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1. Introduction

We study the behaviour at infinity of solutions (µt)t≥s to the Cauchy problem for
the Fokker–Planck–Kolmogorov equation

∂tµt = ∂xi
∂xj

(
aij(x, t)µt

)
− ∂xi

(
bi(x, t)µt

)
, µs = ν,

where s ∈ R, aij and bi are Borel functions on Rd+1, the matrix

A(x, t) =
(
aij(x, t)

)
1≤i,j≤d

is symmetric and nonnegative definite, ν is a bounded Borel measure on Rd. In
addition, throughout we assume summation over repeated indices. Set

Ltu(x, t) = trace
(
A(x, t)D2u(x)

)
+ 〈b(x, t),∇u(x)〉

= aij(x, t)∂xi
∂xj

u(x) + bi(x, t)∂xi
u(x).

The Cauchy problem is shortly written in the form

∂tµt = L∗tµt, µs = ν. (1.1)

A solution to the Cauchy problem (1.1) is a family (µt)t≥s of bounded Borel
measures on Rd (possibly, signed) such that for every Borel set B the function
t 7→ µt(B) is Borel measurable, aij, bi ∈ L1(U × [s, T ], µt dt) for every T > s and
every ball U , and for every function ϕ ∈ C∞

0 (Rd) for almost all t ≥ s the equality∫
Rd

ϕdµt =

∫
Rd

ϕdν +

∫ t

s

∫
Rd

Lτϕdµτ dτ

holds.
A solution (µt)t≥s is called a probability solution if for every t ≥ s the measure

µt is nonnegative and µt(Rd) = 1. A survey of modern theory of Fokker–Planck–
Kolmogorov equations is given in [4] (see also [7]).

Throughout, unless the otherwise stated, we assume that the coefficients satisfy
the following conditions:

(HA,b) for every ball U , there exist positive numbers λ(U), Λ(U), and M(U) such
that for all t ∈ R we have

λ(U)I ≤ A(x, t) ≤ λ−1(U)I, |A(x, t)− A(y, t)| ≤ Λ(U)|x− y|,
1
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|b(x, t)| ≤M(U).

(HV) there exists a function V ∈ C2(Rd) along with positive numbers C1 and C2

such that lim
|x|→∞

V (x) = +∞ and

LtV (x, t) ≤ C1 − C2V (x) ∀x ∈ Rd, t ∈ R.
Such a function V is called a Lyapunov function for the operator Lt.

Let us give a typical example, where conditions (HA,b) and (HV) are fulfilled. Let

Ltu(x, t) = ∆u(x) + 〈b(x, t),∇u(x)〉,
where supt∈R,x∈U |b(x, t)| < ∞ for every ball U ⊂ Rd and there exists a number

C > 0 such that for all x ∈ Rd, t ∈ R we have

〈b(x, t), x〉 ≤ C − C|x|2.
Then condition (HV) is fulfilled with V (x) = |x|2/2 and C1 = d + C, C2 = C.
Condition (HA,b) is obviously fulfilled.

According to [4, Corollary 6.6.6], under conditions (HA,b) and (HV), for every
s ≥ 0 and every Borel probability measure ν on Rd there exists a unique probability
solution (µt)t≥s to the Cauchy problem (1.1). The mapping t 7→ µt is continuous
in the weak topology on the space of probability measures. Recall (see [3]) that
convergence in the weak topology is convergence of the integrals of each bounded
continuous function. This topology on the space of probability measures is metriz-
able (for example, one can use the Kantorovich–Rubinshtein metric). In addition,
for any t > s the measure µt has a density %(x, t) with respect to Lebesgue measure
that is continuous in (x, t) and strictly positive.

For every nonnegative Borel function W and a bounded Bore measure σ set

‖σ‖W = ‖Wσ‖TV ,

where ‖µ‖TV is the total variation of the measure µ, i.e., ‖µ‖TV = µ+(Rd)+µ−(Rd),
where µ = µ+ − µ− is the Jordan–Hahn decomposition.

The main result of this paper is as follows: under conditions (HA,b) and (HV), for
any two Borel probability measures ν1 and ν2 on Rd the estimate

‖µ1
t − µ2

t‖1+βV ≤ N1e
−N2(t−s)‖ν1 − ν2‖1+βV

holds, where N1, N2, β are positive numbers, µ1
t and µ2

t are probability solutions
to the Cauchy problem (1.1) with initial conditions ν1 and ν2, respectively. In
addition, if the coefficients are periodic in t, then there exists a unique periodic
solution, to which any probability solution tends as t→ +∞. If the coefficients do
not depend on t, then this periodic solution does not depend on t and is a unique
stationary solution. Moreover, we discuss application of the obtained results to prove
convergence to a constant for the solution to the parabolic equation ∂tu + Lu = 0
as t→ −∞.

A great number of papers is devoted to the study of solutions to parabolic equa-
tions as t→∞. A survey of the state-of-the-art in this area is given in [10]. One of
pioneering works was the paper [16], where the asymptotic behaviour of solutions
to parabolic equations with time dependent coefficients is studied, in particular,
for solutions to Fokker–Planck–Kolmogorov equations. The paper [16] deals with
classical solutions, the coefficients are assumed to be sufficiently smooth, and the
following restriction on the growth of coefficients is imposed: ‖A(x, t)‖ ≤ C +C|x|2
and |b(x, t)| ≤ C + C|x|. In this paper, we generalize some results from [16] to
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the case of unbounded and non-smooth coefficients. Since we establish exponential
convergence in the total variation with a weight, we employ some stronger condi-
tions with Lyapunov functions than in [16]. In the case of time periodic coefficients
(i.e., periodic in t) the existence and uniqueness of a time periodic probability solu-
tion to the Fokker–Planck–Kolmogorov equation and also convergence to it of other
probability solutions as t → +∞ are justified in [17]. Below we give a short proof
of these results under more restrictive assumptions about the coefficients, but we
obtain a stronger assertion about the mode of convergence to the periodic solu-
tion. Below we also recall one of the main results of [17]. Merging of solutions
to Fokker–Planck–Kolmogorov equations as t → +∞ is established in [20] under
the condition of monotonicity and dissipativity of the drift coefficient b. The latter
condition implies the existence of a radial Lyapunov function V for the operator Lt.
In [20], a new definition of a solution to the Fokker–Planck–Kolmogorov equation is
employed and a new approach to the study of the behaviour of solutions as t→ +∞
is suggested, based on the theory of viscosity solutions. In addition, the Ishii–Jensen
lemma is substantially used along with the method of doubling variables. Our re-
sults presented below are analogues of some assertions from [20], but without the
assumption of monotonicity of b and with a general Lyapunov function V . One of
the main results of [20] is also formulated below.

When the coefficients are independent of time, the classical problem consists in
constructing a stationary solution, which is an invariant measure for the correspond-
ing diffusion process. Existence of an invariant measure and convergence to it of
transition probabilities was first investigated by Hasminskii [19] and [15]. There are
several approaches to justification of convergence of transition probabilities to invari-
ant measures, among which we mention the following three ones: 1) application of
Harris’s theorem and the method of Lyapunov functions (see, for example, [19], [14],
[11], and [18]), 2) application of entropy estimates and the Sobolev and Poincaré
inequalities (see, for example, [1], and [9]), 3) a probabilistic approach based on the
method of coupling (see, for example, [12] and [13]). The results presented below are
based on Harris’s theorem, i.e., belong to the first group. Finally, note that active
research is conducted on convergence to stationary solutions for probability solutions
to nonlinear Fokker–Planck–Kolmogorov equations (see [8], [5], [6], and [2]).

2. Main results

Recall that throughout we assume conditions (HA,b) and (HV). Let s ∈ R. A prob-
ability solution to the Cauchy problem (1.1) with initial condition ν = δy at t = s
possesses a positive density %(s, y, t, x) that is continuous in (t, x) and jointly Borel
measurable (which can be derived from its construction as a limit of classical solu-
tions to initial boundary value problems, see [4, Section 6.6]).

Proposition 2.1. Under the stated assumptions the Chapman–Kolmogorov equa-
tions hold:

%(s, y, t, x) =

∫
Rd

%(v, z, t, x)%(s, y, v, z) dz for all t ≥ s, x, y ∈ Rd.

Proof. Observe that the right-hand side is a probability density in x and the cor-
responding family of probability measures satisfies the Fokker–Planck–Kolmogorov



4 V. BOGACHEV, T. KRASOVITSKII, M. RÖCKNER, S. SHAPOSHNIKOV

equation. Indeed, for any ϕ ∈ C∞
0 (Rd) we have the equality∫

Rd

ϕ(x)

(∫
Rd

%(v, z, t, x)%(s, y, v, z) dz

)
dx

= ϕ(v) +

∫ t

s

∫
Rd

Ltϕ(x, t)

(∫
Rd

%(v, z, t, x)%(s, y, v, z) dz

)
dx dτ.

Now our assertion follows from the uniqueness of a probability solution to the Cauchy
problem 1.1 with initial condition ν = δy at t = s. �

Proposition 2.2. For every bounded Borel measure ν on Rd (possibly, signed) the
formula

µt(B) =

∫
B

∫
Rd

%(s, y, t, x) ν(dy) dx

defines a family of bounded Borel measures (µt)t≥s that is a solution to the Cauchy
problem (1.1) with initial condition ν at t = s.

Proof. Let ϕ ∈ C∞
0 (Rd). Then∫

Rd

ϕdµt −
∫

Rd

ϕdσ =

∫
Rd

(∫
Rd

ϕ(x)%(s, y, t, x) dx− ϕ(y)

)
σ(dy)

=

∫
Rd

(∫ t

s

∫
Rd

Lτϕ(x, τ)%(s, y, τ, x) dx dτ

)
σ(dy) =

∫ t

s

∫
Rd

Lτϕ(x, τ)µτ (dx) dτ,

which completes the proof. �

For every s ∈ R we consider the mapping Qs associating to a bounded Borel
measure σ on Rd the measure Qsσ defined by the formula

Qsσ(B) =

∫
B

(∫
Rd

%(s, y, s+ 1, x)σ(dy)

)
dx.

Note that Qs depends on s, since the coefficients of the operator depend on time.
Recall Harris’s ergodic theorem (see, for example, [14]). Suppose that on a mea-

surable space (X,B) we are given a Markov transition kernel P ( · , · ), i.e., for every
x ∈ X the function B 7→ P (x,B) is a probability measure on B and for every B ∈ B
the function x 7→ P (x,B) is measurable with respect to the σ-algebra B. Set

Pf(y) =

∫
X

f(x)P (y, dx), Pσ(B) =

∫
X

P (y,B)σ(dy).

Suppose that
(i) there exists a measurable function Φ: X → [0,+∞) along with numbers δ ∈

(0, 1) and K > 0 such that

PΦ(y) ≤ δΦ(y) +K ∀y ∈ X;

(ii) there exists a probability measure σ along with a number q ∈ (0, 1) such that

inf
y : Φ(y)≤R

P(y, · ) ≥ qσ( · )

for some R > 2K/(1− δ).
Then according to [14, Theorem 3.1] there exist two numbers β0 ∈ (0, 1) and

β > 1 such that

‖Pσ1 − Pσ2‖1+βΦ ≤ β0‖σ1 − σ2‖1+βΦ,
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moreover, β0 and β can be explicitly expressed through δ, K, R and q in the following
way:

β =
q0
K
, β0 =

max{1− (q − q0), 2 +Rβr0}
2 +Rβ

,

where q0 is an arbitrary number from the interval (0, q) and r0 is an arbitrary number
from the interval (δ + 2K/R, 1).

The next result plays the key role in our subsequent reasoning.

Theorem 2.3. There exist two numbers 0 < β0 < 1 and β > 0 such that for any
two Borel probability measures σ1 and σ2 on Rd the estimate

‖Qsσ1 −Qsσ2‖1+βV ≤ β0‖σ1 − σ2‖1+βV

holds, moreover, β0 and β depend only on the dimension d, the constants C1 and
C2 from condition (HV) and the constants λ(U), Λ(U) and M(U) from condition
(HA,b), but do not depend on s.

Proof. Let us verify conditions (i) and (ii) from Harris’s ergodic theorem for

P (y, dx) = %(s, y, s+ 1, x) dx, Φ(x) = V (x).

Let us verify condition (i). Since LtV (x, t) ≤ C1 − C2V (x), we have

∂t(e
−C2(t−s)V ) + Lt(e

−C2(t−s)V ) ≤ C1e
C2(t−s)

and according to [4, Theorem 7.1.1] the estimate∫
Rd

V (x)%(s, y, s+ 1, x) dx ≤ e−C2V (y) +
C1

C2

(
1− e−C2

)
holds. Setting

δ = e−C2 , K =
C1

C2

(
1− e−C2

)
,

we rewrite this estimate in the form∫
Rd

V (x)%(s, y, s+ 1, x) dx ≤ δV (x) +K.

For the verification of condition (ii) we apply Harnack’s inequality from [4, The-
orem 8.2.1]. Let α, η and γ be positive continuous functions on [0,+∞) such that

sup
|x|≤2r

∣∣∣bi(x, t)−∑
j

∂xj
aij(x, t)

∣∣∣ ≤ η(r),

sup
|x|≤2r

‖A(x, t)−1‖ ≤ α(r), sup
|x|≤2r

‖A(x, t)‖ ≤ γ(r).

Then there exists a positive number K(d), depending only on the dimension d, such
that for every τ ∈ (0, 1) we have

%(s, y, s+ 1, x) ≥ %(s, y, s+ τ, 0) exp
(
−K(d)

∣∣1 + α(|x|)

+
(
α(|x|)1/2 + α(|x|)

)
γ(|x|)

∣∣2(1 +
1− τ

s+ τ
η(|x|)2 +

1

τ
|x|2

))
.

Observe that 1−τ
s+τ

≤ 1−τ
τ

. Set

W (x, τ) = K(d)
∣∣1 +α(|x|) +

(
α(|x|)1/2 +α(|x|)

)
γ(|x|)

∣∣2(1 +
1− τ

τ
V (|x|)2 +

1

τ
|x|2

)
.
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Then

%(s, y, s+ 1, x) ≥ %(s, y, s+ τ, 0)e−K(d)W (x,τ).

Let us fix R > 2K/(1− δ) and estimate the function %(s, y, s+ τ, 0) from below. Set
U(0, r) = {x : |x| < r}. Let us fix R′ > 0 such that {x : V (x) ≤ R} ⊂ U(0, R′). Let
ψ ∈ C∞

0 (Rd), 0 ≤ ψ ≤ 1, ψ(x) = 1 if x ∈ U(0, R′) and ψ(x) = 0 if x /∈ U(0, 3R′).
We have∫

Rd

ψ(x)%(s, y, s+ τ/2, x) dx = ψ(y) +

∫ s+τ/2

s

∫
Rd

Lvψ(x, v)%(s, y, v, x) dx dv.

Therefore, for any y ∈ U(0, R′) the following estimate holds:

sup
x∈U(0,3R′)

%(s, y, s+ τ/2, x) ≥ 1− τ

2
sup

x∈U(0,3R′),t≥0

|Lψ(x, t)|.

There is τ ∈ (0, 1), depending only on λ(U(0, 3R′)), M(U(0, 3R′)) and ψ, such that

sup
x∈U(0,3R′)

%(s, y, s+ τ/2, x) ≥ 1

2
.

According to [4, Theorem 8.1.3], there exists a number CR, depending only on d,
λ(U(0, 4R′)), Λ(U(0, 4R′)), M(U(0, 4R′)) and τ , such that for all y ∈ U(0, R′) we
have

%(s, y, s+ τ, 0) ≥ CR sup
x∈U(0,3R′)

%(s, y, s+ τ/2, x) ≥ CR

2
.

Hence we obtain the inequality

inf
y : V (y)≤R

%(s, y, s+ 1, x) ≥ CR

2
e−K(d)W (x,τ),

which yields the estimate

inf
y : V (y)≤R

P (y, dx) ≥ qσ(dx),

where

σ(dx) = C−1e−K(d)W (x,τ) dx, C =

∫
e−K(d)W (x,τ) dx, q =

CRC

2
.

Thus, all conditions in Harris’s theorem are fulfilled, moreover, the constants q, δ,K
do not depend on s. �

Corollary 2.4. There exist positive numbers N1, N2 and β such that for every s
and for any two probability solutions µ1

t and µ2
t to the Cauchy problem (1.1) with

initial conditions ν1 and ν2 at t = s the estimate

‖µ1
t − µ2

t‖1+βV ≤ N1e
−N2(t−s)‖ν1 − ν2‖1+βV

holds.

Proof. Let t − s = m + η, where m ∈ N ∪ {0} and η ∈ (0, 1). Then due to the
Chapman–Kolmogorov equations (see Proposition 2.1) the equalities

µ1
t = Qm−1Qm−2 . . . Q0µ

1
s+η, µ2

t = Qm−1Qm−2 . . . Q0µ
2
s+η

are valid. According to Theorem 2.3 we have

‖µ1
t − µ2

t‖1+βV ≤ βm
0 ‖µ1

s+η − µ2
s+η‖1+βV , (2.1)
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where β0 ∈ (0, 1) and β > 0 are the constants from Theorem 2.3. Observe that
for every function ψ ∈ C∞

0 (Rd) satisfying the inequality |ψ| ≤ 1 + βV we have the
estimate∫

Rd

ψ d(µ1
s+η − µ2

s+η) ≤
∫

Rd

(∫
Rd

(
1 + βV (x)

)
%(s, y, s+ η, x) dx

)
|ν1 − ν2|(dy).

The assumption LtV (x, t) ≤ C1 − C2V (x) yields the inequality

∂t(e
−C2(t−s)V ) + L(e−C2(t−s)V ) ≤ C1e

C2(t−s),

which according to [4, Theorem 7.1.1] ensures the inequality∫
Rd

V (x)%(s, y, s+ η, x) dx ≤ e−C2ηV (y) +
C1

C2

(
1− e−C2η

)
.

Taking into account that η ∈ (0, 1), we arrive at the inequality

‖µ1
s+η − µ2

s+η‖1+βV ≤ C3‖ν1 − ν2‖1+βV , (2.2)

where C3 depends on C1, C2 and β. Combining (2.1) and (2.2), we obtain our
assertion. �

It is shown in Proposition 4.1 below that there exists a family of probability
measures (πt)t∈R on Rd such that the mapping t 7→ πt is continuous and satisfies the
Fokker–Planck–Kolmogorov equation

∂tµt = L∗tµt

on Rd+1, i.e., whenever t1 < t2, for every function ϕ ∈ C∞
0 (Rd) we have∫

Rd

ϕdπt2 −
∫
ϕdπt1 =

∫ t2

t1

∫
Rd

Ltϕdπt dt.

Using (πt)t∈R, Corollary 2.4 can be reformulated as follows. For every s ∈ R and
every probability measure ν on Rd, the probability solution µt to the Cauchy (1.1)
problem with initial condition ν at t = s tends to πt as t→ +∞ and

‖µt − πt‖1+βV ≤ N1e
−N1(t−s)‖πs − ν‖1+βV .

Note that the probability solution πt does not depend on s and ν. In this form
Corollary 2.4 generalizes [16, Theorem 5] to the case of non-smooth and unbounded
coefficients.

3. Applications to periodic solutions and non probability solutions

It should be noted that in the assertions above the equation’s coefficients depend
on time in an arbitrary way. We now consider the case of periodic coefficients.

Let PV (Rd) denote the set of all Borel probability measures µ on Rd satisfying
the condition V ∈ L1(µ).

Corollary 3.1. Suppose that in addition to conditions (HA,b) and (HV) the coef-
ficients A and b are periodic in t with a period T > 0, i.e., for all t ∈ R and all
x ∈ Rd we have

A(x, t+ T ) = A(x, t), b(x, t+ T ) = b(x, t).
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Then there exists a unique family of probability measures (πt)t∈R on Rd such that
the equality πt+T = πt holds for all t ∈ R and (πt)t∈R satisfies the Fokker–Planck–
Kolmogorov equation on Rd+1. Moreover, for every s and for every probability solu-
tion µt to the Cauchy problem (1.1) with initial condition ν at t = s one has

‖µt − πt‖1+βV ≤ N1e
−N2(t−s)‖ν − πs‖1+βV ,

where N1 and N2 are the constants from Corollary 2.4. If the coefficients do not
depend on t, then πt = π0 for all t and π0 is a stationary solution.

Proof. Let T = 1. The general case reduces to this by scaling. The space PV (Rd)
with the metric ‖µ1 − µ2‖1+βV is complete. According to Theorem 2.3 the mapping
µ 7→ Q0µ is contracting with the coefficient β0. By the Banach contracting mapping
theorem there exists a unique fixed point π0 for which π0 = Q0π0. Let πt be a
probability solution to the Cauchy problem (1.1) with initial condition ν = π0 at
t = 0. Then π1 = π0. By the uniqueness of a probability solution and periodicity of
the coefficients the equality πt+1 = πt holds for all t ≥ 0. Defining πt for t < 0 by
the equality πt = π−t, we obtain the desired periodic solution. Convergence of every
probability solution to πt as t → +∞ and the estimate for the rate of convergence
follow from Corollary 2.4.

If the coefficients do not depend on t, then they are periodic with any period
T > 0. In addition, the mapping t 7→ πt is continuous in the weak topology.
Therefore, πt = π0 for all t ≥ 0. �

Note that in [17] an analogous assertion about existence and uniqueness of a
periodic probability solution is obtained under weaker assumptions about the coeffi-
cients and a weaker condition on the Lyapunov function. However, our justification
of the existence of a periodic solution is shorter and convergence to it is established
in a stronger mode, namely, in place of the total variation we use the total variation
with a growing weight.

Let us also mention a result on the existence of a periodic solution from [17],
which we formulate in the case of Rd. In [17], an arbitrary open subset of Rd is
considered and a more general time-dependent Lyapunov function is used.

Theorem 3.2. Let p > d+2. Suppose that the coefficients are periodic with a period
T > 0 and for every ball U ⊂ Rd we have

aij ∈ L∞(R,W 1,p(U)), bi ∈ Lp(U × R),

λ(U)−1I ≤ A(x, t) ≤ λ(U)I, ∀x ∈ U, t ∈ R.
Suppose also that there is a nonnegative function V ∈ C2(Rd) such that lim

|x|→+∞
V (x) =

+∞ and for some R > 0 and C > 0 one has

LtV (x, t) ≤ −C if |x| > R, t ∈ R.
Then there exists a unique time periodic probability solution to the Fokker–Planck–
Kolmogorov equation ∂tµt = L∗tµt.

Recall that it is proved in Proposition 2.2 above that the formula

µt(B) =

∫
B

(∫
Rd

%(0, y, t, x) ν(dy)

)
dx (3.1)

defines a solution (possibly, signed) to the Cauchy (1.1) problem with initial condi-
tion ν at t = 0.



ASYMPTOTIC BEHAVIOUR OF SOLUTIONS 9

Corollary 3.3. Suppose that conditions (HA,b) and (HV) are fulfilled and the family
of bounded Borel measures (µt)t≥0 is defined by formula (3.1), where ν is a bounded
Borel measure on Rd and ν(Rd) = 0. Then

‖µt‖1+βV ≤ N1e
−tN2‖ν‖1+βV .

Proof. First we consider the case where ν 6= 0. Let ν = ν+−ν− be the Jordan–Hahn
decomposition, where ν+ and ν− are nonnegative bounded measures. Then

ν+(Rd) = ν−(Rd) > 0.

After normalization we can assume that ν+ and ν−1 are probability measures (this
does not affect the constants in our estimate, because it is homogeneous). According
to Corollary 2.4 we have

‖µ+
t − µ−t ‖1+βV ≤ N1e

−N2t‖ν+ − ν−1‖1+βV ,

where

µ+
t (B) =

∫
B

(∫
Rd

%(0, y, t, x) ν+(dy)

)
dx, µ−t (B) =

∫
B

(∫
Rd

%(0, y, t, x) ν−(dy)

)
dx.

It remains to use the equality µt = µ+
t − µ−t . �

Note that for an arbitrary solution to the Cauchy problem (1.1) given by a family
of bounded Borel measures µt this assertion is false. Let us consider the following
example (see [4, Problem 9.8.47]). Let d = 1, A = 1 and

b(x) = − 2x

1 + x2
− (1 + x2)arctg x, ν(dx) =

1

π(1 + x2)
dx.

Let V (x) = 1 + x2. Observe that

LtV (x, t) = 2 + 2b(x)x = 2− 4x2

1 + x2
− 2x(1 + x2)arctg x.

Since 2xarctg x ≥ π/2 if |x| > 1, we have LtV (x, t) ≤ C1 − C2V (x) for some
positive numbers C1 and C2. Therefore, in this situation Corollary 2.4 is applicable.
However, the Cauchy problem (1.1) with the same initial condition has also the
solution

µt(dx) =
et

π(1 + x2)
dx,

which is not a probability solution and which does not satisfy the estimate from
Corollary 2.4 (valid for probability solutions).

In [20], the assertion of Corollary 3.3 is obtained under other conditions. Let us
formulate the corresponding result.

Suppose that A = I, b is continuous and there exist positive numbers α, γ, R and
c0 such that

〈b(x, t), x〉 ≤ −α|x|γ if |x| > R, t ≥ 0,

〈b(x, t)− b(y, t), x− y〉 ≤ c0|x− y| ∀x, y ∈ Rd, t ≥ 0.

The next result is a particular case of [20, Theorem 4.1].

Theorem 3.4. Let k > 0, W (x) = (1 + |x|2)k/2, and let ν be a bounded measure
given by a density % with respect to Lebesgue measure such that W |%| ∈ L1(Rd) and
ν(Rd) = 0. Assume that the two conditions stated above hold. Let µt be a solution
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to the Cauchy problem (1.1) with initial condition ν given by formula (3.1). Then,
whenever γ ≥ 2, we have

‖µt‖W ≤M1e
−M1t‖ν‖W ,

and if γ ∈ (0, 2) and r > k is such that W r/k|%| ∈ L1(Rd) we have

‖µt‖W ≤M1(1 + t)−q‖ν‖W r/k , q =
r − k

2− γ
,

where the numbers M1 and M2 depend only on α, γ, R, c0, k, r, and d.

The condition

〈b(x, t), x〉 ≤ −α|x|γ if |x| > R, t ≥ 0,

implies the estimate Lt(|x|2) ≤ 2d − 2α|x|γ. If γ ≥ 2, then for suitable positive
numbers C1 and C2 we have Lt(|x|2) ≤ C1−C2|x|2. In Theorem 3.4 we also assume
the monotonicity condition

〈b(x, t)− b(y, t), x− y〉 ≤ c0|x− y|,
and in Corollary 2.4 this condition is absent, but it is assumed instead that for every
ball U one has supx∈U,t≥0 |b(x, t)| <∞. If γ ∈ (0, 2), then the inequality Lt(|x|2) ≤
C1−C2|x|2 is not fulfilled, so Corollary 2.4 does not enable us to estimate ‖µt‖1+|x|2 .
In [20], another definition of a solution to the Cauchy problem for the Fokker–
Planck–Kolmogorov equation is used. Namely, a continuous mapping t 7→ mt on
[0, T ) with values in the space of bounded Borel measures on Rd equipped with the
weak topology is called a solution to the Cauchy problem for the Fokker–Planck–
Kolmogorov equation with initial condition m0, which is a bounded Borel measure
on Rd, provided that∫

Rd

ξ dmt +

∫ t

0

∫
Rd

f dms ds =

∫
Rd

ϕ(x, 0)m0(dx)

for all t ∈ (0, T ), ξ ∈ Cb(Rd), f ∈ Cb(Rd × [0, T ]) and ϕ ∈ Cb(Rd × [0, T ]) such
that ϕ is a viscosity solution to the equation −∂tϕ + LI,bϕ = f in Rd × (0, t) with
ϕ(x, t) = ξ(x). However, according to [20, Theorem 2.5], one has the uniqueness of a
solution and the property that the mapping ν 7→ µt preserves the nonnegativity and
the total mass of Rd. Since a solution in the sense of [20] is a solution in our sense
and a probability solution is unique under the considered conditions, the solution
in the sense of [20] is given by formula (3.1). Note also that in [20] the Fokker–
Planck–Kolmogorov equation with a nonconstant diffusion matrix and a nonlocal
Lévy operator is considered.

4. Stabilization of solutions to parabolic equations

In this section we discuss connections between Corollary 2.4 and stabilization as
t→ −∞ of the solution u to the Cauchy problem

∂tu+ Ltu = 0, u(x, 0) = ψ(x). (4.1)

Here ψ ∈ C(Rd) and a solution is a function u ∈ C(Rd × (−∞, 0]) with Sobolev
derivatives ∂tu, ∂xi

u, ∂xi
∂xj

u belonging to Lp
loc(Rd × (−∞, 0]), where p > 1, and the

equation is understood in the sense of equality almost everywhere.
We need an auxiliary assertion of independent interest. Recall that we assume

conditions (HA,b) and (HV).
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Proposition 4.1. There exists a family of probability measures (πt)t∈R on Rd such
that the mapping t 7→ πt is continuous in the weak topology, the measure πt has a
density %(x, t) with respect to Lebesgue measure that is jointly continuous in (x, t),
and (πt)t∈R is a solution to the Fokker–Planck–Kolmogorov equation on Rd+1. More-
over,

sup
t∈R

∫
Rd

V (x)πt(dx) ≤ V (0) +
C1

C2

,

where C1 and C2 are the constants from condition (HV).

Proof. Let (πn
t )t≥−n be the probability solution to the Cauchy problem (1.1) with

initial condition µ−n = δ0, i.e., πn
t (dx) = %(−n, 0, t, x) dx. Then∫

Rd

V (x)%(−n, 0, t, x) dx ≤ e−C2(t+n)V (0) +
C1

C2

(
1− e−C2(t+n)

)
≤ V (0) +

C1

C2

.

According to [4, Corollary 6.4.3], for every ball U ⊂ Rd and every bounded interval
J ⊂ R we can find a number C(U, J) > 0 and a number n0 such that for all n > n0

the Hölder norm of the density %(−n, 0, x, t) is bounded by C(U, J). Therefore,
there exists a subsequence %(−nk, 0, x, t) that converges locally uniformly on Rd+1

to a nonnegative continuous function %(x, t)). Since∫
Rd

V (x)%(−nk, 0, t, x) dx ≤ V (0) +
C1

C2

,

for every t the function x 7→ %(x, t) is a probability density and∫
Rd

V (x)%(x, t) dx ≤ V (0) +
C1

C2

.

Whenever −nk < t1 < t2, for every function ϕ ∈ C∞
0 (Rd) we have∫

Rd

ϕ(x)%(−nk, 0, t2, x) dx−
∫

Rd

ϕ(x)%(−nk, 0, t1, x) dx

=

∫ t2

t1

∫
Rd

Ltϕ(x, t)%(−nk, 0, t, x) dx dt.

Letting k →∞, we obtain∫
Rd

ϕ(x)%(x, t) dx−
∫

Rd

ϕ(x)%(x, t) dx =

∫ t2

t1

∫
Rd

Ltϕ(x, t)%(x, t) dx dt.

Thus, πt = %(x, t) dx is the desired probability solution. �

Proposition 4.2. Let πt = %(x, t) dx be the probability solution on Rd+1 constructed
in Proposition 4.1. For all s, y and t > s we have∫

Rd

|%(s, y, t, x)− %(x, t)|(1 + βV (x)) dx ≤ N1e
−N2(t−s)

(
2 + β(V (0) + V (y)) +

βC1

C2

)
,

where β, N1 and N2 are the constants from Corollary 2.4 and C1 and C2 are the
constants from condition (HV). Hence, as s → −∞, the density %(s, y, t, · ) con-
verges to %( · , t) in the weighted L1 space, and the probability solution constructed in
Proposition 4.1 is unique.
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Proof. Since (πt)t≥s is a probability solution to the Cauchy problem (1.1) with initial
condition ν = πs at t = s, by Corollary 2.4 we have the estimate∫

Rd

|%(s, y, t, x)− %(x, t)|(1 + βV (x)) dx ≤ N1e
−N2(t−s)‖δy − πs‖1+βV .

It remains to observe that

‖δy − πs‖1+βV ≤ 2 + β(V (0) + V (y)) +
βC1

C2

,

which completes the proof. �

Our next theorem generalizes [16, Theorem 3’] and is an analogue of [20, Theorem
3.5].

Theorem 4.3. Suppose that u is a solution to the Cauchy problem (4.1) such that
for every T > 0 the functions

|aij||uxixj
|, (1 + |x|)−1|aij||uxi

|, (1 + |x|)−2|aij||u|, |bi||uxi
|, (1 + |x|)−1|bi||u|, |u|

are majorized on Rd× [−T, 0] from above by a function of the form CT +CTV , where
CT is a positive number. Then the equality

u(y, s) =

∫
Rd

ψ(x)%(s, y, 0, x) dx

holds. In addition, for all y, s the estimate∣∣∣∣u(y, s)− ∫
Rd

ψ(x)π0(x) dx

∣∣∣∣ ≤ N ′
1(1 + V (y))eN2s

holds, where πt is the probability solution constructed in Proposition 4.1, the constant
N ′

1 is expressed through N1, β, CT , V (0), C1, C2, the numbers N1 and N2 are the
constants from Corollary 2.4, and the numbers C1 and C2 are the constants from
condition (HV). In particular, for all y the equality

lim
s→−∞

u(y, s) =

∫
Rd

ψ(x)π0(x) dx

holds.

Proof. It suffices to justify the equality

u(y, s) =

∫
Rd

ψ(x)%(s, y, 0, x) dx,

because the remaining assertions will then follow from Proposition 4.2.
Let ζ ∈ C∞

0 (Rd), 0 ≤ ζ ≤ 1, ζ(x) = 1 if |x| < 1 and ζ(x) = 0 if |x| > 2. Set
ζN(x) = ζ(x/N). For s < 0 we have∫

Rd

ζN(x)u(x, 0)%(s, y, 0, x) dx− ζN(y)u(y, s)

=

∫ 0

s

∫
Rd

(
ζN(x)∂tu(x, t) + Lt

(
ζNu

)
(x, t)

)
%(s, y, t, x) dx dt.

Due to the equality

Lt

(
ζNu

)
(x, t) = ζN(x)Ltu(x, t) + 2〈A(x, t)∇ζN(x),∇u(x, t)〉+ u(x, t)LtζN(x, t)
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we have∫
Rd

ζN(x)u(x, 0)%(s, y, 0, x) dx− ζN(y)u(y, s)

=

∫ 0

s

∫
Rd

(
2〈A(x, t)∇ζN(x),∇u(x, t)〉+ u(x, t)LtζN(x, t)

)
%(s, y, t, x)

)
dx dt.

Since

∇ζN(x) = N−1IN<|x|<2N∇ζ(x/N), D2ζN(x) = N−2IN<|x|<2ND
2ζ(x/N),

taking into account our conditions on u and the estimate∫
Rd

V (x)%(s, y, t, x) dx ≤ e−C2(t−s)V (y) +
C1

C2

(
1− e−C2(t−s)

)
we obtain the equality

lim
N→+∞

∫ 0

s

∫
Rd

(
2〈A(x, t)∇ζN(x),∇u(x, t)〉+u(x, t)LtζN(x, t)

)
%(s, y, t, x)

)
dx dt = 0.

Using that ζN(x) → 1 as M →∞ and letting N →∞, we obtain∫
Rd

u(x, 0)%(s, y, 0, x) dx− u(y, s) = 0,

which completes the proof. �

It would be interesting to obtain analogues of Corollaries 2.4 and 3.1 and also
Propositions 4.1 and 4.2 for solutions to nonlinear Fokker–Planck–Kolmogorov equa-
tions.

This paper is supported by Project 23-S05-16 in the framework of Interdisci-
plinary Scientific Schools of Moscow Lomonosov University. T.I. Krasovitskii is a
holder of scholarship from the Theoretical Physics and Mathematics Advancement
Foundation “BASIS”.
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[5] V.I. Bogachev, M. Röckner, S.V. Shaposhnikov, Convergence in variation of solutions of nonlin-
ear Fokker–Planck–Kolmogorov equations to stationary measures, J. Funct. Anal. 276:12 (2019),
3681–3713.
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[7] V.I. Bogachev, M. Röckner, S.V. Shaposhnikov, Kolmogorov problems on equations for station-
ary and transition probabilities of diffusion processes, Teor. Veroyatn. Primen. 68 (2023), 420–455
(in Russian); English transl.: Theory Probab. Appl. 68:3 (2023), 342–369.

[8] V.I. Bogachev, S.V. Shaposhnikov, Nonlinear Fokker–Planck–Kolmogorov equations, Uspehi
Mat. Nauk 79:5 (2024), 3–60 (in Russian); English transl.: Russian Math. Surveys 79:5 (2024).

[9] P. Cattiaux, Long time behavior of Markov processes, ESAIM Proc. 44 (2014), 110–128.



14 V. BOGACHEV, T. KRASOVITSKII, M. RÖCKNER, S. SHAPOSHNIKOV
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