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Abstract

The Lk-Wasserstein distance Wk(k ≥ 1) and the probability distance Wψ induced
by a concave function ψ, are estimated between different diffusion processes with singu-
lar coefficients. As applications, the well-posedness, probability distance estimates and
the log-Harnack inequality are derived for McKean-Vlasov SDEs with multiplicative
distribution dependent noise, where the coefficients are singular in time-space variables
and (Wk + Wψ)-Lipschitz continuous in the distribution variable. This improves ex-
isting results derived in the literature under the Wk-Lipschitz or derivative conditions
in the distribution variable.
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1 Introduction
Let T > 0, and let Ξ be the space of (a, b), where

b : [0, T ]× Rd → Rd, a : [0, T ]× Rd → Rd ⊗ Rd
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are measurable, and for any (t, x) ∈ [0, T ]×Rd, a(t, x) is positive definite. For any (a, b) ∈ Ξ,
consider the time dependent second order differential operator on Rd:

La,bt := tr{a(t, ·)∇2}+ b(t, ·) · ∇, t ∈ [0, T ].

Let (ai, bi) ∈ Ξ, i = 1, 2, such that for any s ∈ [0, T ), each (Lai,bit )t∈[s,T ] generates a unique
diffusion process (X i,x

s,t )(t,x)∈[s,T ]×Rd on Rd with X i,x
s,s = x. Let

P i,x
s,t := LXi,x

s,t

be the distribution of X i,x
s,t . When s = 0, we simply denote

X i,x
0,t = X i,x

t , P i,x
0,t = P i,x

t .

If the initial value is random with distributions γ ∈ P, where P is the set of all probability
measures on Rd, we denote the diffusion process by X i,γ

s,t , which has distribution

(1.1) P i,γ
s,t =

∫
Rd
P i,x
s,t γ(dx), i = 1, 2, 0 ≤ s ≤ t ≤ T.

By developing the bi-coupling argument and using an entropy inequality due to [1], the
relative entropy

Ent(P 1,γ
s,t |P

2,γ̃
s,t ) :=

∫
Rd

(
log

dP 1,γ
s,t

dP 2,γ̃
s,t

)
dP 1,γ

s,t , 0 ≤ s < t ≤ T, γ, γ̃ ∈ P

is estimated in [13], and as an application, the log-Haranck inequality is established for
McKean-Vlasov SDEs with multiplicative distribution dependent noise, where the drift is
Dini continuous in the spatial variable x, and the diffusion coefficient is Lipschitz continuous
in x and the distribution variable with respect to W2.

In this paper, we estimate a weighted variational distance between P 1,γ
t and P 2,γ̃

t for
diffusion processes with singular coefficients, and apply to the study of singular McKean-
Vlasov SDEs with multiplicative distribution dependent noise, so that existing results in the
literature are considerably extended.

Consider the class

A :=
{
ψ : [0,∞) → [0,∞) is increasing and concave, ψ(r) > 0 for r > 0

}
.

For any ψ ∈ A , the ψ-continuity modulus of a function f on Rd is

[f ]ψ := sup
x ̸=y

|f(x)− f(y)|
ψ(|x− y|)

.

Then
Pψ :=

{
µ ∈ P : ‖µ‖ψ :=

∫
Rd
ψ(|x|)µ(dx) <∞

}
2



is a complete metric space under the distance Wψ induced by ψ:

Wψ(µ, ν) := sup
[f ]ψ≤1

|µ(f)− ν(f)|,

where µ(f) :=
∫
Rd fdµ for f ∈ L1(µ). In particular, Wψ = W1 is the L1-Wasserstein distance

if ψ(r) = r, while Wψ with ψ ≡ 2 reduces to the total variational distance

‖µ− ν‖var := sup
|f |≤1

|µ(f)− ν(f)|.

For any k > 0, the Lk-Wasserstein distance is

Wk(µ, ν) := inf
π∈C (µ,ν)

(∫
Rd×Rd

|x− y|kπ(dx, dy)
) 1

1∨k

,

where C (µ, ν) is the set of couplings for µ and ν. Then

Pk :=
{
µ ∈ P : µ(| · |k) <∞

}
is a Polish space under Wk. Since ψ has at most linear growth, we have Pk ⊂ Pψ, and Pk

is complete under Wψ +Wk.
To characterize the singularity of coefficients in time-space variables, we recall some

functional spaces introduced in [17]. For any p ≥ 1, Lp(Rd) is the class of measurable
functions f on Rd such that

‖f‖Lp(Rd) :=
(∫

Rd
|f(x)|pdx

) 1
p

<∞.

For any p, q > 1 and a measurable function f on [0, T ]× Rd, let

‖f‖L̃pq(s,t) := sup
z∈Rd

(∫ t

s

‖1B(z,1)fr‖qLp(Rd)dr
) 1

q

,

where B(z, 1) := {x ∈ Rd : |x−z| ≤ 1}. When s = 0, we simply denote ‖ · ‖L̃pq(t) = ‖ · ‖L̃pq(0,t).
Let

K :=
{
(p, q) : p, q ∈ (2,∞),

d

p
+

2

q
< 1
}
.

Let ‖ · ‖∞ be the uniform norm, and for any function f on [0, T ]× Rd, let

‖f‖t,∞ := sup
x∈Rd

|f(t, x)|, ‖f‖r→t,∞ := sup
s∈[r,t]

‖f‖s,∞, 0 ≤ r ≤ t ≤ T.

We make the following assumptions for the coefficients (a, b) ∈ Ξ, where ∇ is the gradient
operator on Rd.
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(Aa,b) There exist constants α ∈ (0, 1], K > 1, l ∈ N and {(pi, qi)}0≤i≤l ⊂ K such that the
following conditions hold.

(1) ‖a‖∞ ∨ ‖a−1‖∞ ≤ K, and

(1.2) ‖a(t, x)− a(t, y)‖ ≤ K|x− y|α, t ∈ [0, T ], x, y ∈ Rd.

Moreover, there exist {1 ≤ fi}1≤i≤l with
∑l

i=1 ‖fi‖L̃piqi (T ) ≤ K, such that

‖∇a‖ ≤
l∑

i=1

fi.

(2) b has a decomposition b = b(0) + b(1) such that

sup
t∈[0,T ]

|b(1)(t, 0)|+ ‖∇b(1)‖∞ + ‖b(0)‖L̃p0q0 (T ) ≤ K.

Let σ(t, x) :=
√

2a(t, x), and let Wt be a d-dimensional Brownian motion on a probability
basis (Ω,F , {Ft}t∈[0,T ],P). By [11, Theorem 2.1] for V (x) := 1 + |x|2, see also [17] or [19],
under (Aa,b), for any (s, x) ∈ [0, T )× Rd, the SDE

(1.3) dXx
s,t = b(t,Xx

s,t)dt+ σ(t,Xx
s,t)dWt, t ∈ [s, T ]

is well-posed, so that (La,bt )t∈[s,T ] generates a unique diffusion process. Moreover, for any
k ≥ 1, there exists a constant c(k) > 0 such that

(1.4) E
[
sup
t∈[s,T ]

|Xx
s,t|k
]
≤ c(k)(1 + |x|k), (s, x) ∈ [0, T ]× Rd.

The associated Markov semigroup is given by

P a,b
s,t f(x) := E[f(Xx

s,t)], 0 ≤ s ≤ t ≤ T, x ∈ Rd, f ∈ Bb(Rd).

Since (p0, q0) ∈ K , we have

m0 := inf
{
m > 1 :

(m− 1)p0
m

∧ (m− 1)q0
m

> 1,
dm

p0(m− 1)
+

2m

q0(m− 1)
< 2
}
∈ (1, 2).

For a Rd ⊗ Rd valued differentiable function a = (aij)1≤i,j≤d, its divergence is an Rd valued
function defined as (

diva
)i

:=
d∑
j=1

∂ja
ij, 1 ≤ i ≤ d.

Our first result is the following.
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Theorem 1.1. Assume (Aa,b) for (a, b) = (ai, bi), i = 1, 2. Then for any m ∈ (m0, 2), there
exists a constant c > 0 depending only on m,K, d, T and (pi, qi)0≤i≤l, such that for any
ψ ∈ A and γ, γ̃ ∈ P,

Wψ(P
1,γ
s,t , P

2,γ̃
s,t ) ≤

cψ((t− s)
1
2 )√

t− s
W1(γ, γ̃) + c

∫ t

s

ψ((t− r)
1
2 )‖a1 − a2‖r,∞√

(r − s)(t− r)
dr

+ c

(∫ t

s

(
ψ((t− r)

1
2 )‖a1 − a2‖r,∞√
t− r

)m

dr
) 1

m

+ c

∫ t

s

ψ((t− r)
1
2 )√

t− r

{
‖b1 − b2‖r,∞ + ‖div(a1 − a2)‖r,∞

}
dr, 0 ≤ s < t ≤ T, γ, γ̃ ∈ P.

(1.5)

Moreover, for any k ≥ 1, there exists a constant C > 0 depending only on k,K, d, T and
(pi, qi)0≤i≤l, such that for any γ, γ̃ ∈ P and 0 ≤ s ≤ t ≤ T,

(1.6) Wk(P
1,γ
s,t , P

2,γ̃
s,t ) ≤ C

[
Wk(γ, γ̃) +

∫ t

s

‖b1 − b2‖r,∞dr +
(∫ t

s

‖a1 − a2‖2r,∞dr
) 1

2
]
.

Next, we consider the following distribution dependent SDE on Rd:

(1.7) dXt = bt(Xt,LXt)dt+ σt(Xt,LXt)dWt, t ∈ [0, T ],

where LXt is the distribution of Xt, and for some k ≥ 1,

b : [0, T ]× Rd × Pk → Rd, a : [0, T ]× Rd × Pk → Rd ⊗ Rd

are measurable, each at(x, µ) is positive definite and σ =
√
2a.

Let Cw
b ([0, T ];Pk) be the set of all weakly continuous maps µ : [0, T ] → Pk such that

sup
t∈[0,T ]

µt(| · |k) <∞.

We call the SDE (1.7) well-posed for distributions in Pk, if for any initial value X0 with
LX0 ∈ Pk (correspondingly, any initial distribution ν ∈ Pk), the SDE has a unique solution
(correspondingly, a unique weak solution) with (LXt)t∈[0,T ] ∈ Cw

b ([0, T ];Pk). In this case,
let P ∗

t ν := LXt for the solution with LX0 = ν, and define

Ptf(ν) :=

∫
Rd
fd(P ∗

t ν), ν ∈ Pk, t ∈ [0, T ], f ∈ Bb(Rd).

In particular, for k = 2, the following log-Harnack inequality

(1.8) Pt log f(γ) ≤ logPtf(γ̃) +
c

t
W2(µ, ν)

2, f ∈ B+
b (R

d), t ∈ (0, T ], µ, ν ∈ P2

for some constant c > 0 has been established and applied in [6, 8, 12, 14, 15] for σt(x, µ) =
σt(x) not dependent on µ, see also [4, 5, 16] for extensions to the infinite-dimensional and
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reflecting models. When the noise coefficient is also distribution dependent and is W2-
Lipschitz continuous, this inequality is established in the recent work [13] by using a bi-
coupling method.

In the following, we consider more singular situation where σt(x, µ) may be not W2-
Lipschitz continuous in µ, and the drift is singular in the time-spatial variables. For any
µ ∈ Cw

b ([0, T ];Pk), let

aµ(t, x) := at(x, µt), bµ(t, x) := bt(x, µt), t ∈ [0, T ], x ∈ Rd.

Correspondingly to (Aa,b), we make the following assumption.

(Ba,b) Let k ∈ [1,∞) and ψ ∈ A with limt→0 ψ(t) = 0.

(1) (Aa,b) holds for (a, b) = (aµ, bµ) uniformly in µ ∈ Cw
b ([0, T ];Pk), with drift decompo-

sition bµ = (bµ)(0) + (bµ)(1).

(2) There exists a constant K > 0 such that

‖at(·, γ)− at(·, γ̃)‖∞ ≤ K(Wψ +Wk)(γ, γ̃), t ∈ [0, T ], γ, γ̃ ∈ Pk.

(3) There exist p ≥ 2 and 1 ≤ ρ ∈ Lp([0, T ]), where p = 2 if
∫ 1

0
ψ(r)2

r
dr < ∞ and p > 2

otherwise, such that for any t ∈ [0, T ] and γ, γ̃ ∈ Pk,

‖bt(·, γ)− bt(·, γ̃)‖∞ + ‖div(at(·, γ)− at(·, γ̃))‖∞ ≤ ρt(Wψ +Wk)(γ, γ̃).

Remark 1.2. We give a simple example satisfying (Ba,b) for some ρ ∈ L∞([0, T ]), where b
contains a locally integrable term b(0), and the dependence of b and σ in distribution is given
by singular integral kernels. Let ψ ∈ A with limt→0 ψ(t) = 0 and let

bt(·, µ) = b
(0)
t +

∫
Rd
b̃t(·, y)µ(dy),

σt(·, µ) =

√
λI +

∫
Rd
(σ̃tσ̃∗

t )(·, y)µ(dy), (t, µ) ∈ [0, T ]× Pk,

where λ > 0 is a constant, b(0) : [0, T ] × Rd → Rd satisfies ‖b(0)‖L̃p0q0 (T ) < ∞ for some
(p0, q0) ∈ K , b̃ : [0, T ]× Rd × Rd → Rd is measurable such that

|b̃t(x, y)− b̃t(x̃, ỹ)| ≤ K
(
|x− x̃|+ ψ(|y − ỹ|)

)
, x, x̃, y, ỹ ∈ Rd, t ∈ [0, T ]

holds for some constant K > 0, and σ̃ : [0, T ] × Rd × Rd → Rd ⊗ Rd is measurable and
bounded such that

‖σ̃t(x, y)− σ̃t(x̃, ỹ)‖ ≤ K
(
|x− x̃|+ ψ(|y − ỹ|)

)
,

|∇σ̃t(·, y)(x)−∇σ̃t(·, ỹ)(x)| ≤ Kψ(|y − ỹ|), x, x̃, y, ỹ ∈ Rd, t ∈ [0, T ].
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We have the following result on the well-posedness and estimates on (Wψ,Wk) for P ∗
t .

Theorem 1.3. Assume (Ba,b). Then the following assertions hold.

(1) The SDE (1.7) is well-posed for distributions in Pk. Moreover, for any n ∈ N, there
exists a constant c > 0 such that any solution satisfies

(1.9) E
[
sup
t∈[0,T ]

|Xt|n
∣∣∣F0

]
≤ c(1 + |X0|n).

(2) If ψ is a Dini function, i.e.

(1.10)
∫ 1

0

ψ(s)

s
ds <∞,

then there exists a constant c > 0 such that

Wψ(P
∗
t γ, P

∗
t γ̃) ≤

cψ(t
1
2 )√
t

W1(γ, γ̃) + cWk(γ, γ̃),

Wk(P
∗
t γ, P

∗
t γ̃) ≤ cWk(γ, γ̃), t ∈ (0, T ], γ, γ̃ ∈ Pk.

(1.11)

Remark 1.4. Theorem 1.3(1) improves existing well-posedness results for singular McKean-
Vlasov SDEs where the coefficients are either (Wk+Wα)-Lipschitz continuous in distribution
for some α ∈ (0, 1] and k ≥ 1 (see [7, 3] and references therein), or satisfy some derivative
conditions in distribution (see for instance [2]).

To estimate Wψ(P
∗
t γ, P

∗
t γ̃) for worse ψ not satisfying (1.10), and to estimate the relative

entropy Ent(P ∗
t γ|P ∗

t γ̃), we need the drift to be Dini continuous in the spatial variable.

Theorem 1.5. Assume (Ba,b) with ‖ρ‖∞ <∞ and
∫ 1

0
ψ(r)2

r
dr <∞, and there exists ϕ ∈ A

satisfying (1.10) such that

sup
µ∈Cwb ([0,T ];Pk)

{
‖(bµ)(0)‖∞ + [(bµ)0]ϕ + ‖∇aµ‖∞

}
<∞.

Then the following assertions hold.

(1) If ψ(r)2 log(1 + r−1) → 0 as r → 0, then there exists a constant c > 0 such that (1.11)
holds, and for any t ∈ (0, T ], γ, γ̃ ∈ Pk,

Ent(P ∗
t γ|P ∗

t γ̃) ≤
cW2(γ, γ̃)

2

t

+ cWk(γ, γ̃)
2

(
1

t

∫ t

0

ψ(r)2

r
dr + ψ(t

1
2 )2

t
log(1 + t−1)

)
.

(1.12)
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(2) If either ‖b‖∞ <∞ or

(1.13) sup
(t,µ)∈[0,T ]×Pk

(
‖∇ibt(·, µ)‖∞ + ‖∇iσt(·, µ)‖∞

)
<∞, i = 1, 2,

then there exists a constant c > 0 such that (1.11) holds, and

(1.14) Ent(P ∗
t γ|P ∗

t γ̃) ≤
cW2(γ, γ̃)

2

t
+
cWk(γ, γ̃)

2

t

∫ t

0

ψ(r)2

r
dr, t ∈ (0, T ], γ, γ̃ ∈ Pk.

Remark 1.6. When k ≤ 2, (1.8) follows from (1.14) or (1.12). This improves [13, Theorem
1.2], where the W2-Lipschitz condition on the coefficients (a, b) is relaxed as the (Wψ+Wk)-
Lipschitz condition.

2 Proof of Theorem 1.1
We first present a lemma to bound Wψ by the total variation distance and W1.

Lemma 2.1. For any ψ ∈ A ,

Wψ(γ, γ̃) ≤
√
dψ(

√
t)‖γ − γ̃‖var +

dψ(
√
t)√
t

W1(γ, γ̃), γ, γ̃ ∈ P1.

Proof. Since ψ is nonnegative and concave, we have

(2.1) ψ(Rr) ≤ Rψ(r), r ≥ 0, R ≥ 1.

For any function f on Rd with [f ]ψ ≤ 1, let

ft(x) := E[f(x+Bt)], t ≥ 0, x ∈ Rd,

where Bt is the standard Brownian motion on Rd with B0 = 0. We have E[|Bt|2] = dt. By
[f ]ψ ≤ 1, Jensen’s inequality and (2.1), we obtain

|ft(x)− f(x)| ≤ E[ψ(|Bt|)] ≤ ψ(E|Bt|) ≤ ψ((dt)
1
2 ) ≤

√
dψ(t

1
2 ), t ≥ 0, x ∈ Rd.

So,

(2.2) sup
[f ]ψ≤1

∣∣γ(ft − f)− γ̃(ft − f)
∣∣ ≤ √

dψ(t
1
2 )‖γ − γ̃‖var, t ≥ 0.

Next, for [f ]ψ ≤ 1, by Jensen’s inequality, (2.1), E|Bt|2 = dt and E|Bt| ≤
√
dt, we obtain

|∇ft(x)| =
∣∣∣∣∇x

∫
Rd
(2πt)−

d
2 e−

|x−y|2
2t (f(y)− f(z))dy

∣∣∣∣
z=x
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≤ (2πt)−
d
2

∫
Rd

|x− y|
t

|f(y)− f(x)|e−
|x−y|2

2t dy ≤ 1

t
E[|Bt|ψ(|Bt|)]

≤ E|Bt|
t

ψ
(E|Bt|2

E|Bt|

)
=

E|Bt|
t

ψ
((dE|Bt|2)

1
2

E|Bt|
t
1
2

)
≤ dt−

1
2ψ(t

1
2 ), t > 0.

Combining this with (2.2) and noting that

W1(γ, γ̃) = sup
∥∇g∥≤1

|γ(g)− γ̃(g)|,

we derive that for any f with [f ]ψ ≤ 1,

|γ(f)− γ̃(f)| ≤
∣∣γ(ft − f)− γ̃(ft − f)

∣∣+ |γ(ft)− γ̃(ft)|
≤

√
dψ(t

1
2 )‖γ − γ̃‖var + dt−

1
2ψ(t

1
2 )W1(γ, γ̃), t > 0.

Then the proof is finished.

Next, we present a gradient estimate on P a,b
s,t . All constants in the following only depend

on T,K, d and (pi, qi)0≤i≤l.

Lemma 2.2. Assume (Aa,b) without (1.2). Then there exists a constant c > 0 such that for
any ψ ∈ A ,

sup
[f ]ψ≤1

‖∇P a,b
s,t f‖∞ ≤ c(t− s)−

1
2ψ
(
(t− s)

1
2

)
, 0 ≤ s < t ≤ T.

Proof. (a) By [17, Theorem 1.1] or [15, Theorem 2.1], there exists a constant c1 > 0 such
that for any 0 ≤ s < t ≤ T and x ∈ Rd, the Bismut formula

(2.3) ∇P a,b
s,t f(x) = E

[
f(Xx

s,t)M
x
s,t

]
holds for some random variable Mx

s,t on Rd with

(2.4) E[Mx
s,t] = 0, E|Mx

s,t|2 ≤ c21(t− s)−1.

So, for any z ∈ Rd and a function f with [f ]ψ ≤ 1,

|∇P a,b
s,t f(x)| =

∣∣∣E[{f(Xx
s,t)− f(z)}Mx

s,t

]∣∣∣ ≤ E
[
ψ(|Xx

s,t − z|)|Mx
s,t|
]
.

By Jensen’s inequality for the weighted probability |Mx
s,t|P

E|Mx
s,t|
, we obtain

|∇P a,b
s,t f(x)| ≤ E[|Mx

s,t|]ψ
(E[|Xx

s,t − z| · |Mx
s,t|]

E[|Mx
s,t|]

)
≤ E[|Mx

s,t|]ψ
(
(E[|Mx

s,t|]2)
1
2

E[|Mx
s,t|]

(
E|Xx

s,t − z|2
) 1

2

)
.
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Combining this with (2.1) and (2.4), we obtain

(2.5) sup
[f ]ψ≤1

|∇P a,b
s,t f(x)| ≤ c1(t− s)−

1
2 inf
z∈Rd

ψ
({

E|Xx
s,t − z|2}

1
2

)
, 0 ≤ s < t ≤ T, x ∈ Rd.

(b) To estimate infz∈Rd E|Xx
s,t − z|2, we use Zvonkin’s transform. By [19, Theorem 2.1],

there exist constants β ∈ (0, 1) and λ,C > 0 such that the PDE

(2.6) (∂t + La,bt − λ)ut = −b(0)(t, ·), t ∈ [0, T ], uT = 0

for u : [0, T ]× Rd → Rd has a unique solution satisfying

(2.7) ‖u‖∞ + ‖∇u‖∞ + sup
x ̸=y

|∇ut(x)−∇ut(y)|
|x− y|β

≤ 1

2
,

(2.8) ‖∇2u‖L̃p0q0 (T ) + ‖(∂t + b(1) · ∇)u‖L̃p0q0 (T ) ≤ C.

By Itô’s formula, Ys,t := Θt(X
x
s,t), where Θt(y) := y + ut(y), solves the SDE

dYs,t = b̄(t, Ys,t)dt+ σ̄(t, Ys,t)dWt, t ∈ [s, T ], Ys,s = x+ us(x),

where

(2.9) b̄(t, ·) := (λut + b(1)) ◦Θ−1
t , σ̄(t, ·) :=

{
(∇Θt)σt

}
◦Θ−1

t .

By (2.7), we find a constant c1 > 0 such that

(2.10) |b̄(t, y)− b̄(t, z)| ≤ c1|y − z|, ‖σ̄(t, y)‖ ≤ c1, t ∈ [s, T ], y, z ∈ Rd.

Let
d
dtθs,t = b̄(t, θs,t)

)
, t ∈ [s, T ], θs,s = Ys,s = x+ us(x).

By Itô’s formula and (2.10), we find a constant c2 > 0 and a martingale Mt such that

d|Ys,t − θs,t|2 =
{
2
〈
Ys,t − θs,t, b̄(t, Ys,t)− b̄(t, θs,t)

〉
+ ‖σ̄(t, Ys,t)‖2HS

}
dt+ dMt

≤ c2
{
|Ys,t − θs,t|2 + 1

}
dt+ dMt, t ∈ [s, T ], |Ys,s − θs,s| = 0.

Thus,
E
[
|Ys,t − θs,t|2

]
≤ c2ec2T (t− s), 0 ≤ s ≤ t ≤ T.

Taking zs,t = Θ−1
t (θs,t) and noting that ‖∇Θ−1‖∞ <∞ due to ‖∇u‖∞ ≤ 1

2
in (2.7), we find

a constant c3 > 0 such that

E
[
|Xx

s,t − zs,t|2
]
= E

[
|Θ−1

t (Ys,t)−Θ−1
t (θs,t)|2

]
≤ c3(t− s), 0 ≤ s ≤ t ≤ T.

Combining this with (2.5) and (2.1), we finish the proof.
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Moreover, we estimate ∇yp
a,b
s,t (x, y), where ∇y is the gradient in y and pa,bs,t (x, ·) is the

density function of LXx
s,t

. For any constant κ > 0, let

gκ(r, z) := (πκr)−
d
2 e−

|z|2
κr , r > 0, z ∈ Rd

be the standard Gaussian heat kernel with parameter κ.

Lemma 2.3. Assume (Aa,b). Then for any m ∈ (m0, 2) there exists a constant c(m) > 0
such that for any t ∈ (0, T ] and 0 ≤ g·,t ∈ B([0, t]),∫ t

s

gr,t√
t− r

dr
∫
Rd

|∇yp
a,b
s,r(x, y)|dy

≤ c(m)

∫ t

s

gr,t√
(t− r)(r − s)

dr + c(m)

(∫ t

s

( gr,t√
t− r

)m
dr
) 1

m

, s ∈ [0, t].

(2.11)

Consequently, there exists a constant c > 0 such that

(2.12)
∫ t

s

(t− r)−
1
2 dr

∫
Rd

|∇yp
a,b
s,r(x, y)|dy ≤ c, 0 ≤ s < t ≤ T.

Proof. Let ut be in (2.6). By (Aa,b), σ =
√
2a, (2.7) and (2.9), we find a constant c1 > 0

such that

|b̄(t, x)− b̄(t, y)| ≤ c1|x− y|, ‖σ̄(t, x)− σ̄(t, y)‖ ≤ c1|x− y|α∧β, t ∈ [0, T ], x, y ∈ Rd.

Let p̄s,t(x, y) be the density function of LYs,t . According to [10, Theorem 1.2], there exists a
constant κ ≥ 1 and some θs,t : Rd → Rd such that

(2.13) |∇i
yp̄s,t(x, y)| ≤ κ(t− s)−

i
2 gκ(t− s, θs,t(x)− y), 0 ≤ s < t ≤ T, x, y ∈ Rd, i = 0, 1,

where ∇0f := f . Noting that Xx
s,t = Θ−1

t (Ys,t), we have

pa,bs,t (x, y) = p̄s,t(Θs(x),Θt(y))
∣∣det(∇Θt(y))

∣∣.(2.14)

Combining this with (2.7), (2.10) and (2.13), we find a constant c2 > 0 such that

|∇yp
a,b
s,t (x, y)| ≤ c2κ(t− s)−

1
2 gκ(t− s, θs,t(Θs(x))−Θt(y))

∣∣det(∇Θt(y))
∣∣

+ c2‖∇2ut(y)‖pa,bs,t (x, y), 0 ≤ s < t, x, y ∈ Rd.
(2.15)

Since (p0, q0) ∈ K , for any m > m0, we have

p̃ :=
(m− 1)p0

m
> 1, q̃ :=

(m− 1)q0
m

> 1,
d

p̃
+

2

q̃
< 2.(2.16)
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By Krylov’s estimate, see [19, Theorem 3.1], we find a constant c > 0 such that∫ t

s

dr
∫
Rd

‖∇2ur(y)‖
m
m−1pa,bs,r(x, y)dy

= E
∫ t

s

‖∇2ur‖
m
m−1 (Xx

s,r)dr ≤ c‖‖∇2u‖
m
m−1‖L̃p̃q̃(s,t) = c(‖∇2u‖L̃p0q0 (s,t))

m
m−1 .

(2.17)

This together with (2.8), (2.14) and (2.15) implies that for any m ∈ (m0, 2), there exists a
constant c(m) > 0 such that∫ t

s

gr,t√
t− r

dr
∫
Rd

|∇yp
a,b
s,r(x, y)|dy ≤ c2κ

∫ t

s

gr,t(t− r)−
1
2 (r − s)−

1
2 dr

+ c2

(∫ t

s

( gr,t√
t− r

)m
dr
) 1

m
(∫ t

s

dr
∫
Rd

‖∇2ur(y)‖
m
m−1pa,bs,r(x, y)dy

)m−1
m

≤ c(m)

∫ t

s

gr,t√
(t− r)(r − s)

dr + c(m)

(∫ t

s

( gr,t√
t− r

)m
dr
) 1

m

.

So, (2.11) holds. Letting gr,t ≡ 1 and m = m0+2
2

, we find a constant c > 0 such that (2.11)
implies (2.12).

Proof of Theorem 1.1. By (1.1), it suffices to prove for γ = δx, γ̃ = δy, x, y ∈ Rd.
(a) We first consider x = y. Let f ∈ C2

b (Rd) with [f ]ψ ≤ 1. By Itô’s formula we have

P a2,b2
s,t f(x) = f(x) +

∫ t

s

P a2,b2
s,r (La2,b2r f)(x)dr, 0 ≤ s ≤ t ≤ T.

This implies the Kolmogorov forward equation

(2.18) ∂tP
a2,b2
s,t f = P a2,b2

s,t (Ltf), a.e. t ∈ [s, T ].

On the other hand, for (p, q) ∈ K and t ∈ (0, T ], let W̃ 2,p

1,q,b
(1)
2

(0, t) be the set of all maps
u : [0, t]× Rd → Rd satisfying

‖u‖0→t,∞ + ‖∇u‖0→t,∞ + ‖∇2u‖L̃pq(t) + ‖(∂s + b
(1)
2 · ∇)u‖L̃pq(t) <∞.

By [19, Theorem 2.1], the PDE

(2.19) (∂s + La2,b2s )us = −La2,b2s f, s ∈ [0, t], ut = 0

has a unique solution in the class W̃ 2,p

1,q,b
(1)
2

(0, t). So, by Itô’s formula [19, Lemma 3.3],

dur(X2,x
s,r ) = −La2,b2r f(X2,x

s,r ) + dMr, r ∈ [s, t]
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holds for some martingale Mr. This and (2.18) yield

0 = Eut(X2,x
s,t ) = us(x)−

∫ t

s

(P a2,b2
s,r La2,b2r f)dr

= us(x)−
∫ t

s

d
dr (P

a2,b2
s,r f)dr = us(x)− P a2,b2

s,t f + f, 0 ≤ s ≤ t ≤ T.

Combining this with (2.19), we derive P a2,b2
·,t f ∈ W̃ 2,p

1,q,b
(1)
2

(0, t) for t ∈ (0, T ] and the Kol-
mogorov backward equation

(2.20) ∂sP
a2,b2
s,t f = ∂sus = −La2,b2s (us + f) = −La2,b2s P a2,b2

s,t f, 0 ≤ s ≤ t ≤ T.

By Itô’s formula to P a2,b2
r,t f(X1,x

s,r ) for r ∈ [s, t], see [19, Lemma 3.3], we derive

P a1,b1
s,t f(x)− P a2,b2

s,t f(x) = E
∫ t

s

(
∂r + La1,b1r

)
P a2,b2
r,t f(X1,x

s,r )dr

=

∫ t

s

dr
∫
Rd
pa1,b1s,r (x, y)

(
La1,b1r − La2,b2r

)
P a2,b2
r,t f(y)dy.

By the integration by parts formula, we obtain∣∣∣∣ ∫
Rd
pa1,b1s,r (x, y)

[
tr{(a1 − a2)(r, y)∇2P a2,b2

r,t f(y)}
]
dy
∣∣∣∣

=

∣∣∣∣ ∫
Rd

〈
(a1 − a2)(r, y)∇yp

a1,b1
s,r (x, y) + pa1,b1s,r (x, y)div(a1 − a2)(r, y), ∇P a2,b2

r,t f(y)
〉

dy
∣∣∣∣.

Combining these with Lemma 2.2 and Lemma 2.3, for any m ∈ (m0, 2), we find constants
c1, c2 > 0 such that

|P a1,b1
s,t f(x)− P a2,b2

s,t f(x)| ≤ c1

∫ t

s

ψ((t− r)
1
2 )‖a1 − a2‖r,∞√
t− r

dr
∫
Rd

|∇yp
a1,b1
s,r (x, y)|dy

+ c1

∫ t

s

ψ((t− r)
1
2 )

(t− r)
1
2

(
‖b1 − b2‖r,∞ + ‖div(a1 − a2)‖r,∞

)
dr

≤ c2

∫ t

s

ψ((t− r)
1
2 )√

t− r

(
‖a1 − a2‖r,∞√

r − s
+ ‖b1 − b2‖r,∞ + ‖div(a1 − a2)‖r,∞

)
dr

+ c2

(∫ t

s

(
ψ((t− r)

1
2 )‖a1 − a2‖r,∞√
t− r

)m

dr
) 1

m

=: Is,t.

Therefore,

(2.21) Wψ

(
P 1,x
s,t , P

2,x
s,t

)
≤ Is,t, 0 ≤ s < t ≤ T, x ∈ Rd.
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(b) Let x, y ∈ Rd and 0 ≤ s < t ≤ T. By the triangle inequality for Wψ, (2.21) and
Lemma 2.1, we obtain

Wψ(P
1,x
s,t , P

2,y
s,t ) ≤ Wψ(P

1,x
s,t , P

2,x
s,t ) +Wψ(P

2,x
s,t , P

2,y
s,t )

≤ Is,t + ψ
(
(t− s)

1
2

)
‖P 2,x

s,t − P 2,y
s,t ‖var +

ψ((t− s)
1
2 )√

t− s
W1(P

2,x
s,t , P

2,y
s,t ).

(2.22)

By [15, Theorem 2.1] or [17, Theorem 1.1], (Aa,b) for (a, b) = (a2, b2) implies that for some
constant c3 > 0,

W1(P
2,x
s,t , P

2,y
s,t ) ≤ c3|x− y|, ‖P 2,x

s,t − P 2,y
s,t ‖var ≤

c3√
t− s

|x− y|

holds for any 0 ≤ s < t ≤ T and x, y ∈ Rd. Combining this with (2.22), we derive (1.5) for
γ = δx and γ̃ = δy.

(c) It remains to prove (1.6). Let u be in (2.6) for (a, b) = (a1, b1). Let Θt(y) := y+ut(y),
and

Y 1,x
s,t = Θt(X

1,x
s,t ), Y 2,y

s,t = Θt(X
2,y
s,t ), t ∈ [s, T ].

By Itô’s formula [19, Lemma 3.3], we obtain

dY 1,x
s,t =

{
b
(1)
1 (t, ·) + λut

}
(X1,x

s,t )dt+
{
(∇Θt)σ1(t, ·)

}
(X1,x

s,t )dWt,

dY 2,y
s,t =

{
b
(1)
1 (t, ·) + λut

}
(X2,y

s,t )dt+
{
(∇Θt)(b2 − b1) + tr[(a2 − a1)(t, ·)∇2ut]

}
(X2,y

s,t )dt
+
{
(∇Θt)σ2(t, ·)

}
(X2,y

s,t )dWt, t ∈ [s, T ], Y 1,x
s,s = Θs(x), Y

2,y
s,s = Θs(y).

For any non-negative function f on Rd, let

M f(x) := sup
r∈(0,1]

1

|B(x, r)|

∫
B(x,r)

f(y)dy, x ∈ Rd, B(x, r) := {y ∈ Rd : |y − x| < r}.

By (Aa,b) for a = ai, σi =
√
2ai, (2.7), the maximal inequality in [17, Lemma 2.1], and Itô’s

formula, for any k ≥ 1 we find a constant c1 > 1 such that

(2.23) c−1
1 |X1,x

s,t −X2,y
s,t |2k ≤ ξt := |Y 1,x

s,t − Y 2,y
s,t |2k ≤ c1|X1,x

s,t −X2,y
s,t |2k,

(2.24) dξt ≤ c1ξt(1 + ηt)dt+ c1ξ
2k−1
2k

t γtdt+ c1ξ
k−1
k

t ‖a1 − a2‖2t,∞dt+ dMt,

where Mt is a martingale and

γt := ‖b1 − b2‖t,∞ + ‖a1 − a2‖t,∞‖∇2ut‖(X2,y
s,t ),

ηt := M (‖∇σ1‖2t,∞ + ‖∇2u‖2)(X1,x
s,t ) + M (‖∇σ1‖2t,∞ + ‖∇2u‖2)(X2,y

s,t ).

Note that for q ∈ (2k−1
2k

, 1),

E

{(
sup
r∈[s,t]

ξqr

) 2k−1
2kq

∫ t

s

‖a1 − a2‖r,∞‖∇2ur‖(X2,y
s,r )dr

}
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≤

(
E sup
r∈[s,t]

ξqr

) 2k−1
2kq
(
E
(∫ t

s

‖a1 − a2‖r,∞‖∇2ur‖(X2,y
s,r )dr

) 2kq
2kq−2k+1

) 2kq−2k+1
2kq

≤

(
E sup
r∈[s,t]

ξqr

) 2k−1
2kq (∫ t

s

‖a1 − a2‖mr,∞dr
) 1

m

×

E
(∫ t

s

‖∇2ur‖
m
m−1 (X2,y

s,r )dr
) 2(m−1)kq

m(2kq−2k+1)


2kq−2k+1

2kq

, m > 1.

So, by the stochastic Grownwall inequality [18, Lemma 2.8] for q ∈ (2k−1
2k

, 1), [17, Lemma
2.1], and the Krylov estimate in [19, Theorem 3.1] which implies the Khasminskii inequality
in [18, Lemma 3.5], we find constants c2, c3 > 0 such that[

E sup
r∈[s,t]

ξqr

] 1
q ≤ c2|x− y|2k + c2E

∫ t

s

{
ξ

2k−1
2k

r γrdr + ξ
k−1
k

r ‖a1 − a2‖2r,∞
}

dr

≤ c2|x− y|2k + c2E
[(

sup
r∈[s,t]

ξqr

) 2k−1
2kq

∫ t

s

γrdr +
(

sup
r∈[s,t]

ξqr

) k−1
kq

∫ t

s

‖a1 − a2‖2r,∞dr
]

≤ c2|x− y|2k + 1

2

[
E sup
r∈[s,t]

ξqr

] 1
q
+ c3

(∫ t

s

‖a1 − a2‖2r,∞dr
)k

+ c3

(∫ t

s

‖b1 − b2‖r,∞dr
)2k

+ c3

(∫ t

s

‖a1 − a2‖mr,∞dr
) 2k

m

E
(∫ t

s

‖∇2ur‖
m
m−1 (X2,y

s,r )dr
) 2(m−1)kq

m(2kq−2k+1)


2kq−2k+1

q

, m > 1.

Noting that [11, Theorem 2.1(3)] implies[
E sup
r∈[s,t]

ξqr

]
<∞,

we obtain[
E sup
r∈[s,t]

ξqr

] 1
q ≤ 2c2|x− y|2k + 2c3

(∫ t

s

‖a1 − a2‖2r,∞dr
)k

+ 2c3

(∫ t

s

‖b1 − b2‖r,∞dr
)2k

+ 2c3

(∫ t

s

‖a1 − a2‖mr,∞dr
) 2k

m

E
(∫ t

s

‖∇2ur‖
m
m−1 (X2,y

s,r )dr
) 2(m−1)kq

m(2kq−2k+1)


2kq−2k+1

q

.

(2.25)

Recall that (p̃, q̃) is defined in (2.16). By (2.8), [19, Theorem 3.1] and [18, Lemma 3.5] , we
find a constant c4 > 0 such that

E
(∫ t

s

‖∇2ur‖
m
m−1 (X2,y

s,r )dr
) 2(m−1)kq

m(2kq−2k+1)
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≤ c4(‖‖∇2u‖
m
m−1‖L̃p̃q̃(s,t))

2(m−1)kq
m(2kq−2k+1) = c4(‖∇2u‖L̃p0q0 (0,T ))

2kq
2kq−2k+1 <∞.

Combining this with (2.25), we find a constant c5 > 0 such that

(
E|Y 1,x

s,t − Y 2,y
s,t |k

)2 ≤ [E sup
r∈[s,t]

ξqr

] 1
q ≤ c5|x− y|2k + c5

(∫ t

s

‖b1 − b2‖r,∞dr
)2k

+ c5

(∫ t

s

‖a1 − a2‖mr,∞dr
) 2k

m

+ c5

(∫ t

s

‖a1 − a2‖2r,∞dr
)k
.

Noting that (2.23) implies

Wk(P
1,x
s,t , P

2,y
s,t )

k ≤
√
c1E|Y 1,x

s,t − Y 2,y
s,t |k,

by Jensen’s inequality we derive (1.6) for some constant C > 0 and γ = δx, γ̃ = δy.

3 Proof of Theorem 1.3
Once the well-posedness of (1.7) is proved, the proof of [7, (1.5)] implies (1.9) under (Ba,b).
We skip the details to save space. So, in the following we only prove the well-posedness and
estimate (1.11).

(a) Let X0 be F0-measurable with γ := LX0 ∈ Pk. Let

C γ
T :=

{
µ ∈ C([0, T ];Pk) : µ0 = γ

}
.

For any λ ≥ 0, Cγ
T is a complete space under the metric

ρλ(µ, µ̃) := sup
t∈[0,T ]

e−λt
{
Wψ(µt, µ̃t) +Wk(µt, µ̃t)

}
.

For any µ ∈ C([0, T ];Pk), let

bµt (x) := bt(x, µt), σµt (x) = σt(x, µt), (t, x) ∈ [0, T ]× Rd.

According to [11, Theorem 2.1], (Ba,b) implies that the SDE

dXµ
t = bµt (X

µ
t )dt+ σµt (X

µ
t )dWt, t ∈ [0, T ], Xµ

0 = X0

is well-posed, and
E
[

sup
s∈[0,T ]

|Xµ
t |k
]
<∞.

So, we define a map

Φγ : C γ
T → C γ

T ; µ 7→
{
(Φγµ)t := LXµ

t

}
t∈[0,T ].

16



According to [9, Theorem 3.1], if Φγ has a unique fixed point in C γ
T , then (1.7) is well-posed

for distributions in Pk.
(b) Let γ̃ ∈ Pk which may be different from γ, and let µ̃ ∈ C γ̃

T . We estimate the ρλ-
distance between Φγµ and Φγ̃µ̃. By Theorem 1.1 and (Ba,b), for any m ∈ (m0, 2), there exist
constants c1, c2 > 0 such that

Wψ

(
(Φγµ)t, (Φ

γ̃µ̃)t
)
+Wk

(
(Φγµ)t, (Φ

γ̃µ̃)t
)

≤ c1ψ(t
1
2 )√
t

Wk(γ, γ̃) + c1

(∫ t

0

‖aµ − aµ̃‖2r,∞dr
) 1

2

+ c1

(∫ t

0

(
ψ((t− r)

1
2 )‖aµ − aµ̃‖r,∞√
t− r

)m

dr
) 1

m

+ c1

∫ t

0

c1ψ((t− r)
1
2 )√

t− r

(‖aµ − aµ̃‖r,∞√
r

+ ‖bµ − bµ̃‖r,∞ + ‖div(aµ − aµ̃)‖r,∞
)

dr

≤ c1ψ(t
1
2 )√
t

Wk(γ, γ̃) + c2

(∫ t

0

(
Wψ(µr, µ̃r) +Wk(µr, µ̃r)

)2
dr
) 1

2

+ c2

(∫ t

0

(
ψ((t− r)

1
2 )(Wψ(µr, µ̃r) +Wk(µr, µ̃r))√

t− r

)m

dr
) 1

m

+ c2

∫ t

0

ψ((t− r)
1
2 )√

r(t− r)
(1 +

√
rρr)

(
Wψ(µr, µ̃r) +Wk(µr, µ̃r)

)
dr

Let γ = γ̃. We obtain
ρλ(Φ

γµ,Φγµ̃) ≤ δ(λ)ρλ(µ, µ̃),

where by (Ba,b) and m ∈ (m0, 2), as λ→ ∞ we have

δ(λ) := c2 sup
t∈[0,T ]

[ ∫ t

0

ψ((t− r)
1
2 )e−λ(t−r)√
t− r

( 1√
r
+ ρr

)
dr +

(∫ t

0

e−2λ(t−r)dr
) 1

2
]

+ c2

(∫ t

0

(
ψ((t− r)

1
2 )e−λ(t−r)√
t− r

)m

dr
) 1

m

→ 0.

So, Φγ is ρλ-contractive on C γ
T for large λ > 0, and hence has a unique fixed point. This

implies the well-posedness of (1.7) for distributions in Pk.
(c) For s ∈ [0, T ), let P ∗

s,tγ = LXγ
s,t
, where Xγ

s,t solves (1.7) for t ∈ [s, T ] and LXγ
s,s

= γ.

By (1.9) for s replacing 0, we have

sup
t∈[s,T ]

(P ∗
s,tγ)(| · |k) <∞, γ ∈ Pk.
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Since ψ has growth slower than linear, and (2.1) implies the boundedness of r
ψ(r)

for r ∈ [0, T ],

this implies that for any γ, γ̃ ∈ Pk and s ∈ [0, T ),

(3.1) sup
r∈[s,t]

(Wψ +Wk)(P
∗
s,rγ, P

∗
s,rγ̃) <∞, t ∈ [s, T ],

(3.2) Γs,t := sup
r∈[s,t]

√
r − s

ψ((r − s)
1
2 )
(Wψ +Wk)(P

∗
s,rγ, P

∗
s,rγ̃) <∞, t ∈ [s, T ].

Let

a1(t, x) := at(x, P
∗
s,tγ), b1(t, x) := bt(x, P

∗
s,tγ),

a2(t, x) := at(x, P
∗
s,tγ̃), b1(t, x) := bt(x, P

∗
s,tγ̃), (t, x) ∈ [s, T ]× Rd.

Then P ∗
s,tγ = P 1,γ

s,t , P
∗
s,tγ̃ = P 2,γ̃

s,t , and (1.1) implies

(3.3) P ∗
s,tγ =

∫
Rd
P 1,x
s,t γ(dx), P ∗

s,tγ̃ =

∫
Rd
P 2,x
s,t γ̃(dx).

Thus, by Theorem 1.1 and (Ba,b), for any m ∈ (m0, 2), we find a constant k0 > 0 such that

Wψ(P
∗
s,tγ, P

∗
s,tγ̃) = Wψ(P

1,γ
s,t , P

2,γ̃
s,t ) ≤

k0ψ((t− s)
1
2 )√

t− s
W1(γ, γ̃)

+ k0

∫ t

s

ψ((t− r)
1
2 )√

(r − s)(t− r)

(
1 + ρr

√
r − s

)(
Wψ +Wk

)
(P ∗

s,rγ, P
∗
s,rγ̃)dr

+ k0

(∫ t

s

(
ψ((t− r)

1
2 )
(
Wψ +Wk

)
(P ∗

s,rγ, P
∗
s,rγ̃)√

t− r

)m

dr
) 1

m

,

(3.4)

Wk(P
∗
s,tγ, P

∗
s,tγ̃) = Wk(P

1,γ
s,t , P

2,γ̃
s,t ) ≤ k0Wk(γ, γ̃)

+ k0

∫ t

s

ρr
(
Wψ +Wk

)
(P ∗

s,rγ, P
∗
s,rγ̃)dr + k0

(∫ t

s

(
Wψ +Wk

)2
(P ∗

s,rγ, P
∗
s,rγ̃)dr

) 1
2

.
(3.5)

By combining these with the definition of Γs,t in (3.2), we find a constant k1 > 0 such that

Γs,t ≤ k1Wk(γ, γ̃) + k1Γs,th(t− s), 0 ≤ s < t ≤ T,

h(t) := sup
(s,θ)∈(0,t]×[0,T−t]

√
s

ψ(s
1
2 )

∫ s

0

ψ(r
1
2 )ψ((s− r)

1
2 )√

r(s− r)

( 1√
r
+ ρθ+r

)
dr

+ sup
s∈(0,t]

√
s

ψ(s
1
2 )

(∫ s

0

(
ψ((s− r)

1
2 )ψ(r

1
2 )√

r
√
s− r

)m

dr
) 1

m

+

(∫ t

0

(ψ(r 1
2 )√
r

)2
dr
) 1

2

, t ∈ (0, T ].

(3.6)
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Note that
√
s

ψ(s
1
2 )

∫ s

0

ψ(r
1
2 )ψ((s− r)

1
2 )

r
√
s− r

dr

≤
√
s

ψ(s
1
2 )

(∫ s
2

0

ψ(s
1
2 )√
s/2

· ψ(r
1
2 )

r
dr +

∫ s

s
2

ψ((s− r)
1
2 )

s− r
·
√
sψ(s

1
2 )

s/2
dr
)

≤
(
2 +

√
2
) ∫ s

2

0

ψ(r
1
2 )

r
dr = 2

(
2 +

√
2
) ∫ √

s/2

0

ψ(r)

r
dr.

(3.7)

Similarly, we have
√
s

ψ(s
1
2 )

(∫ s

0

(
ψ((s− r)

1
2 )ψ(r

1
2 )√

r
√
s− r

)m

dr
) 1

m

≤
√
2

(∫ s
2

0

(
ψ(r

1
2 )√
r

)m

dr
) 1

m

+

(∫ s

s
2

(
ψ((s− r)

1
2 )

s− r

)m

dr
) 1

m


≤ 2

√
2

(∫ s
2

0

(
ψ(r

1
2 )√
r

)m

dr
) 1

m

,

(3.8)

√
s

ψ(s
1
2 )

∫ s

0

ψ(r
1
2 )ψ((s− r)

1
2 )√

r(s− r)
ρθ+rdr

=

√
s

ψ(s
1
2 )

(∫ s
2

0

ψ(s
1
2 )√
s/2

· ψ(r
1
2 )√
r
ρθ+rdr +

∫ s

s
2

ψ((s− r)
1
2 )√

s− r
·
√
sψ(s

1
2 )

s/
√
2

ρθ+rdr
)

≤ 2
√
2

∫ s

0

(ψ(r 1
2 )√
r

+
ψ((s− r)

1
2 )√

s− r

)
ρθ+rdr ≤ 4

√
2

(∫ s

0

ψ(r
1
2 )2

r
dr
) 1

2
(∫ T

0

ρ2rdr
) 1

2

.

(3.9)

Combining these with (1.10), we conclude that h(t) defined in (3.6) satisfies h(t) → 0 as
t → 0. Letting r0 > 0 such that k1h(t) ≤ 1

2
for t ∈ [0, r0], we deduce form (3.2) and (3.6)

that
√
t− s

ψ((t− s)
1
2 )
(Wψ +Wk)(P

∗
s,tγ, P

∗
s,tγ̃) ≤ Γs,t ≤ 2k1Wk(γ̃, γ)

holds for all s ∈ [0, T ) and t ∈ (s, (s+ r0) ∧ T ]. Consequently,

(Wψ +Wk)(P
∗
s,tγ, P

∗
s,tγ̃) ≤

2k1ψ((t− s)
1
2 )√

t− s
Wk(γ, γ̃),

s ∈ [0, T ), t ∈ (s, (s+ r0) ∧ T ], γ, γ̃ ∈ Pk.

Combining this with the flow property

P ∗
s,t = P ∗

r,tP
∗
s,r, 0 ≤ s ≤ r ≤ t ≤ T,
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we find a constant k2 > 0 such that

(3.10) (Wψ +Wk)(P
∗
s,tγ, P

∗
s,tγ̃) ≤

k2ψ((t− s)
1
2 )√

t− s
Wk(γ, γ̃), t ∈ (s, T ], γ, γ̃ ∈ Pk.

By the conditions on ψ in (Ba,b)(3) and (1.10), we have

sup
t∈(0,T ]

{∫ t

0

ψ(r
1
2 )ψ((t− r)

1
2 )

r
√
t− r

(
1 + ρr

√
r
)

dr +
(∫ t

0

(ψ(r 1
2 )√
r

)2
dr
) 1

2

+

(∫ t

0

(
ψ((t− r)

1
2 )ψ(r

1
2 )

√
r
√
t− r

)m

dr
) 1

m
}
<∞.

Therefore, substituting (3.10) into (3.4) and (3.5), we derive (1.11) for some constant
c > 0.

4 Proof of Theorem 1.5
(a) We use the notations in step (c) in the proof of Theorem 1.3. By Pinsker’s inequality,
[13, (1.3)] and (Ba,b) with ‖ρ‖∞ <∞, we find constants ε ∈ (0, 1

2
], c1 > 0 such that

‖P 1,x
s,t − P 2,y

s,t ‖var ≤
√
2Ent(P 1,x

s,t |P
2,y
s,t )

≤ c1|x− y|√
t− s

+
c1√
t− s

(∫ t

s

(Wψ +Wk)
2(P ∗

s,rγ, P
∗
s,rγ̃)dr

) 1
2

+ c1
√

log(1 + (t− s)−1) sup
r∈[s+ε(t−s),t]

(Wψ +Wk)
2(P ∗

s,rγ, P
∗
s,rγ̃)dr

)
, t ∈ [s, T ].

Combining this with (3.3) and Lemma 2.1, we obtain

Wψ(P
∗
s,tγ, P

∗
s,tγ̃)−

ψ((t− s)
1
2 )√

t− s
W1(P

1,γ
s,t , P

2,γ̃
s,t ) ≤ ψ((t− s)

1
2 )‖P 1,γ

s,t − P 2,γ̃
s,t ‖var

≤ ψ((t− s)
1
2 )√

t− s

(∫ t

s

(Wψ +Wk)
2(P ∗

s,rγ, P
∗
s,rγ̃)dr

) 1
2

+ c1ψ((t− s)
1
2 )
√

log(1 + (t− s)−1) sup
r∈[s+ε(t−s),t]

(Wψ +Wk)(P
∗
s,rγ, P

∗
s,rγ̃)

(4.1)

for t ∈ [s, T ]. On the other hand, since b(0) is bounded, ‖b(0)‖L̃p0q0 (T ) < ∞ holds for any
p0, q0 > 2, so that (1.6) holds for m = 2. Then there exists a constant c2 > 0 such that

W1(P
1,γ
s,t , P

2,γ̃
s,t ) ≤ Wk(P

1,γ
s,t , P

2,γ̃
s,t )

≤ c2Wk(γ, γ̃) + c2

(∫ t

s

(Wψ +Wk)
2(P ∗

s,rγ, P
∗
s,rγ̃)dr

) 1
2

.
(4.2)
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Combining this with (4.1), we find a constant c3 > 0 such that instead of (3.6) we have

Γs,t ≤ c3Wk(γ, γ̃) + c2h(t− s)Γs,t, 0 ≤ s ≤ t ≤ T,

h(t) :=

(∫ t

0

ψ(s
1
2 )2

s
ds
) 1

2

+ sup
r∈(0,t]

ψ(r
1
2 )
√

log(1 + r−1), t > 0.
(4.3)

Since
∫ 1

0
ψ(r)2

r
dr < ∞, we have h(t) → 0 as t → 0 if limr→0 ψ(r)

2 log(1 + r−1) = 0, so that
(1.11) follows as explained in step (c) in the proof of Theorem 1.3.

(b) Next, by (3.3), [13, (1.3)] and (Ba,b) with ‖ρ‖∞ <∞, we find constants ε ∈ (0, 1
2
], c1 >

0 such that for any γ, γ̃ ∈ Pk,

Ent(P ∗
t γ|P ∗

t γ̃) ≤
W2(γ, γ̃)

2

t
+
c1
t

∫ t

0

(Wψ +Wk)
2(P ∗

r γ, P
∗
r γ̃)dr

+ c1 log(1 + t−1) sup
r∈[εt,t]

(Wψ +Wk)
2(P ∗

r γ, P
∗
r γ̃), t ∈ (0, T ].

Combining this with (1.11), we find a constant c > 0 such that (1.12) holds.
(c) If either ‖b‖∞ <∞ or (1.13) holds, then we may apply [13, (1.4)] to delete the term

log(1 + (t− s)−1) from the above calculations, so that h(t) in (4.3) becomes
( ∫ t

0
ψ(s

1
2 )2

s
ds
) 1

2

which goes to 0 as t → 0. Therefore, (1.11) and (1.14) hold for some constant c > 0 as
shown above.
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