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Abstract. In this paper, we investigate the stochastic differential equation on Rd, d ⩾ 2:

dXt = v(t,Xt)dt+
√
2dWt.

For any finite collection of initial probability measures {µi
0}1⩽i⩽M on Rd and d

p
+ 1

r
> 1, we

construct a divergence-free drift field v ∈ Lr
tL

p ∩ CtLd− such that the associated SDE admits at

least two distinct weak solutions originating from each initial measure µi
0. This result is sharp

in view of the well-known uniqueness of strong solutions for drifts in CtLd+, as established in

[KR05]. As a corollary, there exists a measurable set A ⊂ Rd with positive Lebesgue measure

such that for any x ∈ A, the SDE with drift v admits at least two weak solutions when with start
in x ∈ A. The proof proceeds by constructing two distinct probability solutions to the associated

Fokker-Planck equation via a convex integration method adapted to all of Rd (instead of merely

the torus), together with refined heat kernel estimate.
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1. Introduction

In this paper, we are concerned with stochastic differential equations (SDEs) on the whole space
Rd, d ⩾ 2, of type

dXt = v(t,Xt)dt+
√
2dWt, t ∈ [0, T ], (1.1)

LX0
= µ0,

where T > 0, v : [0, T ]×Rd → Rd is a Borel function, Wt is a standard Rd-valued Brownian motion
on some probability space (Ω,F ,P), and µ0 is a probability measure on Rd.

The well-posedness of SDEs has been a central topic in both pure and applied mathematics, due
to their fundamental role in modeling dynamical systems with random perturbations. To analyze
the criticality of equation (1.1), we employ the following scaling transformation:

W ϵ
t = ϵ−1Wϵ2t, X

ϵ
t = ϵ−1Xϵ2t, v

ϵ(t, x) = ϵv(ϵ2t, ϵx),

which preserve the law of the Brownian motion. Under this scaling, the behavior of the rescaled
drift vϵ in the Lebesgue space Lr

tL
p := Lr([0, T ];Lp(Rd)) is characterized by:

∥vϵ∥Lr
tL

p = ϵ1−
d
p−

2
r ∥v∥Lr

tL
p .

As ϵ→ 0, SDE (1.1) is classified as subcritical when d
p +

2
r < 1, in which case the associated quantity

vanishes. The critical regime corresponds to d
p + 2

r = 1 and the supercritical regime corresponds to
d
p + 2

r > 1, where the quantity diverges, indicating that the Brownian noise is no longer sufficient

to counteract the singularity of the drift.

For p = r = ∞, Veretennikov [Ver80] was the first to demonstrate the uniqueness of strong
solutions using Zvonkin’s transform [Zvo74]. In the subcritical case, Krylov and the second named
author [KR05] established the existence and uniqueness of strong solutions to (1.1). Then the well-
posedness problem with general multiplicative noise was studied in the foundational work [Zha05,
Zha11]. Subsequent developments are contained in [BC03, FGP10, Zha11, FF13, Zha16, BFGM19,
XXZZ20, RZ21].

The critical regime presents subtle challenges. Beck, Flandoli, Gubinelli and Maurelli [BFGM19]
proved that for ∥v∥Ld small enough, the SDE admits a strong solution starting from a diffusive
random variable in a certain class. A significant progress was made by Krylov [Kry20a] who proved
the strong well-posedness of SDEs in the case v ∈ Ld(Rd). Then, for the case d ⩾ 3, v ∈ Lr

tL
p, d <

p ⩽ ∞, or v ∈ CtL
d, or v ∈ L∞

t L
d with divergence-free condition, Zhao and the second named author

[RZ23] proved that (1.1) admits a unique weak solution within a class satisfying some Krylov-type
estimate. We refer to [Nam20, Kry20b, Kry20c, RZ25, RZZ25] for further results.

However, in the supercritical case, the well-posedness problem is much more challenging and
remains not fully understood. On the one hand, under the additional assumption that the drift is
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divergence-free, weak well-posedness has been established in certain classes: Zhang and Zhao [ZZ21]
established weak existence and uniqueness in the sense of approximation for d

p + 2
r ⩽ 2; Galeati

[Gal25] demonstrated strong existence and uniqueness for (1.1), under the assumption that v is a
Leray solution to the 3D Navier-Stokes equations obtained through approximation. We also refer
to [Gal24, HZ25, GP24, Grä24] for more results in the supercritical regime. On the other hand,
notable counterexamples demonstrating non-uniqueness in law for (1.1) have also been constructed:
For dimensions d ⩾ 1 and p > d, Galeati and Gerencsér [GG25] constructed an example (allowed
to be not divergence-free), where non-uniqueness in law holds when starting from the origin. In
d ⩾ 3, the second named author, Zhang and Zhao [RZZ25] exhibited a divergence-free drift in weak
Lorentz space Lp,∞, d

2 < p < d, that admits two distinct weak solutions starting from the origin.
When considering the torus case, sharp non-uniqueness in law in dimension 2 was shown in [LRZ25].

In particular, if we restrict to the case r = ∞, then for any vector field v ∈ L∞
t L

p, p > d,
(1.1) admits a unique strong solution (see [KR05]). For the case d ⩾ 3, for any v ∈ CtL

d, or
divergence-free v ∈ L∞

t L
d, the SDE admits a unique weak solution within a class such that some

Krylov-type estimate holds (see [RZ23]). However, for a given initial probability measure on Rd,
the question of whether uniqueness in law holds for SDEs with drifts v ∈ L∞

t L
p in the supercritical

regime p < d remains open, especially for the two-dimensional case. Notably, in all known examples
in the literature, non-uniqueness in law occurs only when starting from the origin.

It is also worth mentioning that, in the supercritical case, the divergence-free condition on the drift
matters. Actually, if the drift is not divergence-free, there is an example in [BFGM19, Example
7.4] such that the SDE may not have weak solutions in Lp(Rd), p < d. On the other hand, the
divergence-free condition helps when considering the existence and conditional weak uniqueness, cf.
[ZZ21, HZ25, RZZ25]. In summary, it is particularly intriguing to investigate divergence-free drift
terms that may lead to a failure of weak uniqueness.

1.1. Main result. Regarding the aforementioned discussion, in this paper, we make a new contri-
bution to the understanding of weak (non-)uniqueness in SDEs by constructing a divergence-free
drift v ∈ CtL

p, p < d that leads to non-uniqueness in law, which covers the optimal range for the
weak well-/ill-posedness of the SDE.

Let P denote the space of probability measures on Rd. For any finite collection of initial prob-
ability measures {µi

0}1⩽i⩽M ⊂ P and d
p + 1

r > 1, our main result is to construct a divergence-free

drift v ∈ Lr
tL

p such that non-uniqueness in law holds for the respective SDE with drift v started
from each of these initial measures:

dXi
t = v(t,Xi

t)dt+
√
2dWt, (1.2)

LXi
0
= µi

0.

Theorem 1.1. Let d ⩾ 2, γ ∈ (0, 1), 1 < s < d and p, r ∈ [1,∞] satisfying d
p + 1

r > 1. For a

finite collection of initial distributions {µi
0}1⩽i⩽M ⊂ P, there exists a divergence-free vector field

v ∈ Lr([0, T ];Lp)∩C([0, T ];Ls) such that each SDE (1.2) admits at least two distinct weak solutions
Xi,1, Xi,2. Moreover, for 1 ⩽ i ⩽M, j = 1, 2, it holds that

• E[
∫ T

0
|v(s,Xi,j

s )|1+ϵds] <∞ for some ϵ > 0;

• for t > 0, the solutions admit densities ρi,j satisfying ρi,j(t) ⩾ (1− γ)et∆µi
0.

Our work also extends previous results in [GG25, RZZ25], which were limited to initial distribu-
tions concentrated at the origin. We demonstrate that weak non-uniqueness can occur for arbitrary
initial probability measures. Through decomposition of probability measures, we further establish
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that this non-uniqueness in law holds for a set of initial positions x with positive Lebesgue measure,
thereby substantially broadening the scope of possible non-uniqueness scenarios.

Corollary 1.2. Let d ⩾ 2, 1 < s < d and p, r ∈ [1,∞] satisfying d
p + 1

r > 1. Then there exists

a divergence-free vector field v ∈ Lr([0, T ];Lp) ∩ C([0, T ];Ls) and a measurable set A ⊂ Rd with
positive Lebesgue measure such that for every x ∈ A, there are at least two distinct weak solutions
to (1.1) starting at δx.

Unlike the previous counterexamples, in this paper we establish a stronger form of non-uniqueness,
specifically, the non-uniqueness in the evolution of particle densities. These densities solve the
associated Fokker-Planck equations, which read as

∂tρ
i −∆ρi + div(vρi) = 0, divv = 0, (1.3)

ρi(0)dx = µi
0(dx),

where {µi
0}1⩽i⩽M is a collection of probability measures on Rd. A solution to (1.3) is meant in the

following weak sense:

Definition 1.3. A non-negative function ρ ∈ C((0, T ];L1) is called a weak solution to (1.3) if∫ T

0

∫
Rd

|v(t, x)|ρ(t, x)dxdt <∞,

and for every test function f ∈ C2
c (Rd), and every t ∈ (0, T ]∫

Rd

f(x)ρ(t, x)dx−
∫
f(x)µi

0(dx) =

∫ t

0

∫
Rd

ρ(s, x)(∆f + v · ∇f)(s, x)dxds. (1.4)

With the help of the superposition principle introduced in [Tre16, Theorem 2.5], Theorem 1.1 is
a direct result of the following non-uniqueness result for the Fokker-Planck equation (1.3), which we
shall establish through the convex integration method, together with refined heat kernel estimates.

Theorem 1.4. Let d ⩾ 2, γ ∈ (0, 1), 1 < s < d and p, r ∈ [1,∞] satisfying d
p + 1

r > 1. Then

there exists a divergence-free vector field v ∈ Lr([0, T ];Lp) ∩ C([0, T ];Ls), such that each Fokker-
Planck equation (1.3) admits at least two distinct solutions ρi,1, ρi,2 ∈ C((0, T ];L1) in the sense of
Definition 1.3.

Moreover, for 1 ⩽ i ⩽ M, j = 1, 2, it holds that
∫
[0,T ]

∫
|v|1+ϵρi,jdxds < ∞ for some ϵ > 0 and

that ρi,j(t) ⩾ (1− γ)et∆µi
0 for t > 0.

Finally, we note that by linearity, (1.3) admits infinitely many distinct solutions for every 1 ⩽
i ⩽M . Consequently, the associated SDE (1.2) also has infinitely many distinct weak solutions.

The main result will be established using the convex integration technique. This technique
was first introduced to fluid dynamics by De Lellis and Székelyhidi Jr. [DLS09, DLS10, DLS13].
This method has led to numerous groundbreaking results for fluid dynamics on the torus. For the
incompressible Euler equations, the famous Onsager conjecture was proved in [Ise18, BDLSV19].
For the Navier-Stokes equations, sharp non-uniqueness of weak solutions has been shown in [BV19b,
BCV21, CL22, CL23]. We refer to [BDLIS15, DSJ17, GKN23, NV23, GKN24, GR24, BCK24] for
more progress on the Euler or Navier-Stokes equations. Recently, this method has been applied
to fluid dynamics on the whole space, see [MNY24a, MNY24b]. For more details and references,
interested readers are referred to the comprehensive reviews [BV19a, BV21].
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Concerning transport equations on the tours, we refer to [CGSW15, MS18, MS19, MS20, BCDL21,
CL21, PS23, CL24, MS24] for recent developments concerning non-uniqueness in transport equa-
tions and related ODEs. We also note that the convex integration method has been successfully
applied to stochastic fluid dynamics, see [BFH20, HZZ22, Yam22, HZZ23a, HZZ23b, HLP24, HZZ24,
Pap24, MS24, HZZ25, LZ25a, LZ25b, LRZ25].

1.2. Idea of the proof. As mentioned earlier, we will prove the main result using the convex
integration method. This method is primarily developed in the torus setting, and for the convenience
of readers who may not be so familiar with it, in Appendix A we provide an overview of how the
convex integration method works on the torus.

Our work presents a novel extension of the convex integration method to establish non-uniqueness
of positive solutions for Fokker-Planck equations on the whole space Rd, going beyond previous
periodic domain results. The transition from the torus to unbounded domains introduces substantial
new challenges that require new probabilistic and analytical arguments. These technical innovations
entail, to our knowledge, the first successful application of convex integration methods to prove non-
uniqueness for positive solutions in non-periodic settings.

(1) When working in the whole space setting, maintaining compact support for the stress error
remains crucial for implementing convex integration. However, a fundamental difficulty
arises in the iteration process: we cannot use the inverse of the divergence operator directly,
since even for a function with compact support, the inverse of its divergence may still have
support in the whole space. To overcome this obstacle, we introduce a new decomposition
of the stress term (detailed in Section 4.4.1) that separates it into two distinct components
- a principal part, expressed as the divergence of a compactly supported function, and a
residual global error term with small bounded C0

t,x norm. This decomposition enables us to
proceed with the convex integration scheme by handling the principal part through standard
techniques, while simultaneously controlling the global error via a specially constructed
global perturbation.

(2) When constructing global perturbations, we face the fundamental challenge of preserving
positivity of the solution, which differs significantly from those encountered in fluid equa-
tions. In addition, we do not have an invariant measure as a reference measure in contract to
the torus case. The core of our approach lies in using the heat-propagated measure et∆µ0 as
a reference solution, around which we build two distinct positive solutions through carefully
designed perturbations. A critical technical requirement emerges from the spatial decay of
et∆µ0: our perturbations must precisely match its exponential decay at infinity to maintain
global positivity. This is achieved through a novel strategy by constructing drift terms with
compact support, coupled with a careful analysis of the influence in exterior regions. The
key innovation centers on our treatment of the global perturbation θ(glo) generated by the
drift, which solves the heat equation:

∂tθ
(glo) −∆θ(glo) = F,

with a specially designed forcing term F . Here F is constructed with compact spatial
support and vanishes near the time origin t = 0, enabling the crucial proper exponential
decay ∣∣∣∣ ∫ t

0

e(t−s)∆F (s)ds

∣∣∣∣ ≪ et∆µ0 (1.5)
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through Proposition 4.4 using heat kernel estimates. The required smallness condition is
attained via an additional iteration of the inverse divergence operator developed in Section
4.4.1, combined with the periodic properties of our building blocks.

We further note that the key estimate (1.5) appears to be new and, to the best of our
knowledge, has not been addressed in previous literature. This estimate plays a crucial role
in our analysis, and its possible generalization to more general diffusion operators remains
an open and particularly interesting problem.

(3) To achieve the supercritical regime d
p + 1

r > 1, we introduce the Lm-based intermittent

spatial-time jets, incorporating an additional degree of freedom through the parameter m ∈
[1,∞]. This additional freedom stems from a feature of transport-type equations, contrasting
with the L2-based constraint in fluid equations.

Beyond those already mentioned, the proof also requires several additional modifications for the Rd

setting, such as a carefully tuned mollification procedure and a refined construction of the principal
density perturbations. We will detail these technical adaptations in the proof in the main text of
this proof.

Organization of the paper. First, in Section 2, we introduce the Lm-based intermittent spatial-
time jets, which play a crucial role in the convex integration construction. Subsequently, in Section
3, we establish Theorem 1.1 through a proof of the non-uniqueness of solutions to the Fokker-Planck
equations, as stated in Theorem 1.4. The proof of the main convex integration iteration procedure
is presented in Section 4. In Appendix A, we give an overview of the convex integration method on
the torus.

Notations. Let T > 0, N0 := N ∪ {0}. Throughout the manuscript, we write Td = Rd/Zd for the
d-dimensional flat torus, and identify Td-valued functions with periodic functions on Rd.

• We employ the notation a ≲ b if there exists a constant c > 0 such that a ⩽ cb.
• Given a Banach space E with a norm ∥ · ∥E , we write CtE = C([0, T ];E) for the space of

continuous functions from [0, T ] to E, equipped with the supremum norm. For p ∈ [1,∞] we
write Lp

tE = Lp([0, T ];E) for the space of Lp-integrable functions from [0, T ] to E, equipped
with the usual Lp-norm. We also wirte Lp

[a,b]E = Lp([a, b];E).

• For α ∈ (0, 1) we define Cα
t E to be the space of α-Hölder continuous functions from [0, T ] to

E, endowed with the norm ∥f∥Cα
t E = sups,t∈[0,T ],s̸=t

∥f(s)−f(t)∥E

|t−s|α + supt∈[0,T ] ∥f(t)∥E , and
write Cα

t in the case when E = R.
• We use Lp to denote the set of standard Lp-integrable functions. For s > 0, p > 1 we set
W s,p := {f ∈ Lp; ∥(I −∆)

s
2 f∥Lp <∞} with the norm ∥f∥W s,p = ∥(I −∆)

s
2 f∥Lp .

• For N ∈ N0, C
N denotes the space of N -times differentiable functions equipped with the

norm

∥f∥CN :=
∑

|α|⩽N,α∈Nd
0

∥Dαf∥L∞
x
.

Similarly, if the norm is taken in space-time, we use the notation CN
t,x.

• For any Td-valued smooth function f , we define the projections P=0f :=
∫
Td fdx, and

P ̸=0f := f −
∫
Td fdx.

• By p(t, x) = (4πt)−
d
2 e−|x|2/4t we denote the d-dimensional heat kernel for ∆ on Rd.

• We denote the Lebesgue measure on Rd by dx.
• We denote the law of a random variable X by LX .
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2. Lm-based intermittent spatial-time jets

In this section we introduce the the notion of Lm-based intermittent spatial-time jets, where
m ∈ [1,∞], which can be seen as a generalization of the L2-based building blocks presented in
[LRZ25, Appendix C.1]. In this section, the building blocks are defined on the torus and are
regarded as periodic functions on Rd.

First, we introduce the following geometrical lemma:

Lemma 2.1. [BCDL21, Lemma 3.1] Let d ⩾ 2. There exists a finite set Λ ∈ Sd−1 ∩ Qd and
non-negative C∞-function Γξ : Sd−1 → R such that for every R ∈ Sd−1

R =
∑
ξ∈Λ

Γξ(R)ξ.

With Lemma 2.1 in hand, it is easy to generate 2 disjoint families Λ1,Λ2, where each one enjoys
the property of Lemma 2.1 by taking suitable rational rotations of one fixed set. For simplicity, we
denote Λ := Λ1 ∪ Λ2. Moreover, we know that {Γξ}ξ∈Λ are uniformly bounded.

For parameters λ, r⊥, r∥ > 0, we assume

λ−1 ≪ r⊥ ≪ r∥ ≪ 1, λr⊥ ∈ N.

For each ξ ∈ Λ let us define Ai
ξ ∈ Sd−1 ∩Qd, i = 1, 2, ..., d− 1, such that {ξ, Ai

ξ, i = 1, ..., d− 1}
form an orthonormal basis in Rd. Let n∗ ∈ N such that{n∗ξ, n∗Ai

ξ, i = 1, ..., d − 1} ⊂ Zd for every
ξ ∈ Λ.

We define ϕ : Rd−1 → R to be a smooth function supported in the unit ball, such that ϕ ≡ 1 on
B(0, 13 ) and has zero mean. We then define Φ by ϕ = −∆Φ. The existence of such functions can be
found in [LRZ25, Appendix C.1]. Let ψ : R → R be a smooth, mean-zero function with support in
B(0, 1) satisfying ψ ≡ 1 on B(0, 13 ).

Define ϕ′ : Rd−1 → R to be a smooth non-negative function with support in B(0, 13 ) satisfying∫
Rd−1

ϕ′(x1, x2, ..., xd−1)dx1dx2..dxd−1 = 1,

and let ψ′ : R → R be a smooth non-negative function with support in B(0, 13 ) such that∫
R
ψ′(xd)dxd = 1.

Then, it is straightforward to verify that

ϕϕ′ = ϕ′, ψψ′ = ψ′. (2.1)

Let m ⩾ 1 be fixed, we define the rescaled cut-off functions

ϕr⊥,m(x1, x2, ..., xd−1) =
1

r
(d−1)/m
⊥

ϕ(
x1
r⊥
,
x2
r⊥
, ...,

xd−1

r⊥
),

Φr⊥,m(x1, x2, ..., xd−1) =
1

r
(d−1)/m
⊥

Φ(
x1
r⊥
,
x2
r⊥
, ...,

xd−1

r⊥
),

ψr∥,m(xd) =
1

r
1/m
∥

ψ(
xd
r∥

).

Similarly, for a conjugate exponent m′ ∈ [1,∞] satisfying 1
m′ +

1
m = 1, we define ϕ′r⊥,m′ and ψ′

r∥,m′

as the same manner. Then we periodize ϕr⊥,m,Φr⊥,m, ψr∥,m, ϕ′r⊥,m′ and ψ′
r∥,m′ so that they can be
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viewed as functions on Td−1 and T respectively. Consider a large time oscillation parameter µ > 0.
For every ξ ∈ Λ we introduce

ψ(ξ,m)(t, x) := ψr∥,m(n∗r⊥λ(x · ξ − µt)),

Φ(ξ,m)(x) := Φr⊥,m(n∗r⊥λx ·A1
ξ , ..., n∗r⊥λx ·Ad−1

ξ ),

ϕ(ξ,m)(x) := ϕr⊥,m(n∗r⊥λx ·A1
ξ , ..., n∗r⊥λx ·Ad−1

ξ ).

Similarly we define ϕ′(ξ,m′) and ψ
′
(ξ,m′).

The building blokes W(ξ,m) : R× Td → Rd and Θ(ξ,m′) : R× Td → R are defined as

W(ξ,m)(t, x) := ξψ(ξ,m)(t, x)ϕ(ξ,m)(x),

Θ(ξ,m′)(t, x) := ψ′
(ξ,m′)(t, x)ϕ

′
(ξ,m′)(x).

By the definition and (2.1) we have that ∫
Td

W(ξ,m)Θ(ξ,m′)dx = ξ, (2.2)

∂tΘ(ξ,m′) + µr
d−1
m

⊥ r
1
m

∥ div(W(ξ,m)Θ(ξ,m′)) = 0. (2.3)

Since W(ξ,m) is not divergence-free, we introduce the skew-symmetric corrector term

V(ξ,m) :=
1

(n∗λ)2
(ξ ⊗∇Φ(ξ,m) −∇Φ(ξ,m) ⊗ ξ)ψ(ξ,m)

satisfying

divV(ξ,m) =W(ξ,m) −
1

(n∗λ)2
∇Φ(ξ,m)ξ · ∇ψ(ξ,m). (2.4)

Finally, we obtain that for N,M ⩾ 0 and p ∈ [1,∞] the following holds

∥∇N∂Mt ψ(ξ,m)∥CtLp(Td) ≲ r
1
p−

1
m

∥ (
r⊥λ

r∥
)N (

r⊥λµ

r∥
)M , (2.5)

∥∇Nϕ(ξ,m)∥Lp(Td) + ∥∇NΦ(ξ,m)∥Lp(Td) ≲ r
d−1
p − d−1

m

⊥ λN , (2.6)

∥∇N∂Mt W(ξ,m)∥CtLp(Td) + λ∥∇N∂Mt V(ξ,m)∥CtLp(Td) ≲ r
d−1
p − d−1

m

⊥ r
1
p−

1
m

∥ λN (
r⊥λµ

r∥
)M , (2.7)

∥∇N∂Mt Θ(ξ,m′)∥CtLp(Td) ≲ r
d−1
p − d−1

m′
⊥ r

1
p−

1
m′

∥ λN (
r⊥λµ

r∥
)M , (2.8)

where the implicit constants may depend on p,m,N and M , but are independent of λ, r⊥, r∥, µ.
These estimates can be easily deduced from the definitions.

Then let us introduce a family of temporal functions to oscillate the building blocks intermittently
in time. Let K ∈ N be fixed, and G ∈ C∞

c (0, 1) be non-negative and∫ 1

0

G2(t)dt = 1.

Let η > 0 be a small constant satisfying ηK ≪ 1. For ξ ∈ Λ as defined above, and 1 ⩽ i ⩽ K, we

define g̃(ξ,i,m) : T → R as the 1-periodic extension of η−1/mG(
t−t(ξ,i)

η ), where t(ξ,i) are chosen so

that g̃(ξ,i,m) have disjoint supports for distinct (ξ, i). We will also oscillate the perturbations at a
large frequency σ ∈ N. So, we define

g(ξ,i,m)(t) = g̃(ξ,i,m)(σt).
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For the corrector term we define H(ξ,i,m), h(ξ,i,m) : T → R by

H(ξ,i,m)(t) =

∫ t

0

g(ξ,i,m)(s)ds, h(ξ,i,m)(t) =

∫ σt

0

(g̃(ξ,i,m)(s)g̃(ξ,i,m′)(s)− 1)ds, (2.9)

where we recall that 1
m′ +

1
m = 1, In view of the zero-mean condition for g̃(ξ,i,m)(t)g̃(ξ,i,m′)(t) − 1,

we see that h(ξ,i,m) is T/σ-periodic, and for any N ⩾ 0, p ⩾ 1

∥g(ξ,i,m)∥WN,p ≲ (
σ

η
)Nη1/p−1/m, ∥h(ξ,i,m)∥L∞ ⩽ 1, (2.10)

where the universal constant is independent of the choices of i and ξ.

3. Proof of Main result

In this section, we prove our main result, Theorem 1.1. Without loss of generality, we set T = 1
from now on. The proof begins by establishing Theorem 1.4 at the PDE level, where we construct
non-unique solutions to the Fokker-Planck equation (1.3). To this end, we consider a system of
N0 = 2M equations given by

∂tρ
i −∆ρi + div(vρin,i) + div(vρi) = 0, divv = 0, (3.1)

ρi(0) = 0,

where the initial densities are defined for 1 ⩽ k ⩽M by

ρin,2k−1(t) = ρin,2k(t) := et∆µi
0.

In what follows, the drift v will be constructed so that it vanishes near the origin t = 0. It is then
straightforward to verify that ρin,i + ρi satisfies equation (1.3).

Regarding equation (3.1), for parameters satisfying 1 < s < d and d
p +

1
r > 1, our goal is to prove

Theorem 1.4 by constructing a divergence-free drift v ∈ Lr
tL

p ∩ Ld0
t L

d0 ∩ CtL
s such that for each

i, equation (3.1) admits a solution ρi ∈ L
d′
0

t L
d′
0 ∩ CtL

1, where d0 and d′0 are conjugate exponents
satisfying 1

d0
+ 1

d′
0
= 1. Moreover, we show that ρ2k−1 ̸= ρ2k for 1 ⩽ k ⩽M , thereby demonstrating

the non-uniqueness of solutions.

The proof employs a convex integration scheme specifically adapted to construct positive solu-
tions to the Fokker–Planck equations on the whole space Rd. In Section 3.1, we establish several
key estimates for the initial components ρin,i. Subsequently, the framework of the convex integra-
tion iteration and the corresponding iterative procedure are developed in Proposition 3.1 within
Section 3.2. The proof of Theorem 1.4 is then presented in Section 3.3, followed by the derivation
of Theorem 1.1 through an application of the superposition principle.

3.1. Estimate on ρin,i. We begin by deriving several fundamental estimates for the initial densi-
ties ρin,i, which will play a crucial role in the subsequent analysis. Recall that p(t, x) denotes the
d-dimensional heat kernel associated with the Laplacian ∆. We define the averaged heat kernel

p(t, x) :=

∫
[− 1

2 ,
1
2 ]

d

p(t, x− y)dy.

By definition and the positivity of the heat kernel p(t, x), it is straightforward to verify that
ρin,i( 1

12 , x) > 0 for any 1 ⩽ i ⩽ N0, x ∈ Rd. Moreover, since [−1/2, 1/2]d is a compact domain,

there exists cin > 0 such that for any 1 ⩽ i ⩽ N0, x ∈ [−1/2, 1/2]d,

ρin,i(
1

12
, x) ⩾ cin.
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Then, it holds that for t ∈ [ 1
12 , 1],

ρin,i(t, x) =

∫
Rd

p(t− 1

12
, x− y)ρin,i(

1

12
, y)dy

⩾ cin

∫
[− 1

2 ,
1
2 ]

d

p(t− 1

12
, x− y)dy = cinp(t−

1

12
, x).

In particular, for (t, x) ∈ [ 16 , 1]× [−1/2, 1/2]d, by definition, it holds that

p(t− 1

12
, x) ⩾

∫
[− 1

2 ,
1
2 ]

d

(4π)−d/2e−3ddy =: cd,

which implies that for (t, x) ∈ [ 16 , 1]× [−1/2, 1/2]d, it holds that

ρin,i(t, x) ⩾ cinp(t−
1

12
, x) ⩾ cincd. (3.2)

Moreover, by the smoothing property of the heat kernel, there exists a constant 0 < Cin < ∞
such that, for all 1 ⩽ i ⩽ N0, the following estimate holds:

∥ρin,i∥C1

[ 1
6
,1],x

⩽ Cin. (3.3)

3.2. Convex integration set up. We now apply the convex integration iteration to the sys-
tem (3.1), with the iteration indexed by q ∈ N0. We consider an increasing sequence {λq}q∈N0

⊂ N
which diverges to ∞, and a sequence {δq}q∈N0

⊂ (0, 1] which is decreasing to 0. We choose
a ∈ N0, β ∈ (0, 1) and b ∈ N. Let

λq = a(b
q), q ⩾ 0, δq = ϵd+1

0 λ2β1 λ−2β
q , q ⩾ 1, δ0 = 1,

where β > 0 will be chosen sufficiently small and a, b will be chosen sufficiently large. Here ϵ0 ∈ (0, 1
12 ]

is a small universal constant to be determined later. Moreover, we use the estimate∑
q⩾1

δ1/(d+1)
q ⩽ ϵ0

∑
q⩾1

a(1−q)2bβ/(d+1) ⩽
ϵ0

1− a−2bβ/(d+1)
< 2ϵ0,

which boils down to

a2bβ/(d+1) > 2, (3.4)

assumed from now on.

At each step q, a pair (vq, ρ
i
q,M

i
q)1⩽i⩽N0 is constructed solving the following system on [0, 1]:

∂tρ
i
q −∆ρiq + div(vqρ

in,i) + div(vqρ
i
q) = −divM i

q, divvq = 0, (3.5)

where M i
q are some vector fields.

To handle the initial condition, we require that ρiq = 0 on [0, Tq], where

Tq :=
1

3
−

∑
1⩽r⩽q

δ1/2r .

By applying (3.4) we obtain 1
6 < Tq ⩽ 1

3 . Here and in the following we define
∑

1⩽r⩽0 := 0. To
control the spatial support of the drift and the stress term, we further define

Ωq :=
[
− 1

3
−

∑
1⩽r⩽q

δ1/2r ,
1

3
+

∑
1⩽r⩽q

δ1/2r

]d
⊂ [−1

2
,
1

2
]d.

With the above assumptions in place, the main iteration scheme is formulated as follows:
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Proposition 3.1. Under the assumption of Theorem 1.1, there exist d+ 1 > d0 > 2 > d′0 > 1 with
1
d0

+ 1
d′
0
= 1 and a choice of parameters a, b, β such that the following holds: Let (vq, ρ

i
q,M

i
q)1⩽i⩽N0

be a solution to the system (3.5) satisfying
∫
Rd ρ

i
qdx = 0,

∥vq∥Ld0
t Ld0

⩽ CvC
1/d0

0

q∑
m=0

δ1/d0
m , ∥ρiq∥Ld′0

t Ld′0
⩽ CρC

1/d′
0

0

q∑
m=0

δ
1/d′

0
m (3.6)

for some universal constants C0, Cv, Cρ ⩾ 1, and

∥vq∥C1
t,x

⩽ C
1/d0

0 λd+4
q , ∥ρiq∥C1

t,x
⩽ C

1/d′
0

0 λd+4
q , (3.7)

∥M i
q∥L1

tL
1 ⩽ C0δq+1, ∥∂tM i

q∥L1
tL

1 + ∥∇M i
q∥L1

tL
1 ⩽ λ2d+8

q , (3.8)

ρiq(t) = vq(t) =M i
q(t) = 0 on [0, Tq], (3.9)

supp vq, suppM
i
q ⊂ Ωq. (3.10)

Then there exists (vq+1, ρ
i
q+1,M

i
q+1)1⩽i⩽N0

which solves (3.5) and satisfies (3.6)-(3.10) at the level
q + 1 and

∥vq+1 − vq∥Ld0
t Ld0

⩽ CvC
1/d0

0 δ
1/d0

q+1 , ∥ρiq+1 − ρiq∥Ld′0
t Ld′0

⩽ CρC
1/d′

0
0 δ

1/d′
0

q+1 . (3.11)

Moreover, we have

∥vq+1 − vq∥Lr
tL

p ⩽ δ
1/d0

q+1 , ∥vq+1 − vq∥CtLs ⩽ δ
1/d0

q+1 , (3.12)

∥ρiq+1 − ρiq∥CtL1 ⩽ δ
1/d′

0
q+1 , (3.13)

(ρiq+1 − ρiq)(t, x) ⩾ −δ1/d
′
0

q+1 p(t−
1

12
, x) for t ∈ [

1

6
, 1]. (3.14)

Here C0 is determined by the choice of the starting iterations, and Cv, Cρ are two constants
determined by the improved Hölder’s inequality for vq, {ρiq}1⩽i⩽N0

respectively, and other implicit

constants in the proof. We further note that the term vqρ
in,i is always well-defined by noticing

(3.3), (3.7) and the fact that vq = 0 on [0, Tq].

Proposition 3.1 constitutes the central technical component of this paper. A detailed proof of
the proposition will be presented in Section 4 below.

3.3. Proof of main result. In this section, we first present the proof of Theorem 1.4, assuming
the validity of Proposition 3.1.

Proof of Theorem 1.4. Let γ ∈ (0, 1) be fixed. Let F (t, x) be a smooth (not divergence-free) bounded
Rd-valued function with support in [13 , 1]× Ω0, and satisfying

∥divF∥C0
t,x

⩽
γ

2
cincd.

Then we denote
∥divF∥CtL1 =: cF > 0.

Let ϵ0 = min{γcin
4 , cF2 ,

1
12}. We intend to start the iteration from (v0, ρ

i
0,M

i
0)1⩽i⩽N0 which are

defined as
ρi0 = (−1)idivF, v0 = 0, M i

0 = (−1)i+1(∂t −∆)F.

By choosing C0 large enough (depending on ϵ0), we have

∥ρi0∥Ld′0
t Ld′0

+ ∥ρi0∥C1
t,x

⩽ C
1/d′

0
0 , ∥M i

0∥L1
tL

1 ⩽ ϵd+1
0 C0.
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Then (3.6)-(3.10) are satisfied as δ0 = 1, δ1 = ϵd+1
0 .

Moreover, by (3.2) we have

γ

2
ρin,i + ρi0 ⩾ (

γ

2
ρin,i + ρi0)1[ 16 ,1]×[−1/2,1/2]d ⩾

γ

2
cincd −

γ

2
cincd = 0. (3.15)

Next, we use Proposition 3.1 to build inductively (vq, ρ
i
q,M

i
q) for every q ⩾ 1. By (3.4) and

(3.11)-(3.13), the sequence {(vq, ρiq)}q∈N is Cauchy in(
Lr([0, 1];Lp) ∩ Ld0([0, 1]× Rd) ∩ C([0, 1];Ls)

)
×

(
Ld′

0([0, 1]× Rd) ∩ C([0, 1];L1)
)N0

and we denote by (v, ρi) its limit, where v is also divergence-free with compact support. Since∫
ρiqdx = 0, we deduce that

∫
ρidx = 0. Clearly by (3.8) and (3.9), ρi solves (3.1).

Now, we define ρi := ρi+ρin,i, which satisfies (1.3) in the sense of Definition 1.3. Then we verify
that each ρi is nonnegative and ρ2k−1 and ρ2k are distinct from one another with the same initial
distribution. In fact, by (3.2), (3.4), (3.13)-(3.15) we have

ρi + γρin,i ⩾
γ

2
ρin,i +

∞∑
q=0

(ρiq+1 − ρiq) ⩾ (
γ

2
cin −

∞∑
q=0

δ
1/d′

0
q+1 )p(t−

1

12
, x) > 0, for t >

1

6
,

∥ρ2k−1 − ρ2k∥C
[ 2
3
,1]

L1 ⩾ ∥ρ2k−1
0 − ρ2k0 ∥C

[ 2
3
,1]

L1 − ∥ρ2k−1 − ρ2k−1
0 ∥C

[ 2
3
,1]

L1 − ∥ρ2k0 − ρ2k∥C
[ 2
3
,1]

L1

⩾ 2(∥divF∥CtL1 −
∞∑
q=0

δ
1/d′

0
q+1 ) > 0.

Then by the fact that ρi(t) = 0 for t ∈ [0, 16 ], we imply that ρi ⩾ (1− γ)ρin,i.

By (3.7), (3.11) and interpolation, we have |v| ∈ L
d0(1+ϵ)
t Ld0(1+ϵ) for some ϵ > 0 sufficiently

small. Since |ρi| ∈ L
d′
0

t L
d′
0 , we deduce that |v|1+ϵρi ∈ L1

tL
1. Furthermore, from (3.3) and the fact

that v has compact support satisfying v = 0 on [0, 16 ], we conclude |v|1+ϵρin,i ∈ L1
tL

1. Combining

these results, we obtain |v|1+ϵρi ∈ L1
tL

1. □

Having established Theorem 1.4, Theorem 1.1 follows directly through an application of the
superposition principle.

Proof of Theorem 1.1. For 1 < s < d, dp + 1
r > 1, by applying Theorem 1.4, there are v ∈

Lr([0, 1];Lp) ∩ C([0, 1];Ls) and a collection of probability densities ρi(t) satisfying (1.3). Then we
define µi

t(dx) := ρi(t)dx, which forms a family of probability measures. Moreover, these measures
satisfy ∫ 1

0

∫
|v(s, x)|µi

s(dx)ds =

∫ 1

0

∫
Rd

|v(s, x)|ρi(s, x)dxds <∞,

and t → µi
t is weakly continuous on [0, 1], we are in position to apply the superposition principle

(see [Tre16, Theorem 2.5]) for

∂tµ
i −∆µi + div(vµi) = 0, µi

t=0 = µi
0.

More precisely, let C([0, 1];Rd) be the space of continuous functions, equipped with its Borel σ-
algebra and its natural filtration generated by the canonical process Πt, t ∈ [0, 1], defined by

Πt(ω) := ω(t), ω ∈ C([0, 1];Rd).
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There exists a group of probability measure Qi on C([0, 1];Rd) which is a martingale solution
associated to diffusion operator

L := ∆ + v · ∇.

Then by a standard result (see [Str87, Theorem 2.6]), there exists a d-dimensional (Ft)t⩾0-
Brownian motion Wt, t ∈ [0, 1], on a stochastic basis (Ω,F , (Ft)t⩾0,P) and a group of continu-
ous (Ft)t⩾0-progressively measurable maps {Xi

t}1⩽i⩽2M : [0, 1] × Ω → Rd satisfying SDE (1.2).

Moreover, we have P ◦ (Xi
t)

−1 = Qi ◦ Π−1
t = µi

t for t ∈ [0, 1]. Then it is easy to see that
LX2k−1

0
= LX2k

0
= µi

0, while LX2k−1
t

̸= LX2k
t
.

□

Corollary 1.2 follows by an argument analogous to the proof of [LRZ25, Theorem 1.7].

4. Proof of Proposition 3.1

In this section, we extend the convex integration method to construct solutions for a system
defined on the whole space. The proof follows the convex integration approach while incorporating
necessary adaptations for the unbounded domain. We begin in Section 4.1 by determining the
choice of parameters. Section 4.2 then details the mollification procedure. The core construction
appears in Section 4.3, where we define the new iteration pair (vq+1, ρ

i
q+1) with a carefully designed

global perturbation θ
(g,i)
q+1 that ensures that we can define a suitable new stress error supported in

the domain Ωq+1. Subsequently, Section 4.4 introduces the crucial stress termsM i
q+1 and the global

stress error F i
q+1. At this stage, it is essential to apply the inverse divergence operator iteration, as

introduced in Section 4.4.1, to ensure that the support of M i
q+1 is located in Ωq+1. This condition

is crucial for maintaining the consistency of the iterative process. In the end, in Sections 4.5-4.9, we
conclude the proof with the verification of all required inductive estimates. The most technically

involved step consists in estimating the global perturbation θ
(g,i)
q+1 to ensure that it exhibits the decay

behavior required by (3.14). This analysis relies crucially on the heat kernel estimates established
in Proposition 4.4.

4.1. Choice of parameters. In our analysis, several carefully chosen parameters will play crucial
roles, with their values being precisely calibrated to satisfy the intricate network of compatibility
conditions required for our estimates. Let d ⩾ 2, 1 < s < d, dp + 1

r > 1 be fixed. First we introduce

a integer N > 4d large enough satisfying

d

p
+

1

r
> 1 +

4d

N
,
d

s
> 1 +

4d

N
,

and define

d0 := d+ 1− 4d

N
∈ (d, d+ 1), d′0 :=

d0
d0 − 1

∈ (1, 2).

Then for the sufficiently small α ∈ (0, 1) to be chosen, we take l := λ
− 3α

2
q+1 λ

−d−4
q and have

l−1 ⩽ λ2αq+1, lλ2d+8
q ⩽ λ−α

q+1 ≪ δq+2, λd+4
q ≪ λαq+1, (4.1)

provided αb > 2d+ 8, α > 2βb. In the sequel, we also need (12d+ 42)α < 1
2N .

The above can be obtained by choosing α > 0 small such that (12d + 42)α < 1
2N , and choosing

b ∈ 2NN and large enough such that αb > 2d+ 8, and finally choosing 0 < β < α
2b .
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In the end, we increase a such that (3.4) holds. In the sequel, we also increase a to absorb various
implicit and universal constants in subsequent estimates.

4.2. Mollification. To avoid the loss of derivative, we first need to mollify the stress term. Let
ϕl :=

1
ld
ϕ( ·l ) be a family of standard radial mollifiers on Rd, and φl :=

1
lφ(

·
l ) be a family of standard

mollifiers with support in (0, 1). We define

M i
l : = (M i

q ∗x ϕl) ∗t φl.

For the mollification around t = 0, since M i
q vanishes around t = 0, we can directly extend its value

to t ⩽ 0 by 0. Here we deliberately avoid mollifying the density terms to avoid the challenge in
controlling the difference ρiq − ρil, which must maintain exponential decay crucial to the argument.

Since l ⩽ δ
1/2
q+1, we know that M i

l (t) = 0 for t ∈ [0, Tq+1], and suppM i
l ⊂ Ωq+1.

To end this section, by the mollification estimates, the spatial-time embedding W d+ 4
3 ,1 ⊂ L∞

and (3.8) we obtain for N ⩾ 0,

∥M i
l ∥CN

t,x
≲ l−d− 4

3−N∥M i
q∥L1

tL
1 ≲ C0l

−d− 4
3−N . (4.2)

4.3. Construction of vq+1 and ρiq+1. In this section, we proceed with the construction on the

perturbations on vq and ρiq employing the Ld0-based building blocks introduced in Section 2. First,
we define the parameters

λ = λq+1, r⊥ = λ−1+ 1
N , r∥ = λ−1+ 2

N , η = λ−1, µ = r
− d−1

d0

⊥ r
− 1

d0

∥ , σ = λ
1

2N , (4.3)

where we recall that d0, d
′
0 and N > 4d are defined in Section 4.1. Then we have

r
d−1
p − d−1

d0

⊥ r
1
p−

1
d0

∥ η
1
r−

1
d0 , r

d−1
s − d−1

d0

⊥ r
1
s−

1
d0

∥ η−
1
d0 ⩽ λ−

1
N ,

r
d−1− d−1

d′0
⊥ r

1− 1
d′0

∥ η
− 1

d′0 , λr
d−1− d−1

d′0
⊥ r

1− 1
d′0

∥ η
1− 1

d′0 ⩽ λ−
1
N . (4.4)

In fact, by a direct calculation we have

λr
d−1− d−1

d′0
⊥ r

1− 1
d′0

∥ η
1− 1

d′0 = r
d−1− d−1

d′0
⊥ r

1− 1
d′0

∥ η
− 1

d′0 ⩽ r
d
d0

∥ η
1
d0

−1 = λ
2d

Nd0
+

d0−d−1
d0 = λ−

2d
Nd0 ⩽ λ−

1
N ,

r
d−1
p − d−1

d0

⊥ r
1
p−

1
d0

∥ η
1
r−

1
d0 ⩽ λ(

d+1
N −d)( 1

p−
1
d0

)− 1
r+

1
d0 ⩽ λ−

d
p−

1
r+

d+1
d0

+ d+1
N ⩽ λ−1− 4d

N +1+ 2d
N + d+1

N ⩽ λ−
1
N ,

r
d−1
s − d−1

d0

⊥ r
1
s−

1
d0

∥ η−
1
d0 ⩽ λ(

d+1
N −d)( 1

s−
1
d0

)+ 1
d0 ⩽ λ−

d
s+

d+1
d0

+ d+1
N ⩽ λ−1− 4d

N +1+ 2d
N + d+1

N ⩽ λ−
1
N .

Here it is required that b is a multiple of 2N to ensure that λq+1r⊥ = a(b
q+1)/N ∈ N and σ =

a(b
q+1)/2N ∈ N.
Let χ ∈ C∞

c (− 3
4 ,

3
4 ) be a non-negative function such that

∑
n∈Z χ(t−n) = 1 for every t ∈ R. Let

χ̃ ∈ C∞
c (− 4

5 ,
4
5 ) be a non-negative function satisfying χ̃ = 1 on [− 3

4 ,
3
4 ] and

∑
n∈Z χ̃(t− n) ⩽ 2.

Then, we fix a family parameters ζ = 20/δq+2 and consider two disjoint sets Λ1,Λ2 defined in
Section 2. We use the notation Λi = Λ1 for i odd, and Λi = Λ2 for i even. Taking K = N0 in the
construction of Section 2, we obtain a family of pairwise disjoint functions g(ξ,i,d0) and g(ξ,i,d′

0)
for

ξ ∈ Λ and 1 ⩽ i ⩽ N0. In the following we apply the building blocks W(ξ,d0),Θ(ξ,d′
0)

and H(ξ,i,d0) as
defined in Section 2 to define

W(ξ,n,i)(x, t) :=W(ξ,d0)

(
x,

(n
ζ

)1/d0

H(ξ,i,d0)(t)
)
,
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Θ(ξ,n,i)(x, t) := Θ(ξ,d′
0)

(
x,

(n
ζ

)1/d0

H(ξ,i,d0)(t)
)
.

Similarly, we define V(ξ,n,i),Φ(ξ,n,i) and all other terms appearing in Section 2. Now by (2.3), (2.9)
and the choice of µ we have

∂tΘ(ξ,n,i) +
(n
ζ

)1/d0

g(ξ,i,d0)div(W(ξ,n,i)Θ(ξ,n,i)) = 0. (4.5)

As the next step, we first define the perturbations for the drift term. For every 1 ⩽ i ⩽ N0, we
define the principle perturbation and the correct perturbation as

w
(p,i)
q+1 : =

∑
n⩾3

∑
ξ∈Λn

χ̃(ζ|M i
l | − n)

(n
ζ

)1/d0

W(ξ,n,i)g(ξ,i,d0),

w
(c,i)
q+1 : =

∑
n⩾3

∑
ξ∈Λn

(
− χ̃(ζ|M i

l | − n)
(n
ζ

)1/d0 1

(n∗λq+1)2
∇Φ(ξ,n,i)ξ · ∇ψ(ξ,n,i)

+∇(χ̃(ζ|M i
l | − n))

(n
ζ

)1/d0

: V(ξ,n,i)

)
g(ξ,i,d0).

Here we use the notation (∇(χ̃(ζ|M i
l | − n)) : V(ξ,n,i))

i :=
∑d

j=1 ∂j(χ̃(ζ|M i
l | − n))V ij

(ξ,n,i) for i =

1, 2, ..., d. We remark that here and in the following the first sum runs for n in the range

3 ⩽ n ⩽ 1 + ζ|M i
l | ⩽ 1 + l−2/3∥M i

l ∥C0
t,x

⩽ 1 + Cl−d−2,

where we used (4.2) and C is a universal constant.

By (2.4) we have div(w
(p,i)
q+1 + w

(c,i)
q+1 ) = 0 since

w
(p,i)
q+1 + w

(c,i)
q+1 =

∑
n⩾3

∑
ξ∈Λn

div
(
χ̃(ζ|M i

l | − n)
(n
ζ

)1/d0

V(ξ,n,i)

)
g(ξ,i,d0), (4.6)

and V(ξ,n,i) is a skew-symmetric matrix.

Then we define the perturbations for the densities. For 1 ⩽ i ⩽ N0, we define the principle
perturbation and the correct perturbation as

θ
(p,i)
q+1 : =

∑
n⩾3

χ(ζ|M i
l | − n)

(n
ζ

)1/d′
0 ∑
ξ∈Λn

Γξ

( M i
l

|M i
l |

)(
Θ(ξ,n,i) − P0Θ(ξ,n,i)

)
g(ξ,i,d′

0)
,

θ
(c,i)
q+1 : = −ρ̂iq ·

∫
Rd

θ
(p,i)
q+1 dx, (4.7)

where we recall P0f =
∫
Td fdx. Here ρ̂iq is some probability density with support in Ωq+1 satisfying

∥ρ̂iq∥C2
x
≲ 1.

Here, we use of the projected term P ̸=0Θ(ξ,n,i) rather than Θ(ξ,n,i) in constructing the principal
perturbation. This projection guarantees the applicability of the inverse divergence operation during
subsequent stress term construction.

Then by the identity (2.2), Lemma 2.1, the fact that g(ξ,i,d0) have disjoint supports for ξ ̸= ξ′,
and the fact that χχ̃ = χ we obtain

w
(p,i)
q+1 θ

(p,i)
q+1 =

∑
n⩾3

χ(ζ|M i
l | − n)

n

ζ

∑
ξ∈Λn

Γξ

( M i
l

|M i
l |

)
W(ξ,n,i)

(
Θ(ξ,n,i) − P0Θ(ξ,n,i)

)
g(ξ,i,d0)g(ξ,i,d′

0)
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=
∑
n⩾3

∑
ξ∈Λn

χ(ζ|M i
l | − n)

n

ζ
Γξ

( M i
l

|M i
l |

)
P ̸=0(W(ξ,n,i)Θ(ξ,n,i))g(ξ,i,d0)g(ξ,i,d′

0)

−
∑
n⩾3

χ(ζ|M i
l | − n)

n

ζ

∑
ξ∈Λn

Γξ

( M i
l

|M i
l |

)
W(ξ,n,i)P0Θ(ξ,n,i)g(ξ,i,d0)g(ξ,i,d′

0)

+
∑
n⩾3

∑
ξ∈Λn

χ(ζ|M i
l | − n)

n

ζ
Γξ

( M i
l

|M i
l |

)
ξ(g(ξ,i,d0)g(ξ,i,d′

0)
− 1)

+
∑
n⩾3

χ(ζ|M i
l | − n)

n

ζ

M i
l

|M i
l |
. (4.8)

Now to deal with the undesired term in the last second line in (4.8), we define the oscillation
perturbation as

θ
(o,i)
q+1 : = −σ−1

∑
n⩾3

∑
ξ∈Λn

h(ξ,i,d0)div
(
χ(ζ|M i

l | − n)
n

ζ
Γξ

( M i
l

|M i
l |

)
ξ
)
.

By (2.9), we have

∂tθ
(o,i)
q+1 +

∑
n⩾3

∑
ξ∈Λn

(g(ξ,i,d0)g(ξ,i,d′
0)
− 1)div

(
χ(ζ|M i

l | − n)
n

ζ
Γξ

( M i
l

|M i
l |

)
ξ
)

= −σ−1
∑
n⩾3

∑
ξ∈Λn

h(ξ,i,d0)∂tdiv
(
χ(ζ|M i

l | − n)
n

ζ
Γξ

( M i
l

|M i
l |

)
ξ
)
. (4.9)

Moreover, since M i
l is compact supported and bounded, we know that θ

(o,i)
q+1 is mean-zero.

Furthermore, we define the global perturbation as a solution to

∂tθ
(g,i)
q+1 −∆θ

(g,i)
q+1 = F i

q+1,

θ
(g,i)
q+1 (0) = 0, (4.10)

where the force term F i
q+1 is determined by the ”inverse divergence” of stress term at step q+1 with

support outside Ωq+1, see Proposition 4.3 below for the precise definition. In order not to cause any

confusion, we should remark that F i
q+1 in fact depends only on w

(p,i)
q+1 and θ

(p,i)
q+1 . By Proposition

4.3, F i
q+1 is mean-zero, and satisfies F i

q+1(t) = 0 on [0, Tq+1]. Then we have that θ
(g,i)
q+1 is mean-zero,

and satisfies θ
(g,i)
q+1 (t) = 0 on [0, Tq+1].

Finally, the total perturbation and new iteration are defined by

wq+1 :=

N0∑
i=1

(
w

(p,i)
q+1 + w

(c,i)
q+1

)
, vq+1 := vq + wq+1.

Moreover, for every 1 ⩽ i ⩽ N0, we define

θ
(loc,i)
q+1 := θ

(p,i)
q+1 + θ

(c,i)
q+1 + θ

(o,i)
q+1 , θiq+1 := θ

(loc,i)
q+1 + θ

(g,i)
q+1 , ρiq+1 := ρiq + θiq+1.

Then vq+1 is mean-zero and divergence-free. By the definition, it is easy to see that
∫
Rd(θ

(p,i)
q+1 +

θ
(c,i)
q+1 )dx = 0, which implies that

∫
Rd ρ

i
q+1dx = 0.
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Since M i
l (t) = 0 on [0, Tq+1], we have wq+1(t) = θiq+1(t) = 0 on [0, Tq+1]. Then we have

vq+1(t) = ρiq+1(t) = 0 on [0, Tq+1]. In summary we imply (3.9) for vq+1 and ρiq+1. Similarly, since

suppM i
l ⊂ Ωq+1, we have that suppwq+1, supp θ

(loc,i)
q+1 ⊂ Ωq+1, which implies (3.10) for vq+1.

Moreover, by the fact that g(ξ,i,d0) have disjoint supports for distinct i, we have

wq+1θ
i
q+1 = (w

(p,i)
q+1 + w

(c,i)
q+1 )θ

(p,i)
q+1 + wq+1(θ

(c,i)
q+1 + θ

(o,i)
q+1 + θ

(g,i)
q+1 ). (4.11)

4.4. Construction of the stress terms M i
q+1. In this section, we present the exact expression

for the stress term M i
q+1. Unlike the torus setting, our construction cannot directly apply inverse

divergence operators, since even when the stress termM i
l has compact support, its inverse divergence

may still remain support in the whole space.

4.4.1. Inverse divergence iteration. First, we introduce the following inverse divergence iteration. A
similar procedure for vector-valued functions was introduced in [BMNV21, Proposition A.17].

Let {ρ(n)}0⩽n⩽N+1 be the zero-mean smooth Td-periodic functions such that ρ(n) = ∆ρ(n+1).

Then for any given function G on Rd, we have

Gρ(0) = divM(0) + F(0),

where M i
(0) = G∂iρ(1), F(0) := −

∑
i ∂iG∂iρ(1).

Then, applying the decomposition to the error term F(0) at each step for N times, we have

Gρ(0) = divM(N) + F(N), (4.12)

where for 1 ⩽ i ⩽ d

M i
(N) =

N∑
m=0

∑
|αi

m|=m+1

M
(m+1)
αi

m
(G)∂αi

m
ρ(m+1), F(N) =

∑
|αN |=N+1

F (N+1)
αN

(G)∂αN
ρ(N+1).

Here M
(m+1)
αm (G) is composed of the m-th derivative of G and F

(m)
αm (G) the m-th derivative of G.

Particularly, if suppG ⊂ [− 1
2 ,

1
2 ]

d, we have suppM(N), suppF(N) ⊂ suppG.

4.4.2. Decomposition of M i
q+1. From now on, we will write Γξ(

Mi
l

|Mi
l |
) = Γξ if there is no ambiguity.

From (4.11), the definition of the perturbations we obtain

−divM i
q+1 = ∂tθ

i
q+1 + div(w

(p,i)
q+1 θ

(p,i)
q+1 −M i

l )− div(M i
q −M i

l )

− div(∇θiq+1) + div(vqθ
i
q+1 + wq+1(ρ

i
q + θ

(c,i)
q+1 + θ

(o,i)
q+1 + θ

(g,i)
q+1 + ρin,i) + w

(c,i)
q+1 θ

(p,i)
q+1 ),

where together with (4.10) we define the linear error and commutator error by

M i
lin : = −∇θ(loc,i)q+1 + vqθ

i
q+1 + wq+1(ρ

i
q + θ

(c,i)
q+1 + θ

(o,i)
q+1 + θ

(g,i)
q+1 + ρin,i) + w

(c,i)
q+1 θ

(p,i)
q+1 ,

M i
com : =M i

q −M i
l .

Then it holds that

−divM i
q+1 = ∂tθ

(loc,i)
q+1 + div(w

(p,i)
q+1 θ

(p,i)
q+1 −M i

l ) + F i
q+1 + divM i

lin − divM i
com.

For simplicity, we define P ̸=0,ρ̂i
q
f := f − ρ̂iq ·

∫
Rd fdx, where ρ̂

i
q is defined in (4.7). In particular,

for any mean-zero function f , we have P̸=0,ρ̂i
q
f = f . To define the oscillation error, by the identities

(4.8) and (4.9) we have

∂tθ
(loc,i)
q+1 + div(w

(p,i)
q+1 θ

(p,i)
q+1 −M i

l )
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= P ̸=0,ρ̂i
q
(∂tθ

(p,i)
q+1 + div(w

(p,i)
q+1 θ

(p,i)
q+1 −M i

l ) + ∂tθ
(o,i)
q+1 )

=
∑
n⩾3

∑
ξ∈Λn

P ̸=0,ρ̂i
q

(
∂t[χ(ζ|M i

l | − n)
(n
ζ

)1/d′
0

Γξg(ξ,i,d′
0)
]P̸=0Θ(ξ,n,i)

)
(:= divM i

osc,t + F i
osc,t)

+ P̸=0,ρ̂i
q

(
∇[χ(ζ|M i

l | − n)
n

ζ
Γξ]g(ξ,i,d0)g(ξ,i,d′

0)
P̸=0(W(ξ,n,i)Θ(ξ,n,i))

)
(:= divM i

osc,x + F i
osc,x)

+ P̸=0,ρ̂i
q

(
χ(ζ|M i

l | − n)
(n
ζ

)1/d′
0

g(ξ,i,d′
0)
Γξ

×
(
∂tΘ(ξ,n,i) +

(n
ζ

)1/d0

g(ξ,i,d0)div(W(ξ,n,i)Θ(ξ,n,i))
))

− div
(∑

n⩾3

χ(ζ|M i
l | − n)

n

ζ

∑
ξ∈Λn

ΓξW(ξ,n,i)P0Θ(ξ,n,i)g(ξ,i,d0)g(ξ,i,d′
0)

)
(:= divM i

osc,a)

+ div
(∑

n⩾3

χ(ζ|M i
l | − n)

n

ζ

M i
l

|M i
l |

−M i
l

)
(:= divM i

osc,c)

− div
(
σ−1

∑
n⩾3

∑
ξ∈Λn

h(ξ,i,d0)∂t

(
χ(ζ|M i

l | − n)
n

ζ
Γξξ

))
(:= divM i

osc,o),

where the last forth term equals to 0 by (4.5). Here we define

M i
osc,a := −

∑
n⩾3

χ(ζ|M i
l | − n)

n

ζ

∑
ξ∈Λn

ΓξW(ξ,n,i)P0Θ(ξ,n,i)g(ξ,i,d0)g(ξ,i,d′
0)
,

M i
osc,c :=

∑
n⩾3

χ(ζ|M i
l | − n)

n

ζ

M i
l

|M i
l |

−M i
l ,

M i
osc,o := −σ−1

∑
n⩾3

∑
ξ∈Λn

h(ξ,i,d0)∂t

(
χ(ζ|M i

l | − n)
n

ζ
Γξξ

)
.

Now, we apply the inverse divergence iteration introduced above to defineMosc,x andMosc,t. We
first write

A
1,(ξ,n,i)
q+1 := ∂t[χ(ζ|M i

l | − n)(
n

ζ
)1/d

′
0Γξg(ξ,i,d′

0)
],

A
2,(ξ,n,i)
q+1 := ∇[χ(ζ|M i

l | − n)
n

ζ
Γξ]g(ξ,i,d0)g(ξ,i,d′

0)
.

Then, we obverse that Θ(ξ,n,i) and W(ξ,n,i)Θ(ξ,n,i) are both (T/r⊥λq+1)
d-periodic, so it is possible

to define ∆−nP̸=0Θ(ξ,n,i) and ∆−nP̸=0(W(ξ,n,i)Θ(ξ,n,i)) for every n ∈ N. By using the inverse diver-

gence iterations in Section 4.4.1 to ρ(n) = ∆−nP̸=0Θ(ξ,n,i) and to ρ(n) = ∆−nP̸=0(W(ξ,n,i)Θ(ξ,n,i))
respectively we obtain

A
1,(ξ,n,i)
q+1 P̸=0Θ(ξ,n,i) = divM

1,(ξ,n,i)
(N) + F

1,(ξ,n,i)
(N) ,

A
2,(ξ,n,i)
q+1 P̸=0(W(ξ,n,i)Θ(ξ,n,i)) = divM

2,(ξ,n,i)
(N) + F

2,(ξ,n,i)
(N) .

Here we recall that N > 4d is determined in Section 4.1, and we abuse the notation to define

(M
1,(ξ,n,i)
(N) )j :=

N2−1∑
m=0

∑
|αj

m|=m+1

M
(m+1)

αj
m

(A
1,(ξ,n,i)
q+1 )∂αj

m
∆−m−1P̸=0Θ(ξ,n,i),
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F
1,(ξ,n,i)
(N) :=

∑
|αN |=N2

F (N2)
αN

(A
1,(ξ,n,i)
q+1 )∂αN

∆−N2

P̸=0Θ(ξ,n,i),

(M
2,(ξ,n,i)
(N) )j :=

N2−1∑
m=0

∑
|αj

m|=m+1

M
(m+1)

αj
m

(A
2,(ξ,n,i)
q+1 )∂αj

m
∆−m−1P ̸=0(W(ξ,n,i)Θ(ξ,n,i)),

F
2,(ξ,n,i)
(N) :=

∑
|αN |=N2

F (N2)
αN

(A
2,(ξ,n,i)
q+1 )∂αN

∆−N2

P̸=0(W(ξ,n,i)Θ(ξ,n,i)).

Moreover, we have suppM
1,(ξ,n,i)
(N) , suppM

2,(ξ,n,i)
(N) , suppF

1,(ξ,n,i)
(N) , suppF

2,(ξ,n,i)
(N) ⊂ Ωq+1, and vanish

on [0, Tq+1]. Then, we could define

M i
osc,t :=

∑
n⩾3

∑
ξ∈Λn

M
1,(ξ,n,i)
(N) , M i

osc,x :=
∑
n⩾3

∑
ξ∈Λn

M
2,(ξ,n,i)
(N) ,

and

F i
osc,t :=

∑
n⩾3

∑
ξ∈Λn

P ̸=0,ρ̂i
q
F

1,(ξ,n,i)
(N) , F i

osc,x :=
∑
n⩾3

∑
ξ∈Λn

P̸=0,ρ̂i
q
F

2,(ξ,n,i)
(N) .

Finally, we define M i
osc :=M i

osc,t +M i
osc,x +M i

osc,a +M i
osc,c +M i

osc.o and

−M i
q+1 :=M i

osc +M i
lin −M i

com, F i
q+1 := −F i

osc,t − F i
osc,x. (4.13)

Since M i
l (t) = wq+1(t) = θiq+1(t) = 0 on [0, Tq+1], we have M i

q+1(t) = 0 on [0, Tq+1], which

implies (3.9) for M i
q+1. Similarly, we have suppM i

q+1 ⊂ Ωq+1, which implies (3.10) for M i
q+1.

4.5. Estimates of wq+1. In this section, we aim to establish the desired estimates for the pertur-
bation wq+1. First, we establish the estimate of the amplitude functions which could be obtained
by the same calculation as [LRZ25, Proposition 5.2].

Lemma 4.1. For N ∈ N0, 1 ⩽ i ⩽ N0 we have∑
n⩾3

∥χ(ζ|M i
l | − n)∥CN

t,x
+

∑
n⩾3

∥χ̃(ζ|M i
l | − n)∥CN

t,x
≲ l−(d+4)N−(d+2),

∑
n⩾3

∑
ξ∈Λn

∥∥∥∥χ(ζ|M i
l | − n)Γξ

( M i
l

|M i
l |

)∥∥∥∥
CN

t,x

≲ l−(2d+8)N−(d+2),

(n
ζ

)N

1{χ̃(ζ|Mi
l |−n)>0} +

(n
ζ

)N

1{χ(ζ|Mi
l |−n)>0} ≲ l−N(d+2),∑

n⩾3

∥∥∥∥χ(ζ|M i
l | − n)

M i
l

|M i
l |

∥∥∥∥
CN

t,x

≲ l−(d+5)N−(2d+5).

Then we introduce the improved Hölder’s inequality by using the additional decorrelation between
frequencies.

Lemma 4.2. ([MNY24a, Lemma A.4]) Let d ⩾ 2, p ∈ [1,∞]. Let f : Td → R be a smooth function
and a be a smooth function on Rd such that supp a ⊂ [− 1

2 ,
1
2 ]

d. Then for any σ ∈ N,

|∥af(σ·)∥Lp([− 1
2 ,

1
2 ]

d) − ∥a∥Lp([− 1
2 ,

1
2 ]

d)∥f∥Lp(Td)| ≲ σ−1/p∥a∥C1([− 1
2 ,

1
2 ]

d)∥f∥Lp(Td).
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Recall from Section 4.3 that the perturbation wq+1 decomposes as wq+1 =
∑N0

i=1(w
(p,i)
q+1 +w

(c,i)
q+1 ).

We first estimate the principle perturbations w
(p,i)
q+1 for 1 ⩽ i ⩽ N0 in Ld0

t L
d0-norm. By Cauchy’s

inequality we have

|w(p,i)
q+1 |d0 ⩽

(∑
n⩾3

χ̃(ζ|M i
l | − n)

)d0−1 ∑
n⩾3

χ̃(ζ|M i
l | − n)

n

ζ

∣∣∣∣∣ ∑
ξ∈Λn

W(ξ,n,i)g(ξ,i,d0)

∣∣∣∣d0

≲
∑
n⩾3

χ̃(ζ|M i
l | − n)

n

ζ

∑
ξ∈Λn

∣∣W(ξ,n,i)g(ξ,i,d0)

∣∣d0
,

where we used the fact that
∑

n∈Z χ̃(t− n) ⩽ 2.

By applying the generalized Hölder inequality of Theorem 4.2 in spatial direction, together with
the estimates for the building blocks in (2.7) and Lemma 4.1 we deduce

∥w(p,i)
q+1 (t)∥

d0

Ld0
≲

∑
n⩾3

∥∥∥∥χ̃(ζ|M i
l (t)| − n)

n

ζ

∥∥∥∥
L1

∑
ξ∈Λn

∥W(ξ,n,i)∥d0

CtLd0 (Td)
gd0

(ξ,i,d0)
(t)

+ (r⊥λq+1)
−1

∥∥∥∥χ̃(ζ|M i
l (t)| − n)

n

ζ

∥∥∥∥
C1

t,x

∑
ξ∈Λn

∥W(ξ,n,i)∥d0

CtLd0 (Td)
gd0

(ξ,i,d0)
(t)

≲

∥∥∥∥∥∥
∑
n⩾3

χ̃(ζ|M i
l (t)| − n)(M i

l (t) + ζ−1)

∥∥∥∥∥∥
L1

+ l−3d−8λ
− 1

N
q+1

∑
ξ∈Λ

gd0

(ξ,i,d0)
(t)

≲ (∥M i
l (t)∥L1 + δq+1)

∑
ξ∈Λ

gd0

(ξ,i,d0)
(t),

where we used the fact that
∑

n∈Z χ̃(t − n) ⩽ 2, and used conditions on the parameters to have

(6d+1)α− 1
N < −α < −2β. Here we recall the notation Λ = Λ1∪Λ2. Then we apply the generalized

Hölder inequality of Theorem 4.2 in time direction, the bounds (2.10) and (4.2) to deduce for some
Cv ⩾ 1

∥w(p,i)
q+1 ∥

d0

L
d0
t Ld0

≲ (∥M i
l ∥L1

tL
1 + δq+1 + σ−1∥M i

l ∥C1
t,x

)
∑
ξ∈Λ

∥∥g(ξ,i,d0)

∥∥d0

L
d0
t

≲ C0(δq+1 + λ
(2d+6)α− 1

2N
q+1 ) ⩽ (

1

4N0
Cv)

d0C0δq+1, (4.14)

where we used conditions on the parameters to have (2d+ 6)α− 1
2N < −α < −2β.

For the general Lu
t L

m-norm with u,m ∈ [1,∞], by the estimates for the building blocks in
(2.5)-(2.7), (2.10) and the estimate for the amplitude function in Lemma 4.1 we obtain

∥w(p,i)
q+1 ∥Lu

t L
m ≲

∑
n⩾3

∑
ξ∈Λn

∥∥∥∥χ̃(ζ|M i
l | − n)

(n
ζ

)1/d0

∥∥∥∥
C0

t,x

∥W(ξ,n,i)∥CtLm(Td)∥g(ξ,i,d0)∥Lu
t

≲ l−2d−4r
d−1
m − d−1

d0

⊥ r
1
m− 1

d0

∥ η
1
u− 1

d0 , (4.15)

∥w(c,i)
q+1 ∥Lu

t L
m ≲

∑
n⩾3

∑
ξ∈Λn

∥∥∥∥χ̃(ζ|M i
l | − n)

(n
ζ

)1/d0

∥∥∥∥
C1

t,x

×
( 1

λ2q+1

∥∇Φ(ξ,n,i)ξ · ∇ψ(ξ,n,i)∥CtLm(Td) + ∥V(ξ,n,i)∥CtLm(Td)

)
∥g(ξ,i,d0)∥Lu

t
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≲ l−3d−8r
d−1
m − d−1

d0

⊥ r
1
m− 1

d0

∥
r⊥
r∥
η

1
u− 1

d0 . (4.16)

Here and in the following, we should remark that since suppM i
l ⊂ Ωq+1, all integrations involving

the building blocks reduce to computations on [− 1
2 ,

1
2 ]

d, equivalent to integration on the torus.

With these estimates, combining with the choice of parameters in (4.1) and the bound (4.14) we
obtain

∥wq+1∥Ld0
t Ld0

⩽
Cv

4
C

1/d0

0 δ
1/d0

q+1 +N0Cl
−3d−8 r⊥

r∥
⩽
Cv

4
C

1/d0

0 δ
1/d0

q+1 + Cλ
(6d+17)α− 1

N
q+1

⩽
Cv

4
C

1/d0

0 δ
1/d0

q+1 + Cλ−α
q+1 ⩽ CvC

1/d0

0 δ
1/d0

q+1 ,

where we used conditions on the parameters to have (6d+ 18)α < 1
N , N0 ≲ λαq+1 and chose a large

enough to absorb the universal constant. The above inequality yields (3.11) for vq+1. Then (3.6)
holds for vq+1.

Then we turn to estimate the Lr
tL

p-norm and the CtL
s-norm. Combining with the bounds (4.15)

and (4.16) above we obtain

∥wq+1∥Lr
tL

p ≲ N0l
−3d−8r

d−1
p − d−1

d0

⊥ r
1
p−

1
d0

∥ η
1
r−

1
d0 ≲ λ

(6d+17)α− 1
N

q+1 ≲ λ−α
q+1 ⩽ δ

1/d0

q+1 , (4.17)

∥wq+1∥CtLs ≲ N0l
−3d−8r

d−1
s − d−1

d0

⊥ r
1
s−

1
d0

∥ η−
1
d0 ≲ λ

(6d+17)α− 1
N

q+1 ≲ λ−α
q+1 ⩽ δ

1/d0

q+1 ,

which leads to (3.12). Here we used (4.1), (4.4) and (6d+ 18)α < 1
N , N0 ≲ λαq+1. Then we chose a

large enough to absorb the universal constant.

Next we estimate the C1
t,x-norm. By the fact that

∂t(V(ξ,n,i)(t)) =
(n
ζ

)1/d0

g(ξ,i,d0)

(
∂tV(ξ)

)((n
ζ

)1/d0

H(ξ,i,d0)(t)
)
,

the estimates for the building blocks in (2.7), (2.10), (4.6) and the estimates for the amplitude
functions in Lemma 4.1 we have for d0 ⩾ 2

∥wq+1∥C1
t,x

≲
N0∑
i=1

∑
n⩾3

∑
ξ∈Λn

∥∥∥∥χ̃(ζ|M i
l | − n)

(n
ζ

)1/d0

∥∥∥∥
C2

t,x

∥∇V(ξ,n,i)∥C1
t,x

∥g(ξ,i,d0)∥C1
t

≲
N0∑
i=1

∑
n⩾3

∥∥∥∥χ̃(ζ|M i
l | − n)

n

ζ

∥∥∥∥
C2

t,x

λq+1µr
− 1

d0

∥ r
− d−1

d0

⊥ ση−1− 2
d0 ≲ N0λ

(8d+24)α+d+ 7
2

q+1 .

Thus by N0 ≲ λαq+1, (8d+ 25)α < 1
2 we obtain

∥vq+1∥C1
t,x

⩽ ∥vq∥C1
t,x

+ ∥wq+1∥C1
t,x

⩽ C
1/d0

0 λd+4
q +

1

2
λd+4
q+1 ⩽ C

1/d0

0 λd+4
q+1,

which implies (3.7) for vq+1. Here we chose a large enough to absorb the universal constant.

4.6. Estimates of θ
(loc,i)
q+1 . Similarly as before, we first estimate the principle perturbations θ

(p,i)
q+1

in L
d′
0

t L
d′
0 . By the fact that Γξ are uniformly bounded we have

|θ(p,i)q+1 |d
′
0 ≲

∑
n⩾3

χ(ζ|M i
l | − n)

n

ζ

∑
ξ∈Λn

∣∣P̸=0Θ(ξ,n,i)g(ξ,i,d′
0)

∣∣d′
0 .
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Then by the same argument as in (4.14), we have for some Cρ ⩾ 1

∥θ(p,i)q+1 ∥
d′
0

L
d′0
t Ld′0

≲
(
∥M i

l ∥L1
tL

1 + δq+1 + σ−1∥M i
l ∥C1

t,x

)∑
ξ∈Λ

∥∥g(ξ,i,d′
0)

∥∥d′
0

L
d′0
t

≲ C0(δq+1 + λ
(2d+6)α− 1

2N
q+1 ) ⩽ (

1

2
Cρ)

d′
0C0δq+1, (4.18)

where we used conditions on the parameters to have (2d+ 6)α− 1
2N < −α < −2β.

For general Lu
t L

m-norm with u,m ∈ [1,∞], by the estimates for the building blocks in (2.8),
(2.10) and Lemma 4.1 we obtain

∥θ(p,i)q+1 ∥Lu
t L

m ≲
∑
n⩾3

∑
ξ∈Λn

∥∥∥∥χ(ζ|M i
l | − n)

(n
ζ

)1/d′
0

Γξ

∥∥∥∥
C0

t,x

∥Θ(ξ,n,i)∥CtLm(Td)∥g(ξ,i,d′
0)
∥Lu

t

≲ l−2d−4r
d−1
m − d−1

d′0
⊥ r

1
m− 1

d′0
∥ η

1
u− 1

d′0 . (4.19)

Now we estimate the C1
t,x-norm. By (2.8), (2.10), (4.3), (4.4) and Lemma 4.1 we have

∥θ(p,i)q+1 ∥C1
t,x

≲
∑
n⩾3

∑
ξ∈Λn

∥∥∥∥χ(ζ|M i
l | − n)

(n
ζ

)1/d′
0

Γξ

∥∥∥∥
C1

t,x

∥Θ(ξ,n,i)∥C1
t,x

∥g(ξ,i,d′
0)
∥C1

t

≲
∑
n⩾3

∥∥∥∥χ(ζ|M i
l | − n)

n

ζ
Γξ

∥∥∥∥
C1

t,x

λq+1µr
− 1

d′0
∥ r

− d−1

d′0
⊥ ση

−1− 1
d0

− 1
d′0 ≲ λ

(8d+24)α+d+ 7
2

q+1 ,

∥θ(c,i)q+1 ∥C1
t,x

≲ ∥θ(p,i)q+1 ∥CtL1 ≲ l−2d−4r
d−1− d−1

d′0
⊥ r

1− 1
d′0

∥ η
− 1

d′0 ≲ λ
(4d+8)α− 1

N
q+1 ≲ λ−α

q+1, (4.20)

∥θ(o,i)q+1 ∥C1
t,x

≲ σ−1
∑
n⩾3

∑
ξ∈Λn

∥h(ξ,i,d0)∥C1
t

∥∥∥∥div(χ(ζ|Ml| − n)
n

ζ
Γξξ

)∥∥∥∥
C1

t,x

≲ σ−1η−1l−6d−20 ≲ λ
(12d+40)α+2
q+1 ,

∥θ(o,i)q+1 ∥CtC1 ≲ σ−1
∑
n⩾3

∑
ξ∈Λn

∥h(ξ,i,d0)∥L∞
t

∥∥∥∥χ(ζ|Ml| − n)
n

ζ
Γξξ

∥∥∥∥
CtC2

≲ σ−1l−6d−20 ≲ λ
(12d+40)α− 1

2N
q+1 ≲ λ−α

q+1, (4.21)

where we used conditions on the parameters to have (12d+41)α < 1
2N and chose a large enough to

absorb the universal constant.

Moreover, once we take a space derivative of θ
(p,i)
q+1 or θ

(o,i)
q+1 , by Lemma 4.1, (2.8) and (2.10), we

will obtain an extra power of λq+1, which implies that

∥θ(loc,i)q+1 ∥C1
t,x

+ λ−1
q+1∥∇θ

(loc,i)
q+1 ∥C1

t,x
≲ λ

(12d+40)α+d+ 7
2

q+1 . (4.22)

To end this section, we estimate θ
(p,i)
q+1 in W 1,1+ϵ-norm for some ϵ > 0 small enough, which will

be used below in the estimate of stress term. By the bounds for the building blocks in (2.8), (2.10)
and the bounds for the amplitude functions in Lemma 4.1 we have

∥θ(p,i)q+1 ∥L1
tW

1,1+ϵ ≲
∑
n⩾3

∑
ξ∈Λn

∥∥∥∥χ(ζ|M i
l | − n)

(n
ζ

)1/d′
0

Γξ

∥∥∥∥
C1

t,x

∥Θ(ξ,n,i)∥CtW 1,1+ϵ(Td)∥g(ξ,i,d′
0)
∥L1

t

≲ l−4d−12λq+1r
1

1+ϵ−
1
d′0

∥ r
d−1
1+ϵ −

d−1

d′0
⊥ η

1− 1
d′0 ≲ λ

(8d+24)α− 1
N +dϵ

q+1 ≲ λ−α
q+1, (4.23)
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where we used the choice of parameters in (4.4) and chose ϵ > 0 small enough such that dϵ < α.
We also used conditions on the parameters to have (8d+ 26)α < 1

N .

4.7. Estimates of F i
q+1. We recall the functions F i

q+1 defined in (4.13). In this section, we provide

estimates for F i
q+1, which will be used to derive the corresponding estimates for θ

(g,i)
q+1 .

Proposition 4.3. The functions F i
q+1 defined in (4.13) satisfy the following properties: F i

q+1 are

mean-zero, suppF i
q+1 ⊂ Ωq+1 and F i

q+1 = 0 on [0, Tq+1]. Moreover, it holds that for k, j ∈ N

∥∂kt ∇jF i
q+1∥C0

t,x
≲ λ2k+j−1

q+1 .

Proof. The first three properties follow directly from the definition. To establish the Hölder continu-
ity, we begin by considering the case k = j = 0 and analyze each term separately. We obverse that
Θ(ξ,n,i) and W(ξ,n,i)Θ(ξ,n,i) are both (T/r⊥λq+1)

d-periodic, and ∇m∆−m are (−m)-homogeneous
operators. By the estimates for the amplitude functions and for the building blocks in Lemma 4.1,
(2.8), (2.10) and (4.4) respectively, we have

∥F i
osc,t∥C0

t,x
≲

∑
n⩾3

∑
ξ∈Λn

∥F 1,(ξ,n,i)
(N) ∥C0

t,x

≲
∑
n⩾3

∑
ξ∈Λn

∥∇N2

∂t[χ(ζ|M i
l | − n)(

n

ζ
)1/d

′
0Γξg(ξ,i,d′

0)
]∥C0

t,x
∥∇N2

∆−N2

P̸=0Θ(ξ,n,i)∥C0
t,x

≲ l−4d−12−(2d+8)N2

(r
d−1− d−1

d′0
⊥ r

1− 1
d′0

∥ ση
− 1

d′0 )r−d+1
⊥ r−1

∥ η−1(r⊥λq+1)
−N2

≲ λ
(8d+24+(4d+16)N2)α+d+1−N
q+1 ≲ λ

d+2−3N/4
q+1 ≲ λ−1

q+1,

∥F i
osc,x∥C0

t,x
≲

∑
n⩾3

∑
ξ∈Λn

∥F 2,(ξ,n,i)
(N) ∥C0

t,x

≲
∑
n⩾3

∑
ξ∈Λn

∥∇N2+1[χ(ζ|M i
l | − n)

n

ζ
Γξ]g(ξ,i,d0)g(ξ,i,d′

0)
∥C0

t,x

× ∥∇N2

∆−N2

P ̸=0(W(ξ,n,i)Θ(ξ,n,i))∥C0
t,x

≲ l−4d−12−(2d+8)N2

η−1r−d+1
⊥ r−1

∥ (r⊥λq+1)
−N2

≲ λ
(8d+24+(4d+16)N2)α+d+1−N
q+1 ≲ λ

d+2−3N/4
q+1 ≲ λ−1

q+1,

where we used to conditions on the parameters to deduce that (8d+ 32)α < 1
2N .

When taking a space derivative on F i
q+1, by Lemma 4.1, (2.8) and (2.10), we will obtain an extra

power of l−2d−8 ≲ λq+1 from the amplitude functions and a extra power of λq+1 from the building
blocks. Similarly, when taking a time derivative, we will obtain an extra power of l−2d−8 + ση−1 +
r⊥λµ
r∥

≲ λ2q+1. Analogous to the previous analysis, we obtain the estimate on the derivatives. □

4.8. Estimates of θ
(g,i)
q+1 . Since the functions θ

(g,i)
q+1 vanish identically on the interval [0, Tq+1], our

subsequent analysis can be restricted to the regime t ⩾ Tq+1 ⩾ 1
6 . We begin by establishing a key

estimate for heat kernel convolutions:

Proposition 4.4. Let d ⩾ 2. For any t ∈ [ 1
12 , 1] and x ∈ Rd, we have∫ t

0

∫
[− 1

2 ,
1
2 ]

d

p(s, x− y)dsdy ≲ t

∫
[− 1

2 ,
1
2 ]

d

p(t, x− y)dy.
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Proof. If |x| ⩾ 9, we have |x − y|2/4t ⩾ 1, then it suffices to prove that
∫ t

0
p(s, x)ds ≲ tp(t, x) for

a := |x|2/4t ⩾ 1. By change of variable we have that∫ t

0

(4πs)−d/2e−|x|2/4sds =

∫ ∞

|x|2/4t
(π|x|2/u)−d/2e−u |x|2

4u2
du

= t(4πt)−d/2a−d/2+1

∫ ∞

a

ud/2−2e−udu ⩽ t(4πt)−d/2

∫ ∞

a

(u/a)d/2−1e−udu

≲ t(4πt)−d/2

∫ ∞

a

(1 + u− a)d/2−1e−udu ⩽ t(4πt)−d/2e−a

∫ ∞

1

ud/2−1e−udu ≲ tp(t, x).

Otherwise if |x| < 9, since t ⩾ 1/12, we have∫
[− 1

2 ,
1
2 ]

d

p(t, x− y)dy ⩾
∫
[− 1

2 ,
1
2 ]

d

(4πt)−d/2e−25/tdy ⩾ (4π)−d/2e−300,

which implies that ∫ t

0

∫
[− 1

2 ,
1
2 ]

d

p(s, x− y)dsdy ⩽ t ≲ t

∫
[− 1

2 ,
1
2 ]

d

p(t, x− y)dy.

□

Then, we are in position to bound θ
(g,i)
q+1 . By Proposition 4.3 and Proposition 4.4, we have that

for t− 1
12 ⩾ 1

12

|θ(g,i)q+1 (t, x)| ⩽
∫ t

0

∫
Rd

p(t− s, x− y)|F i
q+1(s, y)|dsdy ≲ λ−1

q+1

∫ t− 1
12

0

∫
[− 1

2 ,
1
2 ]

d

p(s, x− y)dsdy

≲ λ−1
q+1

∫
[− 1

2 ,
1
2 ]

d

p(t− 1

12
, x− y)dy ≲ λ−1

q+1

∫
[− 1

2 ,
1
2 ]

d

e−c|x−y|2dy ≲ λ−1
q+1e

−c|x|2 , (4.24)

which implies that

∥θ(g,i)q+1 ∥Ld′0
t Ld′0

+ ∥θ(g,i)q+1 ∥CtL1 + ∥θ(g,i)q+1 ∥C0
t,x

≲ λ−1
q+1. (4.25)

Then together with the estimates on θ
(loc,i)
q+1 in Section 4.6 and the choice of parameters in (4.1),

(4.4) we imply

∥ρiq+1 − ρiq∥Ld′0
t Ld′0

⩽ ∥θiq+1∥Ld′0
t Ld′0

⩽
Cρ

2
C

1/d′
0

0 δ
1/d′

0
q+1 + Cλ−α

q+1 ⩽ CρC
1/d′

0
0 δ

1/d′
0

q+1 ,

∥ρiq+1 − ρiq∥CtL1 ⩽ ∥θiq+1∥CtL1 ≲ λ
(4d+8)α− 1

N
q+1 + λ−α

q+1 ≲ λ−α
q+1 ⩽ δ

1/d′
0

q+1 , (4.26)

which implies (3.11), (3.13) and then (3.6) for ρiq+1. Here we used (4d+9)α < 1
N , and chose a large

enough to absorb the universal constant.

Next, by the fact that supp θ
(c,i)
q+1 , supp θ

(o,i)
q+1 ⊂ [ 16 , 1] × [− 1

2 ,
1
2 ]

d, together with (4.20), (4.21) we
know that

θ
(c,i)
q+1 (t, x) + θ

(o,i)
q+1 (t, x) ⩾ −λ−α

q+11{[ 16 ,1]×[− 1
2 ,

1
2 ]

d}(t, x) ⩾ − 1

cd
λ−α
q+1p(t−

1

12
, x).

By the fact that θ
(p,i)
q+1 is non-negative, and the choice of parameters in (4.1), (4.24) we have

(ρiq+1 − ρiq)(t, x) ⩾ −Cλ−α
q+1p(t−

1

12
, x) ⩾ −δ1/d

′
0

q+1 p(t−
1

12
, x),
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which yields (3.14). Here we chose a large enough to absorb the universal constant.

By a similar calculation as (4.24) and Proposition 4.3, we obtain that

|∂tθ(g,i)q+1 |+ |∇θ(g,i)q+1 | ⩽
∫ t

0

∫
Rd

p(t− s, x− y)(|∂tF i
q+1(s, y)|+ |∇F i

q+1(s, y)|)dsdy ≲ λ2q+1.

Then together with (4.22) we imply

∥ρiq+1∥C1
t,x

⩽ ∥ρiq∥C1
t,x

+ ∥θiq+1∥C1
t,x

⩽ C
1/d′

0
0 λd+4

q +
1

2
λd+4
q+1 ⩽ C

1/d′
0

0 λd+4
q+1,

which implies (3.7) for ρiq+1. Here we chose a large enough to absorb the universal constant.

4.9. Estimates of M i
q+1. We estimate each terms in the definition of M i

q+1 separately.

4.9.1. Estimate of oscillation error M i
osc. Since Θ(ξ,n,i) and W(ξ,n,i)Θ(ξ,n,i) are both (T/r⊥λq+1)

d-
periodic, by the estimates for the amplitude functions and for the building blocks in Lemma 4.1,
(2.8) and (2.10) respectively we obtain

∥M i
osc,x∥L1

tL
1 ≲

∑
n⩾3

∑
ξ∈Λn

N2−1∑
m=0

∥∇m∂t[χ(ζ|M i
l | − n)(

n

ζ
)1/d

′
0Γξg(ξ,i,d′

0)
]∥L1

tC
0

× (r⊥λq+1)
−m−1∥Θ(ξ,n,i)∥CtL1(Td),

≲ l−4d−12r
d−1− d−1

d′0
⊥ r

1− 1
d′0

∥ ση
− 1

d′0

N2−1∑
m=0

λ
((4d+16)α− 1

N )m− 1
N

q+1 ≲ λ
(8d+24)α− 1

N
q+1 ≲ λ−α

q+1,

∥M i
osc,t∥L1

tL
1 ≲

∑
n⩾3

∑
ξ∈Λn

N2−1∑
m=0

∥∇1+m[χ(ζ|M i
l | − n)

n

ζ
Γξ]∥C0

t,x
∥g(ξ,i,d0)g(ξ,i,d′

0)
∥L1

t

× (r⊥λq+1)
−m−1∥W(ξ,n,i)Θ(ξ,n,i)∥CtL1(Td),

≲ l−4d−12λ
− 1

N
q+1

N2−1∑
m=0

λ
((4d+16)α− 1

N )m
q+1 ≲ λ

(8d+24)α− 1
N

q+1 ≲ λ−α
q+1,

where we used conditions on the parameters to have (8d+ 25)α < 1
N .

By Lemma 4.1, (2.8) and (2.10) again we obtain

∥M i
osc,a∥L1

tL
1 ≲

∑
n⩾3

∑
ξ∈Λn

∥∥∥∥χ(ζ|M i
l | − n)

n

ζ
Γξ

∥∥∥∥
C0

t,x

∥W(ξ,n,i)∥CtL1(Td)∥Θ(ξ,n,i)∥CtL1(Td)

≲ l−2d−4rd−1
⊥ r∥ ≲ λ

(4d+8)α− 1
N

q+1 ≲ λ−α
q+1,

where we used conditions on the parameters to have (4d+ 9)α < 1
N .

The stress term M i
osc,c is bounded similarly as in [LRZ25, Section 5.4.2].

∣∣M i
osc,c

∣∣ ⩽ ∣∣∣∣∣
2∑

n=−1

χ(ζ|M i
l | − n)M i

l

∣∣∣∣∣+
∣∣∣∣∣∣
∑
n⩾3

χ(ζ|M i
l | − n)(

n

ζ

M i
l

|M i
l |

−M i
l )

∣∣∣∣∣∣
⩽

3

ζ
+

∑
n⩾3

χ(ζ|M i
l | − n)

∣∣∣∣nζ − |M i
l |
∣∣∣∣ ⩽ 3

20
δq+2 +

1

20
δq+2 ⩽

1

5
C0δq+2.
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By the bounds (2.10), (3.8) and (4.1) we have

∥M i
osc,o∥L1

tL
1 ≲ σ−1

∑
n⩾3

∑
ξ∈Λn

∥h(ξ,d0)∥L∞
t

∥∥∥∥∂t[χ(ζ|M i
l | − n)

n

ζ
Γξξ]

∥∥∥∥
C0

t,x

≲ σ−1l−4d−12 ≲ λ
(8d+24)α− 1

2N
q+1 ≲ λ−α

q+1,

where we used conditions on the parameters to have (8d+ 25)α < 1
2N .

In summary, we have

∥M i
osc∥L1

tL
1 ⩽ CC0λ

−α
q+1 +

1

5
C0δq+2 ⩽

1

3
C0δq+2, (4.27)

where we choose a large enough to absorb the constant.

Moreover, similar to the case of F i
q+1, by Lemma 4.1, (2.8) and (2.10), if we take a space/time

derivative on M i
osc −M i

osc,c, we will obtain an extra power of λ2q+1 at most, so we have

∥∂t(M i
osc −M i

osc,c)∥L1
tL

1 + ∥∇(M i
osc −M i

osc,c)∥L1
tL

1 ≲ λ2−α
q+1 .

As for M i
osc,c, by Lemma 4.1 we have

∥M i
osc,c∥C1

t,x
≲ ∥M i

q∥C1
t,x

+
∑
n⩾3

∥∥∥∥χ(ζ|M i
l | − n)

n

ζ

M i
l

|M i
l |

∥∥∥∥
C1

t,x

≲ λ2d+8
q + l−(4d+12) ≲ λ2d+7

q+1 ,

which implies that

∥∂tM i
osc∥L1

tL
1 + ∥∇M i

osc∥L1
tL

1 ≲ λ2d+7
q+1 ⩽

1

3
λ2d+8
q+1 , (4.28)

where we chose a large enough to absorb the universal constant.

4.9.2. Estimate of linear error M i
lin. By the bounds in (4.21)-(4.23) we have

∥∇θ(loc,i)q+1 ∥L1
tL

1 ≲ ∥θ(p,i)q+1 ∥L1
tW

1+ϵ + ∥θ(o,i)q+1 ∥L1
tW

1+ϵ ≲ λ−α
q+1.

By the estimates in (3.7), (4.17), (4.20), (4.21), (4.25) and (4.26) respectively we obtain

∥vqθiq+1 + wq+1(ρ
i
q + θ

(c,i)
q+1 + θ

(o,i)
q+1 + θ

(g,i)
q+1 )∥L1

tL
1

⩽ ∥vq∥C0
t,x

∥θiq+1∥CtL1 + (∥ρiq∥C0
t,x

+ ∥θ(c,i)q+1 ∥C0
t,x

+ ∥θ(o,i)q+1 ∥C0
t,x

+ ∥θ(g,i)q+1 ∥C0
t,x

)∥wq+1∥Lr
tL

p

≲ (C0λ
d+4
q + 1)λ

(12d+40)α− 1
2N

q+1 ≲ C0λ
(12d+41)α− 1

2N
q+1 ≲ C0λ

−α
q+1,

where we used (4.1) and conditions on the parameters to have (12d+ 42)α < 1
2N .

Since wq+1(t) = 0 on [0, Tq+1], by (3.3) and (4.17) we obtain

∥wq+1ρ
in,i∥L1

tL
1 ≲ ∥ρin,i∥C0

[ 1
6
,1],x

∥wq+1∥Lr
tL

p ≲ Cinλ
−α
q+1.

By the estimates in (4.16) and (4.18) we have

∥w(c,i)
q+1 θ

(p,i)
q+1 ∥L1

tL
1 ⩽ ∥θ(p,i)q+1 ∥Ld′0

t Ld′0
∥w(c,i)

q+1 ∥Ld0
t Ld0

≲ CρC
1/d′

0
0 l−3d−8 r⊥

r∥
≲ C0λ

(6d+16)α− 1
N

q+1 ≲ C0λ
−α
q+1,

where we used (4.1) and conditions on the parameters to have (6d+ 17)α < 1
N . We choose a large

enough to absorb the universal constant.

In summary, we have

∥M i
lin∥L1

tL
1 ≲ C0λ

−α
q+1 ⩽

1

3
C0δq+2, (4.29)
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where we choose a large enough to absorb the constant.

Moreover, by (3.7), (4.22) and all the Hölder’s estimate in Section 4.5-4.8, we have

∥∂tM i
lin∥L1

tL
1 + ∥∇M i

lin∥L1
tL

1

≲ ∥∇θ(loc,i)q+1 ∥C1
t,x

+ ∥vqθiq+1 + wq+1(ρ
i
q + θ

(c,i)
q+1 + θ

(o,i)
q+1 + θ

(g,i)
q+1 + ρin,i) + w

(c,i)
q+1 θ

(p,i)
q+1 ∥C1

t,x

≲ λd+5
q+1 + λ

(24d+80)α+2d+7
q+1 ⩽

1

3
λ2d+8
q+1 , (4.30)

where we used (12d+ 40)α < 1
3 , and chose a large to abosrb the universal constant.

4.9.3. Estimate of commutator error M i
com. By (3.8) and (4.1) we obtain

∥M i
com∥L1

tL
1 ≲ l(∥∂tM i

q∥L1
tL

1 + ∥∇M i
q∥L1

tL
1) ≲ C0lλ

2d+8
q ≲ C0λ

−α
q+1 ⩽

1

3
C0δq+2,

∥∂tM i
com∥L1

tL
1 + ∥∇M i

com∥L1
tL

1 ≲ ∥∂tM i
q∥L1

tL
1 + ∥∇M i

q∥L1
tL

1 ≲ λ2d+8
q ⩽

1

3
λ2d+8
q+1 ,

which together with (4.27)-(4.30) implies that

∥M i
q+1∥L1

tL
1 ⩽ C0δq+2, ∥∂tM i

q+1∥L1
tL

1 + ∥∇M i
q+1∥L1

tL
1 ⩽ λ2d+8

q+1 .

We finish the proof of Proposition 3.1.
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Appendix A. An overview of convex integration on the torus

In this section, we present an overview of how the convex integration method applies to the conti-
nuity equation on the torus. For detailed derivations and estimates, we refer the reader to [BCDL21],
and to [LRZ25] for the advection-diffusion case on the torus. Our goal here is to outline the main
ideas and the structure of the construction rather than to reproduce the full technical details. We
also add remarks on the additional difficulties that arise when extending the argument to the whole
space Rd. The new ideas required to overcome these issues are presented in detail in Section 3.3.

We consider the following continuity equation on Td, with d ⩾ 2:

∂tρ+ div(vρ) = 0, divv = 0,

ρ(0) = 1. (A.1)

By the divergence-free condition on the drift v, equation (A.1) admits the constant solution ρ(t) = 1
which is a probability density, w.r.t. the normed volume measures on Td. Our goal is therefore to
construct a divergence-free drift v such that (A.1) admits another positive, non-constant solution.

The construction proceeds via induction indexed by q ∈ N. At each step q ∈ N0, we construct a
pair (vq, ρq,Mq) satisfying the following system:

∂tρq + div(vqρq) = −divMq, divvq = 0, (A.2)

Here Mq denotes a vector field. As q → ∞, we aim to prove that in some topology, Mq → 0 and
(vq, ρq) → (v, ρ), which is a weak solution of the transport equation. At the same time, we require
that

∫
Td ρq = 1 and ρq ⩾ 0, so that the solution can be interpreted as a probability density.
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At each iterative step, we construct perturbations wq+1 = vq+1 − vq, θq+1 = ρq+1 − ρq such that
(vq+1, ρq+1) is a solution of (A.1) at level q+1 with a smaller residual stress term Mq+1, which can
be written as

−divMq+1 = ∂tθq+1 + div(vqθq+1 + wq+1ρq) + div(wq+1θq+1 −Mq).

The stress term Mq+1 is then defined by solving the above divergence equation with the aid of a

linear differential operator of order −1, denoted by div−1. We remark that the inverse divergence
of a periodic function remains periodic. However, on the whole space, handling the inverse operator
div−1 becomes substantially more delicate.

The construction of the perturbations forms the core of the convex integration scheme. We define
the perturbations (wq+1, θq+1) as a sum of highly oscillatory building blocks in order to achieve a
cancellation between the low-frequency part of the quadratic term wq+1θq+1 and the stress Mq.

Roughly speaking, we introduce the principal part of the perturbation (w
(p)
q+1, θ

(p)
q+1), which takes the

form

w
(p)
q+1 =

∑
ξ

aξ(Mq)Wξ(λq+1x), θ
(p)
q+1 =

∑
ξ

aξ(Mq)Θξ(λq+1x),

where Θξ is a carefully chosen positive solution to the continuity equation transported byWξ. These
building blocks are also oscillating at a high frequency λq+1 ∈ N. The amplitude coefficients aξ are
chosen such that ∑

ξ

a2ξ(Mq) ·
∫
Td

(WξΘξ)(λq+1x)dx =
∑
ξ

a2ξ(Mq)ξ =Mq.

Here, the existence of such coefficients aξ is ensured by the Geometric Lemma 2.1. Roughly speaking,

the low-frequency part of the product w
(p)
q+1θ

(p)
q+1 cancels the stress term Mq. Additionally, to ensure

that wq+1 is divergence-free, we introduce a divergence-free corrector w
(c)
q+1 such that

wq+1 := w
(p)
q+1 + w

(c)
q+1

is divergence-free. Similarly, to guarantee that
∫
Td ρq+1 dx−

∫
Td ρq dx = 0, the actual perturbation

for ρq+1 is defined as

θq+1 := θ
(p)
q+1 −

∫
Td

θ
(p)
q+1dx.

Moreover, by taking advantage of the fact that the constructed θ
(p)
q+1 is a positive function, we

have

ρq+1 − ρq ⩾ −
∫
Td

θ
(p)
q+1dx,

which implies that the limited function ρ satisfies ρ ⩾ ρ0+
∑

q(ρq+1−ρq) ⩾ infx ρ0−
∑

q ∥θq+1∥L1 > 0
by choosing suitable parameters. Here, we use the compactness of the domain to ensure that ρ0 is
bounded below, so that the solution remains positive by keeping the perturbations θq+1 sufficiently
small. In contrast, on the whole space Rd, this argument no longer applies, since the density ρ0
decays to zero at infinity. Therefore, in the whole-space setting, the perturbations must be estimated
carefully to ensure compatibility with the decay of ρ0.

It then suffices to verify that Mq+1 is small in the Lebesgue space L1. We choose the frequencies
super-geometrically, with λq+1 ≫ λq for q ∈ N. The function vq =

∑
i⩽q(vi − vi−1) + v0 =∑

i⩽q wi + v0 is thus a sum of perturbations of frequencies higher than λq, which are considered
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as low-frequencies compared with the building blocks Wξ(λq+1x) and Θξ(λq+1x). Similarly, the
functions ρq and Mq are also sums of perturbations with frequencies exceeding λq. Then, we have

div(w
(p)
q+1θ

(p)
q+1 −Mq) ∼ div

(∑
ξ

a2ξ(Mq)P⩾λq+1/2[(WξΘξ)(λq+1x)]
)

∼
∑
ξ

(∇a2ξ(Mq)) · P⩾λq+1/2[(WξΘξ)(λq+1x)],

and as a consequence,

∥div−1div(wq+1θq+1 −Mq)∥L1 ≲
1

λq+1

∑
ξ

∥a2ξ(Mq)∥C1∥P⩾λq+1/2(WξΘξ)∥L1 ≲

∑
ξ ∥a2ξ(Mq)∥C1

λq+1
.

Here, the factor λ−1
q+1 arises from the −1 order inverse divergence operator div−1. In the last term,

the amplitude aξ is of low frequency, of order at most λq, and is therefore very small due to the
super-geometric growth λq+1 ≫ λq.

Here, we note that on the whole space, the stress term must be assumed to have compact support
in order to fit within the convex integration framework. However, in this setting, one cannot directly
apply the inverse divergence operator, since even for a function with compact support, the inverse
of its divergence may still have support extending over the entire space. In this paper, we introduce
a new decomposition of the stress term that separates the stress term into two distinct components.
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de Mathématiques Pures et Appliqués, 2025: 103723.
[GG25] L. Galeati, M. Gerencsér. Solution theory of fractional SDEs in complete subcritical regimes. Forum of

Mathematics, Sigma. Cambridge University Press, 2025, 13: e12.

[GKN23] V. Giri, H. Kwon, M. Novack. The L3-based strong Onsager theorem.arXiv:2305.18509, 2023.
[GKN24] V. Giri, H. Kwon, M. Novack. A wavelet-inspired L3-based convex integration framework for the euler

equations. Annals of PDE, 2024, 10(2): 19.
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[Grä24] L. Gräfner. Energy solutions to SDEs with supercritical distributional drift: A stopping argument.

arXiv:2407.09222, 2024.
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