Nonlinear Fokker—Planck equations
as smooth Hilbertian gradient flows

Viorel Barbu* Michael Rockner!

In memory of Giuseppe Da Prato

Abstract

Under suitable assumptionson 8 : R—R, D : R¢5R% and b : R - R,
the nonlinear Fokker—Planck equation u; — AS(u) + div(Db(u)u) = 0,
in (0, 00) x R? where D = —V®, can be identified as a smooth gradient
flow L u(t) + VE,4 = 0, Vt > 0. Here, E : P* N L®(RY) — R is
the energy function associated to the equation, where P* is a certain
convex subset of the space of probability densities. P* is invariant un-
der the flow and VE,, is the gradient of E, that is, the tangent vector
field to P at u defined by (VEy, z,), = diff £, - 2, for all vector fields
2z, on P*, where (-, ), is a scalar product on a suitable tangent space
To(P*) € D' (RY).
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1 Introduction

We are concerned here with the nonlinear Fokker-Planck equation (NFPE)

uy — AB(u) + div(Db(u)u) = 0 in (0,00) x R,
u(0, 1) = up(z), v € RY, (1.1)
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where 3: R = R, D:RY - R% d >1,and b: R — R are assumed to
satisfy the following hypotheses

(i) B e CHR), B(0) =0, 0 <y < B(r) <72 < o0, Vr € R.

)
(i) b€ Co(R)NCHR) and b(r) > by > 0, [V (r)r+b(r)| < 73 < oo, Vr € R.
(iii) D € L®(R%:RY) N W0 (REGRY) and div D € L2(RY) + L®(RY).

)

loc

(iv) D = —V®, where ® € C(R) N W2 (RY), & > 1, lim ®(z) = +oo,

loc
|z| =00

o™ ¢ L'(R?) for some m > 2.

NFPE (1.1) is modeling the so called anomalous diffusion in statistical physics
(see, e.g., [13]) and also describes the dynamics of 1t stochastic processes in
terms of their probability densities. In fact, if u is a distributional solution to
(1.1), such that t — u(t)dx is weakly continuous and u(t) € P, V¢ > 0, then
there is a probabilistically weak solution X; to the McKean—Vlasov stochastic
differential equation

2
dX: = D(X)b(u(t, X3))dt + (%) AW, (1.2)
on a probability space (Q, F,[P, W;) with normal filtration (F;);>0. More
exactly, one has Lx, = u(t, z), where Ly, is the density of the marginal law
Po X; ' of X; with respect to the Lebesgue measure (see [7], [10]).
The function u : [0,00) x R? — R is called a mild solution to (1.1) if it is
L*-continuous, that is u € C([0, 00); L*(R?)), and

u(t) = lim w,(t) in LY(RY), ¥t >0 (1.3)

where, for each T' > 0, uy, : (0,7) — L'(R?) is defined by

un(t) = u, t € [jh,(j+1)h), j=0,1,... [£],

= (L)
u) ™+ hAUT = ul, j=0,1,.., [Z]; u) = uo.
Here, A : L*(RY) — L'(R?) is the operator
Ay = —AB(y) +div(Db(y)y) in D'(RY); y € D(A), w5

D(A) = {ye L'(R%); —AB(y) + div(Db(y)y) € L'(R*)}.
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As shown in [9] (see also [7]-[8], [10]), under the above hypotheses (as a
matter of fact, for less restrictive assumptions), the domain D(A) is dense

in L'(RY), that is, D(A) = L'(RY), and the operator A is m-accretive in
LY(R?), which means that (see, e.g., [4], [5])
R(I + AA) = LY(RY), YA > 0,
17+ 2A) "y — (T +AA) el gay < llyn — vello ey,
VA > 07 Y1,Y2 € Ll(Rd)

Then, by the Crandall & Liggett theorem (see [4], [5], p. 56) the Cauchy

problem

d
d—? FAu=0, t>0; u(0)= up, (1.6)

has, for each ug € L'(R?) a unique solution u = u(t,ug) in the mild sense
(1.3)—(1.4). Equivalently,

u(t, up) = lim (I + %A) ug in L*(RY), (1.7)

n—o0

uniformly on the compact intervals of [0, 00).
Moreover, the map ¢t — u(t,ug), denoted S(t)ug, is a continuous semi-
group of contractions on L'(RY), that is,

S(t+s) = S(t)S(s) for all s,t >0,
1S(t)ur — S(t)uzllpr ey < llur — wal|prgay, V>0, wr,up € LH(R?),
lim S(t)ug = ug in L*(R?).
Note also (see [7]-[10]) that

S()(LY(RY) N L=(RY)) ¢ LM (RY) N Lo(RY), Wt > 0, (1.8)
S()(LM(RY) N LY(RY; ®dx)) € L'(RY) N LY (RY: bdx), (1.9)
S(t)ug € L®((0,T) x RY), VT > 0, Yuy € L' (R?) N Lo(RY), (1.10)

and S(t)P C P, Vt > 0, where
P = {y c L*(RY), y(x) >0, ae. v € Rd;/ y(x)dx = 1} : (1.11)
Rd

3



We also note that, though ¢t — u(t) = S(t)ug is not differentiable, it is,
however, a Schwartz-distributional solution to (1.1), that is,

/oo / (upr + B(u)App + b(u)uD -V p)dz dt
0o Jrd
+/Rd uo(z)p(0, z)dx =0,

for all ¢ € C5°([0, 00) x RY).

Moreover, as shown in [9] (see also [10]), S(t)ug is the unique distribu-
tional solution to NFPE (1.1) in the class of functions u € L*((0,00) x RY)N
L>=((0,00) x RY) such that ¢t — u(t)dx is weakly continuous on [0, o). In par-
ticular, this implies (see, e.g., [9] and [10], Chapter 5) that the McKean—
Vlasov equation (1.2) has a unique strong solution X; with the marginal
law wu(t,-).

The purpose of this work is to represent the solution t — S(t)ug to (1.1)
as a subgradient flow of the entropy functional (energy)

(1.12)

E(u) = /Rd(n(u(:v)) + ®(2)u(r))dz, u € PN L(RY) N LY (RY &dx),

(1.13)
B r ps 5/(T) e
7’](7“) - /(; . Tb(T) d d ) Z Oa

with the tangent space T,(P*) C D'(R?) defined in (3.1) below, for u € P*.
Here,

Y

uw € PN L®NLYRY: &dx); Ju € HY(RY), = € LY(RY)

P = u . (1.14)
for some ¥ € X
where we set % = 400 and
_ 2 md d 1(d Vi o may 1 1 (md
X=<el (R )me(R )ﬂL (R ),¢>O,7€L (]R )7E€LIOC<R ) (115)

We also note that the function F is convex and lower semicontinuous on
L*(R?) with the domain

D(E) = {u e PN L*RY) N LN LY(RY ®dx)}.



The class X is clearly nonempty and, in particular, it contains all functions
of the form 1 (z) = (ay]|z|™+a2) ™!, a1, @y and m > d and, therefore, since X
is an algebra containing the constants, it is a rich class of functions. Hence,
so is P* since if v € X, ¢ > 0, u := ? (fRd ¢2dx)_l is easily checked to
be in P*. We also note that P* is convex. The gradient flow representation
means that, for u(t) = S(t)ug, ug € P*, we have

d
dt "
where VE, € T,(P*) is the gradient of E in the sense of the Riemannian
type geometry of P to be defined later on. Such a result was recently es-
tablished in [17] (see also [1], [2], [19]) on the manifold P endowed with the
topology of weak convergence of probability measures and tangent bundle
L*(R%RY 1) iep and in the fundamental work [16] for the classical porous
media equation. But we want to emphasize that we consider here the smaller
space P* C P with the tangent bundle (7,(P*))uep+ defined in (3.1) and
scalar product (3.2) which is different from the one in [1], [2], [16], [17], [19].
Herein, we shall obtain a representation of the form (1.16) for NFPE (1.1).
This result is based on the smoothing effect on initial data of the semigroup
S(t) in the space H1(R?) which will be proved in Section 1. As a matter
of fact, the space H!(R?) is a viable alternative to L'(R?) for proving the
well-posedness of NFPE (1.1). In fact, as seen below, the operator (1.5) has
a quasi-m-accretive version in H~1(R?), which generates a Cp-semigroup of
quasi-contractions which coincides with S(t) on L!'(R?) N L>°(RY).
We recall that (see, e.g., [4], [5]), if H is a Hilbert space with the scalar
product (-, )y and norm | - |, the operator B : D(B) C H — H is said to be
m-accretive if

(t) = —VEu(t), t >0, (1.16)

(Bu1 — BUQ,Ul — UQ) Z O, Vul € D(B), 1= ].,2,

and R(I + AB) = H, VA > 0. It is said to be quasi m-accretive if B+ wf is
m-accretive for some w > 0.

Notation. LP(RY), 1 < p < oo (denoted LP) is the space of Lebesgue mea-
surable and p-integrable functions on R?, with the standard norm | -|,. (-, )2
denotes the inner product in L?. By L we denote the corresponding local
space. Let C*(RR) denote the space of continuously differentiable functions up

to order k£ and C,(R) the space of continuous and bounded functions on R.



For any open set O C R™ let W*P(0O), k > 1, denote the standard Sobolev
space on O and by VVIIZCP(O) the corresponding local space. We set W12(0) =
HY(0), W?2(0) = H*(0), H}(O) = {u € HY(O), u =0 on 90}, where 00O
is the boundary of O. By H!(O) we denote the dual space of Hj(O)
(of HY(R™), respectively, if O = R™). We shall also set H' = H'(R?) and
H™' = H™Y(RY). C§°(0) is the space of infinitely differentiable real-valued
functions with compact support in O and D'(O) is the dual of C§°(O), that
is, the space of Schwartz distributions on O. Lip(R) is the space of real-
valued Lipschitz functions on R with the norm denoted by |- |Lip. The space
H~' is endowed with the scalar product

(i, y2) ;= (I = A)'yi,m1)2, Vyr,y2 € H

and the Hilbert norm |y|%; = (y,y) . By u-1(-, )z we denote the duality
pairing on H' x H~'. If Y is a Banach space, then C([0,00);Y)) is the space
of continuous functions y : [0,00) — Y and C,([0,00);Y) is the space of
weakly continuous Y-valued functions. Furthermore, let C§°([0,00) x R9)
denote the space of all p € C°°([0, 00) x R?) such that support ¢ C K, where
K is compact in [0,00) x R% If u : [0,00) — H~! is a given function, we
shall denote its H!-strong derivative in ¢ by % (t), and the right derivative
by % u(t). We shall also use the following notations

d d

F(r) = 4 B, V() = 2 b(r), () = bir)r, 7 € R,

B oy 1° . 92
= — ey A = _—
Yt 815 Y, Vy {8:(:1 }i:1 ) Yy ;:1: ani Y,

d
y;
vy ;:1 8x,-’ Y {y =1

for y = y(t,z), (t,x) € [0,00) x RY, where A and div are taken in the sense
of the distribution space D'(R?).

2 The H'-regularity of the semigroup S(t)

Consider the semigroup S(t) : L' — L' defined earlier by the exponential
formula (1.7). Define the operator A*: H~! — H !

Ay = —=AB(y) + div(Db*(y)), Yy € D(A"), (2.1)
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with the domain D(A*) = H'. More precisely, for each y € H*, A*y € H!
is defined by

A = [ (V) = DY) Veds, Vo e H. (22

As mentioned earlier, the semigroup S(t) is not differentiable in L', but as
shown below it is, however, H~!-differentiable on the right on (0, c0).
Namely, we have

Theorem 2.1. Assume that Hypotheses (1)—(iv) hold. Then for each vy €
PN L™, the function u(t) = S(t)ug is in C([O,oo) “HNCy([0,00); L?), it
is H='-right differentiable on (0, 00) with %- d - u(t) being H™'-continuous from
the right on (0,00), S(t)ug € H', t > 0, cmd

+

Furthermore, S(t )uo € PNL>®,Vt >0, 4 S(t)ug exists on (0,00)\ N, where
N is an at most countable subset of (0, 00),

 S(tyuo + AS(tup = 0, i € (0,00) \ N (24)

and t — A*S(t)ug is H'-continuous on (0,00) \ N.
Moreover, \/S(t)ug € H*(RY), a.e. t > 0, that is,

VS (t)ug )
SO e L? ae te(0,00), (2.5)
E(S(t)up) < oo, a.e. t € (0,00). (2.6)

for all ug € P such that uglogug € L'. If uy € H', then (2.3) holds for all
t>0,t— S(t)ug is locally H™*-Lipschitz, on [0,00) and u(t) € H', ¥Vt > 0.
Finally, if ug € P*, then

S(t)yug € P*, Vt > 0. (2.7)

In particular, it follows by Theorem 2.1 that the semigroup S(t) is gene-
rated by the opertor —A* in the space H 1.

We shall prove Theorem 2.1 in several steps, the first one being the fol-
lowing lemma.



Lemma 2.2. The operator A* is quasi-m-accretive in H™!, that is, A* +wl
18 m-accretive for some w > 0.

Proof. We have
(A1 — Ay, y1 — y2) (2.8)
= (By1)=B(y2) y1 — y2)a — (B(y1) =B (y2), [=A) " (y1—12))2
HDO" (y1) =0 (y2)), VI =) " (y1-12))2
> mly1—yal5—r2lv1—v2| 1 [y1 4ol — [Dloo b |rip |11 =42l 2|31 — 4o -1
> —wlyi—y2l* 1, Yyi, 42 € D(AY),

for a suitable chosen w > 0 and so A* + wI is accretive in H~!. (Here, we
have used the inequality |V(I —A)™ (y; —42)|2 < |y1 —y2|-1.) Now, we shall
prove that R(I + AA*) = H~! for A € (0, )\g), where ), is suitably chosen.
For this purpose, we fix f € H~! and consider the equation

y — AAB(y) + Mdiv(Db*(y)) = f in D'(RY), y € L. (2.9)
The latter can be written as
Galy) = =A)'f, (2.10)
where G, : L? — L? is the operator

Ga(y) = MB(y) + (I = A)~'y — A1 — A)~1div(Db*(y)) — AT — A)~'B(y),
Yy e L2’

which by Hypotheses (i)—(iii) is continuous. Then, by (i)—(iii) we have

(G)\(yl) - G,\(y2), v — yz)z
> My —va 3+ —va 2 = Melyr —v2 |1 [y1 — v 2
—A| Do [0*|Lip|y1—y22|y1—y2| -1

. 1
> SO\ = XIDEI B3 i1

O N

> alyi—y23, Yyi,y2 € L2,

for some a > 0 and 0 < A < Ay with )\ sufficiently small. Hence, the operator
G, is monotone and coercive in the space L?. Since it is also continuous, we
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infer that it is surjective (see, e.g., [4], p. 37) and, therefore, R(G)) = L?
for 0 < A < A\g). Hence, (2.10) (equivalently (2.9)) has a solution y € L?
for X € (0,)\) and SB(y) € H'. Then, by (i) it follows that y € H' and so
y € D(A*). Hence, A* is quasi-m-accretive in H . O

Lemma 2.2 implies that there is a Cj-continuous nonlinear semigroup

S*(t) : H' — H~', ¢t > 0, which is generated by —A*. This means (see,
e.g., [4], p. 146 or [5], p. 56) that

t —n
S*(t)ug = lim (I +— A*) ug in HY WVt >0, Yug € H ', (2.11)
n—o00 n

uniformly on compact intervals. Moreover, for all ug € D(A*) = H! we have
S*(t)ug € D(A*), [0,00) Dt — S*(t)ug € H' is locally Lipschitz and,

d+
pn S*(t)ug + A*S*(t)ug = 0, Vt >0, (2.12)
d
pr S*(t)ug + A*S*(t)ug = 0, ae. t>0, (2.13)
d+

and the function ¢t — %= S*(t)uo is continuous from the right in the H~'-

topology. Taking into account (2.2), we can rewrite (2.13) as

d
— S*(t)ug)(x xda:—i—/VS*tu x
5 | D@+ [ (T5(5"(u)(@) o1
—D(2)b*((S*(t)uo)(x)) - Vo(z)dz =0, a.e. t >0, Vo € H'.
We also note that the semigroup S*(t) is quasi-contractive on H~!, that is,
]S*(t)uo — S*(t)’[LOy,l < exp(wt)|u0 — ao‘,l, Vit > O, VUO,EO € Hil,

for some w > 0. Moreover, we have for all uy € L? and T > 0,

t
|S* (t)uol3 +/ IV (S*(s)ug)|3ds < Crluols, Vt € [0,T). (2.15)
0
Here is the argument. By (2.11) we have, for all 7" > 0,
S*(t)ug = lim vp(t) in H* vt € (0,7T), (2.16)
—
where
u(t) = v), Yt € [jh, (j+ 1)), j=0,1,..,N, = [£],

. NS (2.17)
v+ hAT = vl j=0,1,..., Ny ) = ug.



Since v) = ug € L?, we get by (2.17)
(Blop"™), U;Jfl vh)2 + h|VB(v ]+1)|2 = (VB ), Db (v))2
<35 |V5(Uf;+1)|§ (|D|°°|b*|oo|vj+1| )%

By (i), this yields

Jj+1 Jj+1

3+1dx+ 20N |V (uF) / uo)dz + Ch>  |[vF)2,
/Rdﬂ S I IVEDE < [ it Oh Yok
where j(r fo s)ds. Since —717“2 <j(r) < 5727“2, Vr € R, we have

on ()2 + / |wh<s>|%dssc( / rvh<s>|3ds+|uor§), Le (0,T).
0 0

Hence .
on(®)2 + / Vou(s)2ds < Cluol2, ¥t € (0,T), h > 0.
0

Therefore, by (2.16) and by the weak-lower semicontinuity of the L?(0, T; H')-
norm, (2.15) follows. Hence, S*(t)up € H', a.e. t > 0, and so, by the semi-
group property, S*(t + s) = S*(t)S*(s), t,s > 0, we infer that S*(¢) has a
smoothing effect on initial data, that is,

S*(tyug € H' = D(A*), ¥t > 0,uy € L*. (2.18)

Then, by (2.12) it follows that ¢t — S*(t)uy is H '-continuous on (0,7)
for all uy € L?, hence t — |S*(t)uglz is lower semicontinuous on (0, 7).
Furthermore, (2.18) implies

d*
E S*( ) Uug + A*S*(t)'u,o = O7 VUO € Lz, vt > 0, (219)

and that the function t — % S*(t)ug = —A*S*(t)ug is H'-right continuous
n (0,00). Since S*(-)up € L=(0,T; L*) N C([0,T]; H'), it follows that

sup |S*(t)upla < esssup [S™(t)ugla V |S™(T)uglz2 + |uola < 0o
te[0,T] >0

and hence we obtain by the uniqueness of limits that the function ¢t — S*(¢)ug
is L2-weakly continuous, that is, S*(-)ug € C,([0,T]; L?), VT > 0. We set
up(t) = u(t+h) —u(t), u(t) = S*(t)ug, Vt € [0,T], h > 0, ug € L*. By (2.19)
we have
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+
Ccll_t up(t) + A*u(t + h) — A*u(t) =0, Vt € (0,7].

This yields

5 = ()2 < wlua ()2, vt € (0,T].
Hence, for all h > 0, we have
|un(t)| -1 exp(—wt) < |up(s)|-1exp(—ws), 0 <s <t <T,

and, therefore, the function ¢ — exp(—wt)|A*S*(t)ug|-1 is monotonically de-
creasing on (0,00) and so it is everywhere continuous on (0, 00), except for
a countable set N C (0, 00).

Since the continuity points of t — exp(—wt)A*S*(t)ug coincide with that
of t — exp(—wt)|A*S*(t)ug|—1 (see the proof of Lemma 3.1 in [12]), we
infer that the function t — exp(—wt)A*S*(t)uy has at most countably many
discontinuities. Hence, for each uy € L?, the function t — S*(t)ug is H*
differentiable on (0, 00) \ N and

% S*(t)ug + A*S*(t)ue = 0, Vt € (0,00) \ N, (2.20)

where N is a countable subset of (0, c0).
Proof of Theorem 2.1 (continued). We note first that
S(t)ug = S*(t)ug, ¥t >0, ug € L' N L2 (2.21)

Indeed, by (2.17) it follows that if ug € L' N L2, then |v]'|, < |vll1,
Vj=0,1,..., and, therefore,

o3l < [Pl = o, V. (2.22)

This follows by multiplying equation (2.17) with X(;(U?;—H) and integrating
over R%, where Xj is defined by
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Xs(r) =
-1 for r < —=6.

Taking into account that v} ™" € H', we have by (2.1) that
(Ao X5 ()

_ / B/ (o) Vol P e+ / (™) (D - Vol )dz,
Rd

[a3]vg, " ()] <]
which yields

lim sup(A*v) ™ X5(vl 7))y >0, Vj =0,1, ...
6—0

Hence,
limsup/ vl X (] de < oy, Vi =0,1, ...,
Rd

d—00
and so (2.22) follows.

Comparing (2.17) with (1.4), we infer that u, = vp, Vh, and so, by
(1.3) and (2.16), we get (2.21), as claimed. In particular, we have that, if
up € P N L, then by (1.8) it also follows that S*(¢t)ug € P N L>®, Vt > 0.

Roughly speaking, this means that the semigroup S(¢) is smooth on
L' N L? in H '-norm. Then, by (2.3)-(2.4), (2.21) and the corresponding
properties of S(t) follow by (2.12), (2.19)-(2.20). As regards (2.5)-(2.6), we
note first that by Theorem 4.1 in [8] (see also [10], p. 161), we have, for all
uy € P with uglogug € L,

t
E(S(t)up) +/ U(S(T)up)dr < E(ug) < oo, ¥Vt >0, (2.23)
0
where E is the energy functional (1.13) and
2
W(u) = / BVe b )| de. (2.24)
re | /0 (u)

Hence, W (S*(t)ug) < 0o, a.e. t > 0, which by (2.21) and Hypotheses (i)—(iii)
implies (2.5) (see [8, Lemma 5.1]), as claimed. Moreover, by (2.23), also (2.6)
holds.
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Assume now that ug € P*, hence £ + € L' for some 1) € X, where X is
defined by (1.15). We note that since S( )(P) C P, ¥t > 0, we have also
that u(t) > 0, Vt > 0, and u(t) € L™, ¥t > 0. So, it remains to prove that
it) € L', vt > 0. To this end, we consider the cut-off function

|z d
eule) = (25 ) via), vo e BY mer

where € C?([0,00)) is such that 0 <7 <1 and
n(r) =1, vr €[0,1]; n(r) =0, Vr > 2. (2.25)

Since u : [0,00) — H~! is locally Lipschitz, [0,00) 3t — g-1(u(t), @) g is
locally Lipschitz for all ¢ € H', and so almost everywhere differentiable. We
also note the chain differentiation rule

d du
pr g(u(t, z))pn(x)de = g (% (t),fy(u(t))@n) , ae. t€(0,7),
R4 H
for all T > 0 and all u e L*(0,T; H'), with % € L*(0,T;H™"), where

v€CHR fo

In the speelal case, Where du e L[2(0,T; L*), this formula follows by [4,
Lemma 4.4, p. 158]. If % € LQ(O T; H'), this follows by approximating u
by u. = (I —eA) lu and lettmg e — 0. We also note that by (2.15) we have
that u = S*(t)ug € L*(0,T; H').

Let € > 0 be arbitrary, but fixed. Then, since (u(-) +¢)~! € L*(0,T; H),
we have

d ©n(x) du ©On
S B R P (e P e t>0
dt/Rdu(t,:E)—i—e v H1<dt()’(u(t)+€)2 o -0

and so, by (2.14) we get

4 #n(?) B! (ult, 2))pn(@)[Vult, 2)*
/Rd u( d +2 d

dt t,x)+¢e v R (u(t,z) +¢)?

Flult, 2))(Ven(@) - Vult 7))
Rd (u(t,z) +¢)?

_ / (D(x) - Vipn(x))b(u(

+2/d b(u(t, z))u(t,x

i




By (2.25), we have

4p(x)

[Veon(z)| < \/—

[1']o0 + ¢n(2)g(z), @ € RY,

where g(z) = Wqﬁs)l.

On the other hand, we have by Hypotheses (i)—(iii) that

(
B'(u(t, 2))pn(r) | Vult, z)|? n ()| Vu(t, z)[?
2 | (u(t,z) + ) de = 2m /R Wt +ap 0 2%

and

B'(u(t, z))Vn(z) - Vu(t, z)
Rd ( (t,x) + 5)2
|Vu t ) (4 (x)

n

dx

s+ ula)g(o)) do
Cova [ |Vul(t,x)[y()
u(t, ) +¢) Vi Jra (u(t,x) +¢)?
|Vu(

+
t,z)? Cove [ |Vult,2)[¥(x)
EERY I B B

IV (t,ﬂf)!wn(x)
( 2

dx + (2.28)

|
|2
e
©
—~ |3
Q&
S [ —
&
~—
_I_

[Veou ()]
ra u(t,x) +¢

Spn(x) 1
= C"’/Rd wtx) +e | Vnlulta) +5>) de.
2/ bu(t, z))u(t, 2)(D(x) Vu(t, 2))n(2) ,

(u(t,z) +¢)?

[Vu(t, x)|on(x)
S 06")/3 /Rd (u(t,z;) +€)2 dx (230)

[Vu(t, ) Pon() on(2)
=2 Joa (ult,z) +¢)3 dz+Cr /Rd u(t,z) +e de.

ZL’SC4

(2.29)

X
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Then, by (2.27)-(2.30) and by Hypotheses (i)—(iii) it follows that

(
d on () on(7)|Vu(t, z)|?
dt /Rd u(t,z) +e 4w +m /Rd (u(t,x) +¢e)? da
Spn(m) Cs 1
ra u(t, x)—i—edx—i_ﬁ ra u(t,x) +¢
[Vu(t, z)|(x)
a (u(t,z) +¢)?

< Cy dx

Cs
—i—\/ﬁ dx, a.e. t > 0.

This yields

on(x |Vu$x)|2
d dxd
/Rdu(t:v x—{_Py\/\\/Rd +¢)3 was
</ dx—l—C'g/ ds/
Rduo( rd U(S
+—9/ds/ —d:v
vn ra u(s,x) +e

Lo [ [ IVl 2)l)
\/_ R4 (u( S, )+€)

dxds, Yt >0,

while

T > 2
/ / \Vu S, T |w )da:ds S% (/ ds |Vu(s,a:)\2div> <T @b?(x)dg:)
o 5 R4 Rd

< G

g2

because by (2.15) we know that Vu € L?(0,T; L?).
Letting n — oo, we get

Y(x)dx )dx
/Rdu(t,x)quS Rduo OT/ dS/Rdusx €0.7),

where Cr > 0 is independent of €, and so, for € — 0 it follows by Gronwall’s
lemma (which is applicable since ¢ € L') and by Fatou’s lemma,

(o) V)i
ra u(t,x) rd Up(T)

as claimed. m

< exp(Crt) < o0, Vt € (0,7),

15



3 A new tangent space to P

To represent NFPE (1.1) as a gradient flow as in [16], [17], we shall interpret
the space P* as a Riemannian manifold endowed with an appropriate tangent
bundle with scalar product which is, however, different from the one in [16],
[17]. To this purpose, we define the tangent space 7,(P*) at u € P* C P as
follows,

To(P*) = {z = =div(b*(w)Vy);y € W2 (RY), VuVy € L?} (c H™Y). (3.1)

loc
(Here, P* is defined by (1.14).)
The differential structure of the manifold P* is defined by providing for
u € P* the linear space T,(P*) with the scalar product (metric tensor)

(71,22), = /b*(u)Vyl-Vdex,
Rd

(3.2)
zi = div(b*(u)Vy,), i = 1,2,
and with the corresponding Hilbertian norm || - ||,
412 = [ ¥ @)Vods, == —div () V) (33
Rd

As a matter of fact, 7,(P*) is viewed here as a factor space by identifying
in (3.2) two functions y,y, € Wl if div(b*(u)V(y; — y2)) = 0. Note also
that, since b*(u) > bou and u > 0, a.e. on R%, ||z|, = 0 implies that z = 0.
Moreover, we have

|21]|lu = ||22]|w for z; = div(b*(w)Vy;), i = 1,2, (3.4)

if div(b*(u)V(y1 —y2)) = 0 in H~1. Indeed, for each ¢ € C$°(RY), we have
in this case that

!/bwwv@rﬂM‘V@%W$=Qi=Ll
Rd

and this yields
/d b (W)V(y1 — y2) - (Vi +y:Vip)dz = 0, i = 1,2. (3.5)
R

If we take p(z) = n (%) , where n € C%([0,00)); n(r) =1for 0 <r <1,
n(r) = 0 for » > 2, and let n — oo in (3.5), we get via the Lebesgue
dominated convergence theorem that

16



/ b (w)V(y — y2) - Vyidz =0, i = 1,2,
R4

which, as easily seen, implies (3.4), as claimed. Hence, the norm |z||, is
independent of representation (3.2) for z. We should also note that 7,(P*)
so defined is a Hilbert space, in particular, it is complete in the norm || - ||,,.
Here is the argument.

Let u € P* and let {y,} € W2 be such that

oo = 20lle = [ V0170 = ) P = 05, >

This implies that the sequence {/b*(u) Vy,} is convergent in L? as n — oo
and by Hypothesis (ii) so is {y/u Vy,}. Let

f = lim \/b*(u) Vy, in L*. (3.6)

As £ € L! for some ¢ € X, we infer that {Vy,} is convergent in Ll _ and
so, by the Sobolev embedding theorem (see, e.g., [11], p. 278), the sequence
d

1

o too. Hence, as n — oo, we

{yn} is convergent in L’ and, therefore, in L
have .
Yn — Y in L. NL-?

loc loc »

Vy, — Vy in (LL )%

and hence, along a subsequence, a.e. on R So, by (3.6) we infer that
f=+/b(u) Vy, where y € VVlicl Hence, as n — 0o, we have

|20 — 2|lu — 0 for z = —div(b*(u)Vy), y € W'

loc

as claimed.
As a consequence, we have that

{z = —div(b*(u)Vy);y € C5°(R%)} is dense in T, (P*) for all u € P*. (3.7)

To conclude, we have shown that, for each u € P*, T,(P*) is a Hilbert
space with the scalar product (3.2) and, as mentioned earlier, this is just the
tangent space to P* at u.
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4 The Fokker—Planck gradient flow on P*

We are going to define here the gradient of the energy function F : L? —
] — 00, +00] defined by (1.13). Namely,

/ (n(uw) + u)dz if uw € PN L*(RY) N LYRY ddz)
E(u) = Rd

+00 otherwise.
We note that E is convex, nonidentically 400 and we have:

Lemma 4.1. E is lower-semicontinuous on L?.

Proof. We first note that if u € P N L> N LY(RY; ®dz), then by the proof of
(4.6) in [8] for all &« € [m/(m + 1),1), we have by Hypothesis (iv)

/ n(u)dz > —C, (/ Qudr + 1) )
Rd R¢

hence, since r® < ﬁ r+ClL, r>0,
1 1
E(u) > —/ dudr — C) (4.1)
2 R4

for some C,, C!,C! € (0,00) independent of .
Let now w,u, € L?, n € N, such that lim u, = v in L?. We may assume

n—o0
that
liminf E(u,) = lim E(u,) < oo

n—oo n—oo

and that F(u,) < oo for all n € N. Then, by (4.1)

sup/ b u, dr < oo. (4.2)
neN JRd
Now, suppose that
E(u) > lim E(u,). (4.3)
n—oo

Then
E(u) > liminf [ n(u,)dz + lim inf/ b u, dx
Rd

n—00 Rd n—oo

n—o0

Zliminf/ n(un)dx+/ ®ude,
Rd R

18



where we applied Fatou’s lemma to the second summand in the last inequal-
ity. If we can also apply it to the first, then we get a contradiction to (4.3)
and the lemma is proved. To justify the application of Fatou’s lemma to the
first summand, it is enough to prove that there exist f,, € L', n € N, f, > 0,
such that (along a subsequence)

fo— fin LY, (4.4)

and
77(Un> Z _fna nc N (45>

To find such f,, n € N, we use (4.2). Recall from (4.4) in [8] that, for some
c € (0,00),
n(r) > —erlog™ (r) —cr, v > 0.

Hence,
n(u,) > —cup log™ (uy,) — cuy, n € N.

Since u, — u in L? and thus in L{ , it follows by(4.2) and our assumptions
on @ that (again along a subsequence) u,, — u in L'. Furthermore, for all
a € (0,1),

1 «a

- _ _ a . l—a 1-
—flog™(r) = 1y y(r)rlogr = 1 y(r)r ;= r*r “logr

1 >—e1
>~ e p>0.
(1—a)e

Hence, we find that

C

n(un) > —m

«
U, — Clp, n € N.

1

But, since u,, — u in L? and thus u® — u® in L,

remains to show that, for some ¢, € (0, 1),

by Hypothesis (iv) it

sup/ up O° dr < oo, (4.6)
Rd

neN

to conclude that (along a subsequence) u® — u® in L', and then (again
selecting a subsequence of {u,} if necessary) (4.4) and (4.5) hold with

u, + cu,, n € N.



So, let us prove (4.6).
Applying Holder’s inequality with p := é, we find that

a 11—«
/ug@gdxﬁ </ uncbdx) (/ ¢><clv5)/(1°‘)dm) .
Rd Rd R4

Hence, choosing ¢ small enough and « close enough to 1, so that
(£ —¢) /(1 — a) > m, Hypothesis (iv) implies (4.6). O

«

By Lemma 4.1 we have for F that its directional derivative

E'(u,z) = lim l(E(u + Az) — E(u))
A—0 A
exists for all u € P* and z € L? (it is unambiguously either a real number or
+00) (see, e.g., [6], p. 86).
In the following, we shall take v € P* C D(E) = {u € L* E(u) < oo}
and z € T,(P) and obtain that

/ _ s 1
FE'(u,z) = liﬁ)lX(E(u—i_)\Z)_E(u))

= /Rd z(z) (/1 5*27_5 dr + @(1:)) dx.

Moreover, the subdifferential 0F, : L? — L? of E at u is expressed as
(see [6, Proposition 2.39])

OB, ={y € L% (2,y)2 < E'(u, 2); Vz € L*}. (4.8)

We recall that if F is Gateaux differentiable at u, then OF, reduces to the
gradient VE, of F at u and

E'(u,2) = (VE,, 2)s, Vz € L*.

Any element y € OF, is called a subgradient of E' at u. In the following, we
shall denote, for simplicity, again by V E, any subgradient of E at v and we
shall keep the notation diff £, - z for E'(u, 2).

If 2z € T,(P*) is of the form z = zo = —div(b*(u)Vys), where y, €
Cs(RY), then z = —b*(u)Ays — Vo - (V' (u)u + b(u))Vu and so, by (i) and
(1.14), it follows that z € L? and hence
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1
F'u,z) = diff B, -2z = lgrol X(E(u + Azy) — E(u))

Vi (u(x)) \
/Rd ( b (u(2) — D(x)) b*(u(x)) - Vyo(z) dz (4.9)
B . u(x) B/(S)
= /]Rd b*(u(z))Vya(z) - V (/0 b*(s) ds + (I)(x)) dz.
We claim that w(s) ar
T /0 f (z) (z) isin WL, (4.10)
To prove this, we first note that by Hypotheses (i) and (ii)
N 5/( )
\b[oos b*()gbos 520
Hence,
/8/
‘b|oo / d < log (4.11)

Now, let ¢ € X such that ¥ - € L. then, for every compact K C R¢ and
K, = {%ﬁugl},neN,

/n(logu)_dx < (/n(logu)%das)l (infr )2 ([, L dx)

< sup((logu) u) (/n(logu)—alx)é (n};w)é (/K%dx)%.

1
Dividing by ( Jr. (log u)_d:c) * and letting n — oo yields logu € L. _, since

M\H
S

trivially (logu)™ € L], since u € L. Furthermore, for & > 0,

/|Vlog(u+€)|dx/ I'Z_uld < (/}{@dw)é(i%h@_; </K%dx)%.

Letting ¢ — 0 yields |V 1ogu| € L{ ., and (4.10) is proved by Hypothesis (iv).

Hence,

locy

E'(u,29) = /]Rd b*(u(x))Vya(z) - Vi (2)de = — (21, 22),,,
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where 2z, = —div(b*(u)Vyr), 1 = [, f;gzg ds + ®. Therefore,

29 > E'(u, 20) = diff E,29 = (VE,, 23)

extends to all z € T, (P*) by continuity and by (3.2) it follows that for u € P*
any subgradient V,FE of F is given by

VE, = —div (b*(u)V( /0 uf/i; ds + @)) 12)
— —AB(u) + div(Db*(u)) € H.

In particular, this means that 0F, is single valued and 0F, = VE,,.
On the other hand, by Theorem 2.1 we know that, for uy € P* with
uglogug € L', we have for the flow u(t) = S(¢)uo,

S(tyug € H' NP, Vt >0, V(S(t)uo) € L? ae. t>0,
S(t)’LLO
d+
= S(t)up = AB(S(Huo) — div(Db*(S(t)uo)), Vt > 0, (4.13)
d

7 S(t)yug = AB(S(t)ug) — div(Db*(S(t)ug)), Vt € (0,00) \ N, (4.14)
where N is at most countable set of (0,00). Moreover, if ug € P*, then, as
seen in Theorem 2.1, it follows that S(t)ug € P*, Vt > 0, and VE, is well
defined, a.e. ¢ > 0. Taking into account (4.12), we may rewrite (4.13)-(4.14)
as the gradient flow on P* endowed with the metric tensor (3.2). Namely,
we have

Theorem 4.2. Under Hypotheses (1)—(iv), for each ug € P*, the function
u(t) = S(t)ug € P*, ¥Vt > 0, and it is the solution to the gradient flow

d

i u(t) = —VE,q), a.e t>0, (4.15)

d+

a u(t) = —VEu(t), YVt > 0, (416)
d

E u(t) = —VEu(t), vVt € (0, OO) \ N, (417)

where N is at most countable set of 0,00).
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By (3.2) we may rewrite (4.16) as
d+ d+

2

—F = —||— ) 4.1
G B0 = - | % 5o e (418)
Equivalently,

+

Cél_t B(S()u) + A(S(t)u) = 0, ¥t > 0, (4.19)

where A* is the generator (2.1) of the Fokker—Planck semigroup S*(¢) (equi-
valently, S(t)) in H~'. Similarly, by (3.3) and (2.23)-(2.24) we can write

d

o = W(S()up), YVt € (0,00) \ N.  (4.20)

BE(S(t)ug) = — H% S(t)ug

2
u(t)
As a matter of fact, the energy dissipation formula (4.20) was used in [§]
(see also [5], Chapter 4) to prove that S(t)uy — us strongly in L' as

t — 00, where 1, is the unique solution to equilibrium equation —A S (uq )+
div(Db(teo ) tles) = 0.

Remark 4.3. Taking into account (4.7), we see also that the operator A*
defined by (2.1) can be expressed as

A*u = B, diff E,, Yu € D(A*) = H', (4.21)
where B, : H' — H~! is the linear symmetric operator defined by
B.(y) = —div(b*(v)Vy), Yy € D(B,),

(4.22)

D(B,) = {yel VuVyeL*}.

This means that VE, can be equivalently written as
VE, = B,(diff E,). (4.23)

In the special case b(r) =

1,
Euz/ Fr) dr + &
1

T

and so u(t) = S(t)ug is the Wasserstein gradient flow of the functional F
defined by the time-discretized scheme

up(t) = ul, t€[jh,(j+1h), j=0,1,..,

. 1 .
u; = min {% dy(u,ul ) + E(u)}

u
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where dy is the Wasserstein distance of order two (see [3], [14], [16]). However,
in the general case considered here, this is not the case.
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