Probability Distance Estimates Between Diffusion Processes and Applications to Singular McKean-Vlasov SDEs[∗]

Xing Huang *^a*) **, Panpan Ren** *^b*) **, Feng-Yu Wang** *^a*)

a)Center for Applied Mathematics, Tianjin University, Tianjin 300072, China

b)Department of Mathematics, City University of Hong Kong, Tat Chee Avenue, Hong Kong, China xinghuang@tju.edu.cn, panparen@cityu.edu.hk, wangfy@tju.edu.cn

December 12, 2024

Abstract

The L^k -Wasserstein distance $\mathbb{W}_k(k \geq 1)$ and the probability distance \mathbb{W}_{ψ} induced by a concave function ψ , are estimated between different diffusion processes with singular coefficients. As applications, the well-posedness, probability distance estimates and the log-Harnack inequality are derived for McKean-Vlasov SDEs with multiplicative distribution dependent noise, where the coefficients are singular in time-space variables and $(\mathbb{W}_k + \mathbb{W}_{\psi})$ -Lipschitz continuous in the distribution variable. This improves existing results derived in the literature under the W*k*-Lipschitz or derivative conditions in the distribution variable.

AMS subject Classification: 60H10, 60H15. Keywords: Probability distance, Diffusion processes, Log-Harnack inequality

1 Introduction

Let $T > 0$, and let Ξ be the space of (a, b) , where

 $b: [0, T] \times \mathbb{R}^d \to \mathbb{R}^d$, $a: [0, T] \times \mathbb{R}^d \to \mathbb{R}^d \otimes \mathbb{R}^d$

[∗]Supported in part by 01180the National Key R&D Program of China (2022YFA1006000, 2020YFA0712900), NNSFC (11921001,12271398, 12301180) and Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - Project-ID 317210226 – SFB 1283.

are measurable, and for any $(t, x) \in [0, T] \times \mathbb{R}^d$, $a(t, x)$ is positive definite. For any $(a, b) \in \Xi$, consider the time dependent second order differential operator on R *d* :

$$
L_t^{a,b} := \text{tr}\{a(t,\cdot)\nabla^2\} + b(t,\cdot) \cdot \nabla, \quad t \in [0,T].
$$

Let $(a_i, b_i) \in \Xi$, $i = 1, 2$, such that for any $s \in [0, T)$, each $(L_t^{a_i, b_i})_{t \in [s, T]}$ generates a unique diffusion process $(X_{s,t}^{i,x})_{(t,x)\in [s,T]\times \mathbb{R}^d}$ on \mathbb{R}^d with $X_{s,s}^{i,x} = x$. Let

$$
P^{i,x}_{s,t}:=\mathscr{L}_{X^{i,x}_{s,t}}
$$

be the distribution of $X_{s,t}^{i,x}$. When $s = 0$, we simply denote

$$
X_{0,t}^{i,x} = X_t^{i,x}, \quad P_{0,t}^{i,x} = P_t^{i,x}.
$$

If the initial value is random with distributions $\gamma \in \mathscr{P}$, where \mathscr{P} is the set of all probability measures on \mathbb{R}^d , we denote the diffusion process by $X_{s,t}^{i,\gamma}$, which has distribution

(1.1)
$$
P_{s,t}^{i,\gamma} = \int_{\mathbb{R}^d} P_{s,t}^{i,x} \gamma(\mathrm{d}x), \quad i = 1, 2, \ 0 \le s \le t \le T.
$$

By developing the bi-coupling argument and using an entropy inequality due to [1], the relative entropy

$$
\text{Ent}(P^{1,\gamma}_{s,t}|P^{2,\tilde{\gamma}}_{s,t}):=\int_{\mathbb{R}^d}\Big(\log\frac{\mathrm{d}P^{1,\gamma}_{s,t}}{\mathrm{d}P^{2,\tilde{\gamma}}_{s,t}}\Big)\mathrm{d}P^{1,\gamma}_{s,t},\ \ 0\leq s
$$

is estimated in [13], and as an application, the log-Haranck inequality is established for McKean-Vlasov SDEs with multiplicative distribution dependent noise, where the drift is Dini continuous in the spatial variable x , and the diffusion coefficient is Lipschitz continuous in x and the distribution variable with respect to \mathbb{W}_2 .

In this paper, we estimate a weighted variational distance between $P_t^{1,\gamma}$ and $P_t^{2,\tilde{\gamma}}$ $t^{2,\gamma}$ for diffusion processes with singular coefficients, and apply to the study of singular McKean-Vlasov SDEs with multiplicative distribution dependent noise, so that existing results in the literature are considerably extended.

Consider the class

 $\mathscr{A} := \{ \psi : [0, \infty) \to [0, \infty) \text{ is increasing and concave, } \psi(r) > 0 \text{ for } r > 0 \}.$

For any $\psi \in \mathscr{A}$, the ψ -continuity modulus of a function f on \mathbb{R}^d is

$$
[f]_{\psi} := \sup_{x \neq y} \frac{|f(x) - f(y)|}{\psi(|x - y|)}
$$

.

Then

$$
\mathscr{P}_{\psi} := \left\{ \mu \in \mathscr{P} : \ \|\mu\|_{\psi} := \int_{\mathbb{R}^d} \psi(|x|) \mu(\mathrm{d}x) < \infty \right\}
$$

is a complete metric space under the distance \mathbb{W}_{ψ} induced by ψ :

$$
\mathbb{W}_{\psi}(\mu,\nu) := \sup_{[f]_{\psi} \leq 1} |\mu(f) - \nu(f)|,
$$

where $\mu(f) := \int_{\mathbb{R}^d} f d\mu$ for $f \in L^1(\mu)$. In particular, $\mathbb{W}_{\psi} = \mathbb{W}_1$ is the *L*¹-Wasserstein distance if $\psi(r) = r$, while W_{*ψ*} with $\psi \equiv 2$ reduces to the total variational distance

$$
\|\mu - \nu\|_{var} := \sup_{|f| \le 1} |\mu(f) - \nu(f)|.
$$

For any $k > 0$, the L^k-Wasserstein distance is

$$
\mathbb{W}_{k}(\mu,\nu) := \inf_{\pi \in \mathscr{C}(\mu,\nu)} \bigg(\int_{\mathbb{R}^d \times \mathbb{R}^d} |x - y|^k \pi(\mathrm{d}x,\mathrm{d}y) \bigg)^{\frac{1}{1 \vee k}},
$$

where $\mathscr{C}(\mu,\nu)$ is the set of couplings for μ and ν . Then

$$
\mathscr{P}_k:=\left\{\mu\in\mathscr{P}:\ \mu(|\cdot|^k)<\infty\right\}
$$

is a Polish space under \mathbb{W}_k *.* Since ψ has at most linear growth, we have $\mathscr{P}_k \subset \mathscr{P}_\psi$, and \mathscr{P}_k is complete under $\mathbb{W}_{\psi} + \mathbb{W}_{k}$.

To characterize the singularity of coefficients in time-space variables, we recall some functional spaces introduced in [17]. For any $p \geq 1$, $L^p(\mathbb{R}^d)$ is the class of measurable functions f on \mathbb{R}^d such that

$$
||f||_{L^p(\mathbb{R}^d)} := \left(\int_{\mathbb{R}^d} |f(x)|^p \mathrm{d}x\right)^{\frac{1}{p}} < \infty.
$$

For any $p, q > 1$ and a measurable function f on $[0, T] \times \mathbb{R}^d$, let

$$
||f||_{\tilde{L}_q^p(s,t)} := \sup_{z \in \mathbb{R}^d} \left(\int_s^t ||1_{B(z,1)} f_r||_{L^p(\mathbb{R}^d)}^q dr \right)^{\frac{1}{q}},
$$

where $B(z, 1) := \{x \in \mathbb{R}^d : |x - z| \le 1\}$. When $s = 0$, we simply denote $\| \cdot \|_{\tilde{L}_q^p(t)} = \| \cdot \|_{\tilde{L}_q^p(0,t)}$. Let

$$
\mathscr{K} := \Big\{ (p,q) : p,q \in (2,\infty), \ \frac{d}{p} + \frac{2}{q} < 1 \Big\}.
$$

Let $\|\cdot\|_{\infty}$ be the uniform norm, and for any function f on $[0, T] \times \mathbb{R}^d$, let

$$
||f||_{t,\infty} := \sup_{x \in \mathbb{R}^d} |f(t,x)|, \quad ||f||_{r \to t,\infty} := \sup_{s \in [r,t]} ||f||_{s,\infty}, \quad 0 \le r \le t \le T.
$$

We make the following assumptions for the coefficients $(a, b) \in \Xi$, where ∇ is the gradient operator on R *d* .

- $(A^{a,b})$ There exist constants $\alpha \in (0,1], K > 1, l \in \mathbb{N}$ and $\{(p_i,q_i)\}_{0 \leq i \leq l} \subset \mathscr{K}$ such that the following conditions hold.
	- (1) $\|a\|_{\infty} \vee \|a^{-1}\|_{\infty} \leq K$, and

(1.2)
$$
||a(t,x) - a(t,y)|| \le K|x - y|^{\alpha}, \quad t \in [0,T], x, y \in \mathbb{R}^d.
$$

Moreover, there exist $\{1 \leq f_i\}_{1 \leq i \leq l}$ with $\sum_{i=1}^l ||f_i||_{\tilde{L}_{q_i}^{p_i}(T)} \leq K$, such that

$$
\|\nabla a\| \le \sum_{i=1}^l f_i.
$$

(2) *b* has a decomposition $b = b^{(0)} + b^{(1)}$ such that

$$
\sup_{t\in[0,T]}|b^{(1)}(t,0)|+\|\nabla b^{(1)}\|_{\infty}+\|b^{(0)}\|_{\tilde{L}_{q_0}^{p_0}(T)}\leq K.
$$

Let $\sigma(t, x) := \sqrt{2a(t, x)}$, and let W_t be a *d*-dimensional Brownian motion on a probability basis $(\Omega, \mathscr{F}, \{\mathscr{F}_t\}_{t\in[0,T]}, \mathbb{P})$. By [11, Theorem 2.1] for $V(x) := 1 + |x|^2$, see also [17] or [19], under $(A^{a,b})$, for any $(s, x) \in [0, T) \times \mathbb{R}^d$, the SDE

(1.3)
$$
dX_{s,t}^x = b(t, X_{s,t}^x)dt + \sigma(t, X_{s,t}^x)dW_t, \quad t \in [s, T]
$$

is well-posed, so that $(L_t^{a,b})$ ${}_{t}^{a,b}$ _{*t*∈[*s,T*] generates a unique diffusion process. Moreover, for any} $k \geq 1$, there exists a constant $c(k) > 0$ such that

(1.4)
$$
\mathbb{E}\Big[\sup_{t \in [s,T]} |X_{s,t}^x|^k\Big] \le c(k)(1+|x|^k), \quad (s,x) \in [0,T] \times \mathbb{R}^d.
$$

The associated Markov semigroup is given by

$$
P_{s,t}^{a,b}f(x) := \mathbb{E}[f(X_{s,t}^x)], \quad 0 \le s \le t \le T, x \in \mathbb{R}^d, f \in \mathscr{B}_b(\mathbb{R}^d).
$$

Since $(p_0, q_0) \in \mathcal{K}$, we have

$$
m_0 := \inf \left\{ m > 1 : \frac{(m-1)p_0}{m} \wedge \frac{(m-1)q_0}{m} > 1, \ \frac{dm}{p_0(m-1)} + \frac{2m}{q_0(m-1)} < 2 \right\} \in (1,2).
$$

For a $\mathbb{R}^d \otimes \mathbb{R}^d$ valued differentiable function $a = (a^{ij})_{1 \le i,j \le d}$, its divergence is an \mathbb{R}^d valued function defined as

$$
(\text{div}a)^i := \sum_{j=1}^d \partial_j a^{ij}, \quad 1 \le i \le d.
$$

Our first result is the following.

Theorem 1.1. Assume $(A^{a,b})$ for $(a,b) = (a_i,b_i), i = 1,2$. Then for any $m \in (m_0, 2)$, there *exists a constant* $c > 0$ *depending only on* m, K, d, T *and* $(p_i, q_i)_{0 \leq i \leq l}$, such that for any $\psi \in \mathscr{A}$ *and* $\gamma, \tilde{\gamma} \in \mathscr{P}$,

$$
\mathbb{W}_{\psi}(P_{s,t}^{1,\gamma}, P_{s,t}^{2,\tilde{\gamma}}) \leq \frac{c\psi((t-s)^{\frac{1}{2}})}{\sqrt{t-s}} \mathbb{W}_{1}(\gamma, \tilde{\gamma}) + c \int_{s}^{t} \frac{\psi((t-r)^{\frac{1}{2}})||a_{1} - a_{2}||_{r,\infty}}{\sqrt{(r-s)(t-r)}} dr
$$
\n
$$
(1.5) \quad + c \left(\int_{s}^{t} \left(\frac{\psi((t-r)^{\frac{1}{2}})||a_{1} - a_{2}||_{r,\infty}}{\sqrt{t-r}} \right)^{m} dr \right)^{\frac{1}{m}}
$$
\n
$$
+ c \int_{s}^{t} \frac{\psi((t-r)^{\frac{1}{2}})}{\sqrt{t-r}} \{ ||b_{1} - b_{2}||_{r,\infty} + ||div(a_{1} - a_{2})||_{r,\infty} \} dr, \quad 0 \leq s < t \leq T, \ \gamma, \tilde{\gamma} \in \mathcal{P}.
$$

Moreover, for any $k \geq 1$ *, there exists a constant* $C > 0$ depending only on k, K, d, T and $(p_i, q_i)_{0 \leq i \leq l}$, such that for any $\gamma, \tilde{\gamma} \in \mathcal{P}$ and $0 \leq s \leq t \leq T$,

$$
(1.6) \qquad \mathbb{W}_{k}(P_{s,t}^{1,\gamma},P_{s,t}^{2,\tilde{\gamma}}) \le C \bigg[\mathbb{W}_{k}(\gamma,\tilde{\gamma}) + \int_{s}^{t} \|b_{1} - b_{2}\|_{r,\infty} \mathrm{d}r + \bigg(\int_{s}^{t} \|a_{1} - a_{2}\|_{r,\infty}^{2} \mathrm{d}r \bigg)^{\frac{1}{2}} \bigg].
$$

Next, we consider the following distribution dependent SDE on R *d* :

(1.7)
$$
dX_t = b_t(X_t, \mathcal{L}_{X_t})dt + \sigma_t(X_t, \mathcal{L}_{X_t})dW_t, \quad t \in [0, T],
$$

where \mathscr{L}_{X_t} is the distribution of X_t , and for some $k \geq 1$,

$$
b: [0, T] \times \mathbb{R}^d \times \mathscr{P}_k \to \mathbb{R}^d, \quad a: [0, T] \times \mathbb{R}^d \times \mathscr{P}_k \to \mathbb{R}^d \otimes \mathbb{R}^d
$$

are measurable, each $a_t(x, \mu)$ is positive definite and $\sigma =$ 2*a*.

Let $C_b^w([0,T]; \mathscr{P}_k)$ be the set of all weakly continuous maps $\mu : [0,T] \to \mathscr{P}_k$ such that

$$
\sup_{t\in[0,T]}\mu_t(|\cdot|^k)<\infty.
$$

We call the SDE (1.7) well-posed for distributions in \mathscr{P}_k , if for any initial value X_0 with $\mathscr{L}_{X_0} \in \mathscr{P}_k$ (correspondingly, any initial distribution $\nu \in \mathscr{P}_k$), the SDE has a unique solution (correspondingly, a unique weak solution) with $(\mathscr{L}_{X_t})_{t\in[0,T]} \in C_b^w([0,T]; \mathscr{P}_k)$. In this case, let $P_t^* \nu := \mathscr{L}_{X_t}$ for the solution with $\mathscr{L}_{X_0} = \nu$, and define

$$
P_t f(\nu) := \int_{\mathbb{R}^d} f \mathrm{d}(P_t^* \nu), \ \ \nu \in \mathscr{P}_k, t \in [0, T], f \in \mathscr{B}_b(\mathbb{R}^d).
$$

In particular, for $k = 2$, the following log-Harnack inequality

(1.8)
$$
P_t \log f(\gamma) \le \log P_t f(\tilde{\gamma}) + \frac{c}{t} \mathbb{W}_2(\mu, \nu)^2, \ \ f \in \mathscr{B}_b^+(\mathbb{R}^d), t \in (0, T], \mu, \nu \in \mathscr{P}_2
$$

for some constant $c > 0$ has been established and applied in [6, 8, 12, 14, 15] for $\sigma_t(x,\mu) =$ $\sigma_t(x)$ not dependent on μ , see also [4, 5, 16] for extensions to the infinite-dimensional and reflecting models. When the noise coefficient is also distribution dependent and is \mathbb{W}_2 -Lipschitz continuous, this inequality is established in the recent work [13] by using a bicoupling method.

In the following, we consider more singular situation where $\sigma_t(x,\mu)$ may be not \mathbb{W}_{2} -Lipschitz continuous in μ , and the drift is singular in the time-spatial variables. For any $\mu \in C_b^w([0, T]; \mathscr{P}_k)$, let

$$
a^{\mu}(t, x) := a_t(x, \mu_t), \quad b^{\mu}(t, x) := b_t(x, \mu_t), \quad t \in [0, T], x \in \mathbb{R}^d.
$$

Correspondingly to $(A^{a,b})$, we make the following assumption.

 $(B^{a,b})$ Let $k \in [1,\infty)$ and $\psi \in \mathscr{A}$ with $\lim_{t \to 0} \psi(t) = 0$.

- (1) $(A^{a,b})$ holds for $(a, b) = (a^{\mu}, b^{\mu})$ uniformly in $\mu \in C_b^w([0, T]; \mathscr{P}_k)$, with drift decomposition $b^{\mu} = (b^{\mu})^{(0)} + (b^{\mu})^{(1)}$.
- (2) There exists a constant $K > 0$ such that

$$
||a_t(\cdot,\gamma)-a_t(\cdot,\tilde{\gamma})||_{\infty}\leq K(\mathbb{W}_{\psi}+\mathbb{W}_k)(\gamma,\tilde{\gamma}),\quad t\in[0,T],\gamma,\tilde{\gamma}\in\mathscr{P}_k.
$$

(3) There exist $p \ge 2$ and $1 \le \rho \in L^p([0, T])$, where $p = 2$ if \int_0^1 $\psi(r)^2$ $\frac{r}{r}dr < \infty$ and $p > 2$ otherwise, such that for any $t \in [0, T]$ and $\gamma, \tilde{\gamma} \in \mathscr{P}_k$,

$$
||b_t(\cdot,\gamma)-b_t(\cdot,\tilde{\gamma})||_{\infty}+||\text{div}(a_t(\cdot,\gamma)-a_t(\cdot,\tilde{\gamma}))||_{\infty}\leq \rho_t(\mathbb{W}_{\psi}+\mathbb{W}_k)(\gamma,\tilde{\gamma}).
$$

Remark 1.2. We give a simple example satisfying $(B^{a,b})$ for some $\rho \in L^{\infty}([0,T])$, where *b contains a locally integrable term* $b^{(0)}$ *, and the dependence of b and* σ *in distribution is given by singular integral kernels. Let* $\psi \in \mathscr{A}$ *with* $\lim_{t\to 0} \psi(t) = 0$ *and let*

$$
b_t(\cdot, \mu) = b_t^{(0)} + \int_{\mathbb{R}^d} \tilde{b}_t(\cdot, y) \mu(dy),
$$

$$
\sigma_t(\cdot, \mu) = \sqrt{\lambda I + \int_{\mathbb{R}^d} (\tilde{\sigma}_t \tilde{\sigma}_t^*)(\cdot, y) \mu(dy)}, \quad (t, \mu) \in [0, T] \times \mathcal{P}_k,
$$

where $\lambda > 0$ is a constant, $b^{(0)} : [0, T] \times \mathbb{R}^d \to \mathbb{R}^d$ satisfies $||b^{(0)}||_{\tilde{L}_{q_0}^{p_0}(T)} < \infty$ for some $(p_0, q_0) \in \mathcal{K}, \tilde{b}: [0, T] \times \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}^d$ *is measurable such that*

$$
|\tilde{b}_t(x,y) - \tilde{b}_t(\tilde{x},\tilde{y})| \le K(|x - \tilde{x}| + \psi(|y - \tilde{y}|)), \quad x, \tilde{x}, y, \tilde{y} \in \mathbb{R}^d, t \in [0, T]
$$

holds for some constant $K > 0$, and $\tilde{\sigma} : [0, T] \times \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}^d \otimes \mathbb{R}^d$ *is measurable and bounded such that*

$$
\begin{aligned} \|\tilde{\sigma}_t(x,y) - \tilde{\sigma}_t(\tilde{x},\tilde{y})\| &\le K\big(|x-\tilde{x}| + \psi(|y-\tilde{y}|)\big), \\ |\nabla \tilde{\sigma}_t(\cdot,y)(x) - \nabla \tilde{\sigma}_t(\cdot,\tilde{y})(x)| &\le K\psi(|y-\tilde{y}|), \quad x,\tilde{x},y,\tilde{y} \in \mathbb{R}^d, t \in [0,T]. \end{aligned}
$$

We have the following result on the well-posedness and estimates on $(\mathbb{W}_{\psi}, \mathbb{W}_{k})$ for P_{t}^{*} .

Theorem 1.3. *Assume* (*Ba,b*)*. Then the following assertions hold.*

(1) *The SDE* (1.7) *is well-posed for distributions in* \mathscr{P}_k *. Moreover, for any* $n \in \mathbb{N}$ *, there exists a constant c >* 0 *such that any solution satisfies*

(1.9)
$$
\mathbb{E}\Big[\sup_{t\in[0,T]}|X_t|^n\Big|\mathscr{F}_0\Big]\leq c(1+|X_0|^n).
$$

(2) *If* ψ *is a Dini function, i.e.*

(1.10)
$$
\int_0^1 \frac{\psi(s)}{s} ds < \infty,
$$

then there exists a constant $c > 0$ *such that*

(1.11)
$$
\mathbb{W}_{\psi}(P_t^*\gamma, P_t^*\tilde{\gamma}) \leq \frac{c\psi(t^{\frac{1}{2}})}{\sqrt{t}} \mathbb{W}_1(\gamma, \tilde{\gamma}) + c \mathbb{W}_k(\gamma, \tilde{\gamma}),
$$

$$
\mathbb{W}_k(P_t^*\gamma, P_t^*\tilde{\gamma}) \leq c \mathbb{W}_k(\gamma, \tilde{\gamma}), \quad t \in (0, T], \ \gamma, \tilde{\gamma} \in \mathscr{P}_k.
$$

Remark 1.4. *Theorem 1.3(1) improves existing well-posedness results for singular McKean-Vlasov SDEs where the coefficients are either* (W*k*+W*α*)*-Lipschitz continuous in distribution for some* $\alpha \in (0,1]$ *and* $k \geq 1$ *(see [7, 3] and references therein), or satisfy some derivative conditions in distribution (see for instance [2]).*

To estimate $\mathbb{W}_{\psi}(P_t^*\gamma, P_t^*\tilde{\gamma})$ for worse ψ not satisfying (1.10), and to estimate the relative entropy $\text{Ent}(P_t^* \gamma | P_t^* \tilde{\gamma})$, we need the drift to be Dini continuous in the spatial variable.

Theorem 1.5. *Assume* $(B^{a,b})$ *with* $\|\rho\|_{\infty} < \infty$ *and* \int_0^1 $\psi(r)^2$ $\frac{r}{r}$ ^d $r < \infty$, and there exists $\phi \in \mathscr{A}$ *satisfying* (1.10) *such that*

$$
\sup_{\mu \in C_b^w([0,T];\mathscr{P}_k)} \left\{ ||(b^\mu)^{(0)}||_{\infty} + [(b^\mu)^0]_\phi + ||\nabla a^\mu||_{\infty} \right\} < \infty.
$$

Then the following assertions hold.

(1) If $\psi(r)^2 \log(1 + r^{-1}) \to 0$ *as* $r \to 0$, then there exists a constant $c > 0$ such that (1.11) *holds, and for any* $t \in (0, T], \gamma, \tilde{\gamma} \in \mathscr{P}_k$,

$$
\begin{aligned} \text{Ent}(P_t^* \gamma | P_t^* \tilde{\gamma}) &\leq \frac{c \mathbb{W}_2(\gamma, \tilde{\gamma})^2}{t} \\ &+ c \mathbb{W}_k(\gamma, \tilde{\gamma})^2 \bigg(\frac{1}{t} \int_0^t \frac{\psi(r)^2}{r} dr + \frac{\psi(t^{\frac{1}{2}})^2}{t} \log(1 + t^{-1}) \bigg). \end{aligned}
$$

(2) If either $||b||_{\infty} < \infty$ or

(1.13)
$$
\sup_{(t,\mu)\in[0,T]\times\mathscr{P}_k} \left(\|\nabla^i b_t(\cdot,\mu)\|_{\infty} + \|\nabla^i \sigma_t(\cdot,\mu)\|_{\infty} \right) < \infty, \quad i=1,2,
$$

then there exists a constant $c > 0$ *such that* (1.11) *holds, and*

$$
(1.14)\ \operatorname{Ent}(P_t^*\gamma|P_t^*\tilde{\gamma}) \le \frac{c\mathbb{W}_2(\gamma,\tilde{\gamma})^2}{t} + \frac{c\mathbb{W}_k(\gamma,\tilde{\gamma})^2}{t} \int_0^t \frac{\psi(r)^2}{r} dr, \quad t \in (0,T], \gamma, \tilde{\gamma} \in \mathscr{P}_k.
$$

Remark 1.6. *When* $k \leq 2$, (1.8) *follows from* (1.14) *or* (1.12)*. This improves* [13, *Theorem 1.2], where the* \mathbb{W}_2 -*Lipschitz condition on the coefficients* (a, b) *is relaxed as the* $(\mathbb{W}_\psi + \mathbb{W}_k)$ -*Lipschitz condition.*

2 Proof of Theorem 1.1

We first present a lemma to bound \mathbb{W}_{ψ} by the total variation distance and \mathbb{W}_{1} .

Lemma 2.1. *For any* $\psi \in \mathcal{A}$,

$$
\mathbb{W}_{\psi}(\gamma, \tilde{\gamma}) \leq \sqrt{d} \,\psi(\sqrt{t}) \|\gamma - \tilde{\gamma}\|_{var} + \frac{d\psi(\sqrt{t})}{\sqrt{t}} \mathbb{W}_{1}(\gamma, \tilde{\gamma}), \quad \gamma, \tilde{\gamma} \in \mathscr{P}_{1}.
$$

Proof. Since ψ is nonnegative and concave, we have

$$
\psi(Rr) \le R\psi(r), \quad r \ge 0, R \ge 1.
$$

For any function *f* on \mathbb{R}^d with $[f]_\psi \leq 1$, let

$$
f_t(x) := \mathbb{E}[f(x + B_t)], \quad t \ge 0, x \in \mathbb{R}^d,
$$

where B_t is the standard Brownian motion on \mathbb{R}^d with $B_0 = 0$. We have $\mathbb{E}[|B_t|^2] = dt$. By $[f]_{\psi} \leq 1$, Jensen's inequality and (2.1) , we obtain

$$
|f_t(x)-f(x)| \leq \mathbb{E}[\psi(|B_t|)] \leq \psi(\mathbb{E}|B_t|) \leq \psi((dt)^{\frac{1}{2}}) \leq \sqrt{d}\psi(t^{\frac{1}{2}}), \quad t \geq 0, x \in \mathbb{R}^d.
$$

So,

(2.2)
$$
\sup_{[f]_{\psi}\leq 1} |\gamma(f_t-f)-\tilde{\gamma}(f_t-f)| \leq \sqrt{d}\psi(t^{\frac{1}{2}}) \|\gamma-\tilde{\gamma}\|_{var}, \quad t\geq 0.
$$

Next, for $[f]_{\psi} \leq 1$, by Jensen's inequality, (2.1) , $\mathbb{E}|B_t|^2 = dt$ and $\mathbb{E}|B_t| \leq \sqrt{dt}$, we obtain

$$
|\nabla f_t(x)| = \left| \nabla_x \int_{\mathbb{R}^d} (2\pi t)^{-\frac{d}{2}} e^{-\frac{|x-y|^2}{2t}} (f(y) - f(z)) dy \right|_{z=x}
$$

$$
\leq (2\pi t)^{-\frac{d}{2}} \int_{\mathbb{R}^d} \frac{|x-y|}{t} |f(y) - f(x)| e^{-\frac{|x-y|^2}{2t}} dy \leq \frac{1}{t} \mathbb{E}[|B_t|\psi(|B_t|)]
$$

$$
\leq \frac{\mathbb{E}|B_t|}{t} \psi\left(\frac{\mathbb{E}|B_t|^2}{\mathbb{E}|B_t|}\right) = \frac{\mathbb{E}|B_t|}{t} \psi\left(\frac{(d\mathbb{E}|B_t|^2)^{\frac{1}{2}}}{\mathbb{E}|B_t|} t^{\frac{1}{2}}\right) \leq dt^{-\frac{1}{2}} \psi(t^{\frac{1}{2}}), \quad t > 0.
$$

Combining this with (2.2) and noting that

$$
\mathbb{W}_1(\gamma, \tilde{\gamma}) = \sup_{\|\nabla g\| \le 1} |\gamma(g) - \tilde{\gamma}(g)|,
$$

we derive that for any *f* with $[f]_{\psi} \leq 1$,

$$
|\gamma(f) - \tilde{\gamma}(f)| \le |\gamma(f_t - f) - \tilde{\gamma}(f_t - f)| + |\gamma(f_t) - \tilde{\gamma}(f_t)|
$$

\n
$$
\le \sqrt{d}\psi(t^{\frac{1}{2}}) \|\gamma - \tilde{\gamma}\|_{var} + dt^{-\frac{1}{2}} \psi(t^{\frac{1}{2}}) \mathbb{W}_1(\gamma, \tilde{\gamma}), \quad t > 0.
$$

Then the proof is finished.

Next, we present a gradient estimate on $P_{s,t}^{a,b}$. All constants in the following only depend on T, K, d and $(p_i, q_i)_{0 \leq i \leq l}$.

Lemma 2.2. *Assume* $(A^{a,b})$ *without* (1.2)*. Then there exists a constant* $c > 0$ *such that for any* $\psi \in \mathcal{A}$,

$$
\sup_{[f]_{\psi}\leq 1} \|\nabla P_{s,t}^{a,b} f\|_{\infty} \leq c(t-s)^{-\frac{1}{2}} \psi\big((t-s)^{\frac{1}{2}}\big), \quad 0 \leq s < t \leq T.
$$

Proof. (a) By [17, Theorem 1.1] or [15, Theorem 2.1], there exists a constant $c_1 > 0$ such that for any $0 \le s < t \le T$ and $x \in \mathbb{R}^d$, the Bismut formula

(2.3)
$$
\nabla P_{s,t}^{a,b} f(x) = \mathbb{E}\left[f(X_{s,t}^x)M_{s,t}^x\right]
$$

holds for some random variable $M_{s,t}^x$ on \mathbb{R}^d with

(2.4)
$$
\mathbb{E}[M_{s,t}^x] = 0, \quad \mathbb{E}[M_{s,t}^x]^2 \leq c_1^2 (t-s)^{-1}.
$$

So, for any $z \in \mathbb{R}^d$ and a function f with $[f]_\psi \leq 1$,

$$
\left|\nabla P_{s,t}^{a,b}f(x)\right| = \left|\mathbb{E}\left[\left\{f(X_{s,t}^x) - f(z)\right\}M_{s,t}^x\right]\right| \leq \mathbb{E}\left[\psi(|X_{s,t}^x - z|)|M_{s,t}^x|\right].
$$

By Jensen's inequality for the weighted probability $\frac{|M_{s,t}^x|^p}{\mathbb{F}(|M_s^x|)}$ $\frac{d}{\mathbb{E}[M_{s,t}^x]}$, we obtain

$$
|\nabla P_{s,t}^{a,b} f(x)| \leq \mathbb{E}[|M_{s,t}^x|] \psi\bigg(\frac{\mathbb{E}[|X_{s,t}^x - z| \cdot |M_{s,t}^x|]}{\mathbb{E}[|M_{s,t}^x|]}\bigg)
$$

$$
\leq \mathbb{E}[|M_{s,t}^x|] \psi\bigg(\frac{(\mathbb{E}[|M_{s,t}^x|]^2)^{\frac{1}{2}}}{\mathbb{E}[|M_{s,t}^x|]}\bigg(\mathbb{E}|X_{s,t}^x - z|^2)^{\frac{1}{2}}\bigg).
$$

 \Box

Combining this with (2.1) and (2.4) , we obtain

$$
(2.5) \quad \sup_{[f]_{\psi}\leq 1} |\nabla P_{s,t}^{a,b} f(x)| \leq c_1 (t-s)^{-\frac{1}{2}} \inf_{z\in\mathbb{R}^d} \psi\Big(\big\{\mathbb{E}|X_{s,t}^x - z|^2\big\}^{\frac{1}{2}}\Big), \quad 0 \leq s < t \leq T, x \in \mathbb{R}^d.
$$

(b) To estimate $\inf_{z \in \mathbb{R}^d} \mathbb{E}|X_{s,t}^x - z|^2$, we use Zvonkin's transform. By [19, Theorem 2.1], there exist constants $\beta \in (0,1)$ and $\lambda, C > 0$ such that the PDE

(2.6)
$$
(\partial_t + L_t^{a,b} - \lambda)u_t = -b^{(0)}(t, \cdot), \quad t \in [0, T], u_T = 0
$$

for $u : [0, T] \times \mathbb{R}^d \to \mathbb{R}^d$ has a unique solution satisfying

(2.7)
$$
||u||_{\infty} + ||\nabla u||_{\infty} + \sup_{x \neq y} \frac{|\nabla u_t(x) - \nabla u_t(y)|}{|x - y|^{\beta}} \leq \frac{1}{2},
$$

(2.8)
$$
\|\nabla^2 u\|_{\tilde{L}_{q_0}^{p_0}(T)} + \|(\partial_t + b^{(1)} \cdot \nabla)u\|_{\tilde{L}_{q_0}^{p_0}(T)} \leq C.
$$

By Itô's formula, $Y_{s,t} := \Theta_t(X_{s,t}^x)$, where $\Theta_t(y) := y + u_t(y)$, solves the SDE

$$
dY_{s,t} = \overline{b}(t, Y_{s,t})dt + \overline{\sigma}(t, Y_{s,t})dW_t, \quad t \in [s, T], Y_{s,s} = x + u_s(x),
$$

where

(2.9)
$$
\bar{b}(t,\cdot) := (\lambda u_t + b^{(1)}) \circ \Theta_t^{-1}, \quad \bar{\sigma}(t,\cdot) := \{ (\nabla \Theta_t) \sigma_t \} \circ \Theta_t^{-1}.
$$

By (2.7) , we find a constant $c_1 > 0$ such that

$$
(2.10) \t |\bar{b}(t,y) - \bar{b}(t,z)| \le c_1 |y-z|, \quad \|\bar{\sigma}(t,y)\| \le c_1, \quad t \in [s,T], y, z \in \mathbb{R}^d.
$$

Let

$$
\frac{\mathrm{d}}{\mathrm{d}t}\theta_{s,t} = \bar{b}(t,\theta_{s,t})\big), \quad t \in [s,T], \theta_{s,s} = Y_{s,s} = x + u_s(x).
$$

By Itô's formula and (2.10), we find a constant $c_2 > 0$ and a martingale M_t such that

$$
d|Y_{s,t} - \theta_{s,t}|^2 = \left\{ 2\langle Y_{s,t} - \theta_{s,t}, \bar{b}(t, Y_{s,t}) - \bar{b}(t, \theta_{s,t}) \rangle + ||\bar{\sigma}(t, Y_{s,t})||_{HS}^2 \right\} dt + dM_t
$$

$$
\leq c_2 \left\{ |Y_{s,t} - \theta_{s,t}|^2 + 1 \right\} dt + dM_t, \quad t \in [s, T], |Y_{s,s} - \theta_{s,s}| = 0.
$$

Thus,

$$
\mathbb{E}\left[|Y_{s,t} - \theta_{s,t}|^2\right] \le c_2 e^{c_2 T} (t-s), \quad 0 \le s \le t \le T.
$$

Taking $z_{s,t} = \Theta_t^{-1}(\theta_{s,t})$ and noting that $\|\nabla\Theta^{-1}\|_{\infty} < \infty$ due to $\|\nabla u\|_{\infty} \leq \frac{1}{2}$ $\frac{1}{2}$ in (2.7) , we find a constant $c_3 > 0$ such that

$$
\mathbb{E}[|X_{s,t}^x - z_{s,t}|^2] = \mathbb{E}[|\Theta_t^{-1}(Y_{s,t}) - \Theta_t^{-1}(\theta_{s,t})|^2] \le c_3(t-s), \quad 0 \le s \le t \le T.
$$

Combining this with (2.5) and (2.1) , we finish the proof.

 \Box

Moreover, we estimate $\nabla_y p_{s,t}^{a,b}(x, y)$, where ∇_y is the gradient in *y* and $p_{s,t}^{a,b}(x, \cdot)$ is the density function of $\mathscr{L}_{X_{s,t}^x}$. For any constant $\kappa > 0$, let

$$
g_{\kappa}(r,z) := (\pi \kappa r)^{-\frac{d}{2}} e^{-\frac{|z|^2}{\kappa r}}, \quad r > 0, z \in \mathbb{R}^d
$$

be the standard Gaussian heat kernel with parameter *κ*.

Lemma 2.3. *Assume* $(A^{a,b})$ *. Then for any* $m \in (m_0, 2)$ *there exists a constant* $c(m) > 0$ *such that for any* $t \in (0, T]$ *and* $0 \leq g_{\cdot,t} \in \mathcal{B}([0, t]),$

$$
\int_{s}^{t} \frac{g_{r,t}}{\sqrt{t-r}} dr \int_{\mathbb{R}^{d}} |\nabla_{y} p_{s,r}^{a,b}(x, y)| dy
$$
\n
$$
\leq c(m) \int_{s}^{t} \frac{g_{r,t}}{\sqrt{(t-r)(r-s)}} dr + c(m) \left(\int_{s}^{t} \left(\frac{g_{r,t}}{\sqrt{t-r}} \right)^{m} dr \right)^{\frac{1}{m}}, \quad s \in [0, t].
$$

Consequently, there exists a constant c > 0 *such that*

(2.12)
$$
\int_{s}^{t} (t-r)^{-\frac{1}{2}} dr \int_{\mathbb{R}^{d}} |\nabla_{y} p_{s,r}^{a,b}(x, y)| dy \leq c, \quad 0 \leq s < t \leq T.
$$

Proof. Let u_t be in (2.6). By $(A^{a,b})$, σ = *√* $2a, (2.7)$ and (2.9) , we find a constant $c_1 > 0$ such that

$$
|\bar{b}(t,x) - \bar{b}(t,y)| \le c_1|x-y|, \quad ||\bar{\sigma}(t,x) - \bar{\sigma}(t,y)|| \le c_1|x-y|^{\alpha \wedge \beta}, \quad t \in [0,T], x, y \in \mathbb{R}^d.
$$

Let $\bar{p}_{s,t}(x, y)$ be the density function of $\mathcal{L}_{Y_{s,t}}$. According to [10, Theorem 1.2], there exists a constant $\kappa \geq 1$ and some $\theta_{s,t} : \mathbb{R}^d \to \mathbb{R}^d$ such that

$$
(2.13) \quad |\nabla_y^i \bar{p}_{s,t}(x,y)| \le \kappa (t-s)^{-\frac{i}{2}} g_\kappa(t-s, \theta_{s,t}(x)-y), \quad 0 \le s < t \le T, x, y \in \mathbb{R}^d, i=0, 1,
$$

where $\nabla^0 f := f$. Noting that $X_{s,t}^x = \Theta_t^{-1}(Y_{s,t})$, we have

(2.14)
$$
p_{s,t}^{a,b}(x,y) = \bar{p}_{s,t}(\Theta_s(x), \Theta_t(y)) |\det(\nabla \Theta_t(y))|.
$$

Combining this with (2.7) , (2.10) and (2.13) , we find a constant $c_2 > 0$ such that

(2.15)
$$
|\nabla_y p_{s,t}^{a,b}(x,y)| \le c_2 \kappa (t-s)^{-\frac{1}{2}} g_{\kappa}(t-s, \theta_{s,t}(\Theta_s(x)) - \Theta_t(y)) |\det(\nabla \Theta_t(y))| + c_2 ||\nabla^2 u_t(y)|| p_{s,t}^{a,b}(x,y), \quad 0 \le s < t, x, y \in \mathbb{R}^d.
$$

Since $(p_0, q_0) \in \mathcal{K}$, for any $m > m_0$, we have

(2.16)
$$
\tilde{p} := \frac{(m-1)p_0}{m} > 1, \quad \tilde{q} := \frac{(m-1)q_0}{m} > 1, \quad \frac{d}{\tilde{p}} + \frac{2}{\tilde{q}} < 2.
$$

By Krylov's estimate, see [19, Theorem 3.1], we find a constant *c >* 0 such that

$$
(2.17) \qquad \int_{s}^{t} dr \int_{\mathbb{R}^{d}} \|\nabla^{2} u_{r}(y)\|^{\frac{m}{m-1}} p_{s,r}^{a,b}(x,y) dy
$$

= $\mathbb{E} \int_{s}^{t} \|\nabla^{2} u_{r}\|^{\frac{m}{m-1}} (X_{s,r}^{x}) dr \leq c \|\|\nabla^{2} u\|^{\frac{m}{m-1}} \|_{\tilde{L}_{\tilde{q}}^{\tilde{p}}(s,t)} = c (\|\nabla^{2} u\|_{\tilde{L}_{q_{0}}^{p_{0}}(s,t)})^{\frac{m}{m-1}}.$

This together with (2.8), (2.14) and (2.15) implies that for any $m \in (m_0, 2)$, there exists a constant $c(m) > 0$ such that

$$
\int_{s}^{t} \frac{g_{r,t}}{\sqrt{t-r}} dr \int_{\mathbb{R}^{d}} |\nabla_{y} p_{s,r}^{a,b}(x, y)| dy \le c_{2} \kappa \int_{s}^{t} g_{r,t}(t-r)^{-\frac{1}{2}} (r-s)^{-\frac{1}{2}} dr \n+ c_{2} \left(\int_{s}^{t} \left(\frac{g_{r,t}}{\sqrt{t-r}} \right)^{m} dr \right)^{\frac{1}{m}} \left(\int_{s}^{t} dr \int_{\mathbb{R}^{d}} ||\nabla^{2} u_{r}(y)||^{\frac{m}{m-1}} p_{s,r}^{a,b}(x, y) dy \right)^{\frac{m-1}{m}} \n\le c(m) \int_{s}^{t} \frac{g_{r,t}}{\sqrt{(t-r)(r-s)}} dr + c(m) \left(\int_{s}^{t} \left(\frac{g_{r,t}}{\sqrt{t-r}} \right)^{m} dr \right)^{\frac{1}{m}}.
$$

So, (2.11) holds. Letting $g_{r,t} \equiv 1$ and $m = \frac{m_0+2}{2}$ $\frac{c_1+2}{2}$, we find a constant $c > 0$ such that (2.11) implies (2.12).

 \Box

Proof of Theorem 1.1. By (1.1), it suffices to prove for $\gamma = \delta_x, \tilde{\gamma} = \delta_y, x, y \in \mathbb{R}^d$.

(a) We first consider $x = y$. Let $f \in C_b^2(\mathbb{R}^d)$ with $[f]_\psi \leq 1$. By Itô's formula we have

$$
P_{s,t}^{a_2,b_2}f(x) = f(x) + \int_s^t P_{s,r}^{a_2,b_2}(L_r^{a_2,b_2}f)(x) \mathrm{d}r, \ \ 0 \le s \le t \le T.
$$

This implies the Kolmogorov forward equation

(2.18)
$$
\partial_t P_{s,t}^{a_2,b_2} f = P_{s,t}^{a_2,b_2}(L_t f), \text{ a.e. } t \in [s, T].
$$

On the other hand, for $(p, q) \in \mathcal{K}$ and $t \in (0, T]$, let $\tilde{W}^{2,p}_{1,q,b_2^{(1)}}(0, t)$ be the set of all maps $u : [0, t] \times \mathbb{R}^d \to \mathbb{R}^d$ satisfying

$$
||u||_{0\to t,\infty} + ||\nabla u||_{0\to t,\infty} + ||\nabla^2 u||_{\tilde{L}_q^p(t)} + ||(\partial_s + b_2^{(1)} \cdot \nabla)u||_{\tilde{L}_q^p(t)} < \infty.
$$

By [19, Theorem 2.1], the PDE

(2.19)
$$
(\partial_s + L_s^{a_2, b_2})u_s = -L_s^{a_2, b_2}f, \quad s \in [0, t], u_t = 0
$$

has a unique solution in the class $\tilde{W}^{2,p}_{1,q,b_2^{(1)}}(0,t)$. So, by Itô's formula [19, Lemma 3.3],

$$
du_r(X_{s,r}^{2,x}) = -L_r^{a_2,b_2}f(X_{s,r}^{2,x}) + dM_r, \quad r \in [s,t]
$$

holds for some martingale M_r . This and (2.18) yield

$$
0 = \mathbb{E}u_t(X_{s,t}^{2,x}) = u_s(x) - \int_s^t (P_{s,r}^{a_2,b_2} L_r^{a_2,b_2} f) dr
$$

= $u_s(x) - \int_s^t \frac{d}{dr} (P_{s,r}^{a_2,b_2} f) dr = u_s(x) - P_{s,t}^{a_2,b_2} f + f, \quad 0 \le s \le t \le T.$

Combining this with (2.19), we derive $P_{\cdot,t}^{a_2,b_2} f \in \tilde{W}_{1,q,b_2^{(1)}}^{2,p}(0,t)$ for $t \in (0,T]$ and the Kolmogorov backward equation

$$
(2.20) \t\t \partial_s P_{s,t}^{a_2,b_2} f = \partial_s u_s = -L_s^{a_2,b_2}(u_s + f) = -L_s^{a_2,b_2} P_{s,t}^{a_2,b_2} f, \quad 0 \le s \le t \le T.
$$

By Itô's formula to $P_{r,t}^{a_2,b_2} f(X_{s,r}^{1,x})$ for $r \in [s,t]$, see [19, Lemma 3.3], we derive

$$
P_{s,t}^{a_1,b_1}f(x) - P_{s,t}^{a_2,b_2}f(x) = \mathbb{E} \int_s^t \left(\partial_r + L_r^{a_1,b_1}\right) P_{r,t}^{a_2,b_2} f(X_{s,r}^{1,x}) dr
$$

=
$$
\int_s^t dr \int_{\mathbb{R}^d} p_{s,r}^{a_1,b_1}(x,y) \left(L_r^{a_1,b_1} - L_r^{a_2,b_2}\right) P_{r,t}^{a_2,b_2} f(y) dy.
$$

By the integration by parts formula, we obtain

$$
\left| \int_{\mathbb{R}^d} p_{s,r}^{a_1, b_1}(x, y) \left[\text{tr}\{(a_1 - a_2)(r, y) \nabla^2 P_{r,t}^{a_2, b_2} f(y) \} \right] dy \right|
$$

=
$$
\left| \int_{\mathbb{R}^d} \left\langle (a_1 - a_2)(r, y) \nabla_y p_{s,r}^{a_1, b_1}(x, y) + p_{s,r}^{a_1, b_1}(x, y) \text{div}(a_1 - a_2)(r, y), \nabla P_{r,t}^{a_2, b_2} f(y) \right\rangle dy \right|.
$$

Combining these with Lemma 2.2 and Lemma 2.3, for any $m \in (m_0, 2)$, we find constants $c_1, c_2 > 0$ such that

$$
|P_{s,t}^{a_1,b_1}f(x) - P_{s,t}^{a_2,b_2}f(x)| \le c_1 \int_s^t \frac{\psi((t-r)^{\frac{1}{2}})||a_1 - a_2||_{r,\infty}}{\sqrt{t-r}} dr \int_{\mathbb{R}^d} |\nabla_y p_{s,r}^{a_1,b_1}(x,y)| dy
$$

+ $c_1 \int_s^t \frac{\psi((t-r)^{\frac{1}{2}})}{(t-r)^{\frac{1}{2}}} (||b_1 - b_2||_{r,\infty} + ||div(a_1 - a_2)||_{r,\infty}) dr$
 $\le c_2 \int_s^t \frac{\psi((t-r)^{\frac{1}{2}})}{\sqrt{t-r}} \left(\frac{||a_1 - a_2||_{r,\infty}}{\sqrt{r-s}} + ||b_1 - b_2||_{r,\infty} + ||div(a_1 - a_2)||_{r,\infty} \right) dr$
+ $c_2 \left(\int_s^t \left(\frac{\psi((t-r)^{\frac{1}{2}})||a_1 - a_2||_{r,\infty}}{\sqrt{t-r}} \right)^m dr \right)^{\frac{1}{m}} =: I_{s,t}.$

Therefore,

(2.21)
$$
\mathbb{W}_{\psi}\big(P_{s,t}^{1,x}, P_{s,t}^{2,x}\big) \leq I_{s,t}, \quad 0 \leq s < t \leq T, \ x \in \mathbb{R}^d.
$$

(b) Let $x, y \in \mathbb{R}^d$ and $0 \le s < t \le T$. By the triangle inequality for \mathbb{W}_{ψ} , (2.21) and Lemma 2.1, we obtain

$$
\mathbb{W}_{\psi}(P_{s,t}^{1,x}, P_{s,t}^{2,y}) \leq \mathbb{W}_{\psi}(P_{s,t}^{1,x}, P_{s,t}^{2,x}) + \mathbb{W}_{\psi}(P_{s,t}^{2,x}, P_{s,t}^{2,y})
$$
\n
$$
\leq I_{s,t} + \psi\big((t-s)^{\frac{1}{2}}\big) \|P_{s,t}^{2,x} - P_{s,t}^{2,y}\|_{var} + \frac{\psi((t-s)^{\frac{1}{2}})}{\sqrt{t-s}} \mathbb{W}_{1}(P_{s,t}^{2,x}, P_{s,t}^{2,y}).
$$

By [15, Theorem 2.1] or [17, Theorem 1.1], $(A^{a,b})$ for $(a,b) = (a_2, b_2)$ implies that for some constant $c_3 > 0$,

$$
\mathbb{W}_1(P_{s,t}^{2,x}, P_{s,t}^{2,y}) \le c_3 |x - y|, \quad ||P_{s,t}^{2,x} - P_{s,t}^{2,y}||_{var} \le \frac{c_3}{\sqrt{t - s}} |x - y|
$$

holds for any $0 \le s < t \le T$ and $x, y \in \mathbb{R}^d$. Combining this with (2.22) , we derive (1.5) for $\gamma = \delta_x$ and $\tilde{\gamma} = \delta_y$ *.*

(c) It remains to prove (1.6). Let *u* be in (2.6) for $(a, b) = (a_1, b_1)$. Let $\Theta_t(y) := y + u_t(y)$, and

$$
Y_{s,t}^{1,x} = \Theta_t(X_{s,t}^{1,x}), \quad Y_{s,t}^{2,y} = \Theta_t(X_{s,t}^{2,y}), \quad t \in [s,T].
$$

By Itô's formula [19, Lemma 3.3], we obtain

$$
dY_{s,t}^{1,x} = \left\{ b_1^{(1)}(t, \cdot) + \lambda u_t \right\} (X_{s,t}^{1,x}) dt + \left\{ (\nabla \Theta_t) \sigma_1(t, \cdot) \right\} (X_{s,t}^{1,x}) dW_t,
$$

\n
$$
dY_{s,t}^{2,y} = \left\{ b_1^{(1)}(t, \cdot) + \lambda u_t \right\} (X_{s,t}^{2,y}) dt + \left\{ (\nabla \Theta_t) (b_2 - b_1) + \text{tr}[(a_2 - a_1)(t, \cdot) \nabla^2 u_t] \right\} (X_{s,t}^{2,y}) dt
$$

\n
$$
+ \left\{ (\nabla \Theta_t) \sigma_2(t, \cdot) \right\} (X_{s,t}^{2,y}) dW_t, \quad t \in [s, T], \ Y_{s,s}^{1,x} = \Theta_s(x), \ Y_{s,s}^{2,y} = \Theta_s(y).
$$

For any non-negative function f on \mathbb{R}^d , let

$$
\mathscr{M}f(x) := \sup_{r \in (0,1]} \frac{1}{|B(x,r)|} \int_{B(x,r)} f(y) \, dy, \quad x \in \mathbb{R}^d, B(x,r) := \{ y \in \mathbb{R}^d : |y - x| < r \}.
$$

By $(A^{a,b})$ for $a = a_i$, $\sigma_i =$ *√* $\overline{2a_i}$, (2.7), the maximal inequality in [17, Lemma 2.1], and Itô's formula, for any $k \geq 1$ we find a constant $c_1 > 1$ such that

$$
(2.23) \t\t\t c_1^{-1}|X_{s,t}^{1,x} - X_{s,t}^{2,y}|^{2k} \le \xi_t := |Y_{s,t}^{1,x} - Y_{s,t}^{2,y}|^{2k} \le c_1|X_{s,t}^{1,x} - X_{s,t}^{2,y}|^{2k},
$$

(2.24)
$$
d\xi_t \le c_1 \xi_t (1 + \eta_t) dt + c_1 \xi_t^{\frac{2k-1}{2k}} \gamma_t dt + c_1 \xi_t^{\frac{k-1}{k}} \|a_1 - a_2\|_{t,\infty}^2 dt + dM_t,
$$

where M_t is a martingale and

$$
\gamma_t := \|b_1 - b_2\|_{t,\infty} + \|a_1 - a_2\|_{t,\infty} \|\nabla^2 u_t\|_{(X_{s,t}^{2,y})},
$$

$$
\eta_t := \mathscr{M}(\|\nabla \sigma_1\|_{t,\infty}^2 + \|\nabla^2 u\|^2)(X_{s,t}^{1,x}) + \mathscr{M}(\|\nabla \sigma_1\|_{t,\infty}^2 + \|\nabla^2 u\|^2)(X_{s,t}^{2,y}).
$$

Note that for $q \in (\frac{2k-1}{2k}, 1)$,

$$
\mathbb{E}\left\{ \left(\sup_{r \in [s,t]} \xi_r^q \right)^{\frac{2k-1}{2kq}} \int_s^t \|a_1 - a_2\|_{r,\infty} \|\nabla^2 u_r\| (X^{2,y}_{s,r}) \mathrm{d}r \right\}
$$

$$
\leq \left(\mathbb{E} \sup_{r \in [s,t]} \xi_r^q\right)^{\frac{2k-1}{2kq}} \left(\mathbb{E} \left(\int_s^t \|a_1 - a_2\|_{r,\infty} \|\nabla^2 u_r\|(X_{s,r}^{2,y}) dr\right)^{\frac{2kq}{2kq-2k+1}}\right)^{\frac{2kq-2k+1}{2kq}} \n\leq \left(\mathbb{E} \sup_{r \in [s,t]} \xi_r^q\right)^{\frac{2k-1}{2kq}} \left(\int_s^t \|a_1 - a_2\|_{r,\infty}^m dr\right)^{\frac{1}{m}} \n\times \left(\mathbb{E} \left(\int_s^t \|\nabla^2 u_r\|_{\frac{m}{m-1}} (X_{s,r}^{2,y}) dr\right)^{\frac{2(m-1)kq}{m(2kq-2k+1)}}\right)^{\frac{2kq-2k+1}{2kq}}, \quad m > 1.
$$

So, by the stochastic Grownwall inequality [18, Lemma 2.8] for $q \in (\frac{2k-1}{2k}, 1)$, [17, Lemma 2.1], and the Krylov estimate in [19, Theorem 3.1] which implies the Khasminskii inequality in [18, Lemma 3.5], we find constants $c_2, c_3 > 0$ such that

$$
\begin{split} &\left[\mathbb{E}\sup_{r\in[s,t]}\xi_r^q\right]^{\frac{1}{q}}\leq c_2|x-y|^{2k}+c_2\mathbb{E}\int_s^t\left\{\xi_r^{\frac{2k-1}{2k}}\gamma_r\mathrm{d}r+\xi_r^{\frac{k-1}{k}}\|a_1-a_2\|_{r,\infty}^2\right\}\mathrm{d}r\\ &\leq c_2|x-y|^{2k}+c_2\mathbb{E}\bigg[\Big(\sup_{r\in[s,t]}\xi_r^q\Big)^{\frac{2k-1}{2kq}}\int_s^t\gamma_r\mathrm{d}r+\Big(\sup_{r\in[s,t]}\xi_r^q\Big)^{\frac{k-1}{kq}}\int_s^t\|a_1-a_2\|_{r,\infty}^2\mathrm{d}r\bigg]\\ &\leq c_2|x-y|^{2k}+\frac{1}{2}\Big[\mathbb{E}\sup_{r\in[s,t]}\xi_r^q\Big]^{\frac{1}{q}}+c_3\Big(\int_s^t\|a_1-a_2\|_{r,\infty}^2\mathrm{d}r\Big)^k+c_3\Big(\int_s^t\|b_1-b_2\|_{r,\infty}\mathrm{d}r\Big)^{2k}\\ &+c_3\Big(\int_s^t\|a_1-a_2\|_{r,\infty}^mdr\Big)^{\frac{2k}{m}}\left(\mathbb{E}\left(\int_s^t\|\nabla^2u_r\|^\frac{m}{m-1}(X^{2,y}_{s,r})\mathrm{d}r\right)^{\frac{2(m-1)kq}{m(2kq-2k+1)}}\right)^{\frac{2kq-2k+1}{q}},\quad m>1. \end{split}
$$

Noting that [11, Theorem 2.1(3)] implies

$$
\left[\mathbb{E}\sup_{r\in[s,t]}\xi_r^q\right]<\infty,
$$

we obtain

$$
\left[\mathbb{E}\sup_{r\in[s,t]} \xi_r^q\right]^{\frac{1}{q}} \le 2c_2|x-y|^{2k} + 2c_3 \bigg(\int_s^t \|a_1 - a_2\|_{r,\infty}^2 dr\bigg)^k
$$

(2.25)
$$
+ 2c_3 \bigg(\int_s^t \|b_1 - b_2\|_{r,\infty} dr\bigg)^{2k} + 2c_3 \bigg(\int_s^t \|a_1 - a_2\|_{r,\infty}^m dr\bigg)^{\frac{2k}{m}} \left(\mathbb{E}\bigg(\int_s^t \|\nabla^2 u_r\|_{\frac{m}{m-1}}^{\frac{m}{m-1}}(X_{s,r}^{2,y}) dr\bigg)^{\frac{2(m-1)kq}{m(2kq-2k+1)}}\right)^{\frac{2kq-2k+1}{q}}.
$$

Recall that (\tilde{p}, \tilde{q}) is defined in (2.16). By (2.8), [19, Theorem 3.1] and [18, Lemma 3.5], we find a constant $c_4 > 0$ such that

$$
\mathbb{E}\left(\int_{s}^{t} \|\nabla^{2} u_{r}\|^{\frac{m}{m-1}} (X_{s,r}^{2,y}) dr\right)^{\frac{2(m-1)kq}{m(2kq-2k+1)}}
$$

$$
\leq c_4(\|\|\nabla^2 u\|^{\frac{m}{m-1}}\|_{\tilde{L}^{\tilde{p}}_q(s,t)})^{\frac{2(m-1)kq}{m(2kq-2k+1)}}=c_4(\|\nabla^2 u\|_{\tilde{L}^{p_0}_{q_0}(0,T)})^{\frac{2kq}{2kq-2k+1}}<\infty.
$$

Combining this with (2.25), we find a constant $c_5 > 0$ such that

$$
\left(\mathbb{E}|Y_{s,t}^{1,x} - Y_{s,t}^{2,y}|^k\right)^2 \le \left[\mathbb{E}\sup_{r \in [s,t]} \xi_r^q\right]^{\frac{1}{q}} \le c_5|x-y|^{2k} + c_5 \bigg(\int_s^t \|b_1 - b_2\|_{r,\infty} \mathrm{d}r\bigg)^{2k} + c_5 \bigg(\int_s^t \|a_1 - a_2\|_{r,\infty}^m \mathrm{d}r\bigg)^{\frac{2k}{m}} + c_5 \bigg(\int_s^t \|a_1 - a_2\|_{r,\infty}^2 \mathrm{d}r\bigg)^k.
$$

Noting that (2.23) implies

$$
\mathbb{W}_k(P^{1,x}_{s,t}, P^{2,y}_{s,t})^k \leq \sqrt{c_1} \mathbb{E}|Y^{1,x}_{s,t} - Y^{2,y}_{s,t}|^k,
$$

by Jensen's inequality we derive (1.6) for some constant $C > 0$ and $\gamma = \delta_x, \tilde{\gamma} = \delta_y$.

 \Box

3 Proof of Theorem 1.3

Once the well-posedness of (1.7) is proved, the proof of $[7, (1.5)]$ implies (1.9) under $(B^{a,b})$. We skip the details to save space. So, in the following we only prove the well-posedness and estimate (1.11).

(a) Let X_0 be \mathscr{F}_0 -measurable with $\gamma := \mathscr{L}_{X_0} \in \mathscr{P}_k$. Let

$$
\mathscr{C}^\gamma_T:=\big\{\mu\in C([0,T];\mathscr{P}_k):\ \mu_0=\gamma\big\}.
$$

For any $\lambda \geq 0$, C_T^{γ} is a complete space under the metric

$$
\rho_{\lambda}(\mu,\tilde{\mu}) := \sup_{t \in [0,T]} e^{-\lambda t} \big\{ \mathbb{W}_{\psi}(\mu_t,\tilde{\mu}_t) + \mathbb{W}_{k}(\mu_t,\tilde{\mu}_t) \big\}.
$$

For any $\mu \in C([0, T]; \mathscr{P}_k)$, let

$$
b_t^{\mu}(x) := b_t(x, \mu_t), \quad \sigma_t^{\mu}(x) = \sigma_t(x, \mu_t), \quad (t, x) \in [0, T] \times \mathbb{R}^d.
$$

According to [11, Theorem 2.1], $(B^{a,b})$ implies that the SDE

$$
dX_t^{\mu} = b_t^{\mu}(X_t^{\mu})dt + \sigma_t^{\mu}(X_t^{\mu})dW_t, \quad t \in [0, T], X_0^{\mu} = X_0
$$

is well-posed, and

$$
\mathbb{E}\Big[\sup_{s\in[0,T]}|X_t^{\mu}|^k\Big]<\infty.
$$

So, we define a map

$$
\Phi^\gamma: \mathscr{C}^\gamma_T \to \mathscr{C}^\gamma_T; \ \ \mu \mapsto \big\{ (\Phi^\gamma \mu)_t := \mathscr{L}_{X_t^\mu} \big\}_{t \in [0,T]}.
$$

According to [9, Theorem 3.1], if Φ^{γ} has a unique fixed point in \mathscr{C}_T^{γ} T ^{γ}, then (1.7) is well-posed for distributions in \mathscr{P}_k .

(b) Let $\tilde{\gamma} \in \mathscr{P}_k$ which may be different from γ , and let $\tilde{\mu} \in \mathscr{C}_T^{\tilde{\gamma}}$ *T* . We estimate the *ρλ*distance between $\Phi^{\gamma}\mu$ and $\Phi^{\tilde{\gamma}}\tilde{\mu}$. By Theorem 1.1 and $(B^{a,b})$, for any $m \in (m_0, 2)$, there exist constants $c_1, c_2 > 0$ such that

$$
\mathbb{W}_{\psi}\left((\Phi^{\gamma}\mu)_{t},(\Phi^{\tilde{\gamma}}\tilde{\mu})_{t}\right)+\mathbb{W}_{k}\left((\Phi^{\gamma}\mu)_{t},(\Phi^{\tilde{\gamma}}\tilde{\mu})_{t}\right) \n\leq \frac{c_{1}\psi(t^{\frac{1}{2}})}{\sqrt{t}}\mathbb{W}_{k}(\gamma,\tilde{\gamma})+c_{1}\left(\int_{0}^{t}\|a^{\mu}-a^{\tilde{\mu}}\|_{r,\infty}^{2}\mathrm{d}r\right)^{\frac{1}{2}} \n+c_{1}\left(\int_{0}^{t}\left(\frac{\psi((t-r)^{\frac{1}{2}})\|a^{\mu}-a^{\tilde{\mu}}\|_{r,\infty}}{\sqrt{t-r}}\right)^{m}\mathrm{d}r\right)^{\frac{1}{m}} \n+c_{1}\int_{0}^{t}\frac{c_{1}\psi((t-r)^{\frac{1}{2}})\|a^{\mu}-a^{\tilde{\mu}}\|_{r,\infty}}{\sqrt{t-r}}+\|b^{\mu}-b^{\tilde{\mu}}\|_{r,\infty}+\|\mathrm{div}(a^{\mu}-a^{\tilde{\mu}})\|_{r,\infty}\right)\mathrm{d}r \n\leq \frac{c_{1}\psi(t^{\frac{1}{2}})}{\sqrt{t}}\mathbb{W}_{k}(\gamma,\tilde{\gamma})+c_{2}\left(\int_{0}^{t}\left(\mathbb{W}_{\psi}(\mu_{r},\tilde{\mu}_{r})+\mathbb{W}_{k}(\mu_{r},\tilde{\mu}_{r})\right)^{2}\mathrm{d}r\right)^{\frac{1}{2}} \n+c_{2}\left(\int_{0}^{t}\left(\frac{\psi((t-r)^{\frac{1}{2}})(\mathbb{W}_{\psi}(\mu_{r},\tilde{\mu}_{r})+\mathbb{W}_{k}(\mu_{r},\tilde{\mu}_{r}))}{\sqrt{t-r}}\right)^{m}\mathrm{d}r\right)^{\frac{1}{m}} \n+c_{2}\int_{0}^{t}\frac{\psi((t-r)^{\frac{1}{2}})(1+\sqrt{r}\rho_{r})\left(\mathbb{W}_{\psi}(\mu_{r},\tilde{\mu}_{r})+\mathbb{W}_{k}(\mu_{r},\tilde{\mu}_{r})\right)\mathrm{d}r
$$

Let $\gamma = \tilde{\gamma}$. We obtain

$$
\rho_{\lambda}(\Phi^{\gamma}\mu, \Phi^{\gamma}\tilde{\mu}) \leq \delta(\lambda)\rho_{\lambda}(\mu, \tilde{\mu}),
$$

where by $(B^{a,b})$ and $m \in (m_0, 2)$, as $\lambda \to \infty$ we have

$$
\delta(\lambda) := c_2 \sup_{t \in [0,T]} \left[\int_0^t \frac{\psi((t-r)^{\frac{1}{2}}) e^{-\lambda(t-r)}}{\sqrt{t-r}} \left(\frac{1}{\sqrt{r}} + \rho_r \right) dr + \left(\int_0^t e^{-2\lambda(t-r)} dr \right)^{\frac{1}{2}} \right] + c_2 \left(\int_0^t \left(\frac{\psi((t-r)^{\frac{1}{2}}) e^{-\lambda(t-r)}}{\sqrt{t-r}} \right)^m dr \right)^{\frac{1}{m}} \to 0.
$$

So, Φ^{γ} is ρ_{λ} -contractive on \mathscr{C}_{T}^{γ} *T*for large $\lambda > 0$, and hence has a unique fixed point. This implies the well-posedness of (1.7) for distributions in \mathscr{P}_k .

(c) For $s \in [0, T)$, let $P_{s,t}^* \gamma = \mathscr{L}_{X_{s,t}^{\gamma}}$, where $X_{s,t}^{\gamma}$ solves (1.7) for $t \in [s, T]$ and $\mathscr{L}_{X_{s,s}^{\gamma}} = \gamma$. By (1.9) for *s* replacing 0, we have

$$
\sup_{t \in [s,T]} (P_{s,t}^* \gamma)(|\cdot|^k) < \infty, \quad \gamma \in \mathscr{P}_k.
$$

Since ψ has growth slower than linear, and (2.1) implies the boundedness of $\frac{r}{\psi(r)}$ for $r \in [0, T]$, this implies that for any $\gamma, \tilde{\gamma} \in \mathscr{P}_k$ and $s \in [0, T)$,

(3.1)
$$
\sup_{r \in [s,t]} (\mathbb{W}_{\psi} + \mathbb{W}_k)(P_{s,r}^* \gamma, P_{s,r}^* \tilde{\gamma}) < \infty, \quad t \in [s,T],
$$

(3.2)
$$
\Gamma_{s,t} := \sup_{r \in [s,t]} \frac{\sqrt{r-s}}{\psi((r-s)^{\frac{1}{2}})} (\mathbb{W}_{\psi} + \mathbb{W}_{k})(P_{s,r}^{*} \gamma, P_{s,r}^{*} \tilde{\gamma}) < \infty, \quad t \in [s,T].
$$

Let

$$
a_1(t, x) := a_t(x, P_{s,t}^* \gamma), \quad b_1(t, x) := b_t(x, P_{s,t}^* \gamma), a_2(t, x) := a_t(x, P_{s,t}^* \tilde{\gamma}), \quad b_1(t, x) := b_t(x, P_{s,t}^* \tilde{\gamma}), \quad (t, x) \in [s, T] \times \mathbb{R}^d.
$$

Then $P_{s,t}^* \gamma = P_{s,t}^{1,\gamma}, P_{s,t}^* \tilde{\gamma} = P_{s,t}^{2,\tilde{\gamma}},$ and (1.1) implies

(3.3)
$$
P_{s,t}^* \gamma = \int_{\mathbb{R}^d} P_{s,t}^{1,x} \gamma(\mathrm{d}x), \quad P_{s,t}^* \tilde{\gamma} = \int_{\mathbb{R}^d} P_{s,t}^{2,x} \tilde{\gamma}(\mathrm{d}x).
$$

Thus, by Theorem 1.1 and $(B^{a,b})$, for any $m \in (m_0, 2)$, we find a constant $k_0 > 0$ such that

$$
\mathbb{W}_{\psi}(P_{s,t}^{*}\gamma, P_{s,t}^{*}\tilde{\gamma}) = \mathbb{W}_{\psi}(P_{s,t}^{1,\gamma}, P_{s,t}^{2,\tilde{\gamma}}) \leq \frac{k_{0}\psi((t-s)^{\frac{1}{2}})}{\sqrt{t-s}}\mathbb{W}_{1}(\gamma, \tilde{\gamma})
$$
\n
$$
(3.4) \qquad + k_{0} \int_{s}^{t} \frac{\psi((t-r)^{\frac{1}{2}})}{\sqrt{(r-s)(t-r)}} \Big(1 + \rho_{r}\sqrt{r-s}\Big) \big(\mathbb{W}_{\psi} + \mathbb{W}_{k}\big) (P_{s,r}^{*}\gamma, P_{s,r}^{*}\tilde{\gamma}) dr
$$
\n
$$
+ k_{0} \left(\int_{s}^{t} \left(\frac{\psi((t-r)^{\frac{1}{2}})\big(\mathbb{W}_{\psi} + \mathbb{W}_{k}\big) (P_{s,r}^{*}\gamma, P_{s,r}^{*}\tilde{\gamma})}{\sqrt{t-r}}\right)^{m} dr\right)^{\frac{1}{m}},
$$
\n
$$
\mathbb{W}_{k}(P_{s,t}^{*}\gamma, P_{s,t}^{*}\tilde{\gamma}) = \mathbb{W}_{k}(P_{s,t}^{1,\gamma}, P_{s,t}^{2,\tilde{\gamma}}) \leq k_{0} \mathbb{W}_{k}(\gamma, \tilde{\gamma})
$$
\n
$$
(3.5) \qquad + k_{0} \int_{s}^{t} \rho_{r} \big(\mathbb{W}_{\psi} + \mathbb{W}_{k}\big) (P_{s,r}^{*}\gamma, P_{s,r}^{*}\tilde{\gamma}) dr + k_{0} \left(\int_{s}^{t} \big(\mathbb{W}_{\psi} + \mathbb{W}_{k}\big)^{2} (P_{s,r}^{*}\gamma, P_{s,r}^{*}\tilde{\gamma}) dr\right)^{\frac{1}{2}}
$$

By combining these with the definition of $\Gamma_{s,t}$ in (3.2), we find a constant $k_1 > 0$ such that

.

$$
\Gamma_{s,t} \le k_1 \mathbb{W}_k(\gamma, \tilde{\gamma}) + k_1 \Gamma_{s,t} h(t-s), \quad 0 \le s < t \le T,
$$
\n
$$
h(t) := \sup_{(s,\theta) \in (0,t] \times [0,T-t]} \frac{\sqrt{s}}{\psi(s^{\frac{1}{2}})} \int_0^s \frac{\psi(r^{\frac{1}{2}}) \psi((s-r)^{\frac{1}{2}})}{\sqrt{r(s-r)}} \left(\frac{1}{\sqrt{r}} + \rho_{\theta+r}\right) dr
$$
\n
$$
+ \sup_{s \in (0,t]} \frac{\sqrt{s}}{\psi(s^{\frac{1}{2}})} \left(\int_0^s \left(\frac{\psi((s-r)^{\frac{1}{2}}) \psi(r^{\frac{1}{2}})}{\sqrt{r} \sqrt{s-r}}\right)^m dr\right)^{\frac{1}{m}}
$$
\n
$$
+ \left(\int_0^t \left(\frac{\psi(r^{\frac{1}{2}})}{\sqrt{r}}\right)^2 dr\right)^{\frac{1}{2}}, \quad t \in (0,T].
$$

Note that

$$
\frac{\sqrt{s}}{\psi(s^{\frac{1}{2}})} \int_0^s \frac{\psi(r^{\frac{1}{2}})\psi((s-r)^{\frac{1}{2}})}{r\sqrt{s-r}} dr
$$
\n
$$
\leq \frac{\sqrt{s}}{\psi(s^{\frac{1}{2}})} \left(\int_0^{\frac{s}{2}} \frac{\psi(s^{\frac{1}{2}})}{\sqrt{s/2}} \cdot \frac{\psi(r^{\frac{1}{2}})}{r} dr + \int_{\frac{s}{2}}^s \frac{\psi((s-r)^{\frac{1}{2}})}{s-r} \cdot \frac{\sqrt{s}\psi(s^{\frac{1}{2}})}{s/2} dr \right)
$$
\n
$$
\leq (2+\sqrt{2}) \int_0^{\frac{s}{2}} \frac{\psi(r^{\frac{1}{2}})}{r} dr = 2(2+\sqrt{2}) \int_0^{\sqrt{s/2}} \frac{\psi(r)}{r} dr.
$$

Similarly, we have

$$
\frac{\sqrt{s}}{\psi(s^{\frac{1}{2}})} \left(\int_{0}^{s} \left(\frac{\psi((s-r)^{\frac{1}{2}})\psi(r^{\frac{1}{2}})}{\sqrt{r}\sqrt{s-r}} \right)^{m} dr \right)^{\frac{1}{m}}
$$
\n
$$
(3.8) \leq \sqrt{2} \left(\left(\int_{0}^{\frac{s}{2}} \left(\frac{\psi(r^{\frac{1}{2}})}{\sqrt{r}} \right)^{m} dr \right)^{\frac{1}{m}} + \left(\int_{\frac{s}{2}}^{s} \left(\frac{\psi((s-r)^{\frac{1}{2}})}{s-r} \right)^{m} dr \right)^{\frac{1}{m}} \right)
$$
\n
$$
\leq 2\sqrt{2} \left(\int_{0}^{\frac{s}{2}} \left(\frac{\psi(r^{\frac{1}{2}})}{\sqrt{r}} \right)^{m} dr \right)^{\frac{1}{m}},
$$
\n
$$
\frac{\sqrt{s}}{\psi(s^{\frac{1}{2}})} \int_{0}^{s} \frac{\psi(r^{\frac{1}{2}})\psi((s-r)^{\frac{1}{2}})}{\sqrt{r(s-r)}} \rho_{\theta+r} dr
$$
\n
$$
(3.9) = \frac{\sqrt{s}}{\psi(s^{\frac{1}{2}})} \left(\int_{0}^{\frac{s}{2}} \frac{\psi(s^{\frac{1}{2}})}{\sqrt{s}\sqrt{s}} \cdot \frac{\psi(r^{\frac{1}{2}})}{\sqrt{r}} \rho_{\theta+r} dr + \int_{\frac{s}{2}}^{s} \frac{\psi((s-r)^{\frac{1}{2}})}{\sqrt{s-r}} \cdot \frac{\sqrt{s}\psi(s^{\frac{1}{2}})}{s/\sqrt{2}} \rho_{\theta+r} dr \right)
$$
\n
$$
\leq 2\sqrt{2} \int_{0}^{s} \left(\frac{\psi(r^{\frac{1}{2}})}{\sqrt{r}} + \frac{\psi((s-r)^{\frac{1}{2}})}{\sqrt{s-r}} \right) \rho_{\theta+r} dr \leq 4\sqrt{2} \left(\int_{0}^{s} \frac{\psi(r^{\frac{1}{2}})^{2}}{r} dr \right)^{\frac{1}{2}} \left(\int_{0}^{T} \rho_{r}^{2} dr \right)^{\frac{1}{2}}.
$$

Combining these with (1.10), we conclude that $h(t)$ defined in (3.6) satisfies $h(t) \rightarrow 0$ as $t \to 0$. Letting $r_0 > 0$ such that $k_1 h(t) \leq \frac{1}{2}$ $\frac{1}{2}$ for $t \in [0, r_0]$, we deduce form (3.2) and (3.6) that

$$
\frac{\sqrt{t-s}}{\psi((t-s)^{\frac{1}{2}})}(\mathbb{W}_{\psi} + \mathbb{W}_{k})(P_{s,t}^{*}\gamma, P_{s,t}^{*}\tilde{\gamma}) \leq \Gamma_{s,t} \leq 2k_1 \mathbb{W}_{k}(\tilde{\gamma}, \gamma)
$$

holds for all $s \in [0, T)$ and $t \in (s, (s + r_0) \wedge T]$. Consequently,

$$
(\mathbb{W}_{\psi} + \mathbb{W}_{k})(P_{s,t}^{*}\gamma, P_{s,t}^{*}\tilde{\gamma}) \leq \frac{2k_{1}\psi((t-s)^{\frac{1}{2}})}{\sqrt{t-s}}\mathbb{W}_{k}(\gamma, \tilde{\gamma}),
$$

$$
s \in [0, T), t \in (s, (s + r_{0}) \wedge T], \ \gamma, \tilde{\gamma} \in \mathscr{P}_{k}.
$$

Combining this with the flow property

$$
P_{s,t}^* = P_{r,t}^* P_{s,r}^*, \quad 0 \le s \le r \le t \le T,
$$

we find a constant $k_2 > 0$ such that

(3.10)
$$
(\mathbb{W}_{\psi} + \mathbb{W}_{k})(P_{s,t}^{*}\gamma, P_{s,t}^{*}\tilde{\gamma}) \leq \frac{k_{2}\psi((t-s)^{\frac{1}{2}})}{\sqrt{t-s}}\mathbb{W}_{k}(\gamma, \tilde{\gamma}), \quad t \in (s, T], \gamma, \tilde{\gamma} \in \mathscr{P}_{k}.
$$

By the conditions on ψ in $(B^{a,b})(3)$ and (1.10), we have

$$
\sup_{t\in(0,T]}\left\{\int_0^t \frac{\psi(r^{\frac{1}{2}})\psi((t-r)^{\frac{1}{2}})}{r\sqrt{t-r}}\left(1+\rho_r\sqrt{r}\right)dr+\left(\int_0^t \left(\frac{\psi(r^{\frac{1}{2}})}{\sqrt{r}}\right)^2 dr\right)^{\frac{1}{2}} + \left(\int_0^t \left(\frac{\psi((t-r)^{\frac{1}{2}})\psi(r^{\frac{1}{2}})}{\sqrt{r}\sqrt{t-r}}\right)^m dr\right)^{\frac{1}{m}}\right\}<\infty.
$$

Therefore, substituting (3.10) into (3.4) and (3.5) , we derive (1.11) for some constant $c > 0$.

4 Proof of Theorem 1.5

(a) We use the notations in step (c) in the proof of Theorem 1.3. By Pinsker's inequality, [13, (1.3)] and $(B^{a,b})$ with $\|\rho\|_{\infty} < \infty$, we find constants $\varepsilon \in (0, \frac{1}{2})$ $\frac{1}{2}$, $c_1 > 0$ such that

$$
\|P_{s,t}^{1,x} - P_{s,t}^{2,y}\|_{var} \leq \sqrt{2\text{Ent}(P_{s,t}^{1,x}|P_{s,t}^{2,y})}
$$

\n
$$
\leq \frac{c_1|x-y|}{\sqrt{t-s}} + \frac{c_1}{\sqrt{t-s}} \bigg(\int_s^t (\mathbb{W}_{\psi} + \mathbb{W}_k)^2 (P_{s,r}^* \gamma, P_{s,r}^* \tilde{\gamma}) dr \bigg)^{\frac{1}{2}}
$$

\n
$$
+ c_1 \sqrt{\log(1 + (t-s)^{-1})} \sup_{r \in [s+\varepsilon(t-s),t]} (\mathbb{W}_{\psi} + \mathbb{W}_k)^2 (P_{s,r}^* \gamma, P_{s,r}^* \tilde{\gamma}) dr \bigg), \quad t \in [s, T].
$$

Combining this with (3.3) and Lemma 2.1, we obtain

$$
\mathbb{W}_{\psi}(P_{s,t}^{*}\gamma, P_{s,t}^{*}\tilde{\gamma}) - \frac{\psi((t-s)^{\frac{1}{2}})}{\sqrt{t-s}} \mathbb{W}_{1}(P_{s,t}^{1,\gamma}, P_{s,t}^{2,\tilde{\gamma}}) \leq \psi((t-s)^{\frac{1}{2}}) \|P_{s,t}^{1,\gamma} - P_{s,t}^{2,\tilde{\gamma}}\|_{var}
$$
\n
$$
\leq \frac{\psi((t-s)^{\frac{1}{2}})}{\sqrt{t-s}} \bigg(\int_{s}^{t} (\mathbb{W}_{\psi} + \mathbb{W}_{k})^{2} (P_{s,r}^{*}\gamma, P_{s,r}^{*}\tilde{\gamma}) dr \bigg)^{\frac{1}{2}} + c_{1}\psi((t-s)^{\frac{1}{2}}) \sqrt{\log(1 + (t-s)^{-1})} \sup_{r \in [s+\varepsilon(t-s),t]} (\mathbb{W}_{\psi} + \mathbb{W}_{k}) (P_{s,r}^{*}\gamma, P_{s,r}^{*}\tilde{\gamma})
$$

for $t \in [s, T]$. On the other hand, since $b^{(0)}$ is bounded, $||b^{(0)}||_{\tilde{L}_{q_0}^{p_0}(T)} < \infty$ holds for any $p_0, q_0 > 2$, so that (1.6) holds for $m = 2$. Then there exists a constant $c_2 > 0$ such that

$$
\mathbb{W}_{1}(P_{s,t}^{1,\gamma}, P_{s,t}^{2,\tilde{\gamma}}) \leq \mathbb{W}_{k}(P_{s,t}^{1,\gamma}, P_{s,t}^{2,\tilde{\gamma}})
$$
\n
$$
\leq c_{2} \mathbb{W}_{k}(\gamma, \tilde{\gamma}) + c_{2} \bigg(\int_{s}^{t} (\mathbb{W}_{\psi} + \mathbb{W}_{k})^{2} (P_{s,r}^{*} \gamma, P_{s,r}^{*} \tilde{\gamma}) dr \bigg)^{\frac{1}{2}}.
$$

Combining this with (4.1), we find a constant $c_3 > 0$ such that instead of (3.6) we have

(4.3)
$$
\Gamma_{s,t} \le c_3 \mathbb{W}_k(\gamma, \tilde{\gamma}) + c_2 h(t-s) \Gamma_{s,t}, \quad 0 \le s \le t \le T,
$$

$$
h(t) := \left(\int_0^t \frac{\psi(s^{\frac{1}{2}})^2}{s} ds \right)^{\frac{1}{2}} + \sup_{r \in (0,t]} \psi(r^{\frac{1}{2}}) \sqrt{\log(1+r^{-1})}, \quad t > 0.
$$

Since \int_0^1 $\psi(r)^2$ $\int_{r}^{r} dr < \infty$, we have $h(t) \to 0$ as $t \to 0$ if $\lim_{r \to 0} \psi(r)^2 \log(1 + r^{-1}) = 0$, so that (1.11) follows as explained in step (c) in the proof of Theorem 1.3.

(b) Next, by (3.3), [13, (1.3)] and $(B^{a,b})$ with $\|\rho\|_{\infty} < \infty$, we find constants $\varepsilon \in (0, \frac{1}{2})$ $\frac{1}{2}$, $c_1 >$ 0 such that for any $\gamma, \tilde{\gamma} \in \mathscr{P}_k$,

$$
\operatorname{Ent}(P_t^* \gamma | P_t^* \tilde{\gamma}) \le \frac{\mathbb{W}_2(\gamma, \tilde{\gamma})^2}{t} + \frac{c_1}{t} \int_0^t (\mathbb{W}_{\psi} + \mathbb{W}_k)^2 (P_r^* \gamma, P_r^* \tilde{\gamma}) dr + c_1 \log(1 + t^{-1}) \sup_{r \in [\varepsilon t, t]} (\mathbb{W}_{\psi} + \mathbb{W}_k)^2 (P_r^* \gamma, P_r^* \tilde{\gamma}), \quad t \in (0, T].
$$

Combining this with (1.11) , we find a constant $c > 0$ such that (1.12) holds.

(c) If either $||b||_{\infty} < \infty$ or (1.13) holds, then we may apply [13, (1.4)] to delete the term $log(1 + (t - s)^{-1})$ from the above calculations, so that $h(t)$ in (4.3) becomes $\begin{pmatrix} f_0^t \\ f_1^t \end{pmatrix}$ $\psi(s^{\frac{1}{2}})^2$ $\frac{(\frac{1}{2})^2}{s}$ d*s*)^{$\frac{1}{2}$} which goes to 0 as $t \to 0$. Therefore, (1.11) and (1.14) hold for some constant $c > 0$ as shown above.

References

- [1] V. I. Bogachev, M. Röckner, S. V. Shaposhnikov, *Distances between transition probabilities of diffusions and applications to nonlinear Fokker-Planck-Kolmogorov equations,* J. Funct. Anal. 271(2016), 1262-1300.
- [2] P.-E. Chaudru de Raynal, N. Frikha, *Well-posedness for some non-linear SDEs and related PDE on the Wasserstein space,* J. Math. Pures Appl. 159(2022), 1-167.
- [3] X. Huang, *McKean-Vlasov SDEs with singularity in distribution variable and distribution dependent diffusion,* arXiv:2302.05845.
- [4] X. Huang, M. Röckner, F.-Y. Wang, *Non-linear Fokker–Planck equations for probability measures on path space and path-distribution dependent SDEs,* Discrete Contin. Dyn. Syst. 39(2019), 3017-3035.
- [5] X. Huang, Y. Song, *Well-posedness and regularity for distribution dependent SPDEs with singular drifts,* Nonlinear Anal. 203(2021), 112167.
- [6] X. Huang, F.-Y. Wang, *Distribution dependent SDEs with singular coefficients,* Stochastic Process. Appl. 129(2019), 4747-4770.
- [7] X. Huang, F.-Y. Wang, *Singular McKean-Vlasov (reflecting) SDEs with distribution dependent noise,* J. Math. Anal. Appl. 514(2022), 126301 21pp.
- [8] X. Huang, F.-Y. Wang, *Log-Harnack inequality and Bismut formula for singular McKean-Vlasov SDEs,* arXiv:2207.11536.
- [9] X. Huang, P. Ren, F.-Y. Wang, *Distribution dependent stochastic differential equations,* Front. Math. China 16(2021), 257–301.
- [10] S. Menozzi, A. Pesce, X. Zhang, *Density and gradient estimates for non degenerate Brownian SDEs with unbounded measurable drift,* J. Diff. Equat. 272(2021), 330–369.
- [11] P. Ren, *Singular McKean-Vlasov SDEs: well-posedness, regularities and Wang's Harnack inequality,* Stoch. Proc. Appl. 156(2023), 291–311.
- [12] P. Ren, F.-Y. Wang, *Exponential convergence in entropy and Wasserstein for McKean-Vlasov SDEs,* Nonlinear Anal. 206(2021), 112259.
- [13] P. Ren, F.-Y. Wang, *Entropy estimate between diffusion processes and application to McKean-Vlasov SDEs,* arXiv:2302.13500.
- [14] F.-Y. Wang, *Distribution-dependent SDEs for Landau type equations,* Stoch. Proc. Appl. 128(2018), 595-621.
- [15] F.-Y. Wang, *Derivative formula for singular McKean-Vlasov SDEs,* Comm. Pure Appl. Anal. 22(2023), 1866–1898.
- [16] F.-Y. Wang, *Distribution dependent reflecting stochastic differential equations,* to appear in Sci. China Math. arXiv:2106.12737.
- [17] P. Xia, L. Xie, X. Zhang, G. Zhao, $L^q(L^p)$ -theory of stochastic differential equations, Stochatic Process. Appl. 130(2020), 5188-5211.
- [18] L. Xie, X. Zhang, *Ergodicity of stochastic differential equations with jumps and singular coefficients,* Ann. Inst. Henri Poincaré Probab. Stat. 56(2020), 175-229.
- [19] S.-Q. Zhang, C. Yuan, *A study on Zvonkin's transformation for stochastic differential equations with singular drift and related applications,* J. Diff. Equat. 297(2021), 277– 319.