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1. Introduction

We consider on Rd
T = Rd × [0, T ] the Cauchy problem for the Fokker–Planck–

Kolmogorov equation

∂tµt =
d∑

i,j=1

∂xi
∂xj

(
aijµt

)
−

d∑
i=1

∂xi

(
biµt

)
+ cµt, µ0 = ν. (1.1)

We assume throughout that ν is a Borel probability measure, the coefficients aij,
bi and c are Borel measurable, the matrix A = (aij) is symmetric and nonnegative
definite, and for some nonnegative constant c0 the inequality

−c0 ≤ c(x, t) ≤ 0

is valid for all (x, t) ∈ Rd × [0, T ].
A family of Borel subprobability measures (µt)t∈[0,T ] (which means that µt ≥ 0

and µt(Rd) ≤ 1) is called a solution if for every Borel set B the function t 7→ µt(B)
is Borel measurable, the coefficients aij and bi are integrable with respect to the
measure µ = µt dt on U × [0, T ] for every ball U ⊂ Rd and for every function
ϕ ∈ C∞

0 (Rd) and almost all t ∈ [0, T ] we have the equality∫
Rd

ϕµt −
∫

Rd

ϕdν =

∫ t

0

∫
Rd

LA,b,cϕdµs ds, (1.2)

where

LA,b,cϕ = trace
(
AD2ϕ

)
+ 〈b,∇ϕ〉+ cϕ =

∑
i,j≤d

aij∂xi
∂xj

ϕ+
∑
i≤d

bi∂xi
ϕ+ cϕ.

The measure µ = µt dt is defined by the equality∫
Rd×[0,T ]

f dµ =

∫ T

0

∫
Rd

f(x, t)µt(dx) dt.

This measure is also called a solution.
In the papers [13], [24], and [9] the so-called superposition principle for probability

solutions was established. In the case where c is zero, this principle states that for
every solution (µt)t∈[0,T ], defined by a family of Borel probability measures µt (i.e.,
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µt ≥ 0 and µt(Rd) = 1) such that the mapping t 7→ µt is continuous in the weak
topology there exists a solution P to the martingale problem with the operator
LA,b,0 and initial condition ν such that the one-dimensional projections P ◦ e−1

t are
equal to µt. Here and below P ◦ e−1

t denotes the image of the measure P under
the mapping et : ω 7→ ω(t). Note that the superposition principle holds for every
probability solution given by a continuous curve in the space of probability measures
under very weak conditions on the coefficients, for example, it is assumed in [9] that∫ T

0

∫
Rd

‖A(x, t)‖+ |〈b(x, t), x〉|
1 + |x|2

µt(dx) dt <∞.

In [14] the superposition principle is proved for probability solutions on arbitrary
open subsets of Rd and a justification of the superposition principle with the aid
of change of coordinates is suggested. For the continuity equation, where A = 0,
the superposition principle is established in [1]. In [22], a connection between the
superposition principle for the continuity equation and the superposition principle
in the theory of flows is found. The papers [24], [16], and [12] discuss the superposi-
tion principle for infinite-dimensional spaces. In [21], the superposition principle is
obtained for nonlocal Fokker–Planck–Kolmogorov equations satisfied by the distri-
butions of Lévy processes. Applications of the superposition principle to nonlinear
Fokker–Planck–Kolmogorov equations are discussed in [17], [2], [18], [3], [5], [9], [4],
and [10]. Classical results on existence and uniqueness of solutions to martingale
problems can be found in [23] and [15]. The theory of Fokker–Planck–Kolmogorov
equations is presented in [8].

This paper continues research initiated in [9] and [14] and is concerned with
the superposition principle for solutions to Fokker–Planck–Kolmogorov equation
with potential terms. Principal results on existence, uniqueness and regularity of
solutions to such equations can be found in [20] and [8]. In place of solutions given
by continuous curves in the space of probability measures, in the case of a nonzero
potential we consider solutions defined by continuous curves t 7→ µt in the space of
subprobability measures such that

µt(Rd) = 1 +

∫ t

0

∫
Rd

c(x, s)µs(dx) ds. (1.3)

Our main result states that for every such solution (µt)t∈[0,T ] there exists a Borel
probability measure P on C([0, T ],Rd) with the following properties: the measure P
is a solution to the martingale problem with the operator LA,b,0 and initial condition
ν and

µt =
(
eh(ω,t)P

)
◦ e−1

t ,

where

h(ω, t) :=

∫ t

0

c(ω(s), s) ds.

In the case A = 0 for the continuity equation with a potential term the superposition
principle was discussed in [19]. However, it should be noted that the justification
of this principle in [19] is not satisfactory, because it assumes (see [19, Theorem
4.1, Step 3]) without any explanation that conditional measures corresponding to a
weakly convergent sequence of probability measures also converge weakly, while it
is well known that in general this is false. The paper [11] deals with the continuity
equation with an unbounded potential term, but on a bounded domain. Finally, let
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us observe that in the case of smooth bounded coefficients the superposition principle
for the Fokker–Planck–Kolmogorov equation can be derived from the Feynman–Kac
formula

u(y, τ) = E
[
ϕ(ξy,τ

t ) exp

(∫ t

τ

c(ξy,τ
s , s) ds

)]
,

where ϕ ∈ C∞
0 (Rd), the function u is the classical solution to the Cauchy problem

∂su+ LA,b,cu = 0, u|s=t = ϕ,

bounded along with its derivatives, and ξy,τ
t is the solution of the stochastic equation

dξt = b(ξt, t) dt+
√

2A(ξt, t) dwt, ξτ = y.

Note that the Feynman–Kac formula can be obtained with the aid of Itô’s formula
applied to the process u(ξy,τ

t , t). Let us explain how it can be used to derive the
superposition principle. Let (µt)t∈[0,T ] be the solution to the Cauchy problem for
the Fokker–Planck–Kolmogorov equation with initial distribution ν. Then by the
definition of a solution we have∫

Rd

ϕ(y)µt(dy) =

∫
Rd

u(y, 0) ν(dy).

The left-hand side can be written as∫
Ω

ϕ(ω(t))eh(ω,t)P (dω), Ω = C([0, T ],Rd),

where P = P y ν(dy) and P y is the distribution of the process ξy,0
t . With the aid of

Itô’s formula one can verify that P is a solution to the martingale problem with the
operator LA,b and initial condition ν and the equality obtained above means that

µt =
(
eh(ω,t)P

)
◦ e−1

t .

Of course, the conditions on the coefficients in the reasoning above can be relaxed,
but one cannot get rid of the local regularity and restrictions on the growth, because
we need the (probabilistically weak) existence of the solution ξx,τ

t of the stochastic
equation along with the existence of a sufficiently regular solution to the Cauchy
problem for the equation ut + LA,b,cu = 0 (in order to apply Itô’s formula) and
to be able to substitute u into the integral identity, defining the solution µt. For
these reasons, under our very weak assumptions about the coefficients, such a simple
method of justification is not applicable. Note also that the situation is complicated
by a possible non-uniqueness of solutions to the Cauchy problem for the Fokker–
Planck–Kolmogorov equation and the absence of a priori assumptions of existence of
solutions to the corresponding martingale problem and even a probability solution to
the Fokker–Planck–Kolmogorov equation with zero potential. Nevertheless, in the
case of sufficiently regular coefficients the Feynman–Kac formula enables us to obtain
probabilistic representations of solutions to nonlinear Fokker–Planck–Kolmogorov
equations of a very general form admitting coefficients that depend not only on the
solution density, but also on its gradient (see, e.g., [5], [17], and [18]).

2. Auxiliary results

Recall that the weak topology on the space of bounded Borel measures on Rd is
defined by the seminorms

pf (σ) =

∣∣∣∣∫
Rd

f dσ

∣∣∣∣,
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where f is a bounded continuous function on Rd. Convergence of a sequence of
measures in this topology is convergence of integrals of bounded continuous functions
with respect to these measures. This topology is not metrizable, but on the set of
nonnegative measures it is metrizable (see [6] or [7]), for example, one can use the
Kantorovich–Rubinshtein metric

dKR(µ, ν) = sup
f∈Lip1, |f |≤1

∣∣∣∣∫
Rd

f dµ−
∫

Rd

f dν

∣∣∣∣,
where Lip1 is the set of all Lipschitz functions with the Lipschitz constant 1.

Set

LA,bϕ = LA,b,0ϕ = trace
(
AD2ϕ

)
+ 〈b,∇ϕ〉 =

∑
i,j≤d

aij∂xi
∂xj

ϕ+
∑
i≤d

bi∂xi
ϕ.

In the following assertion we collect some properties of solutions to the Cauchy
problem (1.1) used below.

Proposition 2.1. Suppose that for every ball U the coefficients aij, bi, and c are
bounded on U × [0, T ], c ≤ 0 and A ≥ λ(U) · I for some number λ(U) > 0. Let ν be
a Borel probability measure on Rd.

(i) There exists a subprobability solution (µt)t∈[0,T ] to the Cauchy problem (1.1)
for which

µt(Rd) ≤ 1 +

∫ t

0

∫
Rd

c(x, s)µs(dx) ds. (2.1)

(ii) If −c0 ≤ c(x, t) ≤ 0 for all (x, t) ∈ Rd × [0, T ], then one can find a solution
(µt)t∈[0,T ] to the Cauchy problem (1.1) and a solution (µ̃t)t∈[0,T ] to the Cauchy problem
(1.1) with the same coefficients aij, bi and zero c such that

µt ≤ µ̃t ≤ ec0tµt.

(iii) If there exists a function V ∈ C2(Rd) such that V ≥ 0, lim
|x|→∞

V (x) = +∞

and ∫ T

0

∫
Rd

(∣∣√A∇V ∣∣2 +
∣∣LA,bV

∣∣) dµs ds <∞,

then

µt(Rd) = 1 +

∫ t

0

∫
Rd

c(x, s)µs(dx) ds.

(iv) If in addition to the conditions in (i) and (iii) on every ball U we have
|aij(x, t)− aij(y, t)| ≤ Λ(U)|x− y|, then a solution (µt)t∈[0,T ] from (i) is unique.

Proof. Items (i), (iii), and (iv) are particular cases of the results in [20] (see The-
orem 2.1, Remark 2.9, Theorem 3.5). Let us justify (ii). In [20], solutions are
constructed as limits of solutions to equations with smooth bounded coefficients,
whose derivatives are also bounded. Hence it suffices to verify that the inequalities
are true in the case of such coefficients. Let ψ ∈ C∞

0 (Rd) and ψ ≥ 0. Consider a
bounded solution f to the Cauchy problem

∂tf + LA,bf = 0, f |t=s = ψ.

The solution f is infinitely differentiable and bounded along with its first and second
order derivatives, moreover, f ≥ 0 by maximum principle. Substituting f and fec0t
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into the definition of a solution, we obtain the equalities∫
Rd

ψ(x)µs(dx) =

∫
Rd

f(x, 0) ν(dx) +

∫ s

0

∫
Rd

c(x, t)f(x, t)µt(dx) dt,∫
Rd

ψ(x) µ̃s(dx) =

∫
Rd

f(x, 0) ν(dx),∫
Rd

ψ(x)ec0s µs(dx) =

∫
Rd

f(x, 0) ν(dx) +

∫ s

0

∫
Rd

(
c0 + c(x, t)

)
f(x, t)ec0t µt(dx) dt.

Taking into account that f ≥ 0, c0 + c ≥ 0 and c ≤ 0, we arrive at the inequalities∫
Rd

ψ(x)µs(dx) ≤
∫

Rd

ψ(x) µ̃s(dx),

∫
Rd

ψ(x)ec0s µs(dx) ≥
∫

Rd

ψ(x) µ̃s(dx),

which yield the inequalities µs ≤ µ̃s ≤ ec0sµs, since ψ was arbitrary. �

The next assertion generalizes Proposition 2.2 and Proposition 2.4 from [9].

Proposition 2.2. Let τ ∈ (0, T ], V ∈ C2(Rd), V ≥ 0 and lim
|x|→+∞

V (x) = +∞.

(i) If (µt)t∈[0,T ] is a solution to the Cauchy problem (1.1) consisting of subprobabil-
ity measures satisfying (2.1), V ∈ L1(ν) and LA,bV ≤ CV +W , where W ∈ L1(µt dt),
W ≥ 0 and C ≥ 0, then equality (1.3) is true and for all t ∈ [0, τ ] we have the esti-
mates

sup
t

∫
Rd

V dµt ≤ eCt

(∫
Rd

V dν +

∫ τ

0

∫
Rd

W dµs ds

)
,∫ τ

0

∫
Rd

|LA,bV | dµt dt ≤ 2eCτ

(∫
Rd

V dν +

∫ τ

0

∫
Rd

W dµs ds

)
.

(ii) There exists a function θ ∈ C2([0,+∞)) with the following properties:

θ ≥ 0, 0 ≤ θ′ ≤ 1, θ′′ ≤ 0, lim
u→+∞

θ(u) = +∞, θ(V ) ∈ L1(ν).

(iii) Let (µt)t∈[0,T ] be a solution to the Cauchy problem (1.1) consisting of subprob-
ability measures satisfying (2.1). If∫ τ

0

∫
Rd

(∣∣√A∇V ∣∣2 +
∣∣LA,bV

∣∣) dµs ds <∞

and θ is the function from (ii), then∫ τ

0

∫
Rd

(∣∣√A∇θ(V )
∣∣2+∣∣LA,bθ(V )

∣∣) dµs ds ≤ 2eCτ

∫ τ

0

∫
Rd

(∣∣√A∇V ∣∣2+∣∣LA,bV
∣∣) dµs.

Proof. We justify (i). Taking into account the inequality c(x, t)V (x, t) ≤ 0 and
repeating the reasoning from the proof of Theorem 7.1.1 in [8], we conclude that
equality (1.3) is fulfilled and∫

Rd

V dµt ≤ eCt

(∫
Rd

V dν +

∫ τ

0

∫
Rd

W dµs ds

)
.

Write LA,bV as the difference of the functions

(LA,bV )+ = max{0, LA,bV }, (LA,bV )− = max{0,−LA,bV }.
Observe that by nonnegativity of W and CV we have (LA,bV )+ ≤ W + CV . Re-
peating the reasoning from the proof of Proposition 2.1, we obtain the estimate∫ τ

0

∫
Rd

|LA,bV | dµs ds ≤ 2eCτ

(∫
Rd

V dν +

∫ τ

0

∫
Rd

W dµs ds

)
.
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Item (ii) follows from [8, Proposition 7.1.8]. The justification of (iii) is based on the
observation that LA,bθ(V ) ≤ |LA,bV | and repeats the reasoning from [9, Proposition
2.4]. �

3. Main results

A Borel probability measure P on the path space Ω = C([0, T ],Rd) is called a
solution to the martingale problem with the operator LA,b and initial condition ν
if P (ω : ω(0) ∈ B) = ν(B) for every Borel set B ⊂ Rd and for every function
ϕ ∈ C∞

0 (Rd) the process

ξt(ω) = ϕ(ω(t))− ϕ(ω(0))−
∫ t

0

LA,bϕ(ω(s), s) ds

is a martingale with respect to the natural filtration Ft = σ(ω(s), s ≤ t) and the
measure P .

Set et(ω) = ω(t). Here we always assume that for every ball U ⊂ Rd one has∫ T

0

∫
U

(
‖A(x, s)‖+ |b(x, s)|

)
P ◦ e−1

s (dx) ds <∞.

Proposition 3.1. Suppose that the measure P is a solution to the martingale prob-
lem with the operator LA,b and initial condition ν. Set

µt =
(
eh(ω,t)P

)
◦ e−1

t , h(ω, t) =

∫ t

0

c(ω(s), s) ds.

Then the measures µt and P ◦ e−1
t are equivalent, equality (1.3) holds, the mapping

t 7→ µt is continuous in the weak topology and the family of measures (µt)t∈[0,T ] is a
solution to the Cauchy problem for the Fokker–Planck–Kolmogorov equation (1.1).

Proof. Let ϕ ∈ Cb(Rd). Then∫
Rd

ϕ(x)µt(dx) =

∫
Ω

ϕ(ω(t))eh(ω,t) P (dω).

Since the right-hand side is continuous in t, the mapping t 7→ µt is continuous in the
weak topology. By the inequality −c0 ≤ c ≤ 0 the right-hand side is estimated from

above by the integral

∫
Ω

ϕd(P ◦ e−1
t ) and is estimated from below by the expression

e−c0t

∫
Ω

ϕd(P ◦ e−1
t ). Therefore, the measures µt and P ◦ e−1

t are equivalent.

Since for all t ∈ [0, T ] we have

eh(ω,t) = 1 +

∫ t

0

c(ω(s), s)eh(ω,s) ds,

by Fubini’s theorem∫
Ω

ϕ(ω(t))eh(ω,t) P (dω)

=

∫
Ω

ϕ(ω(t))P (dω) +

∫ t

0

∫
Ω

ϕ(ω(t))c(ω(s), s)eh(ω,s) P (dω) ds.

For ϕ = 1 we obtain

µt(Rd) = 1 +

∫ t

0

∫
Ω

c(ω(s), s)eh(ω,s) P (dω) ds = 1 +

∫ t

0

∫
Rd

c(x, s)µs(dx) ds.
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We now verify that the family of measures (µt)t∈[0,T ] satisfies the Fokker–Planck–
Kolmogorov equation. Let ϕ ∈ C∞

0 (Rd). Consider the partition of [0, T ] by the
points 0 = t0 < t1 < . . . , tN = t , where tk = kt/N . We have∫

Rd

ϕdµt −
∫

Rd

ϕdν =
N∑

k=1

(∫
Rd

ϕdµtk −
∫

Rd

ϕdµtk−1

)
.

By the definition of the measures µtk and µtk−1
we have the equality∫

Rd

ϕdµtk −
∫

Rd

ϕdµtk−1
=

∫
Ω

(
ϕ(ω(tk))e

h(ω,tk) − ϕ(ω(tk−1))e
h(ω,tk−1)

)
P (dω).

Observe that

ϕ(ω(tk))e
h(ω,tk) − ϕ(ω(tk−1))e

h(ω,tk−1)

=

(
ϕ(ω(tk))− ϕ(ω(tk−1))−

∫ tk

tk−1

LA,bϕ(ω(s), s) ds

)
eh(ω,tk−1)

+

(∫ tk

tk−1

LA,bϕ(ω(s), s) ds

)
eh(ω,tk−1) + ϕ(ω(tk))

(∫ tk

tk−1

c(ω(s), s)eh(ω,s) ds

)
,

where we used the equality

eh(ω,tk) − eh(ω,tk−1) =

∫ tk

tk−1

c(ω(s), s)eh(ω,s) ds.

Since the measure P is a solution to the martingale problem and the function
eh(ω,tk−1) is measurable with respect to Ftk−1

, we obtain∫
Ω

(
ϕ(ω(tk))− ϕ(ω(tk−1))−

∫ tk

tk−1

LA,bϕ(ω(s), s) ds

)
eh(ω,tk−1) P (dω) = 0.

We also have the equality∫ tk

tk−1

LA,bϕ(ω(s), s) ds eh(ω,tk−1)

=

∫ tk

tk−1

eh(ω,s)LA,bϕ(ω(s), s) ds+

∫ tk

tk−1

(
eh(ω,tk−1) − eh(ω,s)

)
LA,bϕ(ω(s), s) ds.

Since∣∣∣eh(ω,tk−1) − eh(ω,s)
∣∣∣ = eh(ω,s)

∣∣∣∣exp

(
−
∫ s

tk−1

c(ω(τ), τ) dτ

)
− 1

∣∣∣∣ ≤ |tk−1 − s|eh(ω,s)ec0t,

we have∣∣∣∣∫ tk

tk−1

(
eh(ω,tk−1)−eh(ω,s)

)
LA,bϕ(ω(s), s) ds

∣∣∣∣ ≤ ec0ttN−1

∫ tk

tk−1

eh(ω,s)
∣∣LA,bϕ(ω(s), s)

∣∣ ds.
Observe also that

ϕ(ω(tk))

(∫ tk

tk−1

c(ω(s), s)eh(ω,s) ds

)
=

∫ tk

tk−1

ϕ(ω(s))c(ω(s), s)eh(ω,s) ds+

∫ tk

tk−1

(
ϕ(ω(tk))− ϕ(ω(s))

)
c(ω(s), s)eh(ω,s) ds,
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in addition,∣∣∣∣∫ tk

tk−1

(
ϕ(ω(tk))−ϕ(ω(s))

)
c(ω(s), s)eh(ω,s) ds

∣∣∣∣ ≤ c0t

N
sup

|τ1−τ2|≤tN−1

∣∣ϕ(ω(τ1))−ϕ(ω(τ2))
∣∣.

Thus, we arrive at the equality∫
Rd

ϕdµt −
∫

Rd

ϕdν

=

∫
Ω

(∫ t

0

(
eh(ω,s)LA,bϕ(ω(s), s) + eh(ω,s)c(ω(s), s)ϕ(ω(s)) ds

)
P (dω) + δN ,

where∣∣δN ∣∣ ≤ ec0tt

N

∫ t

0

∫
Rd

|LA,bϕ| dµs ds+ c0t

∫
Ω

sup
|τ1−τ2|≤tN−1

∣∣ϕ(ω(τ1))− ϕ(ω(τ2))
∣∣P (dω).

Letting N →∞, we obtain the equality∫
Rd

ϕd(µt − ν) =

∫
Ω

∫ t

0

(
eh(ω,s)LA,bϕ(ω(s), s) + eh(ω,s)c(ω(s), s)ϕ(ω(s)

)
dsP (dω).

Applying Fubini’s theorem and the change of variable formula we arrive at the
equality ∫

Rd

ϕd(µt − ν) =

∫ t

0

∫
Rd

(
LA,bϕ+ cϕ

)
dµs ds

from the definition of a solution. �

Remarkably, under very general conditions, the converse assertion is true.

Theorem 3.2. Suppose that a mapping t 7→ µt from [0, T ] to the space of subproba-
bility measures is continuous in the weak topology, the family of measures (µt)t∈[0,T ]

is a solution to the Cauchy problem (1.1), equality (1.3) holds, and

(1 + |x|)−2
(
‖A(x, t)‖+

∣∣〈b(x, t), x〉∣∣) ∈ L1(Rd × [0, T ], µ), −c0 ≤ c(x, t) ≤ 0.

Then there exists a solution P to the martingale problem with the operator LA,b and
initial condition ν such that

µt =
(
eh(ω,t)P

)
◦ e−1

t .

Proof. Since the proof repeats conceptually and partly technically the proof of a
similar theorem for the case c = 0 in [9], we omit part of the reasoning and give
references to the corresponding places in [9]. The scheme of our proof consists of
the following steps: 1) smoothing the coefficients of the operator LA,b,c, 2) applying
the superposition principle known in the smooth case along with the theorem of
uniqueness of a subprobability solution, 3) justifying the limit procedure. The way
of approximating the coefficients by smooth functions in this proof differs slightly
from approximations in [9]. Namely, in place of convolutions with a smooth kernel

with respect to the variable t we use expressions of the form ε−1

∫ t+ε

t

f(s) ds, which

is simpler and enables us to shorten the proof a bit.
According to Proposition 2.2 there exists a function θ for which

sup
t∈[0,T ]

∫
Rd

θ(ln(1 + |x|2))µt(dx) <∞.
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Let 0 < T ′ < T and T − T ′ < 1. We first construct an auxiliary measure P
on C[0, T ′]. Then the construction of the desired measure P on C[0, T ] repeats
verbatim to reasoning from [9], namely, the measure P on C[0, T ] is obtained as the
weak limit of some subsequence of measures Pn on C[0, T − n−1].

Let ζ ∈ C∞([0,∞)), ζ(0) = 1, 0 ≤ ζ ≤ 1, ζ ′ ≤ 0 and ζ(v) = 0 if v > 1. Set

η(v) =

∫ +∞

v

ζ(u) du, v ∈ [0,+∞).

Observe that η(v) = 0 if v > 1 and η′(v) = −ζ(v).
If 0 < ε < T − T ′, we denote the function cdε

−dζ(ε−2|x|2) by hε, where the
constant cd is picked such that ∫

Rd

hε(x) dx = 1.

Let γ(x) = (2π)−d/2e−|x|
2/2 and

κε = ε−1

∫ ε

0

µs(Rd) ds.

Then lim
ε→0

κε = 1, hence we can assume that κε > 1/2, decreasing ε. Set

σε
t (x, t) = εγ(x) +

(1− ε)

εκε

∫ t+ε

t

∫
Rd

hε(x− y)µs(dy) ds,

aij
ε (x, t) =

(1− ε)

εκεσε
t

∫ t+ε

t

∫
Rd

aij(y, s)hε(x− y)µs(dy) ds,

biε(x, t) =
(1− ε)

εκεσε
t

∫ t+ε

t

∫
Rd

bi(y, s)hε(x− y)µs(dy) ds,

cε(x, t) =
(1− ε)

εκεσε
t

∫ t+ε

t

∫
Rd

c(y, s)hε(x− y)µs(dy) ds.

Below we use also the notation

αε(x, t) = Aε(x, t) +
εγ(x)

σε
t (x)

I, βε(x, t) = bε(x, t)−
εγ(x)

σε
t (x)

x.

The coefficients αij
ε , βi

ε, cε are infinitely differentiable in x and continuous in t,
moreover, −2c0 ≤ cε(x, t) ≤ 0.

The family of measures (σε
t )t∈[0,T ′] is a solution to the Cauchy problem for the

Fokker–Planck–Kolmogorov equation with the operator

Lε
α,β,cϕ = Lε

A,b,cϕ+
εγ

σε
t

(
∆ϕ− 〈x,∇ϕ〉

)
,

where

Lε
A,b,cϕ = trace

(
AεD

2ϕ
)

+ 〈bε,∇ϕ〉+ cεϕ,

and initial condition

νε(x) = ε−1κ−1
ε (1− ε)

∫ ε

0

∫
Rd

hε(x− y)µs(dy) ds+ εγ(x).
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Observe that νε(Rd) = 1. Moreover, since∫ t

0

∫
Rd

cε(y, s)σ
ε
s(dy) ds = κ−1

ε ε−1(1− ε)

∫ t

0

∫ s+ε

s

∫
Rd

c(y, τ)µτ (dy) dτ ds

= κ−1
ε ε−1(1− ε)

∫ t

0

(
µs+ε(Rd)− µs(Rd)

)
ds = σε

t (Rd)− νε(Rd),

the family (σε
t )t∈[0,T ′] satisfies equality (1.3).

Note that for every ball U(0, R) ⊂ Rd we have∫ T ′

0

∫
U(0,R)

(
‖αε‖+ |βε|

)
σε

t dx dt ≤ 2

∫ T

0

∫
U(0,R+1)

(
‖A‖+ |b|

)
dµt dt+ 2T.

We show that ∫ T ′

0

∫
Rd

(
‖αε(x, t)‖+ |〈βε(x, t), x〉|

1 + |x|2

)
σε

t (x) dx dt ≤ C,

and moreover there exists a function V ∈ C2(Rd) such that lim
|x|→∞

V (x) = +∞ and

∫
Rd

V dνε +

∫ T ′

0

∫
Rd

(
|
√
αε∇V |2 + |Lε

α,βV |
)
dσε

t dt ≤ C̃,

where the numbers C and C̃ do not depend on ε. We now observe that

|〈βε(x, t), x〉| ≤ |〈bε(x, t), x〉|+
εγ(x)|x|2

σε
t

,

where

〈bε(x, t), x〉 =
(1− ε)

εκεσε
t

∫ t+ε

t

∫
Rd

〈b(y, s), y〉hε(x− y)µs(dy) ds

+
(1− ε)

εκεσε
t

∫ t+ε

t

∫
Rd

〈b(y, s), x− y〉hε(x− y)µs(dy) ds.

Note that

ε−1

∫ t+ε

t

∫
Rd

〈b(y, s), x− y〉hε(x− y)µs(dy) ds

= 2ε−d+1cd

∫ t+ε

t

∫
Rd

〈b(y, s),∇yη(ε
−2|x− y|2)〉µs(dy) ds.

Since (µt)t∈[0,T ] satisfies the Fokker–Planck–Kolmogorov equation, we have the equal-
ity∫ t+ε

t

∫
Rd

〈b(y, s),∇yη(ε
−2|x− y|2)〉µs(dy) ds

=

∫
Rd

η(ε−2|x− y|2)µt+ε(dy)−
∫

Rd

η(ε−2|x− y|2)µt(dy)

−
∫ t+ε

t

∫
Rd

(
trace

(
A(y, s)D2

yη(ε
−2|x− y|2)

)
+ c(y, s)η(ε−2|x− y|2)

)
µs(dy) ds.
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Note that

trace
(
A(y, s)D2

yη(ε
−2|x− y|2)

)
= 4ε−4η′′(ε−2|x− y|2)〈A(y, s)(x− y), x− y〉 − 2ε−2η′(ε−2|x− y|2)trA(y, s).

Since η′ = −ζ and η′′ = −ζ ′, we have∣∣∣trace(A(y, s)D2
yη(ε

−2|x− y|2)
)∣∣∣

≤ 4ε−4|x− y|2|ζ ′(ε−2|x− y|2)|‖A(y, s)‖+ 2ε−2ζ(ε−2|x− y|2)traceA(y, s).

Thus, we obtain the estimate

ε−1

∣∣∣∣∫ t+ε

t

∫
Rd

〈b(y, s), x− y〉hε(x− y)µs(dy) ds

∣∣∣∣
≤ 2ε−d+1cd

∫
Rd

η(ε−2|x− y|2)µt+ε(dy) + 2ε−d+1cd

∫
Rd

η(ε−2|x− y|2)µt(dy)

+ 8ε−d−3cd

∫ t+ε

t

∫
Rd

|x− y|2|ζ ′(ε−2|x− y|2)|‖A(y, s)‖µs(dy) ds

+ 4ε−d−1cd

∫ t+ε

t

∫
Rd

ζ(ε−2|x− y|2)traceA(y, s)µs(dy) ds

+ 2c0cdε
−d+1

∫ t+ε

t

∫
Rd

η(ε−2|x− y|2)µs(dy) ds.

It follows that there is a number N1 > 0 such that

|〈βε(x, t), x〉|
1 + |x|2

≤ N1

σε
t

(
γ(x)+Bε(x, t)+ε−1

∫ t+ε

t

∫
Rd

|〈b(y, s), y〉|
1 + |y|2

hε(x−y)µs(dy) ds

)
,

where

Bε(x, t) = 2ε−d+1cd

∫
Rd

η(ε−2|x− y|2)µt+ε(dy) + 2ε−d+1cd

∫
Rd

η(ε−2|x− y|2)µt(dy)

+ 8ε−d−3cd

∫ t+ε

t

∫
Rd

|x− y|2|ζ ′(ε−2|x− y|2)|‖A(y, s)‖(1 + |y|2)−1 µs(dy) ds

+ 4ε−d−1cd

∫ t+ε

t

∫
Rd

ζ(ε−2|x− y|2)‖A(y, s)‖(1 + |y|2)−1 µs(dy) ds

+ 2c0cdε
−d+1

∫ t+ε

t

∫
Rd

η(ε−2|x− y|2)µs(dy) ds.

There is also a number N2 > 0 independent of ε such that∫ T ′

0

∫
Rd

Bε(x, t) dx dt ≤ N2

(
1 +

∫ T

0

∫
Rd

‖A(y, s)‖
1 + |y|2

µs(dy) ds

)
.

Therefore,∫ T ′

0

∫
Rd

|〈βε(x, t), x〉|
1 + |x|2

σε
t (x) dx dt

≤ N1 +N2 + (N1 +N2)

∫ T

0

∫
Rd

‖A(y, s)‖+ |〈b(y, s), y〉|
1 + |y|2

µs(dy) ds.
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Since

‖αε(x, t)‖
1 + |x|2

≤ N3

σε
t

(
γ(x) + ε−1

∫ t+ε

t

∫
Rd

hε(x− y)
‖A(y, s)‖
1 + |y|2

µs(dy) ds

)
,

we have∫ T ′

0

∫
Rd

‖αε(x, t)‖
1 + |x|2

σε
t (x) dx dt ≤ N3 +N3

∫ T

0

∫
Rd

‖A(y, s)‖
1 + |y|2

µs(dy) ds.

Thus we obtain∫ T ′

0

∫
Rd

(
‖αε(x, t)‖+ |〈βε(x, t), x〉|

1 + |x|2

)
σε

t (x) dx dt ≤ N4,

where the number N4 does not depend on ε. Therefore, for the function W (x) =
ln(1 + |x|2) the estimate∫ T ′

0

∫
Rd

(
|
√
αε∇W |2 + |Lε

α,βW |
)
σε

t dx dt ≤ N5

holds, where N5 does not depend on ε. According to assertion (iii) of Proposition 2.2
for the function V = θ(W ) we have∫

Rd

V (x) dνε +

∫ T ′

0

∫
Rd

(
|
√
αε∇V |2 + |Lε

α,βV |
)
σε

t dx dt ≤ N6,

where N6 does not depend on ε. By assertion (iv) of Proposition 2.2 the family
of subprobability measures σε

t dx is a unique subprobability solution to the Cauchy
problem

∂tσ = (Lε
α,β)∗σ + cεσ, σ|t=0 = νε.

Moreover, by assertion (ii) in Proposition 2.2 there exists a subprobability solution
%ε

t dx to the Cauchy problem

∂t% = (Lε
α,β)∗%, %|t−0 = νε

such that
σε

t ≤ %ε
t ≤ e2c0tσε

t .

Therefore, ∫ T ′

0

∫
Rd

(
‖αε(x, t)‖+ |〈βε(x, t), x〉|

1 + |x|2

)
σε

t (x) dx dt ≤ N4e
2c0T ′

,

and ∫ T ′

0

∫
Rd

(
|
√
αε∇V |2 + |Lε

α,βV |
)
%ε

t dx dt ≤ N6e
2c0T ′

.

Hence %ε
t dx is a unique probability solution and by the superposition principle from

[9] there exists a solution P ε to the martingale problem with the operator Lε
α,β such

that %ε
t = P ε ◦ e−1

t . Moreover, according to Proposition 3.1 we have

σε
t =

(
exp

∫ t

0

cε ds · P ε

)
◦ e−1

t .

Applying [9, Proposition 2.5] and [24, Corollary A5]), we conclude that P ε contains a
subsequence P εn with εn → 0 weakly convergent to some probability measure P . Let
%t = P ◦ e−1

t . Since the measures %ε
t = P ε ◦ e−1

t satisfy the inequality %ε
t ≤ e2c0tσε

t ,
their limiting probability measure %t satisfies an analogous estimate with respect
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to µt. In particular, the coefficients aij and bi are locally integrable with respect to
%t dt. In addition, the measure P is a solution to the martingale problem with the
operator LA,b and for the measure µt we have the representation

µt =
(
eh(ω,t)P

)
◦ e−1

t .

These assertions are obtained by means of passing to the limit as ε → 0, the justi-
fication of which practically repeats verbatim the reasoning from [9]. Let us show,
for example, how we can pass to the limit in the expression∫

Ω

ϕ(ω(t))

(
exp

∫ t

0

cε(ω(s), s) ds

)
P ε(dω).

Let q ∈ C∞
0 (Rd × (0, T )) and −2c0 ≤ q ≤ 0. Set

qε(x, t) =
(1− ε)

(
qµt

)
ε

κεσε
t

,

where (
qµt

)
ε
= ε−1

∫ t+ε

t

∫
Rd

c(y, s)hε(x− y)µs(dy) ds.

As ε→ 0, the functions qε converge uniformly to q, and the function

exp

∫ t

0

q(ω(s), s) ds

is bounded and continuous in ω. Therefore,

lim
ε→0

∫
Ω

ϕ(ω(t))

(
exp

∫ t

0

qε(ω(s), s) ds

)
P ε(dω)

=

∫
Ω

ϕ(ω(t))

(
exp

∫ t

0

q(ω(s), s) ds

)
P (dω).

It remains to estimate the expressions∣∣∣∣∫
Ω

ϕ(ω(t))

(
exp

∫ t

0

c(ω(s), s) ds− exp

∫ t

0

q(ω(s), s) ds

)
P (dω)

∣∣∣∣,∣∣∣∣∫
Ω

ϕ(ω(t))

(
exp

∫ t

0

cε(ω(s), s) ds− exp

∫ t

0

qε(ω(s), s) ds

)
P ε(dω)

∣∣∣∣.
To this end it suffices to estimate the integrals∫ T

0

∫
Rd

|cε(x, t)− qε(x, t)|%ε
t(x) dx dt,∫ T

0

∫
Rd

|c(x, t)− q(x, t)| %t(dx) dt.

For estimating the first integral we use the inequality %ε
t ≤ e2c0tσε

t and observe that

|cε(x, t)− qε(x, t)|σε
t (x) =

(1− ε)

κε

(
(c− q)µt

)
ε
(x, t).

Hence∫ T

0

∫
Rd

|cε(x, t)− qε(x, t)|%ε
t(x) dx dt ≤ 2e2c0T

∫ T

0

∫
Rd

|c(x, t)− q(x, t)|µt(dx) dt.
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Since %t(dx) ≤ e2c0tµt, also for estimating the expression∫ T

0

∫
Rd

|c(x, t)− q(x, t)| %t(dx) dt

it remains to estimate the integral∫ T

0

∫
Rd

|c(x, t)− q(x, t)|µt(dx) dt,

which can be made arbitrarily small by approximating the coefficient c by smooth
functions q in L1(µt dt). �
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