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Abstract

Under suitable assumptions on β : R→R, D : Rd→Rd and b : Rd→R,
the nonlinear Fokker–Planck equation ut−∆β(u) + div(Db(u)u) = 0,
in (0,∞)×Rd where D = −∇Φ, can be identified as a smooth gradient

flow d+

dt u(t) + ∇Eu(t) = 0, ∀t > 0. Here, E : P∗ ∩ L∞(Rd) → R is
the energy function associated to the equation, where P∗ is a certain
convex subset of the space of probability densities. P∗ is invariant un-
der the flow and ∇Eu is the gradient of E, that is, the tangent vector
field to P at u defined by 〈∇Eu, zu〉u = diff Eu · zu for all vector fields
zu on P∗, where 〈·, ·〉u is a scalar product on a suitable tangent space
Tu(P∗) ⊂ D′(Rd).
MSC: 60H15, 47H05, 47J05.
Keywords: Fokker–Planck equation, gradient flow, semigroup, stochas-
tic equations, tensor metric.

1 Introduction

We are concerned here with the nonlinear Fokker–Planck equation (NFPE)

ut −∆β(u) + div(Db(u)u) = 0 in (0,∞)× Rd,
u(0, x) = u0(x), x ∈ Rd, (1.1)
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where β : R → R, D : Rd → Rd, d ≥ 1, and b : R → R are assumed to
satisfy the following hypotheses

(i) β ∈ C1(R), β(0) = 0, 0 < γ1 ≤ β′(r) ≤ γ2 <∞, ∀r ∈ R.

(ii) b ∈ Cb(R)∩C1(R) and b(r) ≥ b0 > 0, |b′(r)r+b(r)| ≤ γ3 <∞, ∀r ∈ R.

(iii) D ∈ L∞(Rd;Rd) ∩W 1,1
loc (Rd;Rd) and div D ∈ L2(Rd) + L∞(Rd).

(iv) D = −∇Φ, where Φ ∈ C(Rd) ∩W 2,1
loc (Rd), Φ ≥ 1, lim

|x|→∞
Φ(x) = +∞,

Φ−m ∈ L1(Rd) for some m ≥ 2.

NFPE (1.1) is modeling the so called anomalous diffusion in statistical physics
(see, e.g., [13]) and also describes the dynamics of Itô stochastic processes in
terms of their probability densities. In fact, if u is a distributional solution to
(1.1), such that t→ u(t)dx is weakly continuous and u(t) ∈ P , ∀t ≥ 0, then
there is a probabilistically weak solution Xt to the McKean–Vlasov stochastic
differential equation

dXt = D(Xt)b(u(t,Xt))dt+

(
2β(u(t,Xt))

u(t,Xt)

) 1
2

dWt, (1.2)

on a probability space (Ω,F ,P,Wt) with normal filtration (Ft)t≥0. More
exactly, one has LXt ≡ u(t, x), where LXt is the density of the marginal law
P ◦X−1t of Xt with respect to the Lebesgue measure (see [7], [10]).

The function u : [0,∞)×Rd → R is called a mild solution to (1.1) if it is
L1-continuous, that is u ∈ C([0,∞);L1(Rd)), and

u(t) = lim
h→0

uh(t) in L1(Rd), ∀t ≥ 0 (1.3)

where, for each T > 0, uh : (0, T )→ L1(Rd) is defined by

uh(t) = ujh, t ∈ [jh, (j + 1)h), j = 0, 1, ...,
[
T
h

]
,

uj+1
h + hAuj+1

h = ujh, j = 0, 1, ...,
[
T
h

]
; u0h = u0.

(1.4)

Here, A : L1(Rd)→ L1(Rd) is the operator

Ay = −∆β(y) + div(Db(y)y) in D′(Rd); y ∈ D(A),

D(A) = {y ∈ L1(Rd); −∆β(y) + div(Db(y)y) ∈ L1(Rd)}.
(1.5)
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As shown in [9] (see also [7]–[8], [10]), under the above hypotheses (as a
matter of fact, for less restrictive assumptions), the domain D(A) is dense
in L1(Rd), that is, D(A) = L1(Rd), and the operator A is m-accretive in
L1(Rd), which means that (see, e.g., [4], [5])

R(I + λA) = L1(Rd), ∀λ > 0,

‖(I + λA)−1y1 − (I + λA)−1y2‖L1(Rd) ≤ ‖y1 − y2‖L1(Rd),

∀λ > 0, y1, y2 ∈ L1(Rd).

Then, by the Crandall & Liggett theorem (see [4], [5], p. 56) the Cauchy
problem

du

dt
+ Au = 0, t ≥ 0; u(0) = u0, (1.6)

has, for each u0 ∈ L1(Rd) a unique solution u = u(t, u0) in the mild sense
(1.3)–(1.4). Equivalently,

u(t, u0) = lim
n→∞

(
I +

t

n
A

)−n
u0 in L1(Rd), (1.7)

uniformly on the compact intervals of [0,∞).
Moreover, the map t → u(t, u0), denoted S(t)u0, is a continuous semi-

group of contractions on L1(Rd), that is,

S(t+ s) = S(t)S(s) for all s, t ≥ 0,

‖S(t)u1 − S(t)u2‖L1(Rd) ≤ ‖u1 − u2‖L1(Rd), ∀t ≥ 0, u1, u2 ∈ L1(Rd),

lim
t→0

S(t)u0 = u0 in L1(Rd).

Note also (see [7]–[10]) that

S(t)(L1(Rd) ∩ L∞(Rd)) ⊂ L1(Rd) ∩ L∞(Rd), ∀t ≥ 0, (1.8)

S(t)(L1(Rd) ∩ L1(Rd; Φdx)) ⊂ L1(Rd) ∩ L1(Rd; Φdx), (1.9)

S(t)u0 ∈ L∞((0, T )× Rd), ∀T > 0, ∀u0 ∈ L1(Rd) ∩ L∞(Rd), (1.10)

and S(t)P ⊂ P , ∀t ≥ 0, where

P =

{
y ∈ L1(Rd), y(x) ≥ 0, a.e. x ∈ Rd;

∫
Rd
y(x)dx = 1

}
. (1.11)
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We also note that, though t → u(t) = S(t)u0 is not differentiable, it is,
however, a Schwartz-distributional solution to (1.1), that is,∫ ∞

0

∫
Rd

(uϕt + β(u)∆xϕ+ b(u)uD · ∇xϕ)dx dt

+

∫
Rd
u0(x)ϕ(0, x)dx = 0,

(1.12)

for all ϕ ∈ C∞0 ([0,∞)× Rd).
Moreover, as shown in [9] (see also [10]), S(t)u0 is the unique distribu-

tional solution to NFPE (1.1) in the class of functions u ∈ L1((0,∞)×Rd)∩
L∞((0,∞)×Rd) such that t→ u(t)dx is weakly continuous on [0,∞). In par-
ticular, this implies (see, e.g., [9] and [10], Chapter 5) that the McKean–
Vlasov equation (1.2) has a unique strong solution Xt with the marginal
law u(t, ·).

The purpose of this work is to represent the solution t→ S(t)u0 to (1.1)
as a subgradient flow of the entropy functional (energy)

E(u) =

∫
Rd

(η(u(x)) + Φ(x)u(x))dx, u ∈ P ∩ L∞(Rd) ∩ L1(Rd; Φdx),

η(r) =

∫ r

0

∫ s

1

β′(τ)

τb(τ)
dτ ds, r ≥ 0,

(1.13)

with the tangent space Tu(P∗) ⊂ D′(Rd) defined in (3.1) below, for u ∈ P∗.
Here,

P∗ =

 u ∈ P ∩ L∞ ∩ L1(Rd; Φdx);
√
u ∈ H1(Rd),

ψ

u
∈ L1(Rd)

for some ψ ∈ X

 , (1.14)

where we set 1
0

:= +∞ and

X =

{
ψ∈C2(Rd)∩Cb(Rd)∩L1(Rd), ψ>0,

∇ψ
ψ
∈L∞(Rd),

1

ψ
∈L1

loc(Rd)

}
.(1.15)

We also note that the function E is convex and lower semicontinuous on
L2(Rd) with the domain

D(E) = {u ∈ P ∩ L∞(Rd) ∩ L∞ ∩ L1(Rd; Φdx)}.
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The class X is clearly nonempty and, in particular, it contains all functions ψ
of the form ψ(x) = (α1|x|m+α2)

−1, α1, α2 and m > d and, therefore, since X
is an algebra containing the constants, it is a rich class of functions. Hence,

so is P∗ since if ψ ∈ X , ψ > 0, u := ψ2
(∫

Rd ψ
2dx
)−1

is easily checked to
be in P∗. We also note that P∗ is convex. The gradient flow representation
means that, for u(t) = S(t)u0, u0 ∈ P∗, we have

d

dt
u(t) = −∇Eu(t), t > 0, (1.16)

where ∇Eu ∈ Tu(P∗) is the gradient of E in the sense of the Riemannian
type geometry of P to be defined later on. Such a result was recently es-
tablished in [17] (see also [1], [2], [19]) on the manifold P endowed with the
topology of weak convergence of probability measures and tangent bundle
L2(Rd;Rd;µ)µ∈P and in the fundamental work [16] for the classical porous
media equation. But we want to emphasize that we consider here the smaller
space P∗ ⊂ P with the tangent bundle (Tu(P∗))u∈P∗ defined in (3.1) and
scalar product (3.2) which is different from the one in [1], [2], [16], [17], [19].
Herein, we shall obtain a representation of the form (1.16) for NFPE (1.1).
This result is based on the smoothing effect on initial data of the semigroup
S(t) in the space H−1(Rd) which will be proved in Section 1. As a matter
of fact, the space H−1(Rd) is a viable alternative to L1(Rd) for proving the
well-posedness of NFPE (1.1). In fact, as seen below, the operator (1.5) has
a quasi-m-accretive version in H−1(Rd), which generates a C0-semigroup of
quasi-contractions which coincides with S(t) on L1(Rd) ∩ L∞(Rd).

We recall that (see, e.g., [4], [5]), if H is a Hilbert space with the scalar
product (·, ·)H and norm | · |, the operator B : D(B) ⊂ H → H is said to be
m-accretive if

(Bu1 −Bu2, u1 − u2) ≥ 0, ∀ui ∈ D(B), i = 1, 2,

and R(I + λB) = H, ∀λ > 0. It is said to be quasi m-accretive if B + ωf is
m-accretive for some ω ≥ 0.

Notation. Lp(Rd), 1 ≤ p ≤ ∞ (denoted Lp) is the space of Lebesgue mea-
surable and p-integrable functions on Rd, with the standard norm | · |p. (·, ·)2
denotes the inner product in L2. By Lploc we denote the corresponding local
space. Let Ck(R) denote the space of continuously differentiable functions up
to order k and Cb(R) the space of continuous and bounded functions on R.
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For any open set O ⊂ Rm let W k,p(O), k ≥ 1, denote the standard Sobolev
space on O and by W k,p

loc (O) the corresponding local space. We set W 1,2(O) =
H1(O), W 2,2(O) = H2(O), H1

0 (O) = {u ∈ H1(O), u = 0 on ∂O}, where ∂O
is the boundary of O. By H−1(O) we denote the dual space of H1

0 (O)
(of H1(Rm), respectively, if O = Rm). We shall also set H1 = H1(Rd) and
H−1 = H−1(Rd). C∞0 (O) is the space of infinitely differentiable real-valued
functions with compact support in O and D′(O) is the dual of C∞0 (O), that
is, the space of Schwartz distributions on O. Lip(R) is the space of real-
valued Lipschitz functions on R with the norm denoted by | · |Lip. The space
H−1 is endowed with the scalar product

〈y1, y2〉−1 = ((I −∆)−1y1, y1)2, ∀y1, y2 ∈ H−1,

and the Hilbert norm |y|2−1 = 〈y, y〉−1 . By H−1(·, ·)H1 we denote the duality
pairing on H1 ×H−1. If Y is a Banach space, then C([0,∞);Y ) is the space
of continuous functions y : [0,∞) → Y and Cw([0,∞);Y ) is the space of
weakly continuous Y -valued functions. Furthermore, let C∞0 ([0,∞) × Rd)
denote the space of all ϕ ∈ C∞([0,∞)×Rd) such that support ϕ ⊂ K, where
K is compact in [0,∞) × Rd. If u : [0,∞) → H−1 is a given function, we
shall denote its H−1-strong derivative in t by du

dt
(t), and the right derivative

by d+

dt
u(t). We shall also use the following notations

β′(r) ≡ d

dr
β(r), b′(r) =

d

dr
b(r), b∗(r) ≡ b(r)r, r ∈ R,

yt =
∂

∂t
y, ∇y =

{
∂y

∂xi

}d
i=1

, ∆y =
d∑
i=1

∂2

∂2xi
y,

div y =
d∑
i=1

∂yi
∂xi

, y = {yi}di=1,

for y = y(t, x), (t, x) ∈ [0,∞)× Rd, where ∆ and div are taken in the sense
of the distribution space D′(Rd).

2 The H1-regularity of the semigroup S(t)

Consider the semigroup S(t) : L1 → L1 defined earlier by the exponential
formula (1.7). Define the operator A∗ : H−1 → H−1,

A∗y = −∆β(y) + div(Db∗(y)), ∀y ∈ D(A∗), (2.1)
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with the domain D(A∗) = H1. More precisely, for each y ∈ H1, A∗y ∈ H−1
is defined by

H−1(A∗y, ϕ)H1 =

∫
Rd

(∇β(y)−Db∗(y)) · ∇ϕdx, ∀ϕ ∈ H1. (2.2)

As mentioned earlier, the semigroup S(t) is not differentiable in L1, but as
shown below it is, however, H−1-differentiable on the right on (0,∞).

Namely, we have

Theorem 2.1. Assume that Hypotheses (i)–(iv) hold. Then, for each u0 ∈
P ∩ L∞, the function u(t) = S(t)u0 is in C([0,∞);H−1) ∩Cw([0,∞);L2), it
is H−1-right differentiable on (0,∞) with d+

dt
u(t) being H−1-continuous from

the right on (0,∞), S(t)u0 ∈ H1, t > 0, and

d+

dt
S(t)u0 + A∗S(t)u0 = 0, ∀t > 0. (2.3)

Furthermore, S(t)u0 ∈ P ∩L∞, ∀t ≥ 0, d
dt
S(t)u0 exists on (0,∞) \N , where

N is an at most countable subset of (0,∞),

d

dt
S(t)u0 + A∗S(t)u0 = 0, ∀t ∈ (0,∞) \N, (2.4)

and t→ A∗S(t)u0 is H−1-continuous on (0,∞) \N .
Moreover,

√
S(t)u0 ∈ H1(Rd), a.e. t > 0, that is,

∇S(t)u0√
S(t)u0

∈ L2, a.e. t ∈ (0,∞), (2.5)

E(S(t)u0) <∞, a.e. t ∈ (0,∞). (2.6)

for all u0 ∈ P such that u0 log u0 ∈ L1. If u0 ∈ H1, then (2.3) holds for all
t ≥ 0, t→ S(t)u0 is locally H−1-Lipschitz, on [0,∞) and u(t) ∈ H1, ∀t ≥ 0.

Finally, if u0 ∈ P∗, then

S(t)u0 ∈ P∗, ∀t ≥ 0. (2.7)

In particular, it follows by Theorem 2.1 that the semigroup S(t) is gene-
rated by the opertor −A∗ in the space H−1.

We shall prove Theorem 2.1 in several steps, the first one being the fol-
lowing lemma.
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Lemma 2.2. The operator A∗ is quasi-m-accretive in H−1, that is, A∗+ωI
is m-accretive for some ω ≥ 0.

Proof. We have

〈A∗y1 − A∗y2, y1 − y2〉−1 (2.8)

= (β(y1)−β(y2), y1 − y2)2 − (β(y1)−β(y2), (I−∆)−1(y1−y2))2
+(D(b∗(y1)−b∗(y2)),∇(I−∆)−1(y1−y2))2

≥ γ1|y1−y2|22−γ2|y1−y2|−1|y1−y2|2 − |D|∞|b∗|Lip|y1−y2|2|y1−y2|−1
≥ −ω|y1−y2|2−1, ∀y1, y2 ∈ D(A∗),

for a suitable chosen ω ≥ 0 and so A∗ + ωI is accretive in H−1. (Here, we
have used the inequality |∇(I−∆)−1(y1−y2)|2 ≤ |y1−y2|−1.) Now, we shall
prove that R(I + λA∗) = H−1 for λ ∈ (0, λ0), where λ0 is suitably chosen.
For this purpose, we fix f ∈ H−1 and consider the equation

y − λ∆β(y) + λdiv(Db∗(y)) = f in D′(Rd), y ∈ L2. (2.9)

The latter can be written as

Gλ(y) = (I −∆)−1f, (2.10)

where Gλ : L2 → L2 is the operator

Gλ(y) = λβ(y) + (I −∆)−1y − λ(I −∆)−1div(Db∗(y))− λ(I −∆)−1β(y),
∀y ∈ L2 ,

which by Hypotheses (i)–(iii) is continuous. Then, by (i)–(iii) we have

(Gλ(y1)−Gλ(y2), y1 − y2)2
≥ λγ1|y1−y2|22+|y1−y2|2−1−λγ2|y1−y2|−1|y1−y2|2

−λ|D|∞|b∗|Lip|y1−y2|2|y1−y2|−1

≥ 1

2
(λγ1−γ22γλ2 − λ2|D|2∞|b∗|2Lip)|y1−y2|22+

1

2
|y1−y2|2−1

≥ α|y1−y2|22, ∀y1, y2 ∈ L2,

for some α > 0 and 0 < λ < λ0 with λ0 sufficiently small. Hence, the operator
Gλ is monotone and coercive in the space L2. Since it is also continuous, we
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infer that it is surjective (see, e.g., [4], p. 37) and, therefore, R(Gλ) = L2

for 0 < λ < λ0). Hence, (2.10) (equivalently (2.9)) has a solution y ∈ L2

for λ ∈ (0, λ0) and β(y) ∈ H1. Then, by (i) it follows that y ∈ H1 and so
y ∈ D(A∗). Hence, A∗ is quasi-m-accretive in H−1.

Lemma 2.2 implies that there is a C0-continuous nonlinear semigroup
S∗(t) : H−1 → H−1, t ≥ 0, which is generated by −A∗. This means (see,
e.g., [4], p. 146 or [5], p. 56) that

S∗(t)u0 = lim
n→∞

(
I +

t

n
A∗
)−n

u0 in H−1, ∀t ≥ 0, ∀u0 ∈ H−1, (2.11)

uniformly on compact intervals. Moreover, for all u0 ∈ D(A∗) = H1 we have
S∗(t)u0 ∈ D(A∗), [0,∞) 3 t 7→ S∗(t)u0 ∈ H−1 is locally Lipschitz and,

d+

dt
S∗(t)u0 + A∗S∗(t)u0 = 0, ∀t ≥ 0, (2.12)

d

dt
S∗(t)u0 + A∗S∗(t)u0 = 0, a.e. t > 0, (2.13)

and the function t → d+

dt
S∗(t)u0 is continuous from the right in the H−1-

topology. Taking into account (2.2), we can rewrite (2.13) as

d

dt

∫
Rd

(S∗(t)u0)(x)ϕ(x)dx+

∫
Rd

(∇β(S∗(t)u0)(x))

−D(x)b∗((S∗(t)u0)(x)) · ∇ϕ(x)dx = 0, a.e. t > 0, ∀ϕ ∈ H1.

(2.14)

We also note that the semigroup S∗(t) is quasi-contractive on H−1, that is,

|S∗(t)u0 − S∗(t)ū0|−1 ≤ exp(ωt)|u0 − ū0|−1, ∀t ≥ 0, ∀u0, ū0 ∈ H−1,
for some ω ≥ 0. Moreover, we have for all u0 ∈ L2 and T > 0,

|S∗(t)u0|22 +

∫ t

0

|∇(S∗(s)u0)|22ds ≤ CT |u0|22, ∀t ∈ [0, T ]. (2.15)

Here is the argument. By (2.11) we have, for all T > 0,

S∗(t)u0 = lim
h→0

vh(t) in H−1, ∀t ∈ (0, T ), (2.16)

where

vh(t) = vjh, ∀t ∈ [jh, (j + 1)h), j = 0, 1, ..., Nh =
[
T
h

]
,

vj+1
h + hA∗vj+1

h = vjh, j = 0, 1, ..., Nh; v0h = u0.
(2.17)
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Since v0h = u0 ∈ L2, we get by (2.17)

(β(vj+1
h ), vj+1

h − vjh)2 + h|∇β(vj+1
h )|22 = h(∇β(vj+1

h ), Db∗(vj+1
h ))2

≤ h

2
|∇β(vj+1

h )|22 +
h

2
(|D|∞|b∗|∞|vj+1

h |2)
2.

By (i), this yields∫
Rd
j(vj+1

h )dx+
1

2
γ21h

j+1∑
k=1

|∇(vkh)|22 ≤
∫
Rd
j(u0)dx+ Ch

j+1∑
k=1

|vkh|22,

where j(r) =
∫ r
0
β(s)ds. Since 1

2
γ1r

2 ≤ j(r) ≤ 1
2
γ2r

2, ∀r ∈ R, we have

|vh(t)|22 +

∫ t

0

|∇vh(s)|22ds ≤ C

(∫ t

0

|vh(s)|22ds+ |u0|22
)
, t ∈ (0, T ).

Hence

|vh(t)|22 +

∫ t

0

|∇vh(s)|22ds ≤ C|u0|22, ∀t ∈ (0, T ), h > 0.

Therefore, by (2.16) and by the weak-lower semicontinuity of the L2(0, T ;H1)-
norm, (2.15) follows. Hence, S∗(t)u0 ∈ H1, a.e. t > 0, and so, by the semi-
group property, S∗(t + s) = S∗(t)S∗(s), t, s ≥ 0, we infer that S∗(t) has a
smoothing effect on initial data, that is,

S∗(t)u0 ∈ H1 = D(A∗), ∀t > 0, u0 ∈ L2. (2.18)

Then, by (2.12) it follows that t 7→ S∗(t)u0 is H−1-continuous on (0, T )
for all u0 ∈ L2, hence t 7→ |S∗(t)u0|2 is lower semicontinuous on (0, T ).
Furthermore, (2.18) implies

d+

dt
S∗(t)u0 + A∗S∗(t)u0 = 0, ∀u0 ∈ L2, ∀t > 0, (2.19)

and that the function t→ d+

dt
S∗(t)u0 = −A∗S∗(t)u0 is H−1-right continuous

on (0,∞). Since S∗(·)u0 ∈ L∞(0, T ;L2) ∩ C([0, T ];H−1), it follows that

sup
t∈[0,T ]

|S∗(t)u0|2 ≤ ess sup
t>0
|S∗(t)u0|2 ∨ |S∗(T )u0|2 + |u0|2 <∞

and hence we obtain by the uniqueness of limits that the function t→ S∗(t)u0
is L2-weakly continuous, that is, S∗(·)u0 ∈ Cw([0, T ];L2), ∀T > 0. We set
uh(t) = u(t+h)−u(t), u(t) ≡ S∗(t)u0, ∀t ∈ [0, T ], h > 0, u0 ∈ L2. By (2.19)
we have
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d+

dt
uh(t) + A∗u(t+ h)− A∗u(t) = 0, ∀t ∈ (0, T ].

This yields

1

2

d+

dt
|uh(t)|2−1 + 〈A∗u(t+ h)− A∗u(t), uh(t)〉−1 = 0

and, therefore, by (2.8)

1

2

d+

dt
|uh(t)|2−1 ≤ ω|uh(t)|2−1, ∀t ∈ (0, T ].

Hence, for all h > 0, we have

|uh(t)|−1 exp(−ωt) ≤ |uh(s)|−1 exp(−ωs), 0 < s < t < T,

and, therefore, the function t→ exp(−ωt)|A∗S∗(t)u0|−1 is monotonically de-
creasing on (0,∞) and so it is everywhere continuous on (0,∞), except for
a countable set N ⊂ (0,∞).

Since the continuity points of t→ exp(−ωt)A∗S∗(t)u0 coincide with that
of t → exp(−ωt)|A∗S∗(t)u0|−1 (see the proof of Lemma 3.1 in [12]), we
infer that the function t→ exp(−ωt)A∗S∗(t)u0 has at most countably many
discontinuities. Hence, for each u0 ∈ L2, the function t → S∗(t)u0 is H−1

differentiable on (0,∞) \N and

d

dt
S∗(t)u0 + A∗S∗(t)u0 = 0, ∀t ∈ (0,∞) \N, (2.20)

where N is a countable subset of (0,∞).

Proof of Theorem 2.1 (continued). We note first that

S(t)u0 = S∗(t)u0, ∀t ≥ 0, u0 ∈ L1 ∩ L2. (2.21)

Indeed, by (2.17) it follows that if u0 ∈ L1 ∩ L2, then |vj+1
h |1 ≤ |v

j
k|1,

∀j = 0, 1, ..., and, therefore,

|vj+1
h |1 ≤ |v

0
j |1 = |v0|1, ∀j. (2.22)

This follows by multiplying equation (2.17) with Xδ(vj+1
h ) and integrating

over Rd, where Xδ is defined by
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Xδ(r) =


1 for r ≥ δ,

r

δ
for r ∈ (−δ, δ),

−1 for r ≤ −δ.

Taking into account that vj+1
h ∈ H1, we have by (2.1) that

(A∗vj+1
h ,Xδ(vj+1

h ))2

=

∫
Rd
β′(vj+1

h )|∇vj+1
h |

2X ′δ(v
j+1
h )dx+

∫
[x;|vj+1

h (x)|≤δ]
(vj+1
h )(D · ∇vj+1

h )dx,

which yields

lim sup
δ→0

(A∗vj+1
h ,Xδ(vj+1

h ))2 ≥ 0, ∀j = 0, 1, ... .

Hence,

lim sup
δ→∞

∫
Rd
vj+1
h Xδ(v

j+1
h )dx ≤ |vjh|1, ∀j = 0, 1, ...,

and so (2.22) follows.
Comparing (2.17) with (1.4), we infer that uh ≡ vh, ∀h, and so, by

(1.3) and (2.16), we get (2.21), as claimed. In particular, we have that, if
u0 ∈ P ∩ L∞, then by (1.8) it also follows that S∗(t)u0 ∈ P ∩ L∞, ∀t > 0.

Roughly speaking, this means that the semigroup S(t) is smooth on
L1 ∩ L2 in H−1-norm. Then, by (2.3)–(2.4), (2.21) and the corresponding
properties of S(t) follow by (2.12), (2.19)–(2.20). As regards (2.5)–(2.6), we
note first that by Theorem 4.1 in [8] (see also [10], p. 161), we have, for all
u0 ∈ P with u0 log u0 ∈ L1,

E(S(t)u0) +

∫ t

0

Ψ(S(τ)u0)dτ ≤ E(u0) <∞, ∀t ≥ 0, (2.23)

where E is the energy functional (1.13) and

Ψ(u) ≡
∫
Rd

∣∣∣∣∣β′(u)∇u√
b∗(u)

−D
√
b∗(u)

∣∣∣∣∣
2

dx. (2.24)

Hence, Ψ(S∗(t)u0) <∞, a.e. t > 0, which by (2.21) and Hypotheses (i)–(iii)
implies (2.5) (see [8, Lemma 5.1]), as claimed. Moreover, by (2.23), also (2.6)
holds.
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Assume now that u0 ∈ P∗, hence ψ
u0
∈ L1 for some ψ ∈ X , where X is

defined by (1.15). We note that since S(t)(P) ⊂ P , ∀t ≥ 0, we have also
that u(t) ≥ 0, ∀t ≥ 0, and u(t) ∈ L∞, ∀t ≥ 0. So, it remains to prove that
ψ
u(t)
∈ L1, ∀t ≥ 0. To this end, we consider the cut-off function

ϕn(x) = η

(
|x|2

n

)
ψ(x), ∀x ∈ Rd, n ∈ N,

where η ∈ C2([0,∞)) is such that 0 ≤ η ≤ 1 and

η(r) = 1, ∀r ∈ [0, 1]; η(r) = 0, ∀r ≥ 2. (2.25)

Since u : [0,∞) → H−1 is locally Lipschitz, [0,∞) 3 t → H−1(u(t), ϕ)H1 is
locally Lipschitz for all ϕ ∈ H1, and so almost everywhere differentiable. We
also note the chain differentiation rule

d

dt

∫
Rd
g(u(t, x))ϕn(x)dx = H−1

(
du

dt
(t), γ(u(t))ϕn

)
H1

, a.e. t ∈ (0, T ),

for all T > 0 and all u ∈ L2(0, T ;H1), with du
dt
∈ L2(0, T ;H−1), where

γ ∈ C1(R), g(r) ≡
∫ r
0
γ(s)ds.

In the special case, where du
dt
∈ L2(0, T ;L2), this formula follows by [4,

Lemma 4.4, p. 158]. If du
dt
∈ L2(0, T ;H−1), this follows by approximating u

by uε = (I − ε∆)−1u and letting ε→ 0. We also note that by (2.15) we have
that u = S∗(t)u0 ∈ L2(0, T ;H1).

Let ε > 0 be arbitrary, but fixed. Then, since (u(·) + ε)−1 ∈ L2(0, T ;H1),
we have

− d

dt

∫
Rd

ϕn(x)

u(t, x) + ε
dx = H−1

(
du

dt
(t),

ϕn
(u(t) + ε)2

)
H1

, a.e. t > 0,

and so, by (2.14) we get

d

dt

∫
Rd

ϕn(x)

u(t, x) + ε
dx+ 2

∫
Rd

β′(u(t, x))ϕn(x)|∇u(t, x)|2

(u(t, x) + ε)3
dx

=

∫
Rd

β′(u(t, x))(∇ϕn(x) · ∇u(t, x))

(u(t, x) + ε)2
dx

−
∫
Rd

(D(x) · ∇ϕn(x))b(u(t, x))u(t, x)

(u(t, x) + ε)2
dx

+2

∫
Rd

b(u(t, x))u(t, x))(D(x) · ∇u(t, x))ϕn(x)

(u(t, x) + ε)3
dx, a.e. t > 0.

(2.26)
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By (2.25), we have

|∇ϕn(x)| ≤ 4ψ(x)√
n
|η′|∞ + ϕn(x)g(x), x ∈ Rd,

where g(x) = |∇ψ(x)|
ψ(x)

.

On the other hand, we have by Hypotheses (i)—(iii) that

2

∫
Rd

β′(u(t, x))ϕn(x)|∇u(t, x)|2

(u(t, x) + ε)3
dx ≥ 2γ1

∫
Rd

ϕn(x)|∇u(t, x)|2

(u(t, x) + ε)3
, (2.27)

and

∫
Rd

β′(u(t, x))∇ϕn(x) · ∇u(t, x)

(u(t, x) + ε)2
dx

≤ γ2

∫
Rd

|∇u(t, x)|
(u(t, x) + ε)2

(
4ψ(x)√

n
|η′|∞ + ϕn(x)g(x)

)
dx

≤ C1γ2

∫
Rd

|∇u(t, x)|ϕn(x)

(u(t, x) + ε)2
dx+

C2γ2√
n

∫
Rd

|∇u(t, x)|ψ(x)

(u(t, x) + ε)2
dx

≤ γ1
2

∫
Rd

ϕn(x)|∇u(t, x)|2

(u(t, x) + ε)3
dx+

C2γ2√
n

∫
Rd

|∇u(t, x)|ψ(x)

(u(t, x) + ε)2
dx

+C3

∫
Rd

ϕn(x)

u(t, x) + ε
dx.

(2.28)

∫
Rd

D(x)·∇ϕn(x)b(u(t, x))u(t, x)

(u(t, x) + ε)2
dx ≤ C4

∫
Rd

|∇ϕn(x)|
u(t, x) + ε

dx

≤ C5

∫
Rd

(
ϕn(x)

u(t, x) + ε
+

1√
n(u(t, x) + ε)

)
dx.

(2.29)

2

∫
Rd

b(u(t, x))u(t, x)(D(x)·∇u(t, x))ϕn(x)

(u(t, x) + ε)3
dx

≤ C6γ3

∫
Rd

|∇u(t, x)|ϕn(x)

(u(t, x) + ε)2
dx

≤ γ1
2

∫
Rd

|∇u(t, x)|2ϕn(x)

(u(t, x) + ε)3
dx+ C7

∫
Rd

ϕn(x)

u(t, x) + ε
dx.

(2.30)
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Then, by (2.27)–(2.30) and by Hypotheses (i)–(iii) it follows that

d

dt

∫
Rd

ϕn(x)

u(t, x) + ε
dx +γ1

∫
Rd

ϕn(x)|∇u(t, x)|2

(u(t, x) + ε)3
dx

≤ C8

∫
Rd

ϕn(x)

u(t, x) + ε
dx+

C8√
n

∫
Rd

1

u(t, x) + ε
dx

+ C8√
n

∫
Rd

|∇u(t, x)|ψ(x)

(u(t, x) + ε)2
dx, a.e. t > 0.

This yields∫
Rd

ϕn(x)

u(t, x) + ε
dx +γ1

∫ t

0

∫
Rd

ϕn(x)|∇u(s, x)|2

(u(s, x) + ε)3
dxds

≤
∫
Rd

ϕn(x)

u0(x) + ε
dx+ C9

∫ t

0

ds

∫
Rd

ϕn(x)

u(s, x) + ε
dx

+
C9√
n

∫ t

0

ds

∫
Rd

1

u(s, x) + ε
dx

+
C9√
n

∫ t

0

ds

∫
Rd

|∇u(s, x)|ψ(x)

(u(s, x) + ε)2
dxds, ∀t ≥ 0,

while∫ T

0

∫
Rd

|∇u(s, x)|ψ(x)

(u(s, x) + ε)2
dxds ≤ 1

ε2

(∫ T

0

ds

∫
Rd
|∇u(s, x)|2dx

)1
2
(
T

∫
Rd
ψ2(x)dx

) 1
2

≤ C10

ε2
,

because by (2.15) we know that ∇u ∈ L2(0, T ;L2).
Letting n→∞, we get∫
Rd

ψ(x)dx

u(t, x) + ε
≤
∫
Rd

ψ(x)dx

u0(x) + ε
+ CT

∫ t

0

ds

∫
Rd

ψ(x)dx

u(s, x) + ε
, ∀t ∈ (0, T ),

where CT > 0 is independent of ε, and so, for ε→ 0 it follows by Gronwall’s
lemma (which is applicable since ψ ∈ L1) and by Fatou’s lemma,∫

Rd

ψ(x)dx

u(t, x)
≤ exp(CT t)

∫
Rd

ψ(x)dx

u0(x)
<∞, ∀t ∈ (0, T ),

as claimed. �
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3 A new tangent space to P
To represent NFPE (1.1) as a gradient flow as in [16], [17], we shall interpret
the space P∗ as a Riemannian manifold endowed with an appropriate tangent
bundle with scalar product which is, however, different from the one in [16],
[17]. To this purpose, we define the tangent space Tu(P∗) at u ∈ P∗ ⊂ P as
follows,

Tu(P∗) = {z = −div(b∗(u)∇y); y ∈ W 1,1
loc (Rd),

√
u∇y ∈ L2} (⊂ H−1). (3.1)

(Here, P∗ is defined by (1.14).)
The differential structure of the manifold P∗ is defined by providing for

u ∈ P∗ the linear space Tu(P∗) with the scalar product (metric tensor)

〈z1, z2〉u =

∫
Rd
b∗(u)∇y1 · ∇y2 dx,

zi = div(b∗(u)∇yi), i = 1, 2,

(3.2)

and with the corresponding Hilbertian norm ‖ · ‖u,

‖z‖2u =

∫
Rd
b∗(u)|∇y|2dx, z = −div(b∗(u)∇y). (3.3)

As a matter of fact, Tu(P∗) is viewed here as a factor space by identifying
in (3.2) two functions y1, y2 ∈ W 1,1

loc if div(b∗(u)∇(y1 − y2)) ≡ 0. Note also
that, since b∗(u) ≥ b0u and u > 0, a.e. on Rd, ‖z‖u = 0 implies that z ≡ 0.
Moreover, we have

‖z1‖u = ‖z2‖u for zi = div(b∗(u)∇yi), i = 1, 2, (3.4)

if div(b∗(u)∇(y1 − y2)) ≡ 0 in H−1. Indeed, for each ϕ ∈ C∞0 (Rd), we have
in this case that∫

Rd
b∗(u)∇(y1 − y2) · ∇(ϕyi)dx = 0, i = 1, 2,

and this yields∫
Rd
b∗(u)∇(y1 − y2) · (ϕ∇yi + yi∇ϕ)dx = 0, i = 1, 2. (3.5)

If we take ϕ(x) = η
(
|x|2
n

)
, where η ∈ C2([0,∞)); η(r) = 1 for 0 ≤ r ≤ 1,

η(r) = 0 for r ≥ 2, and let n → ∞ in (3.5), we get via the Lebesgue
dominated convergence theorem that
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∫
Rd
b∗(u)∇(y1 − y2) · ∇yi dx = 0, i = 1, 2,

which, as easily seen, implies (3.4), as claimed. Hence, the norm ‖z‖u is
independent of representation (3.2) for z. We should also note that Tu(P∗)
so defined is a Hilbert space, in particular, it is complete in the norm ‖ · ‖u.
Here is the argument.

Let u ∈ P∗ and let {yn} ⊂ W 1,1
loc be such that

‖zn − zm‖2u =

∫
Rd
b∗(u)|∇(yn − ym)|2dx→ 0 as n,m→∞.

This implies that the sequence {
√
b∗(u)∇yn} is convergent in L2 as n→∞

and by Hypothesis (ii) so is {
√
u∇yn}. Let

f = lim
n→∞

√
b∗(u)∇yn in L2. (3.6)

As ψ
u
∈ L1 for some ψ ∈ X , we infer that {∇yn} is convergent in L1

loc and
so, by the Sobolev embedding theorem (see, e.g., [11], p. 278), the sequence

{yn} is convergent in L
d
d−1

loc and, therefore, in L1
loc too. Hence, as n→∞, we

have

yn −→ y in L1
loc ∩ L

d
d−1

loc ,

∇yn −→ ∇y in (L1
loc)

d.

and hence, along a subsequence, a.e. on Rd. So, by (3.6) we infer that
f =

√
b∗(u)∇y, where y ∈ W 1,1

loc . Hence, as n→∞, we have

‖zn − z‖u → 0 for z = −div(b∗(u)∇y), y ∈ W 1,1
loc ,

as claimed.
As a consequence, we have that

{z = −div(b∗(u)∇y); y ∈ C∞0 (Rd)} is dense in Tu(P∗) for all u ∈ P∗. (3.7)

To conclude, we have shown that, for each u ∈ P∗, Tu(P∗) is a Hilbert
space with the scalar product (3.2) and, as mentioned earlier, this is just the
tangent space to P∗ at u.
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4 The Fokker–Planck gradient flow on P∗

We are going to define here the gradient of the energy function E : L2 →
]−∞,+∞] defined by (1.13). Namely,

E(u) =


∫
Rd

(η(u) + Φu)dx if u ∈ P ∩ L∞(Rd) ∩ L1(Rd; Φdx)

+∞ otherwise.

We note that E is convex, nonidentically +∞ and we have:

Lemma 4.1. E is lower-semicontinuous on L2.

Proof. We first note that if u ∈ P ∩ L∞ ∩ L1(Rd; Φdx), then by the proof of
(4.6) in [8] for all α ∈ [m/(m+ 1), 1), we have by Hypothesis (iv)∫

Rd
η(u)dx ≥ −Cα

(∫
Rd

Φu dx+ 1

)α
,

hence, since rα ≤ 1
2Cα

r + C ′α, r ≥ 0,

E(u) ≥ 1

2

∫
Rd

Φu dx− C ′′α (4.1)

for some Cα, C
′
α, C

′′
α ∈ (0,∞) independent of u.

Let now u, un ∈ L2, n ∈ N, such that lim
n→∞

un = u in L2. We may assume

that
lim inf
n→∞

E(un) = lim
n→∞

E(un) <∞

and that E(un) <∞ for all n ∈ N. Then, by (4.1)

sup
n∈N

∫
Rd

Φun dx <∞. (4.2)

Now, suppose that
E(u) > lim

n→∞
E(un). (4.3)

Then

E(u) > lim inf
n→∞

∫
Rd
η(un)dx+ lim inf

n→∞

∫
Rd

Φun dx

≥ lim inf
n→∞

∫
Rd
η(un)dx+

∫
Rd

Φu dx,
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where we applied Fatou’s lemma to the second summand in the last inequal-
ity. If we can also apply it to the first, then we get a contradiction to (4.3)
and the lemma is proved. To justify the application of Fatou’s lemma to the
first summand, it is enough to prove that there exist fn ∈ L1, n ∈ N, fn ≥ 0,
such that (along a subsequence)

fn → f in L1, (4.4)

and
η(un) ≥ −fn, n ∈ N. (4.5)

To find such fn, n ∈ N, we use (4.2). Recall from (4.4) in [8] that, for some
c ∈ (0,∞),

η(r) ≥ −cr log−(r)− cr, r ≥ 0.

Hence,
η(un) ≥ −cun log−(un)− cun, n ∈ N.

Since un → u in L2 and thus in L1
loc, it follows by(4.2) and our assumptions

on Φ that (again along a subsequence) un → u in L1. Furthermore, for all
α ∈ (0, 1),

−f log−(r) = 1[0,1](r)r log r = 1[0,1](r)r
1

1−α r
α r1−α log r1−α︸ ︷︷ ︸

≥−e−1

≥ − 1

(1− α)e
rα, r ≥ 0.

Hence, we find that

η(un) ≥ − c

(1− α)e
uαn − cun, n ∈ N.

But, since un → u in L2 and thus uαn → uα in L1
loc, by Hypothesis (iv) it

remains to show that, for some ε, α ∈ (0, 1),

sup
n∈N

∫
Rd
uαn Φε dx <∞, (4.6)

to conclude that (along a subsequence) uαn → uα in L1, and then (again
selecting a subsequence of {un} if necessary) (4.4) and (4.5) hold with

fn :=
c

(1− α)e
uαn + cun, n ∈ N.

19



So, let us prove (4.6).
Applying Hölder’s inequality with p := 1

α
, we find that∫

Rd
uαn Φε dx ≤

(∫
Rd
unΦ dx

)α(∫
Rd

Φ−( 1
α
−ε)/(1−α) dx

)1−α

.

Hence, choosing ε small enough and α close enough to 1, so that(
1
α
− ε
)
/(1− α) ≥ m, Hypothesis (iv) implies (4.6).

By Lemma 4.1 we have for E that its directional derivative

E ′(u, z) = lim
λ→0

1

λ
(E(u+ λz)− E(u))

exists for all u ∈ P∗ and z ∈ L2 (it is unambiguously either a real number or
+∞) (see, e.g., [6], p. 86).

In the following, we shall take u ∈ P∗ ⊂ D(E) = {u ∈ L2;E(u) < ∞}
and z ∈ Tu(P) and obtain that

E ′(u, z) = lim
λ↓0

1

λ
(E(u+ λz)− E(u))

=

∫
Rd
z(x)

(∫ u(x)

1

β′(τ)

b∗(τ)
dτ + Φ(x)

)
dx.

(4.7)

Moreover, the subdifferential ∂Eu : L2 → L2 of E at u is expressed as
(see [6, Proposition 2.39])

∂Eu = {y ∈ L2; (z, y)2 ≤ E ′(u, z); ∀z ∈ L2}. (4.8)

We recall that if E is Gâteaux differentiable at u, then ∂Eu reduces to the
gradient ∇Eu of E at u and

E ′(u, z) = (∇Eu, z)2, ∀z ∈ L2.

Any element y ∈ ∂Eu is called a subgradient of E at u. In the following, we
shall denote, for simplicity, again by ∇Eu any subgradient of E at u and we
shall keep the notation diff Eu · z for E ′(u, z).

If z ∈ Tu(P∗) is of the form z = z2 = −div(b∗(u)∇y2), where y2 ∈
C∞0 (Rd), then z = −b∗(u)∆y2 − ∇y2 · (b′(u)u + b(u))∇u and so, by (i) and
(1.14), it follows that z ∈ L2 and hence
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E ′(u, z) = diff Eu · z = lim
λ↓0

1

λ
(E(u+ λz2)− E(u))

=

∫
Rd

(
∇β(u(x))

b∗(u(x))
−D(x)

)
b∗(u(x)) · ∇y2(x) dx

=

∫
Rd
b∗(u(x))∇y2(x) · ∇

(∫ u(x)

0

β′(s)

b∗(s)
ds+ Φ(x)

)
dx.

(4.9)

We claim that

x 7→
∫ u(x)

0

β′(s)

b∗(s)
ds+ Φ(x) is in W 1,1

loc . (4.10)

To prove this, we first note that by Hypotheses (i) and (ii)

γ1
|b|∞

1

s
≤ β′(s)

b∗(s)
≤ γ2
b0

1

s
, s > 0.

Hence,
γ1
|b|∞

log u ≤
∫ u

0

β′(s)

b∗(s)
ds ≤ γ2

b0
log u. (4.11)

Now, let ψ ∈ X such that ψ
u
∈ L1. then, for every compact K ⊂ Rd and

Kn :=
{

1
n
≤ u ≤ 1

}
, n ∈ N,∫

Kn

(log u)−dx ≤
(∫

Kn

(log u)2u dx

) 1
2

(infK ψ)−
1
2
(∫

K
ψ
u
dx
) 1

2

≤ sup
K

((log u)−u)

(∫
Kn

(log u)−dx

) 1
2 (

inf
k
ψ
)− 1

2

(∫
K

ψ

u
dx

) 1
2

.

Dividing by
(∫

Kn
(log u)−dx

) 1
2

and letting n → ∞ yields log u ∈ L1
loc, since

trivially (log u)+ ∈ L1
loc, since u ∈ L∞. Furthermore, for ε > 0,∫

K

|∇ log(u+ ε)|dx
∫
K

|∇u|
u+ ε

dx ≤
(∫

K

|∇u|2

u
dx

) 1
2 (

inf
K
ψ
)− 1

2

(∫
K

ψ

u
dx

) 1
2

.

Letting ε→ 0 yields |∇ log u| ∈ L1
loc, and (4.10) is proved by Hypothesis (iv).

Hence,

E ′(u, z2) =

∫
Rd
b∗(u(x))∇y2(x) · ∇y1(x)dx = −〈z1, z2〉u ,
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where z1 = −div(b∗(u)∇y1), y1 =
∫ u
0
β′(s)
b∗(s)

ds+ Φ. Therefore,

z2 7→ E ′(u, z2) = diff Euz2 = 〈∇Eu, z2〉

extends to all z ∈ Tu(P∗) by continuity and by (3.2) it follows that for u ∈ P∗
any subgradient ∇uE of E is given by

∇Eu = −div

(
b∗(u)∇

(∫ u

0

β′(s)

b∗(s)
ds+ Φ

))
= −∆β(u) + div(Db∗(u)) ∈ H−1.

(4.12)

In particular, this means that ∂Eu is single valued and ∂Eu = ∇Eu.
On the other hand, by Theorem 2.1 we know that, for u0 ∈ P∗ with

u0 log u0 ∈ L1, we have for the flow u(t) ≡ S(t)u0,

S(t)u0 ∈ H1 ∩ P , ∀t > 0,
∇(S(t)u0)√

S(t)u0
∈ L2, a.e. t > 0,

d+

dt
S(t)u0 = ∆β(S(t)u0)− div(Db∗(S(t)u0)), ∀t > 0, (4.13)

d

dt
S(t)u0 = ∆β(S(t)u0)− div(Db∗(S(t)u0)), ∀t ∈ (0,∞) \N, (4.14)

where N is at most countable set of (0,∞). Moreover, if u0 ∈ P∗, then, as
seen in Theorem 2.1, it follows that S(t)u0 ∈ P∗, ∀t > 0, and ∇Eu(t) is well
defined, a.e. t > 0. Taking into account (4.12), we may rewrite (4.13)-(4.14)
as the gradient flow on P∗ endowed with the metric tensor (3.2). Namely,
we have

Theorem 4.2. Under Hypotheses (i)–(iv), for each u0 ∈ P∗, the function
u(t) = S(t)u0 ∈ P∗, ∀t > 0, and it is the solution to the gradient flow

d

dt
u(t) = −∇Eu(t), a.e. t > 0, (4.15)

d+

dt
u(t) = −∇Eu(t), ∀t > 0, (4.16)

d

dt
u(t) = −∇Eu(t), ∀t ∈ (0,∞) \N, (4.17)

where N is at most countable set of 0,∞).
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By (3.2) we may rewrite (4.16) as

d+

dt
E(S(t)u0) = −

∥∥∥∥d+dt S(t)u0

∥∥∥∥2
u(t)

, ∀t > 0. (4.18)

Equivalently,
d+

dt
E(S(t)u0) + A(S(t)u0) = 0, ∀t > 0, (4.19)

where A∗ is the generator (2.1) of the Fokker–Planck semigroup S∗(t) (equi-
valently, S(t)) in H−1. Similarly, by (3.3) and (2.23)–(2.24) we can write

d

dt
E(S(t)u0) = −

∥∥∥∥ ddt S(t)u0

∥∥∥∥2
u(t)

= Ψ(S(t)u0), ∀t ∈ (0,∞) \N. (4.20)

As a matter of fact, the energy dissipation formula (4.20) was used in [8]
(see also [5], Chapter 4) to prove that S(t)u0 → u∞ strongly in L1 as
t→∞, where u∞ is the unique solution to equilibrium equation −∆β(u∞)+
div(Db(u∞)u∞) = 0.

Remark 4.3. Taking into account (4.7), we see also that the operator A∗

defined by (2.1) can be expressed as

A∗u = Bu diff Eu, ∀u ∈ D(A∗) = H1, (4.21)

where Bu : H1 → H−1 is the linear symmetric operator defined by

Bu(y) = −div(b∗(u)∇y), ∀y ∈ D(Bu),

D(Bu) = {y ∈ l2,
√
u ∇y ∈ L2}.

(4.22)

This means that ∇Eu can be equivalently written as

∇Eu = Bu(diff Eu). (4.23)

In the special case b(r) ≡ 1,

Eu ≡
∫ u

1

β′(τ)

τ
dτ + Φ

and so u(t) = S(t)u0 is the Wasserstein gradient flow of the functional E
defined by the time-discretized scheme

uh(t) = ujh, t ∈ [jh, (j + 1)h), j = 0, 1, ...,

ujh = min
u

{
1

2h
d2(u, u

j−1
h ) + E(u)

}
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where d2 is the Wasserstein distance of order two (see [3], [14], [16]). However,
in the general case considered here, this is not the case.
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