) = (q§h§+k+1),q§h§+k+l),...), arising

from the (A, p,w)-continued fraction z = [q(o), g, .. .}A are connected with the
7p7w

_ (xghﬁ—l—k—i-l)’xghﬁ—l—k—l—l),.”) _ Azhﬁd(k)* x(h§+k+1) _ (xgh§+k+1)*

xéh%kﬂ), ) = Azh%(k), by the following relations:

vectors g(Ptk+1)

4y

hA+k+1)
|

(h+k+1) _ [x;(/

- 2 (h+k+1)
hg+k+1) _ | 2w
- )

by by

where v = 1,2,.... Therefore, by virtue of relations (10), (11), and (12), we have
the inequalities g(Pm+r+1) —£ q§h§+k+1)’ gUmth+D) gD which contradict the
assumption concerning the periodicity of the infinite (A, p, w)-continued fraction of
the vector z. Theorem 4 is proved.

Theorem 5. Let 2 be a measurable set on 7', mes €2 > 0. Then:
1) for almost all € T there exists w = w(x) € €2 such that the (A, p,w)-continued

fraction of x is finite;

2) if the set Q) is a cylinder then assertion 1) holds for all x € T..

Proof. Let
1t yeQ

Applying Theorem 1 (section 2) to the map A and the function x(y), we have

n—oo n,

13—
lim — ) XA'z) =mes Q>0 (13)
k=1

Therefore, the assertion 1) follows from Theorem 2.

In order to prove assertion 2) it suffices to prove that if the set  is a cylinder
then there exists the limit in (13) for all z € T". This fact follows from the Theorem
1 as well. Theorem 5 is proved.

11



4 Convergents of Generalized infinite-dimensional
continued fractions and their properties

Definition 5. Let 2 = [q(o),q(l), .. .}A . For all v = 0,1,... we introduce the

yD,w

(A, p, w)-convergents of the continued fraction S®) = [q(()), e q(”)}A of the vector

sP,w

z as follows: S®) = (S{V),Sg/), ...) is an infinite-dimensional vector whose n-th

(n=0,1,...) component is

SY = qOpn+ (o (= + a0+ (1 + ¢V pn+wn)) ), (14)
where q,(f) (k=0,...,v) and w, are components of the vectors
k) (k
q(k):(qg)7Q§)7)7 w:(wlaw%"')‘

Theorem 6. Let the (A, p,w)-continued fraction of the vector z be infinite, S
(v =0,1,...) be (A, p,w)-convergents of the continued fraction of =, N and m be
natural numbers, Uy(z) = {y = (y1,%2,...) € T : Yy = 2,1 < n < N} be the
cylinder, Dy () be the number of v € {1,...,m} such that S € Uy(x). Then
the equality lim,,_ . DN’T’”(Q‘“) = (p1,.-.,pn)"" holds.

Proof. From the construction of (A, p, w)-continued fraction and from the definition
of map A, it follows that the components z,, (n > 1) of vector = can be represented

by the form
2= qVpn+ (o (= a0+ (VD0 +61)) ) (15)
where ¢®) and §) are components of vectors ¢®) = (¢, ¢\”,...) and §©) =

(8.6 ..). Therefore according to the equalities (14) and (15) we have: z—S®) =
§#) — w. By virtue of this equality the quantity Dy,,(z) introduced in the for-
mulation of Theorem 6 is equal to the quantity Qn.,(z) that is the number of
v e {l,...,m} for which §¢) € Uy(w), where the cylinder Uy (w) is also defined in
the formulation of Theorem 6 for w = x. Applying Theorem 1 and Birkhoff ergodic
theorem to the map A and the characteristic function x(y) of the cylinder Uy (w)
by virtue of the equality 6¢) = A”{{z}} we have the equality

lim M = lim iix(z%(o)) :/Tx(y)dyz (ph...,pN)_l;

12



from which the assertion of theorem 6 follows. Theorem 6 is proved.

Corollary 2 Let the (A, p,w)-continued fraction of a vector x be infinite. Then z
is the limit point of the sequence SW) = (S%"), Séy), ) (v=0,1,...) its (4, p,w)-
convergents of continued fraction in the following sense: for any natural nubmer N
there exists the natural number v such that the component S W =g, ifl <n<N.

5 Estimates of sums of Legendre symbols and the
distribution of quadratic residues and non-resi-
dues modulo a prime number

Definition 6. Let p be a prime. Integer number z not dividing by p is called the
quadratic residue modulo p, if it is congruent with square of integer modulo p, and
the number z is the quadratic non-residues modulo p, if it is not congruent with any
square of integer modulo p.

Definition 7. Let p be prime, d be integer. We define the Legendre symbol (g) as
follows: this symbol is equal to 1, if d is a quadratic residue modulo p, it is equal to
—1, if d is a non-residue modulo p, and it is equal to 0, if d divides by p.

Definition 8. We introduce the map A, sending an infinite-dimensional vector
r = (21,79,...) to the vector 2* = A.x = (zf,25,...) with components z} =
r+1(n=1,2,...).

Remark 2. The map A, coincide with map A (section 1) if in its definition we put
Yo =1(n=1,2,...).
We introduce the following objects:
r is a natural number,
€ is a real number satisfying the inequality 0 < € < %;

¥(n) is an arbitrary real function such that i (n) > 1, lim, .1 (n) = oo and

[¥(7)]" < ¢y/n, where n > 1, and ¢ is a constant not depending on n;

p = (p1,p2,...) is a sequence consisting of pairwise distinct prime number p,, such

that 332, [¢(pa)] ") < oo;

ng is a natural number such that for all n > 0 the inequalities ¥(p,) < p, and
© h(pa)] ) < ((2r)" + 4re) 7! hold;

n=ng

13



[, is the subset of the discrete circle S, (section 1) consisting of numbers k € S,
for which the inequality | S¥ %) (H—m) | > [1h(pn)]' ™ holds;

Pn
I1,, is the cylinder on the torus T such that if z = (21, x9,...) € II,,, then z,, € T,,.

Definition 9. We introduce the sets IT and €2 on the torus 7" such that

M= (JIm,, Q=T7\I.

n=no

Theorem 7. For any vector x = (x1,zs,...) € T the following assertions hold:

1) if there exists a vector w € € such that (A, p,w)-continued fraction of vector
x is finite and has the form

(16)

then for all n > ng the inequality

2

vAl(on)] (xn k
k=v+1

) | < W)™ a7

holds, and the set of vectors 2 € T for which the relations (16) and (17) are
valid, is a complement of a set of mes-measure zero on T

2) if for w € Q the vector x is expanded into the infinite (A, p,w)-continued
fraction, and S® = (S, S ..} is its (A.,p,w)-convergent of a continued
fraction such that the equalities Sﬁb”) = x,, are satisfied for ng < n < N, then
the inequality (17) holds for np <n < N.

Proof.

Lemma 3. ([30]). Let p be a prime, k be an integer, ¢ be an integer from the
interval (0, 5), r be a natural, Dy(k) = Y26, (552). Then S0 D" (k) < (2r)"pl"+
Ar\/pl?".

Lemma 4. Let p be a prime, ¢ be an integer from the interval (0,p), € be a real
number satisfying the inequality 0 < € < %; Ng(}? be the number of integers k from

14



interval 0 < k < p — 1 for which the inequality | 3¢ _, (’”Tm> | > ¢'~¢ holds. Then
for any natural r the inequality

N, g(f) (2r

\/’ 726D

holds.

Proof of Lemma 4. According to lemma 3 we have the inequality
Ng(fgézr_ger < (2r)"pl" + 47"\/5827’ ,

from which the assertion of lemma 4 follows.

Applying the lemma 4 in the case, where p = p,, ¢ = [¢)(p,)], and using the
definition of the measure pu, on the discrete circle S,,, we obtain that the measure
W of the set T',, introduced at the beginning of this section, satisfies the inequality

@) AR
[ (p,)]" 2 /Pn

Therefore, according to the definitions of the function (n), the number ny, the
cylinders II,, at the beginning of this section and according to the Definition 9 and

,Un(Fn) <

the definitions of the measure mes on the torus 7', we have the following inequalities:

oo oo 27" 4
mes IT < > p, (D) < > (2r)" + dre

T a2 <L
n=ng n=ng Wj(pn)r(l >
mes >0 . (18)
It follows from the inequality (18) and the Theorem 5 (section 2), that for almost
all z € T there exists a vector x = (1, xs,...) € € such that (A, p,w)-continued
fraction of z is finite and has the form (16), and according to definitions of maps A

and A (section 1) and Theorem 2 (section 2) the equality w = A’z holds for this
case, and this equality is equivalent to the relations

Wy = x, + v mod p, ; n=12,.... (19)

From the Definition 9 of the set € it follows that for any component w,(n =1,2,...)
of the vector w € () the inequality

W) [0 1o _
3 () < (20)
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holds. Now we deduce the assertion 1) of Theorem 7 from the relations (19) and
(20).

We prove the assertion 2). From the Definition 5 of the (A, p,w)-convergents of
the continued fraction of the vector x = (x1, x9,...) and from Theorem 2 it follows
that

A =w. (21)

Therefore, if this (A, p,w)-convergent of the continued fraction S¥ = (Sfy), S
is such that the equality S*) = x,, holds for no < n < N, then from (21) and the
Definition 8 of map A, it follows that the congruences

wn:mn+ym0dpn;n0§n§Na (22)

hold. Now the assertion 2) follows from the inequality (20) and the relations (22).
Theorem 7 is proved.

Theorem 8. For any vector x = (x1, 22, ...) € T the following assertions hold:

1) if there exists a vector w € € such that (A.,p,w)-continued fraction of z is
finite and has the form (16), then for all n > ny, among the integers z situated
in the region

Ty <2< Tp+ [P(pn)] +v+1, (23)
v+ [¥(pn)]

there are =52 4 ) (v + [1h(p,)] ™) of quadratic residues mod p, and
W + 0" (v + [1,b(pn)]1_e) of quadratic non-residues mod p,,, where ¢/, and

0" are constants satisfying the inequalities |0/] < 1, 07| < 1;

2)  the set of 2 € T for which there exists w € (2 such that the inequality (16)
and the assertion 1) are valid is a complement of a set of measure mes zero;

3) if for w € Q the vector x can be expanded into an infinite (A, p,w)-continued
fraction and if @ = (S, S8 .) is its (A., p,w)-convergent of continued
fraction such that the equalities S®) = x,, are satisfied for ng < n < N then,
the assertions 1) holds for ng < n < N.

Proof. To prove the assertions 1) and 2) of Theorem 8 we use the assertion 1) of
Theorem 7, and to prove the assertion 3) of Theorem 8 we use the assertion 2) of
Theorem 7. For both cases the estimate

(™

n

)<u+wmm“ﬁ, (24)

k=1
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follows from the inequality (17).

We denote the number of quadratic residues mod p,, situated in the region (23)
by @’,, and the number of quadratic non-residues mod p,, situated in the region (23)
by Q.

By the virtue of Definition 7 of Legendre symbol we have:

o=y (k) )
k=1 Pn
and from the definitions of numbers @/, and Q" for n > ng it follows the equality
Q,+Qn=0Q, (26)
where (),, takes one of two values:
v+ [(pn) if there are no numbers z in the

region (23) dividing by p, ,
v+ [Y(p,)] — 1, if there is the number in the region (23)
dividing by p,

Qn:

Now, adding and subtracting the relations (25) and (26) between themselves and
using (24), we obtain all assertions of Theorem 8. Theorem 8. is proved.

Remark 3. By virtue of Corollary 2 of Theorem 6 (section 6), the assertions 2 of
Theorem 7 and 3 of Theorem 8 are valid for any arbitrarily large V.
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