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Abstract

We construct stochastic gradient flows on the 2-Wasserstein space P2 over Rd for
energy functionals of the type WF (ρdx) =

∫
Rd F (x, ρ(x))dx. The functions F and ∂2F

are assumed to be locally Lipschitz on Rd × (0,∞). This includes the relevant examples
of WF as the entropy functional or more generally the Lyapunov function of generalized
porous media equations. First, we define a class of Gaussian-based measures Λ on P2

together with a corresponding class of symmetric Markov processes (Rt)t≥0. Then, using
Dirichlet form techniques we perform stochastic quantization for the perturbations of
these objects which result from multiplying such a measure Λ by a density proportional
to e−WF . Then it is proved that the intrinsic gradient DWF (µ) is defined for Λ-a.e. µ and
that the Gaussian-based reference measure Λ can be chosen in such way that the distorted
process (µt)t≥0 is a martingale solution for the equation dµt = −DWt(µt)dt+ dRt, t ≥ 0.

2020 Mathematics subject classification: 60J60, 60J25, 60J46, 35Q84, 76S05.
Keywords: Dirichlet forms, diffusion process, stochastic gradient flows, generalized porous me-
dia equation, Wasserstein space.

1 Introduction

In the pioneering work of [20] the solutions to linear Fokker-Planck-Kolmogorov equations,
which are parabolic partial differential equations describing a time-dependent probability den-
sity on Rd, have been shown to run along the steepest descent of their corresponding Lyapunov
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function, measured in relation to the Wasserstein distance. Since then, studies about the con-
nection between gradient flows in metric spaces and diffusion equations have been conducted
in various settings, see e.g. [34, 24, 25, 17, 14, 22, 26] and the textbooks of [5, 36, 18].

We fix d ∈ N and denote the set of all Borel probability measures on Rd by P. Following the
approach in [1, 2, 32, 13, 6, 30, 27], the differential and the gradient of a functionW : P → R at
a point µ ∈ P may be assigned, by looking at the family of curves µφ,ε := µ◦ (id+ εφ)−1 ∈ P,
φ ∈ C1

b (Rd,Rd), parameterized by ε ∈ R. Then, W is differentiable at µ if and only if

(1.1) diffW (µ)(φ) := d
dε
W (µφ,ε)

∣∣
ε=0

acts as a linear functional in its argument φ which is continuous with respect to the (trace)
topology of L2(Rd → Rd, µ), as it provides an infinite-dimensional Riemannian-like structure
on P with tangent bundle (L2(Rd → Rd, µ))µ∈P through the inner product

⟨ϕ1, ϕ2⟩L2(Rd→Rd,µ) := µ(⟨ϕ1, ϕ2⟩), ϕ1, ϕ2 ∈ L2(Rd → Rd, µ),

at µ ∈ P. The differential diff W (µ) determines a gradient DW (µ) ∈ L2(Rd → Rd, µ) via

(1.2) µ
(
⟨DW (µ), φ⟩

)
= diffW (µ)(φ), φ ∈ C1

b (Rd,Rd),

which can be taken as definition, regardless of a choice for a metric on P. We refer to (1.1)
and (1.2) as the intrinsic derivative, respectively the intrinsic gradient. A discussion about the
relation between the intrinsic and the extrinsic derivative can be found in [28]. For p ∈ [1,∞)
and functions W defined on the p-Wasserstein space

Pp :=
{
µ ∈ P : µ(| · |p) < ∞

}
it is natural to consider the trace topology of Lp(Rd → Rd, µ) rather than L2 to assign the
differential at µ according to (1.1) (cf. Definition 2.6 below). This leads to a consistent notion of
the differential at µ (the class of differentiable functions W will change, but not the value of diff
W (µ)(φ) for φ ∈ C1

b (Rd,Rd) if defined). (1.1) extends to all curves (µφ,ε)ε, φ ∈ Lp(Rd → Rd, µ).
Sometimes, it is beneficial to consider instead of the standard structure of L2 an equivalent

inner product at µ, leading to a perturbed value for the gradient DW (µ). For a measurable
weight function γ : Rd × P → [c−1, c], c ∈ (0,∞), we define DγW (µ) := γ(·, µ)DW (µ). This
corresponds to re-defining the gradient w.r.t. the inner product L2(Rd → Rd, γ(·, µ)−1µ).

By the findings in [7], under suitable conditions on the coefficients β : R → R, b : R → R
and Φ : Rd → R, the generalized porous media equation

(1.3) ∂tρ = ∆β(ρ) + div
(
(∇Φ)b(ρ)ρ

)
on (0,∞)× Rd,

has a mild solution ρ(t, x), t ∈ [0,∞), x ∈ Rd, given by a nonlinear semigroup (S(t))t≥0 of

contractions in L1(Rd, dx), i.e. ρ(t, ·) = S(t)ρ0 for an initial value ρ(0, ·) := ρ0 ∈ L1(Rd, dx).
In [8] the uniqueness of this solution is shown in the largest class of solutions, namely the
so-called distributional solution. The positivity ρ0 ≥ 0 and the mass

∫
Rd ρ0(x)dx of an initial

value are preserved by S(t). (1.3) is an example from the class of nonlinear Fokker–Planck
equations, which describe the evolution of the time marginal laws of solutions to distribution
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dependent stochastic differential equations, known as McKean–Vlasov SDEs. We refer to [9]
for a comprehensive study of this topic. By virtue of [27] the curves µt := ρ(x, t)dx ∈ P,
t ≥ 0, defined by the probability solutions to (1.3) correspond to the unique gradient flow on
P satisfying

(1.4)
d

dt
µt = −DγW (µt)

w.r.t. γ(x, ρdx) := b(ρ(x)) and an explicit energy functional W . The latter has a domain within
the set of absolutely continuous measures on which

W (ρdx) :=

∫
Rd

F (x, ρ(x))dx

with

(1.5) F (x, s) := sΦ(x) +

∫ s

0

∫ t

1

β′(r)

rb(r)
drdt, x ∈ Rd, s ∈ (0,∞)

is well-defined. The functional W coincides with the Lyapunov function determined in [7]. For
Φ = 0, b = β′ = 1, (1.3) reduces to the heat equation with W (ρdx) :=

∫
Rd(ln(ρ)− 1)ρdx being

the entropy functional. If a suitable space of test functions u is given, (1.4) can be reformulated
into

d

dt
u(µt) = −µt

(
⟨γµtDW (µt), Du(µt)⟩

)
with γµ := γ(·, µ).

We are interested in constructing stochastic gradient flows for energy functionals of the type
WF (µ) :=

∫
Rd F (x, ρµ(x))dx, µ = ρµdx, with F : Rd × [0,∞) → R for example as in (1.5).

Adding a stochastic process (Rt)t≥0 to its right-hand side transforms (1.4) into a stochastic
differential equation

(1.6) dµt = −DγWF (µt)dt+ dRt, t ≥ 0.

Let (Rt)t≥0 be a Λ-symmetric Markov process with state space Pp for some p ∈ [1, 2] and a
probability measure Λ on Pp. Denoting the generator of (Rt)t≥0 by A we reformulate (1.6) as
a martingale problem for the generator of (µt)t≥0. In this article, solutions to (1.6) are found
in the sense that under the laws of a right process (Ω,F , (µt)t≥0, (Pµ)µ∈Pp),

(1.7) u(µt)−
∫ t

0

Au(µs)ds+ µs

(
γµs⟨DWF (µs), Du(µs)⟩

)
ds, t ≥ 0,

is a martingale for a suitable class of test functions u : P → R and starting points µ up to a set
of zero capacity. There is no Brownian motion on the set of probability measures. Hence, we
do not have a canonical candidate for (Rt)t≥0. A substitute must be chosen with care, because
typical examples of WF , as e.g. the entropy functional, do not have an intrinsic derivative DWF

defined at all points of Pp, but only within a certain subset of absolute continuous measures.
It is a priori not clear how (Rt)t≥0 can be defined in a way that martingale solutions to (1.6)
in the sense of (1.7) exist.

3



We utilize the method in [29, 31] by which a Markov process (ϕt)t≥0 on Lp(Rd → Rd, λ)
for fixed λ ∈ Pp induces a Markov process on Pp. The main finding of this work is that we
can take (ϕt)t≥0 as a reflected Ornstein–Uhlenbeck process on Lp(Rd → Rd, λ) in such a way
that (1.7) becomes solvable with A being the generator of the induced process (Rt)t≥0 on Pp.
The test function u must be an element in the L2-domain D(A) of the generator, which makes
(A,D(A)) a non-positive self-adjoint operator in L2(Pp,Λ). The Dirichlet form of (Rt)t≥0 is
given by

(1.8) ⟨−Au, v⟩L2(Λ) =

∫
Pp

µ
(
γµ⟨Du(µ), Dv(µ)⟩

)
Λ(dµ), u, v ∈ D(A),

and hence of intrinsic gradient-type.
Let us now briefly point out how to find a solution to (1.7) once a suitable (Rt)t≥0 has been

fixed. We consider a perturbation

(1.9) ΛF (dµ) :=
1

ZF

e−WF (µ)Λ(dµ)

of the invariant measure Λ, where for µ = ρµdx we set

(1.10) WF (µ) :=

{∫
Rd F (x, ρµ(x))dx if F (·, ρµ) ∈ L1(Rd, dx),

∞ otherwise,

and

ZF :=

∫
Pp

e−WF dΛ ∈ (0,∞)

is the normalization constant. Defining

Γ(u, v)(µ) := µ
(
γµ⟨Du(µ), Dv(µ)⟩

)
,

(1.8) leads to

(1.11)
〈
− Au+ µ

(
γµ⟨DW (µ), Du(µ)⟩

)
, v
〉
L2(ΛF )

=

∫
Pp

Γ(u, v)ΛF (dµ)

under suitable assumptions on F, u, v (cf. Lemma 2.1). So, formally a ΛF -symmetric process
(µt)t≥0 solves (1.7) if its Dirichlet form E F reads

(1.12) E F (u, v) :=

∫
Pp

Γ(u, v)dΛF .

This method is well-known in the theory of Dirichlet forms and has been applied in many
different settings, e.g. in [4, 33, 16, 10]. The process (µt)t≥0 can be obtained by: (1) proving

closability of the bilinear form E F in (1.12) on a core of differentiable functions and (2) proving
quasi-regularity of the minimal closed extension of E F in L2(Pp,ΛF ).

4



To realize this plan, we appropriately choose (Rt)t≥0 and Λ as follows. First, a non-

degenerate Gaussian measure G on {ϕ ∈ C1(Rd,Rd) : ∥∇ϕ∥∞ < ∞} is fixed, where

∥∇ϕ∥∞ = sup
x ̸=y

|ϕ(x)− ϕ(y)|
|x− y|

, ϕ ∈ C1(Rd,Rd).

Then, G assigns a strictly positive value to the set

(1.13) D1 :=
{
ϕ ∈ C1(Rd,Rd) : ϕ is invertible, ∥∇ϕ∥∞ + ∥∇(ϕ−1)∥∞ < ∞

}
.

Let λ ∈ Pp be absolutely continuous. A Gaussian-based measure Λ is defined as the push-

forward of the probability measure
1D1

(ϕ)G(dϕ)

G(D1)
under the map

Ψλ : D1 ∋ ϕ 7→ λ ◦ ϕ−1 ∈ Pp.

Since D1 ⊂ Lp(Rd → Rd) for p ∈ [1, 2] as well as(
Lp(Rd → Rd, λ)

)∗ ⊆ (L2(Rd → Rd, λ)
)∗

= L2(Rd → Rd, λ) ⊂ Lp(Rd → Rd, λ),

the Gaussian standard gradient-type bilinear form on D1 is defined in the classical way as

(1.14) Ẽ (f, g) =

∫
D1

λ
(
⟨∇f(ϕ),∇g(ϕ)

〉)1D1(ϕ)G(dϕ)

G(D1)

for f, g in a suitable pre-domain, see [23, Sect. II.3]. It has a closure (Ẽ ,D(Ẽ )) in L2(D1,
1D1

G

G(D1)
)

and there is a reflected Ornstein–Uhlenbeck process (ϕt)t≥0 with associated Dirichlet form

(Ẽ ,D(Ẽ )). Following the concept of [29, 31], there exists a diffusion process (Rt)t≥0 on Pp

whose associated Dirichlet form (E ,D(E )) in L2(Pp,Λ) has an analogous shape as in (1.14),
namely

E (u, v) =

∫
Pp

µ
(
⟨Du(µ), Dv(µ)

〉)
Λ(dµ).

for u, v in a suitable pre-domain. It is referred to as the induced process of (ϕt)t≥0 in this text,

because E can be retrieved from the image Dirichlet form of Ẽ under Ψλ, where λ is suitably
chosen in the further course. By a simple observation, for Λ a.e. µ there is a (reflected) Ornstein–
Uhlenbeck process on D1 which induces (Rt)t≥0 in the same way via the image structure under
Ψµ(ϕ) := µ ◦ ϕ−1 (cf. Remark 2.11).

The set-up described in the paragraph above is sufficient to prove the existence of a diffusion
on Pp whose Dirichlet form is as in (1.12). Formally, the process solves (1.6). To ensure
the integrability of the drift term in (1.6) which is required for (1.7) we make an amendment

regarding the definition of D1. By (R
(n)
t )t≥0 we denote the induced Markov process of a reflected

Ornstein–Uhlenbeck process (ϕt)t≥0 analogously as above, but regarding a Gaussian measure
conditioned to

D (n) :=
{
ϕ ∈ D1 ∩ C2(Rd,Rd) : |ϕ(0)|+ ∥∇ϕ∥∞ + ∥∇2ϕ∥∞ + ∥∇ϕ−1∥∞ < n

}
5



instead of D1, for some fixed n ∈ N. Then, we solve (1.7) for A = A(n), the generator of

(R
(n)
t )t≥0.
The functional WF in (1.10) with F as in (1.5) is of major importance, since WF is a

Lyapunov function for the generalized porous media equation (see [7]). In this context, our
main results can be summarized as follows.

• We first define a class of Gaussian-based measures Λ on Pp, p ∈ [1, 2], (see Section
2.2) and then construct a stochastic quantization for the measure ΛF , i.e. a symmetric
diffusion process (µt)t≥0 on Pp with invariant measure ΛF as given in (1.9), by showing:

– The bilinear form E F in (1.12) with the domain of bounded, continuously differen-
tiable functions on Pp (see Definition 2.6) is well-defined and closable in L2(Pp,ΛF ).

– Its minimal closed extension (E F ,D(E F )) is a local, conservative and quasi-regular
Dirichlet form in L2(Pp,ΛF ). Thanks to the one-to-one correspondence between the
family of local, quasi-regular Dirichlet forms and the family of diffusion processes on
a topological Lusin space (see [23, Chap.’s IV & V]), we obtain a (ΛF -symmetric)
conservative diffusion process M = (Ω,F , (µt)t≥0, (Pϕ)ϕ∈Pp) on Pp, properly asso-
ciated with (E F ,D(E F )).

The two statements above are proven in Theorem 3.5 and Proposition 2.10. The case
with F as in (1.5) is treated in Example 3.6, where we choose p = 2.

• We specify a subset of λ ∈ Pp such that for the corresponding Gaussian-based measure
Λ the Radon–Nikodym derivative ρµ = dµ

dx
exists and is Lipschitz continuous for Λ-a.e. µ.

The gradient of the energy functional for the generalized porous media equation (1.3) is
defined for Λ-a.e. µ and computed as

DWF (µ) = ∇Φ +
β′(ρµ)∇ρµ
b(ρµ)ρµ

in the sense of a local weak intrinsic gradient (see Definition 4.2, Theorem 4.3 and the
subsequent discussion).

• For each n ∈ N there is a Gaussian-based measure Λ(n) (see Section 4, in particular
Corollary 4.4) such that:

– The resulting process (µ
(n)
t )t≥0 solves

(1.15) dµ
(n)
t = −DWF (µ

(n)
t )dt+ dR

(n)
t , t ≥ 0,

where (R
(n)
t )t≥0 is induced by a reflected Ornstein–Uhlenbeck process on D (n) in the

sense explained above.

– En are monotone increasing in n and
⋃

n∈N En ⊂ P2 is dense.

The remainder of this article is organized as follows. Section 2.1 contains some preliminaries
on strongly local Dirichlet forms and their relation with diffusion processes. The class of suitable
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reference measures Λ on Pp, including Gaussian-based measures, are introduced in Section 2.2.
This framework is applied in Section 3 to prove the existence of a diffusion with associated
Dirichlet form as in (1.12) for the energy functional given in (1.10) (Theorem 3.5). Localized
versions of the Dirichlet form in (1.12) are introduced in Section 4. As a consequence, we obtain
the local weak gradient of the functional (1.10) and show (1.15) (Theorem 4.3 and Corollary
4.4).

2 Diffusion processes on Wasserstein spaces

2.1 Preliminaries

Let E be a metrizable Lusin topological space. We denote its Borel σ-algebra by B(E) and
fix a probability measure Λ on (E,B(E)). Given a measurable function f : E → R its Λ-class
of measurable functions is again denote by f . All vector spaces in this text are assumed to be
real.

Let D(E ) be a dense subspace of L2(E,Λ) and

E : D(E )× D(E ) → R

be a non-negative definite, symmetric bilinear map. (E ,D(E )) is called closed if D(E ) is

complete under E 1/2
1 -norm induced by the inner product

E1(u, v) := E (u, v) + ⟨u, v⟩L2(E,Λ).

It is called a symmetric Dirichlet form if it is closed and

u+ ∧ 1 ∈ D(E ) with E (u+ ∧ 1, u+ ∧ 1) ≤ E (u, u)

for u ∈ D(E ).
Since E has the strong Lindelöf property, the support, denoted by supp[·], of a positive

measure on (E,B(E)) is defined. For a measurable function f : E → R we set supp[f ] :=
supp[|f |Λ]. A symmetric Dirichlet form (E ,D(E )) is said to possess the local property if

E (u, v) = 0 for u, v ∈ D(E ) : supp[u] ∩ supp[v] = ∅.

(E ,D(E )) is said to possess the strong local property if

E (u, v) = 0 for u, v ∈ D(E ) : u is constant Λ-a.e. on supp[v].

We call (E ,D(E )) conservative if 1 ∈ D(E ) and E (1,1) = 0. In the conservative case the
strong local and the local property are equivalent.

Let (E ,D(E )) be a Dirichlet form on E. If there exists a bilinear form

Γ : D(E )× D(E ) → L1(E,Λ)

such that

(2.1) E (uw, v) + E (vw, u)− E (w, uv) = 2

∫
E

wΓ(u, v)dΛ, u, v, w ∈ D(E ) ∩ L∞(E,Λ),
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then (Γ,D(E )) is called the square-field operator of (E ,D(E )). In the conservative case (2.1)
implies

E (u, v) =

∫
E

Γ(u, v)dΛ, u, v ∈ D(E ).

Let it be remarked that (2.1) is satisfied if true for all u, v, w ∈ A , where A is some dense

subalgebra of D(E ) ∩ L∞(E,Λ) w.r.t. E 1/2
1 -norm. Moreover, (2.1) implies continuity of Γ

(w.r.t. E 1/2
1 × E 1/2

1 ). We set

Db,Lip(E ) :=
{
u ∈ D(E ) ∩ L∞(E,Λ) : Γ(u, u) ∈ L∞(E,Λ)

}
.

According to the results in [12, Sect. I.5], a strongly local symmetric Dirichlet form with square
field operator Γ satisfies

vw ∈ D(E ), Γ(u, vw) = vΓ(u,w) + wΓ(u, v) ∈ L1(E,Λ)

for u, v ∈ D(E ) and w ∈ Db,Lip(E ).
The generator of (E ,D(E )) is the unique non-positive definite, self-adjoint operator

(L,D(L)) in L2(Λ) such that D(E ) = D(
√
−L) and E (u, v) = ⟨

√
−Lu,

√
−Lv⟩L2(Λ). It is

a Dirichlet operator, i.e. ⟨Lu, (u− 1)+⟩L2(Λ) ≤ 0 for u ∈ D(L), and the infinitesimal generator

of a strongly continuous semigroup (Tt)t≥0 in L2(E,Λ) of Λ-symmetric, sub-Markovian kernel
operators,

0 ≤ Ttu ≤ 1, Λa.e., if 0 ≤ u ≤ 1, Λ-a.e.

If (E ,D(E )) is conservative, then Tt1 = 1.
The Markov semigroup (Tt)t≥0 are contractive operators w.r.t. ∥ · ∥Lp(Λ) for p ∈ [1,∞],

and extend uniquely to a strongly continuous contraction semigroup in Lp(Λ) for p ∈ [1,∞).
All of these coincide with the extension to L1(E,Λ), because of the continuous inclusion
Lp(E,Λ) ↪→ L1(E,Λ), and are therefore denoted again by (Tt)t≥0. The generator of this semi-
group in L1(E,Λ) coincides with the smallest closed extension of (L,D(L)) in L1(E,Λ), see [12,
Prop. 2.4.2], and is denoted by (L,D1(L)). The family of Dirichlet forms in L2(E,Λ) and the
family strongly continuous semigroups (Tt)t≥0 which consist of Λ-symmetric, sub-Markovian
kernel operators stand in one-to-one correspondence.

Dirichlet forms have been used to analyze symmetric Markov processes. Results on the
change of reference measure through the multiplication with a density may for example be
found in [4, 35, 16, 19]. We include an elementary and easy-to-prove result on the behaviour
of the generator under such a transform here, as it is relevant in the end of Section 3, end
of Section 4. We consider another probability measure Λ◦ on (E,B(E)) and a strongly local
Dirichlet form (E ◦,D(E ◦)) in L2(E,Λ◦) with generator (A,D(A)) and square-field operator Γ.
We assume:

(a) Λ is absolutely continuous w.r.t. Λ◦ with Radon–Nikodym density satisfying ϱ := dΛ
dΛ◦

> 0,
Λ◦ a.e., and ϱ ∈ D(E ◦).

(b) (E ◦,D(E ◦)) is a conservative, strongly local Dirichlet form in L2(E,Λ◦) with generator
(A,D(A)) and square-field operator Γ. (E ,D(E )) is a Dirichlet form in L2(E,Λ) such

that there exists a subspace L ⊆ Db,Lip(E ◦)∩D(E ), densely included in D(E ) w.r.t. E 1/2
1 ,

with E (u, v) =
∫
E
Γ(u, v)dΛ, u, v ∈ L .
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As above, the generator of the sub-Markovian semigroup (Tt)t≥0 in L1(E,Λ) corresponding to
(E ,D(E )) is denoted by (L,D1(L)).

Lemma 2.1. Assume (a) and (b). We have

D(E ) ∩ D(A) ⊆ D1(L) and Lu = Au+ ϱ−1Γ(u, ϱ), u ∈ D(E ) ∩ D(A).

Proof. We fix u ∈ D(E ) ∩ D(A). For any v ∈ L it holds∫
E

Γ(u, v)dΛ =

∫
E

Γ(u, vϱ)− vΓ(u, ϱ)dΛ◦ =

∫
E

(
− Au− ϱ−1Γ(u, ϱ)

)
vdΛ.

Thus, the equality E (u, v) =
∫
E
fuvdΛ with fu := −Au − ϱ−1Γ(u, ϱ) holds for all v ∈ D(E ) ∩

L∞(E,Λ) by density of L . In particular,∫
E

(LTtu)vdΛ =

∫
E

LuTtvdΛ = −E (u, Ttv) =

∫
E

(−fu)TtvdΛ =

∫
E

(−Ttfu)vdΛ.

for v ∈ D(E ) ∩ L∞(E,Λ), t > 0, and so, LTtu = −Ttfu in L2(E,Λ). The claim follows with
strong continuity of the semigroup,

Ttu
t→0−→ u and Ttfu

t→0−→ fu in L1(E,Λ),

and closedness of (L,D1(L)).

We recall some basic notions from [23], [21]. We are only interested in the symmetric case.
The set of (bounded/non-negative) measurable functions (E,B(E)) → R are denoted by B(E)
(respectively Bb(E)/B+(E)). Let M = (Ω,F , (µt)t≥0, (Pϕ)ϕ∈E∆

) be a right process with state
space E, life time ζ and shift operator θt : Ω → Ω, t ≥ 0, as defined in [23, Def’s. 1.5 & 1.8]. Let
Eϕ denote the expectation w.r.t. Pϕ. A semigroup (Pt)t≥0 of sub-Markovian kernel operators is
given by

Ptf(ϕ) := Eϕ[f(µt)], ϕ ∈ E, f ∈ B+(E), t ≥ 0.

If (Pt)t≥0 is Λ-symmetric (in particular it respects Λ-classes), then its action on Bb(E) uniquely
determines a strongly continuous contraction semigroup (Tt)t≥0 in L2(E,Λ). The process M
is called associated with the Dirichlet form (E ,D(E )) which corresponds to (Tt)t≥0. By virtue
of [23, Thm. IV.6.7], for any Dirichlet form (E ,D(E )) in L2(E,Λ), the existence of a right
process M associated with E is equivalent to quasi-regularity of the form (defined as in [23,
Thm. IV.3.1]).

We call an increasing sequence (Fk)k∈N of closed sets an E -nest if⋃
k∈N

{
u ∈ D(E ) : u(ϕ) = 0 for Λ-a.e. ϕ ∈ E \ Fk

}
is dense in (D(E ),E 1/2

1 ). A subset N ⊆
⋂

k∈N(E \ Fk) is referred to as E -exceptional. A
statement depending on a reference point ϕ ∈ E is said to hold E -quasi-everywhere (E -q.e.)
if valid for all ϕ ∈ E \ N for some E -exceptional set N ⊂ E. The term E -quasi-continuous
applies to a function f : E → R which restricts to a continuous function, f |Fk

∈ C(Fk), on FK
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for all k ∈ N. If the right process M is associated with (E ,D(E )), then its transition function
Ptf is E -quasi-continuous for all f ∈ Bb(E), t > 0. A quasi-regular Dirichlet form uniquely
determines a Λ-equivalence class of associated right processes on E, see [23, Sect. IV.6]. Within
such a class, M can w.l.o.g. be taken to be Λ-tight and special standard ([23, Def. IV.1.13]).
Then, (E ,D(E )) has the local property if and only if

(2.2) [0, ζ) ∋ t 7→ µt ∈ E is continuous Pϕ-almost surely

for E -q.e. ϕ ∈ E. We call a Λ-tight and special standard process M = (Ω,F , (µt)t≥0, (Pϕ)ϕ∈E)
a (non-terminating) diffusion, if (2.2) holds with ζ = ∞ for all ϕ ∈ E. For a quasi-regular
local (conservative) Dirichlet form (E ,D(E )) there is a (non-terminating) diffusion M, which
is properly associated.

In the following we assume that (E ,D(E )) is quasi-regular, local, conservative and admits
a square-field operator (Γ,D(E )). We recall the definition of a (continuous) additive functional
(At)t≥0 of M. The term implies that

• At is Ft-measurable with {Ft}t≥0 being the minimum completed admissible filtration.

• ∃B ∈ F : θt(B) ⊆ B ∀ t > 0 and Pϕ(B) = 1 for E -q.e. ϕ ∈ E.

• ∀ω ∈ B: [0,∞) ∋ t 7→ At(ω) ∈ R is càdlàg (resp. continuous), A0(ω) = 0 and

At+s(ω) = At(ω) + As(θtω), s, t ≥ 0.

If additionally At(ω) ≥ 0 for t ≥ 0 and ω ∈ B with B as above, then (At)t≥0 is called positive.
An additive functional (At)t≥0 is said to be of finite (resp. zero) energy if the limit

lim
t→∞

1

2t

∫
Ω

A2
t (ω)PΛ(dω) ∈ [0,∞)

exists (resp. vanishes), where PΛ is the equilibrium measure PΛ(dω) :=
∫
E
Pϕ(dω)Λ(dϕ) on Ω.

Two additive functionals (A
(1)
t )t≥0 and (A

(2)
t )t≥0 are called equivalent if Pϕ(A

(1)
t = A

(2)
t ) = 1 for

E -q.e. ϕ ∈ E, t ≥ 0. In this case, we write A
(1)
t = A

(2)
t . We identify an additive functional with

its equivalence class.
A positive Radon measure m on (E,B(E)) is called smooth if any E -exceptional set is a

m-nullset and there is a nest {Fk}k of compact sets such that m(Fk) < ∞ for all k. The Revuz
correspondence (see [23, Thm. 2.4]) describes a one-to-one assignment between the class all
smooth measures m and positive continuous additive functionals (At)t≥0.

Remark 2.2. Let u ∈ L1(E,Λ). Then, the definition

At(ω) :=

∫ t

0

u(µs(ω))ds, ω ∈ Ω, t ≥ 0,

does not depend on the choice of representative of u, up to equivalence. Moreover, (At)t≥0 is
a continuous additive functional of M. Writing u+, u− for positive and negative part of u, we
have the following Revuz correspondences:

A+
t :=

∫ t

0

u+(µs(ω))ds and u+(ϕ)Λ(dϕ),
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A−
t :=

∫ t

0

u−(µs(ω))ds and u−(ϕ)Λ(dϕ).

Let u ∈ D(E ) and ũ denote a E -quasi-continuous representative. The Fukushima decom-
position ([23, Thm. 2.5], [21, Thm. 5.2.2]) states that

(2.3) ũ(µt)− ũ(µ0) = M
[u]
t +N

[u]
t , t ≥ 0,

where:

• (N
[u]
t )t≥0 is a continuous additive functional of zero energy with N

[u]
t ∈ L1(Ω,Pϕ) for

E -q.e. ϕ ∈ E, t ≥ 0.

• (M
[u]
t )t≥0 is an additive functional of finite energy with

∫
Ω
M

[u]
t (ω)Pϕ(dω) = 0, M

[u]
t ∈

L2(Ω,Pϕ) for E -q.e. ϕ ∈ E, t ≥ 0.

Moreover, (M
[u]
t )t≥0, (N

[u]
t )t≥0 in (2.3) with the properties above are unique up to equivalence.

Remark 2.3. (i) If u ∈ D1(L), then

(2.4) N
[u]
t =

∫ t

0

Lu(µs)ds, t ≥ 0,

as follows by [21, Thm. 5.2.4].

(ii) Let u ∈ D(E ). Then, ((M
[u]
t )t≥0, (Ft)t≥0,Pϕ) is a square-integrable martingale for E -

q.e. ϕ ∈ E. The quadratic variation (⟨M [u]⟩t)t≥0 of (M
[u]
t )t≥0 is in Revuz correspondence with

the energy measure
Γ(u, u)(ϕ)Λ(dϕ),

by virtue of [21, Thm. 5.2.3]. Hence, by Remark 2.2 and uniqueness of the Revuz measure,

⟨M [u]⟩t =
∫ t

0

Γ(u, u)(µs)ds, t ≥ 0.

Moreover,

⟨M [u],M [v]⟩t =
∫ t

0

Γ(u, v)(µs)ds, t ≥ 0,

for u, v ∈ D(E ).

In many cases, gradient-type Dirichlet forms on vector spaces can be constructed using the
notion of directional derivatives and related forms. It is done so, for example in [3] and [23,
Chap. 2], from which we recall the notion of Λ-admissible elements in E.

Let E and Λ be as above and in addition, E is a locally convex, Hausdorff topological
vector space. E∗ denotes the space of continuous linear functionals E → R. A probability
measure m on (R,B(R)) is said to satisfy the Hamza Condition if there is a probability density
ρm : R → [0,∞) and moreover an open set U ⊆ R such that

(2.5) m(ds) = ρm(s)ds, ρ−1
m ∈ Lloc(U) and m(U) = 1.
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In this case, due to continuity of the embedding L2(R,m) ↪→ L1
loc(U), we may define a weighted

(1, 2)-Sobolev space

H1,2(m) :=
{
f ∈ H1,1

loc (U) ∩ L2(R,m) : f ′ ∈ L2(R,m)
}

with corresponding Sobolev-norm and energy form

∥f∥H1,2(m) :=
(
∥f∥2L2(R,m) + ∥f ′∥2L2(R,m)

) 1
2 , (f, g)H1,2(m) := ⟨f ′, g′⟩L2(R,m),

for f, g ∈ H1,2(m). For fixed ϕ ∈ E \ {0} and ξ ∈ E∗, such that ξ(ϕ) = 1, we set

πϕ : E ∋ η 7→ η − ξ(η)ϕ, Eϕ := π(E) and νϕ := Λ ◦ π−1
ϕ .

As shown in [15, Chap. 10], there exists a Markov kernel K : Eϕ × B(R) → [0, 1] such that∫
E

fdΛ =

∫
Eϕ

∫
R
f(η + sϕ)K(η, ds)νϕ(dη), f ∈ Bb(E).

Hence, we can identify L2(E,Λ) with the measurable field of Hilbert spaces

L2(E,Λ) = L2
(
R× Eϕ, K(η, ds)νϕ(dη)

)
.

A function R×Eϕ ∋ (s, η) 7→ uη(s) in the latter space determines a unique function u ∈ L2(E,Λ)
such that ∫

E

(uf)dΛ =

∫
Eϕ

∫
R
uη(s)f(η + sϕ)K(η, ds)νϕ(dη), f ∈ L2(E,Λ).

Definition 2.4. An element ϕ ∈ E is called Λ-admissible if, either ϕ = 0, or there exist ξ ∈ E∗

and K : Eϕ × B(R) → [0, 1] as above, such that K(η, ·) satisfies (2.5) for νϕ-a.e. η ∈ Eϕ.

For any Λ-admissible ϕ ∈ E,

Eϕ(u, v) :=

∫
Eϕ

(uη, vη)H1,2(K(η,·))νϕ(dη),

D(Eϕ) :=
{
u = (uη)η∈Eϕ

∈ L2(E,Λ) : uη ∈ H1,2(K(η, ·)) for νϕ-a.e. η, Eϕ(u, u) < ∞
}

defines a Dirichlet form in L2(E,Λ).

Example 2.5. Let Λ be a probability measure on (E,B(E)) such that, for each ξ ∈ E∗ the
image measure Λ ◦ ξ−1 on R is Gaussian (including the case of a Dirac measure). Then, Λ
is called Gaussian measure on E and there is a criterion for Λ-admissibility via quasi-shift-
invariance.

Let E∗Λ denote the closure of the set {ξ − Λ(ξ) : ξ ∈ E∗} in L2(E,Λ). If ϕ ∈ E such that

(2.6) ∃ ξϕ ∈ E∗Λ : ξ(ϕ) =

∫
E

ξϕ
(
ξ − Λ(ξ)

)
dΛ ∀ ξ ∈ E∗,
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then Λ and the image measure under the shift, Λ( · − ϕ), are absolutely continuous w.r.t. each
other. The linear space of all elements ϕ with the property in (2.6) is called Cameron–Martin
space HΛ of Λ. The corresponding Radon–Nikodym density is given by

dΛ( · − ϕ)

dΛ
= exp

(
ξϕ − 1

2
∥ξϕ∥L2(E,Λ)

)
(see [11, Chap. 2]). Hence, the Λ-admissibility of every element in the Cameron–Martin space
follows with [3, Prop. 4.2].

To conclude the preliminaries, we give the definition of an image form under a transform
of the state space. Let E, Λ be as in the beginning of this section, (E ,D(E )) be a closed
symmetric form in L2(E,Λ), and Ψ : E → S a measurable map into a measurable space (S, σ).
The closed symmetric form (E im,D(E im)) in L2(S,Λ ◦Ψ−1) which is defined

E im(u, v) := E (u ◦Ψ, v ◦Ψ) for u, v of its domain,

D(E im) :=
{
w ∈ L2(S,Λ ◦Ψ−1) : w ◦Ψ ∈ D(E )

}
,

is called the image form of (E ,D(E )) under Ψ.

2.2 Induced diffusion processes on Pp

In this section, we specify the basic framework on which Sections 3 and 4 build. The p-
Wasserstein space Pp is a separable Polish topological space w.r.t. the p-Wasserstein distance

Wp(µ, ν) := inf
π

(∫
Rd×Rd

|x− y|pπ(dx, dy)
) 1

p
, µ, ν ∈ Pp(Rd),

where the infimum rus over all couplings and p ∈ [1,∞). In [6], the intrinsic derivative on Pp

and the class C1
b (Pp) is introduced, in the spirit of [1, 2, 32], as follows.

Definition 2.6. Let p ∈ [1,∞) and id(x) = x for x ∈ Rd.

(1) A continuous function f : Pp → R is called intrinsically differentiable, if

Lp(Rd → Rd, µ) ∋ ϕ 7→ Dϕf(µ) := lim
ε↓0

f(µ ◦ (id + εϕ)−1)− f(µ)

ε
∈ R

is a well-defined bounded linear functional for any µ ∈ Pp. In this case, the intrinsic

derivative Df(µ) of f at µ is the unique element in L
p

p−1 (Rd → Rd, µ) such that

Dϕf(µ) = µ
(
⟨ϕ,Df(µ)⟩

)
, ϕ ∈ Lp(Rd → Rd, µ).

(2) An intrisically differentiable function f is called L-differentiable if

lim
∥ϕ∥

Lp(Rd→Rd,µ)↓0

|f(µ ◦ (id + ϕ)−1)− f(µ)−Dϕf(µ)|
∥ϕ∥Lp(Rd→Rd,µ)

= 0
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for each µ ∈ Pp. The class C1
b (Pp) contains all L-differentiable functions f for which

µ-versions of Df(µ), µ ∈ Pp, can be chosen such that

Rd × Pp ∋ (x, µ) 7→ Df(x, µ) := Df(µ)(x) ∈ Rd

is bounded and continuous.

Below, we define a Dirichlet form E with state space Pp, p ∈ [1, 2], and square-field operator
of the type

Γ(u, v)(µ) = µ
(
γµ⟨Du(µ), Dv(µ)⟩

)
, µ ∈ Pp, u, v ∈ C1

b (Pp),

where γµ(x) := γ(x, µ) and γ : Rd × Pp → (0,∞) is measurable with c−1 ≤ γ(·, ·) ≤ c for
some constant c ∈ (0,∞). This construction is analogous to the classical situation in which
the state space B is a Banach space and H ⊆ B a densely embedded Hilbert space. Then
Γ(f, g)(x) = ⟨∇f(x),∇g(x)⟩H, x ∈ B, for suitable differentiable functions f, g : B → R, is the
square-field operator of standard gradient-type Dirichlet forms on B (e.g. see [3], [23, Sect. II.3]).

Let Pac
p := {µ ∈ Pp : a probability density ρµ(x) =

dµ
dx
, x ∈ Rd, exists}. First, we formulate

a condition on a reference probability measure on Lp(Rd → Rd, λ), λ ∈ Pac
p . Subsequently,

with the map in (2.8) below, we consider its push-forward onto (Pp,B(Pp)). In this manner,
we can obtain a gradient-type Dirichlet form and diffusion process on Pp.

(C1) Let λ ∈ Pac
p for some p ∈ [1, 2] and D ⊆ Lp(Rd → Rd, λ) be a linear subspace, equipped

with a locally convex Hausdorff topology which makes it a Lusin space, such that D
is densely and continuously embedded into Lp(Rd → Rd, λ). Moreover, let GD be a
probability measure on (D ,B(D)) such that L2(Rd → Rd, λ) has an orthonormal basis
{ϕk}k∈N consisting of GD -admissible elements.

Remark 2.7. If GD satisfies condition (C1), then so does the measure 1U (ϕ)GD(dϕ)
GD(U)

for any open

set U ⊆ D with GD(U) > 0. This is an immediate consequence of the fact that 1D(s)m(ds)
m(D)

satisfies the Hamza Condition (2.5) if a probability m on (R,B(R)) does and D ⊆ R is open
with m(D) > 0.

In Sections 3, 4 we focus on a particular choice for the space D introduced in the next
example. Gaussian measures on D , as defined Example 2.5, provide suitable choices for GD if
the Cameron–Martin space HGD

is dense in L2(Rd → Rd, λ).

Example 2.8. Let λ ∈ Pac
p for some p ∈ [1, 2]. The space

D :=
{
ϕ ∈ C1(Rd,Rd) : ∥∇ϕ∥∞ < ∞

}
(2.7)

with metric dD(ϕ1, ϕ2) := |ϕ1 − ϕ2|(0) +
∥∥∇(ϕ1 − ϕ2)

∥∥
∞, ϕ1, ϕ2 ∈ D ,

is complete and separable. Given any Gaussian measure GD on (D ,B(D)), (C1) is satisfied if
the inclusion

HGD
∩ L2(Rd → Rd, λ) ⊆ L2(Rd → Rd, λ)

is dense.
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For D in (2.7) a Gaussian measure satisfying (C1) can be constructed in a natural way
from any sequence {ϕk}k∈N ⊂ C1

b (Rd,Rd) which is an orthonormal basis of L2(Rd → Rd, λ), as
demonstrated in the next example.

Example 2.9. Let {ϕk}k∈N be as stated and λ ∈ Pac
p , p ∈ [1, 2]. We set

ak :=
(
2k∥∇ϕk∥2∞

)
∨ 1.

Defining Tλ,2 := L2(Rd → Rd, λ) and

H :=
{
ϕ ∈ Tλ,2 :

∞∑
k=1

ak⟨ϕ, ϕk⟩2Tλ,2
< ∞

}
,

⟨ϕ1, ϕ2⟩H :=
∞∑
k=1

ak⟨ϕ1, ϕk⟩Tλ,2
⟨ϕ2, ϕk⟩Tλ,2

, ϕ1, ϕ2 ∈ H,

yields a Hilbert space with H ⊂ L2(Rd → Rd, λ) ∩ D , because of the estimate

∥∇ϕ∥∞ ≤
∞∑
k=1

⟨ϕ, ϕk⟩Tλ,2
∥∇ϕk∥∞ ≤ ∥ϕ∥H

( ∞∑
k=1

∥∇ϕk∥2∞
ak

)1/2
≤ ∥ϕ∥H

for ϕ ∈ H. If we choose a sequence (bk)k∈N such that
∑

k∈N
ak
bk

< ∞, then the measure

GD(dϕ) :=
∞∏
k=1

mk(d⟨ϕk, ϕ⟩Tλ,2
) with mk(dr) :=

( bk
2π

) 1
2
exp

[
− bkr

2

2

]
dr

guarantees that (C1) holds true, as each ϕk is admissible and GD is a Gaussian measure
on H, in particular on D . The latter is true, since GD can be rewritten as GD(dϕ) =∏∞

k=1 m̃k(d⟨ϕ̃k, ϕ⟩Tλ,2
) with m̃k(dr) := ( bk

2akπ
)
1
2 exp[− bkr

2

2ak
]dr in terms of the basis ϕ̃k :=

(αk)
−1/2ϕk, k ∈ N, normalized in H.

Assuming (C1), the push-forward of GD under the map

(2.8) Ψλ : D ∋ ϕ 7→ λ ◦ ϕ−1 ∈ Pp

yields a probability measure

(2.9) Λ := GD ◦Ψ−1
λ

on (Pp,B(Pp)) suitable for the purpose of defining a gradient-type Dirichlet form.
Dirichlet forms and diffusion processes on Pp related to the intrinsic derivative have been

studied in [29, 31] for such type of reference measures Λ. The next proposition sums up the
relevant result in our context.
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Proposition 2.10. Assume (C1). Let Λ be as in (2.9) and γ : Rd×P → (0,∞) be measurable
such that c−1 ≤ γ(·, ·) ≤ c for some constant c ∈ (0,∞). We set γµ(·) := γ(·, µ).

(i) The bilinear form (E γ,Λ, C1
b (Pp)), defined

E γ,Λ(u, v) :=

∫
Pp

µ
(
γµ⟨Du(µ), Dv(µ)⟩

)
Λ(dµ), u, v ∈ C1

b (Pp),

is closable in L2(Pp,Λ). Its smallest closed extension yields a quasi-regular, strongly local
Dirichlet form (E γ,Λ,D(E γ,Λ)). In particular, there is a non-terminating diffusion (Ω,F ,
(µt)t≥0, (Pµ)µ∈Pp) which is properly associated with E γ,Λ.

(ii) There exist ϕµ,k ∈ L2(Rd → Rd, µ), k ∈ N, µ ∈ Pp, such that Dϕµ,k
u : Pp → R is

measurable for u ∈ C1
b (Pp) and (E γ,Λ,D(E γ,Λ)) admits a square-field operator Γ with

Γ(u, v)(µ) = µ
(
γµ⟨Du(µ), Dv(µ)⟩

)
=

∞∑
k=1

Dγµϕµ,k
u(µ)Dϕµ,k

v(µ)

for Λ-a.e. µ ∈ Pp, u, v ∈ C1
b (Pp).

Proof. In the proof, we write E := E γ,Λ for short.
(i) We may w.l.o.g. assume γ(·, ·) = 1 regarding the claim of (i), as it does not affect the

properties of closability, locality and quasi-regularity. Let X := Lp(Rd → Rd, λ) and idD→X be
the identification of an element in D with its λ-class. For k ∈ N and ϕk as in Condition (C1)
there exists a Dirichlet form (Eϕk

,D(Eϕk
)) on D corresponding to the directional derivative

w.r.t. ϕk, as introduced at the end of Section 2.1. For simplicity, the image structure under
idD→X , i.e. image form and image measure on X, are again denoted by Eϕk

and GD . Let
C1

b (X) denote the space of functions f : X → R with continuous, bounded Fréchet derivative
∇f : X → L∞(Rd → Rd, λ). Clearly, C1

b (X) on X is contained in

D(Ẽ ) :=
{
f ∈

⋂
k∈N

D(Eϕk
) :
∑
k∈N

Eϕk
(f, f) < ∞

}
.

Moreover,

D(Ẽ )× D(Ẽ ) ∋ (f, g) 7→
∑
k∈N

Eϕk
(f, g)

is a closed symmetric form in L2(X,GD).
Now, the proof can be completed by using the arguments presented in the proofs of [29,

Thm. 3.2] and [31, Thms. 2.1 & 3.1]. First, Ψλ can be understood as a continuous map on X,
because the assignment in (2.8) respects λ-classes. From [6, Thm. 2.1], it follows u◦Ψλ ∈ C1

b (X)
for u ∈ C1

b (Pp) with

(2.10) ∇(u ◦Ψλ)(ϕ) = (Du ◦Ψλ) ◦ ϕ, ϕ ∈ X

(see also [31, Lem. 3.2]). This, in turn, implies that the image form of (Ẽ ,D(Ẽ )) under Ψλ is an
extension of (E , C1

b (Pp)). Since such an extension, say E with domain D(E )large ⊂ L2(Pp,Λ),

can be restricted to the topological closure C1
b (Pp)

E1
of C1

b (Pp) in D(E )large w.r.t. E 1/2
1 -norm,
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there exists a minimal closed symmetric form (E ,D(E )) = C1
b (Pp)

E1
in L2(Pp,Λ) extending

(E , C1
b (Pp)). The Markovian property of (E ,D(E )) is inherited via the relation in (2.10) and

the fact that {κ ◦ u : u ∈ C1
b (Pp)} ⊆ C1

b (Pp) for κ ∈ C1
b (R). The strong local property and

the existence of a square-field operator (i.e. the fact that E satisfies (2.1) with Γ(u, v)(µ) =
⟨Du(µ), Dv(µ)⟩Tµ,2) is a consequence of the strong local property, respectively the product
rule, of the gradient operator on C1

b (X) and again (2.10). Finally, (E ,D(E )) is a quasi-regular
Dirichlet form on Pp via the criterion in [31, Thms. 2.1], since D(E ) contains all differentiable
cylinder functions on Pp, has a dense subset of continuous functions and

E (u, u) ≤ sup
µ∈Pp

∥Du(µ)∥2
L

p
p−1 (Rd→Rd,µ)

, u ∈ C1
b (Pp).

Hence, a diffusion on Pp as claimed exists and the proof of (i) is complete.
(ii) Let u, v ∈ C1

b (Pp) and k ∈ N. We refer to [31, Sect. 3.2, in part. Thm. 3.4 & Exa. 3.7]
for the existence of ϕµ,k ∈ L2(Rd → Rd, µ), µ ∈ Pp, as claimed such that

(2.11)

∫
Pp

µ
(
γµ⟨Dv(µ), ϕµ,k⟩

)
µ
(
⟨Dv(µ), ϕµ,k

〉)
Λ(dµ)

=

∫
D

λ
(
γ(Ψλ(ϕ), ϕ(·))⟨∇(u ◦Ψλ)(ϕ), ϕk⟩

)
λ
(
⟨∇(u ◦Ψλ)(ϕ), ϕk⟩

)
GD(dϕ).

Summing up over k ∈ N, the right-hand side of (2.11) equals∫
D

λ
(
γ(Ψλ(ϕ), ϕ(·))⟨∇(u ◦Ψλ)(ϕ),∇(v ◦Ψλ)(ϕ)⟩

)
GD(dϕ) = E (u, v)

because of (2.10) and the fact that {ϕk}k∈N is an orthonormal basis of L2(Rd → Rd, λ). The
claim now follows easily by (2.11).

We consider D1 as in (1.13). The composition makes (D1, ◦) a group. Hence, the sets

(2.12) [λ]∼ := Ψλ(D1), λ ∈ Pac
p ,

are equivalence classes on Pac
p . The definition of Λ depends on a fixed choice for λ ∈ Pac

p . In
the situation of Example 2.8, if instead of λ and (2.8) we consider an element µ ∈ [λ]∼, then
Λ may as well be represented as a push-forward measure under Ψµ, after a linear transform of
the Gaussian GD .

Remark 2.11. Let (D , dD) be as in (2.7) and ND be the set of all Gaussian measures on
(D ,B(D)) with full topological support.

(i) Given ϕ ∈ D1 the vector space isomorphism

Kϕ : D ∋ ϕ̃ 7→ ϕ̃ ◦ ϕ ∈ D

defines permutation on ND through the assignment

GD 7→ GD ◦K−1
ϕ .
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By the elementary relation

(GD ◦K−1
ϕ ) ◦Ψ−1

λ = GD ◦Ψ−1
Ψλ(ϕ)

the family {GD ◦ Ψ−1
λ : GD ∈ ND} coincides with {GD ◦ Ψ−1

µ : GD ∈ ND} if µ, λ ∈ Pac
p are

equivalent and is henceforth denoted by G[λ].
(ii) Since Kϕ(D1) = D1 for ϕ ∈ D1, the same reasoning applies to the family{

GD ◦Ψ−1
λ : GD(dϕ) =

1D1(ϕ)G
′
D(dϕ)

G′
D(D1)

for some G′
D ∈ ND

}
=: G 1

[λ]

for λ ∈ Pac
p . We note that Λ(Pac

p ) = 1 for Λ ∈ G 1
[λ], because every function in D1 is a

diffeomorphism.
(iii) Let p = 2. Since D is densely contained in L2(Rd → Rd, λ) for all λ ∈ Pac

p , so is the
Cameron–Martin space HGD

for every GD ∈ ND . Hence, Condition (C1) is always satisfied if
λ ∈ Pac

p and GD ∈ ND . The same is true for

GD :=
1D1G

′
D

G′
D(D1)

, G′
D ∈ ND ,

by Remark 2.7.

Lemma 2.12. Let λ ∈ Pac
2 . Any measure Λ ∈ G[λ] ∪ G 1

[λ] has full topological support on P2.

Proof. It suffices to show that Ψλ(D) and Ψλ(D1) are dense in P2. If so, for any open neigh-
borhood U of an element µ ∈ P2, the sets Ψ

−1
λ (U) and Ψ−1

λ (U)∩D1 are non-empty open in D
and hence they are assigned a positive probability w.r.t. any non-degenerate Gaussian on D .
The density of Ψλ(D) is trivial, since D is dense in L2(Rd → Rd, λ) and for each µ ∈ P2 there
is a measurable transport map ϕ : Rd → Rd such that λ ◦ ϕ−1 = µ. In the case of Ψλ(D1), we
argue as follows. For an arbitrary element µ ∈ P2 we can choose an optimal pair (φ, φc) such
that

λ(φ) + µ(φc) = sup
(f,g)

(λ(f) + µ(g)) = W2(µ, λ),

where the supremum runs over all (f, g) ∈ Cb with f(x) + g(y) ≤ |x − y|2 for x, y ∈ Rd and
φc(y) := infx∈Rd |x − y|2 − φ(x). Then, we know from the theory of optimal transport that
| · |2 − φ is convex, φ has an approximate differential ∇φ and

ϕ : Rd ∋ x 7→ x− 1
2
∇φ(x) ∈ Rd

is an optimal transport map with λ ◦ ϕ−1 = µ, see [5, Thm. 6.2.4]. We can approximate ϕ by
elements in D1. For this purpose, let {kn}n∈N be a smooth approximate identity on Rd and

ϕn : Rd ∋ x 7→ (1 + 1
n
)x− 1

2
∇(kn ∗ φ)(x) ∈ Rd, n ≥ 1.

Since ϕn is the gradient field of a strictly convex function, the Jacobi matrix ∇ϕn of ϕn is
symmetric and strictly positive definite, uniformly on Rd. This implies that ϕn is injective
and the image set Im(ϕn) is open. Moreover, by Lipschitz continuity of the inverse ϕ−1

n :

18



Im(ϕn) → Rd, every Cauchy-sequence in Im(ϕn) has a limit inside Im(ϕn). Thus, Im(ϕn) = Rd.
The map Rd → x 7→ ϕ−1

n (x)+ x
m

∈ Rd is bi-Lipschitz by construction and hence a diffeomorphism
on Rd. So, the claimed density of Ψλ(D1) follows since the family

ϕn,m : Rd ∋ x 7→
(
ϕ−1
n +

id

m

)−1

(x) ∈ Rd, m ≥ 1,

belong to D1 and

Ψλ(ϕn,m) = λ ◦ (ϕ−1
n + 1

m
id)

m→∞−→ λ ◦ ϕ−1
n

n→∞−→ λ ◦ ϕ =: µ

w.r.t. W2.

3 Perturbation by energy functionals

From here on, we always consider (D , dD) as in (2.7) and D1 as in (1.13). For λ ∈ Pac
p the

map Ψλ : D → Pp is defined in (2.8). In this section, we treat perturbations for a diffusion
process (Rt)t≥0 with Dirichlet form E γ,Λ given in Proposition 2.10. The invariant measure Λ is

multiplied by a factor proportional to e−WF while the square-field operator Γ remains the same.
The energy functional WF is of the type (1.10) and thus takes values smaller infinity only on a
certain domain within Pac. Conditions (C2) and (C3) below make sure the measure ΛF in (1.9)
is well-defined and a stochastic quantization exists, i.e. ΛF is the stationary distribution of a
gradient diffusion process (µt)t≥0 (see Theorem 3.5 below). Consequently, as stated in Corollary
3.8 below, (µt)t≥0 solves (1.6) in case W ∈ D(E γ,Λ) such that e−WF ∈ D(E γ,Λ) ∩ L∞(Λ).

We assume that λ and F satisfy:

(C2) λ ∈ Pac
p , F : Rd × [0,∞) → R is measurable such that

∫
Rd F̄α(x)dx < ∞ for any

α ∈ (1,∞), where

F̄α(x) := sup
{∣∣F(y, tρλ(x))∣∣ : (y, t) ∈ Rd × R, |y| ≤ α(1 + |x|), t ∈ [α−1, α]

}
.

Remark 3.1. (i) Every ϕ ∈ D1 is a bi-Lipschitz C1-diffeomorphism Rd → Rd with

inf
x∈Rd

∣∣det[∇ϕ(x)]
∣∣ > 0

and for λ ∈ Pac
p the transformation rule yields∫

Rd

(f ◦ ϕ)λ(dx) =
∫
Rd

f(x)ρλ(ϕ
−1(x))dx

|det[∇ϕ(ϕ−1(x))]|

for bounded measurable f : Rd → R. Hence, if µ = Ψλ(ϕ), then

ρµ(x) :=
µ(dx)

dx
=

ρλ(ϕ
−1(x))

|det[∇ϕ(ϕ−1(x))]|
.
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(ii) With Condition (C2) the density e−WF is strictly positive on Ψλ(D1). Indeed, for ϕ ∈ D1,∫
Rd

|F
(
ϕ(x), |det[∇ϕ(x)]|−1ρλ(x)

)
det[∇ϕ(x)]|dx < ∞.

Thus, if µ = λ ◦ ϕ−1, then e−WF (µ) > 0 due to

WF (µ) =

∫
Rd

F (x, ρµ(x))dx =

∫
Rd

F (x, ρµ(x))ρµ(x)
−1µ(dx)(3.1)

=

∫
Rd

F
(
ϕ(x), |det[∇ϕ(x)]|−1ρλ(x)

)
det[∇ϕ(x)]dx.

We present a relevant example for a function F , which is further discussed in Example 3.6 and
Corollary 4.4 below.

Example 3.2. If λ ∈ Pac
p with λ(ln |ρλ|) < ∞, then (C2) is satisfied for

F (x, s) := sV (x) +

∫ s

0

∫ t

1

q(r)

r
drdt, x ∈ Rd, s ∈ [0,∞),

where V ∈ C(Rd) and q : (0,∞) → (0,∞) is measurable such that

V (·) ≤ c(1 + | · |), c−1 ≤ q(·) ≤ c,

for some constant c ∈ (0,∞). Indeed, we can find a constant c̃ ∈ (0,∞) such that

|F (x, s)| ≤ c̃s(1 + |x|+ | ln(s)|),

by which
∫
Rd F̄α(x)dx < ∞ for α ∈ (1,∞) is obvious.

Remark 3.3. Let β : R → R, b : R → (0,∞), Φ ∈ Rd → R be as in [27, Hypothesis 1], in
particular

β ∈ C1(R), β(0) = 0, c−1 ≤ β′ ≤ c,

b ∈ Cb(R) ∩ C1(R), c−1 ≤ b,

Φ ∈ C1(Rd), ∇ϕ ∈ Cb(Rd,Rd),

for some constant c ∈ (0,∞) and

(3.2) F (x, s) := sΦ(x) +

∫ s

0

∫ t

1

β′(r)

rb(r)
drdt, x ∈ Rd, s ∈ [0,∞).

By [27, Thm.’s 2, 3.7 & 3.8] there is a one-to-one correspondence between the probability
solutions to the generalized porous media equation (1.3) and the gradient flow in (1.4). If
λ ∈ Pac

p with λ(ln |ρλ|) < ∞, then (C2) holds for F in (3.2), as this is a special case of
Example 3.2. In Example 3.6 below, we choose Λ from the family G 1

[λ] of Gaussian-based

measures (see Remark 2.11 (ii)) and give an existence statement for a diffusion (µt)t≥0 on P2

which has invariant measure ΛF as defined in (1.9). The representation of (µt)t≥0 as a stochastic
gradient flow is discussed in Section 4.
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The next condition makes sure the pre-Dirichlet form in (1.12) is well-defined on C1
b (Pp),

closable in L2(Pp,ΛF ) and yields a diffusion process on Pp.

(C3) For given λ ∈ Pac
p together with a probability measure GD on (D ,B(D)) and a function

F : Rd × (0,∞) → R we assume:

• (C1), (C2) hold true.

• GD(D1) = 1.

• ZF :=

∫
D1

e−WF (λ◦ϕ−1)GD(dϕ) < ∞.

Remark 3.4. With Condition (C3) and Λ := GD ◦Ψ−1
λ , it follows Λ(Pac

p ) = 1 and the function

e−WF is strictly positive, Λ-almost surely, because of (3.1). Moreover,
∫

Pp
e−WF (µ)Λ(dµ) =∫

D1
e−WF (λ◦ϕ−1)GD(dϕ) and so, (1.9) defines a probability measure on Pac

p .

In Theorem 3.5 below, we assume (C3) and consider the bilinear form

(3.3) E F (u, v) :=

∫
Pp

Γ(u, v)dΛF , u, v ∈ C1
b (Pp),

where Γ is the square-field operator of E γ,Λ as in Proposition 2.10.

Theorem 3.5. (E F , C1
b (Pp)) is closable in L2(Pp,ΛF ) and its closure (E F ,D(E F )) is a quasi-

regular, strongly local Dirichlet form. There is a non-terminating diffusion (Ω,F , (µt)t≥0,
(Pµ)µ∈Pp) on Pp which is properly associated with (E F ,D(E F )).

Proof. By Proposition 2.10, it suffices to verify condition (C1) for the measure (e−WF ◦Ψλ)dGD

replacing GD .
We observe, that Condition (2.5) for a probability measure m on (R,B(R)) is inherited to

ϱm, if ϱ : R → [0,∞) is measurable,
∫
R ϱdm = 1 and

m
(
{t ∈ R : ϱ is continuous on (t− ε, t+ ε) for some ε > 0}

)
= 1.

So, inferring that D1 is an open set in D , the claim follows once we show that e−WF ◦ Ψλ is
continuous on D1. Let ξ ∈ D1 and

B(ξ) :=
{
ϕ ∈ D : 2dD(ϕ, ξ)

d < 2 ∧ inf
x∈Rd

|det[∇ξ(x)]|
}
.

Then, B(ξ) ⊂ D1, since ϕ ∈ B(ξ) implies

inf
x∈Rd

det[∇ϕ(x)] ≥ inf
x∈Rd

|det[∇ξ(x)]| − ∥∇(ϕ− ξ)∥d∞(3.4)

≥ inf
x∈Rd

|det[∇ξ(x)]| − dD(ϕ, ξ)
d ≥ 1

2
inf
x∈Rd

|det[∇ξ(x)]| > 0.

Analogously to (3.1),

(3.5)

∫
Rd

F (x, ρλ◦ϕ−1(x))dx =

∫
Rd

F
(
ϕ(x), |det[∇ϕ(x)]|−1ρλ(x)

)
|det[∇ϕ(x)]|dx
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for ϕ ∈ B(ξ). Due to (C2) and (3.4), we can find a dx-integrable function which dominates
the integrand of the right-hand side of (3.5), uniformly in ϕ ∈ B(ξ). Hence, using Lebesgue’s
dominated convergence and (3.5), if {ϕn}n∈N ⊂ D1, ϕ ∈ B(ξ), such that dD(ϕn, ϕ) = 0, then

lim
n→∞

(WF ◦Ψλ)(ϕn) = lim
n→∞

∫
Rd

F
(
ϕn(x), |det[∇ϕn(x)]|−1ρλ(x)

)
|det[∇ϕn(x)]|dx

=

∫
Rd

F
(
ϕ(x), |det[∇ϕ(x)]|−1ρλ(x)

)
|det[∇ϕ(x)]|dx

=

∫
Rd

F (x, ρλ◦ϕ−1(x))dx = (WF ◦Ψλ)(ϕ).

This implies continuity of e−WF ◦Ψλ on D1 and concludes the proof.

The next example shows that Theorem 3.5 is applicable for F as in Example 3.2 and Λ ∈ G 1
[λ]

as defined in Remark 2.11 (ii). We choose p = 2 to ensure Condition (C1) through the argument
of Remark 2.11 (iii).

Example 3.6. Let λ ∈ Pac
2 , λ(ln |ρλ|) < ∞, F : Rd × [0,∞) → R be as in Example 3.2 and

Λ ∈ G 1
[λ]. We find constants c1, c2 ∈ (0,∞) such that for all ϕ ∈ D1 it holds

−WF (λ ◦ ϕ−1) = −
∫
Rd

F
(
ϕ(x), ρλ

|det[∇ϕ]|(x)
)
|det[∇ϕ(x)]|dx(3.6)

≤ c1

∫
Rd

(
1 + |ϕ(x)| − ln

(
ρλ

|det[∇ϕ]|(x)
))
ρλ(x)dx ≤ c2(1 + ∥ϕ∥D ,2),

where

∥ϕ∥D ,2 :=
(∫

Rd

(|ϕ|2 + |∇ϕ|2)dλ
) 1

2
.

Since ∥·∥D ,2 is a measurable norm on (D , dD), for any Gaussian measure GD there exists α > 0

such that GD(e
α∥·∥2D,2) < ∞, see [11, Thm. 2.8.5]. This implies

ZF =

∫
D1

e−WF (λ◦ϕ−1)GD(dϕ) < ∞

in view of (3.6) for any Gaussian measure GD on D . In particular, the measure ΛF (dµ) :=
Z−1

F e−WF (µ)Λ(dµ) is well-defined, since Λ ∈ G 1
[λ]. By Theorem 3.5 there exists a non-terminating

diffusion on P2 which is properly associated with the closure of (E F , C1
b (Pp)) as in (3.3).

The diffusion obtained under (C3) by Theorem 3.5 is denoted by (µt)t≥0 in the following.
It has invariant measure ΛF as in (1.9). We can regard (µt)t≥0 as a perturbation of the process
(Rt)t≥0 with invariant measure Λ, which arises from the choice F = 0 and has Dirichlet form

(E ,D(E )) := (E γ,Λ,D(E γ,Λ)) as in Proposition 2.10.
To make sense of the drift term involving DγWF in (1.6), (1.7), we introduce the “weak

intrinsic derivative”, which is the intrinsic gradient D from Definition 2.6 extended naturally
to D(E ). According to the proof of Proposition 2.10, for any u ∈ D(E ), we find a sequence
{fm}m∈N ⊂ C1

b (L
p(Rd → Rd, λ)) such that:
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(a) fm → u ◦Ψλ in L2(D , GD).

(b) fm is measurable w.r.t σ(Ψλ), the σ-algebra σ(Ψλ) generated by Ψλ.

(c) {∇fm}m is a Cauchy sequence in L2(D → L2(Rd → Rd, λ), GD).

Due to (C1) the limit

D ∋ ϕ 7→ D̃u(ϕ) := lim
m→∞

∇fm(ϕ) in L2(D → L2(Rd → Rd, λ), GD)

only depends on u (but not on the choice of an approximating sequence {fm}m) and is measur-
able w.r.t. σ(Ψλ). In view of Λ := GD ◦ Ψ−1

λ and GD(D1) = 1, we obtain the following notion
of a weak intrinsic gradient.

Definition 3.7 (Weak intrinsic gradient). For u ∈ D(E ) the unique element

Du ∈
∞⋂
n=1

L2
(
Rd × Pp → Rd, µ(dx)Λ(dµ)

)
such that

Du(Ψλ(ϕ)) ◦ ϕ = D̃u(ϕ), GD -a.e. ϕ ∈ D1,

is called weak intrinsic gradient of u.

It is clear that for u ∈ C1
b (Pp), the weak intrinsic gradient coincides with the intrinsic

derivative Du. Moreover, the square-field operator of (E ,D(E )) is given by

(3.7) Γ(u, v)(µ) =

∫
Rd

γµ(x)⟨Du(x, µ), Dv(x, µ)⟩µ(dx), Λ-a.e. µ ∈ Pp, u, v ∈ D(E ).

We formulate a corollary of Theorem 3.5.

Corollary 3.8. In addition to (C3) we assume WF ∈ D(E ) and e−WF ∈ D(E ) ∩ L∞(Pp,Λ).
Let (A,D(A)) be the generator of (E ,D(E )) in L2(Pp,Λ). The diffusion (Ω,F , (µt)t≥0,
(Pµ)µ∈Pp) on Pp which is properly associated with (E F ,D(E F )) yields a solution to (1.6),
(1.7). More precisely:

(i) Let u ∈ D(A) and ũ denotes an E F -quasi-continuous version. Then,

ũ(µt)−
∫ t

0

[
Au(µs)− µs

(
⟨γµsDWF (·, µs), Du(·, µs)⟩

)]
ds, t ≥ 0,

is a Pµ-martingale for E F -q.e. µ ∈ Pp.

(ii) If additionally e−
1
2
WF ∈ D(E ), the set Pp \ Pac

p is E F -exceptional.

Proof. (i) We note that e−WF ∈ L∞(Pp,Λ) implies D(A) ⊂ D(E ) ⊆ D(E F ). Due to
integrability of µ 7→ µ

(
γµ⟨DWF (·, µ), Du(·, µ)⟩

)
w.r.t. ΛF (dµ) for u ∈ D(E F ), the term∫ t

0
µs(γµs⟨DWF (·, µs), Du(·, µs)⟩)ds is well-defined as an additive functional of the process

(µt)t≥0. The statement follows by Lemma 2.1, (3.7) and Remark 2.3.

(ii) Under the assumption e−
1
2
WF ∈ D(E ), an E F -nest which is contained in {µ ∈ Pp :

WF (µ) ∈ (0,∞)} can be constructed analogously as in the proof of [16, Lem. 3.2]. The state-
ment follows since {µ ∈ Pp : WF (µ) ∈ (0,∞)} ⊆ Pac

p .
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4 Functionals with local weak gradient

This section is motivated by the following observation. In case of Example 3.6 we cannot show
that WF has a weak intrinsic gradient in the sense of Definition 3.7, because the candidate
for its gradient DWF (µ) = ∇V + q(ρµ)∇ρµ

ρµ
doesn’t have the desired integrability properties

w.r.t. Λ(dµ). We introduce the notion of a “local weak intrinsic gradient”. Under suitable
Lipschitz conditions on F and ∂2F , by Theorem 4.3 below, WF has a local gradient in this
sense. The application to Example 3.6 is addressed subsequently.

Let λ, GD satisfy (C1) with (D , dD) as in (2.7). Defining

D2 :=
{
ϕ ∈ D : ∇ϕ ∈ C1

b (Rd,Rd×d)
}

and D1 as in (1.13), we additionally assume

GD(D1 ∩ D2) = 1.

The linear space D2 is complete regarding the metric

(4.1) dD2(ϕ1, ϕ2) := dD(ϕ1, ϕ2) +
∥∥∇2ϕ1 −∇2ϕ2

∥∥
∞, ϕ1, ϕ2 ∈ D2,

where

∥∇2ϕ∥∞ = sup
x ̸=y

|∇ϕ(x)−∇ϕ(y)|op
|x− y|

with | · |op being the operator norm for matrices.

Remark 4.1. A choice for GD which fulfills these requirements can always be found in the
class of Gaussian-based measures. First, we define a non-degenerate Gaussian measure on D2

analogously as done in Example 2.9 for the space D , by regarding

ak :=
(
2k(∥∇ϕk∥2∞ ∨ ∥∇2ϕk∥2∞)

)
∨ 1, k ∈ N,

instead and proceeding the exact same way. Then, property (C1) is preserved if we condition
to the set D1, which is open in (D , dD), as pointed out in Remark 2.7. So, we end up with a
measure GD on D2 such that GD(D1 ∩ D2) = 1 and Condition (C1) holds true.

To define the local weak intrinsic gradient we introduce the sets

D (n) :=
{
ϕ ∈ D2 ∩ D1 : ∥∇ϕ−1∥∞ + dD2(ϕ, 0) < n

}
, n ∈ N,

which are increasing to D1 ∩ D2 as n ↑ ∞. For n ∈ N let

(4.2) Λ(n) :=
( 1D(n)GD

GD(D (n))

)
◦Ψ−1

λ .

By Proposition 2.10, we obtain Dirichlet forms (E (n),D(E (n))) := (E γ,Λ(n)
,D(E γ,Λ(n)

)) in
L2(Pp,Λ

(n)) respectively for n ∈ N, as well as (E ,D(E )) := (E γ,Λ,D(E γ,Λ)) with Λ := GD◦Ψ−1
λ .

The domains D(E (n)) are decreasing in n and

D(E ) ⊆ D(E (∞)) :=
∞⋂
n=1

D(E (n)).
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It should be mentioned that supp[Λ(n)] is compact w.r.t. the p-Wasserstein topology, due to
continuity of the map

Lp(Rd → Rd, λ) ∋ ϕ 7→ Ψλ(ϕ) = λ ◦ ϕ−1 ∈ Pp

and the fact that bounded sets in (D2, dD2) are precompact in Lp(Rd → Rd, λ).
Definition 4.2 below is analogue to Definition 3.7, but using the notion of the weak gradi-

ent coming from the family of Dirichlet forms {E (n)}n instead of E . According to the proof
of Proposition 2.10 with 1D(n)GD replacing GD , for any u ∈ D(E (n)), we find a sequence
{fm}m∈N ⊂ C1

b (L
p(Rd → Rd, λ)) such that the analogues of (a), (b), (c) at the end of Section 3

hold true regarding 1D(n)GD . The limit

D ∋ ϕ 7→ D̃u(ϕ) := lim
n→∞

∇fm(ϕ) in L2(D → L2(Rd → Rd, λ),1D(n)GD)(4.3)

only depends on u (but not on the choice of an approximating sequence {fm}m) and is mea-
surable w.r.t. σ(Ψλ). Moreover, by the hierarchy of open sets,

D (n1) ⊂ D (n2) for n1 ≤ n2,

we conclude that forGD -a.e. ϕ, D̃
u(ϕ) does not depend on a particular choice of n with ϕ ∈ D (n),

given that u ∈ D(E (∞)). So,

D̃u ∈
∞⋂
n=1

L2
(
D → L2(Rd → Rd, λ),1D(n)GD

)
is well-defined. In view of (4.2) and Λ(n) ↑ Λ, up to normalization constants, we have the
following notion of a local weak intrinsic derivative.

Definition 4.2 (Local weak intrinsic gradient). For u ∈ D(E (∞)) the unique element

Du ∈
∞⋂
n=1

L2
(
Rd × Pp → Rd, µ(dx)Λ(n)(dµ)

)
such that

Du(Ψλ(ϕ)) ◦ ϕ = D̃u(ϕ), GD -a.e. ϕ,

is called local weak intrinsic gradient of u.

It is clear that for u ∈ C1
b (Pp), respectively u ∈ D(E ), the local weak intrinsic gradient

coincides with the (weak) intrinsic gradient.
Let ∇1 and ∂2 denote the gradient in x and derivative in s for (x, s) ∈ Rd × (0,∞).

Theorem 4.3. We assume (C1), (C2) with GD(D2 ∩ D1) = 1 and λ ∈ Pac
p such that ρλ is

strictly positive, Lipschitz continuous. Then:
(i) ρµ is Lipschitz continuous for Λ-a.e. µ.
(ii) If F and ∂2F are locally Lipschitz continuous on Rd × (0,∞) and

Λ(n)
(∥∥|(∇1∂2F )(·, ρµ)|+

∣∣(∂2∂2F )(·, ρµ)∇ρµ
∣∣+ |∂2F (·, ρµ)|

∥∥2
L2(Rd,µ)

)
< ∞
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for n ∈ N, then the functional WF defined in (1.10) has local weak intrinsic derivative satisfying

(4.4) DWF (µ)(x) = HF (x, µ) := (∇1∂2F )(x, ρµ(x)) + (∂2∂2F )(x, ρµ(x))∇ρµ(x)

for µ(dx)Λ(dµ)-a.e. (x, µ) ∈ Rd × Pp.

Proof. We complete the proof by four steps. Claim (i) follows from Step (1). Claim (ii) is
verified in Steps (2)-(4).

(1) First, we show that ρµ is Lipschitz continuous for Λ(n)-a.e. µ and any n ∈ N, with a
Lipschitz constant only depending on n ∈ N. We recall

(4.5) ρµ =
( ρλ
|det∇ϕ|

)
◦ ϕ−1, ϕ ∈ D1, µ = Ψλ(ϕ) = λ ◦ ϕ−1.

For any ϕ ∈ D (n), we have

(4.6) ∥∇ϕ∥∞ ∨ ∥∇2ϕ∥∞ ∨ ∥∇ϕ−1∥∞ ∨ |ϕ(0)| ≤ n.

Then

|ϕ−1(0)| ≤ n+ |ϕ−1(0)− ϕ(0)| ≤ n+ n|ϕ(ϕ(0))| ≤ n+ n|ϕ(0)|+ n2|∇ϕ∥∞ ≤ 3n3

and hence
|ϕ−1(x)| ≤ 3n3 + ∥∇ϕ−1∥∞|x| ≤ 3n3 + n|x|.

This together with (4.6) yields

inf
|x|≤r

( ρλ
|det∇ϕ|

)
(ϕ−1(x)) ≥ n−d inf

|x|≤3n3+nr
ρλ(x) > 0,(4.7)

sup
|x|≤r

( ρλ
|det∇ϕ|

)
(ϕ−1(x)) ≤ nd sup

|x|≤3n3+nr

ρλ(x) < ∞, r ∈ (0,∞).

Moreover, for µ := Ψλ(ϕ), ϕ ∈ D (n), (4.5) implies

(4.8) ∇ρµ =

(
(∇ϕ)−1∇ρλ
|det∇ϕ|

− sgn(det[∇ϕ])
ρλ(∇ϕ)−1(∇det∇ϕ)

|det∇ϕ|2

)
◦ ϕ−1

and thus by (4.6) we find a constant cn ∈ (0,∞) such that

(4.9) ∥∇ρµ∥∞ ≤ cn, Λ(n)-a.e. µ.

(2) In this step we calculate the local weak intrinsic gradient DWF for F satisfying

(4.10) F ∈ C2(Rd × (0,∞)),
⋃
s>0

supp[F (·, s)] ⊂ [−l, l]d for some l > 0.

Let τ ∈ C∞
0 (Rd) such that for some constant ε > 0

0 ≤ τ ≤ 1, τ(x) = 1 if |x| ≤ ε,

∫
Rd

τ(x)dx = 1.
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For any m ∈ N and x ∈ Rd, let τm(x) := mdτ(mx). Define

(τm ∗ µ)(x) :=
∫
Rd

τm(x− y)µ(dy), µ ∈ P, x ∈ Rd.

By (4.5)-(4.9), we have

τm ∗ µ ∈ C∞
b (Rd), inf

[−l,l]d
τm ∗ µ > 0, m ∈ N, µ ∈ Ψλ(D

(n)),(4.11)

lim
m→∞

sup
µ∈Ψλ(D(n))

(
∥ρµ − τm ∗ µ∥∞ + ∥∇ρµ −∇(τm ∗ µ)∥L2(Rd→Rd,µ)

)
= 0, n ∈ N.

Moreover, in view of (4.10), there exists F̃ ∈ C2
c (Rd+1) such that

F (x, (τm ∗ µ)(x)) = F̃ (x, (τm ∗ µ)(x))

for x ∈ Rd, m ∈ N, µ ∈ Ψλ(D (n)), and hence defining um(µ) :=
∫
Rd F̃

(
x, (τm ∗ µ)(x)

)
dx,

µ ∈ Pp, we have um ∈ C1
b (Pp) and

um(µ) =

∫
Rd

F
(
x, (τm ∗ µ)(x)

)
dx,

Dum(µ)(x) =

∫
Rd

[
∂2F (y, (τm ∗ µ)(y))

]
(−∇τm)(y − x)dy

for µ ∈ Ψλ(D (n)). With integration by parts we get

Dum(µ)(x) =

∫
Rd

[
(∇1∂2F )(·, τm ∗ µ) + (∂2∂2F )(·, τm ∗ µ)∇(τm ∗ µ)

]
(y)τm(y − x)dy.

Using (4.10) and (4.11), we obtain

lim
m→∞

sup
µ∈Ψλ(D(n))

(
|um(µ)−WF (µ)|+

∥∥Dum(µ)−HF (·, µ)
∥∥
L2(Rd→Rd,µ)

)
= 0, n ∈ N.

Hence, WF has local weak intrinsic derivative DWF = HF as claimed.
(3) We calculate the local weak intrinsic derivative DWF for F as in the assumptions, but

keep the support condition

(4.12)
⋃
s>0

supp[F (·, s)] ⊂ [−l, l]d for some l > 0

of the previous step. For m ∈ N and (x, s) ∈ Rd × (0,∞) let

Fm(x, s) :=
1

m

∫ s+m−1

s

dr

∫
Rd

F (y, r)τm(x− y)dx.

Then Fm satisfies (4.10). Hence, by Step (2), WFm has local weak intrinsic derivative DWFm =
HFm and from (4.5)-(4.9), (4.12) we conclude

sup
m∈N

sup
µ∈Ψλ(D(n))

∥∥|WFm(µ)|+ |HFm(·, µ)|
∥∥
L∞(Rd,µ)

< ∞, n ∈ N.
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Consequently, for each n,

(4.13) lim
m→∞

(∥∥WFm −WF

∥∥
L2(P2,Λ(n))

+
∥∥DWFm −HF

∥∥
L2(Rd×P2→Rd,µ(dx)Λ(n)(dµ))

)
= 0.

So, WF has local weak intrinsic gradient DWF = HF .
(4) Let F be as in the assumptions of the theorem. For any m ∈ N, let

Fm(x, s) := τ(mx)F (x, s).

Then Fm satisfies Condition (4.12), so that Step (3) implies that WFm has local weak intrinsic
derivative DWFm = HFm . Since

|HFm(·, µ)| ≤ cτ

(∣∣(∇1∂2F )(·, ρµ)
∣∣+ ∣∣(∂2∂2F )(·, ρµ)∇ρµ

∣∣+ ∣∣(∂2F )(·, ρµ)
∣∣)

for m ∈ N and some constant cτ depending only on τ , we obtain (4.13) for each n by Lebesgue’s
dominated convergence. So, WF has local weak intrinsic derivative DWF = HF .

From here on, we fix λ ∈ Pac
2 with ρλ being strictly positive, Lipschitz continuous and∫
Rd

(
| ln(ρλ)|+ |∇ρλ|

ρλ

)2
dλ < ∞.

Let F, V, q be as in Examples 3.2 & 3.6 with Lipschitz continuous V and GD be as in Remark
4.1. We define Λ,Λ(n) as in (2.9) and (4.2) for n ∈ N. Up to normalization constants Λ(n) ↑ Λ.
Let

Λ
(n)
F :=

e−WF dΛ(n)

Λ(n)(e−WF )

analogous to (1.9), (1.10) and (µ
(n)
t )t≥0 denote the diffusion on P2 with Dirichlet form

(E F,n,D(E F,n)) := (E γ,Λ
(n)
F ,D(E γ,Λ

(n)
F )) as defined by Proposition 2.10 in combination with

Theorem 3.5. The corresponding objects for the undisturbed case F = 0 are denoted by
(R

(n)
t )t≥0 and (E (n),D(E (n))) := (E γ,Λ(n)

,D(E γ,Λ(n)
)).

Combining the results of Sections 3 and Theorem 4.3, (µ
(n)
t )t≥0 can be interpreted as intrinsic

stochastic gradient flow on P2 satisfying

(4.14) dµ
(n)
t = −DγWF (µ

(n)
t )dt+ dR

(n)
t , t ≥ 0,

where

(4.15) DWF (µ) = ∇V +
q(ρµ)∇ρµ

ρµ

is the local weak intrinsic gradient of WF for F as in Examples 3.2 & 3.6. The process (µ
(n)
t )t≥0

lives on the compact set En := supp[Λ(n)] ⊂ Pac
2 . The sets En are increasing in n and⋃

n∈N

En ⊆ P2 densely w.r.t. W2,

as follows by the proof of Lemma 2.12. The precise formulation of (4.14) involves the generator
A(n) of E (n), analogous to (1.7) and Corollary 3.8.
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Corollary 4.4. Let n ∈ N. The diffusion ((µ
(n)
t )t≥0, (Pµ,n)µ∈En) on En which is properly

associated with (E F,n,D(E F,n)) yields a solution to (4.14), (4.15) in the following sense:
For u ∈ D(A(n)),

ũ(µ
(n)
t )−

∫ t

0

[
A(n)u(µ(n)

s )− µ(n)
s

(
γ
µ
(n)
s
⟨DWF (µ

(n)
s ), Du(µ(n)

s )⟩
)]
ds, t ≥ 0,

is a Pµ,n-martingale for E F,n-q.e. µ ∈ En, where ũ denotes an E F,n-quasi-continuous version.

Proof. The statement follows applying Theorem 4.3 and then Corollary 3.8 regarding the lo-
calized objects. To verify the assumptions we use (4.5)-(4.8) and

∂2F (x, s) = V (x) +

∫ s

1

q(r)

r
dr, ∇1∂2F (x, s) = ∇V (x), ∂2∂2F (x, s) =

q(s)

s
.

For n ∈ N and µ ∈ Ψλ(D (n)) there exists a constant cn ∈ (0,∞) such that

∥∂2F (·, ρµ(·))∥L2(Rd,µ) ≤ cn
∥∥1 + | · |+ | ln(ρλ)|

∥∥
L2(Rd,λ)

,

∥∇1∂2F (·, ρµ(·))∥L2(Rd→Rd,µ) ≤ cn,

∥∂2∂2F (·, ρµ(·))∇ρµ∥L2(Rd,µ) ≤ cn
∥∥∇ρλ

ρλ

∥∥
L2(Rd→Rd,λ)

.

Hence, we have e−WF ∈ D(E (n)) ∩ L∞(Λ(n)) and De−WF = −e−WFDWF .

Remark 4.5. Corollary 4.4 incorporates the choice of F as in Remark 3.3 setting V := Φ and
q := β′

b
. With γ(x, µ) := b(ρµ)(x) the deterministic counterpart of (4.14) yields a solution to

the generalized porous media equation (1.3).
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