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Abstract. An infinite population of point entities dwelling in the habitat X = Rd

is studied. Its members arrive at and depart from X at random. The departure rate
has a term corresponding to a logistic-type interaction between the entities. Thereby,
the corresponding Kolmogorov operator L has an additive quadratic part, which usually
produces essential difficulties in its study. The population’s pure states are locally finite
counting measures defined on X. The set of such states Γ is equipped with the vague
topology and thus with the corresponding Borel σ-field. The population evolution is
described at two levels. At the first level, we deal with the Fokker-Planck equation for
(L,F , µ0) where F is an appropriate set of bounded test functions F : Γ → R (domain
of L) and µ0 is an initial state, which is supposed to belong to the set Pexp of sub-
Poissonian probability measures on Γ. We prove that the Fokker-Planck equation has
a unique solution t 7→ µt which also belongs to Pexp. Some of the properties of this
solution are also obtained. The second level description yields a Markov process such
that its one dimensional marginals coincide with the mentioned states µt. The process
is obtained as the unique solution of the corresponding martingale problem.
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1. Introduction

More than 200 years ago, T. R. Malthus suggested to describe the evolution of a popula-
tion by the differential equation Ṅt = (λ−µ)Nt. Here Nt is the population size (number of

entities) at time t, Ṅt stands for the time derivative, and λ and µ are fertility and mortality
rates, respectively. Later on, P. F. Verhulst modified this equation by making the mortal-
ity rate state-dependent in the form µ = µ0 + µ1N , which takes into account the increase
of µ due to the competition between the entities for the resources available at the habitat.
This modification would lead to the following evolution equation Ṅt = (λ−µ0)Nt−µ1N2

t ,
known now as the logistic growth equation [1]. The appearance of the quadratic term
makes the theory more complex. In particular, rough methods which do not take into
account the sign of the quadratic term are no longer adequate. At the same time, this
change of the model essentially alternates the dependence of Nt on t. In particular, it
gets globally bounded in time in contrast to an unbounded growth possible in the Malthus
theory.

In the individual-based modeling, the population members are assigned traits – typi-
cally, spatial locations x ∈ X. Then counting measures γ defined on the trait space X are
naturally employed as the population pure states. That is, for a suitable ∆ ⊂ X, γ(∆)
yields the size of the subpopulation contained in ∆ if the state of the whole population
is γ. The way back to the aforementioned modeling amounts to restricting the theory to
N = γ(X). Here, however, one obtains the possibility to study also infinite populations,
which corresponds to assuming that γ(∆) < ∞ only for some ∆, e.g., for bounded sub-
sets if X = Rd. The set of all such states Γ is equipped with a suitable topology and
hence with the corresponding Borel σ-field B(Γ), which allows one to employ probability
measures on (Γ,B(Γ)) as population states. By P(Γ) we shall denote the set of all such
measures. In this setting, pure states γ appear as the corresponding Dirac measures. An-
other advantage of this approach is that the evolution equation may now appear in its
‘dual’ form Ḟt = LFt, called the backward Kolmogorov equation. Here F : Γ → R is a
suitable test function, whereas L is the Kolmogorov operator (generator) which contains
complete information concerning the elementary acts of the population dynamics.

In this paper, we consider the model in which X = Rd, d ≥ 1, and the Kolmogorov
operator reads

L = L+ + L−, (1.1)

(L+F )(γ) =

∫
X
b(x)[F (γ ∪ x)− F (γ)]dx,

(L−F )(γ) = −
∫
X

(
m(x) +

∫
X
a(x− y)(γ \ x)(dy)

)
[F (γ)− F (γ \ x)]γ(dx),

where we use notations: γ∪x = γ+δx, γ\x = γ−δx, δx being Dirac’s measure centered at
x. In this model, point entities at random arrive at and depart from the habitat X = Rd.
The arrival rate to a given ∆ ⊂ X is

∫
∆ b(x)dx. It is state-independent and may be infinite

for some ∆. The departure part L− is taken in the logistic form: the departure rate from
∆ is ∫

∆
m(x)γ(dx) +

∫
∆

(∫
X
a(x− y)(γ \ x)(dy)

)
γ(dx),
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where the second term corresponds to the departure due to the influence (competition) of
the whole population described by∫

X
a(x− y)(γ \ x)(dy).

Models of this kind – supported by appropriate simulation methods – find numerous
applications in various fields of knowledge, see, e.g., [21] and the publications quoted in
that work.

In relatively simple situations, the stochastic evolution of a given model is described
by solving the backward Kolmogorov equation Ḟt = LF by constructing a C0-semigroup
acting in suitable Banach spaces of test functions, see, e.g., [10, Chapt. II]. In our case,
however, this direct way is rather impossible in view of the complex nature of L given in
(1.1) – in particular, due to the fact that it describes an infinite population. Instead, we
follow the approach in which the evolution of states is obtained as a map [0,+∞) ∋ t 7→
µt ∈ P(Γ), which solves the Fokker-Planck equation

µt(F ) = µ0(F ) +

∫ t

0
µu(LF )du, µ|t=0 = µ0, µ(F ) :=

∫
Fdµ, (1.2)

see [3] for the general theory of such and similar equations. Here µ0 is an initial state and
F is supposed to belong to a sufficiently representative class of functions, F , considered
as the domain for L. To stress this, we shall speak of the Fokker-Planck equation for
(L,F , µ0).

Let Z be an integer valued random variable and φZ(ζ) = Eζ
Z its probability generating

function. The n-th derivative at ζ = 1 (if it exists) is the corresponding factorial moment
of Z, i.e., ϕn(Z) = EZ(Z − 1) · · · (Z − n + 1), see, e.g., [9, Sect. 5.2, page 112]. If Z is

Poissonian with parameter λ, then φZ(ζ) = eλ(ζ−1) and hence ϕn(Z) = λn. For a compact
Λ ⊂ X, set

Γ
(n)
Λ = {γ ∈ Γ : γ(Λ) = n}, n ∈ N0. (1.3)

Then each µ ∈ P(Γ) by the formula pΛ,µ(n) = µ(Γ
(n)
Λ ) determines the distribution of a

random variable, Zµ,Λ, which is Poissonian with parameter κ(Λ) if µ = πκ, where the
latter is the Poisson measure on Γ with intensity measure κ. In dealing with states of
infinite ‘particle’ systems, one often tries to confine the consideration to a suitable subset
of P(Γ), which, in particular, may yield additional technical possibilities as well as to shed
light on the properties of possible solutions. As in [15, 16], we shall use here the set of
sub-Poissonian measures Pexp. Such a measure µ possesses the property

ϕn(Zµ,Λ) =

∫
Λn

k(n)µ (x1, . . . , xn)dx1 · · · dxn, n ∈ N, (1.4)

with k
(n)
µ being positive symmetric elements of L∞(Xn) satisfying Ruelle’s bound, see

Definition 2.3 below. These k
(n)
µ are called correlation functions, cf. [13, 14, 17, 20, 23],

which completely characterize the corresponding state.
The aim of this work is constructing a unique Markov process with cadlag paths cor-

responding to (generated by) L given in (1.1). Here we are going to follow the scheme
elaborated in our previous (rather lengthy) works [15, 16] based on solving a restricted
martingale problem, see [8, Chapter 5]. Its essential feature is that the one dimensional
marginals of the corresponding path measures, which solve this problem, lie in Pexp and
solve (1.2). The uniqueness of path measure solutions means that all finite dimensional
marginals of two such path measures coincide. The latter is obtained from the fact that
their one dimensional marginals coincide, which in turn is obtained by showing that the
Fokker-Planck equation for (L,F , µ0) has a unique solution whenever µ0 is in Pexp. It
should be pointed out here that L as in (1.1) is a particular case of the generator studied
in [12], where the corresponding Markov processes were obtained by solving a stochastic
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equation involving L. However, uniqueness in [12] was obtained only for the departure
part of L which in our notations reads

(L−F )(γ) = −m
∫
X
[F (γ)− F (γ \ x)]γ(dx).

By taking L− as in (1.1) we are going to make the next step in developing this theory.
The present article consists of two parts. First, in Sections 4 and 5 we prove Theorem

3.3 where we state that for each µ0 ∈ Pexp, the Fokker-Planck equation (1.2) for (L,F , µ0)
has a unique solution µt ∈ Pexp. Certain properties of this solution are also described.
Here uniqueness is meant in the class of all measures for which the very solution of this
equation can be defined, see Definition 3.2. Among the key ingredients of the proof we
mention: (a) the proper choice of the domain F , see (3.10); (b) the proof that every
solution of (1.2) for (L,F , µ0) lies in Pexp, see Lemma 4.4; (c) the result of [13] where the
evolution of states t 7→ µt ∈ Pexp describing the stochastic dynamics governed by (1.1)
was obtained with the help of correlation functions. Typically, the domain F is taken as
a subset of the set Cb(Γ) of all bounded continuous functions, and L is supposed to have
the property L : F → Cb(Γ), or at least L : F → Bb(Γ), where the latter is the set of
all bounded measurable functions. However, the presence of the quadratic term in (1.1)
makes such a property barely possible since in proving that LF is bounded the sign of
this quadratic term cannot be taken into account. In our approach, we take F ⊂ Cb(Γ)
and define solutions of (1.2) as maps t 7→ µt for which LF is µt-integrable for (Lebesgue)
almost all t > 0, see Definition 3.2. The construction of F is made in such a way that
±L±F ≥ 0 for each F ∈ F , see (4.18). This allows one to keep track on the sign of the
quadratic term in L−.

A significant property of all µ ∈ Pexp is µ(Γ∗) = 1, where Γ∗ ⊂ Γ consists of those γ

for which ψγ is a finite measure on X, where ψ(x) = (1 + |x|d+1)−1. With the help of
this property Γ∗ can be endowed with the Polish topology induced by the weak topology
of the set of all finite measures on X. Then all µ ∈ P(Γ) with the property µ(Γ∗) = 1
can be redefined as probability measures on Γ∗, see Proposition 2.6 and Remark 2.7. We
use this fact in the second part of the article – Sections 6 and 7 – where we construct
probability measures on the space D[0,+∞)(Γ∗) of all cadlag paths with values in Γ∗. Here
we mostly follow the scheme elaborated in our previous works [15, 16]. In particular, the
path space measures in question are obtained as unique solutions of the corresponding
restricted martingale problems, see Definition 3.8 and Theorem 3.10. In more detail, our
approach is presented and commented in Subsect. 3.3 below. In Section 2, we provide
technicalities, whereas in Section 3 we formulate the main results as Theorems 3.3 and
3.10.

2. Preliminaries

By N0 = N ∪ {0} we mean the set of all nonnegative integers 0, 1, 2, . . . , Λ will always
denote a compact subset of X = Rd. A Polish space, E in general, is a separable space
the topology of which is consistent with a complete metric, see, e.g., [7]. By B(E), Bb(E),
Cb(E), Ccs(E) we denote the corresponding Borel σ-field, the sets of all bounded measur-
able, bounded continuous, and continuous compactly supported functions, respectively.
By B+

b (E), C+
b (E), C+

cs(E) we mean the corresponding cones of positive elements. For a
suitable set ∆, by 1∆ we denote the indicator function.

2.1. Configuration spaces and measures. As mentioned above, by Γ we denote the
standard set of Radon counting measures on X = Rd, which in the sequel are called
configurations. For x ∈ X and γ ∈ Γ, we set nγ(x) = γ({x}) and p(γ) = {x ∈ X : nγ(x) >
0}. The set p(γ) is called the ground configurations for γ, whereas γ itself is the multiset
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(p(γ), nγ), see, e.g., [2]. The latter interpretation is consistent with the notations∫
X
g(x)γ(dx) =

∑
x∈γ

g(x) =
∑
x∈p(γ)

nγ(x)g(x),

where g is a suitable numerical function. The weak-hash (vague) topology of Γ is defined
as the weakest topology that makes continuous all the maps

Γ ∋ γ 7→
∑
x∈γ

g(x), g ∈ Ccs(X).

With this topology Γ is a Polish space, see, e.g., [9]. By Γfin we denote the subset of Γ
consisting of all finite configurations, i.e., those that satisfy γ(X) < ∞. Along with the
subspace topology induced on Γfin from Γ, one can define the following one, see [19, Sect.
2.1]. For ξ = {x1, . . . , xn} and η = {y1, . . . , yn}, set ρn(ξ, η) = minσ∈Sn

∑n
i=1 |xi − yσ(i)|,

where Sn is the corresponding symmetric group. Then define

ρfin(ξ, η) =


ρ|ξ|(ξ,η)

1+ρ|ξ|(ξ,η)
, if |ξ| = |η|;

1, otherwise

It turns out that ρ is a complete metric. Moreover, the corresponding Borel σ-field B(Γfin)
coincides with the σ-field {∆ ∈ B(Γ) : ∆ ⊂ Γfin}. Thus, each measurable G : Γfin → R is

defined by a sequence of symmetric Borel functions {G(n)}n∈N0 such that

G(∅) = G(0), and G(γ) = G(n)(x1, . . . , xn), for γ = {x1, . . . , xn}.

Here symmetric means that

∀σ ∈ Sn G(n)(x1, . . . , xn) = G(n)(xσ(1), . . . , xσ(n)), (2.1)

with Sn being the corresponding symmetric group.

Definition 2.1. A measurable function G : Γfin → R is said to have bounded support if
there exist n ∈ N and a compact Λ ⊂ X such that the following holds: (a) G(n) = 0 for
n > N ; (b) G(γ) = 0 whenever γ(Λ) < γ(X). The set of all such bounded functions which
are bounded is denoted by Bbs.

The Lebesgue-Poisson measure λ on Γfin is defined by the following integrals∫
Γfin

G(γ)λ(dγ) = G(∅) +
∞∑
n=1

1

n!

∫
Xn

G(n)(x1, . . . , xn)dx1 · · · dxn. (2.2)

It is clear, that each G ∈ Bbs is absolutely λ-integrable. The integral in the left-hand side
of (2.2) has the following property, see e.g., [14, Lemma A.1],∫

Γfin

G(η)
∑
ξ⊂η

H(η \ ξ, ξ)λ(dη) =
∫
Γ2
fin

G(η ∪ ξ)H(η, ξ)λ(dη)λ(dξ), (2.3)

where G and H are suitable functions. In view of the multiset terminology adopted here,
for x ∈ p(γ), we write γ\x = γ−δx, i.e., nγ\x(y) = nγ(y) for y ̸= x, and nγ\x(x) = nγ(x)−1.
Similarly, γ ∪ y, y ∈ X, stands for γ + δy. We will also use the notations∑

x∈γ

∑
y∈γ\x

g(x, y) =

∫
X2

g(x, y)γ(dx)γ(dy)−
∫
X
g(x, x)γ(dx),
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and their extensions∑
x1∈γ

∑
x2∈γ\x1

· · ·
∑

xn∈γ\{x1,...,xn−1}

g(x1, . . . , xn) (2.4)

=
∑

G⊂Kn

(−1)lG
∫
XnG

gG(y1, . . . , ynG)γ(dy1) · · · γ(dynG),

where each G is a spanning subgraph of the complete graph Kn on {1, . . . , n}, lG and nG
are the number of edges and the connected components of G, respectively; gG(y1, . . . , yG)
is obtained from g(x1, . . . , xn) be setting xi = yj for all i belonging to j-th connected
component of G. For γ ∈ Γ, by writing γ′ ⊂ γ we mean a configuration such that
p(γ′) ⊂ p(γ) and nγ′(x) ≤ nγ(x), x ∈ p(γ′). Which means that γ′ is a multisubset of γ.
In this case, we say that γ′ is a sub-configuration of γ.

Following [14, 17], we introduce now correlation measures. For n ∈ N, a compact
∆ ⊂ Xn and γ ∈ Γ, let us consider

Q(n)
γ (∆) =

∑
x1∈γ

∑
x2∈γ\x1

· · ·
∑

xn∈γ\{x1,...,xn−1}

1∆(x1, . . . xn). (2.5)

Clearly, Q
(n)
γ is a counting measure: Q

(n)
γ (∆) is the number of tuples (x1, . . . , xn) ∈ ∆ in

state γ. In particular, Q
(1)
γ = γ. It is known, [17, Theorem 1], that the map γ 7→ Q

(n)
γ (∆)

is measurable for each measurable ∆. However, it may be unbounded.

Definition 2.2. A given µ ∈ P(Γ) is said to have all correlations if all γ 7→ Q
(n)
γ (∆),

n ∈ N are µ-integrable for all compact ∆ ⊂ Xn. By Pcor(Γ) we denote the set of all
µ ∈ P(Γ) that have all correlations.

For µ ∈ Pcor(Γ), one can define

χ(n)
µ (·) =

∫
Γ
Q(n)
γ (·)µ(dγ), (2.6)

which is called the correlation measure of n-th order for µ, cf. [14, 17, 23]. The factorial
moment mentioned in (1.4) and the correlation measure are related to each other by

ϕn(Zµ,Λ) = χ(n)
µ (Λn).

In view of this, correlation measures are also called factorial moment measures, cf. [9,
Chapt. 7]. For G ∈ Bbs, we write

(KG)(γ) =
∑
η⋐γ

G(η), (2.7)

where η ⋐ γ means that the sum is taken over finite sub-configurations of γ, including
η = ∅. The advantage of using this K-map can be seen from the following relation

µ(KG) = G(∅) +
∞∑
n=1

χ(n)
µ (G(n)), G ∈ Bbs, (2.8)

see [14, Corollary 4.1]. We use this fact to introduce the set of sub-Poissonian measures,
which plays the key role in our constructions. Let ϑ be a finite (nonempty) collection of
θ ∈ C+

cs(X), and |ϑ| stand for its cardinality. We do not require that all the members of
ϑ are distinct, i.e., ϑ is a multiset. For n = |ϑ|, define

Gϑ(ξ) =

{ 1
n!

∑
σ∈Sn

∏n
i=1 θi(xσ(i)), for ξ = {x1, . . . , xn},

0, otherwise.
(2.9)
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For this function, it follows that(
KGϑ

)
(γ) =

1

n!

∑
x1∈γ

∑
x2∈γ\x1

· · ·
∑

xn∈γ\{x1,...,xn−1}

θ1(x1) · · · θn(xn). (2.10)

Let Gθn be as in (2.9) with |ϑ| = n and all the members of ϑ coinciding with a given
θ ∈ C+

cs(X). Then the function

F θ(γ) =
∏
x∈γ

(1 + θ(x)) = exp

(∑
x∈γ

log(1 + θ(x))

)
, (2.11)

that possibly takes value +∞, can be written in the form

F θ(γ) = 1 +
∞∑
n=1

(KGθn)(γ). (2.12)

Among all µ ∈ P(Γ) we distinguish Poissonian measures. Let κ be a positive Radon
measure on X. Then the Poisson measure πκ, for which κ is the intensity measure, is

defined as such that its correlation measures are χ
(n)
πκ = κ⊗n. Then by (2.8), (2.9) and

(2.12) one gets

πκ(F
θ) = 1 +

∞∑
n=1

1

n!
κ⊗n(Gθn) =

∞∑
n=0

1

n!
[κ(θ)]n = eκ(θ). (2.13)

If κ is absolutely continuous with respect to Lebesgue’s measure on X = Rd, then the
Radon-Nikodym derivative ρ(x) = dκ/dx may be an element of L∞(X). A particular case
is a constant ρ, i.e., ρ(x) ≡ κ for some κ > 0. The corresponding Poisson measure is
called homogeneous. With certain abuse, we denote it by πκ and call κ the intensity of
πκ. In this case,

πκ(F
θ) = exp

(
κ
∫
X
θ(x)dx

)
.

2.2. Sup-Poissonian measures. In this article, the following class of measures on Γ will
be employed.

Definition 2.3. µ ∈ P(Γ) is said to be sub-Poissonian if it has all correlations, i.e.,
µ ∈ Pcor(Γ), see Definition 2.2, and for each n ∈ N and ϑ = {θ1, . . . , θn}, θi ∈ C+

cs(X),
and thus for Gϑ as in (2.9), (2.10), the following holds

n!µ(KGϑ) = χ(n)
µ (Gϑ) ≤ κn⟨θ1⟩ · · · ⟨θn⟩, ⟨θi⟩ :=

∫
X
θi(x)dx, (2.14)

for one and the same κ > 0. The least such κ will be called the type of µ; Pexp will denote
the set of all sub-Poissonian measures whereas Pα

exp, α ∈ R, is to denote the set of all
those µ ∈ Pexp the type of which does not exceed eα.

Remark 2.4. By this definition and (2.10), each µ ∈ Pexp has the following properties:

(a) For each n ∈ N, the map (θ1, . . . , θn) 7→ µ(KGϑ), cf. (2.9), can be continued to a
continuous n-linear functional on the real Banach space L1(Xn).

(b) For θ ∈ C+
cs(X), the map θ 7→ µ(F θ), see (2.11), can be continued to a real

exponential entire function of normal type defined on L1(X).
(c) For each H ∈ B+

b (Γ) such that µ(H) =: CH > 0, the measure µH := C−1
H Hµ, lies

in Pexp and the types of µ and µH satisfy

κµH ≤ κµmax{1;C−1
H supH}.
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Proof. Claim (a) follows by the fact that the linear span of vectors (θ1, . . . , θn) is dense in
L1(Xn). First, one proves that it is dense in Ccs(X

n) – by the Stone-Weierstrass theorem
[4], and then one applies [5, Theorem 4.3, page 90]. Thereafter, one employs the estimate
in (2.14). To prove claim (b), we first note that the function

F θN (γ) := 1 +
N∑
n=1

(KGθn)(γ)

is certainly µ-integrable, and then by (2.12) and (2.14), we get

µ(F θN ) ≤ exp (κµ⟨θ⟩) ,
where κµ is the type of µ. By the Beppo Levi (monotone convergence) theorem this yields
the proof of claim (b). The proof of (c) is immediate. □

Let µ have all correlations. Similarly as in (2.2), by employing its correlation measures

χµ, χ
(n)
µ defined in (2.6) one may write∫
Γfin

G(η)χµ(dη) = G(∅) +
∞∑
n=1

1

n!

∫
Xn

G(n)(x1, . . . , xn)χ
(n)
µ (dx1, . . . , dxn). (2.15)

Such integrals do exist for G ∈ Bbs.

Definition 2.5. Let q : X → [0, 1] be measurable. For a given µ ∈ Pcor(Γ), its q-thinning
is the measure µq ∈ Pcor(Γ) defined by the correlation measures χµq that have the following
form

χµq(dη) = e(η; q)χµ(dη), e(η; q) :=
∏
x∈η

q(x). (2.16)

By standard arguments, see e.g., [5, Theorem 4.14, page 99], it follows that, for each
µ ∈ Pexp, its correlation measure χµ is absolutely continuous with respect to the Lebesgue-
Poisson measure λ. Its Radon-Nikodym derivative

kµ :=
dχµ
dλ

(2.17)

is such that kµ(∅) = 1 and, for ξ = {x1, . . . , xn}, n ∈ N, the following holds, cf. (1.4),

kµ(ξ) = k(n)µ (x1, . . . , xn) :=
dχ(n)

dx1 · · · dxn
(x1, . . . , xn), (2.18)

where k
(n)
µ is a symmetric element of the corresponding L∞(Xn), see (2.1). Then for

µ ∈ Pexp and G ∈ Bbs, we get

µ(KG) =

∫
Γ0

G(η)kµ(η)λ(dη) =: ⟨⟨kµ, G⟩⟩. (2.19)

Since χ
(n)
µ is positive, see (2.5), (2.6), and in view of (2.14), we have that

0 ≤ k(n)µ (x1, . . . , xn) ≤ κnµ , (2.20)

holding for all n and almost all (x1, . . . , xn). For G ≥ 0, by (2.19) and (2.20) one readily
gets that

µ(KG) ≤ ⟨⟨kπκµ , G⟩⟩ = πκµ(KG), (2.21)

which may be interpreted as the ‘sub-Poissonocity’ of µ. The upper estimate in (2.20)
is known as Ruelle’s bound. It turns out that the set of measures possessing correlation
functions satisfying (2.20) contains states of thermal equilibrium of physical particles inter-
acting via super-stable potentials, see [20]. Further iformation concerning sub-Poissonian
measures can be found in [15, sect. 2.2].
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2.3. Tempered configurations and cadlag paths. States from Pexp have one more
significant property which allows one to confine the theory to so called tempered confgu-
rations, the set of which Γ∗ is defined by the condition µ(Γ∗) = 1 that ought to hold for
all µ ∈ Pexp. In the present work, this set is defined by means of the function

ψ(x) =
1

1 + |x|d+1
, x ∈ X, (2.22)

for which we have

0 < ψ(x) ≤ 1, and

∫
X
ψ(x)dx =: ⟨ψ⟩ <∞. (2.23)

Define
Γ∗ = {γ ∈ Γ : Φ(γ) := γ(ψ) =

∑
x∈γ

ψ(x) <∞}. (2.24)

By (2.21) we then have

µ(Φ) =

∫
X
k(1)µ (x)ψ(x)dx ≤ κµ⟨ψ⟩ <∞, (2.25)

which yields that µ(Γ∗) = 1. Next we define

A∗ = {A ∈ B(Γ) : A ⊂ Γ∗}. (2.26)

By (2.24) it follows that Γ∗ is the set of all those configurations γ for which ψγ is a finite
Borel measure on X. This fact allows one to define a kind of weak topology on Γ∗, which
we do as follows. Set

ρ(γ, γ′) = max

{
1; sup
g∈C1

L

|γ(ψg)− γ′(ψg)|

}
, γ, γ′ ∈ Γ∗, (2.27)

where

C1
L :=

{
g ∈ Cb(X) : sup

x∈X
|g(x)|+ sup

x,y∈X, x ̸=y

|g(x)− g(y)|
|x− y|

≤ 1

}
.

It is clear that ρ defined in (2.27) is a metric on Γ∗.

Proposition 2.6. [15, Lemma 2.7 and Corollary 2.8] The metric space (Γ∗, ρ) is complete
and separable. Its Borel σ-field and the collection of sets defined in (2.26) satisfy B(Γ∗) =
A∗.

Remark 2.7. The space of tempered configurations defined in (2.22) and (2.24) is exactly
the same as that in [15], where one can find more information on the properties of this
space. Here we only mention that, in view of the equality B(Γ∗) = A∗, each µ ∈ P(Γ)
with the property µ(Γ∗) = 1 can be redefined as an element of P(Γ∗).

Similarly as in [15], see also [8, Sect. V] and [11, Chapter 4], we introduce the spaces of
cadlag paths with values in Γ∗. For s ≥ 0, we let D[s,+∞)(Γ∗) stand for the set of all cadlag
maps [s,+∞) ∋ t 7→ γt ∈ Γ∗, where we mean the metric topology of Γ∗, see Proposition
2.6. For s = 0, we write DR+(Γ∗). The elemets of D[s,+∞)(Γ∗) will be denoted γ̄. The
restriction of a given γ̄ ∈ D[s,+∞)(Γ∗) is usually considered as an element of D[s′,+∞)(Γ∗)
for every s′ > s. For t ≥ 0, by ϖt we denote the evaluation map, that is, ϖt(γ̄) is the
corresponding value γt of γ̄. For t, t

′ ≥ 0, t′ > t, by F0
t,t′ we mean the σ-field of subsets of

DR+(Γ∗) generated by the collection of maps {ϖu : u ∈ [t, t′]}. Next, set

Ft,t′ =
⋂
ϵ>0

F0
t,t′+ϵ, Ft,+∞ =

⋃
n∈N

Ft,t+n. (2.28)

By [11, Theorem 5.6, page 121] the Skorohod topology turns eachD[s,+∞)(Γ∗) into a Polish
space, measurably isomorphic to the measurable space (D[s,+∞)(Γ∗), σ(Fs,+∞)).
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2.4. Banach spaces of functions. For a given µ ∈ Pexp, its correlation functions kµ,

k
(n)
µ , n ∈ N0, are defined in (2.17), (2.18). Recall that the latter is a symmetric element of
L∞(Xn) satisfying the Ruelle estimate (2.20). Having this in mind we introduce Banach

spaces which contain such kµ. As each k : Γfin → R is defined by its restrictions k(n) to
ξ = {x1, . . . , xn}, n ∈ N0, cf. (2.18), we set

∥k∥α = sup
n∈N0

∥k(n)∥L∞e−αn, α ∈ R, (2.29)

where

∥k(n)∥L∞ = esssup(x1,...,xn)∈Xn |k(n)x1, . . . , xn)|.

Let Kα be the real Banach space of k : Γfin → R for which ∥k∥α <∞. It is obvious that

Kα′ ↪→ Kα, for α′ < α, (2.30)

where we mean continuous embedding. Let k be in Kα, α ∈ R, and G be in Bbs, see
Definition 2.1. By (2.15) and (2.4) one readily gets that

⟨⟨|k|, |G|⟩⟩ =
∫
Γfin

|k(η)||G(η)|λ(dη) <∞.

Recall that KG is defined for all G ∈ Bbs, see (2.7). Keeping this in mind we set

B⋆
bs = {G ∈ Bbs : (KG)(γ) ≥ 0 for all γ ∈ Γ}.

Note that the cone of poinwise positive G ∈ Bbs is a proper subset of B⋆
bs. By [14,

Theorems 6.1 and 6.2 and Remark 6.3] one has the following fact.

Proposition 2.8. For each α ∈ R, the following is true. If k ∈ Kα is such that: (i)
k(∅) = 1; (ii) ⟨⟨k,G⟩⟩ ≥ 0 for all G ∈ B⋆

bs, then k is the correlation function for a unique
µ ∈ Pexp the type of which does not exceed eα.

Let now G : Γfin → R be such that each G(n), n ∈ N, cf. (2.15), is a symmetric element

of L1(Xn). We denote its corresponding norm ∥G(n)∥L1 and set

|G|α = |G(∅)|+
∞∑
n=1

1

n!
enα∥G(n)∥L1 =

∫
Γfin

eα|η||G(η)|λ(dη), (2.31)

and also

Gα = {G : |G|α <∞}, α ∈ R. (2.32)

Thus, each Gα is a weighted L1-type real Banach space. Similarly as in (2.30), we have

Gα ↪→ Gα′ , for α′ < α. (2.33)

However, here the embedding is also dense. Recall that the set of functions Bbs is defined
in Definition 2.1.

Remark 2.9. Regarding the spaces Gα, α ∈ R, the following is true:

(i) For each α ∈ R, Bbs is a dense subset of Gα.
(ii) By (2.13), (2.21) and (2.31) one may write

|G|α = πeα(K|G|), (2.34)

by which the K-map defined in (2.7) can be extended to Gα with an arbitrary
α ∈ R. In this case, K : Gα → L1(Γ, πeα).
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3. The Results

3.1. Solving the Fokker-Planck equation. The Kolmogorov operator L introduced in
(1.1) is subject to the following

Assumption 3.1. The parameters of L satisfy: (a) a(0) > 0; m, a and b are nonnegative
and continuous; (b) the following quantities are finite

sup
x∈X

a(x)

ψ(x)
=: ∥a∥, sup

x∈X
b(x) =: ∥b∥, sup

x∈X
m(x) =: ∥m∥, (3.1)

where ψ(x) is as in (2.22).

According to (3.1) a is integrable, cf. (2.23); hence,∫
X
a(x)dx =: ⟨a⟩ <∞. (3.2)

Moreover, by the triangle inequality and (2.22) we have

a(x− y) ≤ ∥a∥ψ(y)

(
1 +

d+1∑
l=0

(
d+ 1

l

)
|x|l
)

=: ∥a∥ψ(y)ℓa(x). (3.3)

By this estimate it follows that, for each θ ∈ C+
cs(X), the following holds, see (2.24) and

(3.3),

∀γ ∈ Γ∗
∑
x∈γ

θ(x)
∑
y∈γ\x

a(x− y) ≤ γ(ψ)∥a∥
∑
x∈γ

θ(x)ℓa(x) <∞, (3.4)

since the support of θ is compact.
Below we use the following functions of t ≥ 0 and x ∈ X

qt(x) = e−m(x)t, ϱt(x) =


(
1− e−m(x)t

) b(x)
m(x) , if m(x) > 0;

b(x)t, if m(x) = 0.
(3.5)

Let us turn now to defining solutions of (1.2), which we precede by the following reminder,
see e.g., [11, pages 112, 113]. A subset C ⊂ Cb(Γ) is said to be separating if, for each
µ1, µ2 ∈ P, the equality µ1(F ) = µ2(F ) holding for all F ∈ C implies µ1 = µ2. If C is
closed under multiplication and separates points of Γ, it is separating. The latter property
means that, for each γ1 ̸= γ2, one finds F ∈ C such that F (γ1) ̸= F (γ2).

Definition 3.2. Fix separating F ⊂ Cb(Γ) and µ0 ∈ P(Γ). A map R+ ∋ t 7→ µt ∈ P(Γ) is
said to be a solution of the Fokker-Planck equation (1.2) for (L,F , µ0) if, for each F ∈ F ,
the following holds:

(i) LF is absolutely µt-integrable for Lebesgue-almost all t, and the map t 7→ µt(LF )
is measurable and Lebesgue-integrable on each [0, T ], T > 0.

(ii) The equality in (1.2) holds true.

Obviously, the domain F should be separating if one strives for uniqueness of the
solutions of (1.2). Typically, see, e.g., [8, page 78], generators (L,F) are chosen in such a
way that L : F → Bb(Γ), where the latter is the set of all bounded measurable functions
F : Γ → R. In our case, however, it is barely possible in view of the quadratic term in
L−. It might also be clear from this definition that the proper choice of F is one of the
main technical aspects of the current research.

For θ ∈ C+
cs(X), we set

Φθ(γ) = γ(θ) =
∑
x∈γ

θ(x), (3.6)
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and then

Φθτ (γ) =
Φθ(γ)

1 + τΦθ(γ)
=

∫ +∞

0
Φθ(γ) exp

(
−α

[
1 + τΦθ(γ)

])
dα, τ ∈ (0, 1/2]. (3.7)

It is obvious that both Φθ and Φθτ are vaguely continuous, and also

0 ≤ Φθτ (γ) ≤ 1/τ γ ∈ Γ.

By ϑ we denote a finite multiset consisting of the elements of C+
cs(X), see (2.9), (2.14).

Define

Ψϑτ (γ) =
∏
θ∈ϑ

Φθτ (γ), Ψ∅
τ (γ) ≡ 1. (3.8)

Clearly, all Ψϑτ are bounded and continuous. Thereafter, we set

Θ = {θ ∈ C+
cs(X) : ⟨θ⟩ ≤ ⟨ψ⟩, θ(x) ≤ 1, x ∈ X}, (3.9)

see (2.14), (2.22) and (2.23), and

Fτ = {Ψϑτ : all possible finite ϑ ⊂ Θ}, F =
⋃

τ∈(0,1/2]

Fτ . (3.10)

Obviously, each Fτ separates points of Γ. For one can take θ ∈ Θ the support of which
contains some x ∈ p(γ1) and such that θ(y) = 0 for all y ∈ p(γ2). Also, by the very
definition (3.8), each Fτ is closed under multiplication and hence separating, see e.g.,
[11, Theorem 4.5, page 113]. Thus, so is F . The choice of the upper bounds in (3.9)
will be explained later. Here we just recall that ψ(x) ≤ 1 and hence Θ is closed under
multiplication.

To proceed further, we introduce the following notions. First we recall that the K-map
and the spaces Gα are defined in (2.7) and (2.32), respectively. Then we set

Fmax = {F = KG : G ∈ Gα for all α ∈ R}, (3.11)

see Remark 2.9. Note that Fmax contains also unbounded functions. For a compact Λ ⊂ X
and γ ∈ Γ, define

NΛ(γ) =
∑
x∈γ

1Λ(x) = γ(Λ), (3.12)

which is the total number of the elements of γ contained in Λ, cf. (1.3). Now we can
formulate our first statement. Recall that F θ is defined in (2.12).

Theorem 3.3. Let the parameters of the Kolmogorov operator L introduced in (1.1) satisfy
Assumption 3.1 and F be as in (3.10). Then, for each µ0 ∈ Pexp, the Fokker-Planck
equation for (L,F , µ0) has a unique solution such that µt ∈ Pexp for all t ≥ 0. This
solution has the following properties:

(a) For each θ ∈ C+
cs(X),

µt(F
θ) ≤ πϱt(F

θ)µqt0 (F
θ), t > 0, (3.13)

ϱt and qt are as in (3.5) and µqt0 is the qt-thinning of µ0, see Definition 2.5.
(b) For each compact Λ ⊂ X and n ∈ N, there exists Cn,Λ > 0 such that

∀t > 0 µt(N
n
Λ) ≤ Cn,Λ, (3.14)

i.e., the moments of the observable (3.12) are globally bounded in time.
(c) The sets defined in (3.10) and (3.11) satisfy F ⊂ Fmax, and µt solves the Fokker-

Planck equation (1.2) with each F ∈ Fmax.
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Let us make some comments to this statement. A priori we look for solutions among
all µ ∈ P(Γ) satisfying item (i) of Definition 3.2 – restricting only the choice of the initial
state µ0. The result is that the solution is unique and lies in Pexp; i.e., the evolution leaves
invariant the set of sub-Poissonian measures. Note that item (i) of Definition 3.2 means

∀F ∈ F ∀T > 0

∫ T

0
µt(|LF |)dt <∞. (3.15)

The measure µ̃t such that µ̃t(F
θ) = RHS(3.13) is the convolution, see [18, page 15], of two

states: the Poissonian state πϱt describing the distribution of the newcomers; the thinned
initial state. The inequality in (3.13) indicates that the sign of the quadratic term in
L− was taken into account properly. Finally, the boundedness as in (3.14), which holds
also if m(x) ≡ 0, is of the same nature as the boundedness of Nt in the original Verhulst
model. As already mentioned, the set Fmax contains also unbounded functions, which are
µt-integrable for all t > 0, see (2.19).

3.2. The Markov process. Theorem 3.3 yields the evolution of states µ0 → µt of the
model corresponding to the Kolmogorov operator (1.1). A more comprehensive description
of the evolution of this model can be obtained by constructing a Markov process. In
this work, we follow the way elaborated in [15, 16] in which the process in question is
obtained by solving a restricted martingale problem, which yields probability measures on
the corresponding space of cadlag paths. The central role here is played by the Fokker-
Planck equation, especially stated in Theorem 3.3 uniqueness, the facts that its solutions
lie in the class of sup-Poissonian measures and that the unique solution satisfies (1.2) with
all F ∈ Fmax.

As just mentioned, the evolution µ0 → µt related to (1.2) leaves invariant the set
of measures Pexp the elements of which have the property µ(Γ∗) = 1, see Remark 2.7.
Therefore, it might be natural to construct a process with values in Γ∗, cf. (2.28), such
that its one dimensional marginals solve the Fokker-Planck equation. Such a process will
be obtained as a solution of the restricted martingale problem involving L, the domain of
which should be consistent with the domain used in solving the Fokker-Planck equation.
Thus, we start by setting

F̃v(γ) = exp

(
−
∑
x∈γ

v(x)ψ(x)

)
, v ∈ C+

b (X). (3.16)

Concerning such functions it is known the following, see [8, Lemma 3.2.5 and Theorem
3.2.6, page 43].

Proposition 3.4. There exists a countable set V ⊂ C+
b (X), that contains constants and

is closed under addition, such that the set F̃ = {F̃v : v ∈ V} has the following properties:

(i) The space of B(Γ∗)-measurable functions is the bounded pointwise closure of F̃ ,

see [8, page 41], and B(Γ∗) is generated by F̃ , i.e., B(Γ∗) = σ(F̃).

(ii) F̃ is strongly separating and hence separating. The former implies that this set is

weak convergence determining. That is, if µn(F̃v) → µ(F̃v) for all F̃v ∈ F̃ , then
µn ⇒ µ, holding for {µn} ⊂ P(Γ∗) and µ ∈ P(Γ∗).

For F̃v as in (3.16), one can write, cf. (2.7) and (2.16),

F̃v(γ) =
∏
x∈γ

(1 + hv(x)) =
∑
ξ⋐γ

e(ξ;hv) = (Ke(·;hv))(γ), (3.17)

hv(x) = e−v(x)ψ(x) − 1.
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It is clear that C−1
v,µ := µ(F̃v) > 0 for each v ∈ V and µ ∈ P(Γ∗). In the sequel, we use the

following measures, cf. item (c) of Remark 2.4,

µv = Cv,µF̃vµ. (3.18)

Proposition 3.5. Along with the properties mentined in Proposition 3.4, the set F̃ has
the following ones:

(a) for each µ ∈ Pexp and v ∈ V, the measure µv introduced in (3.18) is in Pexp, and
the types of the two measures, see Definition 2.3, varify κµv = max{Cv,µκµ;κµ}.
Moreover, for all appropriate G : Γfin :→ R, the correlation functions of µv and µ
satisfy

⟨⟨kµv , G⟩⟩ = Cv,µ⟨⟨kµ, Gv⟩⟩, (3.19)

Gv(η) = exp

(
−
∑
x∈η

v(x)ψ(x)

)∑
ξ⊂η

e(ξ;hv)G(η \ ξ).

where e(·;hv)) is as in (3.17).

(b) F̃ ⊂ Fmax, where the latter set is defined in (3.11).

(c) For each µ ∈ Pexp and F ∈ F̃ , it follows that µ(|LF |) <∞.

Proof. The validity of the bound for κµv readily follows from (2.14) and (3.16). To prove
the validity of (3.19) we use the following formula, see [14, Definition 3.2],

(KG1)(γ)(KG2)(γ) = K(G1 ⋆ G2)(γ), (3.20)

(G1 ⋆ G2)(η) =
∑
ξ1⊂η

∑
ξ2⊂η\ξ1

G1(ξ1 ∪ ξ2)G2(η \ ξ2),

where both G1, G1 are suitable functions on Γfin. For G as in (3.19), by (2.19) and (3.20),
and then by (2.3), we get

⟨⟨kµv , G⟩⟩ = Cv,µ⟨⟨kµ, e(·, hv) ⋆ G⟩⟩ (3.21)

= Cv,µ

∫
Γfin

kµ(η)
∑
ξ1⊂η

∑
ξ2⊂η\ξ1

e(ξ1 ∪ ξ2;hv)G(η \ ξ2)λ(dη)

= Cv,µ

∫
Γ3
fin

kµ(η ∪ ξ1 ∪ ξ2)e(ξ1;hv)e(ξ2;hv)G(η ∪ ξ1)λ(dη)λ(dξ1)λ(dξ2)

= Cv,µ

∫
Γ2
fin

kµ(η ∪ ξ2)e(ξ2;hv)G(η)

∑
ξ1⊂η

e(ξ1;hv)

λ(dη)λ(dξ2)

= Cv,µ

∫
Γfin

kµ(η)e(η; 1 + hv)

∑
ξ⊂η

e(ξ;hv)G(η \ ξ)

λ(dη),

which yields (3.19) if one takes into account the following evident equality, see (3.17),

∑
ξ⊂η

∏
x∈ξ

hv(x) =
∏
x∈η

(1 + hv(x)) = exp

(
−
∑
x∈η

v(x)ψ(x)

)
.
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To prove the validity of (b), we have to show that e(·;hv) ∈ Gα, α ∈ R. By (2.34) it
follows that

|e(·;hv)|α =

∫
Γfin

eα|ξ|
∏
x∈ξ

(
1− e−v(x)ψ(x)

)
λ(dξ) (3.22)

≤
∫
Γfin

eα|ξ|

∏
x∈ξ

v(x)ψ(x)

λ(dξ)

≤ exp (eα∥v∥⟨ψ⟩) , ∥v∥ = sup
x∈X

v(x),

which completes the proof of item (b). By the same calculations as in (3.21) and (3.22)
one shows that the functions that appear (3.19) satisfy

|Gv|α ≤ exp (eα∥v∥⟨ψ⟩) |G|α (3.23)

holding for all α ∈ R.
By (3.16) one gets

F̃v(γ ∪ x)− F̃v(γ) = −F̃v(γ)
[
1− e−v(x)ψ(x)

]
, (3.24)

|F̃v(γ ∪ x)− F̃v(γ)| ≤ v(x)ψ(x),

cf. (3.22). Then by (1.1) it follows that

|L+F̃v(γ)| ≤
∫
X
b(x)v(x)ψ(x)dx ≤ ∥b∥∥v∥⟨ψ⟩, (3.25)

see (2.23). In dealing with L−F̃v, we first take F̃vn with vn = v1∆n , ∆n := {x ∈ X : |x| ≤
n}. In this case, by (3.24) and (3.4) we get

|L−F̃vn(γ)| ≤ ∥m∥∥v∥
∑
x∈γ

ψ(x) +
∑
x∈γ

vn(x)ψ(x)
∑
y∈γ\x

a(x− y) (3.26)

≤ ∥m∥∥v∥γ(ψ) + γ(ψ)∥a∥
∑
x∈γ

vn(x)ℓa(x) <∞.

At the same time, by (2.19), (2.20), the first line in (3.26) and (3.2) it follows that

µ(|L−F̃vn |) ≤ ∥m∥∥v∥
∫
X
k(1)µ (x)dx+

∫
X2

k(2)µ (x, y)vn(x)ψ(x)a(x− y)dxdy (3.27)

≤ ∥v∥κµ⟨ψ⟩(∥m∥+ κµ⟨a⟩).

By the monitione convergence theorem one then gets that

µ(|L−F̃v|) ≤ RHS(3.27),

which together with the estimate in (3.25) yields the proof of claim (c). □

Remark 3.6. By (3.27) one readily gets the following extension of claim (c) of Proposition
3.5. For a subset, P ⊂ Pexp, assume that supµ∈P κµ =: κ <∞. Then

sup
µ∈P

µ(|LF̃v|) ≤ ∥v∥⟨ψ⟩(∥b∥+ ∥m∥κ + ⟨a⟩κ2).

Fix now some t2 > t1 ≥ 0, F̃v as in (3.16) and consider

Q±(γ̄) =

∫ t2

t1

(L±F̃v)(ϖu(γ̄))du, Q = Q+ + Q−.
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Clearly, Q is F[t1,+∞)-measurable. By the first line of (3.24) and (3.25) Q+ is bounded,

but Q− may take value −∞.

Proposition 3.7. Let P ∈ P(D[0,+∞)(Γ∗)) be such that P ◦ ϖ−1
u ∈ Pexp for all u ≥ 0.

Moreover, for each t > 0, assume that supu∈[0,t] κu =: κ < ∞, where κu is the type of

P ◦ϖ−1
u , see Definition 2.3. Then P (|Q|) <∞.

Proof. As mentioned above, Q+ is bounded; hence, it remains to prove that P (|Q−|) <∞.
First, as in (3.26) we take

Q−
n (γ̄) =

∫ t2

t1

(L−F̃vn)(ϖu(γ̄))du, n ∈ N.

Note that |Q−
n (γ̄)| = −Q−

n (γ̄), see (3.24), and Q−
n : D[0,+∞)(Γ∗) → R, see (3.26). By the

assumption of this statement it follows that P ◦ϖ−1
u =: µu ∈ Pexp; hence,∫ t2

t1

P (|(L−F̃vn) ◦ϖu|)du =

∫ t2

t1

(P ◦ϖ−1
u )(|(L−F̃vn)|)du (3.28)

=

∫ t2

t1

µu(|(L−F̃vn)|)du ≤ (t2 − t1)∥v∥κ⟨ψ⟩(∥m∥+ κ⟨a⟩),

see (3.27) and Remark 3.6. By the Tonelli and Fubini theorems, see [5, Theorems 4.4 and
4.5, page 91], it then follows

P (|Q−
n |) ≤ RHS(3.28),

which by the monotone convergence theorem yields the proof. □

For some s ≥ 0 and 0 ≤ t1 < t2, let J : D[s,+∞) → R be Fs,t1-measurable. Then for

F ∈ F̃ , define

H(γ̄) =

[
F (ϖt2(γ̄))− F (ϖt1(γ̄))−

∫ t2

t1

(LF )(ϖu(γ̄))du

]
J(γ̄). (3.29)

The next definition is an adaptation of the corresponding definition in [8, Sect. 5.1, pages
78, 79], see also [15, Definition 3.3]. Herein, for s ≥ 0 and µ ∈ Pexp, we deal with
probability measures on D[s,+∞)(Γ∗), cf. Proposition 3.7.

Definition 3.8. A family of probability measures {Ps,µ : s ≥ 0, µ ∈ Pexp} is said to be a
solution of the restricted martingale problem if for all s ≥ 0 and µ ∈ Pexp, the following
holds: (a) Ps,µ ◦ϖ−1

s = µ; (b) Ps,µ ◦ϖ−1
u ∈ Pexp for all u > s; (c) for all t > s, the types

κu of Ps,µ ◦ϖ−1
u satisfy supu∈[s,t] κu <∞; (d) Ps,µ(H) = 0, holding for H as in (3.29) with

each F ∈ F̃ and every bounded function J : D[s,+∞)(Γ∗) → R which is Fs,t1-measurable,
see (2.28). The restricted martingale problem is said to be well-posed if it has a unique
solution in the following sense: if {Ps,µ : s ≥ 0, µ ∈ Pexp} and {P ′

s,µ : s ≥ 0, µ ∈ Pexp}
solve the problem, then all finite dimensional marginals of Ps,µ and P ′

s,µ coincide for all s
and µ, see [11, page 182].

Remark 3.9. Concerning the notions introduced in Definition 3.8 one should remark the
following:

(a) By Proposition 3.7 H as given in (3.29) is absolutely Ps,µ-integrable for each s and
µ.

(b) The map [0,+∞) ∋ t 7→ P0,µ0 ◦ ϖt, t > 0 solves the Fokker-Planck equation for
(L,F , µ0). Indeed, by claim (c) of Theorem 3.3 and claim (b) of Proposition 3.5,
the solution of the Fokker-Planck equation (1.2) for (L,F , µ) solves this equation
also with each F ∈ F̃ . At the same time, the map in question solves (1.2) with

each F ∈ F̃ , which can be obtained by taking J ≡ 1 and interchanging integrations
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as in the proof of Proposition 3.7. Since the solution of (1.2) is unique the two
discussed solutions coincide, which yields the mentioned property.

(c) The adjective “restricted” points to condition (b) of Definition 3.8 wich forces the
one dimensional marginals to be in Pexp.

Another important remark is that the function J in (3.29) can be taken in the form

J(γ̄) = J1(ϖs1(γ̄)) · · · Jm(ϖsm(γ̄)), (3.30)

with all possible choices of m ∈ N, J1, . . . , Jm ∈ C+
b (Γ∗) such that Jl(γ) > 0 for all γ ∈ Γ∗,

l = 1, . . . ,m, and s ≤ s1 < s2 < · · · < sm ≤ t1, see eq. (3.4) on page 174 of [11]. We are
going to use this in the proof of Theorem 3.10 which we formulate now.

Theorem 3.10. Let L and F̃ be as (1.1) and Proposition 3.4, respectively. Then

(a) the restricted martingale problem has a unique solution in the sense of Definition
3.8;

(b) the stochastic process related to the family

{D[s,+∞)(Γ∗),Fs,+∞, {Fs,t : t ≥ s}, {Ps,µ : s ≥ 0, µ ∈ Pexp} : s ≥ 0}

is Markov.

3.3. The scheme of the proof of both theorems and comments.

3.3.1. Concerning Theorem 3.3. As mentioned above, in [13] there was proved the exis-
tence of a map t 7→ µt ∈ Pexp, which describes the evolution of states of the model with
the generator (1.1). It was done by constructing the evolution of the corresponding cor-
relation functions, see Proposition 5.3 below. However, it has remained unclear whether
this map describes the evolution in question in a unique way – an effect of the lack of a
‘canonical’ way of constructing solutions, e.g., by means of a C0-semigroup. Our approach
to this problem is based on the expectation that the Fokker-Planck equation (1.2) – being
a weaker version of the evolution equation – would be more accessible for solving it by ex-
isting methods. In this case, however, the weakness just mentioned imposes the necessity
of specifying its solutions, which we do by means of the triple (L,F , µ0), see Definition
3.2. In view of this, the choice of F and of the class of initial states becomes a crucial
aspect of the theory. As a benefit, one can raise and solve the problem of uniqueness of
solutions understood as the coincidence of any two of them specified by the same triple.
In Theorem 3.3 we state that the solution constructed in [13] is the unique solution of the
the Fokker-Planck equation (1.2) corresponding to the triple (L,F , µ0) with µ0 ∈ Pexp.
This is done in the following steps.

• In order to be able to control the sign of the quadratic term in L−, we introduce
functions F : Γ → R, see (3.10), in such a way that ±L±F ≥ 0, which is done
in subsect. 4.2, see (4.18). This allows one to control µt(F ) for possible solutions
µt, see (4.24), (4.25), and thereby to extend the domain of L to a special class of
unbounded functions, see Lemma 4.2. By means of this extension we then prove,
see Lemma 4.4, that each solution lies in Pexp, which is a key point of the whole
theory.

• In Lemma 4.1, we prove the inclusion F ⊂ Fmax, see claim (c) of Theorem 3.3.
By (2.19) this result allows one to pass to the correlation functions and thus to
prove (see Section 5) that the evolution t 7→ µt ∈ Pexp constructed in [13] solves
the Fokker-Planck equation for any F ∈ Fmax whenever µ0 ∈ Pexp. The proof of
uniqueness is mainly based on the fact proved in Lemma 4.4. Note, however, that
the presence of the quadratic term in L− produces essential difficulties also in this
part.
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3.3.2. Concerning Theorem 3.10. In constructing the Markov process describing the sto-
chastic evolution of the model corresponding to L we mostly follow the way elaborated
in our works [15, 16]. It is based on solving the restricted martingale problem, which in
an intrinsic way is related with the Fokker-Planck equation. To see this, it is enough to
compare (1.2) and (3.29). In particular, uniqueness in this case is a consequence of the
same property proved in Theorem 3.3. The proof consists in the following steps:

• We modify the model described by L given in (1.1) by multiplying the model
parameters by a certain function ψσ, see (6.1), (6.2). As a result, we obtain the
family of generators {Lσ : σ ∈ (0, 1]} corresponding to so called ‘auxiliary models’.
For these models, all the results of [13] and the first part of this work hold true.
At the same time, the mentioned modification allows one to directly construct
Markov transition functions pσt , see subsect. 6.2, which is impossible for the initial
model. By standard methods one then gets, see (7.4), the finite dimensional laws
of the Markov processes corresponding to the auxiliary models.

• As mentioned above, by means of methods used in the first part we construct
the evolution t 7→ µσt ∈ Pexp. At the same time, for σ ∈ (0, 1], the transition
functions pσt define the evolution t 7→ µ̂σt by the formula µ̂σt (·) =

∫
pσt (γ, ·)µ0(dγ),

cf. (6.34). In Lemma 6.6, we show that µ̂σt = µσt , which is one of the crucial
points of the construction. Then in Lemma 7.5 we prove that µσt ⇒ µt as σ → 0,
where the latter is the evolution constructed in Theorem 3.3. This fact and the
Chentsov-like estimates obtained in Lemma 7.3 yield the following: (a) the Markov
processes corresponding to Lσ, σ ∈ (0, 1], have cadlag paths; (b) these processes
weakly converge as σ → 0 to a unique process with cadlag paths, which is the
process in question.

4. Properties of Possible Solutions of the Fokker-Planck Equation

In this section, we obtain a number of a priori properties of the solutions of (1.2) which
then allow us to develop the tools for proving Theorem 3.3.

4.1. A property of the domain. The principal technical aspect of our approach consists
in dealing with correlation functions of the states in question rather than with the states
themselves. In view of this, we use their relationship expressed in (2.19), which is based
on the possibility to present the elements of F in the form F = KG, see (2.7). Recall
that the K-map can be extended to Gα, see Remark 2.9. Below by K we understand this
extension.

Lemma 4.1. For each α ∈ R, finite ϑ ⊂ Θ, see (3.9), and τ ∈ (0, 1/2], there exists a
unique Gϑτ ∈ Gα such that Ψϑτ = KGϑτ . In other words, F ⊂ Fmax.

Proof. Fix some ϑ ⊂ Θ, and write ϑ = {θ1, . . . , θn}, n ∈ N. By (3.7) and (3.8) one writes

Ψϑτ (γ) =

∫ +∞

0
· · ·
∫ +∞

0
e−(β1+···+βn)Ψϑ(γ) exp

−τ
∑
x∈γ

n∑
j=1

βjθj(x)

 dβ1 · · · dβn, (4.1)

where

Ψϑ(γ) =
∏
θ∈ϑ

Φθ(γ) =

(∑
x∈γ

θ1(x)

)
· · ·

(∑
x∈γ

θn(x)

)
. (4.2)

For a positive integer l ≤ n, let d = (δ1, . . . , δl) be a division of {1, . . . , n} into nonempty
subsets satisfying |δj | ≥ |δk| for j < k. Let also dl be the set of all such divisions.
Noteworthy, its cardinality is S(n, l) – Stirling’s number of second kind. For d ∈ dl, we set

θ̂k(x) =
∏
i∈δk

θi(x), k = 1, . . . , l. (4.3)
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Then by (2.9), (2.10) one gets the following relation, inverse to that in (2.4),

Ψϑ(γ) =
n∑
l=1

∑
d∈dl

∑
x1∈γ

θ̂1(x1)
∑

x2∈γ\x1

θ̂2(x2) · · ·
∑

xl∈γ\{x1,...,xl−1}

θ̂l(xl)

 (4.4)

=
n∑
l=1

l!
∑
d∈dl

(KGϑ̂)(γ), ϑ̂ := {θ̂1, . . . , θ̂l},

where Gϑ̂ is as in (2.9). Note that each θ̂k is in Θ – since ψ(x) ≤ 1, see (2.22). Now we
set, cf. (3.17),

Hϑ
β (η) =

∏
x∈η

(
e−τ θ̃β(x) − 1

)
, θ̃β(x) =

n∑
j=1

βjθj(x), η ∈ Γfin. (4.5)

Then

exp

−τ
∑
x∈γ

n∑
j=1

βjθj(x)

 = exp

(
−τ
∑
x∈γ

θ̃β(x)

)

=
∏
x∈γ

(
1 + [e−τ θ̃β(x) − 1]

)
=
∑
η⋐γ

Hϑ
β (η) = (KHϑ

β )(γ),

and further, see (4.1),

Ψϑτ (γ) =
n∑
l=1

∑
d∈dl

∫ +∞

0
· · ·
∫ +∞

0
e−(β1+···+βn)l!(KGϑ̂)(γ)(KHϑ

β )(γ)dβ1 · · · dβn. (4.6)

In view of (3.20), we have

(KGϑ̂)(γ)(KHϑ
β )(γ) = (K(Gϑ̂ ⋆ Hϑ

β ))(γ), (4.7)

(Gϑ̂ ⋆ Hϑ
β )(η) =

∑
ξ1⊂η

∑
ξ2⊂η\ξ1

Gϑ̂(ξ1 ∪ ξ2)Hϑ
β (η \ ξ2).

Note that the sums in the right-hand side of (4.7) are finite since η is a finite multiset.
This allows for interchanging K and the integration in (4.6). Then (4.6) implies

Ψϑτ = KGϑτ ,

with

Gϑτ (η) =
n∑
l=1

∑
d∈dl

∫ +∞

0
· · ·
∫ +∞

0
e−(β1+···+βn)l!(Gϑ̂ ⋆ Hϑ

β )(η)dβ1 · · · dβn. (4.8)

To prove the lemma we have to estimate the norms of Gϑτ , see (2.31) and (2.32). To
interchange the β-integration with that over Γfin we employ the Tonelli-Fubini theorems
[5, Theorems 4.4 and 4.5, page 91]. By the evident inequality 1 − e−u ≤

√
2u, u ≥ 0, we

have, cf. (4.5),

|Hϑ
β (η)| ≤

∏
x∈η

(1− e−τ θ̃β(x)) ≤ (2τ)|η|/2e(η; θβ) ≤ e(η; θβ), θβ(x) :=

√
θ̃β(x), (4.9)
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see (2.16). According to (2.31) and by means of (2.3), (4.9) we then get

|Gϑ̂ ⋆ Hϑ
β |α ≤

∫
Γfin

eα|η|

∑
ξ1⊂η

∑
ξ2⊂η\ξ1

Gϑ̂(ξ1 ∪ ξ2)e(η \ ξ2; θβ)

λ(dη) (4.10)

=

∫
Γ2
fin

eα|η|+α|ξ1|

∑
ξ2⊂η

Gϑ̂(ξ1 ∪ ξ2)e(η \ ξ2 ∪ ξ1; θβ)

λ(dη)λ(dξ1)

=

∫
Γ3
fin

eα|η|+α|ξ1|+α|ξ2|Gϑ̂(ξ1 ∪ ξ2)e(ξ1; θβ)e(η; θβ)λ(dη)λ(dξ1)λ(dξ2)

= exp

(
eα
∫
X
θβ(x)dx

)∫
Γ2
fin

eα|ξ1|+α|ξ2|Gϑ̂(ξ1 ∪ ξ2)e(ξ1; θβ)λ(dξ1)λ(dξ2).

Here we have taken into account that

e(ξ1 ∪ ξ2; θβ) = e(ξ1; θβ)e(ξ2; θβ),

see (2.16), and also (2.21). By (2.9) and the latter we have

Υl := l!

∫
Γ2
fin

eα|ξ1|+α|ξ2|Gϑ̂(ξ1 ∪ ξ2)e(ξ1; θβ)λ(dξ1)λ(dξ2) (4.11)

= l!

∫
Γfin

eα|η|Gϑ̂(η)

∑
ξ⊂η

e(ξ; θβ)

λ(dη).

Now we recall that all θi ∈ ϑ are in Θ, see (3.9); hence, θi(x) ≤ 1. By (4.5) and (4.9) we
then have

0 ≤ θβ(x) ≤ ωβ :=
√
β1 + · · ·+ βn, (4.12)

holding for all x ∈ X. Hence, e(ξ; θβ) ≤ ω
|ξ|
β , see (2.16). By means of this estimate and

(2.9), (4.3) we get in (4.11) the following one

Υl ≤ l!

∫
Γfin

[eα(1 + ωβ)]
|η|Gϑ̂(η)λ(dη) (4.13)

= [eα(1 + ωβ)]
l

l∏
k=1

⟨θ̂k⟩ ≤ [eα⟨ψ⟩(1 + ωβ)]
l ,

see (2.14) and (3.9). Here we used the upper bound ⟨θ⟩ ≤ ⟨ψ⟩, see (3.9), which yields an
estimate uniform in ϑ. Now we employ (4.13) and (4.12) in (4.10) and finally get

l!|Gϑ̂ ⋆ Hϑ
β |α ≤ exp (eα⟨ψ⟩ωβ) [eα⟨ψ⟩(1 + ωβ)]

l ,

see also (2.23). This yields in (4.8) the following

|Gϑτ |α ≤
∫ +∞

0
· · ·
∫ +∞

0
exp (−β1 · · · − βn + eα⟨ψ⟩ωβ) (4.14)

×
n∑
l=1

S(n, l) [eα⟨ψ⟩(1 + ωβ)]
l dβ1 · · · dβn

=

∫ +∞

0
· · ·
∫ +∞

0
exp (−β1 · · · − βn)Wα(β1, . . . , βn)dβ1 · · · dβn

where
Wα(β1, . . . , βn) := exp (eα⟨ψ⟩ωβ)Tn (eα⟨ψ⟩(1 + ωβ)) ,
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Here Tn(u) =
∑n

l=0 S(n, l)u
l is Touchard’s polynomial, deg Tn = n. Thus, the integral in

the last line of (4.14) is obviously convergent for all α ∈ R, see (4.12). This completes the
proof. □

4.2. Useful estimates and their consequences. Here we derive a number of estimates
by means of which we then obtain properties of possible solution of the Fokker-Planck
equation (1.2) basing on Definition 3.2 with the domain F defined in (3.10). As a result,
we extend the domain of L to some unbounded functions, which in particular will allow
us to prove that each solution lies in Pexp.

For F ∈ F , write

∇xF (γ) = F (γ ∪ x)− F (γ), x ∈ X. (4.15)

By taking F = Φθτ , see (3.7), we then get

∇xΦ
θ
τ (γ) =

θ(x)

[1 + τΦθτ (γ ∪ x)][1 + τΦθτ (γ)]
,

which immediately yields

0 ≤ ∇xΦ
θ
τ (γ) ≤ θ(x),

∂

∂τ
∇xΦ

θ
τ (γ) ≤ 0, (4.16)

Next, see (3.8),

0 ≤ ∇xΨ
ϑ
τ (γ) =

∏
θ∈ϑ

[
∇xΦ

θ
τ (γ) + Φθτ (γ)

]
−
∏
θ∈ϑ

Φθτ (γ) (4.17)

≤
∑

∅̸=ϑ′⊂ϑ

(∏
θ∈ϑ′

θ(x)

)
Ψϑ\ϑ

′
τ (γ).

By (1.1) we then conclude that

±L±Ψϑτ (γ) ≥ 0, (4.18)

and also

L+Ψϑτ (γ) ≤
∑

∅̸=ϑ′⊂ϑ

(∫
X
b(x)

∏
θ∈ϑ′

θ(x)dx

)
Ψϑ\ϑ

′
τ (γ) ≤ ∥b∥⟨ψ⟩

∑
∅̸=ϑ′⊂ϑ

Ψϑ\ϑ
′

τ (γ), (4.19)

where ⟨ψ⟩ =
∫
ψ(x)dx, see (2.23) and (3.9). By (4.18) it follows that

µt(Ψ
ϑ
τ ) ≤ µ0(Ψ

ϑ
τ ) +

∫ t

0
µs(L

+Ψϑτ )ds, (4.20)

which should hold for any solution µt. By (4.1) we have

Ψϑτ (γ) ≤ Ψϑ(γ), lim
τ→0

Ψϑτ (γ) = Ψϑ(γ). (4.21)

For µ0 ∈ Pexp, similarly as in (4.13) by means of (4.21), (4.4) and (2.14) we obtain

µ0(Ψ
ϑ
τ ) ≤ µ0(Ψ

ϑ) =

|ϑ|∑
l=1

∑
d∈dl

∫
Γfin

k(l)µ0 (x1, . . . , xl)θ̂1(x1) · · · θ̂l(xl)dx1 · · · dxl (4.22)

≤
|ϑ|∑
l=1

∑
d∈dl

κlµ0⟨θ̂1⟩ · · · ⟨θ̂l⟩ ≤
|ϑ|∑
l=1

S(|ϑ|, l) [κµ0⟨ψ⟩]
l = T|ϑ|(κµ0⟨ψ⟩),

where κµ0 is the type of µ0, see Definition 2.3. Recall that Tn stands for Touchard’s
polynomial. By (4.16), (4.20) and (4.22) we then get

µt(Φ
θ
τ ) ≤ T1(κµ0⟨ψ⟩) + ∥b∥⟨ψ⟩t, θ ∈ Θ,
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see (3.1) and (3.9). Now by (4.17) this can be generalized to the following recursion

µt(Ψ
ϑ
τ ) ≤ T|ϑ|(κµ0⟨ψ⟩) +

∫ t

0

 ∑
∅̸=ϑ′⊂ϑ

µs(Ψ
ϑ\ϑ′
τ )

 ds, (4.23)

by which we obtain

µt(Ψ
ϑ
τ ) ≤ Q|ϑ|(t) :=

|ϑ|∑
l=0

1

l!
T|ϑ|−l(κµ0⟨ψ⟩) [∥b∥⟨ψ⟩]

l tl. (4.24)

By this estimate and (4.19) we also get

µt(L
+Ψϑτ ) ≤ ∥b∥⟨ψ⟩

|ϑ|∑
k=1

(
|ϑ|
k

)
Qk(t) =: Q+

|ϑ|(t). (4.25)

In particular, this yields that µt(L
+Ψϑτ ) is dominated by a polynomial in t, which yields in

turn the local integrability of the map t 7→ µt(L
+Ψϑτ ). Then the µt(dγ)dt-integrability of

|L−Ψϑτ (γ)| follows by the triangle inequality from the assumed corresponding integrability
of |LΨϑτ (γ)|, see Definition 3.2, cf. (3.15), and (4.25).

Now we are able to prove the following important statement.

Lemma 4.2. Let µt be a solution of the Fokker-Planch equation for (L,F , µ0) for some
µ0 ∈ Pexp. Then it solves (1.2) also with F = Ψϑ, see (4.2).

Proof. In view of (4.21), to prove the lemma one should show that, for all t ≥ 0, the
following holds

lim
τ→0

µt(Ψ
ϑ
τ ) = µt(Ψ

ϑ), lim
τ→0

∫ t

0
µs(L

±Ψϑτ )ds =

∫ t

0
µs(L

±Ψϑ)ds. (4.26)

By (3.7), (3.6) and (4.16) the maps τ 7→ µt(Ψ
ϑ
τ ) and τ 7→

∫ t
0 µs(L

±Ψϑτ )ds are monotone.
Then the convergence as in (4.26) follows by the monotone convergence theorem, the
bounds in (4.23), (4.25) and the following one, see also (4.18),

−
∫ t

0
µs(L

−Ψϑτ )ds =

∫ t

0
µs(|L−Ψϑτ |)ds = µ0(Ψ

ϑ
τ )− µt(Ψ

ϑ
τ ) +

∫ t

0
µs(L

+Ψϑτ )ds

≤ µ0(Ψ
ϑ
τ ) +

∫ t

0
µs(L

+Ψϑτ )ds ≤ µ0(Ψ
ϑ) +

∫ t

0
Q+

2 (s)ds.

This completes the proof. □

4.3. Localizing the solutions. The aim of this subsection is to prove that any solution
of the Fokker-Planch equation for (L,F , µ0) with µ0 ∈ Pexp lies in Pexp, that can be
achieved with the help of Lemma 4.2.

For ϑ ⊂ Θ, |ϑ| = n, define

F ϑ(γ) =
∑
x1∈γ

θ1(x1)
∑

x2∈γ\x1

θ2(x2) · · ·
∑

xn∈γ\{x1,...,xn−1}

θn(xn). (4.27)

By (2.9) and (2.10) it follows that F ϑ = n!KGϑ, which by (2.14) yields

µ(F ϑ) =

∫
Xn

k(n)µ (x1, . . . , xn)θ1(x1) · · · θn(x)dx1 · · · dxn ≤ κnµ⟨θ1⟩ · · · ⟨θn⟩, (4.28)

holding for all µ ∈ Pexp. At the same time, by (2.4) we get

F ϑ =
∑

G⊂Kn

(−1)lGΨ ϑ̂, ϑ̂ = {θ̂1, . . . θ̂nG}, (4.29)
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where θ̂j(x) =
∏
i∈Vj

θi(x), Vj being the vertex set of the j-th connected component of G.

Remark 4.3. Each θ̂j that appears in (4.29) is in Θ, see (3.9). Then F ϑ is a linear

combination of Ψ ϑ̂ with θ̂ ∈ Θ. Hence, by in Lemma 4.2 a solution, µt, solves (1.2) also
with F = F ϑ for any ϑ ⊂ Θ.

Then similarly as in (4.20) we get

µt(F
ϑ) ≤ µ0(F

ϑ) +
∑
θ∈ϑ

∥b∥⟨θ⟩
∫ t

0
µt(L

+F ϑ\θ)ds.

The latter and (4.28) readily yield

µt(F
ϑ) ≤ (κµ0 + ∥b∥t)n ⟨θ1⟩ · · · ⟨θn⟩. (4.30)

Thereby, we have proved the following statement.

Lemma 4.4. For every µ0 ∈ Pexp, each solution µt of the Fokker-Planck equation (1.2)
for (L,F , µ0) lies in Pexp for all t > 0. Moreover, its type satisfies κµt ≤ κµ0 + ∥b∥t.

For µt as in Lemma 4.4, by (2.25) it follows that µt(Γ∗) = 1 for all t ≥ 0, which by
Remark 2.7 yields that each µt can be redefined as an element of P(Γ∗). At the same
time, for γ ∈ Γ∗ and ϑ ⊂ Θ, by (4.17) and (4.18) one gets

|L−Ψϑτ (γ)| ≤ Hϑ(γ)
∑

∅̸=ϑ′⊂ϑ
Ψϑ\ϑ

′
τ (γ),

Hϑ(γ) =
∑
x∈γ

θ∗(x)

m(x) +
∑
y∈γ\x

a(x− y)


≤

∑
x∈γ

θ∗(x) (m(x) + γ(ψ)∥a∥ℓa(x)) <∞,

see also (3.4). Here θ∗ ∈ C+
cs(X) is such that θ(x) ≤ θ∗(x) for all θ ∈ ϑ and x ∈ X.

5. Solving the Fokker-Planck equation

In this section, we prove Theorem 3.3. Here we essentially use the results of [13].

5.1. Evolution of correlation functions. By means of the parameters of L, see As-
sumption 3.1, we introduce

E(η) =
∑
x∈η

m(x) +
∑
x∈η

∑
y∈η\x

a(x− y), η ∈ Γfin. (5.1)

Then we define an operator acting in the Banach space Kα, see (2.29), (2.30), by means
of the following expression

(L∆k)(η) =
∑
x∈η

b(x)k(η \ x)− E(η)k(η)−
∫
X

(∑
y∈η

a(x− y)

)
k(η ∪ x)dx. (5.2)

The reason for this can be seen from the formula

µ(LKG) = ⟨⟨L∆kµ, G⟩⟩, (5.3)

valid for µ ∈ Pexp and appropriate functions G. Its more precise meaning will be clarified
in Lemma 5.4 below.

Set

Dα = {k ∈ Kα : L∆k ∈ Kα}, α ∈ R. (5.4)
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Keeping in mind the embedding as in (2.30), for α′ < α we introduce now a linear operator
L∆
αα′ : Kα′ → Kα which acts according to (5.2). It turns out that this operator is bounded

as its operator norm satisfies, see [13, eq. (2.26)],

∥L∆
αα′∥ ≤ 4∥a∥

e2(α− α′)2
+

∥b∥e−α′
+ ∥m∥+ ⟨a⟩eα

e(α− α′)
, (5.5)

where ⟨a⟩ is as in (3.2). Let Lαα′ stand for the Banach space of bounded linear operators
A : Kα′ → Kα. Then

L∆
αα′ ∈ Lαα′ and L∆

αα′ |Kα′′ = L∆
αα′′ for α′′ < α′. (5.6)

In view of (2.30), we also have that, see (5.4),

∀α′ < α Kα′ ⊂ Dα. (5.7)

Let us consider the following Cauchy problem in Kα for the operator (L∆,Dα)

d

dt
kt = L∆kt, kt|t=0 = k0 ∈ Dα. (5.8)

In this general setting, it is barely possible to solve (5.8), e.g., by applying C0-semigroup
methods. Recall that we deal here with L∞-type spaces, see (2.29). However, if one takes
k0 ∈ Kα′ for some α′ < α, i.e., from a subset of the domain, see (5.7), a solution can be
obtained in the following way. Define

(S(t)k)(η) = exp (−tE(η)) k(η), t > 0, (5.9)

where E(η) is as in (5.1). Note that this is one of the steps where we properly take
into account the sign of the quadratic term in L−. By means of (5.9) we then define
Sαα′(t) ∈ Lαα′ . One can show that the map t 7→ Sαα′(t) ∈ Lαα′ is continuous. Obviously,
for each t, S(t) as in (5.9) defines a bounded operator acting from Kα to Kα. We use
it as Sαα′(t) (i.e., acting to a bigger space) to secure the continuity just mentioned. Let
Aαα′ ∈ Lαα′ be defined by the expression

(Ak)(η) = −E(η)k(η), (5.10)

i.e., it is the multiplication operator by −E(η). Clearly, the map t 7→ Sαα′(t) is differen-
tiable and the following holds

d

dt
Sαα′(t) = Aαα′′Sα′′α′(t) = Sαα′′(t)Aα′′α′ ,

for each α′′ ∈ (α′, α). Now we set B = L∆−A and define the corresponding linear operator
Bαα′ ∈ Lαα′ , the norm of which satisfies, cf. (5.5),

∥Bαα′∥ ≤ ∥b∥e−α′
+ ⟨a⟩eα

e(α− α′)
.

It is crucial that α− α′ appears here in the first power. Define

T (α, α′) =
α− α′

∥b∥e−α′ + ⟨a⟩eα
. (5.11)

Fix now some δ < α− α′ and l ∈ N, and then set

α2s = α′ +
s

l + 1
δ + sϵ, ϵ = (α− α′ − δ)/l,

α2s+1 = α′ +
s+ 1

l + 1
δ + sϵ, s = 0, 1, . . . , l.

Note that α0 = α′ and α2l+1 = α. For t > 0, set

Tl = {(t, t1, . . . , tl) : 0 ≤ tl ≤ tl−1 ≤ · · · ≤ t1 ≤ t} ⊂ (R+)
l+1,
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and then

Πlαα′(t, t1, . . . , tl) = Sαα2l(t− t1)Bα2lα2l−1 · · · ×

×Sα3α2(t− t1)(tl−1 − tl)Bα2α1Sα1α′(tt), (t, t1, . . . , tl) ∈ Tl.

It is known, see [13, Proposition 3.1], that the map

Tl ∋ (t, t1, . . . , tl) 7→ Πlαα′(t, t1, . . . , tl) ∈ Lαα′

is continuous. Moreover, for each δ ∈ (0, α− α′), the operator norm satisfies

∥Πlαα′(t, t1, . . . , tl)∥ ≤
(

l

eT (α− δ, α′)

)l
, (5.12)

see (5.11). Set

Qαα′(t) = Sαα′(t) +
∞∑
l=1

∫ t

0
dt1

∫ t1

0
dt2 · · ·

∫ tl−1

0
dtlΠ

l
αα′(t, t1, . . . , tl). (5.13)

By means of (5.12) one can prove the following.

Proposition 5.1. [13, Proposition 3.2] For each α, α′ ∈ R, α′ < α, and t < T (α, α′), the
series in (5.13) converges in the norm of Lαα′ in such a way that

(i) the map [0, T (α, α′)) ∋ t 7→ Qαα′(t) ∈ Lαα′ is continuous and Qαα′(0) is the
embedding as in (2.30);

(ii) for each α′′ ∈ (α′, α) and t < min{T (α′′, α′);T (α, α′′)}, the following holds

d

dt
Qαα′(t) = L∆

αα′′Qα′′α′(t) = Qαα′′(t)L∆
α′′α′ . (5.14)

(iii) the operators Qαα′(t) enjoy the semigroup property

Qαα′(t+ s) = Qαα′′(t)Qα′′α′(s), (5.15)

that holds provided t < T (α, α′′), s < T (α′′, α′) and t+ s < T (α, α′).

This assertion allows one to solve the Cauchy problem in (5.8) in the following form.

Proposition 5.2. [13, Lemma 3.3] For each k0 ∈ Kα′, the problem in (5.8) has a unique
classical solution kt ∈ Kα, t < T (α, α′), given by the formula

kt = Qαα′(t)k0. (5.16)

This solution has the properties: (a) kt(∅) = k0(∅), t < T (α, α′); (b) its norm in Kα, see
(2.29), satisfies

∥kt∥α ≤ T (α, α′)

T (α, α′)− t
∥k0∥α′ . (5.17)

At this point, one ought to stress that the aforementioned solution kt need not be related
to any state µ ∈ Pcor(Γ). In particular, kt need not be positive, cf. (2.20), which means
that Proposition 5.2 says not too much concerning the evolution of states of the model we
consider. This drawback is overcome by a method elaborated in [13, subsect. 3.2], based
on Proposition 2.8 and certain approximations of the solution kt. One of its outcomes is
proving the positivity of kt that allows for continuing the evolution t 7→ kt to all t > 0.
The corresponding result can be formulated as follows.

Proposition 5.3. [13, Theorem 2.4] Let µ0 ∈ Pexp be such that its correlation function lies
in Kα0. Then the solution of the problem in (5.8) with α > α0 can uniquely be continued
to all t > 0 in such a way that the following holds

0 ≤ kt(η) ≤
∑
ξ⊂η

e(ξ; ϱt)e(η \ ξ; qt)kµ0(η \ ξ), (5.18)
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where ϱt and qt are as in (3.5). Moreover, for each t > 0, this solution kt is the correlation
function of a unique µt ∈ Pexp which satisfies (3.14).

Note that the trajectory t 7→ kt mentioned in Proposition 5.3 has the following property:
if ks ∈ Kα′ for some s ≥ 0 and α′ ∈ R, which can be established by (5.18) and the type of
µ0, then by (5.15) and (5.16) it follows that

kt+s = Qαα′(t)ks, (5.19)

holding for some α > α′ and t < T (α, α′). Then the stated uniqueness of this trajectory
follows by its local (in t) uniqueness established in Proposition 5.2.

5.2. The proof of Theorem 3.3. In this subsection, we prove that the map t 7→ µt ∈
Pexp obtained according to Proposition 5.3 solves (1.2), and that it is a unique solution in
the sense of Definition 3.2.

We begin by recalling Lemma 4.1 and the definition of Gα in (2.32). Now we set, cf.
(5.10),

L̆ = Ă+ B̆, (5.20)

(ĂG)(η) = −E(η)G(η),

(B̆G)(η) = −
∑
x∈η

 ∑
y∈η\x

a(x− y)

G(η \ x) +
∫
X
b(x)G(η ∪ x)dx.

By means of (5.20) we now define bounded linear operators L̆α′α : Gα → Gα′ , α′ < α, see
(2.33). One can show, see [13, eq. (3.19)], that they satisfy

∥L̆α′α∥ ≤ RHS(5.5). (5.21)

At the same time, for G ∈ Bbs(X), see Definition 2.1, (L̆G)(η) is defined pointwise for all
η ∈ Γfin since the sums in (5.20) are finite for such G. By direct calculations it follows
that, see (2.19),

⟨⟨L∆
αα′k,G⟩⟩ = ⟨⟨k, L̆α′αG⟩⟩, (5.22)

holding for each k ∈ Kα′ , G ∈ Bbs(X) and α > α′, see (5.21). This can be extended to

G ∈ Gα, see Remark 2.9. Moreover, it is possible to construct maps Q̆α′α(t) : Gα → Gα′ ,
dual to those described in Propositions 5.1 and 5.2, that satisfy

⟨⟨Qαα′(t)k,G⟩⟩ = ⟨⟨k, Q̆α′α(t)G⟩⟩, t < T (α, α′), (5.23)

whereas the norm (2.31) of Gt := Q̆α′α(t)G in Gα′ , cf. (5.17), satisfies

|Gt|α′ ≤ T (α, α′)

T (α, α′)− t
|G|α, (5.24)

see [13, eqs. (3.20), (3.21)] for more detail.

Lemma 5.4. For a given t > 0, let µt ∈ Pexp be as in Proposition 5.3 and eα
′
, α′ ∈ R,

be its type, see Definition 2.3. Then for each α > α′ and G ∈ Gα, the following holds

µt(LKG) = µt(KL̆α′αG) = ⟨⟨kt, L̆α′αG⟩⟩ = ⟨⟨L∆
αα′kt, G⟩⟩. (5.25)

Proof. It is possible to show, cf. (5.3) and (5.22), that

(LKG)(γ) = (KL̆G)(γ), G ∈ Bbs(X), γ ∈ Γ. (5.26)

Then for G ∈ Bbs(X), the first equality in (5.25) follows by (5.26). The second one follows
by (2.19), whereas that last equality is just (5.22). □
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Proof of Theorem 3.3. The stated in claim (c) inclusion F ⊂ Fmax has been proved in
Lemma 4.1. Let us prove that the map t 7→ µt as in Proposition 5.3 solves the Fokker-
Planck equation (1.2) in the sense of Definition 3.2 for each F ∈ Fmax. Thus, take F = KG
with G ∈ Gα with α > α′, where the latter is as in Lemma 5.4. By (5.25) it follows that,
see (2.20),

µt(|LF |) = µt(|LKG|) = µt(|KL̆G|) ≤ µt(K|L̆G|) (5.27)

≤ ⟨⟨kt, |L̆α′αG|⟩⟩ =
∫
Γfin

kt(η)|L̆α′αG(η)|λ(dη)

≤
∫
Γfin

eα
′|η||L̆α′αG(η)|λ(dη) ≤ ∥L̆α′α∥|G|α.

Thus, |LF | is µt-absolutely integrable, see item (i) of Definition 3.2. Now for t, s and α, α′

as in (5.19) by (5.14) we have

kt+s = ks +

∫ t

0
L∆
αα′′ks+udu, (5.28)

where α′′ ∈ (α′, α) is chosen in such a way that t < T (α′′, α′), see (5.11), and hence
kt+s ∈ Kα′′ . Now we take G as in (5.27), apply (5.25) and obtain from (5.28) the following

µt+s(KG) = ⟨⟨kt+s, G⟩⟩ = ⟨⟨ks, G⟩⟩+ ⟨⟨
∫ t

0
L∆
αα′′ks+udu,G⟩⟩ (5.29)

= ⟨⟨ks, G⟩⟩+
∫ t

0
⟨⟨ks+u, L̆α′′αG⟩⟩du = µs(KG) +

∫ t

0
µs+u(LKG)du,

which yields the proof that the map t 7→ µt as in Proposition 5.3 solves (1.2) with any
F ∈ Fmax. The proof of the bound in (3.13) readily follows by (5.18), whereas the bound
in (3.14) was proved in [13, Theorem 2.5].

Thus, it remains to prove uniqueness. To this end, we use the following arguments.
First we write (1.2) for µ′t

µ′t(F ) = µ0(F ) +

∫ t

0
µ′s(LF )ds, (5.30)

which has to be satisfied also by µt mentioned in Proposition 5.3, with the same µ0 ∈ Pexp.
By Lemma 4.4, µ′t lies in Pexp and its correlation function satisfies, cf. (4.30) and (2.29),
(2.30),

0 ≤ kµ′t(η) ≤ (κµ0 + ∥b∥t)|η| , , (5.31)

kµ′t ∈ Kαt , for αt := ln(κµ0 + ∥b∥t),

that has to hold for all t ≥ 0. By (5.30) and Remark 4.3 we then get that kµ′t satisfies, cf.

(5.25),

⟨⟨kµ′t , G
ϑ⟩⟩ = ⟨⟨kµ0 , Gϑ⟩⟩+

∫ t

0
⟨⟨kµ′s , L̆αα′Gϑ⟩⟩ds (5.32)

= ⟨⟨kµ0 , Gϑ⟩⟩+ ⟨⟨L∆
α′α

∫ t

0
kµ′sds,G

ϑ⟩⟩,

holding for all ϑ ⊂ Θ. Here Gϑ is such that F ϑ = KGϑ, i.e., it is given in (2.9). The

integral
∫ t
0 kµ′sds is considered in the Banach space Kα, α ≥ αt, see (5.31) and (5.6),

whereas α′ > α can be arbitrary since G ∈ Gα′ for any α′. To interchange the integrations
in (5.32) we used the absolute integrability as in (5.27), cf. (5.29).
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The set {Gϑ : ϑ ∈ Θ} is clearly separating for the σ-finite positive measures on Γfin,
including λ, for it is closed under multiplication and separates points. Assume that an
absolutely λ-integrable function H : Γfin → R is such that

∫
Γfin

HGϑdλ = 0 for all ϑ ⊂ Θ.

Then H(η) = 0 for λ-almost all η. Indeed, write H = H+ − H−, H± ≥ 0, and define
λ± = H±λ. Then the assumed equality implies λ+ = λ− and hence H+(η) = H−(η)
holding for λ-almost all η. We use this argument in (5.32) and thereby get

kµ′t = kµ0 + L∆
α′α

∫ t

0
kµ′sds, (5.33)

being the equality of vectors in Kα′ . Thus, kµ′t is a mild solution of the Cauchy problem in

(5.8). To prove that this fact implies kµ′t = kµt (hence µ′t = µt) we adapt standard argu-
ments by which uniqueness of mild solutions is proved when one deals with C0-semigroups,
see [10, Proposition 6.4, page 146]. Fix t > 0 and choose α0 according to eα0 = κµ0 , see
Lemma 4.4 and (5.31). For u ≤ t, define qu = kµu − kµ′u . Since kµt also satisfies (5.31),

then both qu and
∫ u
0 qsds lie in Kαu ⊂ Kαt . By (5.33) and (5.6) it then follows

qu = L∆
α′αt

∫ u

0
qsds, (5.34)

that holds in Kα′ for all α′ > αt, see (2.30). The latter means that we consider each
qu ∈ Kαu as an element of Kα′ with such α′. In this sence, qu = Qα′αu(0)qu, see (5.15).
Now we take u < t and then v ∈ (u, t] such that

v < T (α′, αt) =
α′ − αt

∥b∥e−αt + ⟨a⟩eα′ , (5.35)

see (5.11), and consider, see (5.14),

d

du
Qα′αt(v − u)

∫ u

0
qsds = Qα′αt(v − u)qu −Qα′α(v − u)L∆

ααt

∫ u

0
qsds (5.36)

= Qα′α(v − u)

[
Qααt(0)qu − L∆

ααt

∫ u

0
qsds

]

= Qα′α(v − u)

[
qu − L∆

ααt

∫ u

0
qsds

]
= 0,

in view of (5.34). At the same time, integration over u of both sides of (5.36) yields

Qα′αt(0)

∫ v

0
qsds = 0, hence

∫ v

0
qsds = 0, for all v ≤ t. (5.37)

By (5.34) the latter yields qv = 0, hence kµv = kµ′v , holding for all v ≤ t. Now we use the
fact that α′ in the latter formulas can be chosen arbitrarely, and that eαt = eα0 + ∥b∥t. In
view of this, we take α′ = αt + 1, which yields, see (5.11),

T (αt + 1, αt) > τ(t) :=
1

∥b∥e−α0 + ⟨a⟩eα0+1 + ⟨a⟩e∥b∥t
, t > 0. (5.38)

Then for (5.35) to hold for all v ≤ t, the latter should satisfy t ≤ t1 with t1 > 0 being the
unique solution of the equation t = τ(t). Thus, by (5.37) we get that kµv = kµ′v for all
v ≤ t1. To futher extend this equality, we rewrite (5.33) in the form

kµ′t1+v
= kµt1 + L∆

α′αt1+v

∫ v

0
kµ′t1+s

ds,

and then introduce qu = kµt1+u − kµ′t1+u
, for which we get, cf. (5.34),

qu = L∆
α′αt1+v

∫ u

0
qsds, u ≤ v.
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To use the arguments as in (5.36) with α′ = αt1+v + 1, one should impose the restriction
v < T (αt1+v+1, αt1+v), which can be satisfied if v ≤ t2, where t2 is the unique solution of
the equation t = τ(t1 + t), see (5.38). As a result, we obtain the equality kµt = kµ′t for all
t ≤ t1 + t2. Repeating this procedure due times we obtain the just mentioned equality for
t ≤ t1 + t2 + · · · + tn, where tn > 0 is the unique solution of the corresponding equation,
cf. (5.38), i.e., verifies

tn =
1

∥b∥e−α0 + ⟨a⟩eα0+1 + ⟨a⟩e∥b∥(t1 + · · ·+ tn−1 + tn)
. (5.39)

If the series t1 + · · · + tn−1 + tn + · · · is convergent, then the left-hands side of (5.39)
tends to zero as n→ +∞, whereas its right-hand side remains separated away from zero.
Hence, t1 + · · · + tn−1 + tn + · · · = +∞, which yields µt = µ′t holding for all t > 0. This
completes the whole proof of the theorem. □

6. Constructing the Markov Process: Auxiliary Models

The aim of this section is to prepare the proof of Theorem 3.10. As mentioned above,
the proof will be done by approximating the initial model described by L given in (1.1) by
a family of modeles described by their Kolmogorov operators {Lσ : σ ∈ [0, 1]} such that
L0 coincides with L given in (1.1) whereas each Lσ, σ ∈ (0, 1] can be used to construct a
Markov transition function, pσt , by means of which one defines a Markov process, corre-
sponding to Lσ. Then the process in question is obtained as the weak limit of the Markov
processes obtained in this way.

6.1. The models. We begin by recalling that each µ ∈ Pexp has the property µ(Γ∗) = 1,
see (2.24), (2.25). Keeping this in mind we set, cf. (2.23),

ψσ(x) =
1

1 + σ|x|d+1
, σ ∈ [0, 1]. (6.1)

and

bσ(x) = b(x)ψσ(x), mσ(x) = m(x)ψσ(x), (6.2)

aσ(x, y) = a(x− y)ψσ(x)ψσ(y).

Clearly,

ψ(x) ≤ ψσ(x) ≤ σ−1ψ(x), σ ∈ (0, 1], (6.3)

which yields, cf. (2.24),

γ(ψ) = Φ(γ) ≤ Φσ(γ) ≤ σ−1Φ(γ), Φσ(γ) := γ(ψσ). (6.4)

Then we define

LσF (γ) =

∫
X
bσ(x)∇xF (γ)dx−

∑
x∈γ

mσ(x) +
∑
y∈γ\x

aσ(x, y)

∇xF (γ \ x), (6.5)

where ∇xF (γ) is as in (4.15). Clearly, L0 coincides with the generator defined in (1.1).
By (3.1) and (6.4) we have that∑

x∈γ
mσ(x) ≤ ∥m∥Φσ(γ) ≤ ∥m∥σ−1Φ(γ),

and also, see (6.2) and (3.1),∑
x∈γ

∑
y∈γ\x

aσ(x, y) ≤ ∥a∥
∑
x∈γ

∑
y∈γ\x

ψσ(x)ψσ(y), γ ∈ Γ∗. (6.6)
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Thereby we set, cf. (5.1), (5.2),

Eσ(η) =
∑
x∈η

mσ(x) +
∑
x∈η

∑
y∈η\x

aσ(x, y), η ∈ Γfin, (6.7)

(L∆
σ k)(η) =

∑
x∈η

bσ(x)k(η \ x)− Eσ(η)k(η)−
∫
X

(∑
y∈η

aσ(x, y)

)
k(η ∪ x)dx.

Similarly as in (5.3) we then have

µ(LσKG) = ⟨⟨L∆
σ kµ, G⟩⟩, σ ∈ (0, 1],

which holds for all µ ∈ Pexp and appropriate G : Γfin → R. In view of (6.2), L∆
σ can be

used to define bounded linear operators (L∆
σ )αα′ : Kα′ → Kα the norms of which satisfy

∥(L∆
σ )αα′∥ ≤ RHS(5.5),

Hence, the Cauchy problem in Kα for (L∆
σ ,Dα), with the same domain as in (5.8),

d

dt
kσt = L∆

σ k
σ
t , kσt |t=0 = k0 ∈ Kα, (6.8)

has a unique solution, see Proposition 5.2, given by the formula

kσt = Qσαα′(t)k0, t < T (α, α′), (6.9)

with T (α, α′) given in (5.11) and the family of operators {Qσαα′(t) : t ∈ [0, T (α, α′)}
possessing all the properties established in Proposition 5.1.

Remark 6.1. Similarly as in Proposition 5.3 the evolution t 7→ kσt described by (6.9)
determines the evolution of states t 7→ µσt ∈ Pexp, t > 0, the type of which satisfies, cf.
(4.30),

κµσt ≤ eαt := κµ0 + ∥b∥t. (6.10)

These states µσt solve the Fokker-Planck equation for (Lσ,F , µ0) with the same domain
given in (3.10). Similarly as in Proposition 5.3 this solution is unique.

6.2. The Markov transition functions. The abovementioned transition functions pσt
will be obtained in the form

pσt (γ, ·) = Sσ(t)δγ , t ≥ 0, σ ∈ (0, 1], (6.11)

where δγ is the Dirac measure on Γ∗ centered at γ ∈ Γ∗ and Sσ(t) is a bounded positive
operator acting in the Banach space of finite signed measures on Γ∗, such that Sσ =
{Sσ(t)}t≥0 is a stochastic semigroup related to Lσ given in (6.5). This semigroup will be
constructed (see Lemma 6.5 below) by means of the Thieme-Voigt technique developed
in [22] which proved effective in the problems like the one considered here. Its detailed
presentation in the form adapted to the present context can be found in [15, Sect. 7].
Here we just briefly outline the main aspects.

6.2.1. The Thieme-Voigt theory. Let X be an ordered real Banach space with a generating
cone X+ such that the norm of X is additive on the cone, i.e., ∥x+ y∥X = ∥x∥X + ∥y∥X ,
whenever x, y ∈ X+. By the latter fact there exists a linear positive functional, φX , such
that

φX (x) = ∥x∥X , for x ∈ X+. (6.12)

A C0-semigroup S = {S(t)}t≥0 of bounded linear operators on X is said to be stochastic
(resp. substochastic) if the following holds ∥S(t)x∥X = ∥x∥X (resp. ∥S(t)x∥X ≤ ∥x∥X ) for
all x ∈ X+ and t > 0. For a dense linear subset D ⊂ X , set D+ = D∩X+ and assume that
(A,D) and (B,D) are linear operators on X . The Thieme-Voigt theory gives sufficient
conditions on this pair of operators under which the closure of (A+B,D) is the generator
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of a stochastic semigroup. Its key aspect is the use of a subspace X̃ ⊂ X with a specific
set of properties listed below.

Assumption 6.2. The linear subspace X̃ ⊂ X has the following properties:

(a) X̃ is dense in X ;

(b) there exists a norm, ∥ · ∥X̃ , that makes X̃ a Banach space;

(c) X̃+ := X̃ ∩ X+ is the generating cone in X̃ , the norm ∥ · ∥X̃ is additive on X̃+;

(d) the cone X̃+ is dense in X+.

By item (c) of Assumption 6.2 there exists a linear positive functional, φX̃ , cf (6.12),
such that

φX̃ (x) = ∥x∥X̃ , for x ∈ X̃+. (6.13)

For a dense linear subset D ⊂ X , let (A,D) be a linear operator on X . Define D̃ = {x ∈
D ∩ X̃ : Ax ∈ X̃} Then the operator (A, D̃) is said to be the trace of (A,D) in X̃ . The
next statement is an adaptation of [22, Theorem 2.7], see also [15, Proposition 7.2].

Proposition 6.3. Let (A,D) and (B,D) be linear operator on X which have the following
properties

(i) −A : D+ → X+ and B : D+ → X+;
(ii) (A,D) is the generator of a substochastic semigroup, S0 = {S0(t)}t≥0, on X such

that S0(t) : X̃ → X̃ , holding for all t ≥ 0, and the restrictions S0(t)|X̃ , t ≥ 0,

constitute a C0-semigroup on X̃ genereted by (A, D̃);

(iii) B : D̃ → X̃ and

φX ((A+B)x) = 0, for all x ∈ D+;

(iv) there exist positive c and ϵ such that

φX̃ ((A+B)x) ≤ cφX̃ (x)− ϵ∥Ax∥X , for all x ∈ D̃ ∩ X+.

Then the closure of (A + B,D) in X is the generator of a stochastic semigroup, S =

{S(t)}t≥0, on X which leaves X̃ invariant.

6.2.2. The Banach spaces of measures. Now we turn to constructing the semigroups Sσ

that appear in (6.11). Let M stand for the set of all finite signed measures on Γ∗, see [7,
Chapt. 12]. Set M+ = {µ ∈ M : µ(A) ≥ 0, A ∈ B(Γ∗)}. Each µ ∈ M can uniquely be
decomposed µ = µ+ − µ− with µ± ∈ M+, which means that the latter is the generating
cone in M. Set |µ| = µ+ + µ−. Then

∥µ∥ := |µ|(Γ∗)

is a norm, which is additive on M+. With this norm M is a Banach space, see [7,
Proposition 4.1.8, page 119]. For n ∈ N, let now Fn stand for F ϑ, ϑ = {ψ, . . . , ψ}, |ϑ| = n,
see (4.27). Also set F0 ≡ 1. Since ψ(x) ≤ 1, see (6.1), these functions satisfy

Fn(γ ∪ x) = Fn(γ) + nψ(x)Fn−1(γ), (6.14)

F1(γ)Fn(γ) ≤ Fn+1(γ) + nFn(γ),

F2(γ)Fn(γ) ≤ Fn+2(γ) + 2nFn+1(γ) + n(n− 1)Fn(γ).

Define

∥µ∥n =
n∑
k=0

1

k!
|µ|(Fk), Mn = {µ ∈ M : ∥µ∥n <∞}, n ∈ N. (6.15)

Clearly, each Mn is a Banach space. Let M+
n denote the corresponding cones of positive

measures. Then

Mn+1 ⊂ Mn ⊂ M, M+
n+1 ⊂ M+

n ⊂ M+, n ∈ N,
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where all the inclusions are dense in the corresponding topologies, cf. [15, Lemma 7.4]. Let
M1,+ consist of all µ ∈ M+ for which ∥µ∥ = µ(Γ∗) = 1, i.e, of all probability measures.
Then, for each n ∈ N, it follows that

Pexp ⊂ Mn ∩M1,+. (6.16)

Indeed, by (4.28) for µ ∈ Pexp one gets

µ(Fk) ≤ [κµ⟨ψ⟩]k, k ∈ N.
We conclude this part by noting that, for each n ∈ N, the Banach spaces M and Mn

satisfy all the conditions of Assumption 6.2, whereas the linear functionals as in (6.12)
and (6.13) are

φ(µ) := φM(µ) = µ(Γ∗), φn(µ) := φMn(µ) =
n∑
k=1

1

k!
µ(Fk), (6.17)

respectively.

6.2.3. The semigroup. For Lσ introduced in (6.5), we define L†
σ by the formula

(L†
σµ)(F ) = µ(LσF ), (6.18)

where F is a suitable function. To this end, we first define the following measure kernel

Ωγσ(A) =
∫
X
bσ(x)1A(γ ∪ x)dx+

∑
x∈γ

mσ(x) +
∑
y∈γ\x

aσ(x, y)

1A(γ \ x), (6.19)

and the function

Rσ(γ) = Ωγσ(Γ∗) = ⟨bσ⟩+ Eσ(γ) =:

∫
X
bσ(x)dx+

∑
x∈γ

mσ(x) +
∑
y∈γ\x

aσ(x, y)

 . (6.20)

By (6.4) and (6.6) one gets that Rσ(γ) < ∞ for all γ ∈ Γ∗. Then L
†
σ can be presented in

the form

L†
σ = A+B, (6.21)

(Aµ)(dγ) = −Rσ(γ)µ(dγ), (Bµ)(dγ) =

∫
Γ∗

Ωγ
′
σ (dγ)µ(dγ

′).

Let us show that both −A and B introduced in (6.21) define positive (unbounded) oper-
ators in each of Mn. Set

Domn(A) := {µ ∈ M : Rσ|µ| ∈ Mn}, n ∈ N0, (6.22)

where M0 is just M. By (6.3) and (6.20) it follows that

Rσ(γ) ≤ ⟨bσ⟩+
∥m∥
σ

F1(γ) +
∥a∥
σ2

F2(γ). (6.23)

Then by (6.14) we obtain

Rσ(γ)Fk(γ) ≤ ⟨bσ⟩Fk(γ) +
∥m∥
σ

kFk(γ) +
∥m∥
σ

Fk+1(γ) (6.24)

+
∥a∥
σ2

k(k − 1)Fk(γ) +
2∥a∥
σ2

kFk+1(γ) +
∥a∥
σ2

Fk+2(γ).

We apply this estimate in (6.15) and get

∥Aµ∥n ≤ ⟨bσ⟩∥µ∥n +
2(n+ 1)∥m∥

σ
∥µ∥n+1 +

4(n+ 1)(n+ 2)∥a∥
σ2

∥µ∥n+2.
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By (6.22) this yields
Mn+2 ⊂ Domn(A), n ∈ N0. (6.25)

Remark 6.4. For each n ≥ 1, the operator (A,Domn(A)) is the trace of (A,Dom0(A)) in
the Banach space Mn.

For an appropriate µ ∈ M, by (6.19) one gets∫
Γ∗

Fn(γ)(Bµ)(dγ) =

∫
Γ2
∗

Fn(γ
′)Ωγσ(dγ

′)µ(dγ) (6.26)

=

∫
Γ∗

(∫
X
bσ(x)Fn(γ ∪ x)dx

)
µ(dγ)

+

∫
Γ∗

∑
x∈γ

mσ(x) +
∑
y∈γ\x

aσ(x, y)

Fn(γ \ x)

µ(dγ).

For n = 0 and µ ∈ M+, this yields

∥Bµ∥ = µ(Rσ), hence (L†
σµ)(Γ∗) = µ(Rσ)− µ(Rσ) = 0, (6.27)

see (6.21). For µ ∈ M+ and n ≥ 1, by (6.14) and the evident estimate Fn(γ \ x) ≤ Fn(γ)
we get from (6.26) the following∫

Γ∗

Fn(γ)(Bµ)(dγ) ≤ n∥b∥⟨ψ⟩µ(Fn−1) +

∫
Γ∗

Fn(γ)Rσ(γ)µ(dγ),

which readily yields that

B : Domn(A) → Mn, n ≥ 2. (6.28)

Now we set, see (6.25),

Dom(L†
σ) = Dom0(A) = {µ ∈ M : |µ|(Rσ) <∞}. (6.29)

Lemma 6.5. For each σ ∈ (0, 1], the closure of the operator (L†
σ,Dom(L†

σ)) in M is the
generator of a stochastic semigroup, Sσ = {Sσ(t)}t≥0, such that Sσ(t) : Mn → Mn for
each n ≥ 2 and t ≥ 0.

Proof. Our aim is to show that the operator defined in (6.21) and (6.29) satisfies the
conditions of Proposition 6.3. By the very definition of A and B in (6.21), and then by
(6.22), (6.28) and (6.29), it readily follows that condition (i) is met. Define

S0(t)µ(dγ) = exp (−tRσ(γ))µ(dγ), µ ∈ M, t ≥ 0. (6.30)

Clearly, for each n ∈ N0, S0(t) : Mn → Mn, acting as a multiplication operator, and
S0 = {S0(t)}t≥0 constitue a semigroup. Certainly,

∥S0(t)µ∥ ≤ ∥µ∥, µ ∈ M+. (6.31)

To show the strong continuity of S0 in M, for fixed µ ∈ M and ε > 0, we have to find
δ > 0 such that ∥S0(t)µ − µ∥ < ε whenever t < δ. Since M2 is dense in M, see (6.22)
and (6.25), one finds µ′ ∈ M2 such that ∥(µ−µ′)±∥ < ε/6. Then by (6.30) and (6.31) we
have

∥S0(t)µ− µ∥ ≤ ∥µ− µ′∥+ ∥S0(t)(µ− µ′)∥+ ∥S0(t)µ′ − µ′∥

≤ t∥Aµ′∥+ 2ε/3 = t|µ′|(Rσ) + 2ε/3 ≤ cσt∥µ′∥2 + 2ε/3,

where cσ = max{⟨bσ⟩; ∥m∥/σ; 2∥a∥/σ2}, see (6.23). This estimate yields the strong conti-
nuity in question. The strong continuity of S0 in Mn can be shown in a similar way by
employing (6.24) and (6.25). Now we take into account Remark 6.4 and thus conclude that
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condition (ii) of Proposition 6.3 is also met. The validity of (iii) follows by (6.28) (concern-
ing B) and (6.17), (6.27) (concerning φ). To complete the whole proof, we have to show
that, for each n ≥ 2, there exist positive c and ϵ such that, for each µ ∈ Domn(A) ∩M+

n ,
the following holds

φn(L
†
σµ) ≤ cφn(µ)− ϵµ(Rσ),

where φn is as in (6.17). In view of (6.23), to this end it is enough to show that

n∑
k=0

1

k!

∫
Γ∗

Fk(γ)(L
†
σµ)(dγ) ≤ Cφn(µ), µ ∈ Domn(A) ∩M+

n , (6.32)

holding for some C > 0. By (6.18) we have∫
Γ∗

Fk(γ)(L
†
σµ)(dγ) = µ(LσFk).

At the same time, by (6.14) and similarly as in (4.15), see also (4.18), we conclude that

µ(LσFk) ≤ µ(L+
σ Fk) ≤ ∥b∥⟨ψ⟩kµ(Fk−1),

which by (7.7) yields the validity of (6.32) with C = n∥b∥⟨ψ⟩. Now the proof follows by
Proposition 6.3. □

Lemma 6.5 establishes the existence of the transition function (6.11). It is streightfor-
ward that pσt defined in this way satisfies the standard conditions and thus determines
finite dimensional distributions of a Markov process, see [11, pages 156, 157]. The next
step is to prove that such processes have cadlag versions.

6.2.4. The Cauchy problem. Now we use the semigroup constructed in Lemma 6.5 to solve
the following Cauchy problem in M

d

dt
µt = L†

σµt, µt|t=0 = µ0, σ ∈ (0, 1]. (6.33)

By [10, Proposition 6.2, page 145] this problem has a unique solution given by the formula

µ̂σt = Sσ(t)µ0 =

∫
Γ∗

pσt (γ, ·)µ0(dγ), (6.34)

whenever µ0 ∈ Dom(L†
σ), see (6.29). Here we use notations µ̂σt in order not to mix this

solution with the measures µσt mentioned in Remark 6.1. By (6.16) and (6.25) µ0 ∈ Pexp

lies in Dom(L†
σ). Hence, µ̂σt lies in each Mn, but a priori not in Pexp.

Lemma 6.6. For a given µ0 ∈ Pexp and σ ∈ (0, 1], let the map t 7→ µσt be the unique
solution of the Fokker-Planck equation for (Lσ,F , µ0) mentioned in Remark 6.1. Then for
each t > 0, it follows that µσt = µ̂σt , where the latter is obtained as in (6.34) with the same
µ0.

Proof. Since µ̂σt solves (6.33), for each F ∈ F one has

µ̂σt (F ) = µ̂σ0 (F ) +

∫ t

0
(L†

σµ̂
σ
s )(F )ds,

which by (6.18) yields that µ̂σt solves the Fokker-Planck equation for (Lσ,F , µ0); hence,
µ̂σt = µσt since the solution is unique. □
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7. The Markov Process

7.1. The cadlag paths. In this subsection, we use Chentsov’s theorem [6] in the version
formulated below as Proposition 7.1. Its presentation is preceded by recalling that the
metric ρ introduced in (2.27) makes Γ∗ a Polish space, see Proposition 2.6. By means of
this metric and the transition function as in (6.11) we define

wσu(γ) =

∫
Γ∗

ρ(γ, γ′)pσu(γ, dγ
′), (7.1)

W σ
u,v(γ) =

∫
Γ∗

ρ(γ, γ′)wσu(γ
′)pσv (γ, dγ

′).

Now for a certain µ ∈ Pexp and a triple (t1, t2, t3), 0 ≤ t1 < t2 < t3, we set

Ŵ σ(t1, t2, t3) =

∫
Γ∗

W σ
t3−t2,t2−t1(γ)µ

σ
t1(dγ), µσt = Sσ(t)µ. (7.2)

see Lemma 6.6. By means of the main result of [6] and [11, Theorems 7.2 and 8.6 – 8.8,
pages 128 and 137–139] one can state the following, cf. [15, Proposition 7.8].

Proposition 7.1. Assume that: (a) for each t > 0, the family {µσt : σ ∈ (0, 1]} ⊂ P(Γ∗)
is weakly relatively compact; (b) for each T > 0, there exists C(T ) > 0 such that for each
triple (t1, t2, t3) satisfying t3 ≤ T the following holds

Ŵ σ(t1, t2, t3) ≤ C(T )(t3 − t1)
2. (7.3)

Then:

(i) For each σ ∈ (0, 1], the transition function pσ and µ ∈ Pexp, see (7.2), determine
a probability measure P σµ on DR+(Γ∗).

(ii) The family {P σµ : σ ∈ (0, 1]} of path measures just mentioned is tight, hence
possesses accumulation points in the weak topology of P(DR+(Γ∗)).

Remark 7.2. For each s > 0, one can consider Ŵ σ(t1, t2, t3) with t1 ≥ s and µσt =
Sσ(t − s)µ. Then by Proposition 7.1 pσ and µ ∈ Pexp determine a probability measure
P σs,µ on D[s,+∞)(Γ∗), and the family {P σs,µ : σ ∈ (0, 1]} is tight in the weak topology of
P(D[s,+∞)(Γ∗)).

The measure P σs,µ is defined by its finite dimensional marginals, which in turn are
defined by pσ and µ as follows, see eq. (1.10), page 157 in [11]. For a given m ∈ N, the
m-dimensional marginal is the following measure

P σs,µ((1A1 ◦ϖt1) · · · (1Am ◦ϖtm)) =

∫
Γm+1
∗

1Am(γm)p
σ
tm−tm−1

(γm−1, dγm) (7.4)

×1Am−1(γm−1)p
σ
tm−1−tm−2

(γm−2, dγm−1) · · ·1A1(γ1)p
σ
t1−s(γ0, dγ1)µ(dγ0),

where A1, . . . ,Am are in B(Γ∗).

Lemma 7.3. For each µ ∈ Pexp and T > 0, the estimate in (7.3) holds true for all
σ ∈ (0, 1] with a σ-independent C(T ) > 0.

Proof. For each γ ∈ Γ∗ and σ ∈ (0, 1], we have that δγ ∈ Dom(L†
σ), see (6.29) and (6.23).

By standard semigroup formulas, e.g., [11, page 9], it then follows

pσu(γ, ·) = δγ +

∫ u

0
L†
σp

σ
v (γ, ·)dv. (7.5)
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By (7.1) and the latter one gets

wσu(γ) = wσ0 (γ) +

∫ u

0

(∫
Γ∗

ρ(γ, γ′)(L†
σp

σ
v (γ, dγ

′))

)
dv (7.6)

=

∫ u

0

(∫
Γ∗

(Lσρ(γ, γ
′))pσv (γ, dγ

′)

)
dv,

since wσ0 (γ) = ρ(γ, γ) = 0. With the help of the triangle inequality one then obtains, cf.
(6.5) and (2.27),

|∇xρ(γ, γ
′)| = |ρ(γ, γ′ ∪ x)− ρ(γ, γ′)| ≤ ρ(γ′ ∪ x, γ′) ≤ ψ(x), (7.7)

which yields

|Lσρ(γ, γ′)| ≤ ∥b∥⟨ψ⟩+ ∥m∥F1(γ
′) +

∑
x∈γ′

ψ(x)
∑
y∈γ′\x

aσ(x, y) =: Vσ(γ
′). (7.8)

Then similarly as in (7.6) by (7.5) and the latter one gets

hσv (γ) :=

∫
Γ∗

(Lσρ(γ, γ
′))pσv (γ, dγ

′) ≤
∫
Γ∗

Vσ(γ
′)pσv (γ, dγ

′) (7.9)

= Vσ(γ) +

∫ v

0
(LσVσ(γ

′))pσs (γ, dγ
′)ds.

By (7.8) it follows that

∇xVσ(γ
′) = ∥m∥ψ(x) + ωσ(x, γ

′), (7.10)

where

ωσ(x, γ
′) =

∑
z∈γ′

(ψ(x)aσ(x, z) + ψ(z)aσ(z, x)) . (7.11)

Since ∇xVσ(γ
′) ≥ 0, cf. (4.16), (4.18), then

LσVσ(γ
′) ≤ L+

σ Vσ(γ
′) = ∥m∥

∫
X
bσ(x)ψ(x)dx (7.12)

+

∫
X
bσ(x)

∑
z∈γ′

ψ(z)aσ(z, x) + ψ(x)
∑
y∈γ′

aσ(x, y)

 dx

≤ ∥m∥∥b∥⟨ψ⟩+ ∥b∥⟨a⟩F1(ψ) + ∥b∥
∑
x∈γ′

fσ(x) =: Ṽσ(γ
′),

where

fσ(x) =

∫
X
aσ(z, x)ψ(z)dz. (7.13)

We apply (7.12) in (7.9) and get

hσv (γ) ≤ Vσ(γ) + vṼσ(γ) +

∫ v

0

∫ s

0

∫
Γ∗

(
LσṼσ(γ

′)
)
pσt (γ, dγ

′)dtds. (7.14)

Furthermore, by (7.12), (7.13) we have

LσṼσ(γ
′) ≤ L+

σ Ṽσ(γ
′) ≤ ∥b∥2

(
⟨a⟩⟨ψ⟩+

∫
X
fσ(x)dx

)
≤ 2∥b∥2⟨ψ⟩⟨a⟩ =: CV ,

which we use in (7.14) and then in (7.6), and thereafter obtain

wσu(γ) ≤ w̃σu(γ) := uVσ(γ) +
u2

2
Ṽσ(γ) +

u3

6
CV . (7.15)
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Now we turn to estimating W σ
u,v. First we write, see the second line in (7.1) and (7.15),

W σ
u,v(γ) ≤ uΥσ

1,v(γ) +
u2

2
Υσ

2,v(γ) +
u3

6
Υσ

3,v(γ), (7.16)

Υσ
1,v(γ) =

∫
Γ∗

ρ(γ, γ′)Vσ(γ
′)pσv (γ, dγ

′) =

∫ v

0

∫
Γ∗

Lσρ(γ, γ
′)Vσ(γ

′)pσs (γ, dγ
′)ds,

Υσ
2,v(γ) =

∫
Γ∗

ρ(γ, γ′)Ṽσ(γ
′)pσv (γ, dγ

′),

Υσ
3,v(γ) = CV

∫
Γ∗

ρ(γ, γ′)pσv (γ, dγ
′).

In the same way as in (7.7) by (7.10) we get

|∇xρ(γ, γ
′)Vσ(γ

′)| ≤ ρ(γ, γ′ ∪ x)∇xVσ(γ
′) + |∇xρ(γ, γ

′)|Vσ(γ′)

≤ ψ(x)Vσ(γ
′) + ∥m∥ψ(x) + ωσ(x, γ

′).

Thereafter, similarly as in (7.7), (7.8) it follows that

|Lσρ(γ, γ′)Vσ(γ′)| ≤
(
Vσ(γ

′) + ∥m∥
) ∫

X
bσ(x)ψ(x)dx (7.17)

+
(
Vσ(γ

′) + ∥m∥
)∑
x∈γ′

ψ(x)

mσ(x) +
∑
y∈γ′\x

aσ(x, y)


+

∫
X
bσ(x)ωσ(x, γ

′)dx

+
∑
x∈γ′

mσ(x) +
∑
y∈γ′\x

aσ(x, y)

ωσ(x, γ
′ \ x),

≤ Vσ(γ
′)[∥m∥+ Vσ(γ

′)] + ∆σ(γ
′) =: V1,σ(γ

′),

where ωσ(x, γ
′) is given in (7.11) and

∆σ(γ
′) =

∫
X
bσ(x)ωσ(x, γ

′)dx+
∑
x∈γ′

mσ(x) +
∑
y∈γ′\x

aσ(x, y)

ωσ(x, γ
′ \ x). (7.18)

Then, see (7.16),

Υσ
1,v(γ) ≤

∫ v

0

∫
Γ∗

V1,σ(γ
′)pσs (γ

′, dγ)ds. (7.19)

Now we recall that µσt lies in Pexp and thus, see Lemma 4.4, its correlation functions satisfy

0 ≤ k
(n)
µσt

(x1, . . . , xn) ≤ κ(t) := κµ0 + ∥b∥t, (7.20)

where the right-hand side is independent of σ. By (7.2) and then by (7.16) one can come
to the conclusion that proving (7.3) now amounts to estimating the integrals

Iσj (t2 − t1) =

∫
Γ∗

Υσ
j,t2−t1(γ)µ

σ
t1(dγ), j = 1, 2, 3. (7.21)
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Indeed, in this setting we have

Ŵ σ(t1, t2, t3) ≤ (t3 − t2)

(
Iσ1 (t2 − t1) (7.22)

+
(t3 − t2)

2
Iσ2 (t2 − t1) +

(t3 − t2)
2

6
Iσ3 (t2 − t1)

)

≤ (t3 − t2)I
σ
1 (t2 − t1) +

(t3 − t1)
2

2

(
Iσ2 (t2 − t1) +

t3 − t2
3

Iσ3 (t2 − t1)

)
.

Note that the second summand in the last line of (7.22) already has the desired power of
t3 − t1. Thus, it is enough for us just to get σ-independent bounds for Iσ2 (t2 − t1) and
Iσ3 (t2 − t1). At the same time, Iσ1 (t2 − t1) requires a more accurate estimating.

By the semigroup property it follows that∫
Γ∗

pσs (γ, dγ
′)µσt1(dγ) = µσt1+s(dγ

′). (7.23)

We take this into account and by (7.21), (7.17), (7.18) and (7.19) obtain

Iσ1 (t2 − t1) ≤
∫ t2−t1

0

∫
Γ∗

V1,σ(γ)µ
σ
t1+s(dγ)ds (7.24)

= Iσ1a(t2 − t1) + Iσ1b(t2 − t1) + Iσ1c(t2 − t1),

where

Iσ1a(t2 − t1) = ∥m∥
∫ t2−t1

0

∫
Γ∗

Vσ(γ)µ
σ
t1+s(dγ)ds (7.25)

Iσ1b(t2 − t1) =

∫ t2−t1

0

∫
Γ∗

[Vσ(γ)]
2µσt1+s(dγ)ds

Iσ1c(t2 − t1) =

∫ t2−t1

0

∫
Γ∗

∆σ(γ)µ
σ
t1+s(dγ)ds.

To estimate the integrals in (7.25) we employ the fact that each of the integrands can
be presented as KG with an appropriate G, and then use (2.19) and (7.20). By (7.8) it
follows that

Vσ = KGσ, G(0)
σ = ∥b∥⟨ψ⟩, G(1)

σ (x) = ∥m∥ψ(x), (7.26)

G(2)
σ (x, y) = ψ(x)aσ(x, y) + ψ(y)aσ(y, x),

and G
(k)
σ ≡ 0 for k > 2. Then

Iσ1a(t2 − t1) = ∥m∥
∫ t2−t1

0

(
∥b∥⟨ψ⟩+ ∥m∥

∫
X
ψ(x)k

(1)
µσt1+s

(x)dx (7.27)

+

∫
X2

ψ(x)aσ(x, y)k
(2)
µσt1+s

(x, y)dxdy

)
ds

≤ (t2 − t1)∥m∥⟨ψ⟩
(
∥b∥+ ∥m∥κ(T ) + ⟨a⟩[κ(T )]2

)
:= (t2 − t1)C1a(T ).

To proceeed futher, we write

Vσ = KGσ ⋆ Gσ =: KHσ, Hσ(η) =
∑
ξ1⊂η

∑
ξ2⊂η\ξ1

Gσ(ξ1 ∪ ξ2)Gσ(η \ ξ2),
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see (4.7), which by (7.26) yields

H(0)
σ = [∥b∥⟨ψ⟩]2 , H(1)

σ (x) = 2∥b∥∥m∥⟨ψ⟩ψ(x) + [∥m∥ψ(x)]2,

H(2)
σ (x1, x2) = 2∥b∥⟨ψ⟩G(2)

σ (x1, x2) + 2∥m∥2ψ(x1)ψ(x2)

+2∥m∥(ψ(x1) + ψ(x2))G
(2)
σ (x1, x2) + [G(2)

σ (x1, x2)]
2,

H(3)
σ (x1, x2, x3) = 2∥m∥ψ(x1)G(2)

σ (x2, x3) + 2∥m∥ψ(x2)G(2)
σ (x1, x3)

+2∥m∥ψ(x3)G(2)
σ (x1, x2) + 2G(2)

σ (x1, x2)G
(2)
σ (x1, x3)

+2G(2)
σ (x1, x2)G

(2)
σ (x2, x3) + 2G(2)

σ (x1, x3)G
(2)
σ (x2, x3),

and

H(4)
σ (x1, x2, x3, x4) = G(2)

σ (x1, x2)G
(2)
σ (x3, x4) +G(2)

σ (x1, x3)G
(2)
σ (x2, x4)

+G(2)
σ (x1, x4)G

(2)
σ (x2, x3).

Then similarly as in (7.27) by means of the estimates G
(2)
σ (x1, x2) ≤ 2∥a∥ and∫

X2

G(2)
σ (x1, x2)dx1dx2 ≤ 2

∫
X2

ψ(x1)a(x1 − x2)dx1dx2 = 2⟨ψ⟩⟨a⟩,∫
X3

G(2)
σ (x, y)G(2)

σ (y, z)dxdydz ≤ 4⟨a⟩2⟨ψ⟩,

we get

Iσ1b(t2 − t1) =

∫ t2−t1

0

∫
Γfin

Hσ(η)kµσt1+s
(η)λ(dη) (7.28)

≤ (t2 − t1)

(
(∥b∥⟨ψ⟩)2 + ∥m∥⟨ψ⟩ (2∥b∥⟨ψ⟩+ ∥m∥)κ(T )

+ ⟨ψ⟩
(
2∥b∥⟨a⟩⟨ψ⟩+ ∥m∥2⟨ψ⟩+ 4∥m∥⟨a⟩+ 2∥a∥⟨a⟩

)
[κ(T )]2

+ 2⟨ψ⟩⟨a⟩ (∥m∥⟨ψ⟩+ 2⟨a⟩) [κ(T )]3 + 1

2
(⟨ψ⟩⟨a⟩)2 [κ(T )]4

)
=: (t2 − t1)C1b(T ).

By (7.26), (7.11) and (7.18) one can write

∆σ(γ) =

∫
X
bσ(x)

∑
y∈γ

G(2)
σ (x, y)dx+

∑
x∈γ

mσ(x)
∑
y∈γ\x

G(2)
σ (x, y)

+
∑
x∈γ

∑
y∈γ\x

aσ(x, y)G
(2)
σ (x, y) +

∑
x∈γ

∑
y∈γ\x

∑
z∈γ\{x,y}

aσ(x, y)G
(2)
σ (x, z).

Then similarly as in (7.28) one obtains

Iσ1c(t2 − t1) ≤ (t2 − t1)2⟨ψ⟩⟨a⟩κ(t2)
(
∥b∥+ [∥m∥+ ∥a∥]κ(T ) + ⟨a⟩[κ(T )]2

)
(7.29)

=: (t2 − t1)C1c(T ).

By (7.24), (7.27), (7.28) and (7.29) we then get

Iσ1 (t2 − t1) ≤ (t2 − t1)(C1a(T ) + C1b(T ) + C1c(T )) =: (t2 − t1)C1(T ). (7.30)
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Now similarly as in (7.21) and (7.16), (7.12) we get

Iσ2 (t2 − t1) =

∫
Γ2
∗

ρ(γ, γ′)Ṽσ(γ
′)pσt2−t1(γ, dγ

′)µσt1(dγ) (7.31)

≤
∫
Γ∗

Ṽσ(γ)µ
σ
t2(dγ) ≤ ∥b∥⟨ψ⟩ (∥m∥+ 2⟨a⟩κ(T )) =: C2(T ),

where we used (7.23) and the fact that ρ(γ, γ′) ≤ 1, see (2.27), and the estimate∫
X
fσ(x)dx ≤ ⟨ψ⟩⟨a⟩,

see (7.13). Similarly,

Iσ3 (t2 − t1) = CV

∫
Γ2
∗

ρ(γ, γ′)pσt2−t1(γ, dγ
′)µσt1(dγ) ≤ CV . (7.32)

Now we employ (7.32), (7.31) and (7.30) in (7.22) and thereby come to the conclusion
that the desired inequality in (7.3) holds true with

C(T ) =
1

4
C1(T ) +

1

2
C2(T ) +

T

6
CV ,

which completes the proof. □

7.2. The weak convergence. The aim of this subsection is to prove that the aforemen-
tioned states µ̂σt = µσt , see Lemma 6.6, weakly converge to the corresponding states µt
which solve the Fokker-Planck equation for (L,F , µ0). By this we also demonstrate that
condition (a) of Proposition 7.1 is met. We begin by proving the following lemma in which
αt is as in (6.10). Recall also that the Banach spaces Gα are defined in (2.32).

Lemma 7.4. For some α0 and all σ ∈ (0, 1], let µ0 and µσ0 be in Pα0
exp. Assume also that

∀α ∈ R ∀G ∈ Gα ⟨⟨kµσ0 , G⟩⟩ → ⟨⟨kµ0 , G⟩⟩ as σ → 0. (7.33)

Next, for these µσ0 and µ0, let µσt and µt be the unique solutions of the Fokker-Planck
equation for (Lσ,F , µσ0 ) and (L,F , µ0), respectively. Then for each t > 0, the following
holds

∀α ∈ R ∀G ∈ Gα ⟨⟨kµσt , G⟩⟩ → ⟨⟨kµt , G⟩⟩ as σ → 0. (7.34)

Proof. Recall that αt = ln(eα0 + ∥b∥t), see (6.10). Also, by Proposition 5.3 it follows that
kµt = kt, where the latter solves the Cauchy problem in (5.8), and hence

kµt+s = kt+s = Qααtkt, s < T (α, αt), α > αt. (7.35)

A similar representation holds also for kµσt+s
= kσt+s, see (6.8), (6.9).

Assume that the convergence stated in (7.34) holds for a given t ≥ 0, see (7.33). Let
us then prove that there exists a possibly t-dependent s0 > 0 such that this convergence
holds also for t+ s with s ≤ s0. Write, cf. (7.35),

kt+s − kσt+s = Qᾱtαtkt −Qσᾱtαt
kσt ,
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where ᾱt = αt + 1 and the equality is written in Kᾱt . In view of (5.14), we then obtain,
cf. (5.36),

kt+s − kσt+s = Qᾱtαt(s)(kt − kσt )−
(∫ s

0

d

du
[Qᾱtα1(s− u)Qσα1αt

(u)]du

)
kσt (7.36)

= Qᾱtαt(s)(kt − kσt ) +

∫ s

0
Qᾱtα2(s− u)L∆

α2α1
Qσα1αt

(u)kσt du

−
∫ s

0
Qᾱtα2(s− u)(L∆

σ )α2α1Q
σ
α1αt

(u)kσt du

= Qᾱtαt(s)(kt − kσt ) +

∫ s

0
Qᾱtα2(s− u)L̃∆,σ

α2α1
Qσα1αt

(u)kσt du

where, see (5.2), (6.2) and (6.7),

L̃∆,σ
α′αk(η) := [L∆

α′α − (L∆
σ )α′α]k(η) =

∑
x∈η

b̃σ(x)k(η \ x) (7.37)

−Ẽσ(η)k(η)−
∫
X

∑
y∈η

ãσ(x, y)k(η ∪ x)dx,

and

b̃σ(x) = b(x)− bσ(x) = b(x)ψ̃σ(x), ψ̃σ(x) =
σ|x|d+1

1 + σ|x|d+1
(7.38)

ãσ(x, y) = a(x− y)[1− ψσ(x)ψσ(y)],

Ẽσ(η) =
∑
x∈η

m(x)ψ̃σ(x) +
∑
x∈η

∑
y∈η\x

ãσ(x, y).

In the last line in (7.36), α1 ∈ (αt, ᾱt) and α2 ∈ (α1, ᾱt) should be such that

s < min {T (ᾱt, α2);T (α1, αt)} .

Set α1 = αt + ε and find ε ∈ (0, 1) from the condition

T (αt + ε, αt) = T (αt + 1, αt + ε). (7.39)

Recall that αt = ln(eα0 +∥b∥t). The equation in (7.39) has a unique solution which defines
a continuous decreasing function ε : R+ → (0, 1) such that limt→+∞ ε(t) = ε∗ ∈ (0, 1),

where the latter is a unique solution of the equation ε = (1− ε)e−(1−ε). Then we define

υ(t) = T (αt + ε(t), αt), (7.40)

take some ϵ ∈ (0, 1), and set

s0 = ϵυ(t). (7.41)

It is possible to show that

αt+υ(t) < αt + ε(t), hence kt+s ∈ Kαt+υ(t)
⊂ Kα1 , for s ≤ s0. (7.42)

As the map α 7→ T (α′, α) is continuous, see (5.11), one finds α2 ∈ (αt + ε(t), αt + 1)
such that s0 < T (αt + 1, α2). Thus, for the chosen in this way α1 and α2, the operators
Qᾱtα2(s − u) and Qσα1αt

(u) in the last line of (7.36) make sense for all s ≤ s0 and u ≤ s.

Since G lies in Gα with any α, we take G ∈ Gᾱt and set Gs = Q̆α2ᾱt(s)G, s ≤ s0, see (5.23).
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This Gs lies in Gα2 ⊂ Gαt , cf. (2.33), and then get from (7.36) the following formula

⟨⟨kt+s − kσt+s, G⟩⟩ = ⟨⟨kt − kσt , Gs⟩⟩+Υσ(s), (7.43)

Υσ(s) :=

∫ s

0
⟨⟨L̃∆,σ

α2α1
kσt+u, Gs−u⟩⟩du.

Our aim now is to prove that Υσ(s) → 0 as σ → 0. In view of (7.37) and (7.38), we then
write

Υσ(s) = Υ(1)
σ (s) + Υ(2)

σ (s) + Υ(3)
σ (s) + Υ(4)

σ (s), (7.44)

Υ(1)
σ (s) =

∫ s

0

∫
Γfin

∑
x∈ξ

b̃σ(x)k
σ
t+u(ξ \ x)Gs−u(ξ)λ(dξ)

 du,

Υ(2)
σ (s) = −

∫ s

0

∫
Γfin

∑
x∈ξ

m(x)ψ̃σ(x)k
σ
t+u(ξ)Gs−u(ξ)λ(dξ)

 du,

and

Υ(3)
σ (s) = −

∫ s

0

∫
Γfin

∑
x∈ξ

∑
y∈ξ\x

ãσ(x, y)k
σ
t+u(ξ)Gs−u(ξ)λ(dξ)

 du (7.45)

Υ(4)
σ (s) = −

∫ s

0

∫
Γfin

∫
X

∑
y∈ξ

ãσ(x, y)k
σ
t+u(ξ ∪ x)Gs−u(ξ)dxλ(dξ)

 du.

By Lemma 4.4 it follows that kσt+u(ξ) ≤ eαt+u|ξ| ≤ eα1|ξ|, see (7.42). We take this into
account in (7.44), (7.45) and then get

|Υ(i)
σ (s)| ≤

∫ s

0

∫
Γfin

H̃(i)
σ (ξ)|Gs−u(ξ)|λ(dξ)du, i = 1, 2, 3, 4. (7.46)

Here, see (7.38),

H̃(1)
σ (ξ) = eα1|ξ|−α1

∑
x∈ξ

ψ̃σ(x)b(x) ≤ e−α1∥b∥|ξ|eα1|ξ| =: C(1)|ξ|eα1|ξ|, (7.47)

H̃(2)
σ (ξ) = eα1|ξ|

∑
x∈ξ

ψ̃σ(x)m(x) ≤ ∥m∥|ξ|eα1|ξ| =: C(2)|ξ|eα1|ξ|,

H̃(3)
σ (ξ) = eα1|ξ|

∑
x∈ξ

∑
y∈ξ\x

ãσ(x, y) ≤ ∥a∥|ξ|2eα1|ξ| =: C(3)|ξ|2eα1|ξ|,

H̃(4)
σ (ξ) = eα1|ξ|+α1

∫
X

∑
y∈ξ

ãσ(x, y)dx ≤ eα1⟨a⟩|ξ|eα1|ξ| =: C(4)|ξ|eα1|ξ|.

By the elementary inequality se−βs ≤ 1/βe, s, β > 0, we obtain

RHS(7.46) ≤ C(i)

e(α2 − α1)

∫ s

0

∫
Γfin

eα2|ξ||Gs−u(ξ)|λ(dξ)du (7.48)

=
C(i)

e(α2 − α1)

∫ s

0
|Gs−u|α2du

≤ sC(i)

e(α2 − α1)

T (ᾱt, α2)|G|ᾱt

T (ᾱt, α2)− s0
, i = 1, 2, 4,
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where we have used also (5.24). For i = 3, by the same calculations we have

RHS(7.46) ≤ 4s∥a∥
[e(α2 − α1)]2

T (ᾱt, α2)|G|ᾱt

T (ᾱt, α2)− s0
. (7.49)

In view of (7.38), each of H̃
(i)
σ (ξ), i = 1, . . . , 4 decreases to zero as σ → 0. By (7.46),

(7.48), (7.49) and the monotone convergence theorem this yields

Υ(i)
σ (s) → 0, as σ → 0, (7.50)

holding for all i = 1, . . . , 4. By (7.50) and (7.43) we then get that the convergence as in
(7.34) can be prolonged from t to t+ s, s ≤ s0, see (7.41). Our aim now is to prolong this
ad infinitum. Define

tl = tl−1 + sl, t0 = 0, sl = ϵυ(tl−1), l ∈ N. (7.51)

Since k0 = kσ0 = kµ0 , the developed above arguments yields the stated convergence for
t ≤ supl tl = liml→+∞ tl. Then to complete the proof we have to show that tl → +∞.
Assume that supl tl = t∗ < +∞. By (7.51) it follows that tl = s1 + · · ·+ sl; hence, sl → 0
in this case. The function υ(t) defined in (7.40) is continuous – for both ε(t) and αt are
continuous. By (7.51) we would then have

υ(t∗) =
ε(t∗)

∥b∥e−αt∗ + ⟨a⟩eαt∗+ε(t∗)
= 0,

which is obviously impossible. This completes the whole proof. □

The result just proved allows us to achive the main goal of this subsection.

Lemma 7.5. Let µ0, µ
σ
0 , µt and µ

σ
t be as in Lemma 7.4. Then for each t ≥ 0, it follows

that µσt ⇒ µt as σ → 0, where we mean the weak convergence of measures on Γ∗.

Proof. By Proposition 3.5, see (3.22), it follows that F̃v = Ke(·;hv) with e(·;hv) ∈ Gα for
an arbitrary α ∈ R. Then we apply (2.19) and obtain by Lemma 7.4 that

µσt (F̃v) = ⟨⟨kµσt , e(·;hv)⟩⟩ → ⟨⟨kµt , e(·;hv)⟩⟩ = µt(F̃v), σ → 0,

holding for all t ≥ 0 and v ∈ V. Then the proof follows by statement (ii) of Proposition
3.4. □

7.3. The proof of Theorem 3.10. By Lemmas 7.4 and 7.3 both conditions (a) and (b)
of Proposition 7.1 are met. Therefore, for each σ ∈ (0, 1], by statement (i) of the latter, see
also Remark 7.2, a given measure µ ∈ Pexp determines probability measures P σs,µ, s ≥ 0,
on the cadlag path space D[s,+∞)(Γ∗) through their marginals given in (7.4). In particular,
this yields

P σs,µ ◦ϖ−1
t = Sσ(t− s)µ, t ≥ s. (7.52)

For each µ ∈ Pexp, by Lemma 6.6 it follows that Sσ(t − s)µ = µt also lies in Pexp, and
κµt ≤ κµ + ∥b∥(t − s). This yields that, for each fixed σ ∈ (0, 1], the family {P σs,µ : s ≥
0, µ ∈ Pexp} satisfies conditions (a), (b) and (c) of Definition 3.8. To prove that condition

(d) is also met we take J as in (3.30) with given fixed m, J1, . . . Jm in F̃ , see (3.16), and
s ≤ s1 < s2 < · · · < sm ≤ t1. Then define

ς̃σ1,s1 = c1,σJ1µ
σ
s1 = c1,σJ1S

σ(s1 − s)µ, c−1
1,σ = µσs1(J1) > 0. (7.53)

The latter inequality follows by the fact that all Jl in J are strictly positive. Since µσs1 ∈
Pαs1
exp , eαs1 = κµ+∥b∥(s1−s), by item (c) of Remark 2.4 it follows that ς̃σ1,s1 is in P α̃s1

exp with
α̃s1 = αs1 +α1, where α1 ≥ 0 may be taken σ-independent since the correlation functions
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of ς̃σ1,s1 obey estimates uniform in σ. Clearly, the choice of α1 ≥ 0 dependes on J1. Next
we set

ςσ2,s2 = Sσ(s2 − s1)ς̃
σ
1,s1 , c−1

2,σ = ςσ2,s2(J2) > 0, (7.54)

ς̃σ2,s2 = c2,σJ2ς
σ
2,s2 .

Similarly as above, ςσ2,s2 ∈ P α̂s2
exp and ς̃σ2,s2 ∈ P α̃s2

exp with eα̂s2 = eα̃s1 + ∥b∥(s2 − s1) and
α̃s2 = α̂s2 + α2, where α2 depends only on J2 and is σ-independent. Then we continue
proceeding in this way and thus obtain

ςσl,sl = Sσ(sl − sl−1)ς̃
σ
l−1,sl−1

, c−1
l,σ = ςσl,sl(Jl) > 0, (7.55)

ς̃σl,sl = cl,σJlς
σ
l,sl
, ς̃σl,sl ∈ P α̃sl

exp l = 2, 3, . . . ,m,

with α̃sl = α̂sl + αl. As mentioned above, the choice of all α̃sl is σ-independent. Finally,
we get

ςσu = Sσ(u− sm)ς̃
σ
m,sm , u ≥ sm, (7.56)

which lies in P α̂m
exp , α̂m ∈ R is σ-independent. By (7.55) and Lemma 6.6 each ςσl,u solves

the Fokker-Planck equation for (Lσ,Fmax, ς̃
σ
l−1,sl−1

) on the time interval [sl−1, sl], whereas

ςσu solves it for (Lσ,Fmax, ς̃
σ
m,sm) on the time interval [sm,+∞).

Now we take F ∈ F̃ and then write

Fu = F ◦ϖu, Lu = LF ◦ϖu, Lσu = LσF ◦ϖu, u ∈ [sm, t2]. (7.57)

By (7.4) and (7.55), (7.56) and (7.57) it follows that

P σs,µ(FuJ) = CσP
σ
sm,ςσm,sm

(Fu) = Cσς
σ
u (F ), u ≥ sm, (7.58)

Cσ = P σs,µ(J) = c−1
1,σ · · · c−1

m,σ. Thereby, we get

P σs,µ(H) = P σs,µ(Ft2J)− P σs,µ(Ft1J)− P σs,µ

(∫ t2

t1

LσuJdu

)
(7.59)

= Cσ

(
P σsm,ςσm,sm

(Ft2)− P σsm,ςσm,sm
(Ft1)−

∫ t2

t1

P σsm,ςσm,sm
(Lσu)du

)

= Cσ

(
ςσt2(F )− ςσt1(F )−

∫ t2

t1

ςσu (LσF )du

)
= 0.

While passing to the second line in (7.59), we have interchanged the integrations as the
family {P σs,µ ◦ϖ−1

u : u ∈ [s, t2]} satisfies the condition of Proposition 3.7. The last equality
in (7.59) follows by the aforementioned fact that ςσu solves the corresponding Fokker-Planck
equation.

By Lemma 7.5 it follows that µσs1 ⇒ µs1 as σ → 0, where µs1 solves (1.2) for (L,Fmax, µ)

on [s,+∞). And also c−1
1,σ → c−1

1 = µs1(J1), ς̃
σ
1,s1

⇒ ς̃1,s1 := c1J1µs1 , see (7.53). By
Proposition 7.4 it follows that

⟨⟨kµσs1 , G⟩⟩ → ⟨⟨kµs1 , G⟩⟩, σ → 0, (7.60)

holding for all G ∈ Gα, α ∈ R. Let us prove that

⟨⟨kς̃σ1,s1 , G⟩⟩ → ⟨⟨kς̃1,s1 , G⟩⟩, σ → 0, (7.61)

holding for all G ∈ Gα, α ∈ R. To this end, we use (3.19), which yields

⟨⟨kς̃σ1,s1 , G⟩⟩ = c1,σ⟨⟨kµσ1,s1 , Gv1⟩⟩,

where v1 is such that J1 = F̃v1 . By (3.23) it follows that Gv1 ∈ Gα with any real α. By
(3.18) and (7.53) we then get that the convergence in (7.61) follows by (7.60). Now by
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(7.54) and Lemma 7.5 it follows that ςσ2,s2 ⇒ ς2,s2 ∈ P α̂2
exp, where the latter solves the

Fokker-Planck equation for (L,Fmax, ς̃1,s1) on [s1,+∞). And also

ς̃σ2,s2 ⇒ ς̃2,s2 := c2J2ς2,s2 , ⟨⟨kς̃σ2,s2 , G⟩⟩ → ⟨⟨kς̃2,s2 , G⟩⟩, σ → 0,

We continue this procedure and get

ςσl,sl ⇒ ςl,sl , c−1
l,σ → c−1

l = ςl,sl(Jl), ς̃σl,sl ⇒ ς̃l,sl = clJlς
σ
l,sl
, (7.62)

⟨⟨kς̃σl,sl , G⟩⟩ → ⟨⟨kς̃l,sl , G⟩⟩, σ → 0, l = 2, 3, . . . ,m.

Moreover, ςl,sl ∈ P α̃sl
exp, where α̃sl is the same as in (7.55). It solves the Fokker-Planck

equation for (L,Fmax, ς̃
σ
l−1,sl−1

) on [sl−1,+∞). Finally, by (7.56) we get

ςσu ⇒ ςu, ⟨⟨kςσu , G⟩⟩ → ⟨⟨kςu , G⟩⟩, σ → 0, (7.63)

and ςu solves the Fokker-Planck for (L,Fmax, ςm,sm) on [sm,+∞). And also

ςσu , ςu ∈ P α̃u
exp, α̃u = ln[eα̃sm + ∥b∥(u− sm)]. (7.64)

Note that the convergence of integrals involving correlation functions in (7.63) follows by
the corresponding convergences in (7.62).

By Lemmas 7.3 and 7.4, and hence by Proposition 7.1, the set {P σs,µ : σ ∈ (0, 1]} has
accumulations points. Let Ps,µ be one of them and {σn}n∈N be such that σn → 0 and
P σns,µ ⇒ Ps,µ as n→ +∞. Define

ς̂u(A) = C−1Ps,µ((1A ◦ϖu)J), C = Ps,µ(J), u ∈ [sm, t2], A ∈ B(Γ∗). (7.65)

Then Cσn and ςσnu defined in (7.58) satisfy, see Lemma 7.4,

Cσn → C, ςσnu ⇒ ς̂u = ςu, n→ +∞, (7.66)

see (7.63). In view of (7.59), one can write

Ps,µ(H) = Ps,µ(H)− P σns,µ(H) = an(t2)− an(t2)−
∫ t2

t1

bn(u)du−
∫ t2

t1

cn(u)du, (7.67)

an(u) = Ps,µ(FuJ)− P σns,µ(FuJ), bn(u) = Ps,µ(LuJ)− P σns,µ(LuJ),

cn(u) = P σns,µ((Lu − Lσnu )J), u ∈ [sm, t2].

Since FuJ ∈ Cb(D[s,+∞)(Γ∗)), an(u) → 0 for each u ∈ [sm, t2], that follows by the fact that
P σns,µ ⇒ Ps,µ as n → +∞, see above. To proceed further, by (7.67), (7.65) and (7.58) we
write

bn(u) = C(ςu(LF )− ςσnu (LF )) + (C − Cσn)ς
σn
u (LF ). (7.68)

By (3.11) it follows that F = KG with G ∈ Gα, holding for each α ∈ R. Then, see (5.3),
(5.22) and (7.64), we have

|ςσnu (LF )| = |⟨⟨kςσnu
, L̆α̃uαG⟩⟩| ≤

∫
Γfin

eα̃u|η||L̆α̃uαG(η)|λ(dη) ≤ ∥L̆α̃uα∥|G|α, (7.69)

where the operator norm ∥L̆α̃uα∥ satisfies the same estimate as in (5.5). By (7.66) the
second summand on the right-hand side of (7.68) vanishes as n → +∞ since the bound
in (7.69) is independent of n. At the same time, similarly as in (7.69) we have

ςu(LF )− ςσnu (LF ) = ⟨⟨kςu , L̆α̃uαG⟩⟩ − ⟨⟨kςσnu
, L̆α̃uαG⟩⟩ → 0, n→ +∞, (7.70)

which follows by (7.63). Then bn(u) → 0 as n → +∞, holding for each u ∈ [sm, t2].
Finally, similarly as in (7.58), see also (7.37), we have

cn(u) = Cσnς
σn
u ((L− Lσn)F ) = Cσn⟨⟨L̃

∆,σn
αα̃u

kςσnu
, G⟩⟩,
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where G is the same as in (7.69), (7.70), i.e., such that F = KG. Recall that G ∈ Gα for
each α ∈ R, see (3.11). Then similarly as in (7.43), (7.44) we may write

⟨⟨L̃∆,σn
αα̃u

kςσnu
, G⟩⟩ = Υ(1)

n +Υ(2)
n +Υ(3)

n +Υ(4)
n , (7.71)

Υ(1)
n =

∫
Γfin

∑
x∈ξ

b̃σn(x)kςσnu
(ξ \ x)|G(ξ)|λ(dξ),

Υ(2)
n =

∫
Γfin

∑
x∈ξ

m(x)ψ̃σn(x)kςσnu
(ξ)|G(ξ)|λ(dξ),

Υ(3)
n =

∫
Γfin

∑
x∈ξ

∑
y∈ξ\x

ãσn(x, y)kςσnu
(ξ)|G(ξ)|λ(dξ),

Υ(4)
n =

∫
Γfin

∫
X

∑
y∈ξ

ãσn(x, y)kςσnu
(ξ ∪ x)|G(ξ)|λ(dξ)dx.

Now similarly as in (7.46), (7.47) we estimate

Υ(i)
n ≤

∫
Γfin

h(i)(ξ)|G(ξ)|λ(dξ), i = 1, 2, 3, 4,

where

h(1)(ξ) = ∥b∥e−α̃u |ξ|eα̃u|ξ| =: c1|ξ|eα̃u|ξ|, h(2)(ξ) = ∥m∥|ξ|eα̃u|ξ| =: c2|ξ|eα̃u|ξ|,

h(3)(ξ) = ∥a∥|ξ|2eα̃u|ξ| =: c3|ξ|2eα̃u|ξ|, h(4)(ξ) = ⟨a⟩eα̃u |ξ|eα̃u|ξ| =: c4|ξ|eα̃u|ξ|.

By these estimates we then get

Υ(i)
n ≤ ci

e(α− α̃u)
|G|α, i = 1, 2, 4, Υ(3)

n ≤ 4c3
e(α− α̃u)2

|G|α, (7.72)

holding with an arbitrary α > α̃u since G ∈ Gα for each α ∈ R. By (7.72) each Υ
(i)
n is

bounded. At the same time, b̃σn(x), ψ̃σn(x), ãσn(x, y) are monitone functions decreasing
to zero. By the monotone convergence theorem one then concludes that each of the
summands in the first line of (7.71) converges to zero as n → +∞, which by (7.67)
concludes the proof that Ps,µ(H) = 0; hence, the accumulation point under discussion
solves the restricted martingale problem.

Assume now that there exists another accumulation point, say {P ′
s,µ : s ≥ 0, µ ∈ Pexp},

which also solves the restricted martingale problem as we just have shown. Then the
one dimentional marginals of Ps,µ and P ′

s,µ should coincide, see Remark 3.9, due to the
uniqueness stated in Theorem 3.3. Thus, to complete the whole proof we have to show
that all finite dimensional marginals of these measures coincide, see Definition 3.8. Take

F1 ∈ F̃ and t1 > s and define the following measures on D[t1,+∞)(Γ∗) by setting

Qt1(A) =
Ps,µ(1AF1 ◦ϖt1)

Ps,µ(F1 ◦ϖt1)
, Q′

t1(A) =
P ′
s,µ(1AF1 ◦ϖt1)

Ps,µ(F1 ◦ϖt1)
. (7.73)

Recall that F1(γ) > 0, see (3.16) and Proposition 3.5. By the inductive assumption it
follows that

Qt1 ◦ϖ−1
t1

= Q′
t1 ◦ϖ

−1
t1

=: ςt1 .
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By (7.52) and (7.53) it follows that ςσt1 ⇒ ςt1 as σ → 0, where is as in (7.53) with J1 = F1.
For t2 > t1 and F2 ∈ Fmax, define, cf. (3.29),

H1(γ̄) = F2(ϖt2(γ̄))− F2(ϖt2(γ̄))−
∫ t2

t1

(LF2)(ϖu(γ̄))du

H2(γ̄) = H1(γ̄)F1(ϖt1(γ̄))

By (7.73) and the assumed properties of Ps,µ and P ′
s,µ it follows that

Qt1(H1) =
Ps,µ(H2)

Ps,µ(F1 ◦ϖt1)
= 0, Q′

t1(H1) =
P ′
s,µ(H2)

Ps,µ(F1 ◦ϖt1)
= 0,

by which both Qt1 ◦ ϖ−1
t and Q′

t1 ◦ ϖ−1
t , t > t1, solve the Fokker-Planck equation for

(L,Fmax, ςt1) on the time interval [t1,+∞). By Theorem 3.3 we then conclude that Qt1 ◦
ϖ−1
t = Q′

t1 ◦ϖ
−1
t ∈ Pexp, which implies in turn that the two dimensional marginals of Ps,µ

and P ′
s,µ also coincide. Then the extension of this to all finite dimensional marginals goes

by induction. This completes the whole proof.
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