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ABSTRACT. In this paper, we investigate the stochastic differential equation on R%, d > 2:

dX; = v(t, X¢)dt + V2dW;.

For any finite collection of initial probability measures {ué}lgigM on R4 and % + % > 1, we

construct a divergence-free drift field v € L7 LP N C: L%~ such that the associated SDE admits at
least two distinct weak solutions originating from each initial measure ué. This result is sharp
in view of the well-known uniqueness of strong solutions for drifts in C; L%, as established in
[KRO5]. As a corollary, there exists a measurable set A C R? with positive Lebesgue measure
such that for any « € A, the SDE with drift v admits at least two weak solutions when with start
in ¢ € A. The proof proceeds by constructing two distinct probability solutions to the associated
Fokker-Planck equation via a convex integration method adapted to all of R¢ (instead of merely
the torus), together with refined heat kernel estimate.
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1. INTRODUCTION

In this paper, we are concerned with stochastic differential equations (SDEs) on the whole space
R?, d > 2, of type
dX; = v(t, X;)dt + V2dW,, t e [0,T), (1.1)
£X0 = /"LO)
where T' > 0, v : [0, T] x R? — R is a Borel function, W; is a standard R%-valued Brownian motion
on some probability space (Q2, F,P), and puq is a probability measure on R%.

The well-posedness of SDEs has been a central topic in both pure and applied mathematics, due
to their fundamental role in modeling dynamical systems with random perturbations. To analyze
the criticality of equation (1.1), we employ the following scaling transformation:

W§ =€ " Wey, Xf=e'Xoy, v(t,2) = ev(e’t, ex),
which preserve the law of the Brownian motion. Under this scaling, the behavior of the rescaled
drift v¢ in the Lebesgue space Ly LP := L" ([0, T]; LP(R%)) is characterized by:

d_ 2
€ a_ 2
H'U |

vy =€ v ol

As e — 0, SDE (1.1) is classified as subcritical when %—I—% < 1, in which case the associated quantity
vanishes. The critical regime corresponds to % + % = 1 and the supercritical regime corresponds to

% + % > 1, where the quantity diverges, indicating that the Brownian noise is no longer sufficient
to counteract the singularity of the drift.

For p = r = oo, Veretennikov [Ver80] was the first to demonstrate the uniqueness of strong
solutions using Zvonkin’s transform [Zvo74]. In the subcritical case, Krylov and the second named
author [KR05] established the existence and uniqueness of strong solutions to (1.1). Then the well-
posedness problem with general multiplicative noise was studied in the foundational work [Zha05,
Zhall]. Subsequent developments are contained in [BC03, FGP10, Zhall, FF13, Zhal6, BFGM19,
XX7720, RZ21].

The critical regime presents subtle challenges. Beck, Flandoli, Gubinelli and Maurelli [BFGM19]
proved that for ||v||z« small enough, the SDE admits a strong solution starting from a diffusive
random variable in a certain class. A significant progress was made by Krylov [Kry20a] who proved
the strong well-posedness of SDEs in the case v € L4(R9). Then, for the case d > 3, v € LTLP,d <
p < 0o, orv € Ci L%, or v € L LY with divergence-free condition, Zhao and the second named author
[RZ23] proved that (1.1) admits a unique weak solution within a class satisfying some Krylov-type
estimate. We refer to [Nam20, Kry20b, Kry20c, RZ25, RZZ25] for further results.

However, in the supercritical case, the well-posedness problem is much more challenging and
remains not fully understood. On the one hand, under the additional assumption that the drift is
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divergence-free, weak well-posedness has been established in certain classes: Zhang and Zhao [ZZ21]
established weak existence and uniqueness in the sense of approximation for g + % < 2; Galeati
[Gal25] demonstrated strong existence and uniqueness for (1.1), under the assumption that v is a
Leray solution to the 3D Navier-Stokes equations obtained through approximation. We also refer
to [Gal24, HZ25, GP24, Grd24] for more results in the supercritical regime. On the other hand,
notable counterexamples demonstrating non-uniqueness in law for (1.1) have also been constructed:
For dimensions d > 1 and p > d, Galeati and Gerencsér [GG25] constructed an example (allowed
to be not divergence-free), where non-uniqueness in law holds when starting from the origin. In
d > 3, the second named author, Zhang and Zhao [RZZ25] exhibited a divergence-free drift in weak
Lorentz space LP'*>°, % < p < d, that admits two distinct weak solutions starting from the origin.
When considering the torus case, sharp non-uniqueness in law in dimension 2 was shown in [LRZ25].

In particular, if we restrict to the case r = oo, then for any vector field v € L¥LP, p > d,
(1.1) admits a unique strong solution (see [KR05]). For the case d > 3, for any v € C;L¢, or
divergence-free v € L°L?, the SDE admits a unique weak solution within a class such that some
Krylov-type estimate holds (see [RZ23]). However, for a given initial probability measure on R?,
the question of whether uniqueness in law holds for SDEs with drifts v € Lg°LP in the supercritical
regime p < d remains open, especially for the two-dimensional case. Notably, in all known examples
in the literature, non-uniqueness in law occurs only when starting from the origin.

It is also worth mentioning that, in the supercritical case, the divergence-free condition on the drift
matters. Actually, if the drift is not divergence-free, there is an example in [BFGM19, Example
7.4] such that the SDE may not have weak solutions in LP(R?),p < d. On the other hand, the
divergence-free condition helps when considering the existence and conditional weak uniqueness, cf.
[Z2721, U725, RZZ25]. In summary, it is particularly intriguing to investigate divergence-free drift
terms that may lead to a failure of weak uniqueness.

1.1. Main result. Regarding the aforementioned discussion, in this paper, we make a new contri-
bution to the understanding of weak (non-)uniqueness in SDEs by constructing a divergence-free
drift v € CyLP,p < d that leads to non-uniqueness in law, which covers the optimal range for the
weak well-/ill-posedness of the SDE.

Let P denote the space of probability measures on R?. For any finite collection of initial prob-
ability measures {ud}1<i<ar C P and % 4+ 1 > 1, our main result is to construct a divergence-free
drift v € L] L? such that non-uniqueness in law holds for the respective SDE with drift v started
from each of these initial measures:

AdX} = v(t, XH)dt + vV2dW;, (1.2)
Lx;= Ho-

Theorem 1.1. Let d > 2,7 € (0,1),1 < s < d and p,r € [1,00] satisfying z%l +1> 1. Fora

finite collection of initial distributions {ub}1<i<m C P, there exists a divergence-free vector field
v e L"([0,T); L*)NC([0,T); L?) such that each SDE (1.2) admits at least two distinct weak solutions
X4 X%2 Moreover, for 1 <i < M,j =1,2, it holds that

o E[fOT [v(s, X7)|1Teds] < oo for some € > 0;

e fort >0, the solutions admit densities p* satisfying p*7 (t) > (1 — v)et®

5.

Our work also extends previous results in [GG25, RZZ25], which were limited to initial distribu-
tions concentrated at the origin. We demonstrate that weak non-uniqueness can occur for arbitrary
initial probability measures. Through decomposition of probability measures, we further establish
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that this non-uniqueness in law holds for a set of initial positions x with positive Lebesgue measure,
thereby substantially broadening the scope of possible non-uniqueness scenarios.

Corollary 1.2. Letd > 2,1 < s < d and p,r € [1,00] satisfying % + % > 1. Then there exists

a divergence-free vector field v € L"([0,T]; LP) N C([0,T); L*) and a measurable set A C R with
positive Lebesgue measure such that for every x € A, there are at least two distinct weak solutions
to (1.1) starting at d,.

Unlike the previous counterexamples, in this paper we establish a stronger form of non-uniqueness,
specifically, the non-uniqueness in the evolution of particle densities. These densities solve the
associated Fokker-Planck equations, which read as

0ep' = Ap' + div(vp') =0, dive =0, (1.3)
p'(0)dz = pp(da),

where {18 }1<i<ar is a collection of probability measures on R%. A solution to (1.3) is meant in the
following weak sense:

Definition 1.3. A non-negative function p € C((0,T]; L') is called a weak solution to (1.3) if

T
/ / |v(t, z)|p(t, z)dadt < oo,
0 Jrd

and for every test function f € C*(R%), and every t € (0,T]
[ swpttae— [ somsan = [ [ s vo e 0

With the help of the superposition principle introduced in [Trel6, Theorem 2.5], Theorem 1.1 is
a direct result of the following non-uniqueness result for the Fokker-Planck equation (1.3), which we
shall establish through the convex integration method, together with refined heat kernel estimates.

Theorem 1.4. Let d > 2,7 € (0,1),1 < s < d and p,r € [1,00] satisfying % + 1> 1. Then
there exists a divergence-free vector field v € L"([0,T]; LP) N C([0,T]; L?), such that each Fokker-
Planck equation (1.3) admits at least two distinct solutions p*', pi2 € C((0,T]; L') in the sense of

Definition 1.5.
Moreover, for 1 <1< M,j = 1,2, it holds that f[o 7] [ o] teptidads < oo for some € > 0 and
that pI(t) = (1 —v)et®ul fort > 0.

Finally, we note that by linearity, (1.3) admits infinitely many distinct solutions for every 1 <
1 < M. Consequently, the associated SDE (1.2) also has infinitely many distinct weak solutions.

The main result will be established using the convex integration technique. This technique
was first introduced to fluid dynamics by De Lellis and Székelyhidi Jr. [DLS09, DLS10, DLS13].
This method has led to numerous groundbreaking results for fluid dynamics on the torus. For the
incompressible Euler equations, the famous Onsager conjecture was proved in [Isel8, BDLSV19).
For the Navier-Stokes equations, sharp non-uniqueness of weak solutions has been shown in [BV19b,
BCV21, CL22, CL23]. We refer to [BDLIS15, DSJ17, GKN23, NV23, GKN24, GR24, BCK24] for
more progress on the FEuler or Navier-Stokes equations. Recently, this method has been applied
to fluid dynamics on the whole space, see [MNY24a, MNY24b]. For more details and references,
interested readers are referred to the comprehensive reviews [BV19a, BV21].
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Concerning transport equations on the tours, we refer to [CGSW15, MS18, MS19, MS20, BCDL21,
CL21, PS23, CL24, MS24] for recent developments concerning non-uniqueness in transport equa-
tions and related ODEs. We also note that the convex integration method has been successfully
applied to stochastic fluid dynamics, see [BFH20, HZZ22, Yam22, HZZ23a, HZZ23b, HLP24, HZ724,
Pap24, MS24, HZ725, LZ25a, LZ25b, LRZ25].

1.2. Idea of the proof. As mentioned earlier, we will prove the main result using the convex
integration method. This method is primarily developed in the torus setting, and for the convenience
of readers who may not be so familiar with it, in Appendix A we provide an overview of how the
convex integration method works on the torus.

Our work presents a novel extension of the convex integration method to establish non-uniqueness
of positive solutions for Fokker-Planck equations on the whole space R%, going beyond previous
periodic domain results. The transition from the torus to unbounded domains introduces substantial
new challenges that require new probabilistic and analytical arguments. These technical innovations
entail, to our knowledge, the first successful application of convex integration methods to prove non-
uniqueness for positive solutions in non-periodic settings.

(1) When working in the whole space setting, maintaining compact support for the stress error
remains crucial for implementing convex integration. However, a fundamental difficulty
arises in the iteration process: we cannot use the inverse of the divergence operator directly,
since even for a function with compact support, the inverse of its divergence may still have
support in the whole space. To overcome this obstacle, we introduce a new decomposition
of the stress term (detailed in Section 4.4.1) that separates it into two distinct components
- a principal part, expressed as the divergence of a compactly supported function, and a
residual global error term with small bounded C’g » horm. This decomposition enables us to
proceed with the convex integration scheme by handling the principal part through standard
techniques, while simultaneously controlling the global error via a specially constructed
global perturbation.

(2) When constructing global perturbations, we face the fundamental challenge of preserving
positivity of the solution, which differs significantly from those encountered in fluid equa-
tions. In addition, we do not have an invariant measure as a reference measure in contract to
the torus case. The core of our approach lies in using the heat-propagated measure e*® i as
a reference solution, around which we build two distinct positive solutions through carefully
designed perturbations. A critical technical requirement emerges from the spatial decay of
et p: our perturbations must precisely match its exponential decay at infinity to maintain
global positivity. This is achieved through a novel strategy by constructing drift terms with
compact support, coupled with a careful analysis of the influence in exterior regions. The
key innovation centers on our treatment of the global perturbation 6(8) generated by the
drift, which solves the heat equation:

atg(gb) — Apslo) — F,

with a specially designed forcing term F. Here F' is constructed with compact spatial
support and vanishes near the time origin ¢ = 0, enabling the crucial proper exponential
decay

< e (1.5)

t
’/ =92 F (5)ds
0
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through Proposition 4.4 using heat kernel estimates. The required smallness condition is
attained via an additional iteration of the inverse divergence operator developed in Section
4.4.1, combined with the periodic properties of our building blocks.

We further note that the key estimate (1.5) appears to be new and, to the best of our
knowledge, has not been addressed in previous literature. This estimate plays a crucial role
in our analysis, and its possible generalization to more general diffusion operators remains
an open and particularly interesting problem.

(3) To achieve the supercritical regime % + % > 1, we introduce the L™-based intermittent
spatial-time jets, incorporating an additional degree of freedom through the parameter m €
[1,00]. This additional freedom stems from a feature of transport-type equations, contrasting
with the L2-based constraint in fluid equations.

Beyond those already mentioned, the proof also requires several additional modifications for the R?
setting, such as a carefully tuned mollification procedure and a refined construction of the principal
density perturbations. We will detail these technical adaptations in the proof in the main text of
this proof.

Organization of the paper. First, in Section 2, we introduce the L™-based intermittent spatial-
time jets, which play a crucial role in the convex integration construction. Subsequently, in Section
3, we establish Theorem 1.1 through a proof of the non-uniqueness of solutions to the Fokker-Planck
equations, as stated in Theorem 1.4. The proof of the main convex integration iteration procedure
is presented in Section 4. In Appendix A, we give an overview of the convex integration method on
the torus.

Notations. Let 7' > 0, Ny := NU {0}. Throughout the manuscript, we write T¢ = R4/Z? for the
d-dimensional flat torus, and identify T?-valued functions with periodic functions on R?.

e We employ the notation a < b if there exists a constant ¢ > 0 such that a < cb.

e Given a Banach space E with a norm | - || g, we write CtE = C([0,T]; E) for the space of
continuous functions from [0, 7] to E, equipped with the supremum norm. For p € [1, co] we
write LV E = LP([0, T]; E) for the space of LP-integrable functions from [0, T to E, equipped
with the usual LP-norm. We also wirte Lfa’b]E = LP([a,b]; E).

e For a € (0,1) we define C*F to be the space of a-Holder continuous functions from [0, T to
E, endowed with the norm ||f||cgE = SUD, 1e[0,77,s5£¢ W + SUpsefo, 1) lf®)|le, and
write Cf* in the case when F = R.

e We use LP to denote the set of standard LP-integrable functions. For s > 0, p > 1 we set
WP = {f € LP;||(I — A)2 f||r» < oo} with the norm || f||ws» = ||(I — A)2 f| 1»-

e For N € Ny, CV denotes the space of N-times differentiable functions equipped with the
norm

Ifllox = > 1D fllee-

|| <N, aeNg

Similarly, if the norm is taken in space-time, we use the notation Ctij.

e For any T?valued smooth function f, we define the projections P_qf := de fdz, and
P;gof = f — de deE

e By p(t,z) = (47rt)*%e*|“"‘2/4t we denote the d-dimensional heat kernel for A on R%.

e We denote the Lebesgue measure on R? by dz.

e We denote the law of a random variable X by Lx.



SHARP NON-UNIQUENESS OF SDES ON R¢ 7

2. L™-BASED INTERMITTENT SPATIAL-TIME JETS

In this section we introduce the the notion of L™-based intermittent spatial-time jets, where
m € [1,00], which can be seen as a generalization of the L?-based building blocks presented in
[LRZ25, Appendix C.1]. In this section, the building blocks are defined on the torus and are
regarded as periodic functions on R¢.

First, we introduce the following geometrical lemma:

Lemma 2.1. [BCDL21, Lemma 3.1] Let d > 2. There exists a finite set A € S~ N Q¢ and
non-negative C-function I'¢ : ST — R such that for every R € S%1

R=> T¢(R).

e

With Lemma 2.1 in hand, it is easy to generate 2 disjoint families A', A%, where each one enjoys
the property of Lemma 2.1 by taking suitable rational rotations of one fixed set. For simplicity, we
denote A := A' U A%. Moreover, we know that {I'¢}¢ca are uniformly bounded.

For parameters A, 71,7 > 0, we assume
A1 <<TL<<TH <1, Arp eN.

For each £ € A let us define A} € S=1nQ?, i =1,2,..,d — 1, such that {£,A%,i=1,...,d — 1}
form an orthonormal basis in R?. Let n, € N such that{n*g,n*Aé,i =1,..,d—-1} C 7% for every
£

We define ¢ : R4~1 — R to be a smooth function supported in the unit ball, such that ¢ = 1 on
B(0, %) and has zero mean. We then define ® by ¢ = —A®. The existence of such functions can be
found in [LRZ25, Appendix C.1]. Let ¢ : R — R be a smooth, mean-zero function with support in
B(0,1) satisfying ¢ = 1 on B(0, 3).

Define ¢/ : R%~! — R to be a smooth non-negative function with support in B(0, %) satisfying

(b/(dfh o, ...,xd_l)dxldzg..dxd_l = 1,
Rd—1

and let ¢’ : R — R be a smooth non-negative function with support in B(0, %) such that

/1/)’(584)(11'(1 =1.
R
Then, it is straightforward to verify that
o9 =o', Yy’ =y (2.1)

Let m > 1 be fixed, we define the rescaled cut-off functions

8 ( ) 1 T1 T Tg—1

m(T1, T2,y k1) = ———(—, =, ...

r1,m ) 3 eeey rgfl 0/m TL’TL7 ’ L 5
1 1 X9 Td—1

By (w100, wgt) = o B(TL, T2 Tl

TL,m ) ) ) rg_dil)/m rl, TL7 ) "L )
1 Tq

Urym(2a) = 70 (—=).

a )

Similarly, for a conjugate exponent m’ € [1,00] satisfying > + L =1, we define ¢, e and w;u’m,
as the same manner. Then we periodize ¢y, iy, ®r ) m, Yrjm, @, and w;u m

, so that they can be
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viewed as functions on T?~! and T respectively. Consider a large time oscillation parameter j > 0.
For every £ € A we introduce

'l/}(f,m) (ta .’E) = %H ,m(n*TJ_)\(x : f - Nt)),
Qe m)(x) = Py m(narL Az - Aé, ey T L AT qu)’
Be,m)(x) = Or ) m(nar L AT - Aé, ey M L AT Ag_l).
Similarly we define qb’(f)m,) and ¢E5,m’)'
The building blokes W¢ .,y : R X T¢ — R% and O,m) R x T4 — R are defined as
Wig.m)(t,2) := Ede,m) (t, ) demy (2),
e(f,m/)(ta iL’) = 1/1Eg,m/)(t7 x)(rbl(g,m’)(x)-
By the definition and (2.1) we have that

/Ed W(g’m)(‘)(g’m/)dx = §, (22)

d—1

d=1 1
8t@(§,m’) + /M“J_m ’I“ﬁ" le(W(g,m)6(§,m’)) =0. (23)

Since W¢ 1) is not divergence-free, we introduce the skew-symmetric corrector term

1
Viem) = Gz € ® Veem = Veem) @ Oiem)
satisfying
1
WV@(&m)g . V’(ﬁ(f’m). (2.4)

Finally, we obtain that for N, M > 0 and p € [1, o] the following holds

divVie,m) = Wigm) —

1oL g AN, LA

‘IvNay¢(§,m)||OtLp(Td) SJTH (7)N )M’ (2~5)
T il

a1 _a

IV¥bemllLesy + IV @ mylopay ST.70 ™ AV, (2.6)
N oM N M < a N TLAR g

IVEO0 Wi lovwr ey + AV Viem lorr ey S 71 A (TH) ; (2.7)

= B N TLAL
VY00 e mllc,rmay S 717 AN ™M, (2.8)

T
where the implicit constants may depend on p,m, N and M, but are independent of X,r 7|, p.
These estimates can be easily deduced from the definitions.

Then let us introduce a family of temporal functions to oscillate the building blocks intermittently
in time. Let K € N be fixed, and G € C2°(0,1) be non-negative and

/1 G%(t)dt = 1.
0

Let > 0 be a small constant satisfying n/K < 1. For £ € A as defined above, and 1 < i < K, we
define gieim) : T — R as the l-periodic extension of n_l/mG(H%), where t( ;) are chosen so
that §¢ ;,m) have disjoint supports for distinct (£,4). We will also oscillate the perturbations at a
large frequency o € N. So, we define

9(e.iom) (1) = G(e,im)(at).



SHARP NON-UNIQUENESS OF SDES ON R¢ 9

For the corrector term we define H¢ ; 1), h(¢im) : T — R by
ot

t
Hg i m)(t) :/O 9(e.im) (8)ds, hgim)(t) :/O (G(e,i,m) (8)G(e,im)(s) — 1)ds, (2.9)

where we recall that # + % = 1, In view of the zero-mean condition for (e ; m)(t)de,i,m) () — 1,

we see that he ; ) is T/o-periodic, and for any N > 0,p > 1
g —1/m
19(¢,5,m) v S (E)an/” Y g i m e <1, (2.10)

where the universal constant is independent of the choices of ¢ and &.

3. PROOF OF MAIN RESULT

In this section, we prove our main result, Theorem 1.1. Without loss of generality, we set T' =1
from now on. The proof begins by establishing Theorem 1.4 at the PDE level, where we construct
non-unique solutions to the Fokker-Planck equation (1.3). To this end, we consider a system of
Ny = 2M equations given by

Oup' — Ap' + div(vp™?) + div(vp') =0, dive =0, (3.1)
p'(0) =0,
where the initial densities are defined for 1 < k < M by
pin,2k71(t) _ pm’2k(t) .— etA'ué.
In what follows, the drift v will be constructed so that it vanishes near the origin ¢ = 0. It is then
straightforward to verify that p™™? + p’ satisfies equation (1.3).

Regarding equation (3.1), for parameters satisfying 1 < s < d and %Jr% > 1, our goal is to prove
Theorem 1.4 by constructing a divergence-free drift v € Ly LP N Lf °L4 N CyL* such that for each
i, equation (3.1) admits a solution p € Lf“ LN Cy L', where dy and dj, are conjugate exponents
satisfying % + di, = 1. Moreover, we show that p?*=1 = p?* for 1 < k < M, thereby demonstrating

0
the non-uniqueness of solutions.

The proof employs a convex integration scheme specifically adapted to construct positive solu-
tions to the Fokker-Planck equations on the whole space R%. In Section 3.1, we establish several
key estimates for the initial components p™¢. Subsequently, the framework of the convex integra-
tion iteration and the corresponding iterative procedure are developed in Proposition 3.1 within
Section 3.2. The proof of Theorem 1.4 is then presented in Section 3.3, followed by the derivation
of Theorem 1.1 through an application of the superposition principle.

3.1. Estimate on p"™'. We begin by deriving several fundamental estimates for the initial densi-
ties p™?, which will play a crucial role in the subsequent analysis. Recall that p(¢,x) denotes the
d-dimensional heat kernel associated with the Laplacian A. We define the averaged heat kernel

pto)i= [ pltr =)y,
4.4

By definition and the positivity of the heat kernel p(¢,x), it is straightforward to verify that
P (35, x) > 0 for any 1 < i < No,z € R%. Moreover, since [—1/2,1/2]? is a compact domain,
there exists ¢;, > 0 such that for any 1 <1 < Ny, x € [~1/2,1/2]¢,

pln)l(ﬁax) 2 Cin-
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Then, it holds that for t € [, 1],

122

o 1 o
it (4 — t— — _ in,1 d
Pt ) /de( 1507 y)p (12,y) y
Son [t g 9y = enlt - 5.9
= C’LTL [_l l]dp 12,:1; y y - clnp 12’x .
In particular, for (¢,z) € [3,1] x [~1/2,1/2]%, by definition, it holds that
1
Pt — —.2) > / (4m)~9/2e =300y = ¢,
12 —1.1

which implies that for (¢, ) € [§,1] x [~1/2,1/2]%, it holds that

pi”’i(t,x) > cinD(t — —,2) = ¢inca- (3.2)

12
Moreover, by the smoothing property of the heat kernel, there exists a constant 0 < Cj, < oo
such that, for all 1 <17 < Ny, the following estimate holds:

"™ Cho.

3.2. Convex integration set up. We now apply the convex integration iteration to the sys-
tem (3.1), with the iteration indexed by ¢ € Ny. We consider an increasing sequence {\q}qen, C N
which diverges to oo, and a sequence {d4}qen, C (0,1] which is decreasing to 0. We choose
a € Ng,5 € (0,1) and b € N. Let

)\ . a(b ),q 0 5 — 6d+1)\%3)\q_2ﬂ7q 2 ]_’ (50 = ]_7

where § > 0 will be chosen sufficiently small and a, b will be chosen sufficiently large. Here ¢y € (0, 1—12]
is a small universal constant to be determined later. Moreover, we use the estimate

1/(d+1) (1—q)268/(d+1) « €0
Zéq SeOZa < 1= o—26B/(d+1) < 2ep,
g=1 q=1

which boils down to
a2b6/(d+1) > 2’ (34)

assumed from now on.
At each step g, a pair (vy, pé, Mg)léiéNo is constructed solving the following system on [0, 1]:

atp; = Apfz + div(vgp™?) + div(vqpé) = —divM;, divyg = 0, (3.5)
where M é are some vector fields.

To handle the initial condition, we require that pé =0 on [0,7,], where
1
T= 1o S A
1<r<q

By applying (3.4) we obtain % <T,; < % Here and in the following we define 21@@ :=0. To
control the spatial support of the drift and the stress term, we further define

1
Qyi=1]—=— E 61/2 3 T E S ]
! |: 3 1<r<q 1<r<q ] 2 2

With the above assumptions in place, the main iteration scheme is formulated as follows:
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Proposition 3.1. Under the assumption of Theorem 1.1, there exist d+ 1> do > 2 > djy > 1 with
dio + dflé) =1 and a choice of parameters a,b, 5 such that the following holds: Let (v, Pé,Mé)lgigNo

be a solution to the system (3.5) satisfying [pa pfldm =0,

vl 0 .y < CuCy/ quoéi,{do, 1941l sy < CoCo”™ quoé%dﬁ (3.6)
for some universal constants Cy, Cy,Cy > 1, and
lglle . < Co/ ™ X4, Ipillcy . < G/ ®oad+, (3.7)
||M;||LgL1 < Codgy1, ||3tM3||LgL1 + HVM;HL}Ll <A, (3.8)
pi(8) = vy(t) = Mi(t) = 0 on 0,7, (3.9)
supp vq, SUPP M; C Q. (3.10)

Then there exists (vg41, piy 1, M1 )1<i<N, which solves (3.5) and satisfies (3.6)-(3.10) at the level
qg+1 and

o1 = vall o sy, < CoCy/ 4L, Noar = Pill gy < CpCo’ 5 /5. (3.11)
Moreover, we have
[vg41 — vgllrrr < 5;1?10, lvg+1 — vglle,ns < 5;4_‘110, (3.12)
szJrl - pszCtLl < 5;4/;116, (3.13)
(Pé+1 - Pé)(tvl’) Z *5;&615@ - %,x) for t € [%, 1]. (3.14)

Here Cy is determined by the choice of the starting iterations, and C,C, are two constants
determined by the improved Hoélder’s inequality for vy, {pé}lgig N, Trespectively, and other implicit
constants in the proof. We further note that the term v,p"" is always well-defined by noticing
(3.3), (3.7) and the fact that v, =0 on [0, T}].

Proposition 3.1 constitutes the central technical component of this paper. A detailed proof of
the proposition will be presented in Section 4 below.

3.3. Proof of main result. In this section, we first present the proof of Theorem 1.4, assuming
the validity of Proposition 3.1.

Proof of Theorem 1.4. Lety € (0,1) be fixed. Let F'(¢,x) be a smooth (not divergence-free) bounded
R¢valued function with support in [%, 1] x Qo, and satisfying

IdivF s < %cmcd.
Then we denote

|divF || c,r =: cp > 0.

Let €p = min{2%= <& L} We intend to start the iteration from (v, p§, M¢)1<i<n, which are
defined as 4 , 4 '
ph = (=1)'divF, vg=0, M= (-1)"(9;,—A)F.
By choosing Cj large enough (depending on ¢j), we have

. . 1 d/ .
1960 5 + Dol < Co'™ IMGlzza < g™ Co.
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Then (3.6)-(3.10) are satisfied as §p = 1,8, = 4.

Moreover, by (3.2) we have

(3.
"Y 7/"L 7 /y ln ’L ’y /7
gP Po = (2 + P01 1k (—1/2,1/2 2 5 Cin€d = 5Cinca = 0. (3.15)

Next, we use Proposition 3.1 to build inductively (vq,pq,MZ) for every ¢ > 1. By (3.4) and
(3.11)-(3.13), the sequence {(vq, p})}qen is Cauchy in

’ NO
(£7(10, 13 L) £%([0,1] x RY) 1 €((0,1); 27 ) x (L%(10,1] x RY) 1 C([0, 1); LY))
and we denote by (v, p’) its limit, where v is also divergence-free with compact support. Since

J pida =0, we deduce that [ p’de = 0. Clearly by (3.8) and (3.9), p’ solves (3.1).

Now, we define p' := p 4 p"™7, which satisfies (1.3) in the sense of Definition 1.3. Then we verify
that each p' is nonnegative and p**~! and p** are distinct from one another with the same initial
distribution. In fact, by (3.2), (3.4), (3.13)-(3.15) we have

1
P4 p™ 2 2p’"”+z Poi1 — Py) = cm Zééﬁ" ;) >0, fort > 5
q=0
||P2]C ! 72k||c%11;1 HP% t- kHC gLt —||P21€ t- % 1”0[2 yL Hpo _p2k||0[%’l]L

. d
2(||divF |, 11 — 263,41

Then by the fact that p’(t) = 0 for ¢ € [0, £], we imply that p* > (1 —~)p"™".
By (3.7), (3.11) and interpolation, we have |v| € LdO(HE)LdD(He) for some € > 0 sufficiently

small. Since |p’| € L OLdO, we deduce that |v|1t€p? € L} L'. Furthermore, from (3.3) and the fact
that v has compact support satisfying v = 0 on [0, £], we conclude |v|'T¢p™ " € L{L'. Combining
these results, we obtain |v|'*<p’ € LIL!. O

Having established Theorem 1.4, Theorem 1.1 follows directly through an application of the
superposition principle.

Proof of Theorem 1.1. For 1 < s < d,¢ + = > 1, by applying Theorem 1.4, there are v €

L7([0,1]; LP) N C([0,1]; L*) and a collectlon of probablhty densities p'(t) satisfying (1.3). Then we
define pt(dz) := p'(t)dz, which forms a family of probability measures. Moreover, these measures

satisfy
[ [its.ianias= [ [ jo(s.a)fpi(s,a)deds < .
0 0 R4

and t — ! is weakly continuous on [0,1], we are in position to apply the superposition principle
(see [Trel6, Theorem 2.5]) for

O’ — Ap +div(vp') =0, pi_g = pp.

More precisely, let C([0,1];RY) be the space of continuous functions, equipped with its Borel o-
algebra and its natural filtration generated by the canonical process I, t € [0, 1], defined by

I (w) := w(t), weC([0,1];RY).
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There exists a group of probability measure Q' on C([0,1];R%) which is a martingale solution
associated to diffusion operator
L:=A+wv-V.

Then by a standard result (see [Str87, Theorem 2.6]), there exists a d-dimensional (F;)i>o-
Brownian motion Wy, ¢ € [0,1], on a stochastic basis (Q, F, (F¢)i>0, P) and a group of continu-
ous (F;)¢so-progressively measurable maps { X} }1<icons ¢ [0,1] x © — R? satisfying SDE (1.2).
Moreover, we have P o (X})™' = Qi oTl;! = pi for t € [0,1]. Then it is easy to see that
Eng—l = ,Cng = ,U,é, while LXtZk—l 7& EXtQk

O

Corollary 1.2 follows by an argument analogous to the proof of [LRZ25, Theorem 1.7].

4. PROOF OF PROPOSITION 3.1

In this section, we extend the convex integration method to construct solutions for a system
defined on the whole space. The proof follows the convex integration approach while incorporating
necessary adaptations for the unbounded domain. We begin in Section 4.1 by determining the
choice of parameters. Section 4.2 then details the mollification procedure. The core construction
appears in Section 4.3, where we define the new iteration pair (vg41, pf] 4+1) with a carefully designed

global perturbation 9;3_’? that ensures that we can define a suitable new stress error supported in
the domain €2 1. Subsequently, Section 4.4 introduces the crucial stress terms M, and the global
stress error F, ;. At this stage, it is essential to apply the inverse divergence operator iteration, as
introduced in Section 4.4.1, to ensure that the support of M, is located in ;1. This condition
is crucial for maintaining the consistency of the iterative process. In the end, in Sections 4.5-4.9, we
conclude the proof with the verification of all required inductive estimates. The most technically
involved step consists in estimating the global perturbation 9;‘1? to ensure that it exhibits the decay
behavior required by (3.14). This analysis relies crucially on the heat kernel estimates established
in Proposition 4.4.

4.1. Choice of parameters. In our analysis, several carefully chosen parameters will play crucial
roles, with their values being precisely calibrated to satisfy the intricate network of compatibility
conditions required for our estimates. Let d > 2,1 < s < d, % + % > 1 be fixed. First we introduce
a integer N > 4d large enough satisfying

ORI
DT N’ s N’
and define
4d do
do:=d+1——¢€(d,d+1), dj:= 1,2).
0 + N € ( &+ )a 0 dO 1 € ( ’ )
Then for the sufficiently small « € (0,1) to be chosen, we take [ := )\(;_371u A, “* and have

— d — d+4
L2920 G, AT NS, (4.1)

provided ab > 2d + 8, a > 28b. In the sequel, we also need (12d + 42)a < ﬁ
1

The above can be obtained by choosing a > 0 small such that (12d + 42)a < 55,
b € 2NN and large enough such that ab > 2d + 8, and finally choosing 0 < 8 < .

and choosing
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In the end, we increase a such that (3.4) holds. In the sequel, we also increase a to absorb various
implicit and universal constants in subsequent estimates.

4.2. Mollification. To avoid the loss of derivative, we first need to mollify the stress term. Let
¢1 := 729(;) be a family of standard radial mollifiers on R?, and ¢; := 1¢(;) be a family of standard
mollifiers with support in (0,1). We define

Mli L= (M; gz 1) *t 1

For the mollification around ¢ = 0, since M, ; vanishes around ¢ = 0, we can directly extend its value
to t < 0 by 0. Here we deliberately avoid mollifying the density terms to avoid the challenge in
controlling the difference p; — pj, which must maintain exponential decay crucial to the argument.

Since | < 5;4_21, we know that M} (t) =0 for t € [0,T,+1], and supp M} C Qy41.

To end this section, by the mollification estimates, the spatial-time embedding Witsl ¢ [
and (3.8) we obtain for N > 0,

i —d—4_ i —d—4_
1M Nl ey, STV IMgl e S ol 757 (4.2)

4.3. Construction of v,y; and pr_l. In this section, we proceed with the construction on the
perturbations on v, and /’Z employing the L%-based building blocks introduced in Section 2. First,
we define the parameters

d—1 1

A= Agq1, TL :)\*H%, l :)\*H%, n=A\1, [L:T'I o T @ U:Aﬁ, (4.3)

where we recall that do,dj, and N > 4d are defined in Section 4.1. Then we have

doi_del 1 Lop 10 4l 4l 1L 1
Tlp 0 Tﬁ? Oy d, TLS 0 THQ 077 o AN,
d-1-271 1L 1 d—1-42% 1- 1 1
af ay  —ar df ap, 1= L
T, Sy o, A Coryf B L<ANTN (4.4)
In fact, by a direct calculation we have
d-1-47t 1L d—1-4951 1L 1 4 2d4 | dg—d—1
d a - d ar ——r —2d_ 4 20 —2d_ _L
Ary at °n ) =r, 0 a °n g grl“’ndo — \Ndgt = a9 = \ " Ndo <MW,
d—1 d—1 1 1
d=l_d=t 1L 5 4 d4l gyl 1y 1,1 _d_1,dtldtt _q_4dq2dd+l —1
r” o TlT 0 v dﬂé)\(l\’ d)(5—35) 1+d0<)\ p vt g, T KNI FTHERT TS <A N,

; e~ dtfl_ gy(l_ 1 ygp 1 _dydtl di1 4d 2d | d+1 1
s dg . don o g)\( ~—a) (5 d0)+d0 <)\ st a5 +5 < A—l—y-‘rl-‘rw‘FT <)\—ﬁ

Here it is required that b is a multiple of 2V to ensure that A\j417; = a®™/N ¢ N and ¢ =
a®" /2N e N,

Let xy € C°(—2, 3) be a non-negative function such that >°, _, x(t —n) =1 for every t € R. Let
X € C°(—%, 3) be a non-negative function satisfying Y =1 on [-2,3] and 3, ., X(t — n) < 2.

Then, we fix a family parameters ( = 20/§,42 and consider two disjoint sets A', A defined in
Section 2. We use the notation A* = A! for i odd, and A = A? for i even. Taking K = Ny in the
construction of Section 2, we obtain a family of pairwise disjoint functions g(¢ i 4,) and g i a;) for
§€Aand 1 <i< No. In the following we apply the building blocks W(¢ 4,), O (¢ a7) and He ; a,) a8
defined in Section 2 to define

Wieni(@,t) = Wigaq) (x (Z)l/doH(g,i,dw(t))a
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Oe.n.i)(@:1) = O e,ap) (x (Z)l/doH(f,z:dw(t))

Similarly, we define V(¢ ;, 5y, ®(¢,n,s) and all other terms appearing in Section 2. Now by (2.3), (2.9)
and the choice of p we have

n l/d() .
9O (e ,n.i) + (g) 9(&,0) WV (Wign,) O gm0y ) = 0. (4.5)

As the next step, we first define the perturbations for the drift term. For every 1 < i < Ny, we
define the principle perturbation and the correct perturbation as

i 1/do
wh) =373 %M - n) (C) Wiem. )9 i do)

n=3 €A™

C,? / 0 1
wil =30 ) ( C|Mz|—”)<c) ez Y Benns Ve

n
n>3EcAn #Ag+1)

9 - m)(3) " Vi st

Here we use the notation (V(X(¢|M]| —n)) : Vigns)' = ZJ L0 (x(¢|1M]| - ))Véjn y for i =
1,2,...,d. We remark that here and in the following the first sum runs for n in the range

3<n <1+ (M| < T+I23 Mo <1+ CI772,

where we used (4.2) and C' is a universal constant.
By (2.4) we have div(w?") + %)) = 0 since

Wyt q+1
w9 4 () _ 1/do
q+1 + wq+1 - Z Z le( C|Ml | - n)(c) Vr({,n,i))g(ﬁ,i,dg)a (46)
n>3 EEAT

and V(¢ 5, 4) is a skew-symmetric matrix.
Then we define the perturbations for the densities. For 1 < i < Ny, we define the principle
perturbation and the correct perturbation as

o = Yoxtclartl = ()" X re() (O ~ FOlen occi

n>3 EeA
9(‘3 i), — AL 9(10’ d 4.7
q+1 * = TPq e It (4.7)

where we recall Py f = de fdz. Here ﬁé is some probability density with support in €2, satisfying
l9gllcz < 1.

Here, we use of the projected term PoO ¢, ;) rather than © , ;) in constructing the principal
perturbation. This projection guarantees the applicability of the inverse divergence operation during
subsequent stress term construction.

Then by the identity (2.2), Lemma 2.1, the fact that g ; q,) have disjoint supports for £ # ¢,
and the fact that yx = x we obtain

) n(p,i Mli
wVOFY = X(CIMi] —n) Z (ﬁ Mli|)W(f-,”vi) (9<£,n,z‘> - POG(EW#’))g(E-,i,do)g(E,L%)
n=3 fEA"
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M;
= D> x(M{| = n) Fs(|Mz|>P¢o(W(5m>@<snz))g@zdo)g(szd'>

n>3 £EAn
RLEOEDY Fg(‘Mz ) Wi PoO(emin i) (e

n>3 56/\"

Ml

+ 30 3 €Il = 7T (1370 ) 60t ansiei) — 1)

n>3 €A™

n M;}

+ x(¢| M} —n) lz . 4.8

7;3 M=) 7 (48)

Now to deal with the undesired term in the last second line in (4.8), we define the oscillation
perturbation as

95;1? r=—0 ! Z Z h(é,i,do)diV(X(C|Mli| n)— F£<|%Z)§)

n>3 EA™

By (2.9), we have

20,7 + DD (G Ieiy) — 1)diV( (¢ln] — )Z (|M:|)€)
n>3 EEAN
= =030 3 hiesan rciv (X (¢ - ng( ) £). (4.9)
n>3 €A

Moreover, since M, ! is compact supported and bounded, we know that (o9 441 1S mean-zero.
Furthermore, we define the global perturbation as a solution to

8,59((1111 Aﬂé‘i’l —FJ+1v
0.%3(0) =0, (4.10)

where the force term F? 4+1 is determined by the ”inverse divergence” of stress term at step g+ 1 with
support outside {2441, see Proposition 4.3 below for the precise definition. In order not to cause any

confusion, we should remark that F? 4+1 in fact depends only on w(p Y and 0((171’1 By Proposition

4.3, F,, is mean-zero, and satisfies F;, , (t) = 0 on [0, Ty41]. Then we have that 9(g’1) is mean-zero,

and satisfies Héill)( t) =0 on [0,T,41].

Finally, the total perturbation and new iteration are defined by

No
.f E : (py3) (i) -
Wqt1 = (w(Hl + wq+1 y Ug+l = Vg + Wyt1-
i=1

Moreover, for every 1 < i < Ny, we define

(locyi) (p,3) (1) ( _ gl (g4) i . i ‘
N ] o] 0, 8D, s
Then vg41 is mean-zero and divergence-free. By the definition, it is easy to see that fRd 9((1111

Hgiil))dsc = 0, which implies that [;, p,dz = 0.
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Since Mf(t) = 0 on [0,T,41], we have wyi1(t) = 6;,,(t) = 0 on [0,T¢41]. Then we have
Vgr1(t) = plyq(t) =0 on [0,Ty11]. In summary we imply (3.9) for vy and p ;. Similarly, since
(loc,i)

supp M} C Q441, we have that supp wg41, supp O4+1 C Qq+1, which implies (3.10) for vg41.
Moreover, by the fact that g(¢ ; 4,) have disjoint supports for distinct 4, we have

w10y = (WhY +wiGNOED +wea (035 + 0557 +0%)). (4.11)

4.4. Construction of the stress terms Mé+1' In this section, we present the exact expression
for the stress term Mg ;. Unlike the torus setting, our construction cannot directly apply inverse
divergence operators, since even when the stress term M; has compact support, its inverse divergence
may still remain support in the whole space.

4.4.1. Inverse divergence iteration. First, we introduce the following inverse divergence iteration. A
similar procedure for vector-valued functions was introduced in [BMNV21, Proposition A.17].

Let {p(n)}o<n<n+1 be the zero-mean smooth T?-periodic functions such that Pn) = AP(nt1)-
Then for any given function G on R, we have
Gp(o) = diVM(O) + F(o),
where M(io) = Gaip(l), F(o) = El aiGaip(l).
Then, applying the decomposition to the error term Fgy at each step for N times, we have
Gp(o) =divMny + Finy, (4.12)
where for 1 <i < d

N
i m—+1
Miyy=>" > MI(G0as piminy: Fay= Y FNG)anpins)-
m=0 |ai, |=m-+1 jax |=N+1

Here M{™ ™ (G) is composed of the m-th derivative of G and F\"”(G) the m-th derivative of G.

Particularly, if supp G C [—%, %]d, we have supp My, supp F(ny C supp G.

4.4.2. Decomposition of M;H. From now on, we will write Fg(%
L

From (4.11), the definition of the perturbations we obtain

) = I'¢ if there is no ambiguity.
—divMi,, = 8,00y +div(wf 6% — M) — div(M] — M)
= div(VO 1) + div(vgby s + wara (ol + 057 + 050 + 057 + o) + w0,

where together with (4.10) we define the linear error and commutator error by

i loc,i i i c,i 0,1 N in.i c,i )
My, = = _Vgéﬂ '+ Ug0g+1 + war1(py + 9((1+1) + 9¢(1+1) + 9((;‘11) + ")+ w((1+1)9z(;i1)a
M, = Mi— M.
Then it holds that
—divMi,, = 0,007 + div(wB W) — Mf) + Fi,y + divMj,, — divM,,.

For simplicity, we define Py pi f = f — Pl - Jga fdz, where gl is defined in (4.7). In particular,
for any mean-zero function f, we have P pi f = f. To define the oscillation error, by the identities
(4.8) and (4.9) we have

00,75 + div (w05 — M)
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= P04 (0077 + div(w)05) — Mf) + 0,6,%7)

1/d )
=> > Puy (5t (|| - ”)(C) 0Fgg(g,adg)]ﬁp;«éo@(g,n,i)) (= divMy,, , + Fyeey)

n>=3eAn
7 n 7 7
+Pro,pi (V[X(C|Mz | — n)ZFS}Q(ﬁ,i,do)g(g,i,d{])]P;éO(W(g,n,i)@(ﬁ,n,i)))( divMy,. o + Fose )

; n\ 1/dg
+Poo,ps (X(C|Mz | —n) <Z) 9ie.idple

< (90 emi) + (Z)l/d09<5zdo>dlv( € Oen)))

|Ml C Z FEW@ n Z)POG (&my9) (5 i dO)g(§ i, d, )( leMosc a)
£eAn

—div(z
n=3

+div(z CIMi| = n) ”MfQM;‘)( div M
n>=3

i osc, (')
¢ | My

~div(07 22 3 hicsan D (x(CIM] —m) ETEE) ) (= divAL,,, )

n>3 EAT

where the last forth term equals to 0 by (4.5). Here we define

) n
Moo =—> x(CM]| - n)z D TeWien nPoO e i 9(eido) 9(c i)

n>3 EEAT
) ’/l MZ .
osc c - Z X T Mlla
= CIM |
gsco:: 712 Zh(fldo 6t( C|Ml‘7n)<]:‘f§>
n>3£eAn

Now, we apply the inverse divergence iteration introduced above to define Mys. » and Myse . We
first write

AT = (I = ) ()Y e i)

2,(&,n,i 1 n
AR = VX (M| - n)ZFE]g(§,i,do)g(§,i,d6)-
Then, we obverse that © ¢, ;) and We . 1O ¢ n,iy are both (T/r1 Ag4+1)%periodic, so it is possible
to define A™" P00 ¢ .5y and AT"Po(Wie n,i)O(e.n,i)) for every n € N. By using the inverse diver-
gence iterations in Section 4.4.1 to p(ny = AT"P£0O (¢ niy and to prny = AT"Po(Wign,i)O e n.i))
respectively we obtain

AL(&n’i)P;ﬁo@(g i) = le]\J1 o(&,ms6) F‘1 (&ms6)

q+1 (N) (N)
AT P L0(Wie m i) O(em,iy) = divMiny ™ + Fis ™.
Here we recall that NV > 4d is determined in Section 4.1, and we abuse the notation to define
NZ-1
MGy™ =30 D0 M A0, AT PO e,

m=0 lad, |[=m+1
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FREm = 3 FNOARE™ )00, AN P00 ¢ i)

(N) ) an q+1
‘OLN‘:N
N2-1
2,(&ni)\g (m+1) 0 42,(&,n,) —m—
MGV =D D MUTART )0, AT TP a0(Wign O en),

m=0 \a-z‘"\:m+1
| . , o
FGS™ = Y FINALS ™ )00y AN Pao(Wig i) O enai))-

lan|=N2

Moreover, we have supp M( ’()E i) , supp M( ()5 i) , supp F( ()E o) , supp F(ZJ;[()E’"’i) C Qg+1, and vanish
on [0,Ty+1]. Then, we could define
1,(&,n,1) (&,n,1)
Mser =3 2 MRy Mowewi= 3 > Mis™”,
n>3EeAn n>3 A

and

osct Z ZP;éOplF(l]\f)gnl)? Folscw'_z ZP?AOP (N)gnl)'

n>3¢eAr n>3&eAn
Fina11y7 we deﬁne MZ‘SC = Mgsc,t + MzSC x + M;SC a + M:;SC c J’_ MOlSC o d
_M¢;+1 Mosc + Mliin Méom’ F;Jrl = _Fosc t ngc z* (413)
Since M (t) = wgy1(t) = 0.,1(t) = 0 on [0,Ty11], we have M} ,(t) = 0 on [0,T,41], which
implies (3.9) for M, . Similarly, we have supp M}, C Qq11, which implies (3.10) for M,

4.5. Estimates of wy,1. In this section, we aim to establish the desired estimates for the pertur-
bation wgy1. First, we establish the estimate of the amplitude functions which could be obtained
by the same calculation as [LRZ25, Proposition 5.2].

Lemma 4.1. For N € Ny, 1 < i < Ny we have

S I = ), + SR =)oy, < - @HON=(2),

"z n>3
(%>N1{X(<‘Mﬂ‘")>0} * (%)Nl{xmuw 0y S 1N
Z X (¢ M| —n)%j 5 |~ (d+5)N—(2d+5)

n=3

Then we introduce the improved Holder’s inequality by using the additional decorrelation between
frequencies.

Lemma 4.2. ([MNY24a, Lemma A.4]) Let d > 2,p € [1,00]. Let f: T — R be a smooth function

and a be a smooth function on RY such that suppa C [— % %]d. Then for any o € N,

llaf (o) eq—1,274) = lalloo—2, 21y | fllLo(ray| S @ “P)lal| g 1 190y [Lfl o ey

272 2
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Recall from Section 4.3 that the perturbation wg1 decomposes as Wqy1 = ZNO (w ,(Jizl) + wéﬁrll))

We first estimate the principle perturbations wé’i’l) for 1 <i < Ny in LdO L% norm. By Cauchy’s
inequality we have

( 0

] < (Zx ¢Mi| —n ) ST M=% | 3 Wienigieia

n>3 geAn
d
SO REIM| - Z\ng szdo)\o’
n>=3 SGA"

where we used the fact that > _, X(t —n) < 2.

By applying the generalized Holder inequality of Theorem 4.2 in spatial direction, together with
the estimates for the building blocks in (2.7) and Lemma 4.1 we deduce

, )
quﬁ-zl L(fio ~ E E ”anz ”CtLdO(Td)g(gzdo)( )
n>3 L' ¢epn

n
CLA@ )Z

(A H>~<<<|Mz‘<t>| )

d, d,
¢ Z HW(EJL,?;)||C%Ld0(jl‘d)g(§7i’d0)(t)

Cl .z ccAn

< 13wl - mg@ + ¢+ | 3 g ®

n>3 EeN

S UM +8001) 3 98, 00y (0,
EEA

Ll

where we used the fact that ) ., X(t —n) < 2, and used conditions on the parameters to have
(6d+1)a— 4 < —a < —283. Here we recall the notation A = A'UA2. Then we apply the generalized
Holder inequality of Theorem 4.2 in time direction, the bounds (2.10) and (4.2) to deduce for some
Cy,>1

0815 g S UMz + 8t + 0 1M ez, ) S ot 0
geA
2d+6 1
< Co(Sgp1 + A0 2N)<(mcy)docoaq+1, (4.14)
0

where we used conditions on the parameters to have (2d + 6)a — ﬁ < —a < —20.

For the general LyL™-norm with u,m € [1,00], by the estimates for the building blocks in
(2.5)-(2.7), (2.10) and the estimate for the amplitude function in Lemma 4.1 we obtain

/do
le e < 30 3 |leciag - my (%)

c ., W miy loy Lm ray 19 ¢e,i,d0) 1 L
n>3 €A t,x
d=1_d-1 1 _ 1 |
< l_2d_47'lm o ,er o n® ", (4.15)
n\ 1/do
g e <37 37 %Ml =m)(¢)
n>3 £EAn ct,

1
X (7)\2 IV®eni& Vienale, 1m0 9 i)
q+1

u
Ly
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d—1 Loy, 11
5 l_3d_8TJ_7n dg r?n dg 7,’7;_%. (4.16)

Here and in the following, we should remark that since supp M; C 41, all integrations involving
the building blocks reduce to computations on [—%, %]d, equivalent to integration on the torus.

With these estimates, combining with the choice of parameters in (4.1) and the bound (4.14) we
obtain

Cyv 1/do <1/d _34-8T1 _ Cy 1d 1/d 6d+17)a
giallgo oy < ZCo/ 0,15 + NoCI7 e gc [ogiit + oAl
c,
<5 ZUCy P £ OA2 < C,Cy P,

where we used conditions on the parameters to have (6d + 18)a < NO < Agq1 and chose a large
enough to absorb the universal constant. The above inequality ylelds (3.11) for Vg+1. Then (3.6)
holds for vg41.

Then we turn to estimate the L} LP-norm and the C;L*-norm. Combining with the bounds (4.15)
and (4.16) above we obtain

d—1 1 1
—3d—8.." » ~ dg ,.p dgo l** (6d+17)0‘_* o 1/do
[y LyLP < Nol L T nr S >\q+1 S >\q+1 X 5q+1 ) (4.17)
d—1 d—1 1 1
—3d—8,. s ~dg s dg (6d+1T)a— 4 —a 1/do
|wgt1lle,zs S Nol Ty LT n s Ag+1 < A1 S 0041 s

which leads to (3.12). Here we used (4.1), (4.4) and (6d + 18)a < &7, No S Agy;- Then we chose a
large enough to absorb the universal constant.

Next we estimate the C} ,-norm. By the fact that

O (Viem,i(t) = (Z)l/dog(g i,do) (3tV(5 ) <<<> /dOH(g,i,do)(t)>7

the estimates for the building blocks in (2.7), (2.10), (4.6) and the estimates for the amplitude
functions in Lemma 4.1 we have for dy > 2

n\ 1/do
nwﬂmi<Z§j§j NQAROIEY IVViemallor Nge.ianlle:

i= 1n>3§€A" ¢ H
n -k 4t 2 (8d+24)a+d+L
<ZZ (€Iai] - )C‘Cz Agapry Oy W on TS NoAgyy B

1=1n>3 t,x

Thus by No < A%y, (8d + 25)ar < § we obtain

1/d, d 1/do \d
loasillcs, < luglley, + lwasillcy, < Co/™xi + Sxdtt < cy/niz,

which implies (3.7) for vy41. Here we chose a large enough to absorb the universal constant.

4.6. Estimates of Gélﬁ 4 Similarly as before, we first estimate the principle perturbations Hqﬁ_’ll)

in LtoLdO. By the fact that I'¢ are uniformly bounded we have

057 % < > X (M| —n) z Z |P#0®(£nz)g(§zd’)
n>3 ceAr
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Then by the same argument as in (4.14), we have for some C, > 1

10175 g S (1m0 + g+ 07 1My ) D ot
£eEA

1
S Coldye1 + A5 ") < (56,)%Codyin, (4.18)

where we used conditions on the parameters to have (2d + 6)a — ﬁ < —a < —2p.
For general L¥L™-norm with u,m € [1,00], by the estimates for the building blocks in (2.8),
(2.10) and Lemma 4.1 we obtain

165D e 303 |Ix

/
0 ‘

(cingi] - (%) e

19 ,m.0)llcemeraylgee,s,anllLy

n>3 €A P
d—1 d—1 1 1
—2d—4, ™y m g a—ar
<l T, S Ot o (4.19)

Now we estimate the C} -norm. By (2.8), (2.10), (4.3), (4.4) and Lemma 4.1 we have

o e, SN

1©m,iller, l9ee,iapllo;

x| =m(2) re|

n>23 EA™ g t,x
R A ol B I
N Z C|Ml )EFE )‘q-&-l/“"” 0 Ty ‘0 an T d6 < )\qull—l-24)a+d+2’
n>3 C Cfl'r
(csi) (i) Loqoa VG @ —d  (d8)a—k _ \—a
10547 ez, S 10557 le o S R R A P Vi YA, (4.20)
, B . .
16550 Nc, S o732 D Ihieaanlen |div (x(cIi —n)CFgf)‘
n>3 EEAT e
< 0717’71176&20 < )\t(lf1d+40)a+27
3 — n
103 lewer S0 D0 D hiednlzz ]X<<|Ml| )T
n>3 EEA™ CC?
< o120 < (1200 <y (4.21)

where we used conditions on the parameters to have (12d +41)a < ﬁ and chose a large enough to
absorb the universal constant.

Moreover, once we take a space derivative of 9 1 or Hqﬂ , by Lemma 4.1, (2.8) and (2.10), we
will obtain an extra power of A\;y1, which implies that

loc,i — (loc,i) (12d+40)a+d+ 2
165257 ler + AhlIVOSss ller . S A 2 (4.22)

To end this section, we estimate 9;1_7‘_’? in WHiT¢norm for some € > 0 small enough, which will
be used below in the estimate of stress term. By the bounds for the building blocks in (2.8), (2.10)
and the bounds for the amplitude functions in Lemma 4.1 we have

108 I gwraee S0 D

n>3ecAn

n\ 1/do
|- (%) F5H01 1€ eyl ro e
t,x

1 1
—4d—12 T+e ap Tfe Tap 11— (8d+24)a7—+d5 o
<l )\q_HrH Or, o /\q+1 N )‘q—s-l’ (4.23)
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where we used the choice of parameters in (4.4) and chose € > 0 small enough such that de < a.
We also used conditions on the parameters to have (8d + 26)a < %

4.7. Estimates of F . We recall the functions F! 1 defined in (4.13). In this section, we provide
estimates for F},, Wthh will be used to derive the corresponding estimates for 9qill)
Proposition 4.3. The functions FQ_1 defined in (4.13) satisfy the following properties: Fz_|r1 are
mean-zero, supp Fy 1, C Qq11 and F}y; =0 on [0,Ty11]. Moreover, it holds that for k,j € N

k 2k+j—1
||8 vJFZ+1||C“ IS )‘q+1j

Proof. The first three properties follow directly from the definition. To establish the Hélder continu-
ity, we begin by considering the case kK = j = 0 and analyze each term separately. We obverse that
O(¢,n,iy and Wie , )O (¢ n,iy are both (T/r 1 Ags1)%periodic, and VA™™ are (—m)-homogeneous
operators. By the estimates for the amplitude functions and for the building blocks in Lemma 4.1,
(2.8), (2.10) and (4.4) respectively, we have

1,(&{,n,e
IFcellog, S D0 IFR ™ ey,
n>=3 €A™
2 a2
SO VYA M| - n)( C)l/dorgg@ aplllog IV AT PL0O ey,
n>23 €A™

d—1 q_ 1
/

d—1— -
—4d—12— 2 d d!
< l 4d—12—(2d+8)N (’I“J_ 0 TH 00'77

_ 1
a7 )Tld-i_lrﬁln_l(rJ_)\q-&-l)_Nz

< )\(Sd+24+(4d+16)N2)a+d+1 N < >\d+2 3N/4 < A1

q+1
2,(&,n,
LS 2 IERE e,

n>3 EEAn

S Z Z |VN +1 |Ml | - ")Cng(g,i,do)g(g,@dg)||C§{$
n=3 €A

2 a2
X [V AT P Lo (Wieni O eniy) oo,

—4d—12—(2d+8)N?, _—1_—d+1,.—1 —N?
S RESNT 1y LA (ridgt1)

(8d+24+(4d+16)N?)a+d+1-N d+2-3N/4 ~ -
)‘q-i-l 5 )‘q+1 )‘q—l-l’
where we used to conditions on the parameters to deduce that (8d + 32)a < 7k

When taking a space derivative on Fy ,, by Lemma 4.1, (2.8) and (2.10), we will obtain an extra
power of [724=8 < \ ., from the amplitude functions and a extra power of A\, from the building
blocks. Similarly, when taking a time derivative, we will obtain an extra power of =248 4 gn~1 +

Lok ;‘“ < )\3 41- Analogous to the previous analysis, we obtain the estimate on the derivatives. (Il

4.8. Estimates of Oéi_’?. Since the functions 0(9 71 vanish 1dentlcally on the interval [0, T,11], our

subsequent analysis can be restricted to the regime ¢t > T > 6. We begin by establishing a key
estimate for heat kernel convolutions:

Proposition 4.4. Let d > 2. For any t € [1—12, 1] and x € R%, we have

I

p(s,r —y)dsdy S t/ p(t,x —y)dy.
[-3.3)¢ [-3.3]¢
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Proof. If |z| > 9, we have |x — y|?/4t > 1, then it suffices to prove that fg p(s,x)ds < tp(t, x) for
a :=|z|?/4t > 1. By change of variable we have that

¢ - ,
/(475)7(1/267'95'2/45(13:/ (7T|o:|2/u)*d/2677i|4x7|2du
0 |z|2 /4t U
= t(477t>_d/2a_d/2+1/ w227t dqy < t(47rt)_d/2/ (u/a)¥?*~ e~ du
a a

o0 o0
< t(4mt) =2 / (1+u—a)¥?* e du < t(47rt)_d/26_“/ u?? e vdu < tp(t, x).
a 1

Otherwise if |z| < 9, since t > 1/12, we have

/

which implies that

Ptz — y)dy > / (dmt)=H2e=25/tdy > (4m)= /2300

[,l ,]d

/ / p(s,xr —y)dsdy <t < t/ p(t,z —y)dy.
. -3 .41

272 222

5,57

O

(9,%)

Then, we are in position to bound 9q+1 By Proposition 4.3 and Proposition 4.4, we have that

1
fort—ﬁ>ﬁ

. t t—13
o wans [ [ pe—se—wiEa sy [T ] e pasy

e
1 2
; 1 —clz— -1 _—cl|z

)\q+1/,lld,p(t E T — )dy,\,)\q+1\/7llde | 7/‘ dyS)\qule |z , (424)

(~3.3] 1.1

which implies that
1650 o + 1055 lenzs + 105w, S Agh. (4.25)
(loc,i)

Then together with the estimates on (‘)Q 1
(4.4) we imply

in Section 4.6 and the choice of parameters in (4.1),

, Cy 1/dl 1/, 1/dg ¢1/dg
s =l < Wl g, € S0 0 < o, B
) (4d+8) - _ 1/dy,
Hp;—o—l - PqHCf,Ll < H9q+l||CtL1 g )\q+1 “ + )‘q+1 ~ )‘q+1 X 6q+10’ (426)

which implies (3.11), (3.13) and then (3.6) for p,,,. Here we used (4d+9)a < + and chose a large
enough to absorb the universal constant.

Next, by the fact that Supp9 +1 ,supp 95‘_’;? C [%, 1] x [—%, %]"ﬂ together with (4.20), (4.21) we
know that
1

ﬁ,l’).

—« 1 —a =
0 () + 0357 (8, 2) = —A8 Lt yyxq-1 4y (£,2) > — o ar1p(t —
By the fact that 0(p’1 is non-negative, and the choice of parameters in (4.1), (4.24) we have

1 /
—.,z) = 00 %p(t -

(pz—&-l p )(t LU) C)‘q+1p( 12 q+1 71")a

12
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which yields (3.14). Here we chose a large enough to absorb the universal constant.
By a similar calculation as (4.24) and Proposition 4.3, we obtain that

9:0%97] + V99| < / / (t— 5,2 — ) F 1 (5,9)] + [V Ey (5,))dsdy < X2,
Then together with (4.22) we imply

i 1/d} 1/dj
Ihaallcy, < loblles, + Wiplles, < Gy + 23t < o3/,

which implies (3.7) for pfl 1 1. Here we chose a large enough to absorb the universal constant.
4.9. Estimates of M . We estimate each terms in the definition of M} ¢+1 separately.

4.9.1. Estimate of oscillation error M],.. Since O ¢ , ;) and Wie , 1O (¢ i) are both (T/riAg+1)%
periodic, by the estimates for the amplitude functions and for the building blocks in Lemma 4.1,
(2.8) and (2.10) respectively we obtain

N2-1

m n !
| osca:HLlLl <Z Z Z V™0 [x ClMl|_n)(z)l/dorfg(g,i,dg)}HL}CO

n>=3£eA” m=0

—m—1
X (r1iAg+1) " O i lle, L (ray
d-1-< 1-gr , N1 ((4d+16) ) (8d+24)
—4d—12 —ar ozfﬁ mff osz _
<l T, T Yon o Z Agi1 NS Ag VS At
m=0

N2-1

1Mol S Y D IV <|Ml|_”)Crfmcﬂm||g(§,i7d0)g(§,i,d6)HL}

n>=3£eA” m=0

X (TJ_)\q-l-l)_m_l||W(E,n,i)@(§,n,i)HC’tLl(']I'd),

N?-1
C4d—12\— & ((4d+16)a— 4 )m (8d+24)a— 4 _
5 l )‘qﬁ Z )‘q+1 § /\q+1 < /\q+1’

m=0

where we used conditions on the parameters to have (8d + 25)a < %

By Lemma 4.1, (2.8) and (2.10) again we obtain

n
|| osca”LlLl S Z Z C|Ml )grﬁ‘ ||W(E,n,z')||CtL1(1rd)||@(§,n,i)|\CtL1(1rd)
n>3£EAT Cia
—2d—4 d (4d+8)a— o
<l2 4L1T\<)‘ N<>\q+17

where we used conditions on the parameters to have (4d + 9)a < %
The stress term M, . is bounded similarly as in [LRZ25, Section 5.4.2].

osc,c

2

> XM = n)M]| +

n M} i
ZX |Mz n)(= : — M)

’ oscc| ~

n=-1 n>3 ¢ |Mlz|
3 - n - 3 1
< - M} — - — | M} —9, —9, C’ 0
¢ +ZX(C\ [1=mn) ¢ |M}]| < 204 q+2 T+ 20 a+2 S £C00g+2.

n>=3
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By the bounds (2.10), (3.8) and (4.1) we have

HMésc,o”L%Ll S; 0—71 Z Z ||h(£,do)||Lt°°

n>3 EEAT

n

Qe [x(¢IM] | —n)C

Teg]

Cto,"l)
—1;—4d—12 (8d+24)a—5k -

So 'l S gt NS g

where we used conditions on the parameters to have (84 + 25)a < 7% .

In summary, we have

. 1 1
1Moscllrr < CCoAEL + £ Cobgiz < 3C00g+2, (4.27)

where we choose a large enough to absorb the constant.

Moreover, similar to the case of F/,,, by Lemma 4.1, (2.8) and (2.10), if we take a space/time
derivative on M! . — M} we will obtain an extra power of )\Z 11 at most, so we have

osc,c)

||8t(M<§sc - Mgsc,c)HL%Ll + ||V(M<§sc - M )HL%L1 /S /\(21;(11

osc,c

As for M?

osc,c)

by Lemma 4.1 we have

i i i n Mj d —(4d d+7
Moo cller . SUMlley, + D |[x (¢l —mE] Mi.| ST g T
n>=3 ! Ct,w
which implies that
. , 1
2d+7 2d+8
||8tM(§scHL%L1 + ||VM(’§SC||L%L1 S Aq-&—t < §>‘q+t ’ (428)

where we chose a large enough to absorb the universal constant.

4.9.2. Estimate of linear error M}, . By the bounds in (4.21)-(4.23) we have
19675 oo S 1O Netwee + 16557 lywree S A
By the estimates in (3.7), (4.17), (4.20), (4.21), (4.25) and (4.26) respectively we obtain
g1 + wasa (0 + 0457 + 0557 + 05l o
<Nvalley 1641 le e + (Uebllce, + 1057 Mep, + 1055 Mo, + 1055 eo Mwgsally o
< (CoadH 4 A0 mar < g 1203 < gy o

where we used (4.1) and conditions on the parameters to have (12d + 42)a < 5.

2N
Since wq41(t) = 0 on [0, Ty41], by (3.3) and (4.17) we obtain

||wq+1Pin’i||L§L1 S Hﬂm’i”C[O%,w||wq+1HL;LP < Cm)\q_fr

By the estimates in (4.16) and (4.18) we have

w05 s e < 10557

| o (6d+16)a— 1
q+1Yq+1 q+1 LfOLd()

(c,i) 1/dg;—3d—87TL —a
||wq+1 ||L‘ZOLdU ,S Cpco ol 7| 5 CO)‘q-H 5 CO/\q.Ha

where we used (4.1) and conditions on the parameters to have (6d + 17)or < 3;. We choose a large
enough to absorb the universal constant.

In summary, we have

% —« 1
Ml S CoAgfy < gco5q+27 (4.29)
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where we choose a large enough to absorb the constant.
Moreover, by (3.7), (4.22) and all the Holder’s estimate in Section 4.5-4.8, we have

||8tM;in||LgL1 + ||leiin||L§L1
SIVO Ner, + lvgbigr +wern (o + 0557 + 6557 + 057 + o) + w08 s

o 1
(24d+80)a+2d+7 _ 1 y2d+8 (4.30)

d+5
f, )\q+1 + >‘q+1 = 3 q+1

where we used (12d + 40)a < %, and chose a large to abosrb the universal constant.

4.9.3. Estimate of commutator error M!, . By (3.8) and (4.1) we obtain

, , . B 1
Mol i pe SUUOM N prpr + IV Ml i pa) S Col A4S < CoAy gy < gco5q+27

. . . . 1 oy
10: Mo llLip + [IVMegpllipr S 10:Mgllpipr + VMgl i < )\3(”8 < g/\f,ﬁ87

which together with (4.27)-(4.30) implies that
[Mgiillpior < Codgray 0:Mgiyllpipy + IV Mgyl < AZEES

We finish the proof of Proposition 3.1.
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APPENDIX A. AN OVERVIEW OF CONVEX INTEGRATION ON THE TORUS

In this section, we present an overview of how the convex integration method applies to the conti-
nuity equation on the torus. For detailed derivations and estimates, we refer the reader to [BCDL21],
and to [LRZ25] for the advection-diffusion case on the torus. Our goal here is to outline the main
ideas and the structure of the construction rather than to reproduce the full technical details. We
also add remarks on the additional difficulties that arise when extending the argument to the whole
space R%. The new ideas required to overcome these issues are presented in detail in Section 3.3.

We consider the following continuity equation on T¢, with d > 2:

Op + div(vp) =0, dive =0,
p(0) = 1. (A1)
By the divergence-free condition on the drift v, equation (A.1) admits the constant solution p(t) = 1

which is a probability density, w.r.t. the normed volume measures on T¢. Our goal is therefore to
construct a divergence-free drift v such that (A.1) admits another positive, non-constant solution.

The construction proceeds via induction indexed by ¢ € N. At each step ¢ € Ny, we construct a
pair (vg, pq, M,) satisfying the following system:
Oipq + div(vgpg) = —divM,, divyy =0, (A.2)

Here M, denotes a vector field. As ¢ — oo, we aim to prove that in some topology, M, — 0 and
(vg, pqg) — (v, p), which is a weak solution of the transport equation. At the same time, we require
that de pq =1 and p,; > 0, so that the solution can be interpreted as a probability density.
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At each iterative step, we construct perturbations wqi1 = Vg41 — Vg, 0g+1 = Pg+1 — pq such that
(Vg+1, Pg+1) is a solution of (A.1) at level ¢+ 1 with a smaller residual stress term M1, which can
be written as

—diVMq+1 = 8t9q+1 + diV(Uq0q+1 + ’LUq_Hpq) + div(wq+10q+1 — Mq).

The stress term My41 is then defined by solving the above divergence equation with the aid of a
linear differential operator of order —1, denoted by div™'. We remark that the inverse divergence
of a periodic function remains periodic. However, on the whole space, handling the inverse operator
div™! becomes substantially more delicate.

The construction of the perturbations forms the core of the convex integration scheme. We define
the perturbations (wg+1,04+1) as a sum of highly oscillatory building blocks in order to achieve a

cancellation between the low-frequency part of the quadratic term wg416441 and the stress M.
Roughly speaking, we introduce the principal part of the perturbation (wé’jr)l, 9((1121), which takes the

form
wily =3 ag(M)We(Ags1z), 051 =3 ae(My)O¢(Agi12),
13 13

where O¢ is a carefully chosen positive solution to the continuity equation transported by We. These
building blocks are also oscillating at a high frequency Ay4+1 € N. The amplitude coefficients a¢ are
chosen such that

S a0 [ (WeOe)yran)de = 3 a0y )6 = My,
3 €

Td
Here, the existence of such coefficients a¢ is ensured by the Geometric Lemma 2.1. Roughly speaking,
the low-frequency part of the product w[(fjr)lﬂt(fjr)l cancels the stress term M,. Additionally, to ensure

that wgy1 is divergence-free, we introduce a divergence-free corrector wéle such that

Wqt1 *= wt(ﬁr)l + U’((;?l

is divergence-free. Similarly, to guarantee that de Pg+1dr — de pq dx = 0, the actual perturbation
for pgy1 is defined as

s =07, — / o

Moreover, by taking advantage of the fact that the constructed 9;121 is a positive function, we
have

Pg+1 — Pq Z— /ﬂ‘d 0((;_;_)1(11‘,

which implies that the limited function p satisfies p > po+3_, (pg+1—p¢) = infz po—3_, |0g+1(lr >0
by choosing suitable parameters. Here, we use the compactness of the domain to ensure that pg is
bounded below, so that the solution remains positive by keeping the perturbations 6,1, sufficiently
small. In contrast, on the whole space R?, this argument no longer applies, since the density po
decays to zero at infinity. Therefore, in the whole-space setting, the perturbations must be estimated
carefully to ensure compatibility with the decay of pg.

It then suffices to verify that M, is small in the Lebesgue space L'. We choose the frequencies
super-geometrically, with Ag41 > Ay for ¢ € N. The function v, = Zigq(vi —vi—1) +vg =
Zig g Wi + o is thus a sum of perturbations of frequencies higher than A,, which are considered
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as low-frequencies compared with the building blocks We(Ag412) and ©¢(Ag11x). Similarly, the
functions p, and M, are also sums of perturbations with frequencies exceeding A;. Then, we have

div(w®), 0, = My) ~ div( Y a2(My)Pos, , 2[(WeBe) (Mg12)])
3
~ ST(Va2(M,)) - Por, 2l (WeO) Agrr)],
13

and as a consequence,

1. 1 Soe lag (M)l e
[div™ div(wg 1011 — Mg)lpr S +— > laZ(My)llcr [Psa, ., 2(WeOe) | < e
Agt1 5 Ag+1

Here, the factor )\;1 arises from the —1 order inverse divergence operator div_'. In the last term,
the amplitude a¢ is of low frequency, of order at most Ay, and is therefore very small due to the
super-geometric growth Agq >> A,

Here, we note that on the whole space, the stress term must be assumed to have compact support
in order to fit within the convex integration framework. However, in this setting, one cannot directly
apply the inverse divergence operator, since even for a function with compact support, the inverse
of its divergence may still have support extending over the entire space. In this paper, we introduce
a new decomposition of the stress term that separates the stress term into two distinct components.
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