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Abstract

The L*-Wasserstein distance Wy (k > 1) and the probability distance W, induced
by a concave function v, are estimated between different diffusion processes with singu-
lar coefficients. As applications, the well-posedness, probability distance estimates and
the log-Harnack inequality are derived for McKean-Vlasov SDEs with multiplicative
distribution dependent noise, where the coefficients are singular in time-space variables
and (Wj + W, )-Lipschitz continuous in the distribution variable. This improves ex-
isting results derived in the literature under the Wy-Lipschitz or derivative conditions
in the distribution variable.

AMS subject Classification: 60H10, 60H15.
Keywords: Probability distance, Diffusion processes, Log-Harnack inequality

1 Introduction
Let T' > 0, and let = be the space of (a,b), where

b:[0,T] xR - RY  a:[0,T] x R - R @ R?
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are measurable, and for any (¢, z) € [0, T] x R%, a(t, x) is positive definite. For any (a,b) € =,
consider the time dependent second order differential operator on R¢:

LYY= tr{a(t, )V} + b(t,-) -V, te[0,T].

Let (a;,b;) € 2,1 = 1,2, such that for any s € [0,7T), each (Lf“bi)te[&T] generates a unique
diffusion process (X{7)u)eisrxre on R? with X7 = x. Let

0T, )
PS,t o le,z

s,t
be the distribution of Xﬁ:f. When s = 0, we simply denote
Xop =X, Ry =B
If the initial value is random with distributions v € &, where & is the set of all probability

measures on R?, we denote the diffusion process by X ;:z, which has distribution

s

(1.1) PoY = / Piy(de), i=1,2 0<s<t<T.
R4

By developing the bi-coupling argument and using an entropy inequality due to [1], the
relative entropy

; AP,y
Ent(PL|P%)) = / (los 5= )dP7. 0<s<t<Tyje2
R st

is estimated in [13], and as an application, the log-Haranck inequality is established for
McKean-Vlasov SDEs with multiplicative distribution dependent noise, where the drift is
Dini continuous in the spatial variable z, and the diffusion coefficient is Lipschitz continuous
in x and the distribution variable with respect to W,.

In this paper, we estimate a weighted variational distance between Ptl’7 and Pf’:y for
diffusion processes with singular coefficients, and apply to the study of singular McKean-
Vlasov SDEs with multiplicative distribution dependent noise, so that existing results in the
literature are considerably extended.

Consider the class

o = {1 :[0,00) = [0,00) is increasing and concave, ¥(r) > 0 for r > 0}.

For any v € &7, the 1-continuity modulus of a function f on R? is

@S
L s=sup S50 0D

Then
2yi={ue? Iulloi= [ wllahu(an) < oo}

2



is a complete metric space under the distance W, induced by :

Wy (p,v) := sup |u(f) —v(f)l,

[flp<1

where pu(f) == [pa fdp for f € L'(). In particular, Wy, = W, is the L'-Wasserstein distance
if ¢(r) = r, while Wy, with ¢» = 2 reduces to the total variational distance

11t = vlloar := sup |p(f) = v(f)]:
[fI<1

For any k > 0, the L*-Wasserstein distance is

1

vE
We(p,v) := inf (/ |z —y|k7r(dx,dy)) :
Rd xR4

TEE (1,v)
where €' (u, v) is the set of couplings for p and v. Then
P ={pe?: pu-") < oo}

is a Polish space under Wy. Since 9 has at most linear growth, we have &, C &, and
is complete under W,, + Wy.

To characterize the singularity of coefficients in time-space variables, we recall some
functional spaces introduced in [17]. For any p > 1, LP(R?Y) is the class of measurable
functions f on R? such that

£l Lo ey := (/Rd \f(a:)\pdx>p < 0.

For any p,q > 1 and a measurable function f on [0, 7] x RY, let

: :
i = 510 [ T ol )

z€Rd
where B(z,1) := {z € R?: |z — 2| < 1}. When s = 0, we simply denote || - ez = - lz2 0.0y
Let

d 2
H = {(p,q)-p,qe(Q,OO), z_9+5<1}'

Let || - |oo be the uniform norm, and for any function f on [0, 7] x RY, let

[fllt00 := sup [fE2)], [ fllrstoo = sup [|fllsoe, O<r <t <T.

IERd s€ [Tvt]

We make the following assumptions for the coefficients (a,b) € Z, where V is the gradient
operator on R,



(A%?) There exist constants a € (0,1], K > 1,1 € N and {(p;, @) }o<i<i C 2% such that the
following conditions hold.

(1) llallos V fla™ oo < K, and
(12> Ha(tw%') - CL(tay)H S K‘l‘ - y‘a’ te [O,T],l’,y € Rd'

Moreover, there exist {1 < fi}1<i<; with 3_, [ fill z7: () < K, such that

l
IVall <
=1

(2) b has a decomposition b = b®) + b such that

sup [0 (2, 0)] + V0D [lo + 16| 7207y < K.
te€[0,7

Let o(t,x) := /2a(t, x), and let W; be a d-dimensional Brownian motion on a probability
basis (Q, Z#,{F}iep1, P). By [11, Theorem 2.1] for V(z) := 1 + |z|?, see also [17] or [19],
under (A%?), for any (s,z) € [0,T) x R?, the SDE

(1.3) AX7, = b(t, X7,)dt + o(t, X7 )AW,, ¢ € [s,T]

is well-posed, so that (Ly ’b)te[s,ﬂ generates a unique diffusion process. Moreover, for any
k > 1, there exists a constant ¢(k) > 0 such that

(1.4) E| sup X2 ] < k)1 +1al"), (s,2) € [0,T] x R
tels,T

The associated Markov semigroup is given by
P& f(x) =E[f(X7,)], 0<s<t<T,zeR’feBRY.
Since (po, qo) € &, we have

1 _
(m — 1)po A (m — 1)qo o1, dm N 2m
m m po(m—1)  qo(m —1)

mo ::inf{m>1: <2}€(1,2).

For a R? ® R? valued differentiable function a = (a”);<; j<4, its divergence is an R? valued
function defined as

d
(diva)i = Z@ja’j, 1< <d.
j=1

Our first result is the following.



Theorem 1.1. Assume (A*°) for (a,b) = (a;,b;),i = 1,2. Then for any m € (mqg,2), there
exists a constant ¢ > 0 depending only on m,K,d,T and (pi,qi)o<i<i, such that for any
Ve and v,y E P,

W (PsltW’PQV) < cp((t —s)2) N, (4, 7) w ((t—7r)2)||a; —GQHroodr
t—s Vr=s)t—r)
t 1
(15) + / sz((t_T)Q)Hal _a'2||7”,oo d
‘ Vi—r "
/ 1/} 2 {”bl _b2||7"oo + Hdlv(al ) Hroo}dT’ 0<s<t<T, v, Z.

Moreover, for any k > 1, there exists a constant C > 0 depending only on k, K,d, T and
(pi, Gi)o<i<is such that for any v,7 € & and 0 < s <t <T,

t t 1
(1.6) Wk<P;3,P“><c[wk<w>+ / ||b1—b2|rr,oodr+< / ||a1—az||3,oodr) }

Next, we consider the following distribution dependent SDE on R%:
(1.7) dX; = b(Xy, Zx,)dt + oy ( Xy, Lx,)dW,, t € [0,T],
where Zx, is the distribution of X;, and for some k > 1,

b:[0,T] xR x &, = R a:[0,T] xR x &, - R ® R

are measurable, each a;(x, 1) is positive definite and o = v/2a.
Let C([0,T]; &%) be the set of all weakly continuous maps p : [0,7] — & such that

sup (] - |k) < 00.
t€[0,T]

We call the SDE (1.7) well-posed for distributions in &, if for any initial value X, with
Lx, € P (correspondingly, any initial distribution v € &), the SDE has a unique solution
(correspondingly, a unique weak solution) with (Zx,)icpo,r) € Cy’([0,T]; Z). In this case,
let Pfv := %, for the solution with £y, = v, and define

Pf(v):= | fd(Pv), ve Ptel0,T],fe B(R.
R4
In particular, for £ = 2, the following log-Harnack inequality
(18) Ptlogf( ) < logPtf( ) + WZ(M? )27 f € %;(Rd%t € (07T]7:u7y € <@2

for some constant ¢ > 0 has been established and applied in [6, 8, 12, 14, 15] for oy(x, ) =
o¢(z) not dependent on p, see also [4, 5, 16] for extensions to the infinite-dimensional and
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reflecting models. When the noise coefficient is also distribution dependent and is Ws-
Lipschitz continuous, this inequality is established in the recent work [13] by using a bi-
coupling method.

In the following, we consider more singular situation where o;(x, ) may be not Wo-

Lipschitz continuous in p, and the drift is singular in the time-spatial variables. For any
i€ Cr(0,T); 2y), let

a’#(twr) = at(xvﬂt)v b‘u(th) = bt(xnut)’ te [O,T],.I € ]Rd'
Correspondingly to (A%?), we make the following assumption.
(B**) Let k € [1,00) and ¢ € & with lim; ,o9(t) =

(1) (A*?) holds for (a,b) = (a*,b*) uniformly in u € CP([0,T]; ), with drift decompo-
sition b* = (b*)©) 4 ()W)

(2) There exists a constant K > 0 such that

(s 7) = ar( Moo < KWy +Wi)(y,7), ¢ €[0,T],7,7 € Py

(3) There exist p > 2 and 1 < p € LP([0,T]), where p = 2 if fol @dr < ooand p > 2
otherwise, such that for any ¢ € [0,7] and ~,5 € %y,

106C, ) = be (s Moo + l[div(ae(-, ) — ar(- 7)) oo < pe(Wy + W) (7, 7).
Remark 1.2. We give a simple example satisfying (B*®) for some p € L>([0,T]), where b

contains a locally integrable term b, and the dependence of b and o in distribution is given
by singular integral kernels. Let ¢ € of with limy 0¥ (t) = 0 and let

bl =87+ [ Biat)

\//\] —i—/ G:07) p(dy), (t,p) €10,T] x Py,
Rd
where X > 0 is a constant, b® : [0,T] x R? — R? satisfies Hb(O)HL{;g(T) < oo for some
(po;qo) € H#, b:[0,T] x R x RY — R? is measurable such that
be(,y) = (@, 9)| < K (Jv = 2| +¢(ly = 4))), =55,9 €R" L€ [0,T]

holds for some constant K > 0, and & : [0,T] x R? x R — RY @ R? is measurable and
bounded such that

164(2,y) — 64(Z, )|l < K (|lz — 2] + ¢ (ly — 31)),
V6. (-, y)(x) — V& (-, §) ()] < Ko(ly — §]), =,2,y,5 € Rt €[0,T].
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We have the following result on the well-posedness and estimates on (W, W) for P;.
Theorem 1.3. Assume (B**). Then the following assertions hold.

(1) The SDE (1.7) is well-posed for distributions in &y. Moreover, for any n € N, there
exists a constant ¢ > 0 such that any solution satisfies

(1.9) ]E[ sup | X,|"

t€(0,T)

Fo| < e(1+1Xol").

(2) If ¢ is a Dini function, i.e.

(1.10) /1 P08 s < oo,

S

then there exists a constant ¢ > 0 such that

)

N

W 3.3) + Wi, 3),

Wk(Pt*Va Pt*i/) S CWk(’%’?)v te (O)T]a 77;5/ € <@k

W¢(Pt*77 Pt*:y) <

(1.11)

Remark 1.4. Theorem 1.3(1) improves ezisting well-posedness results for singular McKean-
Viasov SDEs where the coefficients are either (Wi, +W,,)-Lipschitz continuous in distribution
for some a € (0,1] and k > 1 (see [7, 3] and references therein), or satisfy some derivative
conditions in distribution (see for instance [2]).

To estimate W, (P}, P;¥) for worse ¢ not satisfying (1.10), and to estimate the relative
entropy Ent(Py|P;¥), we need the drift to be Dini continuous in the spatial variable.

Theorem 1.5. Assume (B*?) with ||p||le < 00 and fol #T)er < 00, and there exists ¢ € o
satisfying (1.10) such that

sup A [(0) Voo + [(0)%)s + [V |loo} < o0
HeCy (0.7%:2,)

Then the following assertions hold.

(1) If(r)?log(1+771) — 0 as r — 0, then there exists a constant ¢ > 0 such that (1.11)
holds, and for any t € (0,T],~,5 € Py,

W AV

(7o) < S

(1.12)




(2) If either ||b]|oc < 00 or

(1.13) sup  (IV )l + (Vi) ) < 00, i= 1,2,
(t,1)€[0,T] % Py

then there exists a constant ¢ > 0 such that (1.11) holds, and

W Y Wi (
(1.14) Ent(Py|py7) < 200y S / WP r, 1€ 0,717.5 € 24

Remark 1.6. When k < 2, (1.8) follows from (1.14) or (1.12). This improves [13, Theorem
1.2], where the Wy-Lipschitz condition on the coefficients (a, b) is relazed as the (W, + Wy)-
Lipschitz condition.

2 Proof of Theorem 1.1

We first present a lemma to bound W,, by the total variation distance and Wj.

Lemma 2.1. For any ¢ € &,

Wy (7,9) < VAS(VDI = Hloar + d“ff)wm, ), i€ P

Proof. Since v is nonnegative and concave, we have
(2.1) Y(Rr) < RY(r), r>0,R>1.
For any function f on R¢ with [f], <1, let

fi(x) :=E[f(z +B)], t>0,r€R%

where B; is the standard Brownian motion on R? with By = 0. We have E[|B;|?] = dt. By
[f]y <1, Jensen’s inequality and (2.1), we obtain

|fi(x) — f(2)] < E[(|B.])] < w(E|B)]) < ¢((dt)?) < Vady(t), t>0,2 € R%
So,

(2.2) sup |v(fi — 1) = 3(fi = £)] < VASE2)[1y = Alloars

[flyp<1
Next, for [f], < 1, by Jensen’s inequality, (2.1), E|B,|> = dt and E|B,| < Vdt, we obtain

B () — F(2)dy

Z=T

V)| = \vm [ erte



<)t [ E2 M) - sl LE(| B (1B

E|B|  (EIB[*\ _E|B]  ((dE|Bi[*)z . 1
< _ ) < dr
=7 ¢<E|Bty> 7o E| B, ) < diye

Combining this with (2.2) and noting that

M‘H

Wi(y,%) = sup |v(g9) —5(9)l,
Ivgli<i

we derive that for any f with [f], <1,

V() = 3D < W= F) =3 = D] + () = A(f)]
< VADE Y = Alluar + dE30(E )WL (7,7), > 0.

Then the proof is finished.

), t>0.

]

Next, we present a gradient estimate on Py ;b. All constants in the following only depend

on T, K,d and (p;, ¢;)o<i<i-

Lemma 2.2. Assume (A%?) without (1.2). Then there exists a constant ¢ > 0 such that for

any Y € o,

sup [VP flloo < et —s) 20((t—8)3), 0<s<t<T.
[flyp<1

Proof. (a) By [17, Theorem 1.1] or [15, Theorem 2.1], there exists a constant ¢; > 0 such

that for any 0 < s < t < T and = € R?, the Bismut formula
(2.3) VP f(z) = E[f(XZ,)MZ,]
holds for some random variable M7, on R? with

(2.4) E[MZ] =0, E[MI)P<c(t—s) "

So, for any z € R? and a function f with [f], <1,

VP ()] = [E[LF(XE) — F(2)}ME] | < E[w(XE, - 2)IME).

Mg, |P

By Jensen’s inequality for the weighted probablhty Epre,r Ve obtain

VPR ()] < B0 W(E”X — |- IM ”)

E[| M)
)

(B[ Mz, []2)}
E[ M, 1 (ﬂ(m )

N



Combining this with (2.1) and (2.4), we obtain

(2.5)  sup |VPYF(2)| < et —s) 2 infd¢<{E|Xft - z|2}%>, 0<s<t<T,zecR%
[fls<1 ’ 2€R ’

(b) To estimate inf,cga B[ X7, — 2|*, we use Zvonkin’s transform. By [19, Theorem 2.1],
there exist constants 8 € (0,1) and A, C' > 0 such that the PDE

(2.6) (8 4 LY — Nuy = =0t ), te€[0,T],ur =0

for u: [0,T] x R* — R? has a unique solution satisfying

]Vut(at) - Vut(y)’ 1
2.7 Ul|oo + || V]| oo + sup < -,
(2.7) [|u][oo + [[Vul] Sup P— 5
(2.8) IVl zro ¢y + 1100 + bt - Vullzzory < C.

By Itd’s formula, Yy, := ©,(X7,), where ©,(y) := y + wu(y), solves the SDE
dY,, = b(t, Y, )dt + & (t, Ve )dAWs, t € [5,T),Yes = & + us(x),

where

(2.9) bt, ) == Au +0M) 001, G(t,-) = {(VO,)or} 0 O,

By (2.7), we find a constant ¢; > 0 such that

(210)  [(ty) b2 <ely—2, oyl <c, tels Ty z R

Let q
Ees,t - l_)(t7 95,15))7 t € [87 T]7 08,8 - }/S,s =X + us(x)

By It6’s formula and (2.10), we find a constant ¢, > 0 and a martingale M; such that
d|Ys: — 9s,t|2 = {2<Y:9,t — Oy, [_?(t7 Yei) — Z_)(t7 9s,t>> + || (t, }/s,t)H%-[S}dt + dM,
< eof[Vae = Oual2 + 1 bt - dMy, E € [5, T,V — O] = 0.

Thus,
EUYH — 957t|2} < e (t—5), 0<s<t<T.

Taking z,; = O; '(6s,) and noting that |[VO ||« < co due to ||Vuls < 2 in (2.7), we find
a constant c3 > 0 such that

E[|XZ, — zl?] = E[|6; ' (Yey) — ;7' (0s0)*] < cs(t—s), 0<s<t<T.

Combining this with (2.5) and (2.1), we finish the proof. N
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Moreover, we estimate Vypgjf (x,y), where V, is the gradient in y and p?:f (x,-) is the
density function of £x= . For any constant x > 0, let

2

e w, r>0zeR?

a _ |z
2

gu(r, 2) = (mRr)~
be the standard Gaussian heat kernel with parameter .

Lemma 2.3. Assume (A%%). Then for any m € (myg,2) there exists a constant c(m) > 0
such that for any t € (0,7] and 0 < g., € A([0,1]),

gr,t
\/Trdr/ Vi (2, y)|dy
(2.11)

-

/mdr+c )(/t<\/%>mdr) , s€10,t].

Consequently, there exists a constant ¢ > 0 such that
t 1
(2.12) / (t — r)_2d7"/ Vypil(z,y)ldy <e¢, 0<s<t<T.
s R4

Proof. Let u; be in (2.6). By (A*?), 0 = v/2a, (2.7) and (2.9), we find a constant ¢; > 0
such that

b(t,2) = b(t,y)| < cilz —yl, [o(t,2) —at.y)ll < arle —y|*, t€[0,T],2,y € R

Let ps+(x,y) be the density function of %, ,. According to [10, Theorem 1.2], there exists a
constant £ > 1 and some 0, : R¢ — R such that

(2.13) |Vipse(z,y)| < K(t — 8)_%gn(t —5,0,(1)—y), 0<s<t<T,z,ycR%i=0,1,
where V°f := f. Noting that X7, = ©;"(Y;,), we have

(2.14) et (,y) = Psa(Os(x), (1)) |det(VO,(y))].

Combining this with (2.7), (2.10) and (2.13), we find a constant ¢ > 0 such that

Vet (2, y)] < carlt = )72 gult = 5,00,4(0,(x)) — O4(y)|det (VO (y))|

(2.15) ) ) )
+ || VAu(y) |p5) (z,y), 0<s <t zyecR"

Since (po, qo) € £, for any m > my, we have

1 d 2
(2.16) = tm=lpo oo _m=le 4, 2 o

11



By Krylov’s estimate, see [19, Theorem 3.1], we find a constant ¢ > 0 such that

/dr/ 1%, ()| 725 22z, ) dy

(2.17)
= E/ V20 |71 (X )dr < el V2 ull = |z = UV ull 20 o) 77

This together with (2.8), (2.14) and (2.15) implies that for any m € (my,2), there exists a
constant ¢(m) > 0 such that

¢ ¢
/ Irt dr/ |Vypsr x,y)|dy < csz/ Gri(t —1)"
m—1

m(/:( 2 )"0 ) ([ [t )

/md”c >(/t<¢%> dr)m‘

So, (2.11) holds. Letting g, =1 and m = mOTH, we find a constant ¢ > 0 such that (2.11)
implies (2.12).

(NI

(r — s)_%dr

]

Proof of Theorem 1.1. By (1.1), it suffices to prove for v = 4,,5 =, z,y € R%.
(a) We first consider z = y. Let f € CZ(R?) with [f], < 1. By Itd’s formula we have

t
PR f(@) = f(o) + [ PRI @ 0<s<e<T
This implies the Kolmogorov forward equation
(2.18) 0P f = Pi2%(L,f), ae. t€[sT).

On the other hand, for (p,q) € # and t € (0,T], let Wi’:bgn(o,t) be the set of all maps
u: [0,1] x RY — RY satisfying

1
[tllomstoe + 1 Vttllomstoo + [V 2ull ) + 1 + 057 V) 24 < 00
By [19, Theorem 2.1], the PDE
(2.19) (05 + L")y, = — L2 f 5 € [0,t],u, = 0

has a unique solution in the class Wf’p b<1)(07 t). So, by It6’s formula [19, Lemma 3.3],
»q, 2
du, (X27) = —Lo F(X22) + A, 7 €[5,

12



holds for some martingale M,. This and (2.18) yield

t
0= Eut(XSQ,}x) — us(x) _ / (Pzi,szgz,bzf)dr

s

t
d
:us(x)—/E(P;i’be)dT:us(x)— “2"2f+f 0<s<t<T.

Combining this with (2.19), we derive P%"f ¢ Wf’pb<1)(0,t) for ¢t € (0,7] and the Kol-
) ,q,bs

mogorov backward equation
(2.20) O, P f = Ogug = — L% (ug + f) = —L22 P22 f 0<s<t<T.
By Ito’s formula to P;ff’bzf(Xslf) for r € [s,t], see [19, Lemma 3.3], we derive
t
P (o) = P fa) =B [ (0 + L¥) P X )ar
/m/m“ (Lo — L) P £ (y)dy
By the integration by parts formula, we obtain

y/pghxytdwrw»wwv%%”ﬂ>ﬂ ‘

/]R , <(a1 — a3)(r,y)Vyp P (2, y) + p2 (2, y)div(ar — az)(r,y), VP2 f (y)>dy‘-

Combining these with Lemma 2.2 and Lemma 2.3, for any m € (mg,2), we find constants
c1, co > 0 such that

a1,b1 a2,b2 wt_r%a G“TOO a1,b1
’Ps,tﬁ f( ) Pstb f 33') S / \/)“—17” 2|| |Vypsrb Z’ y)‘dy

1
2

mH |

2)
+ 01/ w i ) Hbl - b2||r,oo + ||div(a1 - a2)||7‘700)d7ﬂ
t— r)

t 1 m %
((t —r)2)llar — asflro
+ ’ d =: I,
Therefore,
(2.21) Wy (P P <Ly, 0<s<t<T, zeR%.

13



(b) Let z,y € R? and 0 < s < t < T. By the triangle inequality for W, (2.21) and
Lemma 2.1, we obtain

s,t s,t s,t

P((t —s)2) 20 2
S W, (P2, PR
\/m ( st )
By [15, Theorem 2.1] or [17, Theorem 1.1], (A%?) for (a,b) = (as, by) implies that for some
constant cg > 0,

Wy (Pyf, P2Y) < Wy(Py, PEY) + Wy (P2E, P
%

(2.22) o
< Is,t + 1/)((?5 - 5)5) ||P32,t - Ps%invar +

Wy (P3t$7p2y) <03|x—y|, HPz’tw_P;;tvaar <

S ey
x_
Vi— s y

holds for any 0 < s <t < T and z,y € R%. Combining this with (2.22), we derive (1.5) for
v =0, and ¥ = 9,
(¢) It remains to prove (1.6). Let u be in (2.6) for (a,b) = (a1,b1). Let ©4(y) := y+us(y),
and
Vit =0uX), Yol =euX[Y), telsT.

By Itd’s formula [19, Lemma 3.3], we obtain
Ay = 00, + du (X dt+{ (VO (t, ) }(XLT)AW;,
AV = {0V, -) + M (XD AL+ {(VO,) (by — by) + tr(as — a1)(t, ) V2u) }(X2Y)dt
+ {(V@t 02( 7')}(Xs,t )th7 te [S>T]7 }/sl,sx = @S< )7 }/52,3?; = @S<y)

For any non-negative function f on R, let

M f(x) ;== sup |er ’/ y)dy, xR B(x,r):={yeR:|y—2z|<r}.

re(0,1]

By (A%?) for a = a;, 0; = \/2a;, (2.7), the maximal inequality in [17, Lemma 2.1], and 1td’s
formula, for any £ > 1 we find a constant ¢; > 1 such that

(2.23) X = X PP < &= VT - Y P < el X0 - XY

2k—1

(2.24) d& < &1+ my)dt + & % v dt + clft v |lay — aQHioodt + dM;,

where M; is a martingale and

Ve = [lbr = balleoo + lar — azflecol | V2ue | (X:7),
1= A ([Vorllf o + IVulP)XT) + A (Voo + V2l (X2

Note that for ¢ € (-, 1),

E{(Sup ) [l - aal e 9 (200 }
rE(s,t]
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2kq—2k+1
2k—1 ok 2kq—2k+1

2kq 9 2. qufifkﬂ 2ka
< (B sup & (/ a1 = ool V20, | (X22)d )
re(s,t]
2kq
E sup & ( / lax — azumdr)
re(s,t]
2kq—2k+1

2(m—1)kq 2kq

9 9 m(2kq—2k+1)
< ([ Ivrui o) w1

So, by the stochastic Grownwall inequality [18, Lemma 2.8] for ¢ € (242,1), [17, Lemma
2.1], and the Krylov estimate in [19, Theorem 3.1] which implies the Khasminskii inequality
in [18, Lemma 3.5], we find constants cg, c5 > 0 such that

1

b ok—1 k=1
[E sup 53] " < eolw —y +C2E/ {67 vdr + &7 |lag — asl? o pdr

rE(s,t]

2k—1 t
< colw —y|* +02E|:< sup 53) e / %«dr‘+ sup Sq / a1 — azllmdr}

re(s,t] re(s,t]

1 2k
< 02|x _y|2k + E[E sup gq:| +C3(/ ||a1 — CLQHTOOd’I") —I—Cg(/ ||b1 bg”rood’f’)
re(s,t]
2kq—2k+1
t
03(/ |lay — CLQ”ZLOOdT>

2(m—1)kq q
m(2kq—2k+1)
(/ V20, ||==1 (X2¥)d ) , m>1.
Noting that [11, Theorem 2.1(3)] implies
[E sup 53] < 00,

rée(s,t]

32

we obtain

1 k
£ sup €] < 2aalo—of +2c3( / ||a1—a2||mdr)

re(s,t]

2k
(2.25) + 203 (/ Hbl - b2||r,oodT)

2k 2(m—1)kq

t 2k T @ka—2ktT)
+QC3( / Hal—azn,t?oodr) ( / 1920, |72 (x22)d )

Recall that (p, §) is defined in (2.16). By (2.8), [19, Theorem 3.1} and [18, Lemma 3.5] ,
find a constant ¢4 > 0 such that

2kq—2k+1

2(m—1)kq

9 9 m(2kq—2k+1)
(/ 1920, |72 (xX22)d )
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2(m—1)k 2k
< a2l 75 530 ) TR = (|92 139 01r) T < 0.

Combining this with (2.25), we find a constant ¢5 > 0 such that

1 t 2k
- 2 a
(E|Yslt - Ys2,£y|k) < []E sup 5?] < sl —yl* + 05(/ b1 — b2||r,ood7’)

re(s,t]

t 2k t k
+ 65(/ |lar — agHTOOd'r’) + c5</ llay — a2||7247oodr> )
S S

Noting that (2.23) implies
Wi(Po, Po)" < VaBlY =YL,

st

by Jensen’s inequality we derive (1.6) for some constant C' > 0 and vy = d,,7 = 6.

3 Proof of Theorem 1.3

Once the well-posedness of (1.7) is proved, the proof of [7, (1.5)] implies (1.9) under (B®*?).
We skip the details to save space. So, in the following we only prove the well-posedness and
estimate (1.11).

(a) Let Xy be .Zp-measurable with v := Zx, € Z. Let

G = {p e C(0,T); Zr) : po =1}
For any A > 0, C}. is a complete space under the metric

P, 1) = SB% e_’\t{Wd,(ut, fir) + Wk(ﬂtyﬂt)}'
telo,

For any p € C([0,T]; Z), let
b (x) = by(w, o), of () = oolw, ), (t.x) € [0,T] x R™.
According to [11, Theorem 2.1], (B*®) implies that the SDE
dX{ = b (X{)dt + o (X7)dW,, ¢ € [0,T], Xi = Xy
is well-posed, and
E[ sup ]Xf|k] < 00.
s€[0,T7

So, we define a map

7 - %ﬁ — %}’; o {(‘Iﬂ#)t = gX{‘}te[O,T]‘
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According to [9, Theorem 3.1], if ®7 has a unique fixed point in €7, then (1.7) is well-posed
for distributions in &Z,.

(b) Let 4 € &, which may be different from ~, and let i € (5; We estimate the py-
distance between ®?y and ®7ji. By Theorem 1.1 and (B*?), for any m € (mq, 2), there exist
constants ¢, co > 0 such that

Wy ((D71)e, (D7ja)e) + Wi (27 p)e, (27 2)e)

@Z)(tl) :
C1 2 5 2
< W, (7, / I M2 _d
\/% k(77)+01< o”a aH,oo 7’)

(=Dl — )\
+61<A< —t—r ) d?“)

t 1 .
ap((t —r)2) (lla" — a¥|lro ;i , ;
: v —b* 7,00 d t—a" 7,00 d
+C1/0 N ( NG + || lroo + [|div(a” — a®)]|,. >7~
a(t2)

< S ,0.3) + o [ (Wl ) + W)

COP((t =))W (e i) + Wi, i) ) m
+02</< N — > d?’)

/w tt—Té 1+\/;pr)<w¢(ur,ﬂr)+Wk(m,/lr)>d7"

—’I"

1
2

Let v = 4. We obtain
PA(®7 1, @7 1) < 5(A)palp, 1),
where by (B**) and m € (my,2), as A — oo we have

=

1

Y((t —7r)2)e ") 1 ! —2X(t—r) :
a(N) _cgtgggl{/ t—r (\/;—i-pr)dr—l—(/oe dr) }
o= nhe )" N
—I—CQ</O< Jr— dr — 0.

So, ®7 is py-contractive on €7 for large A > 0, and hence has a unique fixed point. This
implies the well-posedness of (1.7) for distributions in .

(c) For s € [0,T), let P}y = Zx;,, where X, solves (1.7) for t € [s,T] and Lyy, = 7.
By (1.9) for s replacing 0, we have

sup (Pr)(] - [*) <00, 7€ P
tels,T)
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Since ¢ has growth slower than linear, and (2.1) implies the boundedness of o) for r € [0, 77,
this implies that for any v,5 € & and s € [0,7T),

(3.1) sup (Wy, + Wy)(P,, P, 7) < oo, telsT]
rE(s,t]
(3.2) [yt := sup - (Wy + W) (P] 0y, Pr7) < oo, telsT].

Then P}y = P,;, P;7 = P2, and (1.1) implies

st st

(33) Pio= [ P, Pii= [ P
R R
Thus, by Theorem 1.1 and (B*%), for any m € (myq,2), we find a constant kg > 0 such that

. . k t—s)z
Wlp(Ps*,t% P*,ﬂ) = Wlﬁ(Psl,th’ PSQ,?) < %

S

Wl(’yv 5/)

Lot —r)7) e
(3.4) + ko/s DD (1 + oV — 8) (Wy + W) (P, Pr,y)dr

t ¢((t — T>%) (Ww T Wk) (PS*J"’)/’ Ps*ﬂ’,?) " %
+ ko </s ( Ji—r > d?") ’

Wi(PLy, Pod) = Wi(BL PL) < koWi(7,9)

S

1

t + 3
+ k?()/ Pr (W¢ + Wk) (P;ir’}/, P;T’y)dr + kg (/ <W¢ + Wk)Q(P;rfy, P;T’S/)d’l“) .

) )

(3.5)

By combining these with the definition of I'y; in (3.2), we find a constant k; > 0 such that
Ut < EiWi(v,9) + kilsih(t —s), 0<s<t<T,

R AR (e T (GO E)
M) - (s,@)E(O,t]E[O,T—t] w(s%) /0 r(s—r) (

(3.6) Vs ([ w<<s—r>%>w<r%>)m )
¥ on 9(sh) (f( ivsr ) ¢

+ (/Ot <w\(;;))2dr>é, t e (0,7].
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Note that

N\»—A

/¢ré¢8

( wsz_ (s —7)?) M(s%)dr)

s—r s/2

mh—t

(3.7) <

5

§(2+\/§)/0 M

r

dr = 2(2—|— \/§) /M@dr.

Similarly, we have

.d
\/m S/\/_ Po+rdrT

<208 [[ (250 < [ ) ([ )

Combining these with (1.10), we conclude that h(t) defined in (3.6) satisfies h(t) — 0 as
t — 0. Letting r9 > 0 such that kih(t) < 1 for ¢ € [0,70], we deduce form (3.2) and (3.6)
that

39 - ﬁ)(/og U Py (L U 10 )

~+

— S
(= 5)7)
holds for all s € [0,T) and t € (s, (s + r9) A T]. Consequently,

<W¢ + Wk)( St% P*,trs/) < Fs,t < 2klwk(ﬁ77)

(Wdf + W) (P47, Ps*,t;j/) <

S,

€[0,T),t € (s, (s +10) AT, 7,7 € Zs.
Combining this with the flow property

Pr, = PP

s,



we find a constant ks > 0 such that

B10) W+ WP P) < P03, te (1) € 2

By the conditions on ¢ in (B*%)(3) and (1.10), we have
tSI(l)l?[]{/ 4 miﬁf_m)( +,0r\/_>d7’+ (/0 (¢$;))2dr)
+ ( [ (”’“Q} }J—W)Q } <oo

Therefore, substituting (3.10) into (3.4) and (3.5), we derive (1.11) for some constant
c>0.

4 Proof of Theorem 1.5

(a) We use the notations in step (c) in the proof of Theorem 1.3. By Pinsker’s inequality,
13, (1.3)] and (B*?) with [|p[|e < 0o, we find constants e € (0, 3],¢; > 0 such that

|PY — P2 < \/2E0t (P P2)
1
< 1l —y 1 2

Vi—s  \t—s

+olog(l+(t—s)"1)  sup  (Wy+Wp)2(PL, P;ﬁ)dr), telsT).
r€[ste(t—s),t]

t
([ o wpes o p )

Combining this with (3.3) and Lemma 2.1, we obtain

)

N

o ey =)
WT/)(PS,{% Ps,t’y) \/—S
(4.1) »((t - s)

< POZ( [+ vngp(es0. 2 )
+ ep((t — % Wlog(1+ (t—s)"1)  sup (W, + W) (P, P,v)

r€[st+e(t—s),t °

s ;
= WP P) S (= 8)2) |1 Pay — P llvar

D=

for t € [s,T]. On the other hand, since b is bounded, |0\ || £70(r) < oo holds for any
Do, qo > 2, so that (1.6) holds for m = 2. Then there exists a constant ca > 0 such that

Wi(P.)", Po) < Wi(Py), P

s,t

(4.2)

2

t
S CZWk(/% 5/) + C2 (/ (W’L/) + Wk)z(Ps*,r’% Ps*,r’?)dr) .
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Combining this with (4.1), we find a constant ¢z > 0 such that instead of (3.6) we have

Fst < esWi(v, 7 )+02h(t—s)Fs7t, 0<s<t<T,

(43) (/ G ds ’ + sup 1/1(7“%) log(1+4r=1), t>0.

re(0,¢]

Since fl Y0 dr < oo, we have A(t) — 0 as ¢ — 0 if lim, 0¥ (r)2log(1 + 1) = 0, so that
(1.11) follows as explained in step (c) in the proof of Theorem 1.3.

(b) Next, by (3.3), [13, (1.3)] and (B*") with ||p||o < oo, we find constants ¢ € (0, 1], ¢; >
0 such that for any v,5 € £,

Wa(vy,7)? t -
Eu(PpalPe) < 2R L 8 [ w2 e, R
0
+cplog(1+t71) sup (Wy, + Wy)*(Pry, P*5), t € (0,T].

r€let,t]

Combining this with (1.11), we find a constant ¢ > 0 such that (1.12) holds.
(c) If either ||b]|c < oo or (1.13) holds, then we may apply [13, (1.4)] to delete the term

1y2 1
log(1+ (t — s)~') from the above calculations, so that h(t) in (4.3) becomes (f(f @ds) 2
which goes to 0 as t — 0. Therefore, (1.11) and (1.14) hold for some constant ¢ > 0 as
shown above.
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