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Abstract. Motivated by the probabilistic representation for solutions of the Navier-Stokes equa-
tions, we introduce a novel class of stochastic differential equations that depend on the entire

flow of its time marginals. We establish the existence and uniqueness of both strong and weak
solutions under one-sided Lipschitz conditions and for singular drifts. These newly proposed

distribution-flow dependent stochastic differential equations are closely connected to quasilinear

backward Kolmogorov equations and Fokker-Planck equations. Furthermore, we investigate a
stochastic version of the 2D-Navier-Stokes equation associated with fractional Brownian noise.

We demonstrate the global well-posedness and smoothness of solutions when the Hurst parameter

H lies in the range (0, 1
2
) and the initial vorticity is a finite signed measure.
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1. Introduction

Throughout this paper we fix T > 0 and d ∈ N and write

DT := {(s, t) : 0 ⩽ s < t ⩽ T}.
Let P := P(Rd) be the space of all probability measures over Rd, which is endowed with the
weak topology. Let Cd

P := C(Rd;P(Rd)) be the space of all continuous probability measure-valued
functions from Rd toP(Rd). Let {Wt}t∈[0,T ] be a d-dimensional standard Brownian motion on some
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probability space (Ω,F ,P). We consider the following nonlinear stochastic differential equation
(SDE), also called distribution-flow dependent SDE (abbreviated as DFSDE): for (s, t, x) ∈ DT ×
Rd,

Xx
s,t = x+

∫ t

s

B(r,Xx
s,r, µ

�
r,T , µ

�
s,r)dr +

∫ t

s

Σ(r,Xx
s,r, µ

�
r,T , µ

�
s,r)dWr, (1.1)

where µx
s,t = P ◦ (Xx

s,t)
−1 is the probability distribution measure of Xx

s,t satisfying∫
Rd

µx
s,r(dy)µ

y
r,t = µx

s,t, for all 0 ⩽ s ⩽ r ⩽ t ⩽ Tand x ∈ Rd, (1.2)

and
(B,Σ) : [0, T ]× Rd × Cd

P × Cd
P → (Rd,Rd ⊗ Rd)

are two Borel measurable functions.
The main feature of SDE (1.1) is that the coefficients depend on the distribution-flow x 7→ µx

s,t

of the solution itself, even the future distribution. Of course, one can regard µ�
s,t as a probability

kernel. Such type of SDEs naturally arises in the stochastic representation of Navier-Stokes equa-
tions as we shall see in the next subsection. Before we continue the discussion, we first introduce
the following notion of a solution to the above SDE:

Definition 1.1. Let F := (Ω,F , (Fs)s⩾0,P) be a stochastic basis. We call a pair of stochastic
processes ((Xx

s,t)(s,t,x)∈DT×Rd , (Wt)t∈[0,T ]) defined on F a weak solution of DFSDE (1.1), if

(i) Wt is a standard d-dimensional Ft-Brownian motion;
(ii) For each (s, t) ∈ DT , Rd ∋ x → µx

s,t := P ◦ (Xx
s,t)

−1 ∈ P(Rd) is weakly continuous and the

family µx
s,t, (s, t, x) ∈ DT × Rd, satisfies (1.2);

(iii) For each (s, x) ∈ [0, T ]× Rd,∫ T

s

|B(r,Xx
s,r, µ

�
r,T , µ

�
s,r)|dr +

∫ T

s

|Σ(r,Xx
s,r, µ

�
r,T , µ

�
s,r)|2dr <∞, P− a.s.

and the pair of processes a.e. satisfies equation (1.1) for all t ∈ [s, T ], s ⩾ 0, x ∈ Rd.

If, in addition, Xx
s,t is adapted to the filtration generated by the Brownian motion FW

t := σ{Wr, r ∈
[0, t]}, then it is called a strong solution of DFSDE (1.1).

McKean-Vlasov SDEs, also referred to as distribution-dependent SDEs (DDSDEs), represent
a significant class of stochastic differential equations where the coefficients are depending on the
distribution of the solution process itself. These equations extend the scope of standard SDEs by
incorporating the influence of interactions among particles or agents within a system. Initially
introduced by Henry McKean [48] in 1966 in the context of nonlinear parabolic partial differential
equations and later by Anatoli Vlasov [59] in 1968 in plasma physics, McKean-Vlasov SDEs have
now attracted considerable attention across diverse fields such as mathematical finance, statistical
physics, population dynamics, and mean field games (see, for example, [8, 9, 17]).

Furthermore, DDSDEs exhibit substantial connections to vortex models like the Navier-Stokes
and Euler equation (see, e.g., [19, 52]). DDSDEs with singular vortex kernels have been further
developed by researchers such as Jabin-Wang [35], Serfaty [56], and other who at the same time
contributed significantly to the advancement of propagation of chaos results.

For McKean-Vlasov SDEs, the dynamics of each individual particle is influenced by the collective
behavior of the entire population, resulting in complex collective phenomena. This modeling
framework allows the analysis of systems comprising a large number of interacting components,
for which traditional approaches are inadequate. The general form of such McKean-Vlasov SDEs
reads:

Yt = ξ +

∫ t

0

b(r, Yr, µr)dr +

∫ t

0

σ(r, Yr, µr)dWr, (1.3)

where µr denotes the distribution of Yr. We emphasize that these McKean-Vlasov SDEs differ from
(1.1) in several key aspects. First, (1.3) represents a single equation with a given initial condition
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ξ, whereas (1.1) describes a system of SDEs. Even if we consider (1.3) with ξ ∼ δx, where x ∈ Rd,
and arbitrary starting times s ⩾ 0, the corresponding µx

s,t does not satisfy (1.2). Instead, it only
fulfills the following flow property:

µx
s,t = µ

µx
s,r

r,t ,

which is the law of Yt, where Y is the solution of (1.3) started at time r ⩾ s with ξ ∼ µx
s,r.

Considerable attention has been paid to exploring the well-posedness of DDSDEs (1.3) with
singular drifts. Mishura and Veretenikov [49] established the strong well-posedness of DDSDEs
(1.3) if the coefficient b is only measurable and of at most linear growth, and additionally is Lipschitz
continuous with respect to the distribution µ, while σ is assumed to be uniformly non-degenerate
and Lipschitz continuous both in the spatial and measure vaiable. Later, Röckner and Zhang
[55] extended this to cases involving local Lq

tL
p
x-drift. Additionally, Lacker [38] used the relative

entropy method and Girsanov’s theorem to obtain well-posedness results for DDSDEs with linear
growth and σ = I, further extended by Han [26] to situations involving Lq

tL
p
x-drifts. Zhao [67] used

heat kernel estimates and the Schauder-Tychonoff fixed-point theorem to establish well-posedness
results for a more general class of DDSDEs with singular coefficients.

Through Zvonkin’s transformation and the entropy method, the authors in [27] proved the
strong well-posedness for DDSDEs in cases where σ is independent of µ and b belongs to certain
mixed Lq

tL
p
x-spaces. For specific cases, such as where σ = I and b(t, y, µ) = b ∗ µ(t, y), both weak

and strong well-posedness have been proved by various researchers [13,14,28]. The Nemytskii-type
DDSDEs, where

(b, σ)(t, y, µ) = (b, σ)
(
t, y, µ(dy)dy (y)

)
,

has been studied conducted by Barbu and Röckner [2–5], and subsequently also in [32]. Moreover,
for kinetic cases of DDSDEs, further studies can be found in [28, 29, 31, 33] and the references
therein.

Now let us return to the SDEs of type (1.1). One of the main motivations for studying such
equations arises from the Navier-Stokes equation, which provides an example of (1.1) through its
stochastic representation.

1.1. Motivation. Consider the following Navier-Stokes equation on Rd with d = 2, 3:{
∂tu = ∆u− u · ∇u−∇p,
divu = 0, u0 = φ,

(1.4)

where u : [0, T ] × Rd → Rd is the velocity field and p stands for the pressure, and φ is the initial
velocity. In [16], Constantin and Iyer presented the following probabilistic representation:X

x
t = x+

∫ t

0

u(s,Xx
s )ds+

√
2Wt, t ⩾ 0,

u(t, x) = PE[∇t
xY

x
t · φ(Y x

t )],

(1.5)

where Y x
t is the inverse of the flow mapping x→ Xx

t , ∇t denotes the transpose of the Jacobi matrix
(∇X)ij := ∂xjX

i, and P := I−∇∆−1div is the Leray projection onto the space of divergence free
vector fields. In particular, there is a one-to-one correspondence between (1.4) and (1.5) when u
is smooth. Here an interesting question is how irregular φ may be such that (1.5) admits a unique
solution.

Now, for a velocity field u, let us consider its vorticity

w = curlu =

{
∂2u1 − ∂1u2, d = 2;

∇× u, d = 3.

It is well-known that u can be recovered from w by the Biot-Savart law, i.e.,

u = Kd ∗ w, d = 2, 3,
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with

K2(x) := (x2,−x1)/(2π|x|2), K3(x)h = (x× h)/(4π|x|3). (1.6)

Let u be a smooth solution of (1.4). By direct calculations, we have

w(t, x) =

{
E ((curlφ)(Y x

t ) det(∇xY
x
t )) , d = 2,

E (∇t
xY

x
t · (curlφ)(Y x

t )) , d = 3.
(1.7)

By a change of variables and since det(∇Y x
t ) = 1, we get (cf. [64])

u(t, x) = (Kd ∗ w(t))(x) =


E
(∫

R2

K2(x−Xy
t ) · (curlφ)(y)dy

)
, d = 2,

E
(∫

R3

K3(x−Xy
t ) · ∇yX

y
t · (curlφ)(y)dy

)
, d = 3.

(1.8)

In particular, for d = 2, if we let

B(x, µ�) :=

∫
R2

(K2 ∗ µy)(x)curlφ(y)dy,

and µy
t := P ◦ (Xy

t )
−1, t ∈ [0, T ], then Xx

t solves the following SDE:

Xx
t = x+

∫ t

0

B(Xx
s , µ

�
s)ds+

√
2Wt, (1.9)

which leads to the system (1.1).

Remark 1.2. It should be noted that in both (1.7) and (1.8), w and u do not depend linearly on
the initial velocity φ, as the solution Xy

t to the SDE (1.5) also depends on the initial velocity.

DFSDE (1.9) was introduced by Chorin [15] as the random vortex method to simulate viscous
incompressible fluid flows for smooth kernels. Then it was further developed by Beale-Majda
[7], Marchioror-Pulvirenti [46] and Goodman [24]. In particular, Long [44] showed the optimal
convergence rate of the related particle system for mollifying kernels K2. Later, the interaction
particle system and propagation of chaos related to (1.9) have been attracted the attention of more
and more investigators (see [19, 35]). However, the solvability of (1.9) has not been tackled in the
above references until the recent papers [14,28,65] (See below for a further discussion).

If d = 3, formally,

Xx
t = x+

∫ t

0

Ē
(∫

R3

K3(X
x
s − X̄y

s ) · ∇X̄y
s · (curlφ)(y)dy

)
ds+

√
2Wt, (1.10)

where X̄y
t is an independent copy of Xy

t and Ē is the expectation w.r.t. X̄y
· (see [64] and [53]

for its numerical simulations under the assumption of smoothness on the interaction kernel). To
write down the above SDE in the form of (1.1), we introduce a matrix-valued process Ux

t := ∇Xx
t .

Formally, U solves the following linear ODE:

Ux
t = I3×3 +

∫ t

0

Ē
(
Ux
s · ∇

∫
R3

K3(· − X̄y
s ) · Ūy

s · (curlφ)(y)dy
)
(Xx

s )ds.

Let (µx)x∈R3 be a family of probability measures over R3 ×M3, where M3 stands for the space of
all 3× 3-matrices. Now let us introduce

B(x, µ) :=

∫
R3

∫
R3×M3

K3(x− z) ·Mµy(dz × dM) · (curlφ)(y)dy.

Then we obtain the following closed SDE
Xx

t = x+

∫ t

0

B(Xx
r , µ

�
r)dr +

√
2Wt,

Ux
t = I3×3 +

∫ t

0

(Ux
r · ∇B)(·, µ�

r)(X
x
r )dr,

(1.11)
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where µx
t := P ◦ (Xx

t , U
x
t )

−1 ∈ P(R3 ×M3) for x ∈ R3.

Remark 1.3. We note that

Ux
s · ∇

(∫
R3

K3(· − X̄y
s ) · Ūy

s · (curlφ)(y)dy
)
(Xx

s )

̸=
∫
R3

(Ux
s · ∇K3)(X

x
s − X̄y

s ) · Ūy
s · (curlφ)(y)dy.

Specifically, for the gradients of the Biot-Savart kernel Kd, we note that |∇Kd(x)| ≲ |x|−d /∈
L1
loc(Rd), which leads that

(∇Kd) ∗ f(x) := lim
ε→0

∫
|x−y|>ε

∇Kd(x− y)f(y)dy

is a Calderón-Zygmund operator.
However, ∇(Kd ∗ f) ̸= (∇Kd) ∗ f . For d = 2 and f : R2 → R, we have the following expression:

∇j(K2 ∗ f)i = (∇jK
i
2) ∗ f +

1

2
sign(i− j)f, i, j = 1, 2.

For d = 3, f : R3 → R3 and any h ∈ R3, the expression is:

h · ∇(K3 ∗ f)(x) =(h · ∇K3) ∗ f(x) +
1

3
f(x)× h,

where explicitly,

(h · ∇K3) ∗ f(x) = p.v.
3

4π

∫
R3

[(x− y)× f(y)]⊗ (x− y)

|x− y|5
hdy + p.v.

1

4π

∫
R3

f(y)× h

|x− y|3
dy.

Further details and derivations of these results can be found in [45, Section 2.4.3, p. 76].
In the present paper, we only consider the case d = 2. A detailed investigation of (1.11) for

d = 3 will be addressed in future work.

On the other hand, if we set ũ(t, x) := −u(T − t, x) and p̃(t, x) := p(T − t, x), then ũ solves the
following backward Navier-Stokes equation:{

∂tũ+∆ũ+ ũ · ∇ũ+∇p̃ = 0,

divũ = 0, ũT = φ.

In [62], the author provided a probabilistic representation for ũ as well:X̃
x
s,t = x+

∫ t

s

ũ(r, X̃x
s,r)dr +

√
2(Wt −Ws), (s, t) ∈ DT ,

ũ(t, x) = PE[∇tX̃x
t,T · φ(X̃x

t,T )].

(1.12)

As above, in the two dimensional case, we have

w̃(t, x) := curlũ(t, x) = E[(curlφ)(X̃x
t,T )] = ⟨curlφ, µ̃x

t,T ⟩,

where µ̃x
s,t := P ◦ (Xx

s,t)
−1. By the Biot-Savart law, we have

ũ(t, x) = (K2 ∗ w̃(t))(x) =
∫
R2

K2(x− y)⟨curlφ, µ̃y
t,T ⟩dy.

Thus (1.12) is transformed into the following DFSDE:

X̃x
s,t = x+

∫ t

s

B(X̃x
s,r, µ̃

�
r,T )dr +

√
2(Wt −Ws), (1.13)

where

B(x, µ�) = K2 ∗
(∫

R2

curlφ(y)µ�(dy)

)
(x).
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In particular, SDE (1.13) is exactly an example of DFSDE (1.1) with B(r, x, µ�, ν�) = B(x, µ�). For
the three dimensional case, as in (1.11), we have the following representation:

X̃x
s,t = x+

∫ t

s

B(X̃x
s,r, µ

�
r,T )dr +

√
2(Wt −Ws),

Ũx
s,t = I3×3 +

∫ t

s

(Ũx
s,r · ∇)B(·, µ�

r,T )(X̃
x
s,r)dr,

(1.14)

where µx
s,t := P ◦ (X̃x

s,t, Ũ
x
s,t)

−1 ∈ P(R3 ×M3), and

B(x, µ) :=

∫
R3

K3(x− y)

(∫
R3×M3

M t · (curlφ)(z)µy(dz × dM)

)
dy.

We must point out that (1.9) and (1.13) are essential different as we discuss in the next subsection.

1.2. Main results. Our first result is about the strong well-posedness of DFSDE (1.1) with regular
coefficients. More precisely, let CP1 be the space of all continuous probability measure-valued
functions from Rd to P1(Rd) with finite first order moment (see Section 2 for more details about
the space CP1). We assume that B and Σ satisfy the following assumptions:

(H0) For each t ∈ [0, T ], the function

Rd × CP1 × CP1 ∋ (x, µ�, ν�) 7→ (B,Σ)(t, x, µ�, ν�) ∈ (Rd,Rd ⊗ Rd)is continuous,

and there are constants κ0, κ2, κ3, κ4 > 0 and κ1 ∈ R such that for any (t, x, µ, ν) ∈
[0, T ]× Rd × CP1 × CP1,

⟨x,B(t, x, µ�, ν�)⟩+ 2∥Σ(t, x, µ�, ν�)∥2HS ⩽ κ0 + κ1|x|2 + κ2(∥µ�∥2CP1
+ ∥ν�∥2CP1

), (1.15)

and for any (t, xi, µi, νi) ∈ [0, T ]× Rd × CP1 × CP1, i = 1, 2,

⟨x1 − x2, B(t, x1, µ
�
1, ν

�
1)−B(t, x2, µ

�
2, ν

�
2)⟩+ 2∥Σ(t, x1, µ�

1, ν
�
1)− Σ(t, x2, µ

�
2, ν

�
2)∥2HS

⩽ κ3|x1 − x2|2 + κ4(1 + |x1|2 + |x2|2)
(
d2CP1

(µ�
1, µ

�
2) + d2CP1

(ν�1, ν
�
2)
)
,

(1.16)

where ∥ · ∥HS stands for the Hilbert-Schmit norm and the distance dCP1 is defined in (2.16)
below.

Our first main result is the following strong well-posedness, which is proven by freezing the
distribution-flow and Picard’s iteration.

Theorem 1.4. Under (H0), there is a unique strong solution to DFSDE (1.1) in the sense of
Definition 1.1. Moreover, there is a constant CT = CT (κi) > 0 such that for all (s, t, x) ∈ DT ×Rd,

E|Xx
s,t|2 ⩽ CT (1 + |x|2),

and if κ1 < 0 and κ1 + 2κ2 < 0, then

E|Xx
s,t|2 ⩽ eκ1(t−s)|x|2 + (κ0 + κ5)(e

κ1(t−s) − 1)/κ1, (1.17)

where κ5 := 2κ2(|κ1|+ κ0)/(|κ1| − 2κ2).

Our second main result is about the well-posedness of DFSDE related to the 2D-Navier-Stokes
equation driven by the fractional Brownian motion (fBm). Recall that a Gaussian process (WH

t )t⩾0

is called an fBm with Hurst parameter H ∈ (0, 1) if for any 0 ⩽ s ⩽ t,

E(WH
t W

H
s ) = 1

2 (t
2H + s2H − |t− s|2H).

Clearly, WH has the following self-similarity: for λ > 0,

(WH
t )t⩾0

(d)
= (λ−HWH

λt )t⩾0.

Consider the following DFSDE related to the 2D-Navier-Stokes equation driven by fBm:

Xx
t = x+

∫ t

0

∫
R2

(K2 ∗ µy
s)(X

x
s )ν0(dy)ds+WH

t , (1.18)
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where K2 is the Biot-Savart law given in (1.6), µy
t = P◦(Xy

t )
−1, ν0 is a finite signed measure on R2

and WH = (WH,1,WH,2) with that WH,i, i = 1, 2 are two independent fBms with the same Hurst
parameter H. We have the following weak well-posedness (see Theorem 5.1 below for a detailed
statement and its proof).

Theorem 1.5. Let H ∈ (0, 12 ). For any vorticity ν0 being a finite singed measure, there is a unique
weak solution X ·

t to SDE (1.18). Moreover, for any p ∈ (1, 2) and ε > 0, there is a constant C > 0
such that for all 0 < t ⩽ T ,

|||u(t)−K2 ∗ ν0|||p ⩽ Ct[H( 2
p−1)]∧[ 1−2H

1−H ]−ε.

Here the localized Lp norm ||| · |||p is defined in (2.3). Furthermore, if we let

u(t, x) :=

∫
R2

EK2(x−Xy
t )ν0(dy),

then u ∈ C((0, T ];C∞
b (R2)).

Remark 1.6. Since fBm is neither a Markov process nor a martingale, one can not say that u
solves any PDE. By the change of variable, the above u has the following scaling property: for
λ > 0, if we let

uλ(t, x) := λ1/H−1u(λ1/Ht, λx),

then uλ(t, x) =
∫
R2 EK2(x−Xy;λ

t )νλ0 (dy), where

νλ0 (dy) = λ1/H−2ν0(d(λy)), (1.19)

and Xx;λ
t solves the following DFSDE:

Xx;λ
t = x+

∫ t

0

∫
R2

(K2 ∗ µy;λ
s )(Xx;λ

s )νλ0 (dy)ds+WH
t .

If ν0(dy) = ϱ(y)dy, then (1.19) reduces to νλ0 (dy) = λ1/Hϱ(λy)dy.

Note that Theorem 1.5 does not include H = 1
2 . Next we consider the following backward

version of DFSDE related to the Navier-Stokes equation driven by Brownian motion:

Xx
s,t = x+

∫ t

s

∫
R2

K2(X
x
s,r − y)µy

r,T (g)dydr +
√
2(Wt −Ws), (1.20)

In this case, we also have

Theorem 1.7. Let p0 ∈ (1, 2) and g ∈ Lp0 . For each s ∈ [0, T ] and x ∈ R2, there is a unique
strong solution Xx

s,t to DFSDE (1.20). Moreover, if we let

u(s, x) =

∫
R2

K2(x− y)Eg(Xy
s,T )dy,

then u ∈ C([0, T );C∞
b (R2)) solves the following backward Navier-Stokes equation:

∂su+∆u+ u · ∇u+∇p = 0, u(T ) = K2 ∗ g.

The proof of this theorem is provided in the proof of Theorem 5.3.

Remark 1.8. When g ∈ Lp0 with p0 > 2, the well-posedness of DDSDE (1.20) was obtained in
[64] by Zvonkin’s transformation. Here we regard (1.20) as an abstract distribution-flow SDE.
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1.3. Related works. In this section, we review some literature relevant for our main Theorems
1.5 and 1.7. We begin by considering a classical DDSDE with a singular Biot-Savart interaction
kernel, often referred to as the 2D random vortex model:

Xt = X0 +

∫ t

0

(K2 ∗ µs)(Xs)ds+
√
2Wt, (1.21)

where K2 is the Biot-Savart kernel, µt denotes the law of Xt, and P ◦X−1
0 (dy) = µ0(dy). Suppose

µt(dy) = ρt(y)dy. Then, by Itô’s formula, ρt satisfies the following vorticity form of the Navier-
Stokes equation (1.4):

∂tρ = ∆ρ− div((K2 ∗ ρ)ρ). (1.22)

In other words, u(t, x) := K2 ∗ ρt(x) solves the Navier-Stokes equation (1.4). In [65], the second
author utilized the De-Giorgi method to establish the existence of a weak solution to (1.21) when
X0 = x, while the uniqueness remains an open question. Weak existence for (1.21) for X0 = x was
also proved in [6] using a nonlinear variant of the superposition principle (see [57]). Furthermore,

letting Xζ
r,t denote the weak solution to (1.21) started at r ⩾ 0, with X0 ∼ ζ, it was proved in

[6], that the path law P(s,ζ), s ⩾ 0, ζ ∈ P1, of (X
ζ
r,t)t⩾r form a nonlinear Markov process in the

sense of McKean [47]. Moreover , it is proved in [6] that if X0 has a density ρ0 ∈ L4, then (1.21)
has a strong solution and that pathwise uniqueness holds for (1.21) in the class of all solutions
having time marginal law densities in L4/3([0, T ];L4/3). Furthermore, if the initial data X0 admits
a density ρ0 ∈ L1+ with respect to the Lebesgue measure, weak and strong well-posedness for
(1.21) were established in [14] and [28, Theorem 6.4].

It’s important to note that if the initial vorticity of the Navier-Stokes equation is not a proba-
bility measure, then there is no one-to-one correspondence between (1.21) and (1.4). To address
this issue, we consider the forward and backward random vortex models, as introduced in Section
1.1:

Xx
s,t = x+

∫ t

s

∫
R4

K2(X
x
s,r − y)g(z)µz

s,r(dy)dz +WH
t −WH

s (1.23)

and

Xx
s,t = x+

∫ t

s

∫
R4

K2(X
x
s,r − y)g(z)µy

r,T (dz)dy +WH
t −WH

s , (1.24)

where g represents the initial vortex, µx
s,t denotes the time marginal law of the solution Xx

s,t, and

WH
s is the fractional Brownian motion with H ∈ (0, 12 ] (see Section 2.2 for details).

For the forward DFSDE (1.23), we focus on H ∈ (0, 12 ). Recent advancements in regularization
by averaging paths (see [12, 21]) and the stochastic sewing lemma (see [39, 41]) have led to an
increased interest in the well-posedness of SDEs driven by fractional Brownian motion of the form:

dXt = b(t,Xt)dt+ dWH
t ,

where b ∈ Lq
tLq

x. Several classical results have been established, such as those by Nualart-Ouknine
in [51] and Lê in [39], where Nualart-Ouknine, using the Girsanov transformation, established
weak well-posedness for p, q ⩾ 2 and 1/q + Hd/p < 1/2, and Lê in [39] extended this result by
introducing the stochastic sewing lemma and gave a new proof for the weak well-posedness. The
strong well-posedness was obtained as well in [39] when 1/q + Hd/p < 1/2 − H. Furthermore,
Galeati and Gubinelli in [21] employed the averaging paths technique to achieve path-by-path
well-posedness for q = ∞ and Hd/p < 1/4 − H. In fact, upon assuming Xε

t := ε−HXεt and
bε(t, x) := ε1−Hb(εt, εHx) with some ε > 0, we have

dXε
t = bε(t,X

ε
t )dt+ ε−HdWH

εt ,

where ε−HWH
εt remains an fBm with the Hurst index H. Note that the scaling hypothesis

limε→0 ∥bε∥Lq
tL

p
x
= 0 leads to

1
q + Hd

p < 1−H. (1.25)



DFSDES DRIVEN BY (FRACTIONAL) BRONIAN MOTION AND NSE 9

Under condition (1.25), Butkovsky, Lê and Mytnik [11] recently established the existence of a
solution for q = ∞, and when q ∈ (1, 2], Galeati and Gerencsér [20] demonstrated the strong
well-posedness. It is noteworthy that when b is independent of time t, as in the case of the
Biot-Savart kernel, the condition in [20] simplifies to 1

2 + Hd
p < 1 − H, aligning with the strong

well-posedness result in [39]. It is important to note that the review here is primarily focused on the
Lq
tLp

x-drift. Indeed, both [11] and [20] cover various measure and distributional cases respectively.
More recently, Butkovsky and Gallay in [10], employing a combination of the stochastic sewing
lemma and John-Nirenberg’s inequality, established the existence of solutions under the condition
(1 −H)/q +Hd/p < 1 −H, which is considerably weaker. Beyond these results, a lot of related
works exists, and interested readers can refer to the comprehensive overview in [20].

In the context of the following DDSDE driven by fBm

dXt = (b ∗ µt)(t,Xt)dt+ dWH
t ,

where µt represents the time marginal law of Xt, the authors in [22] and [20] established strong
well-posedness for b ∈ Lq

tC
α with α > 1 + 1/(Hq) − 1/H and q ∈ (1, 2]. Here, Cα denotes the

Besov space. Moreover, Han [26] used the entropy method to present a concise proof of the main
results in [22].

Following this review, we examine the condition on H for the Biot-Savart kernel by applying
the aforementioned results. Notably, b = K2 ∈ L2−

loc ∩ C−1. Therefore, the restriction p ⩾ 2 in
[51] precludes its application to the Biot-Savart law. Moreover, the conditions in [39] and [20] also
imply that H must be strictly less than 1/4. Consequently, it is natural to inquire whether the
well-posedness holds for (1.23) in the range H ∈ [1/4, 1/2). We address this question in Theorem
1.5 by establishing weak well-posedness for (1.23) across all H ∈ (0, 1/2). Additionally, we define
a solution to the 2D fractional Navier-Stokes equation with an arbitrary initial vortex measure ν0
and show its smoothness for t > 0 by the Malliavin calculus.

For the backward DFSDE (1.24), limited results are available in the literature. In Theorem
1.7, we establish the unique strong flow solution Xx

s,t for H = 1/2 and any L1+ initial data φ0.
However, for H ̸= 1/2, investigating the well-posedness of (1.24) becomes challenging, as our
methodology heavily relies on the Markov property of Brownian motion. Notably, the Girsanov
transformation cannot be used for backward DFSDE (1.24) with singular kernels, leaving this as
an open question.

1.4. Organization of the paper. In Section 2, we provide preliminary results concerning the
space of probability kernels and fBms. Some of these results are novel and are crucial in proving
Theorems 1.4, 1.5, and 1.7.

Section 3 is dedicated to proving Theorem 1.4 using standard Picard’s iteration. Additionally,
we offer several examples to illustrate our main results. While the proof itself is not particularly
challenging, it serves as a foundation for our future investigations into various issues such as
ergodicity and propagation of chaos.

Section 4 focuses on demonstrating weak and strong well-posedness for a broad class of DFSDEs
driven by fBms. For H ∈ (0, 12 ), we employ Girsanov’s transformation and the entropy method,

while for H = 1
2 , we rely on PDE estimates.

In Section 5, we utilize the results obtained in Section 4 to prove Theorems 1.5 and 1.7. To
establish the smoothness of the velocity field, we employ Malliavin calculus when H ∈ (0, 12 ) and

PDE techniques for H = 1
2 .

In the Appendix, we provide detailed proofs of certain technical results for the convenience of
the readers.

Throughout this paper, we shall use the following convention and notations: The letter C with
or without subscripts will denote an unimportant constant, whose value may change from line to
line. We also use := to indicate a definition and set

a ∧ b := max(a, b), a ∨ b := min(a, b), a+ := 0 ∨ a.
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By A ≲C B and A ≍C B or simply A ≲ B and A ≍ B, we respectively mean that for some
constant C ⩾ 1,

A ⩽ CB, C−1B ⩽ A ⩽ CB.

Below we collect some frequently used notations for the readers’ convenience.

• For p ∈ [1,∞], p′ denotes the conjugate index of p, i.e., 1
p + 1

p′ = 1.

• P1: The space of all probability measures with finite first order moment.
• CP1: The space of P1-valued continuous functions on Rd w.r.t. the Wasserstein-1 distance.
• CP0: The space of P-valued continuous functions on Rd w.r.t. the total variation distance.
• LpPs: The space of sub-probability kernels defined in (2.7).

• L̃pP: The space of probability kernels defined in (2.8).
• Hq

T : The space of all absolutely continuous function f : [0, T ] → Rd with f(0) = 0 and

ḟ ∈ Lq([0, T ];Rd) =: Lq
T .

2. Prelimiaries

In this section, we first introduce several spaces of flow probability measures associated with the
Wasserstein-1 metric, the total variation distance, and localized Lp-probability kernels. Then, we
also recall the definition and basic properties of fractional Brownian motions (fBms). In particular,
we demonstrate an important exponential estimate for the functional of fBm, which is crucial for
solving singular SDEs driven by fBms using Girsanov’s theorem.

2.1. Flow probability measure space. Let P1 := P1(Rd) be the space of all probability mea-
sures with finite first order moment and CP1 the space of P1-valued continuous functions on Rd

w.r.t. the Wasserstein-1 distance W1 defined by

W1(µ, ν) := inf
P◦X−1=µ,P◦Y −1=ν

E|X − Y |.

Note that by the duality of Monge-Kantorovich (cf. [58, (6.3)]),

W1(µ, ν) = sup
∥g∥Lip⩽1

|µ(g)− ν(g)|.

For two µ�, ν� ∈ CP1, we introduce a distance between µ� and ν� by

dCP1
(µ�, ν�) := sup

x∈Rd

W1(µ
x, νx)

1 + |x|
. (2.1)

For simplicity, we write

∥µ�∥CP1
:= dCP1

(µ�, δ0) = sup
x∈Rd

∫
Rd |y|µx(dy)

1 + |x|
.

Moreover, the total variation distance ∥ · ∥var is defined by

∥µ− ν∥var := sup
A∈B(Rd)

|µ(A)− ν(A)|.

Let CP0 be the space of all continuous probability kernels x 7→ µx w.r.t ∥ · ∥var with the distance

∥µ� − ν�∥Cvar := sup
x∈Rd

∥µx − νx∥var.

Under these distances, it is easy to see that CP1 and CP0 are complete metric spaces. We would like
to point out that the distance dCP1

is only used in the study of DFSDEs with regular coefficients.
Next we introduce some localized Lp-spaces for later use. Let (Di)i∈N be the set of all unit

cubes with center at the integer lattice so that

0 ∈ D1, ∪i∈NDi = Rd, Di ∩Dj = ∅, i ̸= j. (2.2)

For z = (z1, · · · , zd) ∈ Rd, we shall write

Dz := D1 + z =
{
x : −1/2 ⩽ xi − zi < 1/2

}
.
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For p ∈ [1,∞], let Lp = Lp(Rd) be the usual Lp-space with norm ∥ · ∥p. We also introduce the
Banach spaces

L̃p :=

{
f ∈ Lp

loc(R
d) : |||f |||p := sup

i
∥1Di

f∥p <∞
}

(2.3)

and

L̄p :=

{
f ∈ Lp

loc(R
d) : |||f |||∗p :=

∑
i

∥1Di
f∥p <∞

}
.

By a finite covering technique, there is a constant C1 = C1(p, d) > 1 such that

C−1
1 |||f |||p ⩽ sup

z
∥1Dzf∥p ⩽ C1|||f |||p. (2.4)

The advantage of using localized space L̃p is the following inclusion: for p1 ⩾ p2,

L̃p1 ⊂ L̃p2 .

This is quite convenient for treating singular potentials like |x|−α, where α ∈ (0, d), since it does

not belong to any Lp-space, but belongs to L̃p for p < d
α . About the spaces L̃p and L̄p, we have

the following properties, that are similar to the classical Lp-spaces. For the readers’ convenience,
we provide detailed proofs in Appendix A.

Proposition 2.1. (i) For each p ∈ [1,∞], it holds that L̄p ⊂ Lp ⊂ L̃p, and

|||f |||p ≍ sup
|||g|||∗

p′⩽1

∫
Rd

f(x)g(x)dx, |||g|||∗p ≍ sup
|||f |||p′⩽1

∫
Rd

f(x)g(x)dx, (2.5)

where p′ is the conjugate index of p.
(ii) For any p, q, r ∈ [1,∞] with 1 + 1

r = 1
p + 1

q , the following Young’s inequalities hold: for some

C = C(d, p, q, r) > 0,

|||f ∗ g|||r ⩽ C|||f |||p|||g|||∗q , |||f ∗ g|||∗r ⩽ C|||f |||∗p|||g|||∗q . (2.6)

Finally, we introduce a space of probability kernels that will be used in the study of backward
DFSDEs. Let KP be the set of all probability kernels from Rd to P and KPs the set of all
sub-probability kernels from Rd to Ps, where Ps is the space of all sub-probability measures over
Rd. For given p ∈ [1,∞], we introduce two subclasses

LpPs :=
{
µ� ∈ KPs : ∥µ�∥p := sup

∥ϕ∥p⩽1

∥µ�(ϕ)∥p <∞
}

(2.7)

and

L̃pP :=
{
µ� ∈ KP : |||µ�|||p := sup

|||ϕ|||p⩽1

|||µ�(ϕ)|||p <∞
}
. (2.8)

Similarly, we also introduce the subclasses LpP and L̃pPs. It is easy to see that

LpP ⊂ LpPs, L̃pP ⊂ L̃pPs.

Remark 2.2. Here sup∥ϕ∥p⩽1 ∥µ�(ϕ)∥p < ∞ means that for any ϕ ∈ Lp, µx(ϕ) =
∫
Rd ϕ(y)µ

x(dy)

is well-defined for Lebesgue almost all x ∈ Rd and that µ�(ϕ) belongs to Lp(Rd). This condition
implies that µx(ϕ) =

∫
Rd ϕ(y)µ

x(dy) is independent of the representative of ϕ in Lp(Rd). Indeed,

if ϕ(x) = ϕ̃(x) for Lebesgue almost all x ∈ Rd, then µ�(ϕ) = µ�(ϕ̃) in Lp(Rd). This follows from

the estimate ∥µ�(ϕ− ϕ̃)∥p ≲ ∥ϕ− ϕ̃∥p = 0.

One would like to point out that such classes of kernels naturally appear in the study of stochastic
Lagrangian flows (see [63]). More precisely, consider the following SDE:

Xx
t = x+

∫ t

0

b(Xx
s )ds+Wt,
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where b is a divergence free Lipschitz vector field. Let µx
t be the law of the unique solution Xx

t . It
is well-known that for any p ∈ [1,∞] and t ⩾ 0 (see [63]),

∥µ�
t(f)∥p ⩽ ∥f∥p, f ∈ Lp.

We have the following important properties that are also proven in Appendix A.

Proposition 2.3. (i) Let µ� ∈ KPs. For any p ∈ [1,∞), we have

∥µ�∥p = sup
ϕ∈Cc(Rd),∥ϕ∥p⩽1

∥µ�(ϕ)∥p = sup
ϕ∈C∞

c (Rd),∥ϕ∥p⩽1

∥µ�(ϕ)∥p, (2.9)

and

|||µ�|||p = sup
ϕ∈Cc(Rd),|||ϕ|||p⩽1

|||µ�(ϕ)|||p = sup
ϕ∈C∞

c (Rd),|||ϕ|||p⩽1

|||µ�(ϕ)|||p. (2.10)

(ii) LpPs and L̃pPs are complete metric spaces with respect to the distance

∥µ� − ν�∥p := sup
∥ϕ∥p⩽1

∥µ�(ϕ)− ν�(ϕ)∥p, |||µ� − ν�|||p := sup
|||ϕ|||p⩽1

|||µ�(ϕ)− ν�(ϕ)|||p.

Moreover, with the above distances, L̃pP is still complete, but LpP is not complete.

Remark 2.4. Note that ∥µ� − ν�∥∞ = |||µ� − ν�|||∞ = ∥µ� − ν�∥Cvar
for µ�, ν� ∈ CP0.

2.2. Fractional Brownian motion and Girsanov’s theorem. In this section, we recall the
definition and basic properties of fBm and the related Girsanov theorem (see [18,50]).

A d-dimensional Gaussian process (WH
t )t⩾0 defined on some probability space (Ω,F ,P) is called

an fBm with Hurst parameter H ∈ (0, 1) if for any 0 ⩽ s ⩽ t,

E(WH,i
t WH,j

s ) = 1
2 (t

2H + s2H − |t− s|2H)1i=j , i, j = 1, · · · , d.
For fixed r ⩾ 0, it is easy to see that for any t, s ⩾ 0,

E((WH,i
t+r −WH,i

r )(WH,j
s+r −WH,j

r )) = E(WH,i
t WH,j

s ). (2.11)

This means that (WH
t+r −WH

r )t⩾0 is another standard fBm. The value of H tells the behavior
of fBm: when H = 1/2, the process is exactly a standard d-dimensional Brownian motion; when
H > 1/2, the increments of the process are positively correlated; when H < 1/2, the increments
of the process are negatively correlated.

In what follows, we fix H ∈ (0, 12 ] and introduce two constants used below

qH := 1
1−H , cH :=

√
2H/((1− 2H)B(1− 2H,H + 1

2 ))1H∈(0, 12 )
+ 1H= 1

2
,

where B(α, β) is the usual Beta function defined by

B(α, β) :=

∫ 1

0

(1− s)α−1sβ−1ds, α, β > 0. (2.12)

It is well-known that fBm has the following representation (cf. [18, Corollary 3.1]):

WH
t =

∫ t

0

KH(t, s)dWs, (2.13)

where W is a standard d-dimensional Brownian motion and KH is given by

KH(t, s) = cH

(
(t/s)H− 1

2 (t− s)H− 1
2 +

(
1
2 −H

)
s

1
2−H

∫ t

s

rH− 3
2 (r − s)H− 1

2 dr

)
.

Let CT := C([0, T ];Rd) be the space of all continuous functions from [0, T ] to Rd. It is also
well-known that there is a continuous functional Φ : CT → CT so that (cf. [10, Proposition A.1])

Wt = Φ(WH
· )(t), t ∈ [0, T ]. (2.14)

Convention: If there is no special declaration, we always write

Ft := σ{Ws : s ⩽ t} = σ{WH
s : s ⩽ t}.
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From the very definition, it is easy to see that

KH(t, s) ⩾ cH(t− s)H− 1
2

(
(t/s)H− 1

2 +
(
1
2 −H

)
s

1
2−H

∫ t

s

rH− 3
2 dr

)
= cH(t− s)H− 1

2 , (2.15)

and by [18, Theorem 3.2],

KH(t, s) ⩽ c′H,T (t− s)H− 1
2 sH− 1

2 .

To state the Girsanov theorem for fBm, we introduce a function

K̃H(t, s) := tH− 1
2 (t− s)−

1
2−Hs

1
2−H , 0 ⩽ s < t.

By the integration by parts and elementary calculus, one sees that∫ t

s

KH(t, r)K̃H(r, s)dr ≡ 1, 0 ⩽ s < t. (2.16)

For given q ∈ [1,∞), let Hq
T be the space of all absolutely continuous function f : [0, T ] → Rd with

f(0) = 0 and ḟ ∈ Lq([0, T ];Rd) =: Lq
T , which is a Banach space under the norm

∥f∥Hq
T
:= ∥ḟ∥Lq

T
.

Now, for any function f ∈ C1([0, T ];Rd), we define

K̃Hf(t) :=

∫ t

0

K̃H(t, s)ḟ(s)ds.

Lemma 2.5. The operator K̃H can be extended to a bounded linear operator from HqH

T to L2
T , and

there is a constant C = C(H) > 0 such that for all f ∈ HqH

T ,

∥K̃Hf∥L2
T
⩽ C∥f∥HqH

T
(2.17)

and

f(t) =

∫ t

0

KH(t, s)K̃Hf(s)ds. (2.18)

Proof. Estimate (2.17) follows by K̃H(t, s) ⩽ (t − s)−
1
2−H and Hard-Littlewood’s inequality [1,

Theorem 1.7]. Equality (2.18) follows by Fubini’s theorem and (2.16). □

We have the following Girsanov theorem (see [18, Theorem 4.9]).

Theorem 2.6. Recall qH = 1
1−H . Let h(·, ω) ∈ HqH

T be an Fs-adapted process satisfying

E exp
(
∥h∥2HqH

T

)
<∞. (2.19)

Then W̃H
t :=WH

t +h(t) is a new fBm with Hurst parameter H under the new probability measure
Q := ZTP with

ZT := exp

(
−
∫ T

0

(K̃Hh)(s)dWs −
1

2
∥K̃Hh∥2L2

T

)
,

where W defined by (2.14) is a d-dimensional standard Brownian motion.

Proof. By (2.18), we have

W̃H
t =WH

t + h(t) =

∫ t

0

KH(t, s)(dWs + K̃Hh(s)ds).

By (2.19) and Novikov’s criterion, EZT = 1. Thus by the classical Girsanov theorem, W̃t :=Wt +∫ t

0
K̃Hh(s)ds is still a standard Brownian motion under Q, and therefore, W̃H

t =
∫ t

0
KH(t, s)dW̃s

is an fBm under Q. □

Now we prove the following basic estimate. The new point is that we are using the localized
Lp-space.
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Lemma 2.7. Let H ∈ (0, 12 ]. For any p ∈ [1,∞] and j ∈ N0, there is a constant C = C(j, p, d,H) >

0 such that for all 0 ⩽ s ⩽ t and f ∈ L̃p,

|EFs(∇jf(WH
t ))| ≲C (t− s)−

Hd
p −jH |||f |||p.

Proof. Note that by the representation (2.13),

EFs(WH
t ) =

∫ s

0

KH(t, r)dWr

and

WH
s,t :=WH

t − EFs(WH
t ) =

∫ t

s

KH(t, r)dWr.

Clearly, WH
s,t is independent of Fs and

EFs(WH
t ) ∼ N(0, σH

s,t), WH
s,t ∼ N(0, λHs,t),

where

σH
s,t :=

∫ s

0

|KH(t, r)|2dr
(2.15)

⩾ c2H

∫ s

0

|t− r|2H−1dr,

and

λHs,t :=

∫ t

s

|KH(t, r)|2dr
(2.15)

⩾ c2H

∫ t

s

|t− r|2H−1dr =
c2H
2H

(t− s)2H . (2.20)

By the independence of WH
s,t and Fs, we have

EFs [∇jf(WH
t )] = EFs [∇jf(WH

s,t + EFs(WH
t ))] = F

(j)
s,t (EFs(WH

t )),

where
F

(j)
s,t (y) := E[∇jf(WH

s,t + y)].

By Lemma B.1, we have

|EFs [∇jf(WH
t )]| ⩽ ∥F (j)

s,t ∥∞ ≲ (λHs,t)
(d/p−j)/2|||f |||p.

Combining the above calculations, we obtain the desired estimate. □

Below for simplicity of notations, we always write

Lq
T L̃

p := Lq([0, T ]; L̃p).

As a result of the previous estimate, we have the following Krylov-type estimate.

Lemma 2.8. For any p, q ∈ [1,∞] with α := 1 − (1/q + Hd/p) > 0, there is a constant C0 =

C0(d, p, q,H) > 0 such that for all f ∈ Lq
T L̃p, k ∈ N0 and 0 ⩽ s < t,

EFs

(∫ t

s

f(r,WH
r )(t− r)kαdr

)
⩽ C0k

−α(t− s)(k+1)α|||f |||Lq
T L̃p . (2.21)

Proof. Since α = 1− (1/q+Hd/p) > 0, we must have q > 1 and q′Hd/p < 1, where q′ = q/(q−1).
By Lemma 2.7 and Hölder’s inequality, one sees that

I := EFs

(∫ t

s

f(r,WH
r )(t− r)kαdr

)
≲C

∫ t

s

|||f(r)|||p(r − s)−
Hd
p (t− r)kαdr

⩽ |||f |||Lq
T L̃p

(∫ t

s

(r − s)−q′ Hd
p (t− r)q

′kαdr

)1/q′

.

Let B be the Beta function defined in (2.12). By a change of variable and Lemma B.2 , we get

I ⩽ C|||f |||Lq
T L̃p(t− s)(k+1)αB

(
1− q′Hd

p , q
′kα+ 1

)1/q′
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⩽ C(p, q,H, d)|||f |||Lq
T L̃p(t− s)(k+1)αk

− 1
q′ +

Hd
p .

This completes the proof. □

Then we have the following moment estimate.

Lemma 2.9. For any p, q ∈ [1,∞] with α := 1 − (1/q + Hd/p) > 0, there is a constant C1 =

C1(d,H, p, q) > 0 such that for all f ∈ Lq
T L̃p and m ∈ N,∥∥∥∥∫ t

0

f(s,WH
s )ds

∥∥∥∥
Lm(Ω)

⩽ C1t
αm1−α|||f |||Lq

T L̃p , ∀t ∈ (0, T ]. (2.22)

Proof. Without loss of generality, we assume that f ⩾ 0. For simplicity of notation, we write

h(t) := f(t,WH
t ).

By the symmetric of integral and (2.21), we have

E
∣∣∣∣∫ t

0

h(s)ds

∣∣∣∣m = m!E
∫ t

0

h(s1)

∫ t

s1

h(s2) · · ·
∫ t

sm−1

h(sm)dsm · · · ds2ds1

= m!E
∫ t

0

h(s1)

∫ t

s1

h(s2) · · ·

[
EFsm−1

∫ t

sm−1

h(sm)dsm

]
· · · ds2ds1

⩽ C0m!|||f |||Lq
T L̃pE

∫ t

0

h(s1) · · ·
∫ t

sm−2

(t− sm−1)
αh(sm−1)dsm−1 · · · ds1.

Then, by (2.21) and induction, we have for any k = 1, ...,m− 1,

E
∣∣∣∣∫ t

0

h(s)ds

∣∣∣∣m ⩽ Ck
0m!((k − 1)!)−α|||f |||kLq

T L̃pE
∫ t

0

h(s1) · ··

× EFsm−k−1

∫ t

sm−k−1

(t− sm−k)
kαh(sm−k)dsm−k · · · ds1

⩽ Cm
0 (m!)1−αtmα|||f |||mLq

T L̃p .

Finally, by Stirling’s formula, we get

E
∣∣∣∣∫ t

0

h(s)ds

∣∣∣∣m ⩽ Cm
1 m

m(1−α)tmα|||f |||mLq
T L̃p .

The proof is complete. □

Now we can show the following important Khasminskii’s type estimate.

Theorem 2.10. Let q1, p1 ∈ [ 1
1−H ,∞] with α := 1

2 − ( 1
q1

+ Hd
p1

) > 0. Then for any λ > 0, there is

a constant C = C(λ, p1, q1, d,H) > 0 such that for all b ∈ Lq1
T L̃p1 ,

E exp
{
λ∥K̃HIb∥2L2

T

}
⩽ exp

{
C
(
1 + κ

2/α
b

)}
, (2.23)

where Ib(t) :=
∫ t

0
b(s,WH

s )ds and κb := |||b|||Lq1
T L̃p1 .

Proof. By (2.17), we have

E exp
{
λ∥K̃HIb∥2L2

T

}
⩽ E exp

{
C0λ∥Ib∥2HqH

T

}
=

∞∑
m=0

(C0λ)
m

m!
E∥Ib∥2mHqH

T
. (2.24)

Observing that

E∥Ib∥2mHqH

T
= E

(∫ T

0

|b(s,WH
s )|qHds

)2m/qH

⩽

E(∫ T

0

|b(s,WH
s )|qHds

)2m
1/qH

,
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and α := 1
2 − ( 1

q1
+ Hd

p1
) > 0 and q1, p1 ∈ [qH ,∞], by (2.22) with (p, q) = (p1

qH

, q1qH

), we have

E∥Ib∥2mHqH

T
⩽

[
(C1T

α)2m(2m)m(1−2α)qH ||||b|qH |||2m
Lq1/qH

T L̃p1/qH

]1/qH

= Cm
2 m

m(1−2α)|||b|||2mLq1
T L̃p1

= Cm
2 m

m(1−2α)κ2mb .

Substituting this into (2.24) and by Stirling’s formula, we have

E exp
{
λ∥K̃HIb∥2L2

T

}
⩽

∞∑
m=0

(C0λC2)
mmm(1−2α)κ2mb
m!

⩽
∞∑

m=0

Cm
3 κ

2m
b

(m!)2α
.

The proof is complete by α > 0 and Lemma B.3. □

Remark 2.11. Similar estimates to those in (2.22) and (2.23) have been established for VMO
processes, as demonstrated in [40, Corollary 3.5].

3. Well-posedness of DFSDE: Regular coefficients case

In this section, we show the strong well-posedness (existence of strong solution and pathwise
uniqueness) of the DFSDE (1.1) and prove Theorem 1.4.

We first prepare the following standard result for later use.

Lemma 3.1. Let DT ∋ (s, t) 7→ µs,t ∈ CP1 be a measurable function with

γµT := sup
0⩽s⩽t⩽T

∥µs,t∥CP1 <∞.

Consider the following classical SDE:

Xx,µ
s,t = x+

∫ t

s

B(r,Xx,µ
s,r , µ

�
r,T , µ

�
s,r)dr +

∫ t

s

Σ(r,Xx,µ
s,r , µ

�
r,T , µ

�
s,r)dWr. (3.1)

Under (H0), there is a unique strong solution to the above SDE with the estimate:

E|Xx,µ
s,t |2 ⩽ eκ1(t−s)|x|2 + κ0(e

κ1(t−s) − 1)

κ1
+ κ2

∫ t

s

eκ1(t−r)(∥µr,T ∥2CP1
+ ∥µs,r∥2CP1

)dr. (3.2)

Moreover, let νs,t be another CP1-valued function with γνT := sup0⩽s⩽t⩽T ∥νs,t∥CP1 < ∞. Then

there is a constant CT = CT (κi, γ
µ
T , γ

ν
T ) > 0 such that for all (s, t, x) ∈ DT × Rd,

E|Xx,µ
s,t −Xx,ν

s,t |2

1 + |x|2
⩽ CT

∫ t

s

(
d2CP1

(µr,T , νr,T ) + d2CP1
(µs,r, νs,r)

)
dr. (3.3)

Proof. Under (H0), the strong well-posedness to SDE (3.1) are well-known (see [43]). We only
show the estimates (3.2) and (3.3). Fix s ∈ [0, T ). By Itô’s formula and (1.15), we have

dt(e
−κ1(t−s)|Xx,µ

s,t |2) = e−κ1(t−s)
[(
⟨Xx,µ

s,t , B(t,Xx
s,t, µ

�
t,T , µ

�
s,t)⟩+ 2∥Σ(t,Xx,µ

s,t , µ
�
t,T , µ

�
s,t)∥2HS

− κ1|Xx,µ
s,t |2

)
dt+ ⟨Xx,µ

s,t ,Σ(t,X
x,µ
s,t , µ

�
t,T , µ

�
s,t)dWt⟩

]
⩽ e−κ1(t−s)

(
κ0 + κ2(∥µt,T ∥2CP1

+ ∥µs,t∥2CP1
)
)
dt+ dMt,

where

t 7→Mt :=

∫ t

0

e−κ1(r−s)⟨Xx,µ
s,r ,Σ(r,X

x,µ
s,r , µ

�
r,T , µ

�
s,r)dWr⟩

is a continuous local martingale. By a standard stopping time technique and integrating both sides
with respect to the time variable t from s to t, we derive that

e−κ1(t−s)E|Xx,µ
s,t |2 ⩽ |x|2 +

∫ t

s

e−κ1(r−s)(κ0 + κ2(∥µr,T ∥2CP1
+ ∥µs,r∥2CP1

))dr.
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From this we get (3.2). For (3.3), by Itô’s formula again and (1.16), we have

E|Xx,µ
s,t −Xx,ν

s,t |2 ⩽
∫ t

s

(
κ3E|Xx,µ

s,r −Xx,ν
s,r |2 + κ4(1 + E|Xx,µ

s,r |2 + E|Xx,ν
s,r |2)

×
(
d2CP1

(µr,T , νr,T ) + d2CP1
(µs,r, νs,r)

) )
dr.

By Gronwall’s inequality, we get for all t ∈ [s, T ],

E|Xx,µ
s,t −Xx,ν

s,t |2 ≲
∫ t

s

(1 + E|Xx,µ
s,r |2 + E|Xx,ν

s,r |2)
(
d2CP1

(µr,T , νr,T ) + d2CP1
(µs,r, νs,r)

) )
dr. (3.4)

Note that by (3.2),

sup
t∈[s,T ]

E|Xx,µ
s,t |2 ⩽ C(T, κ0, κ1, κ2)(1 + |x|2)(1 + γµT ).

Substituting this into (3.4), we obtain the desired estimate. □

Now we can give

Proof of Theorem 1.4. We use the method of freezing the distribution. Let µx,0
s,t := δx for all

(s, t, x) ∈ DT × Rd. For n ∈ N, by Lemma 3.1, we can recursively define the approximation
solution Xx,n

s,t by

Xx,n+1
s,t = x+

∫ t

s

B(r,Xx,n+1
s,r , µ�,n

r,T , µ
�,n
s,r)dr +

∫ t

s

Σ(r,Xx,n+1
s,r , µ�,n

r,T , µ
�,n
s,r)dWr. (3.5)

By (3.2) we have

E|Xx;n+1
s,t |2 ⩽ eκ1(t−s)|x|2 + κ0(e

κ1(t−s) − 1)

κ1
+ κ2

∫ t

s

eκ1(t−r)(∥µ�,n
r,T ∥

2
CP1

+ ∥µ�,n
s,r∥2CP1

)dr. (3.6)

Noting that

∥µ�,n
s,t∥2CP1

= sup
x∈Rd

(E|Xx,n
s,t |

1 + |x|

)2

⩽ sup
x∈Rd

E|Xx,n
s,t |2

(1 + |x|)2
=: fn(s, t), (3.7)

we have

fn+1(s, t) ⩽ eκ1(t−s) +
κ0(e

κ1(t−s) − 1)

κ1
+ κ2

∫ t

s

eκ1(t−r)(fn(r, T ) + fn(s, r))dr.

For m ∈ N, if we let

Fm(s, t) := sup
n⩽m+1

fn(s, t),

then for each 0 ⩽ s ⩽ t ⩽ T ,

Fm(s, t) ≲ 1 +

∫ t

s

[Fm(s, r) + Fm(r, T )]dr ⩽ 1 +

∫ T

s

Fm(r, T )dr +

∫ t

s

Fm(s, r)dr.

By (3.7) and Gronwall’s inequality (see Lemma B.4), we have

sup
m

sup
(s,t)∈DT

∥µ�,m
s,t ∥2CP1

⩽ sup
m∈N

sup
(s,t)∈DT

Fm(s, t) <∞. (3.8)

Next, we show that the sequence {Xx,n
s,· }∞n=1 is a Cauchy sequence in a suitable norm. By (3.3),

we have for any n,m ∈ N, x ∈ Rd and 0 ⩽ s ⩽ t ⩽ T ,

E|Xx,n+1
s,t −Xx,m+1

s,t |2

1 + |x|2
≲
∫ t

s

(
d2CP1

(µ�,n
r,T , µ

�,m
r,T ) + d2CP1

(µ�,n
s,r, µ

�,m
s,r )

)
dr. (3.9)

Noting that

Hn,m
s,t := d2CP1

(µ�,n
s,t , µ

�,m
s,t ) ⩽ sup

x∈Rd

E|Xx,n
s,t −Xx,m

s,t |2

(1 + |x|)2
,
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by (3.9) we have

Hn+1,m+1
s,t ≲

∫ t

s

[
Hn,m

s,r +Hn,m
r,T

]
dr.

Thus, by (3.8) and Fatou’s lemma, we derive that for all t ∈ [s, T ],

lim
n,m→∞

Hn+1,m+1
s,t ≲

∫ t

s

[
lim

n,m→∞
Hn,m

s,r + lim
n,m→∞

Hn,m
r,T

]
dr,

which implies by Gronwall’s inequality that

lim
n,m→∞

Hn,m
s,t = lim

n,m→∞
sup
x∈Rd

(
W1(µ

x,n
s,t , µ

x,m
s,t )

1 + |x|

)2

= 0. (3.10)

Substituting this into (3.9), we obtain

lim
n,m→∞

sup
(t,x)∈[s,T ]×Rd

E|Xx,n+1
s,t −Xx,m+1

s,t |2

1 + |x|2
= 0.

In particular, for each fixed (s, x) ∈ [0, T )× Rd, there is an adapted process {Xx
s,t}t∈[s,T ] so that

lim
n→∞

sup
t∈[s,T ]

E|Xx,n
s,t −Xx

s,t|2 = 0,

and by (3.10), for each s ⩽ t, there is a family of probability measures (µx
s,t)x∈Rd ∈ CP1 so that

lim
n→∞

sup
x∈Rd

W1(µ
x,n
s,t , µ

x
s,t)

1 + |x|
= lim

n→∞
dCP1(µ

�,n
s,t , µ

�
s,t) = 0.

Since µx,n
s,t = P ◦ (Xx,n

s,t )
−1, we have

µx
s,t = P ◦ (Xx

s,t)
−1, ∀x ∈ Rd.

Finally, by the continuity of (x, µ�, ν�) 7→ B(t, x, µ�, ν�) and taking limits for equation (3.5), one
sees that for each (s, t, x) ∈ DT × Rd,

Xx
s,t = x+

∫ t

s

B(r,Xx
s,r, µ

�
r,T , µ

�
s,r)dr +

∫ t

s

Σ(r,Xx
s,r, µ

�
r,T , µ

�
s,r)dWr.

Thus we obtain the existence. The pathwise uniqueness is derived by the same argument. Moreover,
by (3.6), we have

E|Xx
s,t|2 ⩽ eκ1(t−s)|x|2 + κ0(e

κ1(t−s) − 1)

κ1
+ κ2

∫ t

s

eκ1(t−r)(∥µ�
r,T ∥2CP1

+ ∥µ�
s,r∥2CP1

)dr, (3.11)

which implies by (3.7) that

∥µ�
s,t∥2CP1

⩽ eκ1(t−s) +
κ0(e

κ1(t−s) − 1)

κ1
+ κ2

∫ t

s

eκ1(t−r)(∥µ�
r,T ∥2CP1

+ ∥µ�
s,r∥2CP1

)dr.

By Gronwall’s inequality (see Lemma B.4), we have

∥µ�
s,t∥2CP1

⩽ CT . (3.12)

If κ1 < 0 and 2κ2 < |κ1|, then

∥µ�
s,t∥2CP1

⩽ 1 +
κ0
|κ1|

+
2κ2
|κ1|

sup
0⩽s⩽t⩽T

∥µ�
s,t∥2CP1

,

which implies that

sup
0⩽s⩽t⩽T

∥µ�
s,t∥2CP1

⩽ (1 +
κ0
|κ1|

)/(1− 2κ2
|κ1|

). (3.13)

Substituting (3.12) and (3.13) into (3.11), we get the desired estimates. □

Now we provide simple examples to illustrate the assumptions.
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Example 3.2. Let b1, b2 : Rd → Rd satisfy

(1 + |x|) b1,∇b1 ∈ L1 and ∇b2 ∈ L∞.

Let φ1, φ2 : Rd → R be two Borel measurable functions with

φ1,∇φ1 ∈ L∞ and (1 + |x|)φ2 ∈ L1.

For µ, ν ∈ CP1, we introduce

B(x, µ�, ν�) :=

∫
Rd

b1(x− y)µy(φ1)dy +

∫
Rd

(b2 ∗ νz)(x)φ2(z)dz =: B1(x, µ
�) +B2(x, ν

�).

Then one sees that (1.16) and (1.15) hold. Indeed, for B1(x, µ
�), we have

|B1(x1, µ
�
1)−B1(x2, µ

�
2)| ⩽

∫
Rd

|b1(x1 − y)− b1(x2 − y)| |µy
1(φ1)|dy

+

∫
Rd

|b1(x2 − y)| |(µy
1 − µy

2)(φ1)|dy

⩽ ∥φ1∥∞|x1 − x2|
∫
Rd

∫ 1

0

|∇b1(x1 − y + θ(x2 − x1))|dθdy

+

(∫
Rd

|b1(x2 − y)|(1 + |y|)dy
)
∥∇φ1∥∞dCP1

(µ�
1, µ

�
2)

⩽ ∥φ1∥∞∥∇b1∥1|x1 − x2|
+ (|x2|+ 1)∥(1 + | · |)b1∥1∥∇φ1∥∞dCP1(µ

�
1, µ

�
2).

For B2(x, ν
�), we have

|B2(x1, ν
�
1)−B2(x2, ν

�
2)| ⩽

∫
Rd

∫
Rd

|b2(x1 − y)− b2(x2 − y)|νz1 (dy)|φ2(z)|dz

+

∫
Rd

|b2 ∗ νz1 − b2 ∗ νz2 |(x2)|φ2(z)|dz

⩽ |x1 − x2|∥∇b2∥∞∥φ2∥1 + ∥∇b2∥∞
∫
Rd

W1(ν
z
1 , ν

z
2 )|φ2(z)|dz

⩽ ∥∇b2∥∞
(
∥φ2∥1|x1 − x2|+ ∥(1 + | · |)φ2∥1dCP1(ν

�
1, ν

�
2)
)
.

For (1.15), for any ε ∈ (0, 1), by Young’s inequality we have〈
x,B(x, µ�, ν�)

〉
⩽ |x|∥B(·, µ�, ν�)∥∞

⩽ |x|
(
∥b1∥1∥φ1∥∞ +

∫
Rd

∥b2 ∗ νz∥∞|φ2(z)|dz
)

⩽ |x|
(
∥b1∥1∥φ1∥∞ +

∫
Rd

∥∇b2∥∞∥ν�∥CP1(1 + |z|)|φ2(z)|dz
)

⩽ ε|x|2 +
(
∥b1∥1∥φ1∥∞ + ∥∇b2∥∞∥ν�∥CP1

∥(1 + | · |)φ2(·)∥1
)2
/(4ε).

Hence, (1.15) holds with

κ1 = ε and κ2 = ∥∇b2∥2∞∥(1 + | · |)φ2(·)∥21/(4ε).
In particular, for any λ > ε+ ∥∇b2∥2∞∥(1 + | · |)φ2(·)∥21/(2ε), by (1.17), we have uniform moment
estimate in time for the solution of (3.1) with diffusive coefficient I and drift B(x, µ�, ν�)− λx.

Example 3.3. Let σ : [0, T ]× Rd × R → R satisfy

|σ(t, x, r)− σ(t, x′, r′)| ⩽ C(|x− x′|+ |r − r′|).
Let ϕε be a family of mollifiers. For µ ∈ CP1, we introduce

Σε(t, x, µ
�) := σ

(
t, x,

∫
Rd

ϕε(x− y)⟨µy, φ⟩dy
)
.
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Then it is easy to see that (1.16) and (1.15) hold. In particular, the following SDE admits a unique
solution

Xx,ε
s,t = x+

∫ t

s

Σε(r,X
x,ε
s,r , µ

�,ε
r,T )dWr.

An open question is whether we can take limits ε→ 0 so that we can give a probability representation
u(s, x) = Eφ(Xx,0

s,T ) for local quasi-linear PDE:

∂su+
1

2

∑
i,j,k

(σikσjk)(s, x, u)∂i∂ju = 0, u(T ) = φ,

where Xx,0
s,T solves the following nonlinear-SDE:

Xx,0
s,t = x+

∫ t

s

σ(r,Xx,0
s,r , µ

x,0
r,T (φ))dWr.

We will study this problem in a future work.

4. Well-posedness of DFSDE: Singular drift case

In this section, we consider the DFSDE driven by fractional Brownian motion with a fixed value
of H ∈ (0, 12 ]. In Subsection 4.1, we focus on the well-posedness of SDEs driven by fBm using
Girsanov’s theorem. Specifically, we extend the results of Nualart-Ouknine [50] to the case where

the drift term belongs to Lq
T L̃p with p, q in the range of [ 1

1−H ,∞] and satisfying the condition
1
q +

Hd
p < 1

2 . Notably, allowing q to be smaller than 2 is crucial for applications to the 2D-Navier-

Stokes equation associated with fBm. In Subsection 4.2, we establish the weak well-posedness for
DFSDEs driven by fBm using the entropy method. In Subsection 4.3, we examine a backward
DFSDE driven by Brownian motion by utilizing Itô’s formula and PDE’s estimates. This analysis
will be instrumental in demonstrating the well-posedness of the backward Navier-Stokes equation
with L1+-initial vorticity.

4.1. SDEs driven by fBm. Let CT := C([0, T ];Rd) be the space of all continuous functions from
[0, T ] to Rd, which is endowed with the uniform convergence topology. The canonical process on
CT is defined by

wt(ω) := ωt, ω ∈ CT .

Let Bt := σ{ws : s ⩽ t} be the natural filtration. Let b : [0, T ]× CT → Rd be a Bt-progressively
measurable vector field. In this section we consider the following SDE:

Xt = X0 +

∫ t

0

b(s,X·)ds+WH
t , (4.1)

where WH is an fBm with H ∈ (0, 12 ]. To emphasize the dependence on b, we shall call SDE (4.1)
as SDEb. We introduce the following definition of a weak solution to SDEb.

Definition 4.1. Let ν ∈ P(Rd). We call a probability measure P ∈ P(CT ) a weak solution of
SDEb starting from the initial distribution ν if P ◦ w−1

0 = ν and

t 7→ wt − w0 −
∫ t

0

b(s, w·)ds =: W b
t (4.2)

is an fBm with Hurst parameter H under P. The set of all weak solutions of SDEb with initial
distribution ν is denoted by S(b, ν). We call the uniqueness in law holds for SDEb if any two
P1,P2 ∈ S(b, ν) are the same.

Recall that for two P1,P2 ∈ P(CT ), the relative entropy is defined by

H(P1|P2) :=

{
EP1 ln(dP1/dP2), P1 ≪ P2,

∞, otherwise.
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By Csiszár-Kullback-Pinsker’s inequality (abbreviated as CKP’s inequality) (see [58, (22.25)]), we
have

∥P1 −P2∥var ⩽
√

2H(P1|P2). (4.3)

We now prepare the following result about the relative entropy (see Lacker [38, Lemma 4.1] for a
version of Brownian case).

Lemma 4.2. Let ν ∈ P(Rd) and bi : [0, T ] × CT → Rd, i = 1, 2 be two progressively measurable
vector fields and Pi ∈ S(bi, ν). Suppose that the uniqueness in law holds for SDEb2 and

EP1 exp
{
λ∥Ib1−b2∥2HqH

T

}
<∞, ∀λ > 0, (4.4)

where Ib1−b2(t) :=
∫ t

0
(b1 − b2)(s, w·)ds. Then for some C = C(H) > 0, it holds that

H(P1|P2) ≲C EP1

(
∥Ib1−b2∥2HqH

T

)
.

Proof. For i = 1, 2, by definition, one has

W bi
t := wt − w0 −

∫ t

0

bi(s, w·)dsis an fBm with respect to Pi.

Let Wt := Φ(W b1
· )(t) (see (2.14)). Then W is a standard Brownian motion under P1. Write

ZT := exp

(
−
∫ T

0

(K̃HIb1−b2)(s)dWs −
1

2
∥K̃HIb1−b2∥2L2

T

)
.

By (2.17), (4.4) and Novikov’s criterion, EP1ZT = 1. Thus, by Girsanov’s theorem (Theorem 2.6),

t 7→ W b1

t + Ib1−b2(t) = W b2

t

is still an fBm under Q := ZTP1. Thus Q ∈ S(b2, ν). By the uniqueness in law of SDEb2 , we have

ZTP1 = Q = P2.

Hence,

H(P1|P2) = −
∫
CT

lnZTdP1 =
1

2
EP1

(
∥K̃HIb1−b2∥2L2

T

) (2.17)

≲ C EP1∥Ib1−b2∥2HqH

T
. (4.5)

Thus we complete the proof. □

By Theorem 2.10 and Girsanov’s theorem, it is by now standard to show the following result
(see [50, Theorem 2]).

Theorem 4.3. Suppose that for some (p1, q1) ∈ [ 1
1−H ,∞]2 with α := 1

2 − ( 1
q1

+ Hd
p1

) > 0,

κb := |||b|||Lq1
T L̃p1 <∞.

Then for any x ∈ Rd, there is a unique weak solution Px ∈ S(b, δx) in the class that

Px

(∫ T

0

|b(s, ws)|qHds <∞

)
= 1.

Moreover, we have the following conclusions:

(i) For any 1 < p ⩽ q ⩽ ∞, there is a constant C = C(T,H, d, p1, q1, p, q) > 0 such that for all

f ∈ L̃p and t ∈ (0, T ],

|||EP·f(wt)|||q ⩽ exp
{
C
(
1 + κ

2/α
b

)}
t
dH
q − dH

p |||f |||p. (4.6)

(ii) For any p, q ∈ (1,∞] with β := 1− ( 1q +
Hd
p ) > 0, there is a C = C(T,H, d, p1, q1, κb, p, q) > 0

such that for all t ∈ [0, T ], x ∈ Rd and m ⩾ 1,∥∥∥∥∫ t

0

f(s, ws)ds

∥∥∥∥
Lm(CT ;Px)

⩽ Ctβm1−β |||f |||Lq
T L̃p . (4.7)
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(iii) For any γ ∈ (0, 1), p ∈ [1,∞] and pb, qb ∈ (q
H
,∞] satisfying

βH := 1− qH( 1q b
+ Hd

pb
) > 0,

there is a constant C = C(γ, d,H, p, pb, qb, κb, T ) > 0 such that for all t ∈ [0, T ], f ∈ Bγ
p(Rd)

and x ∈ Rd,

∥EPxf(· − wt)− f(· − x)∥p ⩽ CtHγ∥f∥Bγ
p
+ tβH∥f∥p|||b|||qH

Lqb
T L̃pb

, (4.8)

where Bγ
p(Rd) denotes the Sobolev space consisting of all functions f with

∥f∥Bγ
p
:= sup

h ̸=0

∥f(·+ h)− f(·)∥p
|h|γ

+ ∥f∥p <∞. (4.9)

Proof. (Existence) Let x ∈ Rd and WH be an fBm over a probability space (Ω,F ,P). Define

W̃H
t :=WH

t −
∫ t

0

b(s,WH
s + x)ds =:WH

t − I x
b (t).

Since b ∈ Lq1
T L̃p1 and α = 1

2 − ( 1
q1

+ Hd
p1

) > 0, by Theorem 2.10, for any λ > 0, there is a constant

C = C(λ, p1, q1, d,H) > 0 such that

sup
x∈Rd

E exp
{
λ∥K̃HI x

b ∥2L2
T

}
⩽ exp

{
C
(
1 + κ

2/α
b

)}
. (4.10)

By Theorem 2.6, W̃H is an fBm under Qx = Zx
TP, where

Zx
t = exp

(
−
∫ t

0

(K̃HI x
b )(s)dWs −

1

2
∥K̃HI x

b ∥2L2
T

)
,

is an exponential martingale. Here Wt := Φ(WH
· )(t) (see (2.14)). Now if we let Xx

t := WH
t + x,

then

Xx
t = x+

∫ t

0

b(s,Xx
s )ds+ W̃H

t .

In particular, Px := Qx ◦ (Xx
· )

−1 ∈ S(b, δx) is a solution of SDEb.
(Uniqueness) For i = 1, 2, let Pi ∈ S(b, δx) so that W b is an fBm with Hurst parameter H

under Pi, and

Pi(w0 = x) = 1, Pi

(∫ T

0

|b(s, ws)|qHds <∞

)
= 1.

Define a Bt-stopping time by

τn := inf

{
t ∈ [0, T ] :

∫ t

0

|b(s, ws)|qHds > n

}
.

Then limn→∞ Pi(τn = T ) = 1. Let Ib(t) :=
∫ t

0
b(s, ws)ds. Note that

∥K̃HIb(· ∧ τn)∥L2
T
⩽ C∥Ib(· ∧ τn)∥HqH

T
⩽ Cn1/qH .

By Girsanov’s theorem,

W b
t + Ib(t ∧ τn) = wt − w0 −

∫ t

t∧τn

b(s, ws)ds (4.11)

is still an fBm under the new probability Qn
i := Zn

TPi, where

Zn
T := exp

(
−
∫ T

0

(K̃HIb(· ∧ τn))(s)dWs −
1

2
∥K̃HIb(· ∧ τn)∥2L2

T

)
.

In particular, for any t1 < t2 < · · · < tm ⩽ T and Γi ∈ B(Rd), by (4.11) we have

P1(wt1 ∈ Γ1, · · · , wtm ∈ Γm; τn = T ) =

∫
CT

1{wt1∈Γ1,··· ,wtm∈Γm;τn=T}/Z
n
TQ

n
1 (dω)
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=

∫
CT

1{wt1
∈Γ1,··· ,wtm∈Γm;τn=T}/Z

n
TQ

n
2 (dω)

= P2(wt1 ∈ Γ1, · · · , wtm ∈ Γm; τn = T ).

Letting n→ ∞, we conclude the proof of uniqueness.
(Proofs of (i) and (ii)) Let 1 < p ⩽ q ⩽ ∞ and p0 ∈ (1, p). Set γ := p

p0
and 1

γ + 1
γ′ = 1. By

Hölder’s inequality, we have

EPxf(wt) = EQx(f(Xx
t )) = EP(Zx

T f(W
H
t + x)) ⩽ (EP(Zx

T )
γ′
)1/γ

′
(EP|f(WH

t + x)|γ)1/γ .
Noting that by (4.10) and Hölder’s inequality,

sup
t∈[0,T ]

sup
x∈Rd

EP|Zx
t |γ

′
⩽ exp

{
C
(
1 + κ

2/α
b

)}
=: C0,

by Lemma B.1, we further have

|||EP·f(wt)|||q ≲C0 |||EP|f(WH
t + ·)|γ |||1/γq/γ ≲ t

dH
q − dH

γp0 ||||f |γ |||1/γp0
= t

dH
q − dH

p |||f |||p.

Thus we get (4.6). For (4.7), it is similar by (2.22) and Hölder’s inequality.
(Proof of (iii)): Let Qx ∈ S(0, δx) and note that

∥EPxf(· − wt)− f(· − x)∥p ⩽ ∥EQxf(· − wt)− f(· − x)∥p + ∥EPxf(· − wt)− EQxf(· − wt)∥p.

Since Qx is the law of fBm starting from x ∈ Rd, we have

∥EQxf(· − wt)− f(· − x)∥p ⩽

∥∥∥∥∫
Rd

f(· − x− z)pHt (z)dz − f(· − x)

∥∥∥∥
p

⩽
∫
Rd

∥f(· − z)− f(·)∥ppHt (z)dz ≲ ∥f∥Bβ
p

∫
Rd

|z|βpHt (z)dz ≲ tβH∥f∥Bβ
p
,

where pHt (z) = (2πλH0,t)
−d/2e|z|

2/λH
0,t and λH0,t is defined in (2.20).

Moreover, by (4.3), (4.5) and (4.7), we have

∥EPxf(· − wt)− EQxf(· − wt)∥p ⩽ ∥f∥p∥Px ◦ w−1
t −Qx ◦ w−1

t ∥var ≲ ∥f∥p
(
EQx∥Ib∥2HqH

t

)1/2
≲ tβH∥f∥p||||b|qH |||Lqb/qH

T L̃pb/qH
= tβH∥f∥p|||b|||qH

Lqb
T L̃pb

.

The proof is complete. □

Remark 4.4. In comparison with [51, Theorem 2], we relax the condition p1, q1 ⩾ 2 in [51,
Theorem 2] to p1, q1 ⩾ 1/(1 −H) in Theorem 4.3. This allows us to treat the Biot-Savart kernel
in subsequent discussions.

It should be noted that recently, Butkovsky and Gallay [10] showed the existence of the weak
solution under the weaker assumption for b ∈ Lq

TLp with

1−H
q + Hd

p < 1−H ⇔ Hd
p < (1−H)(1− 1

q ),

which coincides with the result in [36] for H = 1/2. But the uniqueness in this case is still open.
However, based on the entropy estimate in Lemma 4.2, we have the following partial result.

Theorem 4.5. Let H ∈ (0, 12 ) and p1, q1 ∈ [ 1
1−H ,∞) satisfy Hd

p1
+ 1−H

q1
< (1 − H)2. Assume

b ∈ Lq1
T Lp1 . Let bn be a sequence of bounded smooth function converging to b in Lq1

T Lp1 as n→ ∞.
For x ∈ Rd, let Xn be the unique strong solution of

Xn
t = x+

∫ t

0

bn(s,X
n
s )ds+WH

t , t ∈ [0, T ].

Then the law Pn of Xn in CT weakly converges to a solution P ∈ S(b, δx). We call such P a
regular solution of SDEb. Moreover, for any two b1, b2 ∈ Lq1

T Lp1 , letting Pi be the unique regular
solution of SDEbi starting from x, where i = 1, 2, we have

H(P1|P2) ≲C EP1∥Ib1−b2∥2HqH

T
. (4.12)
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Proof. Let Hd
p + 1−H

q < 1−H and m ∈ N. By [10, Lemma 3.11], there is a constant C > 0 such

that for all n ∈ N and f ∈ Lq
TLp,

EPn

∣∣∣∣∣
∫ T

0

f(s, ws)ds

∣∣∣∣∣
m

= E

∣∣∣∣∣
∫ T

0

f(s,Xn
s )ds

∣∣∣∣∣
m

⩽ C∥f∥mLq
TLp . (4.13)

By Lemma 4.2 and the above Krylov’s estimate with q = q1/qH and p = p1/qH , where qH =
1/(1−H), we have

H(Pn|Pm) ≲ EPn∥Ibn−bm∥2HqH

T
≲ ∥|bn − bm|qH∥2/qH

Lq
TLp = ∥bn − bm∥2Lq1

T Lp1
,

which implies by CKP’s inequality (4.3),

lim
n,m→∞

∥Pn −Pm∥2var ⩽ 2 lim
n,m→∞

H(Pn|Pm) ≲ lim
n,m→∞

∥bn − bm∥2Lq1
T Lp1

= 0.

Let P ∈ P(CT ) be the limit point so that

lim
n→∞

∥Pn −P∥2var = 0. (4.14)

It is easy to see P ∈ S(b, δx) by taking limits. In fact, it suffices to show that for any k ∈ N,
t1 ⩽ t2 ⩽ · · · ⩽ tk and f ∈ C1

b (Rkd),

EPf(WH
t1 , · · · ,W

H
tk
) = EPf(W b

t1 , · · · ,W
b
tk
), (4.15)

where WH is an fBm on some probability space (Ω,F ,P) and W b
· is defined by (4.2). Since W bn

·
is an fBm w.r.t. Pn, we have

EPf(WH
t1 , · · · ,W

H
tk
) = EPnf(W bn

t1 , · · · ,W
bn
tk

). (4.16)

By (4.13), we have

|EPnf(W bn
t1 , · · · ,W

bn
tk

)− EPnf(W b
t1 , · · · ,W

b
tk
)|

⩽ ∥∇f∥∞
k∑

j=1

EPn

(∫ tk

0

|bn − b|(s, ws)ds

)
≲ ∥bn − b∥Lq1

T Lp1 → 0, n→ ∞.

Moreover, by (4.14) we also have

lim
n→∞

|EPnf(W b
t1 , · · · ,W

b
tk
)− EPf(W b

t1 , · · · ,W
b
tk
)| = 0.

By taking limits for (4.16), we obtain (4.15).
For i = 1, 2, let Pi be the unique regular solution of SDEbi with the same starting point x ∈ Rd.

Let b
(n)
i be the smooth approximation sequence of bi, and P

(n)
i the law of the solution of the

associated approximation SDE. By Lemma 4.2 we have

H(P
(n)
1 |P(n)

2 ) ≲C EP
(n)
1

∥∥I
b
(n)
1 −b

(n)
2

∥∥2
HqH

T

.

Since H(µ|ν) is lower semi-continuous w.r.t. µ, ν, by taking limits and as above, we get (4.12). □

Remark 4.6. Assume q1 = ∞ and H ∈ (1 − 1√
2
, 12 ). The condition dH/p1 < (1 −H)2 is worse

than dH/p1 < 1/2. Thus in this case, the result in Theorem 4.3 is better than Theorem 4.5.
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4.2. DFSDEs driven by fBm. In this subsection we consider the following DFSDE driven by
fBm:

Xx
s,t = x+

∫ t

s

B(r,Xx
s,r, µ

�
r,T , µ

�
s,r)dr +WH

t −WH
s , (s, t) ∈ DT , (4.17)

where B : [0, T ]× Rd × CP0 × CP0 → Rd satisfies the following assumption:

(Hs
1) Let (p1, q1) ∈ [ 1

1−H ,∞]2 satisfy 1
q1

+ Hd
p1

< 1
2 . There is a κ1 > 0,

|||B(·, µ�, ν�)|||Lq1
T L̃p1 ⩽ κ1, ∀µ�, ν� ∈ CP0, (4.18)

and there is a function ℓ ∈ Lq1
T such that for all µ�

i, ν
�
i ∈ CP0, i = 1, 2,

|||B(t, ·, µ�
1, ν

�
1)−B(t, ·, µ�

2, ν
�
2)|||p1

⩽ ℓ(t)(∥µ�
1 − µ�

2∥CP0
+ ∥ν�1 − ν�2∥CP0

). (4.19)

Theorem 4.7. Under (Hs
1), there is a unique weak solution to DFSDE (4.17). Moreover, for any

p > 1, there is a constant C = C(p, d, κ1) > 0 such that for all (s, t) ∈ DT ,

sup
x∈Rd

Ef(Xx
s,t) ≲C (t− s)−Hd/p|||f |||p, (4.20)

and for any p, q ∈ (1,∞] with α := 1− ( 1q + Hd
p ) > 0, there is a C = C(T,H, d, p1, q1, κ1, p, q) > 0

such that for all m ⩾ 1 and (s, t) ∈ DT ,

sup
x∈Rd

∥∥∥∥∫ t

s

f(r,Xx
s,r)dr

∥∥∥∥
Lm(Ω)

≲C m1−α|||f |||Lq
T L̃p . (4.21)

Proof. We use the method of freezing the distribution-flow as Theorem 1.4. Let µ�,0
s,t = δx. For

n ∈ N, define the following approximation sequence:

Xx,n+1
s,t = x+

∫ t

s

B(r,Xx,n+1
s,r , µ�,n

r,T , µ
�,n
s,r)dr +WH

t −WH
s ,

where µx,n
s,t is the law of Xx,n

s,t . By Theorem 4.3, there is a unique weak solution to the above

approximation SDE, and by (4.7), for any p, q ∈ [1,∞] with α := 1 − ( 1q + Hd
p ) > 0, there is a

constant C = C(T,H, d, p1, q1, κ1, p, q) > 0 such that for all m ⩾ 1 and (s, t) ∈ DT ,

sup
n∈N

sup
x∈Rd

∥∥∥∥∫ t

s

f(r,Xx,n
s,r )dr

∥∥∥∥
Lm(Ω)

≲C m1−α|||f |||Lq
T L̃p . (4.22)

For simplicity of notations, for any n, k ∈ N, we write

bn,k(r, x) := B(r, x, µ�,n
r,T , µ

�,n
s,r)−B(r, x, µ�,k

r,T , µ
�,k
s,r).

Noting that by Lemma 4.2,

H(µx,n+1
s,t |µx,k+1

s,t ) ≲C E
(∫ t

s

∣∣bn,k(r,Xx,n
s,r )

∣∣qH

dr

)2/qH

,

by CKP’s inequality (4.3) and (4.22) with (p, q) = (p1

qH

, q1qH

) ∈ [1,∞] and m = 2
qH

> 1, we have

∥µ�,n+1
s,t − µ�,k+1

s,t ∥2CP0
⩽ 2 sup

x∈Rd

H(µx,n+1
s,t |µx,k+1

s,t ) ≲

∥∥∥∥∫ t

s

∣∣bn,k(r,Xx,n
s,r )

∣∣qH

dr

∥∥∥∥2/qH

L2/qH (Ω)

≲ |||1[s,t]|bn,k|qH |||2/qH

Lq1/qH L̃p1/qH

x

= |||1[s,t]bn,k|||2Lq1 L̃p1
x

(4.19)

⩽

(∫ t

s

ℓ(r)q1
[
∥µ�,n

r,T − µ�,k
r,T ∥CP0 + ∥µ�,n

s,r − µ�,k
s,r∥CP0

]q1
dr

)2/q1

.

By Gronwall’s inequality in Lemma B.4, we derive that for each 0 ⩽ s ⩽ t ⩽ T ,

lim
n,k→∞

∥µ�,n
s,t − µ�,k

s,t∥CP0
= 0.
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Hence, there is a µ�
s,t ∈ CP0 such that

lim
n→∞

∥µ�,n
s,t − µ�

s,t∥CP0
= 0.

Thus, for each x ∈ Rd, by (4.18) and Theorem 4.3, there is a unique weak solution Xx
s,t to SDE

Xx
s,t = x+

∫ t

s

B(r,Xx
s,r, µ

�
r,T , µ

�
s,r)dr +WH

t −WH
s .

By the same argument as above, we have

∥P ◦ (Xx
s,t)

−1 − µx,n
s,t ∥2var ⩽ 2H(P ◦ (Xx

s,t)
−1|µx,n

s,t )

⩽

(∫ t

s

ℓ(r)q1
[
∥µ�,n

r,T − µ�
r,T ∥CP0

+ ∥µ�,n
s,r − µ�

s,r∥CP0

]q1
dr

)2/q1

→ 0,

as n→ ∞, which implies that

P ◦ (Xx
s,t)

−1 = µx
s,t.

By (4.6) and (4.7), we have (4.20) and (4.21). The proof is complete. □

Example 4.8. Let b1 ∈ L1 and b2 ∈ Lp with some p > d. Let φ1 ∈ L∞ and φ2 ∈ L1. For
µ, ν ∈ CP0, we introduce

B(t, x, µ�, ν�) :=

∫
Rd

b1(x− y)µy(φ1)dy +

∫
Rd

(b2 ∗ νz)(x)φ2(z)dz.

Then it is easy to see that (Hs
1) holds with (q1, p1) = (∞, p). Indeed,

|||B(t, ·, µ�, ν�)|||p ⩽

∥∥∥∥∫
Rd

b1(· − y)µy(φ1)⟩dy
∥∥∥∥
∞

+

∥∥∥∥∫
Rd

(b2 ∗ νz)(·)φ2(z)dz

∥∥∥∥
p

⩽ ∥b1 ∗ µ�(φ1)∥∞ + ∥φ2∥1 sup
z

∥b2 ∗ νz∥p

⩽ ∥b1∥1∥φ1∥∞ + ∥φ2∥1∥b2∥p.
Moreover, we also have

|||B(t, ·, µ�,1, ν�,1)−B(t, ·, µ�,2, ν�,2)|||p ⩽ ∥b1∥1∥φ1∥∞∥µ1 − µ2∥CP0 + ∥b2∥p∥φ2∥1∥ν1 − ν2∥CP0 .

In Section 5, we shall use Theorem 4.7 to study the 2D-Navier-Stokes equation with fBm.

4.3. Backward DFSDEs driven by Brownian motion. In this section, we consider the fol-
lowing backward DFSDE driven by Brownian motion:

Xx
s,t = x+

∫ t

s

B(r,Xx
s,r, µ

�
r,T )dr +

√
2(Wt −Ws), (4.23)

where for some p0 ∈ (1,∞),

B : [0, T ]× Rd × L̃p0Ps(or L
p0Ps) → Rd

is a measurable vector field. We first consider the following classical SDE

Xx
s,t = x+

∫ t

s

b(r,Xx
r )dr +

√
2(Wt −Ws), t ∈ [s, T ]. (4.24)

The following results were partly obtained in [61].

Theorem 4.9. Let (p1, q1) ∈ (2,∞)2 satisfy α := 1− ( 2
q1

+ d
p1
) > 0. Assume that

κb := |||b|||Lq1
T L̃p1 <∞.

(i) For each (s, x) ∈ [0, T )×Rd, there is a unique strong solution Xx
s,t =: Xx

s,t(b) to SDE (4.24).
Moreover, x 7→ Xx

s,t(b) is weakly differentiable and for any p ⩾ 1,

sup
(t,x)∈[s,T ]×Rd

E|∇Xx
s,t(b)|p <∞. (4.25)
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(ii) For any p ∈ (1, p1], there are constants C1, C2 > 0 only depending on T, d, p1, q1, p such that
for all (s, t) ∈ DT ,

|||P ◦ (X ·
s,t(b))

−1|||p ≲C1
1 + (t− s)α/2 exp

{
C2

(
1 + κ

2/α
b

)}
. (4.26)

(iii) Let p ∈ (1, p1]. For any b1, b2 ∈ Lq1
T L̃p1 , there is a constant C3 = C3(T, d, p1, q1, p) > 0 such

that for all (s, t) ∈ DT ,

|||P ◦ (X ·
s,t(b1))

−1 − P ◦ (X ·
s,t(b2))

−1|||p ≲C3

∫ t

s

(t− r)−
1+d/p1

2 |||b1(r)− b2(r)|||p1
dr. (4.27)

(iv) If divb = 0, then for any f ∈ L1,∫
Rd

E|f(Xx
s,t)|dx = ∥f∥1. (4.28)

Proof. (i) The existence and uniqueness of strong solutions and estimate (4.25) follow by [61,
Theorem 1.1].

(ii) For (4.26), we fix t ∈ (0, T ] and ϕ ∈ C∞
c (Rd). Let u(s, x) := Eϕ(

√
2Wt−s + x). Then

u ∈ C1([0, t];C2
b (Rd)) and

∂su+∆u = 0, u(t) = ϕ.

By Itô’s formula, we have

Eϕ(Xx
s,t) = Eu(t,Xx

s,t) = u(s, x) + E
∫ t

s

(b · ∇u)(r,Xx
s,r)dr.

Let p ∈ [1, p1] and p2, q2 ∈ [1,∞) be defined by

1
q2

+ 1
q1

= 1, 1
p2

+ 1
p1

= 1
p . (4.29)

By Lemma B.1 with j = 0, (4.6) with H = 1
2 and Hölder’s inequality, we have

|||Eϕ(X ·
s,t)|||p ⩽ |||u(s, ·)|||p +

∫ t

s

|||E(b · ∇u)(r,X ·
s,r)|||pdr

≲C |||ϕ|||p + exp
{
Cκ

2/α
b

}∫ t

s

|||(b · ∇u)(r)|||pdr

≲C |||ϕ|||p + exp
{
Cκ

2/α
b

}
|||b|||Lq1

T L̃p1 |||∇u|||Lq2
[s,t]

L̃p2 . (4.30)

Note that by (B.1) with q = p2 and p = p1,

|||∇u|||Lq2
[s,t]

L̃p2 =

(∫ t

s

|||E∇ϕ(
√
2Wt−r + ·)|||q2p2

dr

)1/q2

≲ |||ϕ|||p
(∫ t

s

(t− r)q2(d/p2−d/p−1)/2dr

)1/q2

≲ |||ϕ|||p(t− s)(1−2/q1−d/p1)/2.

Substituting this into (4.30) and by (2.10), we derive the estimate (4.26).

(iii) For simplicity we set X ·,i
s,t := X ·

s,t(bi), i = 1, 2. We fix t ∈ [0, T ] and consider the following
backward PDE:

∂su+∆u+ b1 · ∇u = 0, u(t) = ϕ ∈ C∞
c (Rd).

Since b1 ∈ Lq1
T L̃p1 , by Theorem B.6, there is a unique solution u to the above equation. Then by

the generalized Itô’s formula (see [61]), we have

Eu(t,Xx,2
s,t ) = u(s, x) + E

∫ t

s

(∂su+∆u+ b2 · ∇u)(r,Xx,2
s,r )dr

= E
∫ t

s

((b2 − b1) · ∇u)(r,Xx,2
s,r )dr,
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and

Eu(t,Xx,1
s,t ) = u(s, x) + E

∫ t

s

(∂su+∆u+ b1 · ∇u)(r,Xx,1
s,r )dr = u(s, x).

Hence,

Eϕ(Xx,2
s,t )− Eϕ(Xx,1

s,t ) = E
∫ t

s

((b2 − b1) · ∇u)(r,Xx,2
s,r )dr,

and by (4.6),

|||Eϕ(X ·,2
s,t)− Eϕ(X ·,1

s,t)|||p ⩽
∫ t

s

|||E((b2 − b1) · ∇u)(r,X ·,2
s,r)|||pdr

≲
∫ t

s

|||((b2 − b1) · ∇u)(r, ·)|||pdr.

Let p2, q2 be defined by (4.29). By Hölder’s inequality and Theorem B.6, we have

|||Eϕ(X ·,1
s,t)− Eϕ(X ·,2

s,t)|||p ≲C

∫ t

s

|||b1 − b2|||p1
|||∇u(r, ·)|||p2

dr

≲C |||ϕ|||p
∫ t

s

|||b1 − b2|||p1
(t− r)−

1+d/p−d/p2
2 dr,

which gives (4.27) by taking the supremum of ϕ ∈ C∞
c .

(iv) Let bn(t, x) := b(t, ·) ∗ ρn(x) be the mollifying approximation of b. For each x ∈ Rd, let
Xx,n

s,t be the unique solution of approximation SDE

Xx,n
s,t = x+

∫ t

s

bn(r,X
x,n
s,r )dr +

√
2(Wt −Ws).

It is well known that (see [61])

lim
n→∞

E|Xx,n
s,t −Xx

s,t| = 0.

Since divbn = 0, we have

E
∫
Rd

f(Xx,n
s,t )dx =

∫
Rd

f(x)dx.

By taking limits, we obtain that for any 0 ⩽ f ∈ C∞
c (Rd),

E
∫
Rd

f(Xx
s,t)dx =

∫
Rd

f(x)dx.

The proof is complete by a further approximation. □

Remark 4.10. If we replace all the norms of ||| · |||p by ∥ · ∥p, then the results in Theorem 4.9 still
hold.

Now we make the following assumption on B:

(Hs
2) For some (p1, q1) ∈ (2,∞) with 2

q1
+ d

p1
< 1 and p0 ∈ (1, p1], there is a function ℓ ∈ Lq1

T such

that for some β ⩾ 0 and all t ∈ [0, T ] and µ� ∈ L̃p0Ps,

|||B(t, ·, µ�)|||p1
⩽ ℓ(t)(1 + |||µ�|||βp0

), (4.31)

and for all t ∈ [0, T ] and µ�, ν� ∈ L̃p0Ps,

|||B(t, ·, µ�)−B(t, ·, ν�)|||p1
⩽ ℓ(t)|||µ� − ν�|||p0

. (4.32)

Now we can prove the main result of this section.

Theorem 4.11. Under (Hs
2), there is a time T ∈ (0, 1) such that for each x ∈ Rd, there is a

unique strong solution to DFSDE (4.23) on [0, T ]. When β = 0, the time can be taken arbitrarily
large. Moreover, if we replace all the norms in (Hs

2) by ∥ · ∥p, then the conclusion still holds.
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Proof. Let µ�,1
r,T = δx. For n ∈ N, we consider the following Picard iteration to DFSDE (4.23):

Xx,n+1
s,t = x+

∫ t

s

B(r,Xx,n+1
s,r , µ�,n

r,T )dr +
√
2(Wt −Ws),

where µx,n
r,T is the law of Xx,n

r,T . By (4.26) with p = p0, we have

κµn+1
·,T

= sup
s∈[0,T ]

|||µ�,n+1
s,T |||p0

⩽ C1

(
1 + Tα/2 exp

{
C2κ

2β/α
µn
·,T

})
,

where α := 1− ( 2
q1

+ d
p1
) > 0. If β = 0, then

sup
n
κµn

·,T
<∞.

If β > 0, then one can choose a time T small enough so that

C1T
α/2 exp

{
C2(2C1)

2β/α
}
⩽ 1 and sup

n
κµn

·,T
⩽ 2C1.

Now by (4.27) we have for any p ∈ (1, p1],

|||µ�,n+1
s,t − µ�,m+1

s,t |||q
′
1

p ≲C3

∫ t

s

(t− r)−q′1
1+d/p1

2 |||µ�,n
r,T − µ�,m

r,T |||
q′1
p0dr. (4.33)

In particular, if we choose p = p0 and set

h(t) := lim
n,m→∞

|||µ�,n
t,T − µ�,m

t,T |||
q′1
p0 ,

then by Fatou’s lemma,

h(s) ⩽
∫ T

s

(T − r)−q′1
1+d/p1

2 h(r)dr.

Since q′1
1+d/p1

2 < 1, by Gronwall’s inequality of Voltera’s type, we get

h(s) = lim
n,m→∞

|||µ�,n
s,T − µ�,m

s,T |||
q′1
p0 = 0.

By Proposition 2.3, for each s ∈ [0, T ], there is a probability kernel µ�
s,T ∈ L̃p0P so that

lim
n→∞

|||µ�,n
s,T − µ�

s,T |||p0
= 0.

Now for each (s, x) ∈ [0, T ]× Rd, let Xx
s,t be the unique strong solution of the following SDE:

Xx
s,t = x+

∫ t

s

B(r,Xx
s,r, µ

�
r,T )dr +

√
2(Wt −Ws). (4.34)

By using (4.27) again, it is easy to see that for each s ∈ [0, T ] and Lebesgue almost all x ∈ Rd,

P ◦ (Xx
s,T )

−1 = µx
s,T ,

which gives the existence, and the uniqueness is from the stability estimate (4.27).
Now, let us replace all the norm ||| · |||p by ∥ · ∥p. Then By the same argument, we have

lim
n,m→∞

∥µ�,n
s,T − µ�,m

s,T ∥p0 = 0.

The only difference from the localized Lp case is that by Proposition 2.3, we can only find a
sub-probability kernel µ�

s,T ∈ Lp0Ps such that

lim
n→∞

∥µ�,n
s,T − µ�

s,T ∥p0
= 0.

But this don’t prevent us from considering the SDE (4.34). By using (4.27) again, for each s ∈ [0, T ]
and Lebesgue almost all x ∈ Rd,

P ◦ (Xx
s,T )

−1 = µx
s,T ,

which implies that µx
s,T is in fact a probability kernel. The proof is complete. □
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Example 4.12. Let p0 ∈ (1,∞) and ϕ ∈ L̃p0 . Let p ∈ (1,∞] satisfy

1 + ( 1d ∧ 1
p0
)− 1

p0
> 1

p . (4.35)

Suppose that K ∈ (L̄p)d and g : R → R is a Lipschitz function. Consider the following example:

B(x, µ�) :=

∫
Rd

K(x− y)g(µy(ϕ))dy.

By (4.35), one can choose p1 > d ∨ p0 so that 1 + 1
p1

= 1
p + 1

p0
. Thus by (2.6), we have

|||B(·, µ�)|||p1
⩽ |||K|||∗p|||g(µ�(ϕ))|||p0

⩽ |||K|||∗p(|g(0)|+ ∥g∥Lip|||µ�|||p0
|||ϕ|||p0

),

and

|||B(·, µ�)−B(·, ν�)|||p1 ⩽ |||K|||∗p|||g(µ�(ϕ))− g(ν�(ϕ))|||p0 ⩽ |||K|||∗p∥g∥Lip|||ϕ|||p0 |||µ� − ν�|||p0 .

Hence, Theorem 4.11 can be applied to this case. In particular, if g is bounded Lipschitz, then we
have a global solution.

5. DFSDEs driven by fBm related to the 2D-Navier-Stokes equations

In this section we apply the previous results to prove Theorems 1.5 and 1.7. Let ν0 be a
finite signed measure. Consider the following DFSDE driven by fractional equation related to the
2D-Navier-Stokes:

Xx
t = x+

∫ t

0

Bν0(X
x
s , µ

�
s)ds+WH

t , (5.1)

where

Bν0(x, µ
�) =

∫
R2

(K2 ∗ µy)(x)ν0(dy), K2(x) =
(x2,−x1)
2π|x|2

.

Theorems 1.5 is an immediate consequence of the following result.

Theorem 5.1. Let H ∈ (0, 12 ). For any vorticity ν0 being a finite singed measure, there is a unique
strong solution X ·

t to DFSDE (5.1). Moreover, if we let

u(t, x) :=

∫
R2

EK2(x−Xy
t )ν0(dy) = Bν0

(x, µ�
t),

then for any p > 1 and j ∈ N, there is a constant C > 0 such that for all t ∈ (0, T ],

∥∇ju(t)∥p ≲C t−2H(p−1)/p−(j−1)H∥ν0∥jvar. (5.2)

Moreover, for any p ∈ (1, 2) and ε > 0, there is a constant C > 0 such that for all 0 < t ⩽ T ,

|||u(t)− u(0)|||p ≲C t[H( 2
p−1)]∧[ 1−2H

1−H ]−ε,

and for all 0 < s < t ⩽ T ,

∥u(t)− u(s)∥∞ ≲C s−2H |t− s|H3 −ε.

Proof. Note thatK2 = K21D0
+K21Dc

0
, whereD0 is the unit cube with center 0. For any p ∈ (1, 2),

by Minkowskii’s inequality and Lp + L∞ ⊂ L̃p, we clearly have

|||Bν0
(·, µ�)|||p ⩽

∥∥∥∥∫
R2

((K21D0
) ∗ µy)(·)ν0(dy)

∥∥∥∥
p

+

∥∥∥∥∫
R2

((K21Dc
0
) ∗ µy)(·)ν0(dy)

∥∥∥∥
∞

⩽
∫
R2

∥(K21D0
) ∗ µy∥p|ν0|(dy) +

∫
R2

∥(K21Dc
0
) ∗ µy∥∞|ν0|(dy)

⩽
(
∥K21D0∥p + ∥K21Dc

0
∥∞
)
∥ν0∥var, (5.3)

and

|||Bν0
(·, µ�

1)−Bν0
(·, µ�

2)|||p ⩽
(
∥K21D0

∥p + ∥K21Dc
0
∥∞
)
∥ν0∥var∥µ�

1 − µ�
2∥CP0

.
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Let H ∈ (0, 12 ). One can choose p1 < ( 1
1−H , 2) and q1 = ∞ so that Hd

p1
+ 1

q1
< 1

2 . Thus one sees

that (Hs
1) holds for the above Bν0

. By Theorem 4.7, there is a unique weak solution Xx
t to DFSDE

(5.1). Moreover, for any p > 1, by (4.20), there is a constant C = C(T, p,H) > 0 such that for all

f ∈ L̃p and t ∈ (0, T ],

sup
x

|Ef(Xx
t )| ≲C |||f |||pt−2H/p,

which in turn implies that Xx
t admits a density ρxt (·) ∈ L̄p/(p−1) with

sup
x

|||ρxt |||∗p/(p−1) ≲C t−2H/p.

Since ∇K2 is a Calderón-Zygmund kernel, for any p ∈ (1,∞), by the Lp-boundedness of singular
integral operators, we have (see Remark 1.3)

∥∇u(t)∥p ⩽
∫
Rd

∥∇(K2 ∗ ρyt )∥p|ν0|(dy) ≲ sup
y

∥ρyt ∥p∥ν0∥var ≲ t−2H(p−1)/p∥ν0∥var. (5.4)

Thus we get (5.2) for j = 1.
For higher order derivative estimates, we use the Malliavin calculus. We first recall the main

ingredients in the Malliavin calculus. Let µ be the classical Wiener measure on CT so that the
coordinate process w is a d-dimensional standard Brownian motion. For an absolutely continuous

function h with h(0) = 0 and
∫ T

0
|ḣ(s)|2ds <∞, the Malliavin derivative of a functional F : CT → R

is defined by

DhF (ω) := lim
ε→0

F (ω + εh)− F (ω)

ε
in L2(CT ;µ).

The following integration by parts formula holds:

Eµ(DhF ) = Eµ

(
F

∫ T

0

ḣ(s)dws

)
.

Recall that on the classical Wiener space (CT , µ), the fBmWH
t =

∫ t

0
KH(t, s)dws can be considered

as a Wiener functional. Below we fix t ∈ (0, T ]. By Girsanov’s construction of weak solutions in
Theorem 4.3 we have

EPx∇jf(wt) = Eµ(Zx
t ∇jf(WH

t + x)), (5.5)

where

Zx
t := exp

(
−
∫ t

0

(K̃HI x
u )(s)dws −

1

2
∥K̃HI x

u ∥2L2
t

)
,

and

I x
u (t) :=

∫ t

0

u(s,WH
s + x)ds.

Since the initial point x does not play any role in the following calculations, without loss of
generality, we may assume x = 0 and drop the superscript. Note that for any γ ⩾ 1,

sup
t∈[0,T ]

Eµ|Zt|γ ⩽ C(γ, T, d,H, p, ∥u∥L∞
T Lp). (5.6)

Fix v ∈ R2. Let h(s) := vs and ∇vf := ⟨∇f, v⟩R2 . By simple calculations, we have for some
constant CH > 0,

DhW
H
t =

∫ t

0

KH(t, s)vds = CHt
H+ 1

2 v ⇒ CHt
H+ 1

2∇vf(W
H
t ) = Dhf(W

H
t ), (5.7)

and thus, by the integration by parts,

CHt
H+ 1

2Eµ(Zt∇vf(W
H
t )) = Eµ(ZtDhf(W

H
t ))

= Eµ
(
Ztf(W

H
t )⟨wt, v⟩R2

)
− Eµ(DhZtf(W

H
t )).

(5.8)

(Claim:) For any γ > 1, there is a constant C = C(T, d,H, γ) > 0 such that for all t ∈ (0, T ],

Eµ|DhZt|γ ⩽ C|v|γ∥ν0∥γvartγ . (5.9)
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By the chain rule, we have

DhZt = −Zt

(∫ t

0

⟨K̃HIu(s), v⟩R2ds+

∫ t

0

(K̃HDhIu)(s)dws + ⟨K̃HDhIb, K̃HIu⟩L2
t

)
and

DhIu(s) =

∫ s

0

⟨∇u(r,WH
r ), DhW

H
r ⟩R2dr = CH

∫ s

0

r
1
2+H∇vu(r,W

H
r )dr.

By BDG’s inequality and Minkowskii’s inequality, for any γ ⩾ 2, we have

Eµ

∣∣∣∣∫ t

0

(K̃HDhIu)(s)dws

∣∣∣∣γ ≲ Eµ
(
∥K̃HDhIu∥γL2(0,t)

) (2.17)

≲ Eµ
(
∥DhIu∥γHqH

t

)
≲

(∫ t

0

r(
1
2+H)qH∥∇vu(r,W

H
r )∥qH

Lγ(µ)dr

)γ/qH

≲ |v|γ
(∫ t

0

r(
1
2+H)qH− 2HqH

γ ∥∇u(r)∥qH

γ dr

)γ/qH

(5.4)

≲ |v|γ∥ν0∥γvar
(∫ t

0

r(
1
2+H)qH−2HqH/γ

′− 2HqH

γ dr

)γ/qH

≲ |v|γ∥ν0∥γvartγ(qH+
1
2−H) ≲ |v|γ∥ν0∥γvartγ ,

where we used the following observation in the fourth inequality:

∥∇vu(r,W
H
r )∥γLγ(µ) =

∫
R2

|∇vu(r, x)|gHr (x)dx ⩽ ∥∇vu(r)∥γγ∥ghr ∥∞ ≲ ∥∇vu(r)∥γγr−2H ,

with ghr is the distributional density of the fBm WH
r . Similarly, we can show

Eµ
(
∥⟨K̃HIb, v⟩R2∥L1

t
+ |⟨K̃HDhIb, K̃HIb⟩L2

t
|
)γ

≲ |v|γ∥ν0∥γvartγ .

Combining the above calculations, by Hölder’s inequality and (5.6), we obtain (5.9). Now by (5.5),
(5.8), (5.9) and Lemma B.1, there is a constant C > 0 such that for all x ∈ Rd and t ∈ (0, T ],

|EPx∇f(wt)| ≲ |||f |||pt−2H/p−H∥ν0∥var,
which in turn implies that

sup
x

|||∇ρxt |||∗p/(p−1) ≲C t−2H/p−H∥ν0∥var.

By the same argument as in (5.4), we obtain

∥∇2u(t)∥p ⩽
∫
Rd

∥∇K2 ∗ ∇ρyt ∥p|ν0|(dy) ≲ sup
y

∥∇ρyt ∥p∥ν0∥var ≲ t−2Hp′−H∥ν0∥2var.

This gives (5.2) for j = 2. By induction, one can show (5.2) for j = 3, 4, · · · .
Next we show the time regularity of u. Let χ ∈ C∞

0 (Rd) with χ(0) = 1 and p ∈ (1, 2). By (4.8),
one sees that for any p1 ⩾ 1/(1−H),

|||u(t)− u(0)|||p ⩽

∥∥∥∥∫
Rd

(K2χ) ∗ (µy
t − δy)(·)ν0(dy)

∥∥∥∥
p

+

∥∥∥∥∫
Rd

(K2(1− χ)) ∗ (µy
t − δy)(·)ν0(dy)

∥∥∥∥
∞

⩽ sup
y

∥(K2χ) ∗ (µy
t − δy)∥p + sup

y
∥(K2(1− χ)) ∗ (µy

t − δy)∥∞

⩽ tγH
(
∥K2χ∥Bγ

p
+ ∥K2(1− χ)∥Bγ

∞

)
+ tβH∥u∥L∞

T L̃p1
, (5.10)

where βH := 1− 2H/(p1(1−H)). For any p1 ∈ (1, 2), by (5.3), it is easy to see that

sup
t∈[0,T ]

|||u(t)|||p1 <∞.

and by [28, Lemma A.3-(iv) and Proposition 2.5], for any γ ∈ (0, 2/p− 1),

K2χ ∈ Bγ
p , K2(1− χ) ∈ C∞

b .
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Thus, for any ε > 0, one can choose p1 close to 2 so that

|||u(t)− u(0)|||p ≲ t[H( 2
p−1)]∧[ 1−2H

1−H ]−ε.

On the other hand, for any 0 < s < t ⩽ T ,

|u(t, x)− u(s, x)| ⩽
∣∣∣∣∫

R2

E(K2(1− χ))(x−Xy
t )− E(K2(1− χ))(x−Xy

s )ν0(dy)

∣∣∣∣
+

∣∣∣∣∫
R2

E(K2χ)(x−Xy
t )− E(K2χ)(x−Xy

s )ν0(dy)

∣∣∣∣ =: J1 + J2.

Since K2(1− χ) ∈ C∞
b , we have

J1 ⩽ ∥∇(K2(1− χ))∥∞ sup
y

E|Xy
t −Xy

s |.

In view of (4.7), we have for any p ∈ (1, 2)

E|Xy
t −Xy

s | ⩽ E
∣∣∣∣∫ t

s

u(r,Xy
r )dr

∣∣∣∣+ E|WH
t −WH

s | ⩽ (t− s)1−
2H
p |||u|||L∞

T L̃p + (t− s)H , (5.11)

which by taking p close to 2 implies that

J1 ≲ (t− s)H , since H < 1/2.

For J2, let ρε be the usual mollifiers. Note that

J2 ⩽

∣∣∣∣∫
R2

E((K2χ) ∗ ρε)(x−Xy
t )− E((K2χ) ∗ ρε)(x−Xy

s )ν0(dy)

∣∣∣∣
+

∣∣∣∣∫
R2

E((K2χ) ∗ ρε −K2χ)(x−Xy
t )ν0(dy)

∣∣∣∣
+

∣∣∣∣∫
R2

E((K2χ) ∗ ρε −K2χ)(x−Xy
s )ν0(dy)

∣∣∣∣ .
By (5.11) and (4.6), we have for any p1, p2 ∈ (1, 2) and γ2 < 2/p2 − 1,

J1 ⩽ ∥∇(K2χ) ∗ ρε∥∞ sup
y

E|Xy
t −Xy

s |+
∑
r=s,t

sup
y

E|(K2χ) ∗ ρε −K2χ|(x−Xy
r )

≲ ε−(1+ 2
p1

)∥K2χ∥p1 |t− s|H + s−
2H
p2 ∥(K2χ) ∗ ρε −K2χ∥p2

≲ ε−(1+ 2
p1

)|t− s|H + s−
2H
p2 εγ2∥K2χ∥Bγ2

p2
.

Now for any δ > 0, one chooses p1 close to 2 and p2 close to 1, and ε = |t− s|H3 ,

J1 ≲ s−2H |t− s|H3 −δ.

This completes the proof. □

Remark 5.2. We would like to mention the following open questions:

• Can we show the limit of H → 1/2 and the regularity of u in t?
• When H = 1/2, it is well known that limt→∞ ∥u(t)∥∞ = 0 when ν0 is a finite measure (see [23]).
Can we show the same assertion for H < 1/2?

• In [25], the ergodicity was obtained for the solution to SDE driven by fBm. Is it possible to
estabilish the ergodicity of (5.1)?

The above result does not work for H = 1
2 since (5.3) is no longer true for p > 2. In what

follows, we consider the backward version of DFSDE related to Navier-Stokes equation:

Xx
s,t = x+

∫ t

s

Bg(X
x
s,r, µ

�
r,T )dr +

√
2(Wt −Ws), (5.12)

where

Bg(x, µ
�) = (K2 ∗ µ�(g))(x).
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The statement of the following theorem is already presented as Theorem 1.7 in the introduction.
Here, we provide its proof.

Theorem 5.3. Let g ∈ L1+ = ∪p>1Lp. For each s ∈ [0, T ] and x ∈ R2, there is a unique strong
solution Xx

s,t to DFSDE (5.12).Moreover, u(s, x) := Bg(x, µ
�
s,T ) ∈ C([0, T );C∞

b (R2)) solves the
following backward Navier-Stokes equation:

∂su+∆u+ u · ∇u+∇p = 0, u(T ) = K2 ∗ g. (5.13)

Proof. Let p0 ∈ (1, 2) and g ∈ Lp0 . We divide the proof into three steps. In step 1, we check the
assumption (Hs

2) with β = 0 for the norm ∥ · ∥p and show the well-posedness of DFSDE (5.12). In
step 2, we show the stability of the solution with respect to the initial value. In step 3, we show
that u is smooth and solves the 2D Navier-Stokes equation.

(Step 1). Let p1 ∈ (2,∞) satisfy 1
p1

+ 1
2 = 1

p0
. For any µ�, ν� ∈ Lp0Ps, by Hard-Littlewood’s

inequality (see [1, Theorem 1.7]), we have

∥Bg(·, µ�)∥p1 ≲ ∥µ�(g)∥p0 ⩽ ∥µ�∥p0∥g∥p0

and

∥Bg(·, µ�)−Bg(·, ν�)∥p1
≲ ∥µ�(g)− ν�(g)∥p0

⩽ ∥µ� − ν�∥p0
∥g∥p0

.

Since ∥Bg(·, µ�)∥p1
is not bounded in ∥µ�∥p0

, we need to truncate it. Define

B̃g(x, µ
�) := Bg(x, µ

�)1∥µ�∥p0⩽1 +
1

∥µ�∥p0

Bg(x, µ
�)1∥µ�∥p0>1.

Then it is easy to see that

∥B̃g(·, µ�)∥p1
≲ ∥g∥p0

, (5.14)

and by the fact Lp0Ps ⊂ L(Lp0 ,Lp0) and Lemma B.5,

∥B̃g(·, µ�)− B̃g(·, ν�)∥p1
≲ ∥µ�(g)− ν�(g)∥p0

⩽ ∥µ� − ν�∥p0
∥g∥p0

.

Thus, by Theorem 4.11, for any T > 0 there is a unique strong solution to

Xx
s,t = x+

∫ t

s

B̃g(X
x
s,r, µ

�
r,T )dr +

√
2(Wt −Ws).

Noting that divB̃g(·, µ�) = 0, by (5.14) and (4.28), we in fact have

B̃g(x, µ
�
r,T ) = Bg(x, µ

�
r,T ).

Then the strong well-posedness holds for DFSDE (5.12).
(Step 2). Let gn ∈ C∞

c (R2) be the smooth approximation of g with ∥gn−g∥Lp0 → 0 as n→ ∞.
Let Xx,n

s,t be the unique solution to the following DFSDE

Xx,n
s,t = x+

∫ t

s

Bgn(X
x,n
s,r , µ

�,n
r,T )dr +

√
2(Wt −Ws),

where µx,n
s,t is the law of Xx,n

s,t . Let

un(s, x) := Bgn(x, µ
�,n
s,T ) =

∫
R2

K2(x− y)µy,n
s,T (g)dy.

By (4.27) and Remark 4.10, one sees that

∥µ�
s,t − µ�,n

s,t∥p0 ≲
∫ t

s

(t− r)−
1+d/p1

2 ∥Bg(·, µ�
r,T )−Bgn(·, µ

�,n
r,T )∥p1dr

≲
∫ t

s

(t− r)−
1+d/p1

2

(
∥µ�

r,T − µ�,n
r,T ∥p0∥gn∥p0 + ∥gn − g∥p0

)
dr

≲
∫ t

s

(t− r)−
1+d/p1

2

(
∥µ�

r,T − µ�,n
r,T ∥p0

+ ∥gn − g∥p0

)
dr.
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Taking t = T , by Gronwall’s inequality, we get

sup
s∈[0,T ]

∥µ�
s,T − µ�,n

s,T ∥p0
≲ ∥gn − g∥p0

.

Therefore,

∥un − u∥L∞
T Lp1 = sup

s∈[0,T ]

∥Bgn(·, µ
�,n
s,T )−Bg(·, µ�

s,T )∥p1

≲ sup
s∈[0,T ]

∥µ�
s,T − µ�,n

s,T ∥p0
∥gn∥p0

+ ∥gn − g∥p0
→ 0 as n→ ∞. (5.15)

(Step 3). Since gn ∈ C∞
c (R2) is smooth, it is well-known that un ∈ C([0, T );C∞

b (R2)) solves

∂sun +∆un + un · ∇un +∇pn = 0, un(T ) = K2 ∗ gn,

and for any T0 < T ,

sup
s∈[0,T0]

sup
n

∥∇kun(s)∥∞ <∞,

which together with (5.15) implis that u ∈ C([0, T );C∞
b (R2)) and solves (5.13). □

Appendix A. Proofs of Propositions 2.1 and 2.3

Proof of Proposition 2.1. Equivalences (2.5) are proven in [55]. Let us prove (2.6). For r = 1, it
follows by (2.5) and Hölder’s inequality. Next we assume r ∈ (1,∞]. Let 1

r + 1
r′ = 1. By (2.5), it

suffices to prove that for any h ∈ L̄r′ ,

I :=

∫
Rd

∫
Rd

h(x)f(x− y)g(y)dxdy ⩽ |||h|||∗r′ |||f |||p|||g|||∗q .

Noting that 1
p′ +

1
r = 1

q , by Hölder’s inequality we have

I =
∑
i,j

∫
Di

∫
Dj

(h(x)r
′
f(x− y)p)

1
q′ (f(x− y)pg(y)q)

1
r (h(x)r

′
g(y)q)

1
p′ dxdy

⩽
∑
i,j

(∫
Di

∫
Dj

h(x)r
′
f(x− y)pdxdy

) 1
q′
(∫

Di

∫
Dj

f(x− y)pg(y)qdxdy

) 1
r

×

(∫
Di

∫
Dj

h(x)r
′
g(y)qdxdy

) 1
p′

⩽
∑
i,j

(
∥1Dih∥

r′
q′

r′ |||f |||
p
q′
p

)(
|||f |||

p
r
p ∥1Djg∥

q
r
q

)(
∥1Dih∥

r′
p′

r′ ∥1Djg∥
q
p′

)
= |||f |||p

∑
i,j

∥1Dih∥r′∥1Djg∥q = |||f |||p|||h|||∗r′ |||g|||∗q .

The proof is finished. □

Proof of Proposition 2.3. (i) We only show (2.10) for p ∈ [1,∞) since (2.9) is similar. Suppose
that for some C0 > 0 and any ϕ ∈ Cc(Rd),

|||µ�(ϕ)|||p ⩽ C0|||ϕ|||p. (A.1)

To show it for all ϕ ∈ L̃p, we divide the proof into four steps. Note that Fatou’s lemma can not
be used directly.

• First we show (A.1) holds for any ϕ = 1O with O being a bounded open set. For n ∈ N, define

ϕn(x) := 1− 1/(1 + d(x,Oc))n.
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Clearly, ϕn ∈ Cc(Rd) and ϕn ↑ 1O. Now by the monotone convergence theorem and Fatou’s
lemma, we have

|||µ�(1O)|||p = ||| lim
n→∞

µ�(ϕn)|||p ⩽ lim
n→∞

|||µ�(ϕn)|||p ⩽ C0 lim
n→∞

|||ϕn|||p ⩽ C0|||1O|||p.

• Next we show (A.1) holds for any ϕ = 1A with A being any Borel subset of O = (−m,m]d.
Define

E :=
{
A ∈ O ∩ B(Rd) : |||µ�(1A)|||p ⩽ C0|||1A|||p

}
.

Let (An)n∈N ⊂ E and An ↓ A. By Fatou’s lemma, we have

|||µ�(1A)|||p = ||| lim
n→∞

µ�(1An
)|||p ⩽ lim

n→∞
|||µ�(1An)|||p ⩽ C0 lim

n→∞
|||1An |||p = C0|||1A|||p,

where the last equality is due to limn→∞ |||1An−A|||p ≲ limn→∞ ∥1{An−A}∩O∥p = 0. So, A ∈ E.
Similarly, if An ↑ A, then A ∈ E. Thus E is a monotone class. Let

A :=
{
Πd

i=1(ai, bi] ∩ (−m,m]d, ai < bi

}
and AΣ be the algebra generated by A through finite disjoint unions. For given A ∈ AΣ, there
is a family of bounded open sets An so that An ↓ A. By Fatou’s lemma again, we have

|||µ�(1A)|||p = ||| lim
n→∞

µ�(1An
)|||p ⩽ lim

n→∞
|||µ�(1An

)|||p ⩽ C0 lim
n→∞

|||1An
|||p ⩽ C0|||1A|||p.

Hence, AΣ ⊂ E. By the monotone class theorem, we have

B(O) ⊂ σ(AΣ) ⊂ E ⊂ B(O).

• Now we show (A.1) holds for any nonnegative bounded measurable function ϕ with support
in O = (−m,m]d. By Lusin’s theorem, for any ε > 0, there is a continuous function ϕε with
support in O so that

∥φε∥∞ ⩽ ∥φ∥∞, lim
ε→0

|{x : ϕ(x) ̸= ϕε(x)}| = 0.

Let Aε := {x : ϕ(x) ̸= ϕε(x)}. By what we have proved, as ε→ 0, we have

|||µ�(ϕ− ϕε)|||p ⩽ 2∥ϕ∥∞|||µ�(1Aε
)|||p ⩽ 2∥ϕ∥∞C0|||1Aε

|||p ⩽ C∥1Aε
∥p → 0.

Therefore, by the dominated convergence theorem,

|||µ�(ϕ)|||p = lim
ε→0

|||µ�(ϕε)|||p ⩽ C0 lim
n→∞

|||ϕε|||p = C0|||ϕ|||p.

• Finally, for general nonnegative ϕ ∈ L̃p, let ϕn(x) := (ϕ(x) ∧ n)1{|x|<n}. By the monotone
convergence theorem and Fatou’s lemma, we have

|||µ�(ϕ)|||p = ||| lim
n→∞

µ�(ϕn)|||p ⩽ lim
n→∞

|||µ�(ϕn)|||p ⩽ C0 lim
n→∞

|||ϕn|||p ⩽ C0|||ϕ|||p.

(ii) Let X denote L̃p or Lp and let XPs denote L̃pPs or LpPs. Suppose that (µ�
n)n∈N is a

Cauchy sequence in XPs. Since the space L(X,X) of all bounded linear operators from X to X is
complete with respect to the operator norm, and (µ�

n)n∈N can be regarded as a Cauchy sequence
in L(X,X) in a natural way, there is an operator T ∈ L(X,X) such that

lim
n→∞

∥µ�
n − T∥L(X,X) = lim

n→∞
sup

∥ϕ∥X⩽1

∥µ�
n(ϕ)− T (ϕ)∥X = 0. (A.2)

By (i), it suffices to show that there is a sub-probability kernel µ� ∈ XPs so that for each ϕ ∈ Cc(Rd),

T (ϕ)(x) = µx(ϕ) for Lebesgue almost all x ∈ Rd. (A.3)

Note that for each ϕ ∈ X, there is a null set Aϕ and a subsequence nk so that for each x /∈ Aϕ,

lim
k→∞

|µx
nk
(ϕ)− T (ϕ)(x)| = 0.
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Let {ϕm}m∈N be a dense subset of Cc(Rd) ⊂ L̃p ∩Lp. By a standard diagonalization method, one
can find a common null set A ⊂ Rd and a subsequence n′k so that for each x /∈ A and m ∈ N,

lim
k→∞

|µx
n′
k
(ϕm)− T (ϕm)(x)| = 0, (A.4)

Moreover, since the dual space of Cc(Rd) is the space of all finite Borel measures, by the Banach–
Alaoglu theorem, for any x ∈ Rd, there is a sub-probability measures µx and a subsequence n′′k(x)
of n′k such that

lim
k→∞

µx
n′′
k (x)

(ϕ) = µx(ϕ),

which together with (A.4) implies that for any x /∈ A and m ∈ N, µx(ϕm) = T (ϕm)(x). From
this and by the density of {ϕm,m ∈ N} in Cc(Rd), we derive (A.3). The completeness of XPs is
obtained.

Next we show the completeness of L̃pP. Let (µ�
n)n∈N be a family of probability kernels. We need

to show that µx is a probability measure. For any m ∈ N, we define ψm ∈ Cc(Rd) by |ψm| ⩽ 1,

ψm(y) = 1 for |y| ⩽ m and ψm(y) = 0 for |y| > 2m.

It follows from (A.3) that there is a common Lebesgue null set A′ such that for all x /∈ A′,

µx(ψm) = T (ψm)(x), for all m ∈ N. (A.5)

We note that by the fact supm |||ψm|||p ≲ supm ∥ψm∥∞ = 1 and (A.2), for each bounded domain D,
we also have

lim
n→∞

sup
m

∫
D

|µx
n(ψm)− T (ψm)(x)|dx = 0, (A.6)

which implies that ∫
D

|T (ψm)(x)|dx ⩽ lim
n→∞

sup
m

∫
D

|µx
n(ψm)|dx ⩽ |D|.

Moreover, since for each n, limm→∞
∫
D
µx
n(ψm)dx = |D|, and by (A.6), we have

lim
m→∞

∫
D

T (ψm)(x)dx = |D|.

This in turn implies that there is a null set A′′ and subsequence mk so that for each x /∈ A′′,

lim
k→∞

T (ψmk
)(x) = 1.

This together with (A.5) implies that for each x /∈ A′ ∪A′′, µx(Rd) = 1.
Finally, we show the uncompleteness of LpP through a counterexample. Consider d = 1 and

for n ∈ N,
µx
n(dy) = 1[0,1](x)1[0,n](y)dy/n.

It is easy to see that for any p ∈ [1,∞),

∥µ�
n∥p = ∥n−11[0,n]∥p/(p−1) = n−1/p → 0, n→ ∞.

The proof is complete. □

Appendix B. Technical Lemmas

Lemma B.1. Let ξ ∼ N(0, σ2) be a d-dimensional normal random variable with mean zero and
variance σ2. For any 1 ⩽ p ⩽ q ⩽ ∞ and j ∈ N0, there is a constant C = C(j, q, p, d) > 0 such

that for all f ∈ L̃p,

|||E∇jf(ξ + ·)|||q ≲C (σ−j + σd/q−d/p−j)|||f |||p. (B.1)
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Proof. Note that by the integration by parts,

|E∇jf(ξ + x)| = (2πσ2)−d/2

∣∣∣∣∫
Rd

f(y + x)∇je−|y|2/2σ2

dy

∣∣∣∣
⩽ (2πσ2)−d/2

∫
Rd

|f(y + x)| |∇je−|y|2/2σ2

|dy

≲ σ−d−j

∫
Rd

|f(y + x)|e−c|y|2/σ2

dy = σ−d−j |f | ∗ ϕσ(x),

where we have used that for some c > 0,

|∇je−|y|2/2σ2

| ≲ σ−je−c|y|2/σ2

=: ϕσ(y).

Let 1 + 1
q = 1

p + 1
r . By Young’s convolution inequality (2.6), we get

|||E∇jf(ξ + ·)|||q ≲ σ−d−j |||f |||p|||ϕσ|||∗r .

By the definition of ||| · |||∗r , we have

|||ϕσ|||∗r =
∑
i

(∫
Di

e−cr|x|2/σ2

dx

)1/r

≲
∫
Rd

(∫
Dz

e−cr|x|2/σ2

dx

)1/r

dz,

where Dz is the unit cube with center z ∈ Rd. Noting that for |z| ⩾
√
d and x ∈ Dz,

|x| ⩾ |z| − |x− z| ⩾ |z| −
√
d/2 ⩾ |z|/2,

we have ∫
|z|⩾

√
d

(∫
Dz

e−cr|x|2/σ2

dx

)1/r

dz ⩽
∫
Rd

e−c|z|2/4σ2

dz ≲ σd.

On the other hand, we clearly have∫
|z|⩽

√
d

(∫
Dz

e−cr|x|2/σ2

dx

)1/r

dz ≲

(∫
Rd

e−cr|x|2/σ2

dx

)1/r

≲ σd/r.

Hence,

|||E∇jf(ξ + ·)|||q ≲ σ−d−j(σd + σd/r)|||f |||p,
which in turn gives the desired estimate. □

Recall

B(α, β) :=

∫ 1

0

rα−1(1− r)β−1dr, for α, β ⩾ 0.

Lemma B.2 (Estimate for Beta functions). For any α ∈ (0, 1] and β > 0, we have for any k ∈ N,

B(α, kβ + 1) ⩽

(
1

α
+

1

β

)
k−α.

Proof. For any h ∈ (0, 1), one sees that

B(α, kβ + 1) ⩽
∫ h

0

rα−1dr + hα−1

∫ 1

h

(1− r)kβdr ⩽
1

α
hα +

1

kβ + 1
hα−1 ⩽

(
1

α
+

1

kβ
h−1

)
hα.

Taking h = k−1, we complete the proof. □

Lemma B.3. For any α > 0, there is a constant C = C(α) > 0 such that for all λ ⩾ 1,

∞∑
m=0

λm

(m!)α
⩽ eCλ1/α lnλ.
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Proof. By Stirling’s formula, we have

∞∑
m=0

λm

(m!)α
⩽ 1 + C

∞∑
m=1

λm

mmα
⩽ 1 + C

∫ ∞

1

λx

xxα
dx = 1 + C

∫ ∞

1

eαx ln(λ1/α/x)dx

⩽ 1 + C

∫ 2λ1/α

1

ex lnλdx+ C

∫ ∞

2λ1/α

e−αx ln 2dx.

From this we derive the desired estimate. □

Lemma B.4 (Gronwall’s inequality). Let f(s, t), g(s, t) : DT → [0,∞) and h : [0, T ] → [0,∞) be
measurable functions. Assume that for all (s, t) ∈ DT ,

f(s, t) ⩽ g(s, t) +

∫ t

s

h(r)(f(s, r) + f(r, T ))dr.

Then we have

f(s, t) ⩽ G(s, t) +

∫ t

s

H(s′, t)

(
G(s′, T ) +

∫ T

s′
G(r, T )H(r)e

∫ r
s′ H(r′)dr′dr

)
ds′,

where

G(s, t) := g(s, t) +

∫ t

s

g(s, r)h(r)e
∫ t
r
h(r′)dr′dr

and

H(r, t) := h(r)

(
1 +

∫ t

r

h(r′)e
∫ t
r′ h(r

′′)dr′′dr′
)
.

Proof. For fixed s ∈ [0, T ], by the assumption we have

f(s, t) ⩽ F (s, t) +

∫ t

s

h(r)f(s, r)dr,

where

F (s, t) := g(s, t) +

∫ t

s

h(r)f(r, T )dr.

By the usual Gronwall’s inequality we get

f(s, t) ⩽ F (s, t) +

∫ t

s

F (s, r)h(r)e
∫ t
r
h(r′)dr′dr

= g(s, t) +

∫ t

s

h(r)f(r, T )dr +

∫ t

s

g(s, r)h(r)e
∫ t
r
h(r′)dr′dr

+

∫ t

s

(∫ r

s

h(r′)f(r′, T )dr′
)
h(r)e

∫ t
r
h(r′)dr′dr

= G(s, t) +

∫ t

s

H(r, t)f(r, T )dr,

where G and H are defined in the lemma. In particular,

f(s, T ) ⩽ G(s, T ) +

∫ T

s

H(r, T )f(r, T )dr,

By Gronwall’s inequality again, we have

f(s, T ) ⩽ G(s, T ) +

∫ T

s

G(r, T )H(r)e
∫ r
s
H(r′)dr′dr,

Combining the above calculations, we obtain the desired estimate. □
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Lemma B.5. Let Ei, be two Banach spaces with norms ∥ · ∥i, i = 1, 2. Let G : E1 → E2 be a
Lipschitz mapping with G(0) = 0 and define

F (x) := G(x)1∥x∥1⩽1 +G(x)1∥x∥1>1/|x|1.

Then for any x, y ∈ E

∥F (x)− F (y)∥2 ⩽ 2∥G∥Lip∥x− y∥1.

Proof. We consider three cases: (i) ∥x∥1 ∧∥y∥1 ⩽ 1; (ii) ∥x∥1 ⩽ 1 < ∥y∥1; (iii) ∥x∥1 ∧∥y∥1 > 1. In
case (i), F (x) = G(x), it is trivial. In case (ii), one sees that

∥F (y)− F (x)∥ = ∥G(y)/∥y∥1 −G(x)∥2 ⩽ ∥(G(y)−G(x))/∥y∥1∥2 + ∥G(x)/∥y∥1 −G(x)∥2
⩽ (∥G∥Lip∥x− y∥1 + ∥G(x)∥2(∥y∥1 − 1))

⩽ ∥G∥Lip (∥x− y∥1 + ∥x∥1(∥y∥1 − ∥x∥1)) ⩽ 2∥G∥Lip∥x− y∥1.

In case (iii), we have

∥F (y)− F (x)∥ =

∥∥∥∥G(x)∥y∥1 −G(y)∥x∥1
∥x∥1∥y∥1

∥∥∥∥
2

⩽
∥(G(x)−G(y))∥y∥1 −G(y)(∥x∥1 − ∥y∥1)∥2

∥x∥1∥y∥1
⩽ ∥G∥Lip∥x− y∥1 + ∥G(y)∥2∥x− y∥1/∥y∥1 ⩽ 2∥G∥Lip∥x− y∥1.

The proof is complete. □

Consider the following PDE:

∂tu = ∆u+ b · ∇u, u0 = ϕ. (B.2)

Theorem B.6. Let q1, p1, p0 ∈ (1,∞] satisfy 2
q1

+ d
p1
< 1. Assume b ∈ Lq1

T L̃p1 and ϕ ∈ C∞
b (Rd).

For any p ∈ [p0 ∨ p1

p1−1 ,∞] with 2
q1

+ d
p0
< 1 + d

p , there is a unique solution u to PDE (B.2) with

|||∇ju(t)|||p ≲ t−
j+d/p0−d/p

2 |||ϕ|||p0
.

Proof. Let (Pt)t⩾0 be the Gaussian heat semigroup. By Duhamel’s formula, we have

u(t) = Ptϕ+

∫ t

0

Pt−s(b · ∇u)(s)ds.

Let p ∈ [p0 ∨ p3,∞] satisfy 1
p3

= 1
p1

+ 1
p ⩽ 1. For j = 0, 1, by Lemma B.1, we have

|||∇ju(t)|||p ≲ t−
j+d/p0−d/p

2 |||ϕ|||p0
+

∫ t

0

(t− s)−
j+d/p3−d/p

2 |||b(s) · ∇u(s)|||p3
ds

≲ t−
j+d/p0−d/p

2 |||ϕ|||p0
+

∫ t

0

(t− s)−
j+d/p1

2 |||b(s)|||p1
|||∇u(s)|||pds. (B.3)

Suppose 2
q1

+ d
p0
< 1 + d

p . By Hölder’s inequality, we have

|||∇u(t)|||q
′
1

p ≲ t−q′1
1+d/p0−d/p

2 |||ϕ|||p0
+ |||b|||q

′
1

Lq1
T L̃p1

∫ t

0

(t− s)−q′1
1+d/p1

2 |||∇u(s)|||q
′
1

p ds,

which implies that by Gronwall’s inequality of Volterra’s type,

|||∇u(t)|||p ≲ t−
1+d/p0−d/p

2 |||ϕ|||p0 .

The proof is complete. □
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72(9): 1232–1253.

[37] Lacker D.: On a strong form of propagation of chaos for McKean-Vlasov equations, Electron. Commun. Probab.

23 (2018), 1–11.
[38] Lacker D.: Hierarchies, entropy, and quantitative propagation of chaos for mean field diffusions. Available in

arXiv:2105.02983. (2021)
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