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ABSTRACT. This work is devoted to the stochastic Zakharov system in dimension four, which is the energy-
critical dimension. First, we prove local well-posedness in the energy space H! x L? up to the maximal
existence time and a blow-up alternative. Second, we prove that for large data solutions exist globally
as long as energy and wave mass are below the ground state threshold. Third, we prove a regularization
by noise phenomenon: the probability of global existence and scattering goes to one if the strength of
the (non-conservative) noise goes to infinity. The proof is based on the refined rescaling approach and a
new functional framework, where both Fourier restriction and local smoothing norms are used as well as
a (uniform) double endpoint Strichartz and local smoothing inequality for the Schrédinger equation with
certain rough and time dependent lower order perturbations.
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1. INTRODUCTION AND MAIN RESULTS

The present work is devoted to the energy-critical stochastic Zakharov system in dimension four
1dX + AX dt = Re(Y)X dt — ipX dt +iX dW;(¢),

1, ) (1.1)
~1AY +[V]Y dt = —|V||X[Pdt + dWa(2).
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Here the initial datum is in the energy space (X (0), Y (0)) = (Xo, Yo) € H'(R*)x L?(R?), a > 0 represents the
ion sound speed, X is the complex envelope of the electric field, and Y is the (reduced) ion density fluctuation.
The noises W7 and W, represent, respectively, fluctuations in the plasma density and temperature, which
are independent Wiener processes
Wit,z) =Y iof (@)8) (), zeRY t>0 (1.2)
k=1

for j = 1,2, where {(ég)}k C H*(R*) and {qﬁ](f)}k C H?(R*") are real-valued functions, {B,(cj)} are real-valued
independent Brownian motions on a stochastic basis (2, %, {.%;},P), and

Lo ()
M:§;|¢k ” < oo

In 1972 Zakharov introduced the deterministic system (i.e. W7 = W5 = 0) to model the dynamics of Langmuir
waves. A heuristic derivation of the stochastic noise can be found in [32, Section 2]. It is worth noting that
the Schrodinger component is driven by multiplicative noise, while the wave component is driven by additive
noise. In particular, in the case where {¢§€1)} are real valued, —ipX dt +iX dWy(t) = iX o dW;(t) is the
standard Stratonovich differential, so that the mass of the Schrédinger component is conserved.

One remarkable relationship is that, via the subsonic limit o — oo, the Zakharov system (1.1) converges
to the focusing cubic nonlinear Schrédinger equations (NLS for short)

i0;u + Au = —|u|u. (1.3)

We refer to [35, 43, 48, 53] for rigorous results in this direction.

Recently, substantial progress has been achieved towards the understanding of solvability and long-term
dynamics of the Zakharov system in the critical energy space. One key feature is that the sharp threshold for
global well-posedness, blowup and scattering of the energy-critical Zakharov system is played by the ground
state, that is, the famous Aubin-Talenti function

W(z) = (1+ %)71. (1.4)

This phenomenon was previously proved by Kenig and Merle in the seminal paper [34] for the energy-critical
NLS. For the 4D Zakharov system, a sub-threshold Kenig-Merle dichotomy was derived by Guo-Nakanishi [29]
for the radial Zakharov system: under the energy constraint

ez(u,v) < ez (W, -W?),
the energy space H'(R*) x L?(R*) topologically splits into two regimes
{llollzz < W2[lz2} and  {{Jollzz > [W?[|z2},

and all radial solutions in the former domain exist globally and scatter, but can not be global and bounded
in the energy space in the latter regime. For non-radial data of finite energy below the threshold, global
well-posedness was proved by Candy-Herr-Nakanishi [15] by developing a new type of adapted spaces and
a uniform Strichartz estimate for the Schrédinger equation with a potential. Also, the local regularity
theory has been clarified in [16]. Very recently, in the case slightly above the threshold energy, finite time
type II blow-up solutions have been constructed by Krieger-Schmid [39, 40], where the method is inspired
by matched asymptotic regions and approximation procedures introduced by Krieger, Schlag and Tataru
[36-38] for critical nonlinear wave equations and subsequently developed methods by Perelman [49] and
Ortoleva-Perelman [47] for critical Schrodinger equations. Up to now, the scattering below the ground state
for general data still remains a challenging problem.

In contrast to the above, very few results are known for critical stochastic dispersive equations. For the
typical stochastic NLS, well-posedness and scattering were proved in the recent papers [24, 46, 60]. However,
the theory for the energy-critical stochastic Zakharov system is largely open. In the subcritical case where
d < 3, well-posedness results were very recently proved in [5, 6, 32, 56].

In the 4D case, the energy regularity H' x L? lies at the boundary of the well-posedness regime for the
Zakharov system, and cannot be treated directly by the normal form method [7, 32]. The noise makes the
situation worse by destroying the energy conservation law, so that the indirect method from [7] does not
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apply to the stochastic case. Moreover, the low temporal C'/2~-regularity of the Wiener process does not
allow for standard X*’-techniques. For proving global well-posedness for the stochastic Zakharov system,
another main challange is to derive a uniform control for Schrédinger type equations with free-wave potentials
and problematic derivative terms caused by the noise. This is in contrast to the stochastic NLS and the
stability arguments for critical stochastic NLS developed in [60] are not applicable to the Zakharov system.

From the perspective of probability theory, it is widely expected that noise has regularizing effects on
deterministic systems, such as preventing blowup and improving the regularity theory. Regularization by
noise phenomena have been observed for various SPDE models, including transport equations [25], stochastic
Hamilton-Jacobi equations [27], 3D vorticity stochastic Navier-Stokes equations [26], and stochastic NLS
[3, 31]. Recently, it has been shown in [32] that norm explosion is prevented with high probability for the
3D Zakharov system driven by non-conservative noise on bounded time intervals. But whether noise can
prevent blowup for all times, or even enforce scattering behavior, remains open.

The purpose of this work is to solve the 4D stochastic Zakharov system at the critical energy regularity
and to investigate the noise regularization effects on large time dynamics. We mainly address the following
three problems:

(i) local well-posedness in the energy space including a blow-up alternative
(ii) global well-posedness for large data below the ground state threshold
(iil) noise regularization effects on global well-posedness and scattering
We next present the precise formulation of the main results.
Throughout this paper the spatial functions of the noise (1.2) satisfy the following hypothesis.

Hypothesis (H). The spatial functions {cz),(j )}, j = 1,2, satisfy the following summability conditions:

') 4 o) o)
Sl + 303 / sup Vo (re; +y)ldr < 0o, > [[617]% < oo, (1.5)
k=1 ye k=1

j=1k=1

where e, s, €3, e4 denote the standard orthonormal basis of R
Theorem 1.1 shows that, for general initial data, the energy-critical stochastic Zakharov system is locally
well-posed in the energy space and satisfies a blow-up alternative.

Theorem 1.1 (LWP and blow-up alternative). Assume Hypothesis (H). Then, given any deterministic
initial data (Xo,Yo) € HY(R*) x L2(R%), there exists a stopping time 7% > 0 such that the system (1.1) has
a unique {F;}-adapted solution (X,Y) in C([0,7*), H}(R?) x L?(R%)).
Moreover, if T < oo, then P-a.s.
(@) limsup(|X (@) @e) + 1Y ()l 2@e) =00 or (1) [ X]
—T*

14 =
L2W.2 77 ([0,7) xR)

The uniqueness statement in the above theorem means that the solution is unique in a suitable subspace
of C([0,7%), H}(R*) x L%(R*)). We refer to Remark 2.2 for the precise formulation.

We remark that L? WEA is the endpoint Strichartz space at the minimal regularity for the Schrodinger
component for which the deterministic Zakharov system is well-posed, see [16].

Our proof introduces a new functional framework, a combination of the spaces in [15, 16] and local
smoothing norms, which can deal with more general Zakharov systems with derivative perturbations.

Theorem 1.2 (Zakharov system with derivative perturbations). Consider the Zakharov system with lower

order perturbations
i0iu + Au = Re(v)u — a1 - Vu — agu,

1 1.6
Liow + V0 = ~V]juf o

where the coefficients a1 and ag are of the form
ay(t,x) =2y Vr(x)hi(t), (1.7)

k=1
ag(t,x) =—> ( aj¢k(x)hk(t))2 +1> Adw()h(t), (1.8)
1 k=1

j=1 k=
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and {¢x} satisfy Hypothesis (H), {hx} C C(RT;R) and hi(0) = 0. Then, for any initial data (ug,vo) €
HY(R*) x L?(RY), there exists a unique solution (u,v) in C([0,7*), HL(R*) x L?(R*)) of (1.6) up to a maximal
existence time 7. Moreover, one has the blow-up alternative as in Theorem 1.1 for system (1.6).

As in Theorem 1.1, uniqueness holds in a suitable subspace of C([0,7*), H*(R*) x L2(R%)).
Moreover, based on a new uniform estimate, we derive the global well-posedness below the ground state
for the energy-critical stochastic Zakharov system. More precisely, let e; denote the Zakharov energy

1 1 1
ez(u,v) = / <2|Vu2 + Z|U|2 +3 Re(v)|u|2> dx. (1.9)

R4
The ground state for the Zakharov system is (W, —W?2) where W is the Aubin-Talenti function given by (1.4).

Theorem 1.3 (GWP below the ground state). Assume (H). Let (Xo,Yy) € H'(R*)x L?(R*) be deterministic
initial data satisfying

ez(Xo,Yo) < ez(W, -W?), Yollzz < W2z

Let (X,Y) be the corresponding unique solution of (1.1) on [0,7*) from Theorem 1.1, where T* is the mazimal
existence time. Define the { %, }-stopping times

t
. 1
o) :=inf {t e0,7%) ez (ein(i)X(t),Y(t) + i/ elt=3)IVI de(s)) > ez (W, -W?) — } (1.10)
0 n
for all n € N and the stopping time o* as the pointwise limit of the monotonically increasing sequence (o).
We then have 7* > o*, P-a.s., i.e. (X,Y) exists at least up to the stopping time o*.

In the deterministic case, one indeed has ¢* = co due to the energy conservation law. But the presence
of noise destroys the energy conservation. Moreover, the noise has large fluctuations at infinity, which may
even push the energy to exceed the ground state energy. Thus, it may happen that ¢* < co with positive
probability.

However, the next result shows that, driven by a suitable non-conservative noise, stochastic solutions to
the Zakharov system exist globally and scatter at infinity with high probability, even for general data above
the ground state energy.

Theorem 1.4 (Noise regularization effects on blowup and scattering). Consider the stochastic Zakharov
system (1.1) with a one-dimensional Brownian motion Wy with non-zero imaginary part as the driving
noise, i.e., 51) is a constant with Im gbgl) # 0, gbg) =0 for2 < k < oo, and Wy = 0. Then, for any
deterministic initial data (Xo,Yo) € H*(R*) x L?(R*), we have

P((X(t),Y(t)) scatters ast — c0) —> 1, as Im qbgl) — 00, (1.11)

where (X,Y) denotes the solution of (1.1), and “scatters” means that there exists (z4,vy) € HY(R*)x L?(R%)
such that

tli}rn e #2et =W X (1) — 2 ||gn =0 and tlim e VY (£) — vy |2 =0 (1.12)
oo e el
with

~ 1.« 1

i=516P = (@)). (1.13)

Remark 1.5. (i) For the deterministic 4D Zakharov system, finite time type II blow-up solutions exist if the
energy is slightly above the threshold energy [39, 40].

The noise regularization effect in Theorem 1.4 shows that, with high probability, the non-conservative
noise destroys the dichotomy and finite time blow-up dynamics [15, 29] in that the corresponding stochastic
solutions exist globally and scatter at infinity for general data, even above the threshold energy.

(#i) It is worth noting that, via It6’s calculus, the mass of the Schrédinger component of solutions satisfies
the evolution formula

o0 t
X0l = 1%l =23 [ [ 1XePmo a5 ).
k=1
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Hence, in the case where {(/)g)} are real valued as in Theorems 1.1 and 1.3, the mass of the Schrodinger

component of solutions is conserved pathwisely. But in the non-conservative case where Imqbg) # 0 as in
Theorem 1.4, the mass is a continuous positive martingale and hence conserved under expectation rather
than in the pathwise sense.

The key observation in the proof of Theorem 1.4 is that after a rescaling transform the non-conservative
noise gives rise to a geometric Brownian motion in the wave nonlinearity, see (1.18). Intuitively, the geometric
Brownian motion decays exponentially fast at large time, which weakens the wave nonlinearity and the
resulting solutions scatter at infinity. A rigorous analysis involves an intricate trilinear estimate and a novel
global-in-time VP type control of the geometric Brownian motion, see Subsection 1.2 for more details.

1.1. Background and motivation.

1.1.1. Deterministic Zakharov system. The coupling between Schrodinger and wave equation in the Zakharov
system leads to a rich local and global regularity theory, which has attracted a lot of interest over the years.
Several key results in the theory have been established only recently. We refer to [9, 28, 52] and the references
therein for dimensions less than 4 and to [16] and the references therein for higher dimensions and concentrate
on discussing the 4D energy-critical case in the following.

In dimension four, the Zakharov system is energy critical in the sense that the focusing NLS (1.3), which
is the subsonic limit, is scale invariant in H'(R*), which is the energy-regularity of (1.9). The kinetic and
potential energy have the same scaling, and the sign-indefinite term of the energy is controlled in the energy
space by the critical Sobolev embedding H'(R*) C L*(R*).

In the seminal work [34], Kenig-Merle proved the dynamical dichotomy into scattering and blowup for
the radial case by developing the concentration-compactness and rigidity method. Dodson extended this to
the full energy space in [22].

A similar dichotomy for the 4D Zakharov system in the radial energy space was proved by Guo-Nakanishi
[29]. The key role to characterize the threshold of the dichotomy is played by the ground state, that is, the
Aubin-Talenti function W defined in (1.4). Tt is an extremiser of the energy-critical Sobolev inequality

[WlLaws) 1 md
< DIAERD 1y . o HY(RY).
Iollee < oo el @< H R
Moreover, the family Wy (z) := AW (Az), A > 0, solves the static cubic NLS
—AW = W3, (1.14)

Correspondingly, (W, —W/\Q), A > 0, are static non-dispersing solutions to the Zakharov system (1.1). One
also has for the Zakharov energy

1
ez(W,=W?) = es(W) = Z”W2”%2(R4)7

where eg denotes the energy of the cubic NLS

1 1
es(u) = /R4 <2|Vu|2 - 4|u|4> dx.

For the 4D energy-critical Zakharov system, the difficulty for the global analysis of solutions is mainly
due to the wave component with the low L2 regularity. Smallness helps to control the Schrédinger-wave
interaction in view of

I Re(o)ull 3 oy < Nollzaqas lulzsges.

For small initial data, the global well-posedness and scattering in the energy space was derived in [7] by an
indirect weak compactness argument. Global well-posedness and scattering for radial data below the ground
state was recently shown in [29]. For general data below the ground state threshold, global well-posedness
was proved in [15] by using adapted spaces, bilinear Fourier restriction estimates and a profile decomposition
argument. If scattering fails, then the existence of a minimal energy non-scattering solution was proved
in [13]. However, scattering for general data remains an open problem.

Above the ground state threshold it is known that there is grow-up from [29]. Very recently, finite time
blow-up solutions to the 4D Zakharov system have been constructed by Krieger-Schmid in [39, 40].
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1.1.2. Stochastic NLS. As a closely related stochastic dispersive model, there have been many results on
stochastic NLS in the subcritical regime. It was first proved by de Bouard and Debussche [18, 19] that
the stochastic NLS is globally well-posed in some subcritical regime. Afterwards, Millet-Brzezniak [12]
obtained global well-posedness of subcritical stochastic NLS on manifolds. The key tools there are stochastic
Strichartz estimates. Moreover, the existence of martingale solutions was developed for stochastic NLS
in general geometrical manifolds in [11]. In [1, 2], based on the rescaling approach, global pathwise well-
posedness was proved for stochastic NLS in the whole subcritical regime in general dimensions. In [31],
global well-posedness and scattering have been established in energy-subcritical cases.

In the critical defocusing regime, global well-posedness was proved for the 1D mass-critical case in [24],
where the arguments also can be generalized to the 3D case. For mass- and energy-critical cases in general
dimensions, global well-posedness, scattering and a Stroock-Varadhan type support theorem were obtained
in [60], based on a different refined rescaling approach. We also refer to [46] for the global well-posedness of
critical stochastic NLS with additive noise, and to [4, 59] for the existence of optimal controllers.

In the critical focusing regime, several results have been obtained recently for stochastic blow-up and
soliton dynamics. Based on numerical methods, stable stochastic blow-up solutions were investigated in
[44, 45]. Stochastic blow-up solutions with the ground state mass or with loglog blow-up rate were constructed
in [23, 55]. Concerning multi-bubble blow-up solutions, we refer to the recent papers [51, 54]. Also, in spite
of the breakdown of the pseudo-conformal symmetry in the stochastic case, stochastic multi-solitons have
been constructed directly in [50].

1.1.3. Stochastic Zakharov system. In contrast to the above, very few results have been obtained for the
stochastic Zakharov system. In [56], Tsutsumi first proved the global well-posedness for the stochastic 1D
Zakharov system with additive noise. Different to the deterministic case, the solutions are constructed in
X* spaces with b < 1/2, due to the temporal C 1/2=_irregularity of the Wiener process. The subsonic limit
problem was analyzed in [5, 6] in the 1D setting with additive noise in the wave component.

In the 3D case, well-posedness in the energy space was proved by the authors in [32]. Unlike in [5, 6, 56],
the proof there is based on the normal form method and the refined rescaling approach. The normal form is
crucially used to recover the necessary regularity in the Schrédinger-wave interaction.

We point out that in the 4D case one cannot solve the problem in the energy space by the normal form
method directly, see [7]. In [7], this problem was circumvented by a compactness argument based on the
energy conservation of the deterministic Zakharov system. However, the energy is no longer conserved in the
stochastic case. In this paper we use a direct method based on adapted Fourier restriction spaces and lateral
Strichartz spaces to treat the 4D energy space, which avoids the normal form and builds on the approach
devised in [15, 16] instead.

1.1.4. Noise regularization effects. Noise regularization phenomena have been observed for various stochastic
models. In the finite dimensional case, it is well-known that noise can improve well-posedness properties
for differential equations with irregular drifts, see, e.g., [41, 57]. This kind of regularization effect was also
proved for infinite dimensional SPDEs with non-regular drifts [17]. Moreover, in [25], Flandoli-Gubinelli-
Priola showed that transport type noise improves the uniqueness of transport equations, even in the case
where deterministic solutions lose uniqueness. Recently, Flandoli-Luo [26] proved that transport noise can
prevent blowup with high probability for 3D vorticity stochastic Navier-Stokes equations.

Regarding stochastic dispersive equations, it was investigated numerically that multiplicative noise has a
regularization effect in the sense that it delays blowup [20, 21]. In [3], it was found that norm explosion can
be prevented for mass-(super)critical stochastic NLS by non-conservative noise, for which solutions conserve
the mass on average rather than in the pathwise sense. The effect of non-conservative noise on scattering
for stochastic NLS was analyzed in [31]. Very recently, the effect of superlinear noise on non-explosion was
proved in [10] for stochastic NLS with arbitrary power nonlinearity. Moreover, a regularization-by-noise
effect on preventing blowup on any bounded time interval was proved by the authors for the 3D Zakharov
system [32].

1.2. Novelties of the present work. The present paper mainly investigates the 4D energy-critical sto-
chastic Zakharov system.
The novelties of the present paper can be summarized as follows



(i) construction of a new functional framework which includes adapted Fourier restriction and lateral
Strichartz spaces and is compatible with the refined rescaling transformations;
(ii) uniform Strichartz type estimates for Schrodinger equations with free-wave potentials below the
ground state and with first order perturbations;
(iii) a noise regularization effect on global scattering dynamics, via a global-in-time V? control of geo-
metric Brownian motions.

More detailed explanations are presented in the following subsections.

1.2.1. A new functional framework. One of the main difficulties in the analysis of the Zakharov system arises
from the regularity of the Schrodinger-wave interaction. This is already the case in the deterministic setting
and only becomes more challenging in the stochastic one. We thus apply a rescaling transform, which was
introduced in [32] for the stochastic Zakharov system by the authors, in order to transform the stochastic
Zakharov system to an equivalent system of random PDEs, see Section 2. The advantage of this approach
is that we can treat the resulting system pathwisely. Besides the benefit that our results such as local well-
posedness will be in a pathwise sense, we can now use sophisticated analytical tools to address the regularity
issue in the Schrédinger-wave interaction. The price one has to pay is that the rescaling transform gives
rise to random first order perturbation terms, see (2.5) below. These first order terms are at the critical
regularity level for a perturbative approach and lead to many difficulties not present in the deterministic
system, both in the local and the global analysis.

In particular, we have to develop a new functional framework which can control, simultaneously, the
Schrodinger-wave interaction and the critical derivative terms caused by the noise. The new function
space X®, which we introduce for the Schrodinger part (see Subsection 3.1), consists of two main ingre-
dients: the adapted Fourier restriction spaces very recently developed in [15, 16], and lateral Strichartz
spaces established in the context of Schrodinger maps [8].

Compared to the theory of adapted spaces in [15, 16], two new contributions are the following;:

e Compatibility between adapted spaces and lateral Strichartz spaces, in particular the linear inho-
mogenoeus estimate in Lemma 3.4.

e Compatibility between adapted spaces and the refined rescaling transformations, in particular a
product type estimate in Lemma 4.1.

Let us also mention that the new functional spaces admit the decomposability property, that permits to glue
together solutions in the refined rescaling procedure, see Appendix A. In addition, a new argument involving
two sequences of stopping times is used in the fixed point argument in Subsection 5.2.

1.2.2. Uniform estimates below the ground state. In view of the blow-up alternative, in order to prove the
global existence of solutions, it is crucial to derive a global bound for solutions in the critical endpoint space.

For critical stochastic NLS, the global bounds were derived by stability estimates with respect to the
deterministic NLS, together with the refined rescaling approach [60]. But for the Zakharov system, because
of the Schrodinger-wave interaction one has to derive a uniform global bound for solutions of Schrédinger
equations with free-wave potentials below the ground state as in [15, 29].

1
For the stochastic Zakharov system, one needs to derive a uniform estimate in the endpoint space LZ2W,2 4
for Schrédinger equations with both a free-wave potential vy, and extra lower order perturbations

i0iu + Au — Re(v)u + b - Vu + cu — Re(Te(W2))u = f, (1.15)

where the coefficients b and ¢ are random and arise from the noise via the rescaling transformation, and
T:(Ws) is the stochastic convolution of the wave noise. In fact, we do not only apply one rescaling transform,
but the extension to the maximal existence time requires the refined rescaling approach, which is a sequence of
rescaling transformations, see Proposition 2.4. When implementing the refined rescaling approach, restarting
at subsequent stopping times gives rise to different free-wave potentials, which forces us to derive uniform
estimates for the equation (1.15). In [15], uniform estimates for (1.15) without the terms arising from the
noise have been established using concentration compactness arguments. It is not clear to us how to extend
this approach to lateral Strichartz spaces in order to control the additional lower order terms, in particular,
the derivative term b - Vu.
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Proceeding differently, we present a simplified argument to derive

1
o] Clltall,3 gy + 13y + 1119)

E) < 1
S2°7(I) 2 (R4

for solutions of (1.15), where the constant C' depends only on the mass of the free wave, the energy norm
of u, and the noise, see Proposition 6.2. (We refer to Subsection 3.1 for the definition of the adapted spaces
52:0(I) and N2:°(I).) Besides the uniform estimate in [15], one key ingredient of the proof is a double
expansion of Duhamel operators, i.e.,

IUL = [I—‘rIvL Re(vL)]IO,

where Z,,, denotes the Duhamel operator of the Schrodinger equation with free-wave potential vz,. See more
details in the proof of Proposition 6.2.

1.2.3. Noise regularization effects on blowup and scattering. We note that the non-conservative noise is
structurally different from the conservative case studied in the previous subsections.
More precisely, we use a different rescaling transform than before. We set

7= eftWil) x vi=Y (1.16)
with i given by (1.13). Note that in the non-conservative case considered in Theorem 1.4,
Reji = (Tm¢{")? > 0, (1.17)

while Re z = 0 in the conservative case as in Theorem 1.1 and Theorem 1.3. The rescaling transform (1.16)
converts the stochastic Zakharov system (1.1) into the equivalent random system

i0;z + Az = Re(v)z,
100 + Vo = —hy, o V| |z|2, (1.18)
(u(0),v(0)) = (Xo, Yo),
with (Xo,Yp) € H'(R*) x L*(R*) being deterministic initial data and h,

the geometric Brownian motion

mqﬁgl)
B 0 (£) 1= €2REOVIOZA) = =2 Im P50 (0 —2(lm 6i7)%, (1.19)
The crucial observation here is that because of the law of the iterated logarithm
(1) (1)
t t
lim sup b () _ 1, liminf 1 (®) -1, P-as, (1.20)

1o \/2tloglogt t—oo /2tloglogt
the geometric Brownian motion h; el decays exponentially fast at infinity. Heuristically, one thus expects
that the geometric Brownian motion weakens the nonlinearity in the wave equation and hence stabilizes
the system. The key step in order to exploit this exponential decay is the derivation of a suitable trilinear
estimate for the wave nonlinearity in (1.18), which is the content of Theorem 7.4 below. It should be
mentioned that, although the geometric Brownian motion is independent of the spatial variable, there are
new effects in the trilinear interactions which are not present in the deterministic setting [16].

We overcome this difficulty by uncovering the subtle non-resonance identity (7.13), which allows to transfer
spatial regularity to temporal regularity of the geometric Brownian motion, and therefore requires a global
bound on some fractional derivative of the geometric Brownian motion. This is achieved by proving a new
global-in-time VP control of the geometric Brownian motion

he VY, P-as., forevery p> 2,

where V" is the space of functions of bounded p-variation [58], but over [0, 00).

We stress that for the global dynamics it is crucial to work on unbounded time intervals, where Brownian
motion has infinite V? variation. The idea to control the geometric Brownian motion globally in V? is to
exploit its exponential decay, which has to be balanced carefully with the pathwise growth of the Holder-norm
1B(;wW)llc1/p(n,n41) of Brownian motions (see Proposition 7.3).
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1.3. Notation. Take an even function 7y € C°(R) such that 0 < 79 < 1, no(r) = 1 for |r| < 2, and
no(r) = 0 for [r| > £. For every dyadic number X € 2% we set

Xa(r) = mo(r/A) = mo(2r/X),  x<a(r) =no(r/N)
for all » € R. We define the standard Littlewood-Paley projectors as the spatial Fourier multipliers
Py=xa(IV]) ifAr>1, P = x<i(V]).

Hence, Py localizes the spatial Fourier support to the set {A/2 < |£] < 2A} if A > 1 and to the set {|¢| < 2}
ifA=1.
Similarly, we define temporal frequency and modulation projectors by

PO = x\(18]),  Cx = xa(lids + A])

for all A € 2%, i.e., P;\t) localizes temporal frequencies around A and C) localizes the space-time Fourier
support to distances of size A from the paraboloid. We also set

Poy=xa(VD), PO =xa(ldl),  Con=xallion+Al),
as well as Py =1 — P<j, Pg\ =1- Pg\, and Cs =1 — C<). We also write
Py =Py + Px+ Pax

for the fattened Littlewood-Paley projectors and correspondingly for the temporal frequency and the mod-
ulation projectors. Sometimes, we also write fy = Py f for the sake of brevity.

Besides the more sophisticated function spaces we introduce in Subsection 3.1 below, we employ the
standard Besov and Sobolev spaces. These are defined as the sets of tempered distributions for which the
following norms are finite. The inhomogeneous and homogeneous Sobolev spaces W*? and W are defined
via the norms

[fllwee =1V flle - and ([ fllyer = VI fllzr,

respectively. The defining norms for the inhomogeneous and homogeneous Besov spaces B, , and B; q are

1

s = (X XUBSIL) T ad fls, = (3 ARSI

Ae2No €2z

/1

respectively, where we have written Py = xx(|V|) (A € 22) for the homogeneous Littlewood-Paley projectors.
The endpoint Strichartz space at endpoint regularity L?W%A(I x R*) will play a distinguished role in our
analysis and will be denoted by D(I) for any interval I C R. In particular, we set

el = 190y e

We also note that CyP., C< Py, etc. are convolution operators with kernels bounded in LI(R X R4)
independent of \ so that these operators are bounded on all L{LP, LIW P  and LgB;’T spaces uniformly in
A

To distinguish different frequency interactions, we also introduce the standard paraproduct decomposition

fo=(f9)ea + (f9)un + (f9)urL,
where the low-high, high-high, and high-low interactions are defined as
(fg)om = Pex[Pg: (f9)um = > PufPung, (f9)ur = (9f)cn-
A A1~vAg

Here the first sum runs over A € 2¥ with A > 28 and the second sum runs over all A, As € 2N such that
[log(A1/A2)| < 7.

We finally introduce some notations concerning the solution operators of linear Schrodinger and wave
equations. We write Zy[g] for the inhomogeneous Schrédinger solution of

(i0; + A)u = g, u(to) = 0,
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and Jy[h] for the inhomogeneous wave solution of
(10, + Vv =h,  v(to) =0,

i.e., in the Duhamel form

Tolgl(t) = —i / 92005 ds, Jo[h](t) = —i / =91V (5) ds, (1.21)

to to

We will also consider the Schrédinger equation with potential V| i.e.,

If they exist, we will denote the homogeneous propagation operator, i.e. the solution of (1.22) with g = 0,
by Uy [f], and the inhomogeneous propagation operator, i.e. the solution of (1.22) with f =0, by Zy[g]. In
order to ease the notation, we did not include the dependence on ty in the labeling of these operators and
we shall take care that the considered tg will always be clear from the context.

Organization. The remaining part of the present paper is orgarnized as follows. Section 2 is concerned
with the refined rescaling transformations, which permit to reduce the originial stochastic Zakharov system
to random systems on different random intervals. Then, in Sections 3-4, we construct the new functional
framework and derive key estimates to show its compatibility with lateral Strichartz spaces and refined
rescaling transformations. Section 5 is devoted to the proof of local well-posedness in Theorem 1.1. The
global well-posedness result below the ground state is proved in Section 6. At last, Section 7 is concerned
with the noise regularization effects on blow-up and scattering. It also contains the key global VP control of
geometric Brownian motions. In order to not disturb the flow of the main part of the paper, we prove some
rather technical but important properties of our function spaces in the appendices.

2. REFINED RESCALING TRANSFORMS

Here we give the definition of a solution of (1.1). Without loss of generality, we take o = 1.

Definition 2.1. Fiz T € (0,00). We say that (X,Y) is a probabilistic strong solution to (1.1) on [0, 7],
where T € (0,T) is an {F}-stopping time, if (X,Y) is an H' x L?-valued { %, }-adapted process which belongs
to C([0,7], H* x L?) and satisfies P-a.s. for any t € [0, 7],

X(t) = /Ot IAX ds — /OtiRe(Y)X ds — /Ot pX ds + /;XdWl(s)’ (2.1)

¢ ¢
Y(t):/ i|V|Yds+/ (V]| X2 ds — iWa(t),
0 0
as equations in H~' x H~1.
Given an { % }-stopping time 7*, we also call (X,Y) a probabilistic strong solution to (1.1) on [0,7*) if

(X,Y) is an {F}-adapted process belonging to C([0,7*), H* x L?) such that for any T € (0,00) and any
{F#}-stopping time T < 7, (X,Y) is a probabilistic strong solution to (1.1) on [0,7 AT].

Remark 2.2. In the statement of Theorem 1.1 uniqueness means that for any 7' € (0,00) and any {F;}-
adapted stopping time 7 < 7* the process (X,Y) is the unique solution of (1.1) in the sense of Definition 2.1
satisfying

(X,Y) e (0,7 AT],H* x L?), e "X e XY([0,7 A T)),
where the space X! is introduced in (3.9).

Via the rescaling or Doss-Sussman type transforms

u(t) == e V1O X (1), (2.2)

v(t) =Y (t) — Te(Wa) with T;(Ws) := —i /Ot e E=IIVEAW, (s). (2.3)
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we reduce (1.1) to the random system
i0,u + e~V A(e"u) = Re(v)u + Re(Ti(Wa))u,
10,0+ |V]v = —|V|[ul?, (2.4)
(u(0),v(0)) = (X0, Y0),

or equivalently,
iiu + Au = Re(v)u — b+ Vu — cu + Re(T:(Wa))u,

i0;v + |V]v = —|V|ul?, (2.5)
(u(0),v(0)) = (Xo, Yo),

where the coeflicients b and c¢ of the lower order perturbations are of the form

b=2VWi =2y Vo s, (2.6)
k=1
! > 1 1 2 > 1 1
c= VWA + AWy = =37 (S o080 ) 1Y Aol s, (2.7)
j=1 k=1 k=1

This rescaling transform was introduced for the Zakharov system in dimension 3 in [32]. The equivalence
of (1.1) and (2.5) is independent of the spatial dimension and we obtain [32, Theorem 3.1] also in dimension
d=4.

Theorem 2.3 (Equivalence via rescaling transformations).

(i) Let (X,Y) be a solution to (1.1) on [0, 7] in the sense of Definition 2.1, where T is an {.% }-stopping
time and (X,Y) € C([0,7]; H! x L?) P-a.s. Set u:=e W1 X and v :=Y — T;(Wa). Then, (u,v) is
an analytically weak solution to (2.4) on [0,7] as equations in H~! x H~!.

(ii) Let (u,v) be an analytically weak solution to (2.4) on [0,7] as equations in H=' x H=1 where T
is an {F;}-stopping time, and (u,v) is {F;}-adapted and continuous in H' x L?. Set (X,Y) :=
(eWru, v+ T,(Wa)). Then, (X,Y) is a solution of (1.1) on [0,7] in the sense of Definition 2.1.

The above results permit to construct local solutions up to a possibly very small stopping time, but are
not sufficient to extend solutions to the maximal existence time. The key ingredient in the extension is the
refined rescaling approach for the Zakharov system introduced in [32]. Since the statement and the proof
are independent of the spatial dimension, we obtain [32, Proposition 3.2] also for d = 4.

Proposition 2.4 (Refined rescaling transformations). Let o,7: Q — [0,T] such that o +7 < T.

(i) Let (uy,v5) € C([0,7], H! x L?) be an analytically weak solution of the system
Ot (t) = ie™ Ve D A(W1o Dy (1)) — iRe vy (8) o (t) — iug () Re Tore.o(Wa), 28)
0rvo (t) = i|V|ve (1) +1[VJuo (1), '

as equations in H~' x H™1, where the incerements of noises Wi o and Totr,0(Wa) are defined by

Wl,o(t) = Wl(O' + t) — Wl(O'), (29)
o+t
Toven(Wa) = —i / =91V 4y, () (2.10)
for allt € [0,7]. For anyt € [0,0 + 7], we set
u(t) == e W1y (t — o), (2.11)
o(t) == v, (t — o) — e EIIVIT (). (2.12)

Then, (u,v) is an analytically weak solution of system (2.4) on [o, 0 + 7] with

u(o) = e~V (@, (0), (2.13)
v(0) = v, (0) — To(Wa). (2.14)
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(ii) If (u,v) € C([o,0 + 7], H* x L?) is an analytically weak solution of system (2.4) on [o,0 + 7] as
equations in H~' x H™', then
ug(t) == "y + 1), (2.15)
Ve (t) == v(o +t) + VT (W), telo,7], (2.16)
is an analytically weak solution of the system (2.8) on [0, 7].
Remark 2.5. Defining
bo :=2VWi,,  Coi=|VWio|? + AW, (2.17)
in the setting of Proposition 2.4, we note that (2.8) is equivalent to
10iue + Aue = Re(vy)te — by - Vg — cotte + Re(Tox. o (Wa)) e,
{i@tvg + |V|ve = —|V||uos|* (2.18)

In order to extend solutions by means of Proposition 2.4, we also need to be able to glue together solutions.
The following gluing procedure was already introduced in [32], and it is independent of the spatial dimension.
We thus also have [32, Proposition 3.3] in dimension d = 4.

Proposition 2.6 (Gluing solutions). Let (u1,v1) € C([0,0], HxL?) be an analytically weak solution of (2.4)
on [0,0], and let (uy,v,) € C([0,7], H* x L?) be an analytically weak solution of the refined Zakharov system
(2.8) on [0, 7] with the initial condition
(16 (0),05(0)) := (" (), 01.(0) + To (W),

For every t € [0,0 + 7], we set

ul(t)a ift € [an—)a vl(t)v ift € [070)»
u(t) =9 “wie) ' v(t) = i(t—o)| V| ~

e W9y, (t—0o), ifte€lo,o+T], ve(t—0o) —e To(W2)), ifte€o,o0+T7].
Then, (u,v) € C([0,0+ 7], H' x L?) is an analytically weak solution of (2.4) on the larger interval [0, 0 + 7).

3. FUNCTIONAL FRAMEWORK

In this section we develop the main functional framework for the solvability of the energy-critical stochastic
Zakharov system. We first introduce the functional spaces essentially consisting of lateral Strichartz spaces
and adapted spaces. Then, the key estimates in these functional spaces are derived for the Schréodinger flows,
Schrodinger-wave interacting nonlinearity and lower order terms arising from noise.

3.1. Function spaces. Our functional framework combines lateral Strichartz spaces and adapted spaces.

3.1.1. Lateral Strichartz spaces. Let us first introduce the lateral Strichartz spaces which are used to capture
the local smoothing effect of the Schrodinger flow.
Let e € S® and Pe = {¢ € R* |- e = 0} with the induced Euclidean measure. Set

flagrsr = ([ ([ irteresmparas)”ar)” (31)

where p, ¢ € [1, o0], with the usual adaptions if p = co or ¢ = 0.
Let ¢ € C5°(R) be a nonnegative and symmetric function such that ¢(r) = 0 if [r| < & or |[r| > 4 and
¢(r) =1if 1 <|r| <2, and set ¢n(r) = ¢(r/N). Then,
4
[T —on(g)) =0 (32)
j=1

for all ¢ € R* with N/2 < [£] < 2N. Set Pye := F, '¢n(£ - €)F,. By (3.2), one has the decomposition

4 j—1
Pxf =3 Pre, {H(l - PN,ez)}Pva (3.3)
j=1 =1

where ey, ..., ey is the standard basis of R%.
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3.1.2. Adapted spaces. The other component of our functional framework consists of the adapted function
spaces from [16], which have been developed recently to prove the optimal local well-posedness theory for
the deterministic Zakharov system in dimensions d > 4.
(i) Schrodinger component: Let us first recall the definition of these spaces.

For s,a,b € R and )\ € 2" we define

S S—za a S§— )\+ a @ 3
lull oo = A*lullge 12 + X200+ 0e])“ull 311 + A HbH(m'aw (10 + A)u PR
and
. \5—2 (t) s s—1+b A+ |8t‘ >a ‘
1Fllgon o= A 2PL Pl iz + X100 F 5+ H(m . 9
The corresponding 5%t~ and N*%b-norm are defined by the [?-sum of the dyadic pieces || Pyul 3o and
HP)\F”N;,a,b, respectively.
In the case 0 < a <1 an application of Bernstein’s inequality yields
_ A+ ‘8t| @ .
s s—1+b
luallgzuee ~ A*(lullgerz + [Coypunllozre) + A7 H(m) (0 + | , o (36)

t,x
see Remark 2.1 in [16].

We remark that the S*%’-norm is used to control the Schrédinger component of the Zakharov system
and the N*%®-norm to control the Schrédinger nonlinearity. The parameters a and b are introduced in order
to obtain the local well-posedness of deterministic Zakharov systems in the optimal regularity region, see
Theorem 1.1 in [16].

In this work we do not need the full flexibility of these function spaces. We mainly work with the energy
regularity (s,l) = (1,0) and the endpoint regularity (s,1) = (%,0), to which the corresponding parameters
are (a,b) = (3,0) and (a,b) = (0,0), respectively, see (2.4) in [16]. In particular, the parameter b is always 0
in the regime we are working in so that we drop it from our notation.

Using characterization (3.6), we define for the case (s,1) = (1,0)

A+ 10\ 1.
4 5= Moliesz + Aol + | (R ) 600+ A, (3.7
while for the case (s,1) = (3,0)
lull g0 i= Al ogerz + Al zng + A4 601 + A)a| (3.8)
A t,x

based on (3.4).

Moreover, since both at the energy regularity and the endpoint regularity we have 0 < a < %, we get the
characterization

_ A+ |5‘t\ a
s s—1+b
1Fallgor ~ X0z 2Bl g+ X7 Somin) B

which follows from an application of Bernstein’s inequality and Sobolev’s embedding, see Remark 2.2 in [16].
We define

)

2
Lt,m

_ AR
1Pl g1 = AP+ G

1
I 3.0 = AZ[[Cg

)
2
Li .

_1
arFl,, g+ A IFlL,
The corresponding S*¢- and N*®“-norms are defined by

1 1
2 2
sewi= (D0 lwallze ), 1Fllve = (2 1B )

xe2MNo Ae2No
for (s,a) € {(3,0), (1, §)}. Finally, we set
§%(R) = {u € C(R, H*(RY): |l

while N*¢(R) is the space of tempered distributions with finite || - || ys.«-norm.

[[ul

gs.a < 00}7



14 SEBASTIAN HERR, MICHAEL ROCKNER, MARTIN SPITZ, AND DENG ZHANG

Remark 3.1. (i) To summarize, we note that

o~ lurll 300, [N
S
A

S%’ 0 N”F)\HN)\%oo

lunll oy~ lluall 1.3 0, “FAHN;% ~ ”FA”NQ%‘D’ [[uxll b

A A

by Remark 2.1 and Remark 2.2 in [16].
(77) We also observe that, because of uy = C’<(%)2u,\ + C>(%)2u>\ and an application of Bernstein’s
-2 2

inequality,
luallpzos < ||Cg(2%)2UA\|L$L3 + )\||C>(2A8)2UA||L’;‘,I
N ||Cg(248)2UAHL$L;§ + A_1||C>(2%)2(18t + A)uallrz,

(/\+|3t\

< —1+a
N ||Cg(2%)2uk\|L$Lg +A PPN

)a(i& + A)u,\’ ,

t,x

which shows that

il

(i4) Wave component. Concerning the wave component, we use the same norm as in the deterministic
setting, where

lollyres = Xlvllogerz + XTI+ 1)

b S g S Tl

PO wvlliers + XG0+ [VDelzs
was introduced with the choice « = a and = s — 2, see [16, Section 2.2]. Recalling that we only work at
the regularity I = 0 and that a = } in the case (s,1) = (1,0) and a = 0 in the case (s,1) = (3,0), we will use

= |[oll ez + AT (A + [8:]) 1 P

_1 .
[[v]] <l + AT G0+ VDol

11
013
A

lollyooo = l[vllers + 1P
=\3%8

)2’U||L§°L§ + A_lll(iat + |v|)vl|Lfl
We define

WOrB(R) = {v € C(R, LA(R*): [[v]lyo.cs < 00}
for (o, 8) € {(0,0), (1, 3)}-

3.1.3. Setup for the stochastic Zakharov system. The Schrodinger component of the Zakharov system will
be controlled in both the adapted and lateral Strichartz spaces. We define
4
1 .
s +Z)\s+2||P/\7'3j0§(2%)2u‘|[1:c.’2 if A > 1,
j=1

[ulls = llul xg = uflgze i A=1,

and

1
2
ullze = (3 uali3y)

Ae2No

for s € {%, 1}, where a = i in the case s =1 and a = 0 in the case s = % We distinguish between high and
low frequencies in the definition of || - [[x; since inhomogeneous function spaces are used here, and hence the
local smoothing estimate is only available for high frequencies, which is sufficient to control the problematic
derivative terms caused by thenoise.

The nonlinearity in the Schrédinger equation will be controlled via

= 2 ; 25—1 2
o = (\\P1F||Nf,a+F:ggF2(Z B3 IBsFall}ye )

Jj=1 xe2N

where we again choose a = i in the case s =1 and a = 0 in the case s = %

The wave component is controlled by

1 1
2 2
Iolle = olyo oy i= (0 I0all oy 3) " and follwoos i= (3 loalfygon)

Ae2nN A€2N

I1E|
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at the energy regularity (s,1) = (1,0) and at the endpoint regularity (s, 1) = (3,0), respectively.
Again, we define the function spaces
X*(R) = {u € OR, H*(RY): ullz: <00},  Y(R) = {v € C(R, L*(R")): [ofly < oo},

and G*(R) as the set of tempered distributions with finite || - ||gs-norm.
Finally, we localize the norms and spaces above to intervals I C R via restriction. For example, we set

X#(R)- (3.9)

[[ul

sy = inf u
X= (1) u'EXS(R),u;,:uH |

3.2. Control of linear Schrédinger and wave flows. Lemma 3.2 collects Strichartz and local smoothing
estimates for the linear Schrodinger flow.

Lemma 3.2 (Strichartz and local smoothing estimates). Let A, u € 2N with |logy(u/\)| < 4, e € STL, and
(¢,p), (¢,p) be Schridinger admissible. We then have the following estimates.

(i) Homogeneous Strichartz estimate:

e fallzare S 1ALz -

(ii) Homogeneous local smoothing estimate:

i _1
le*2Puefllpze S n™2 0 fllee,  u>1.

(iti) Inhomogeneous Strichartz estimate:

” / 6i(t75)Ag)\(s) dS’
s<t

where p' and ¢ are the conjugate numbers of p and q, respectively. That is, 1/p' +1/p = 1 and
1§ +1/G=1.
(iv) Inhomogeneous local smoothing estimate:

‘ / eI PP, og(s) dSHL‘X’,z SA gl A1
s<t

(v) Inhomogeneous Strichartz to local smoothing estimate:

H / AE=IAP P, og(s)ds
s<t

(vi) Inhomogeneous local smoothing to Strichartz estimate:

o OA .
H /S<t ei(t—s) P\P,cg(s) dSHng <A 2”g”L‘3'L£'7 A 1

LaLP S ||g>‘HLf,L£/’
t x

SAFlgll e, pmA> L

~

LILE

Proof. Estimates (i) and (iii) are the well-known Strichartz estimates, see [33]. The local smoothing esti-
mates (i) and (iv) are contained in Proposition 3.8 in [8] as one sees by checking the definition of the involved
norms there. Although estimate (v) is contained in Proposition 3.8 in [8] only for one particular Schrédinger
admissible pair, an inspection of the proof of that proposition reveals that one can take any Schrédinger
admissible pair on the left hand side. In fact, a verbatim copy of the proof of Lemma 7.4 in [8] yields (v).

The remaining estimate (vi) follows from (v) by duality. We first note that (v) also holds if we integrate
over s > t. Exploiting this estimate, we then obtain

H/ ei(t—s)APAP%eg(s) ds‘ .= sup // / ei(t_s)AP)\PH,eg(s) dsih(t) dxdt’
o<t L& nl e <t VR TR o<t
= Sup // / g(s)eis—tAP\P, oh(t) dxdsdt‘
Iall,1,2<1 ! JR Js<t JRY

= sup // g(s)/ ei(s—t)AP,\Pu,eh(t)dtdxds‘
Al 12<1 ! R JRE t>s

<llglla,» suap H / ei(S’t)APAPu,eh(t)dt‘
F IRl e st s

LiL?
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_1 1
Slollygry | sw A Hge S 3ol 0

Lé,2§1

The control of the linear Schréodinger flow in adapted spaces has been worked out in [16]. We collect them
in the next lemma.

Lemma 3.3 ([16]). Let (s,a) € {(5,0),(1,1)}. For any A € 2V we have

o S S llgallvge

€ Bllsge <X IAalz, | / OB yar|

Proof. These estimates follow from Lemma 2.4 in [16] and Remark 3.1. O

Next, we show the compatibility between lateral Strichartz spaces and adapted spaces. That is, we
show that the linear Schrédinger flow is controlled in the new X®-space by the inital datum in H® and the
inhomogeneity in G*.

Lemma 3.4 (Control of linear Schrédinger flows in X®-spaces). Let (s,a) € {(3,0),(1, 1)}, f € H*(RY),
g € G®, and u solve the linear Schrodinger equation

i0yu + Au = g, u(to) = f.
Then

xe S | fllme

[[ul

Proof. From Lemmas 3.2 and 3.3 we have
. i .
"2 fillsge S X Nfallez, ATEPreCcap2e™ fall ez S NlIfxl L2

for any e € S3, which immediately implies

le2 7]

t
H / el(t—t )Ag(t/)
to
4
_1
X3 Z A2 ”g)\HLéf? (3.10)

H/ i(t— t)A 'y at’
Jj=1

| [ ey ar], < ol (311)
t(J )\

for all A > 1 and (3.11) for A = 1. The latter directly follows from Lemma 3.3 so that we only consider the
case A > 1 in the following.

Let us start with the proof of (3.10). We first consider the S} “-component of the X§-norm. For the
Strichartz components we use Lemma 3.2 (v) and the decomposition (3.3) to infer

xe S | fllee-

For the remaining estimate

. S olle-

it is sufficient to show

t t
s i(t—t')A ’ s i(t—t")A / /
A /toe g (t) : L2—|—/\ HC’S(%P/tOe ga(t) dt Lazs
t
< ( 1(t t JAp v G / i(t—t’)AP _ " / )
Z ey A () peza , ey IA (1) L218
<Y aeE - 12
<Yl (312)
j=1
For the remaining component of the S§“-norm, we get by Bernstein’s inequality
A+ 10 |3 LA 1
1 < <
[(ag) e o) [ e ar] ol A ol (313)
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in the case (s,a) = (1, %) and

t
A2 (@+A)/ =450 (t)

to

_1
SA 2 lgallzz, S llgallpee (3.14)

t,x

in the case (s,a) = (%, 0). To estimate the lateral Strichartz component, we apply Lemma 3.2 (iv) to derive

4 ¢ -
Z A5t Py e, CS(%)2 / elt=t )AQA( ' o2 ™ Z AT / o )APAvejg)\(t/)
j=1 ’ to =1 N

0,2
°j
4
<SS e 2. 3.15
<3N ol (315)
The combination of (3.12) to (3.15) yields (3.10).
To prove (3.11), we first note that
t
| [ ewspgwyar] . S ol (3.16)
to )\
by Lemma 3.3. For the remaining lateral Strichartz component of the X§-norm, we have to show
t
)\5+2 P)\ eJC ( 2 )2 / el(t_t )AgA(t/) LQQ 2 ~ ||g/\||]\7‘5 @ (3'17)
to

We recall that Z; denotes the Duhamel integral for the Schrédinger group. Splitting gy in its low and high
modulation part, we first get

S 1 S 1
A2 |Pre, Ocy2Tolaalllz s < A2 1 Pre, O )0 TolCc 229l 1o
sl
+ A5t ||P>\»eg‘CS(Q%)QIO[C>(2%)29)\]”ng'z' (3.18)
For the first term on the above right-hand side, we apply Lemma 3.2 (vi) to derive
)\5+§ ||P)"ejCS(Q%)QIO[CS(Q%)2Q)‘]HL:;’Q 5 )\S+§ ||IO[P)\ ejC<(A)2‘g)\]||Loo,2
SXNC ol g S ol (3.19)

To estimate the second term in (3.18), we first claim that
S s
ATz ||P)\7ejCS(Q%)ZIO[C>(2%)29)\]“L2?‘2 SA 2H0>(2A8)29/\||L,?°L§7 (3.20)
Atz ||P)\7ejCg(z%)zIo[CNVC>(2%)2g>\]||Lg?‘2 S )‘SV_1||C>(2A8)29>\”L;?°L?T (3.21)
for any v > (%) Assuming these two estimates for the moment, we further split
_ p® ®)
Co(ap = Pg(gs)zcxz%?g/\ + P>( A )2C>(2%)29*'
Employing (3.20), we estimate for the first summand
At [ Pxe; C'<( A )210[ () 29 lLoer2

O>(2A8)29/\]||ng’2 S >\872H0>(A)2 é

<< X)? )

</\s QHP

8

N 29>\||L;>°L§ S llgallnee, (3.22)

where we combined (3.5) and Remark 3.1 in the last step. For the high temporal frequencies, we exploit (3.21)
and Bernstein’s inequality to infer

)\8+2 ||P>\ e;C<( A )2IO[P ()7 C > )29)\“|Loo 2 < )\S+2 Z ||P)\,ejCS(?‘%)QIO[Plst)CNUC;(Z%)zg)\]||Lg<;,2
v>(35)?
SN Z ’/71||C>(2A8)2Pu(t)9AHL;>°L§ S A Z Vﬁ%||C>(248)2PV(t)9AHL§Lg
u>(2%)2 V>(2%)2
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G ol <) 9 s

S llgalvee. (323)

The combination of (3.22) and (3.23) with (3.19) yields (3.17).
It only remains to prove (3.20) and (3.21). We first show (3.20). To that purpose, we recall the commu-
tation relation

itA _ p®) itA
€ C>(2%)2 = P>
and correspondingly for C<( A2 Hence, we can write
—2

t
PA,ejCS(z%)2/t TR0, p0a(t) A = Pa, Mpit()x)z/ 0:9; 1P(t) (e 2gn(th) dt!
0
= Pao, 'SPy L (H(1) = Hito)), (3.24)

where we set

Since
H() =0, 'PY) L P, L (e70%0)(0) =0,

we infer that (3.24) reduces to the free Schrodinger solution — Py e,€!**H (ty). Applying the local smoothing
estimate from Lemma 3.2 (ii), we thus obtain

1 s s
)\‘9"1‘2 ||P)\7ej C§($)2IO[C>(2%)29>‘]”L2?’2 S )\ ||H(t0)||L§ 5 )\ ||HHL?°L?E (325)
A computation yields the bound
[H|zgor2 < )‘_2He_itA0>(2A8)2g>\HL§CL§ S )‘_2||C>(2A8)29AHL;?°L§-

In combination with (3.25), this estimate finally yields (3.20). The estimate (3.21) follows along the same
lines. (]

The definition of the Y-norm and [16, Lemma 2.6] also yield the following bound for the linear half-wave
flow in the Y-space.
Lemma 3.5 (Control of linear wave flows in Y-space). Let g € L*>(R*). Then one has

it|V|

e glly < llgllz2-

3.3. Control of nonlinearity and noise terms. We next provide bilinear estimates for the nonlinearities.

Lemma 3.6 (Bilinear estimates).
(i) (Energy regularity) There exist a parameter 6 € (0,1) and constant C > 0 such that for any interval
I C R we have

IRe()ull g1 4 1 < Cllelhyery w4 Nl g1 4 (3.26)
IZo[IV I Cww)llv(ry < C(Hu”_gl,i(l)HwHSl,%(I))l_e(”u”LfL‘;(IxR“)”wHLfLi(IX]R“))a' (3.27)
(i) (Endpoint regularity) There exists a constant C > 0 such that for any interval I CR we have

I Re(w)ul 3oy, < Cllolwosoqnllulhp o (3.28)

17091 lwoso < € (llullon lwllom)” (lll gy o) (3.29)
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Proof. To prove (3.26), we note that [16, Theorem 3.1] yields
I Re(@)ullgr.g ) S Iolbcny gy
so that we only have to show
IRe()al 1.4 gy S Il gzt s Nl gy oy
To that purpose, we observe that, extending g by 0 from I to R and applying Bernstein’s inequality, we get

<
19030040y S 19108
An elementary product estimate thus gives

I Rew)ulgr g gy S IRl g S Iz Boll e ey S 1ol a1

which finishes the proof of (3.26).
Estimate (3.27) is a direct consequence of [16, Corollary 4.2]. Estimates (3.28) and (3.29) are the estimates
from Propositions 6.1 and 6.2 in [16], respectively, in the case d = 4. O

The presence of noise gives rise to several lower order terms, particularly, including derivative terms that
are usually hard for Schrodinger flows. The following estimates are important to control these terms in the
new functional spaces.

Lemma 3.7 (Control of noise terms). Let I C R be a finite interval.
(i) We have the estimates

4
1 1 1 1
6 Vullgrny S (|I|2 Bl Lgersz + 1Ol £, e (1101 £ 0 + ||b||igcw)) llwllxt 1y (3.30)
j=1 J J ’
1
leullerry S 12 1lell ooz llullx 1) (3.31)
1
IT-Wa)ullgrry S 2T (W2)llLee gz [[ullscr (1) (3.32)

(ii) Moreover, we have

I(b-Vu)ursmm + cu— Re(ﬁ(Wﬁ)UHN%,o([)
N \I\%(”bHLfOHg +llellse 2 + || Re(Te(Wa)) e mr2) |ull oo a1 - (3.33)
In the above estimates all the space-time norms are taken over I x R*.

Proof. (i) Let us start with the proof of estimate (3.30). Writing b-Vu = (b-Vu)gr + (b-Vu) g +(b-Vu)rLy
and extending b and u by 0 from I to R, the definition of the G!(I)-norm implies

[N

1 4
2
[b- Vullrry S 1P - V)l g+ (30 IPG- Vedmzemnl® oy )"+ (30 MPAG- Vu)eal},:)
! Ae2N A j=1 xe2nN
(3.34)

Since by Bernstein’s inequality,

1Pagll g S AP

1 4,
T4 2
L2L3

YZH

we obtain

[PA(b- Vu)uL|

JER S ZM”PMI)PSZ%VU’HLgLE

A

N Z N”PMbHLng Hpﬁz%quLchi
2N

S llufls Z M|\Pub||LgL;~
A

1,
A
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Summing up, we conclude
3 1
(IR0 Vne s y)” S Ibllzslulle S 11 18zl (3.35)
Ae2n

The usual adaptions yield the same estimate for the HH-component of b - Vu. Since Pi(b- Vu) =
Py(b- Vu)gg, we also obtain this estimate for the first term on the right-hand side of (3.34) in this way.
For the third summand in (3.34), we use the Holder inequality and decompose the modulation to derive

1 1
A2 HP,\(b.Vu)LHHLéf < Z Tk ”PSQ%bPuVU”Léf

A
1 1 1
Sn Yy [P<sbl? 20 n® | P< s b= [ B Vulll 2, (3.36)
2N

1
1012« 3 (1P 13 O BaVully, + 1P 105 2P Vullzz, )
PN

For the low-modulation contribution on the right-hand side, we use (3.3) to infer

||b||L1 o > 13| Pe s b|2|C 2 PVl 2

TN
-1
< Hb“zmzz,ﬂ P |} #BZ[H( #ek)}c< 292 P, Vu
A =1 =1
sub||z;,,w22u 11 P< s B2 1 2. 1 Prses O 2 PVt 2
T~ =1
< max ||b||LmZZu | P O (22 Putl] o <Z||bHL1°°Z||UuHX1- (3.37)
""" X 1=1 779\

For the high-modulation contribution in (3.36) we derive

HbIILloc > n2||[P< s blZ|Cs )2 PVl 2,

[T
S 003y 1015, 32 1 Cs g2 Pz,
A
1 1 _1 .
S B S 12 1ICs 2 (00 + D) Pt 1
e; B #NA ’
1 1 w10 T
S ZH( L) 0+ A) Pl
€j t ‘+|a| t,x
1 1
SIBIZ e 1Bl Fse D Nl - (3.38)
J ’ A

Combining (3.36) to (3.38), we obtain

S (X M- Vu)ealys )

j=1 xe2N

Inserting (3.35) and (3.39) into (3.34), we arrive at (3.30).
Estimates (3.31) and (3.32) follow in the same way as (3.35).
(ii) We first note that an application of Bernstein’s inequality shows that for every u ~ A we have

1Pl

1

4
1 1
<> ||b||L1 oo (1M1 71 0 110 Eoe el (3.39)
j=1 ’ 7

1
o SRl 4

1
1
N 21,3
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Consequently, we derive

1 3
[ Pr(b- VU)HL”N%,O S Az Z ([ Pub - PSQ%VUHLQL% S A2 Z ||Pub||L§L§||VU||L<;°Lg-
by YN thw oA

Taking the [?-sum in A and extending (b- Vu)gr by 0 from I to R, we arrive at

1
- V)l v 30y S ||b||L%H§(IX]R4)||u‘|L,?°H;(IxR4) S 2Bl g prz (rxray lull Lo mra (1 xma)-

The standard adaptions yleld the same estimate for (b- Vu) g g. For the remaining terms we simply estimate

1o S lleull Slell, g3 el
4

leull . s

ot SllellzzmzllullLe -
H

(SN

2
Extending cu by 0 from I to R again, we get
HCUHN; 0y ~ HC||L2H2(I><R4)||u||L°°H1(I><]R4 S |I|2 llell oo mz(rxray ull Lge mr1 (1 xR) -

The term Re(7:(W3)) is treated analogously. The combination of these estimates implies (3.33). O

4. PRODUCT ESTIMATE FOR RESCALING TRANSFORMS

In this section we show that the rescaling transforms are bounded maps on the X'-space. The first step
in this direction is the following lemma.

Lemma 4.1 (Product estimate for rescaling transforms). Let o € [0,00), I C R be a bounded interval, and
u € XY(I). Then, e*W1 (@) belongs to X1 (I) and we have

e O ulls gy S (14 (17 = 1 ga (14 [112)) Jull 1)-

Proof. By the definition of X*(I), there exist extensions of u which belong to X! (R). We fix such an extension
and also denote it by u to ease the notation. Let p € C°(R) be such that p(t) =1 for t € I and p(t) = 0 for
t¢ I+ [—1,1]. We further set

wy = W10 1 and w(t) = p(t)wy
and note that wy € H*(R*) as Wy (o) € H*(R*).
We claim that wu belongs to X! (R) and
1
lwullxr @y S lwoll s (L + [1]2)[|ullx: )- (4.1)
Since (wu)|; = wou, this claim implies that wou € X(I) and
lwoull ) < llwollsrs (14 1112) [l 1y

since u is an arbitrary extension of u in X!(R). This yields the assertion of the lemma as u € X!(I).
Below we focus on the proof of (4.1) and consider the lateral Strichartz and adapted spaces separately.

e Lateral Strichartz space component. We start with the lateral Strichartz space component of the
X!(R)-norm. For that component it is sufficient to show

(32 NPse, O Prwml2 ) 5 ol (32 NP, G o Pl )
Ae2N Ae2d g

+ (X4 12) [[woll zra llull g 1z - (4.2)

(M

To that purpose, we decompose
wu = Z P,\wPS%Su—F Z Z PywP,u+ Z nggwp,\u
xe2N Ae2N p~A Ae2n
= (wu)yr + (wu)pm + (Wu)Lw, (4.3)

where g1 ~ A means |log,(5)| < 7.
For the high-low contribution we estimate via Bernstein’s inequality

1 1
(X WP, Ocaye P wwinle ) S (30 NPswPeyul; )
Ae2n Ae2t ’
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[N

S (X XNl o 1P gl ez )

Ae2N
1
Sl (32 281 Pyl )
Ae2N
S 12 flwo| sl e 2 (4.4)

The usual adaptions yield the same estimate for the high-high contribution (ww)gg.
It remains to estimate the low-high contribution (wu)p . We first note that

Pro,CoqnpPr(wi)g = > Pre,Cc( )2 PA(P< g wPyu). (4.5)

8
A<pu<2an

We fix a dyadic number p € {3, A, 2} and write
Py e, Cg(z%)QPA(PSQ%wPuu) Zsz%UJPA,ej CS(Z%)QP)\PHU

+ (Pre,Ce a2 PA(Pe s wPyu) = Pe g wPy o, Co s PrPa) . (46)

For the first term on the right-hand side of (4.6) we get
1P< s wPre;Ccaye PrPuull poz S I1P< g wlinze, 1 Pae; Oz PrPull pe2
S llwollmal[Pre, Cg(%)szU”ng’?- (4.7)
To estimate the remaining commutator term in (4.6), we recall that Py e, CS(%)Q P, is a convolution operator
with kernel ¢y, where ¢y (t,2) = A¢(A\?t, Az) for a Schwartz function ¢ € S(R x R*). Hence, we have
Phe; CS(Q%)ZPA(PSQ%wPuu)(L x) — PeirwPy e, CS(%)QPAPMu(L x)

AXR4

= [ ViaPegut s - m)an s e Bt - sy b (09

—~

Perw(t—s,2 —y) = Pcaw(t,x)oa(s,y) Puu(t — s,2 — y) d(s, y)

Using Bernstein’s and Minkowski’s inequality, we thus infer
||PA,ejCS(2%)2PA(P§£%wPMu) — PSQ%“JP/\’ej CS(%)’}P)\PIJ‘UHL:,Q

5 )\%HP)\ e.C<(A)2P)\(P<LwP u) P< I ’LUP)\ eJC<(%)2PAPHu”L?,I

=58
1
o
RxR4

< NIVl o | Pt o2 A / (sl |Ay|>A6|¢<A2s,Ay>|d<s,y>
< R4

HP u(t — 5,2 = y)llLerz (Is] + [y1)|oals, ) d(s, y)

/ ViaP< & w(t —ns,x —

S A2 2 I Vwol o 1Pl e 2 I + [y (s, y) 2y,
S A2 |woll | Pl ez - (4.9)
Thus, combining (4.5) to (4.9) we derive
;
(D APre, Oy (w7 )’
g2
3 3
S (X0 XlwolslPre, Oz Prullisa) " + (3 NlhwolligllProlFe )
Ae2N Ae2N
1
< Nlwollgral|wll Lo 1 + Hw0||H4( > NPy, eJPwan ) °) (4.10)

xe2n
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Therefore, taking into account (4.4) and the corresponding estimate for the high-high contribution we
obtain (4.2).

e Adapted space component. We continue with the adapted function space component of the X!(RR)-
norm.

(i) High-low interaction. Let us first treat the high-low interaction. Using Bernstein’s inequality we
estimate
1
3
(D" QP wwnelizznz + ACe(y )2 Prwu) sl 22s)?)
Ae2n

1 1
2 2
S (X XUPwPe pulfers)” + (30 XIPwP puls )
Ae2N Ae2N
1

2
S (X WPl 1Py ullfre)” + (D2 NP3 e 1Py ullders )
g2 Ae2n

1
B 1
S lull ez (30 AIPvwolZe )™ + 111 ullnenz (D A%lIPAwoll3: )
re2N Py
1
S (T + [112) |lwo || 2 [l s (- (4.11)
Next, we compute

(10 + A)(PawP< s u) = Pyw(id, + A) P AU 10, P\wP< » AUt 2VPw - VP AUt AP\wP_ » AU (4.12)
-2

Nl

1
2

For the first summand on the right-hand side we infer
[Prw(ids + A)Pe yullz | S [[PAwl g £a |10 + A) Py ull 214
SAMPawollz Y pll(i0: + A) Pl 2

A
lﬁﬂfzfg

< )‘||P>\w0||L§ Z

A
1§H§2T

S )‘BHP/\'LUO”L§”UHX1(R)~ (4.13)

For the second summand in (4.12), since 9 Pxw = dypPrwp, we have
HiatPAwPSZ%UHLgx S [0tpPawol| L2 poe HPgQASU”L?Lg < N[ Pawoll 2 flull oo 2 - (4.14)
For the remaining two summands in (4.12) we simply estimate by Bernstein’s inequality
IVPyw - VP ullre + |APxwP s ullrz S A Pawllperee |Pey ull ez
S HIEX | Prawo | g ull g 22 (4.15)
Combining (4.13), (4.14) and (4.15), we infer

(S Gty o simtwnn,

N

)" 5 (3 160+ P ol )

o Ae2n
S lwoll ez (14 1717) [l (1) (4.16)
In view of (4.11), we thus have
1
(X 1Pl )" 5 ol + 119l (@.17)

ae2n

Straightforward adaptions of the above arguments yield the same estimate for the high-high interaction,
which includes the P;(wu) = Py (wu)gyg part.
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(i1) Low-high interaction. For the low-high contribution (wu)r g, similar arguments as in (4.11) yield

1

1
2 1 2
(> NP 3erz)” S wollas (14 1119 (2 A2 Paul 12 )

Ae2N Ae2N
< Nwoll s (1 + 117) [l (my- (4.18)

Regarding the estimate of A[Cc )2 Pr(wu)rullrzre, we use the representations (4.5) and (4.6) once
more. For the first term in (4.6), we snnply estimate

[1P< s wCeiyy2Pabuulrzrs S 1P<gwllnge Ccyy2 PabuullLzrs
S llwoll 2 1C< )2 Paull Lz s (4.19)
For the commutator term in (4.6), we observe that
||P/\,e_7'Cg(%)%)PA(PSQ%"UPuU) - P<prx\ e¢C<(A)2PAPuU||L,%Lg
< )\HP,\,ejCg(fg)zP)\(sz%wPMu) P & WP e; Cc (%)2P,\Puu|\L?,$
< llwoll s Puvl oo L2 (4.20)

where the last estimate was shown in (4.9) by means of the representation (4.8). Combining (4.19) and (4.20)
with (4.5) and (4.6), we arrive at

1
2
(D2 NUC e Prwu)inldzss )" S lwollmsllulc . (4.21)
Ae2n

1
Regarding the last component of the S/l\"‘—norm, we can expand it as in (4.12) and note that the lower
order terms in (id; + A)(P< 4 wPyu) are controlled by
-2
IVPcyw-VPyullpz +[|APc ywPyulpz S [Vwllpzre APrullogrz + [Awl gz pa [ Prell e s
1
S 12 [Jwoll ma Al Paull poe 2 (4.22)
and

0 Pe s wPyullzz | S 19:pPe s wollpzrse 1 Patll 22 S llwollara| Pral e 2. (4.23)
— 2 » T — 9 C

Next, we fix u € {%, A, 2A}. It remains to treat the term PSQ%w(iat + A)P,u. Splitting P,u in low and high
temporal frequencies and applying the product estimate for fractional derivatives from Lemma 2.7 in [16],
we obtain
A+ |0 \ 1 .
|(osigy) (Peawtion+ s

t,x

A+ |0
NH()\2+||5)5> (P_ (18t+A) (t()A)QP U)‘ +||P<uw(lat+A) ((),\)2P u||L§£

ST (0T (Pe w0 + A)PL)y 1 Pu)lz, + [wllage, 160, + A)PL) L, Pz,

LZ

\:

28 <(3%)?
SATT AT [0 Pegewlloge, |+ 1007 (0 + A)PE 5 o Pz,
(; :
+ wolls 1G9y + A) P %)QPMuHLzH
_1 1 1
<A 4(/\+|3t\)4p|\L°°Hw0HL°°H/\ T(A+9,])% (10, + A) ;gpPMunLg,z

+ ||w0||H4||(lat + A) >\ )ZP U”L"‘

<>\+\3t|

< (14|12 —
S L+ 112) |lwol s Nt 0]

) o, + A)Puu“L? E (4.24)
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where we used that |[A~7(\ + |8t|)%p||L§o is uniformly bounded in A by 1+ |[I|2. From (4.22), (4.23),
and (4.24) we infer

(S G s 2

Thus, combining this estimate with (4.18) and (4.21), we conclude that

1
) S Thwollzra (14 111%) ulle . (4.25)

1
2 1
(3 1Pswmnly )" S ol 1+ 1) e (1.26)
xe2n
Finally, the combination of (4.17), the corresponding estimate for the high-high interaction and (4.26)
yields

: ,
(2 1B, 4)" % lwollag (4 1)l .
A

Ae2No

Together with (4.2), this estimate implies (4.1) and thus the assertion of the lemma. O
As a consequence of Lemma 4.1, we get the following corollary.

Corollary 4.2. Let 0 >0 and 7 > 0.
(i) Ifuy, € X*([0,7]), then u defined by u(t) = e~V (Duy(t—0) fort € [o,0+7] belongs to X*([o, 0 +7]).
(ii) If u € X ([0, 0 + 7)), then u, defined by uy(t) = eV Ou(t + o) fort € [0,7] belongs to X' ([0,7]).
The statements in (i) and (i) remain true if we replace [0, 7] and [o,0+7] by [0,T) and [o,0+7T), respectively.

Proof. We start with part (i). Let u, € X1([0,7]). By definition there exists an extension i, of u, which
belongs to X! (R). Since the X! (R)-norm is time-translation invariant, we also have @, (- — o) € X' (R). Since
U,(t — 0) = u,(t — o) for all t € [0,0 + 7], we obtain u,(- — o) € X!([o,0 + 7]). Lemma 4.1 thus implies
e Wiy, (- — o) € XY([o, 0 + 7]).

Part (ii) follows in the same way. Moreover, we can replace [0, 7] and [o,0 + 7] by [0,7) and [0,0 + T),
respectively, in the above proof. O

5. LWP AND BLOW-UP ALTERNATIVE

The aim of this section is to prove the local well-posedness and blow-up alternative in Theorem 1.1 for
the energy-critical Zakharov system (1.1). Theorem 1.2 can be proved in a similar manner.

We first collect some Holder continuity properties of the noise terms. This is just Lemma 6.1 from [32]
adapted to the regularity assumptions for W7 and W5 we make in dimension four.

Lemma 5.1. Let T € (0,00) and x € (0,3). Then, Wy is C*-Hélder continuous in H* and Wa and the

process t — fg e #IVL AW, (s) are C*-Hélder continuous in H?. Moreover, for every j € {1,...,4} and for
P-a.e. w € Q, there exists a sequence (ny(w))ien in N with nj(w) — oo as | — oo such that
Z / sup |V¢> (re; +y)|dr sup |ﬂ,£1)(t,w)\ — 0, asl— 0. (5.1)
k=n, t€[0,T]

5.1. Linear equation with potential. To begin with, let us first develop the well-posedness theory for
the linear Schrédinger equation with forcing in G*(I) and a potential, which is a perturbation of a free wave.

With the estimates from Section 3, the proof of the following result follows along the same lines as the
proof of [16, Theorem 7.1].

Lemma 5.2. There existe > 0 and C > 0 such that for any interval  C R, tg € I, f € HY(R*), F € G'(I),
and V € Y(I) satisfying
WVilly(ryrrzwiaxrey <&
the Cauchy problem
(0 +A—Re(V)u=F,  ulto)=f (5.2)
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has a unique solution u € C(I,L?(R*)) N L?LA(I x RY), which satisfies
lullxr oy < CAUf N + [1Fllern),

and

lull 2o (1xray < CIfllz2 + [|F]] ).

4
L2L3 (IxR%)

Proof. We first note that u solves (5.2) if and only if

u(t) = tt)2f / t e =)2(Re(V)u + F)(s)ds. (5.3)

to

Define the operator ¥(f, F,V;u) by the right-hand side of (5.3), for which we want to construct a fixed
point. Let R > 0 and set

Br = {ueX'(I): |lullx: 1) < R}
equipped with the metric induced by the X!(I)-norm. Lemmas 3.4 and 3.6 imply

[W(f, F.Viw)llserry S 1 f Il + [ Re(V)u+ Fllgyr

S IE + 1V kv zewrsaxrn lellx @ + [1Fller

< e+ elluller 1y + I Fller (5.4)
and

[U(f, B, Viu) = V(f, F,Viw)llxaa S | Re(V)(w—w)llern
S Wiy rewr s s llv = wlxiay S ellu = wllx @) (5.5)

We fix the maximum Cj of the implicit constants on the right-hand sides of (5.4) and (5.5), set R =
2Co(|| fllr + IF lc (1)), and choose & > 0 so small that Coe < 3. Estimates (5.4) and (5.5) thus yield that
U(f,F,V;-)is a contractive self-mapping on the complete metric space Br. Hence, the Cauchy problem (5.2)
has a unique solution in X!(7). Using (5.4) for this solution, we further get

llullxrry < 2Co([| fller + [ Fller ()

The uniqueness in the larger space C'(I, L2(R*)) N L? L1 (I x R*) follows from standard arguments and the
Strichartz estimate
HIO(RG(U)U)HL;fOLgmL%Lf; Sl Re(V)U”L?Lé S ||V||L§°L§+L§Lg||UHL;>°LgmL3Lg
N HV||Y(1)+L§W3=4(1><R4)HUHL?"L%M?U;'
Applying this estimate to (5.3), we also obtain

llerznnes S 1Flse+ IRVl g + 11, 4

< fllze +ellwl zmranzss + I1F1 s
»

Assuming that the implicit constant is smaller or equal than Cy, the last part of the assertion follows. O

In order to apply the previous lemma when the potential V' is a linear wave, we recall from [16, Lemma 7.5]
with parameters d =4, s =1,1=0,a = i and 8 = % that the smallness condition in Lemma 5.2 is satisfied
for linear waves on small time intervals.

Lemma 5.3. Let g € L?(R*), Vi (t) = €IVlg, and ¢ > 0. There exist finitely many intervals (1) j=1,..N
such that R = Ué\’:llj, min |I; N Ij11] > 0, and

) Siup ||VL||Y(Ij)+LfW;’4(I_jXR4) <E&

J=1
Remark 5.4. As in the proof of Theorem 7.1 in [16], the combination of Lemma 5.2, Lemma 5.3, and
Lemma A.1 shows that (5.2) has a unique solution in C(I, L?(R*)) N LZL4(I x R*) on any interval I, which
also satisfies the estimates in Lemma 5.2. This particular shows that the propagation operators Uy and Zy
introduced in Subsection 1.3, are well-defined for free wave potentials V.

We are now ready to prove Theorem 1.1. The proof mainly proceeds in three steps in Subsections 5.2,
5.3 and 5.4 below, respectively.
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5.2. Local well-posedness. We first prove that system (1.1) is locally well-posed up to some stopping
time.
Set

(ug,vo) := (Xo,Yp), vr:= eVlyo, and pi=v—vgL.
Then (u,v) is a solution of (2.5) if and only if (u, p) solves
(i0; + A — Re(vr))u = Re(p)u — b - Vu — cu + Re(T(Wa))u, u(0) =u
{ (101 + |V 1)p = —|V][ul?, p(0) = 0.
Noting that
p(t) = =olIVI[ul?],
we obtain a solution of (5.6) - and thus of (2.5) - if and only if
() = Uy, [uo)(t) — T, [Re(To [V 10f?])u] (8) — Ty [b- Vit + e — Re(T(Wa))u(t). (5.7
Let us define the fixed point operator ®(ug, vo;u) by the right-hand side of (5.7). Let §, R > 0. Set
Brs(r) = {u € X1([0,7]): [Jull L213(j0,r xre) < 6, [lullx2 (o) < R},

where 7 > 0 is a stopping time to be fixed below. In this step all space-time norms are taken over [0, 7] x R* so
that we drop [0, 7] x R* from the notation in the following. Equipped with the metric induced by || - 1% (0,7))
the set Brs(7) is a complete metric space, cf. Remark 3.1.

Below we show that ®(ug,vo;-) is a contractive self-mapping on the ball Bg 5(7). For this purpose, we
fix e > 0 from Lemma 5.2, a time 7' > 0, and define

7o = inf{t € [0, T]: ”UL||Y([0,t})+LfW,}'4([o,t]xR4) > e} Amin{2,T}. (5.8)
We point out that 79 > 0 by Lemma 5.3. In the following we assume 7 < 7.
e Self-mapping. Lemma 5.2 yields that
[, [uo]llx1 j0,71) < Clluollar, and  ||Zy, [F]llx1 (0,7 < ClIF g (jo,7))-
We thus obtain
1@ (o, vo; u) |1 jo,r) < Clluollar + Cl| Re(Tol|VIul*uller (o,71) + Cllb - Vullgr(o,7)) + Clleull o,
+C| Re(T(W2))U||G1([O7T]). (5.9)
The definition of G' and Lemma, 3.6 yield
I Re(To[IV[|ulDullgr o)) S IRe(Tol|V[[uf*])ull

NV ([0,7])
S ||»70[|V\|U|2}HY([O,T])HUHSL%(I)
S, ||UH%03L3HU||§§(2£T]) (5.10)

Thus, inserting this estimate into (5.9) and employing Lemma 3.7, we arrive at
4
0 —26
19 (o, vo; u)llx1 (j0,7)) < Clluolla + CllullFa pallull3i o ) + C(Z Il 3.0 + ||b|\L;>°H;>) [[ullx jo,71)
j=1

1
+ CT2([|bllpoe 2 + el Loz + 1 T-(Wa) || oo 2)l1ullx (f0, 7)) (5.11)
Concerning the estimate of L?Li-norm, we write the linear propagator U,, as
Uy, [uo](t) = e™ug + Ty, [Re(vr,)e P ug) ().

Using Lemma 5.2, we thus obtain
itA itAuO ” 4

wolzzs + | Re(wr)euoll , 4

Uy, [uo]ll L2s < lle
< € uollzz2zs + lvrllierz leuoll 2 s

< (14 ||vollp2) I uoll 2 s -
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Lemmas 3.6 and 5.2 also show that
1Zo, [TVl | 22 pa S TV )| oo 2wl 24

STV ulP v o,y llull 22 s

2(1-6) )
S ||UHX1(07—])|| ||iz4;$

Thus, combining the last two estimates with Lemma 3.7, we derive

19 (o, vo; w2228 < Clle™uollzzrs + Cllulli o oyl [

+ O (|[bl| poe 2 + llell ooz + 1 T-(Wa) | poe rr2) [ll2 0.1y

4
+ O (D2 Ibll e + el eges )l o, (5.12)

j=1
We also note that, by the definition of the random coefficients b and ¢ in (2.6) and (2.7),
4

168 5+ 1Bl .y + ez + [T (W)
j=1

4
<o(Ivm ||Hs+ZZ sup |Vey, (re; +y)ldr sup |87 ()] + [W1(0)[Fre + Wi ()
=1 k=1 y€ER3

s€[0,t]
T ) =5 W (). (5.13)

Fixing now C' = C(||vg|/r2) as the maximum of the generic constants in (5.11) and (5.12) and setting
R = 2Cug|| g1, we get from (5.11) and (5.12)

4
R _
@ (o, vo; w)llxr (0,7 < 5 + CRHTV0M R+ CR(Z 1Pl 3, + ”b”L?"Hf)

j=1
1
+ ORT2([|bl|Lge 2 + llell ooz + [ T-(W2)llLoo 2 ),
4
[®(uo, vo; u)llp2ps < C||€itAU0||L§Lg +CRYM95%5 4 CR(Z [0l 200 + ||b||L§°H§)
P , y
j=1

+ CRr2 (bl ez + llell ez + 1 T-(We) | e rr2)
for every u € Bg (7). Choosing & € (0, R) so small that 4CR>"~§2% < 1 and defining the stopping time
T by
. 5
= inf {t € [0,T]: Clle % ugl 20,0 xre) + 2CRW*(t) > Z} A T, (5.14)

we conclude that 7 > 0 P-a.s., since lim;_,o W*(t) = 0 P-a.s., and that ®(ug,vo;-) maps Br,s(7) into itself.
e Contraction. In order to show that ®(ug,vo;-) is a contraction, we first argue as in (5.10) to derive

I Re(Jol|V[[ul*])u — Re(Jo[|VIlw*])wll1 o,

= || Re(R[IVI((@ — @)u)])u + Re(Jo[| VI(@(u — w))))u + Re(To[|VIJw*])(u — w)lg1 (1o,

< (Il = wllr go,m lullxr o,71) ™ (Ul = wll g2 pa lull 2 £4)° lullxr o,y

+ (lwllsr go,7p 1w — wllxr qo,m) = (lwll pzpa llu — wll 22 ) 1l o,71)
+ w135 s w3 oo e = wllser o,
SR |u — w079y + 0% R*Vlu — wllx 0.

for all u,w € Bg s(7), where we also used Remark 3.1. In the same way as we derived (5.11), we thus get

||<I>(’LL0, V0; u) — (ID(UO, V0; w)Hxl([Oﬂ-]) < 059R2_9Hu — 'LUHXI([O’T]) + 0(529R2(1_9) ||u — w||X1([07.,.])
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4
+ C(Z 1Bl 3. + HbIIL;mHg) llu — wllx o,7)) (5.15)
j=1

+ CTE(|[bl| pe 12 + llellpgo 2 + | T-(Wa) | poe rr2) 4 — w521 0, -
Fixing the generic constant C' and taking § > 0 possibly smaller such that additionally
CSORZ0 1 0§20 R21-9) < i’
we update the definition of 7 in (5.14) and set
Fi=inf {t € [0,]: W*(t) > i} A

Then 7 is a stopping time, 7 > 0 P-a.s., and ®(ug, vo; ) is a contractive self-mapping on Bg 5(71).
As the constant C' and the radius R are increasing in |Jug||z: and ||Jvg||z2, we note that there is a small
constant O, (||uoll g1, ||vollz2) > 0, which is decreasing in both its arguments, such that

7 =1inf{t € [0, T]: | ug|l 1214 (o, xray + W () = 46.(||uoll a1, [lvoll£2)} A 7o (5.16)
Moreover, we define the stopping time
7 = inf{t € [0,T]: |/ uo]| 211 (0, xrs) + W*(£) = 26.(|uol 1 [[voll£2)}
. € .
A inf {t € 10.7: oz luony 2w (o) = 5} A min{1, T}. (5.17)

Using Lemma 5.2 once again, we note that 7 > 0 P-a.s. Moreover, for continuity reasons (employing also
Lemma C.1 (iii)), we have 11 < 73 or 13 = T P-a.s.

Since ®(ug, vo; -) is a contractive self-mapping on the complete metric space B s(71), Banach’s fixed point
theorem yields a unique solution 4, € Brs(71) of (5.7). Standard arguments show that @, is the unique
solution of (5.7) in X!([0,71]). Then, setting

01(t) = v (t) = DollVIla P)(t) = Voo — K[| V]Jaa P)(1), t € [0,71],
we obtain that 9; € Y([0,71]) by Lemma 3.6. Thus, (@1, 71) is the unique solution of (2.5), where uniqueness

holds in X!([0,7]) x LL2([0, 7] x R*).
Finally, set

(ul,vl)(t) = (121(1?/\7~'1),1~11(t/\7.;1))7 te [O,T]

Then, (uy,v1) is an {F;}-adapted process in C([0, 7], H*(R*) x L%(R*)) (see e.g. [1] for the relevant argu-
ments) and solves (2.5) on [0, 7].

Remark 5.5. We introduced two stopping times above as a preparation for the gluing procedure in the next
step below, where an overlap with positive measure of two intervals is required to conclude that the glued
solution belongs to X' on the union of these intervals, cf. Proposition 2.6 and Lemma A.1.

5.3. Extension to maximal existence time. In this step, we extend the solution from Step 1 to its
maximal existence time. The proof relies crucially on the inductive application of refined rescaling transforms
and the gluing procedure.

Let n € N and assume (u,,,v,) is an {F;}-adapted continuous process in H* x L? and that o, < &, are
{F:}-stopping times, such that o, < &, or o, = T P-a.s., and that (u,,v,) is the unique solution of (2.5)
on [0,5,] in X([0,5,]) x Y([0,5,]) satisfying (un,vy) = (un(61), v0(6,)) on [y, T).

In view of Propositions 2.4 and 2.6, we aim to solve (2.18) with the initial data

(U0,n, Vo,n) = (er(”")un(Un),vn(an) + T, (W), (5.18)

i.e. the system
10iue + Aug = Re(vy)te — by - Vg — cotty + Re(Tot. .o (W2)) e,

B0y + [V]ve = —|VJuo 2, (5.19)
(us(0),v5(0)) = (wo,nsv0,n),
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where

bo =2VWio, Co=|VWio|> + AW 5, Wi, (t) = Wi(o +t) — Wi(o), and

o+t
Tosr0 (W) = —i / STV 4y, (s) (¢ € [0,T)). (5.20)

Proceeding as in Step 1, we define vy, ,,(¢) := eitw‘vom and pgp = Vs — V. Similarly to (5.7), we see
that (4, vs) is a solution of (5.19) if and only if u, solves
ug (t) = uvL,n [uO,n](t) _IvL,n [Re(j0[|V||ug|2])uo—](t) _IvL,n [bfr Vg + Cotlg — Re(%+-,U(W2))u0](t)- (5~21)

We define the fixed point operator @, (ug n, Vo n; Us) by the right-hand side of (5.21) as well as

W () =YW, ||Hs+zz / sup Vol (re; +y)|dr sup B (0n + ) — B (o)

j=1k=1 5€[0,1]
HWeo, O + W, B)llzs + 1o 41,0, (W2) |l 122, (5.22)
the {F,, ++}-stopping times
Fpgr = inf{t € [0,T]: €% w0 nll 214 (0, xre) + Wi, () > 46, ([ to,nllar s [vonll22)}

Ainf{t € [0, TT: [[ormlly o)+ 2w (o, xr) = } Amin{2, T — oy},
Tns1 = inf{t € [0,T]: || Aol L2 (0, xrs) + Wi (£) > 26, (luon |l a1, [vomllL2)}
Aint {t € 10,T]: [0n,nlly(o.s w2 o,y = } Amin{l,T — 0,.}
with J, from Subsection 5.2, and
On+1 i= On + Tnt1, Ontl = On + Tnyl-

Note that ¢ — HULJL||Y([0,t])+L§W§=4([0,t]xR4) is continuous by Lemma C.1 (iii) so that 7,41 and 7,41 are
indeed {F,, ++}-stopping times. Then, 0,41 and &,41 are {F;}-stopping times (see [1, 42] for the relevant
arguments) with 0,41 < 3,41 < T, as well as 0,41 < Gpt1 OF Opy1 = Gpp1 =T, P-as.

We note that, as mentioned in Subsection 5.2, we need two stopping times in order to show later that the
glued solutions belong to X!([0,5,,41]) x Y([0, 5pnt1])-

Employing the estimates from Subsection 5.2, i.e., (5.9) to (5.12) and (5.15), we derive as in Subsection 5.2
that the operator ®, (ugn,vo ;) is a contractive self-mapping on a closed subset of X*([0,7,,+1]). Hence,
there is a unique solution 4, ,, of (5.21) in this closed subset. Setting ¥, ,, := vr.n — Jo[|V||to,,|?], we
thus obtain a solution (4o, ., , Us,,) of (5.19) in X! ([0, Fn41]) x Y([0, 7r11]), which is unique in X*([0, 7, 41]) %
L L2([0, Fnia] X RY).

Next, define

(uffn+1 (t)7 Vo i1 (t)) = (ao'n+1 (t A 7:71+1)? ’EU”+1 (t A 7:7l+1))? te [07 T]

Then, (to, Ve, ,,) is an {Fg, 44 }-adapted continuous process in H' x L? which solves (5.19) on [0, 741].
Finally, we use the gluing procedure to define

Unt1(8) 7= Un()X[0,0,) (1) + g (8= 00) ATt Xo,, 1) (1),

On41(8) 1= 0a(OX(0,0) () F (Vs ((E = 7)) AFrg) = @I DIVIT (W) )y, (1)
for all t € [0,T]. By Proposition 2.6, (tn+1,vn+1) solves (2.5) on [0, 5p41]-
Claim: (u,1,v,11) belongs to X1([0,5,41]) x Y([0,5,,11]).

To this end, if 0, (w) = 6, (w) = T, there is nothing to show. So it suffices to consider w with o, (w) < &, (w)
in the following.

On the one hand, since (uy,, v,) solves (2.5) on [0, ,,], it also solves (2.5) on [0, &, with the initial data
(Un(00), 00 () = (e V1) ug 1 vg , — T, (Wa)). Proposition 2.4 (i) thus yields that

(ﬂnaﬂn) = (6W1(0n)un(0n + ), (00 +-) + ei(.)‘vlrm (Wa))
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solves (2.8) on [0,6,, — 0,] with the initial data (ugn,v0,,). Since the Y(R)-norm is time translation in-
variant and v, € Y([0,5,]), we infer that v, (o, + -) belongs to Y([—on, 6, — o)) C Y([0,5,, — on]). As
To. (Wo) € L%(R*), we also have ¢! OIVIT, (W,) € Y(R) C Y([0,6, — 0,]). Moreover, Corollary 4.2 (ii)
yields eV1(on)y, (0, + ) € XY([0,6, — 0,]), as u, € X([0,5,]) € X!([0,5,]). Thus, we conclude that
(U, 1) € XH([0,65 — on]) x Y([0,5 — o))

On the other hand, (uo,,,,vs,,,) also solves (5.19) with the initial data (ug ,,v0,n) in X'([0, Fry1]) X
Y([0, 7 y1]) and it is unique in X1([0, Fy1]) X LECL2([0, Fpy1] x RY). We thus infer

(anyn) = (utfn+1 ) v0n+1) o1 [Ov (&n - Un) A 7-n+1]'

Via the definition of (u,,,v,,), this yields

(n () va(t) = (e g, (8 = 00), Ve, (E = 70) = CTIVIT, (W)

for all t € [og, ((Grn — 0n) A Trg1) + 0n) = [Ony n A Gnyi]. In view of the definition of (up41, vnt1), we thus
infer that

(Un+17Un+1)|[0,&n/\&n+1] = (Un, Vn),

(e ug (t=00), 00, (t—0n) — VT (7).

Arguing as for v,, above, we infer that (vn41)|(0,.6,41] € Y([0n, Gnt1]). Corollary 4.2 (i) further shows that
€7W1(J")Uan+1('*0n) € XY([oy,5n11]). Consequently, (U415 Vng1)|[on,6ns1] € XY ([on, 0ni1 )XY ([0n, Grny]),
and (Un41, Vnt1)([0,6,AGn11] € X([0,n A Gpga]) X Y([0,55 A Gpp1]) because of the properties of (un, vy).

Finally, since &, A 6,41 > 0, > 0, Lemma A.1 yields that (u,y1,v,41) € X2([0,6,41]) x Y([0,5,41]), as
claimed.

(Un+17 Un+1)\[on,&n+1] =

Now, combining the uniqueness properties of (u,,v,) and (s, ,, %, ,), Proposition 2.4, Corollary 4.2,
and standard arguments, we infer that (u,41,v,41) is the unique solution of (2.5) in X'([0,5,41]) X
LL2([0,5,41] x RY). Moreover, (upi1,vn41) is an {F;}-adapted continuous process in H' x L? (see
e.g. [1] for the relevant arguments), which coincides with (u,,v,) on [0, 0,] and satisfies (un+1(t), vnr1(t)) =
(un+1(Gnt1)s Vnt1(Gngr)) for all t € [Gpny1, T

Inductively, we thus obtain an increasing sequence of {F;}-adapted stopping times (o) as well as corre-
sponding {F; }-adapted processes (uy, vy, ), such that (u,,v,) is the solution of (2.5) in X!([0, ¢,,]) x Y([0, 0,,]),
unique in X1([0,5,41]) x LECL2([0,5n41] X RY), and (un41,Vn11) coincides with (uy,,v,) on [0, 0,].

Setting

il o, and  (@07) = m (uX(org)s VX0
we obtain an {F;}-adapted stopping time 75 as well as an {F;}-adapted process (ul,vT), which is the
solution of (2.5) on [0, 7).

Since {7} is increasing in 7', and for 7" > T, the process (u” ,vT")

the uniqueness property, we can define

coincides with (u”',vT) on [0,7}) by

* . 1: * R T T T

T = Tlgr;o T and (u,v) := Tlgnoo(u X[0,7%)> V" X[0,7+))-

The resulting process (u, v) is thus {F; }-adapted, continuous in H! x L? on [0, 7*), and uniquely solves (2.5).
Finally, we use the rescaling transformation again to define

(X,Y) := (Mu,v + T.(Wy)).

The equivalence result in Theorem 2.3 shows that (X,Y") is the unique solution of (1.1) on [0,7*) in the
sense of Definition 2.1.

5.4. Blow-up alternative. It remains to prove the blow-up alternative in Theorem 1.1. We argue by
contradiction and assume that it is not true. Also employing Lemma 5.1, we thus find a set €’ of positive
measure such that for every w € ' we have
(i) 7™(w) < o0,
(i) Timsup, .- o) (X ()l + 1Y (8w [ 2) < o,
(i) [|X (-, @)l

o0,

Lle.%A([O,T*(w))xR‘*) <
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and (5.1) is satisfied. We fix such an w in the following. Let T € (0, c0) such that T' > 7*(w). Let {0y, 7, } be
constructed as in Subsection 5.3 for this 7. For convenience the dependence on w is dropped in the following.

Since (ug,n, vo,n) = (X(04),Y (0,,)) for the initial data from (5.18), (ii) above implies lim sup,, _, oo (|| %0,n || g1 +
[lvo,nllz2) < co. In particular, there exists » > 0 such that

ol + llvonllze <7 (5.23)

for all n € N.
Note that lim, ., 7, = 0 since 7" < co. We further assume without loss of generality that T — o, < 1
for all n € N. Because of T'— 0, > T — (7% — Tp41) > Tn+1, we infer that

Tnt1 = inf{t € [0,T7]: Hei(.)Auo,n”LfL‘;([O,t]><R4) + W:n (t) = 26.([[uonllmrs lvonllz2)}
. €
A inf {t €1[0,17: ||UL,n||Y([0,t])+L%W£1,4([O7t]XR4) > 5} (5.24)
for all n € N. Recall that 0, is decreasing in both its arguments. Setting § = d.(r,r) > 0, we obtain
from (5.23) that

O« (luonllzzrs lvo.nllz2) = 0x(r,7) =6 >0
for all n € N. By continuity (where we use Lemma C.1 (iii) again) and (5.24), we thus get

el

% g
10 ria] xR 20 08 Wo (Tn1) 20 ot [vLnlly(po,r, 1))+ 22wt (0,msa1xre) = 5 (5:25)

for all n € N.
We next demonstrate that the second alternative in (5.25) is never satisfied if n € N is large enough. To
that purpose we show that
lim sup W7 (t) =0. (5.26)
N0 4 c[0,7% —on)
To prove this claim, we exploit Lemma 5.1. Let ¢ > 0. Since the convergence (5.1) holds for the w we
fixed, there exists an index n; € N such that

Z Z /Sup Vo (re; +y)ldr sup [8°(1)] < .

j=1k=n;+1 t€(0,T

>~

We now fix x € (0,1). The C*-Holder continuity of Brownian motions yields for the first n; modes of the
noise

4 ny
Z Z/ sup \V(Z);Cl)(rej +y)|dr  sup |B£1)(07L +5) — B,(cl)(an)|

j=1k=17 YyER? s€[0,7* —0p]

4 ny
< ZZ/ sup |V¢k rej +y)|dr C(k, s, T) (7" — 0,)" =: C(ny, 6, T)(7* — 0)",

yEeR3

where C’(k:, k,T) is the C*-Holder norm of 6,(61) on [0,T] for 1 < k < n;. Consequently, we have

4 oo
> / sup (V6 (re; +9)ldr  sup (500 +5) — 60 (0:0] < 5 + O, . T) (" — 0,)"

j=1k=1 yER3 SE[O,T*—G'”]

The Hélder continuity of the noise provided by Lemma 5.1 also shows that there exists C’ (k,T) such that

VWi, Ollms + Wee, (O + [Wio, )l + 175, +t.0, (W2) |2
< 2[Wi(on + t) = Wilon)llms + IWion +t) = Wi(on) s

| [ e

<C'(k, T) (7" — o))"

H?2
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for all t € [0,7* — 0,,]. The last two estimates and the definition of W} in (5.22) now yield

sup W' (1) < g + (C(ng, 5, T) + C' (5, T)) (75 — o)~

o
te[0,7* —oy] "

Since 0, — 7 as n — oo, we conclude that there exists N € N such that
sup Wy (1) <(¢ (5.27)

te[0,7* —op]

for all n > N, which implies (5.26). As 7,41 € [0,7* —0,,) for all n € N, we particularly find an index ng € N
such that W} (7,41) < ¢ for all n > ng.
We next show that the first alternative in (5.25) is not satisfied for large enough n, i.e. that

||€i(')AU0,n||L’;‘L§([0,Tn+1]xR4) <4 (5.28)
if n is large enough.
To that purpose, we define
(ttor, (1), 00, (1) = (€ (o, + 1), 0(0 + 1) + VT, (W)
for allt € [0, 7* —0,,). By Proposition 2.4, (u, , vs, ) solves (5.19) on [0, 7* —0,,) with initial data (ugn, vo,n)-
We further note that there exists a number R > 0 such that

) < 1™ O u oo g1 o,y xra) = 1€ O™ X | oo g1 (0,74 xR

< Ol X||Lsemr(o,re)xre) < R,

[to, | Loem2 (0,7 — o) xR

||Uon||L;?°L§([o,f*—an)xﬂa4) < ||U\|L§°Lg([o,f*)xm4) + HTanHLi
<Y |lpse L2 (o,ryxra) + 2/ T-(Wa)ll Lso L2 (0,7 xr4) < R, (5.29)
for all n € N, where we employed (ii) as well as Wy € C([0,7*], H*(R*)) and T.(W>) € C([0,7*], L*(R?)).
Using now that (u,,,,v,, ) solves (5.19) on [0,7* — 0,,), we infer

¢
Ug, (t) = € ug., — i/ e =2 (Re(vy, Yo, — o, - Vg, — Cq,Us, + Re(Ts, 4.0, o, )(s) ds
0

and thus

||€itAu0,n||L$L§([om+1]xR4) < |lug, L2LA([0,7* —0p) XRY)

t
+ H / ei(t_S)A(Re(vgn)ugn — by, - Vg, — Co, U0, +Re(To, 4.0, ) s, )(S) ds‘
0

L2LA([0,7*—0,) xR%)

S HUHLng([M,T*)xw) + |l Re(%")u”"”L§L§([o,r*—an)xR4)

+ [|bs,, + Vg, + ¢5,Uq, — Re(%n+~,an)uan

| 102 ([0,7* —om) xRY)

S IX 224 ([0 ro) xR F [1Vo | Lo L2 (0,77 —00) xBE) Uo [ L2 L8 (0,75 — o) x %)

+ (7" = 0n)([[bo,, | L m3 ([0, 7% — o) xR + o, [ Loe H1 (0,77 — o) xRY)
+ 1T+ 0m 1 L5o 51 (10,75 — ) xBE) ) Yo, || oo 1 (0,75 — ) xR
S+ R)IX2ra (o, ryxrey + (75 —0n)R - sup W, (t)
te[0,7*—oy]

for all n € N, where we used Strichartz estimates as well as [e"1| = 1. In (5.27) we have seen that
SUPsefo,r—o,) Wa, (t) < 1 for all n > N. By assumption (iii) and the dominated convergence theorem, we
thus conclude

||€imu0,n||L§Lf;([o,rn+1]xR4) —0

as n — oo. In particular, there exists ng € N such that (5.28) is satisfied for all n > nyg.
Finally, we show that the third alternative in (5.25) cannot hold, i.e., we show that
€
1L lly(0,m i)+ L2W 24 (0,70 ) 528 < 5 (5.30)
if n € N is large enough. To that purpose we first recall that

vpa(t) = eV = €1V (va(00) + 75, (W) = €V (v(0n) + T, (W2))
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from the construction in Subsection 5.3. By Sobolev’s embedding we get for the second summand
1T W2y o,m 22w 0,me ity S 1€V To (W2l w2 o,r, 4
i 7 * 3
ST (W)l 2 2 (0,7 001520 S Tzan | Ton (W) |2 S (7% = o) S[})lp | | Te(Wa2)|| g2 (5.31)
tel0,7*

For the first summand, we exploit Lemma B.1. Note that by (ii) and (iii) the assumptions of that lemma
are satisfied so that we can extend v to a function in C([0, 7*], L2(R*)). Now let ¢ € C2°(R*) with 0 < ¢ < 1,
¢ =1on B;(0) and ¢ = 0 on By(0). Setting ¢, (x) = v~*¢(%) for z € R* and v > 0, we obtain the kernel
of a standard mollifier on R*. Since v is continuous on the compact interval [0, 7*], we have

v —v* ¢u||Lg°L§([o,T*]xR4) —0

as v — 0. Hence, we can fix v > 0 such that [[v — v * ¢, | L2 (j0,7+]xr1) < 767, Where C’ is the constant
from Lemma 3.5. Using Lemma 3.5 and Sobolev’s embedding again as in (5.31), we thus infer

||eit‘v|U(Jn)‘|Y([O,‘rn+1])+L%W;’Y4([O’T"H]XR4)
. ||eit|v‘(v(an) ok qﬁy(on))HY([O,mH]) + Heit|V|(U * ¢u(0n))”L$W§v4([0,m+1]><R4)

< C'l[o(0n) = v * Gu(on) 2@y + CleV W(on) * G0) 12 120,710

< O'lv = v dullngerz (0,7 xre) + CTE+1HU(U71) * Gl 2 (re)

< 10— o) b ofon) e

< i +C(" — 0,) 57 ?R, o

where we also employed (5.29) in the last step.

Combining (5.32) and (5.31) and using that lim,_,. 0, = 7*, we conclude that there is ng € N such
that (5.30) is satisfied for all n > ng. Finally, (5.26), (5.28), and (5.30) contradict (5.25) and thus the
blow-up alternative in Theorem 1.1 holds true. O

6. GWP BELOW THE GROUND STATE

This section is devoted to the proof of the global well-posedness below the ground state. Two crucial
ingredients of this proof are the variational properties of the ground state and a uniform estimate for solutions
of a Schrodinger equation with a free-wave potential and lower order perturbations in the adapted space
S %70(1 ). By uniform we mean in this context that the involved constant does not depend on the free-wave
profile, but only on its L?-norm.

We first recall some consequences of the variational properties of the ground state W. These properties
have been studied in [30] and have been further developed in [29]. We exploit them in the form of Lemma 7.3
in [15].

Lemma 6.1 (Variational constraints below the ground state, [15, Lemma 7.3]). Let f € H'(R*) and
g € L*(R*) with

ea(f,9) < en(W,=W?) = W2y, lllez < W2z,
We then have
1 W2l
2[W2[lzz = llgllz2

lglz> < 4ez(f.9),  IIVflZ2 < (dez(f,9) = llgliZz) < IW?Z:-

The following result gives the uniform estimate in the case of lower order perturbations.

Proposition 6.2 (Uniform estimates). Let I be an interval with to = minI, 0 < B < [|[W?||p2(ra), and
vg € L*(R*) with ||vo||p2ray < B. Let ug € H'(R*) and f € NzO(I). Let u € C(I, H'(RY)) solve the
equation

i0iu + Au — Re(vp)u + b - Vu + cu — Re(Te(W2))u = f,
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with initial condition u(ty) = wg, where vy, = et=t0)IVly - Assume that there is a constant A > 0 such that
|ullLge 1 (rxrey +a*(I) < A,
where
4
a*(I) = |Ibll 1 o (rxme) T 10l mg(rxme) + el mzrxmey + | Re(Te(Wa))llge 2 (1xma).-
j=1
Then there is a constant C = C(A, B) > 0 such that

. 1

Jull gty < Clloll 3, +ClflLygagy +Ca™(DITE (6.1)

Remark 6.3. In Theorem 6.1 in [15] the norm || - || st is used. This norm is stronger than our S2-°-norm,
ie. ||uHS%‘0(I) < ||u||SQ(I) see [15, Lemma 2.1].

Proof. We assume ||u|| .1, . < oo in the following. We rewrite

S27(I)
u(t) = Uy, [uo](t) + Lo, [f1(t) — Lo, [b- Vu+ cu — Re(Te(Wa))ul(t)
= Uy, [uol(t) = Zo, [=f + (b- VW) rr+am + cu — Re(Te(W2))u|(t) — Ly, [(b- Vu)Lu](t). (6.2)

Set F = (b-Vu)ry. The key point is to prove a uniform estimate for the lower order perturbation term
Z,,[F]. For the other two terms in (6.2) we can directly apply the uniform Strichartz estimate from [15,
Theorem 6.1].

We first note that a simple computation shows

T, = I+, Re(uy)|To, (6.3)
see (6.9) in [15]. Consequently, we have

1T g0 gy < ITFll gy + 1T [ReCor) TolEN 3 (6.4)
For the first summand we apply Lemma 3.4 to deduce
4
B0 g0y S 1Flgs gy S 30 (0 130230 (6.5)
Jj=1 Xe2N

where we also exploited that Py F' = 0. For the second term on the right-hand side of (6.4), Theorem 6.1
n [15] (see also Remark 6.3) yields

120, [Re(vr)Zo[F1]ll o4

Applying Lemmas 3.5 and 3.6, we further deduce
| Re(vi)Zo[F]||

) S8 IRe(L)To[Flly 0,

(

vhoy S IReo)llwooomn 1 ZolFll g3 0,

< lleollza e 1o ] sioo

S BZ (> |FA||L12) ,

j=1 xe2N

where we also used (6.5) in the last step. Combining the last two estimates with (6.5) and (6.4) we obtain

sho NBz(ZHFAHLm) . (6.6)

j=1 Xe2N

120, [F]

For the above right-hand side we estimate

(S 1mlg) 5 (2 IPegomvuly.)

g2

1
1 1 2
S (3 MNPy bl 122 1P o F 1PVl )
Aean g '
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1 1
S AN P
J o !

1 1 1 . 1
S HIZNON s o 1Bl Eoe sl Vull e 22 Sa @™ (D] (6.7)
for every j € {1,...,4}, which finally shows
* i
IZos Fllgy 0y S5 a* (DI, 68)

We next turn to the second term in (6.2). Here we simply apply Theorem 6.1 from [15] to infer

IZop[=f + (b V) rrrmn + cu = Re(Te(Wa))ull 1.0,
Se Il g0y IO V) rrsnm +cu—Re(Te(Wa))ull 30 - (6.9)
Lemma 3.7 implies for the remaining components of the lower order perturbation
10 V) rrrs i + cu = Re(Te(Wa))ull 30 )
1 * 1
SHIE(bll gz + llell gz + | Re(Te(Wa)) e m2)[ull e Sa a™ (D)2 (6.10)

In order to estimate the linear propagator in (6.2), we employ the identity
MUL [UO](t) = IUL [Re(vL)ei(‘_tO)Auo](t) + ei(t_to)AUO.

Another application of Theorem 6.1 from [16] as well as the energy estimates from Lemmas 3.4, 3.5 and 3.6
yield

¢4, [uo] <B | Re(vr)e! 0% ugl| 1o+ €07 ]| 1

HS%"’(I) (1)
S (U oz lwoso)leC 2 uol] g
< <
Se (L Jvollz n)livoll 3 oy S lluoll g - (6.11)
The combination of estimates (6.8) to (6.11) yields the assertion of the lemma. |

We are now in position to prove the global well-posedness result below the ground state. An important
fact is that controlling the endpoint critical LfW%A—norm only needs % derivative while our solution u
belongs to H'(R*). We will exploit this observation via the estimate

Li1ita
S e uoll

e 8
LAW, 3 (IxR4)

1
L2wE " (IxR4) S 1 luoll 1 ray. (6.12)
which follows from Sobolev’s embedding and Strichartz estimates.

Proof of Theorem 1.3. Let (X,Y) be the unique maximal solution of (1.1) on the maximal interval of
existence [0, 7*) provided by Theorem 1.1. We have to prove that o* < 7* P-a.s. We argue by contradiction
and assume that P({o* > 7*}) > 0. We fix an element w € {o* > 7*} in the following but do not denote
the dependence of the considered quantities on w for the ease of notation. Note that in particular 7* < oc.
By the definition of ¢*, there exists an n € N such that 7% < ¢. We fix such an n in the following.

Setting u := e~"1 X and v := Y — T;(W3), Theorem 2.3 shows that (u, v) solves (2.5) on [0, 7*). Moreover,
the definition of ¢}, implies that

1
ez(u(t),v(t)) < ez(W,W?) — = for all t € [0,77). (6.13)
n
We define
4 1
B = max { (IW213 = ) I¥ollzz | < 192

Lemma 6.1 and a continuity argument yield that
v(t)]|z: < B for all t € [0,77).
Hence, we can combine (6.13) with Lemma 6.1 again to infer

IVu(®)l2 < W2 forall € [0,7%),
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which implies
1wl Lo £r1 (j0,7+) xR2) < 00 (6.14)
in view of the conservation of ||u(t)|z2. Using that 7% < co, we also have

a*([0,7%) =Y 1Bl 3.2 (o, sty + [1Bl] 5o 3 fo,ro) xety + [lell e 2 0,m) <)
j=1
+ | Re(Te(W2)) [l oo 2 (0,7 ) xRy < 00,

as well as
[ X | g 10,77y xre) S [wllnse 1 (o,0) xR4) -
Consequently, there is a constant A > 0 such that
[ull Loo mr1[0,7) xr3) +a7([0,77)) < A (6.15)
and a constant r > 0 such that
1 X1 oo 1 (0,7 xre) + 1Y | ee 2 (j0,7+) xRa) < 7 (6.16)
The blow-up alternative in Theorem 1.1 now implies that

HX”Lz [0 .,.*) W2 (R4)) = 00. (617)

By standard product estimates, we also have

X < Wiy 17 oo . 1
|| ||LEWJ@%$4([O7T*)XR4)) ~ (He ||L1, Hg([O,'r )XR4)) + )HUH § ([0 *)XR4))

,_.

which leads to

Hu||L2([O,T*),W%’4(R4)) = O0. (6.18)

By the construction in the proof of Theorem 1.1, we further obtain a sequence of stopping times (7,,) such
that 7, < 7, 7, = 7" as n — oo, and

< . (6.19)

Let R := 4AC(A,B) + 1, where C(A4, B) is the constant from Proposition 6.2. Choose ¢,0 € (0, 1),
depending only on A and B, so small that

| ™

1 1 1
C?C(A,B)e2R3 < e A B)Ac? + Coi A+ CC'(A, B)A%o5 <

D>OO

where C is the maximum of the implicit constants in (3.28), (3.29), and (6.12) and C’(A,
arising in (6.27) below. In particular, o is independent of n.

B) the constant

Claim: For any n > 1 and any 7 < 7%, we have

Fellgh oo o vmpmrny S B Nl rsornm) < (6.20)

We use a bootstrap argument to prove (6.20). To that purpose, we first note that the claim holds on some
interval [,,,t"). To see this, we consider the extension

(t) = Lmoor) (D™ B u(r) + Lig, ) (Du(t) + L o) (DB u(t).
Using Strichartz estimates, we thus infer

< llllgy .00 < Cllul

flull 1 sé»“(m - L?Hé([rmt']xw)

Séyo([ﬂut/))

[N

1 1 1 .
+ ( > (A2 [luallzse£2 (pr oy xray + AZ[Uall L2 08 (o ey ey + A7 2]](10; + A)u)\||LEL§([T,L,t’)><R4))2)
Ae2No

|

R 1 — L 2
=4t ( D A luallpzra ey xray + A2 110 + A)uall 22 [Tn,t’)xR4))2> ;
Ae2No
where we assumed without loss of generality that C' + 2 < C(A, B). Dominated convergence thus implies
that (6.20) is satisfied on [r,,,t’) if ¢ is close enough to 7.
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Now assume that the claim is true on some subinterval I := [to,ty] C [mn, (T + o) A 7). Since (u,v)
solves (2.5), we have
ult) = Us, [u(to))(t) — Lo, [Re(Tol|VI[ul*))u + b - Vu + cu — Re(T:(Wa))ul(t), (6.21)
i(t—to)|V|

where vy, :=¢ v(to) and the propagation operators U,,, and Z,, are used with initial time ¢.
Using the uniform estimate (6.1) in Proposition 6.2, we infer

) < CAB)(fulto)] y + 1BVl y o, +a" (D)
R

ull g o

< 7+ C(A, B) At + (A BB [VuPlul g o (6.22)
We next apply the endpoint estimates (3.28) and (3.29) to infer
I Re(FOlIP1 )l .0y < CIRETITID ooyl iy Il
< Ol 3y o, (6.23)
Combining the previous two estimates, we arrive at
ol g0 p) < % +C(4, B) At + C(4, B)C24 RY < g. (6.24)
To estimate the D(I)-norm of u, we begin with the homogeneous propagation operator. Recalling that
Uy, [ulto)](t) = e 2u(ty) + T, [Re(vr)e ") 2u(t)], (6.25)
we obtain
o [u(to)]llpry < 1€ % uto) |y + 12, [Re(vr)e = 2 uto)] 4.0, (6.26)

For the second term on the right-hand side, we apply the uniform estimate from Theorem 6.1 in [15] and
the endpoint estimates (3.28) and (3.29) to infer

||I’UL [RG(UL)ei(t_tO)Au(tO)]HS%’D(I) < O(B)H Re(UL)ei(t—tu)Au(to)HN% .

i(t—to)A 3 i(t—to)A 3
< C(B)Cllorllwooo[[€* R ulto) ]| 3 lle ") u(t0)||;%,0(1)

<C(B )C||U(to)HL2||U(to)||H1||€ (=t u(to) 1 3y
< C/(A7B)”el(tfto)Au(to)H%(I)' (6.27)

For the inhomogeneous part in (6.21), we use again that the D(I)-norm is controlled by the S2:°(I)-norm
and the estimates in (6.22) to (6.24), which yields

|1Z,, Re(To [V |[uf?])u] + b - Vu+ cu — Re(T-(Wa))ul|| piry < C(A, B)Ao? + C(A, B)C?2R? < Z (6.28)
Combining (6.25) to (6.28) and employing estimate (6.12), we arrive at
i(t— i(t— 3 €
[ullpery < [€¢7%u(to) [l pery + C'(A, B)|l€l tO)AU(tO)HE(z t3
< Co uto) | + CC'(A, B)oHJulto)l| s + 5 < & (6.29)

4= 2
Lemma C.1 and the fact that u € S2°(J) for every compact subinterval J C [to,7*) imply that ¢ —
Hu”s%ﬂ([r ) is continuous in every t € [1,,7*). Hence, (6.24), (6.29) and a continuity argument imply

(6.20), as claimed.

Now, since o is independent of n, we can take 7, such that 7* — 7, < o, i.e., 7, + ¢ > 7*. In view of
(6.20), we then get

[ullpgr,.m) < R
for every 7 < 7*. The Lemma of Fatou thus yields

lull p(iry o)) < R
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Since we have

lellpgo.ry < Cllull gy g ) < 0
by (6.19), we arrive at
[ull p(o,7+)) < oo
which however contradicts (6.18).
We thus conclude that o, < 7%, completing the proof of Theorem 1.3. |

7. GWP AND SCATTERING VIA REGULARIZATION BY NOISE

In this section we prove the regularization by noise result in Theorem 1.4.

We set ¢ :=Im ¢§1) to ease the notation in the following. Since W7 is a one-dimensional Brownian motion,
there are no lower order perturbations in (1.18). Consequently, the local smoothing component is not needed
in our functional setting from Subsection 3.1, i.e., we will solve (1.18) in S13 x W0i:2,

In order to prove Theorem 1.4 we shall show that the probability of the event

T := {w € Q: (z,v) solution of (1.18) exists on [0,00) and there is (z,,v;) € H' x L? s.t.
lim [le™*22(t) — 24|z = 0 and lim [le™*Vlo(t) — vy |2 = 0} (7.1)
t—00 t—o00
converges to 1 as ¢ — oo. To that purpose, we have to substantiate the heuristic expectation that the
asymptotic exponential decay of the geometric Brownian motion stabilizes the system and facilitates to get

global results. As metioned in Subsection 1.2, the key point is to derive a global-in-time VP control of
geometric Brownian motions.

7.1. Global-in-time VP control. Let us first introduce the VP spaces. Define the set of partitions

P = {(tj)évzll N eNt; eRt; < tj+1},
i.e., a partition is a finite increasing sequence in R. Let 1 < p < co. For every function v: R — R, define the
p-variation

N-1

ol = sup (D [olti) —v(t;)?)

(tj)évzlep j=1

=

and the VP-norm
N-1 1
lellve = sup (D7 [o(tw)I” + [o(ty41) = vlt)l") "
(t))],€P o1
The space V? = VP(R, C) consists of the functions with finite VP-norm, i.e.,
VP:={v:R = C||v|lve < 0}.
Finally, let
VY :={v: R — C|wv is right-continuous, , lim o(t) =0, ||v||ve < o0}.
——0c0

Both V? and V{" are Banach spaces when equipped with the V?-norm, see [14] and the references therein.
On V¥ the p-variation | - |y» is an equivalent norm to || - ||y» and we will mainly use | - [y» on this space.

Let us prepare the proof of the geometric Brownian motion being in V' by noting that |-|y» is measurable
on the space of continuous functions.

Lemma 7.1. The functional
|- lve: (C(R), B(C(R))) — (R, B(R))

is measurable, where B(C(R)) and B(R) denote the Borel-o-algebras on C(R) and R, respectively.
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Proof. Let Pg := {(t; ) : N eN,t; € Q,t; < tjy1} denote the set of rational partitions of R. Note that
Py is countable. Let v € C’ (R) and (¢ ]) ;=1 be a partition in P. For any £ > 0 there exists a rational partition
(s5)7L1 € P such that

1

‘(ZW (t42) —vlt )|p> _(§|U(3j+1)—ﬂ(sj)|”)P

as v is continuous. We infer that

(Zw ) —oit)P)” <

<e

N-1
(X Iotsye0) — ols)P7)
j=1

(5J)J 1EPQ =

1

Hence, [v]y» < sup(,)v ep, ( > ;-V;ll lu(sjt1) — v(sj)|p) " and since the reverse inequality is trivial, we
ol
conclude that

N—-1 1
olve = sup (3 ulsiea) = v(s)l?)”
(s );LIE'PQ j=1

Denote the point evaluations by m;: C(R) — C, m¢(v) = v(¢) and introduce the map

-1

7p: C(R) » R, 7p(v (Z tiv1) —o(t )I”)

for every partition P = (tj)é\’:l € P. Clearly, mp is measurable for every P € P so that |- |y» = SUppep, TP

implies that |- |y» is measurable from (C(R), B(C(R))) to (R, B(R)) as a countable supremum of measurable
functions. 0

We will also exploit the Holder-continuity property of Brownian motions. To that purpose, let us denote
the C%*-Hélder norm over an interval I by | - [[0,a.1, i-e.,

v(t) —v(s
follor = sup D=V
stels#t |t — S|
Note that || - ||0,a,r is measurable on C(I) by a similar argument as in Lemma 7.1 for every interval I. The

following lemma shows the Holder norm of Brownian motion § over intervals of constant length is uniformly
bounded in expectation, due to the invariance Po (3(-))"! =Po (B(- +n) — B(n))~! on C([0,00)).

Lemma 7.2. Let 8 be a one-dimensional Brownian motion and o € (0, %). Then

1) =E(

sup E(

neNp

[0, )<OO.

The main result of this subsection is formulated below which shows that the geometric Brownian motion
belongs to Vjj' for every p > 2.

Proposition 7.3 (Global-in-time V? control). Let 8 be a one-dimensional Brownian motion. Let h be the
geometric Brownian motion

h(t) = e~ 28~2 on [0, 00),

extended by h(t) =t+1 for =1 <t <0 and h(t) =0 fort < —1 to the real line. Then, for every p € (2,00)
we have h € V', P-a.s.

Proof. For every interval I, set Py := {1 = (tj)évzlz NeN,tjel, tj_y <t;} and then for every p € (2, 00)
oy = sw Z oty — o(t)P)
(t; )N 1€Pr =

Note that |- [y» is measurable by the same argument as in Lemma 7.1.
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With the chosen extension, we have h € C(R) P-a.s. and lim;_, . h(t) = 0. Tt is thus sufficient to show
|hlve < oo P-a.s. In view of our extension, for the latter it is sufficient to show

|h“/[’5,x) < 00 P-a.s.

For this purpose, we fix p € (2,00) and define the set

A= {w € Q: Ino(w) €N, Vn > no(w): [|Bllo.2 fnni1) < efi} = {wea: 1B1lo,2 nn1) < eto ).
keNn=k

Writing B,, := {w € Q: HBHO’%’[mnH] > eT5}, we thus have

A€ = ﬂ [j B, = limsup B,,.

keN n=k oo

By Lemma 7.2, Cy = sup,en, E([|Blo,1 (n,n41]) < 00, so that Markov’s inequality yields
]P)(BTL) < eiﬁEHﬁ”O,%,[n,nﬁ-l] < 0067%

for all n € N. In particular, we have ) _P(B,) < oo and thus
P(A°) = P(limsup B,) =0

n—oo

by the Borel-Cantelli lemma. It follows that P(A) = 1.

Combining this result with the Holder continuity properties and the iterated law of the logarithm of
Brownian motions, we find a set 2 C  with full measure, i.e. P(2) = 1, such that for every w € Q there
exists an index ng(w) € N such that

(i) B(,w) is %—Hélder continuous on [0, n] for all n € N,
(11) ||ﬂ('7w)”0,%,[n,n+1] < ets for all n > ’I’LO(W),
(iif) [B(t,w)| < 24/2tlog(log(t)) < 15 for all t > ng(w).
We now fix an w € Q and claim that
By <o, (7.2)
which will imply the statement of the proposition. From now on the analysis will be pathwise for this fixed

w and the w dependence is dropped in order to ease the notation in the following.
Let ng be as above. We denote the %—Hélder constant of 8 on [0,n¢] by C; and the maximum of |3] on

[0,n0] by M. Let (t;)_; € Pjg,5,). We then infer

N—-1
D Ihty1) = (el = 3 o2 2tms — 2ot
j=1

2

p

<.
I
—

-1
+ e*QB(tj)P‘e*%Hl — e 2

2
=2

p
< e 2tj+1p
~

e 28(t5+1) _ o—2B(¢;) P

1

J

Z <.
Ll

< €2Mp(‘ﬂ(tj+1) _ 6(tj)|p + |tj+1 - tj‘p)

Jj=1
N-1
,S 62Mp Z (C{) + n871)|tj+1 — tj| S 62M;D(C:f + nzo)*l)’n,o.
j=1

Taking the supremum over all partitions in Pjg 5], we obtain

1
hlvy <M (Cr+noing < oo (7.3)
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To prove (7.2) it thus remains to show that |h|v[p | < oo We claim that for this statement it is actually
ng,o0
enough to show

Z | | [n n+1] (74)
n=ngo

To see this claim, let (tj)é-vzl € Plng,00)- Then there is an index K € N and an increasing sequence of
natural numbers (ny)f_, and (Ix); %, such that

tlv"'7tln1 E[nl,n1+l], tlnl-‘rla"'?tan S [ng,ng—l-l], ey tan,lJrl?""tNe [nK,nK+1].
Setting l,,, =0 and [,,,, = N, we get
N—1 K lnp—1
|h(tj+1) Z > Ihltien) = h(B)P + Z |h(ti,,, +1) = h(ti,, [P (7.5)
Jj=1 k=1l=ln, ,+1
For the second summand we estimate
-1 K-1 K-1
Z |h(tlnk+1) _ h(tlnk)|p < Z (e(*Qﬁ(tlnk+1)*2tlnk+1)P + e(*Qﬂ(tlnk)*Qtznk)P) < (e*tlnkﬂp + e*tlnkp)
k=1 k=1

MH

S (mor ) ST o

k=1 neN

where we used that |5(t)| < t/16 for all t > ng by our choice of the set Q. Consequently, if (7.4) is true, we
obtain from (7.5)

—1

K
> htts) RO SIS S SRl
j=1 k=1 '

1
neN n=ng [n .

+ Z e ™ < oo.
neN

Taking the supremum over all partitions (¢; )év_l € Plng,o0) thus yields |h|Vp , < oo

It is now remains to prove (7.4). Let n > ng and (¢;)%_; be a partition in P[n n+1)- We then estimate

N-1 N-1 N— »
|h(t ]+1 |p < e 2ti+1P | 2B(ti41) _ o —2B(t Z —2B(t;)p|p—2tj41 _ o2t
Jj=1 j=1 j=1
N-1 . N-1
S e 2tit1Pe ngp‘ﬂ(tj-i-l) + e%pe 2Pt — by,
J=1 j=1

where we again used that |3(¢)| < ¢/16 for all ¢ > ng. It follows that

N-1 N-1 N-1
A1) = DI S Y e8P | L e A Yo e Pl — t)
Jj=1 Jj=1 j=1

Se el £1) S,

where we again exploited the definition of Q in order to estimate ||3]]y 1 (n,nt1)- Taking the supremum over
3,
all these partitions yields

|h|V[‘T)L nt 1) 567’”7

where the implicit constant is independent of n. Since n > ny was arbitrary, this implies (7.4) and thus the
assertion of the proposition. O
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7.2. Trilinear estimates of wave nonlinearity. We next estimate the nonlinearity of the wave equation
n (1.18). The situation here is different from the deterministic one because of the presence of the geometric
Brownian motion h. Although h is independent of the spatial variable, the modulation components of the
WO i-2-norm lead to intricate trilinear interactions involving the geometric Brownian motion.

One of the key steps in the proof is to uncover a subtle nonresonance identity that allows us to transfer
some spatial regularity to temporal regularity of h., at the cost of the 1/8-temproal regularity h. in the

1/8

Besov space Bg',,, which is acceptable thanks to the global V¥ control derived in the previous subsection.

Theorem 7.4 (Trilinear estimate for wave nonlinearity). Let I C R be an interval. If ¢,v € S*3(I) and
1
he LS(I) N BE (), then
o@Dy gy S bllascr + 180y Wl g

Proof. By the definition of the involved norms, it is sufﬁment to prove the assertion for I = R. We first note
that )‘%HUJHL%’L% < Hu”sl’i by (3.4) and Remark 3.1. Interpolating with Aljul|pecr2 < ||u||51%, we obtain
A A

A lullpzrs S llull oy (7.6)
S)\
which we will use frequently in the following without further reference.
We will show the estimates

-

(X IPBBIVI@EOEx12)” S Wnllzsliel gy 1l gy (7.7)
Ae2No
(3 2 UPGNI@EOIEL) " S Il g 1l g (7.8)

Ae2MNo

-

— L 2
(X A HO+ 18P BRI @Fn2)” < (hllg + 1R 3 Mellgrg ]y (7:9)
Ae2No N 6,00
which imply the assertion in view of the definition of || - ||W07 1
Throughout the proof we will employ the usual paraproduct decomposition

P@Y) = Y. Bt Y. P@ntn)t D Beutus
A/2< <2 A1~A2>A A/2< <2

where we set p\ = Prp, o«r = Perg, etc. As the estimates (7.7) to (7.8) are invariant under complex
conjugation, it is sufficient to prove them for the high-low and the high-high contributions.
Proof of (7.7): We first use the energy estimate

[PxTo(hIV (@) lLgerz S AMAPA(PY)||Lr L2 - (7.10)
Then decompose the high-low contribution as
@;ﬂp<<u = <C<<;L2¢u,),¢)<<ll + <CZ:“'2¢N),(/J<<M'
For the low modulation part we estimate
AMMCcr2?)V<pllLrrz S APl e[| Ccri2Ppll L2ra lV<pllzra

S Al LA Capzpllzrs Y v w8 ]| s s
t pEYRINLy Ly t Ly
v

S Iplcellenll g 19l gy
Iz
while we infer for the high modulation part

AMIC> 2P, )< pllre SN sAMC> 2@l L2 2 (V< pull 3 Lo

(:T@Q<@+A%\

S Pl cellenll g 19l groa
m

- Z 2 %Wu”mm

LiL v

1
Slhllpsp-p== - pt
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Taking the /2-norm in ), we thus obtain (7.7) for the high-low contribution. The standard adaptions yield
the high-high case, which finishes the proof of (7.7).
Proof of (7.8): Here we have to estimate
St _ 1 _
A2 [[RPA(IVI@Y) I 2pe S A2 [hPA@Y) |22z -

We again start with the high-low contribution and infer
1
w2 Hh@uw«u”LzL? N l“ ||h||LG||SDH||L°°L2 H¢<<u||L3Loc

Sl zoplloullgeran= > 2wl o
v

< Il gl oy 1l gy
:

The standard adaptions also imply the corresponding estimate for the high-high contribution. Taking the
[2-norm in A, we thus obtain (7.8).

Proof of (7.9): Now we come to the most delicate estimate (7.9). First, we split the required estimate
into

“HO A+ 10:)F PO PATo (B V(@)oo S ATHI(A+ |04 F <AP2)A2PAJo(hIVI(W)))IIL:OLg
+ AT A+ 10u)E POAPLL PATo (B V| @) e 12
=: I\ +11I,.
Since the temporal frequencies are bounded by A in the first summand, we can simply estimate
I S 1Py Jo (B V(@) | oLz -
Taking the [>-norm in ), estimate (7.7) yields the assertion for this part of the nonlinearity.

It remains to estimate I1,. Here we first employ the energy type inequality for the wave equation in the
WO3:2-norm from Lemma 2.6 in [16]. To be more precise, the last estimate in the proof of [16, Lemma 2.6]
yields

I+ 1)} PP, PATo (B V@) 22 S 1A+ [0u])E PO PARIVI@0)) 22
and hence,
Iy S AN+ [0u)F PO P (W) o e - (7.11)

In order to bound the above right-hand side, let us start with the high-low part.

e High-low part: Decompose into a low modulation and a high modulation contribution, i.e., for
% < p < 2) we estimate

3 _
M+ 18T PY (0, llzizz S AT+ |0e)) <<,\2(hc>/l,290pw<</»¢)”LlL2
+ AT (A + \8t|) <<A2(h0<<u2§0u¢<<u)”L1L2
HHM At IILM,,\~

For the high modulation contribution we infer
5 _ 5
HHM,\ SAs ||h02u290u1/)<<MHL1L2 SAs ||h||L?||CZ;ﬁ<PM”LfL§||w<<u||L§Lg°

pt 10\
<)\4||hHL6M i < |t|)4(18t+A Pul|, ZWVG”%/HLSLS

2
+ |0 =
S Hh”Lf”@#”S:i [ e (7.12)
The low modulation part is the most subtle one. Here we employ the nonresonance identity
P2§2(h0<<ﬂ2¢uw<<u) = P<<A2 (hCs 2, pg yeteu) + p<t> o Nuzhc@wufﬁ 2 ¥n); (7.13)

which follows from the fact that C'« 2, has temporal frequency of size u?. Recalhng that ¢¥«, = P< u Y,
we obtain for the first summand

A (A + |8t‘) <<>\2(hC<<u250ﬂP£(L)2w<<u)”L}L§
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5 t
SNl CarBllpzra | P s oYl prs

24
1 1

S Z 1Bl o il Ccpuzppll L2 pa e v® p™ M| PSPV (10 + A)pcpll 212
V>(2%)

S IIhIILgH%IISﬁ [KG P

where we also employed Bernstein’s inequality in space and time and used that

1
2
) Sl

t T

PG00+ Aeullizre S (

(1) ’<3+ |5’t|

as v 2 u? > k2. For the second summand in (7.13), we infer

3
M+ [0u) * PO (P2 hCy 8, PE o stvi) iz
SAPY bl o Ccpur ol o pa ol 2o

S (1 )8 ||P~tZ2h|‘LfM||C<u2<PuHLng Z V_EV%”'L/)VHL?L';’;

v
S HhIIBémll%IISﬁ 19/l g3 -

In view of (7.13), the last two estimates and (7.12) imply

3 1 —
M+ 10:)* PO (i) lnzzz € (lhllog + 101y el g ol g3 - (7.14)
!

1
8
Bg

Taking the [2-norm in \, we obtain the desired bound for the high-low part of I7.
e High-high part: To control the high-high contribution of the right-hand side of (7.11), we proceed
similarly as in the proof of (7.7). We estimate

A+ 1) T PO P @) ) e SAT Y. Ihoataalloire
A1~A2>>\

5
SAT Y (IRCcxeon¥nallnine + 1BCs 2 0n, v, llpar2) =: TIFHT \ + TTi3T 5. (7.15)
A1~ A

For the low modulation contribution we then derive

IILM,\</\4 Z Al s Cerz o llnzra l¥ns [l na

A1~A2Z A
_1 5
S bl peAt M lCaxsonillizza)ds * (A3 sl zzrs)
t t e
A1~A2ZA
5 _3
< Ihllgglpl oy ol g AE S0 A7

A2
_1
< A H gl o3 ool o,y

while we get

5
ITER A SAT D) IhllelIConeon llrzre sl Lo pee
)\1~)\2>)\

ShhllAt S0 AN
/\1~/\2>>\

A §
Sl 3 (50) llenl gy
A1

A\

N

A1+ [0 15
(A% SV P

L ,
)\2+|8‘) (lat+A)<PA1 Lsz/\
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for the high modulation part. Inserting the last two estimates into (7.15) and taking the /2-norm in \, we
finally obtain

(> MO+ P P @O aml12)?)” S Ileliel g el g,

Ae2No
which is the claimed bound for the high-high part of IT and thus finishes the proof of (7.9). (]

Remark 7.5. The application of Theorem 7.4 in the proof of Theorem 1.4 thus requires a global Besov
bound for the geometric Brownian motion. For this reason we have shown Proposition 7.3, which implies
the corresponding bound due to the following Besov embedding of V' spaces

L1 L1
By SV C Bl (7.16)
.1 .1
see [14, Section 5], where B ; and By« are the standard homogeneous Besov spaces on R.

7.3. Proof of Theorem 1.4. We have now collected all the tools for the proof of the noise regularization
effects in Theorem 1.4.

Let V be a solution of the linear wave equation. Recall that Uy and Zy denote the homogeneous and
inhomogeneous solution operators, respectively, of the Schrodinger equation with potential V. Theorem 7.1
in [16] yields that Uy and Zy are continuous linear operators from H'(R*) and N4 (I) to S (I), respec-
tively, for any interval I and that there exists a constant C' = C(V), independent of I, wg, and g, such
that

ety [uolll iy )y < CV)llwollers, N Zvlglllgry ,y < CVgl gt 4y (7.17)

As in the proof of Theorem 1.1 we rewrite the problem. Setting vy (t) = VY, and p = v — vz, (z,v) is
a solution of (1.18) if and only if (z, p) solves

(i0s + A — Re(vr.))z = Re(p)z, 2(0) = Xy, 7.18)
(101 + [V 1)p = —helVI[22 p(0) =0, |

where we recall that ¢ = Im ¢§” and h, is defined in (1.19). Since p(t) = —Jo|h.|V||2]?], we obtain a solution
of (7.18) - and thus of (1.18) - if and only if
2(t) = Uy, [Xo](t) — Lo, [Re(Tolhel VII21*])2] (1) (7.19)
Define the fixed point operator ®(Xg, Yy; z) by the right-hand side of (7.19). With C = C(vy) the constant
from (7.17), we set R = 2C(vp)|| Xo|| g and for some stopping time 7

Br(r) := {z € 8¥5([0,7)): ||2| < R},

st (o) =
which is a complete metric space equipped with the metric induced by || - Combining the

estimates (7.17), (3.26) from Lemma 3.6, and Theorem 7.4, we infer
[®(Xo, Yos 2) < O Xollar + Cn) 1 olhel Dl1=)2l o o,
S C(vp) | Xollms + C - Cvr)|| Tolhe| VI|=]l

5.2 o,y

”SI'% ([0,7

wo i'%( 0 'r))HZHS1 i (0.7

< Clup)Xollar +C - Clor)(|[hellLs + ”hC”B§ 0. )))ll I 4 3 (o) (7.20)
for all z € S%3([0,7)). Arguing in the same way, we also obtain
||¢(X07YO7Z) - (P(XO»YO’ )||Sl 4([0 T))
<C-C he he 2 2 — 7.21
<C-Conlhelzg + Mhellyy o 0N o +lelag D= vl (20

for all z,w € S*3 ([0, 7)).
Now, fix C as the maximum of the generic constants on the right-hand sides of (7.20) and (7.21) and
define the stopping time 7 as

. 1
= inf {t >0:2C- C(UL)(HthLG([O,t)) + HthB% 00 t)))RQ > 2} .
6,00 N
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Then, it follows from (7.20) and (7.21) that

||(I)(X07 YO; Z) HSL% ([0,7¢))

|®(Xo, Yo; 2) — ®(Xo, Yo; w)| Sz —wl|

S ([0,7.))

for all z,w € Bg(r). Consequently, ® has a unique fixed point z in Br(7). Uniqueness of z in S ([0, 7))
then follows from standard arguments.

Below we will show that P(7. = 0c0) — 1 as ¢ — co. Note that the arguments which yield this statement
also show that 7. > 0 a.s. for every c.

Define the event

A i={w € Q: 7.(w) = o0}
We first prove that
P(A.) — 1 asc— oc. (7.22)
For this purpose, we define €’ := C'(Xy, Yp) as C' = (2C - C(vg)R?)~ L. In view of the definition of 7. it

is thus sufficient to prove that

P({llhellzs 0,00y + el >C'}) —0 asc— oo (7.23)

1 2z
600 ([0,00))

To that purpose, we first extend A, to R by he(t) = ¢*t + 1 for —% <t < 0 and he(t) =0 for t < —%. By
interpolation we have

5 3 5 3 3 5 3 3
Well jx = S URellZosliel” s S el as (lell 2o + NRell” ) S Rellzos(liRellzs + Thelvs), (7.24)

1
8
6,00 3,00 3,00

where the norms are taken over R. For every ¢ > 0 we now define a map .: C([0,00)) — C(R) by

672‘(](15)7262157 t> O,
Velg)(t) = Pt +1, -4 <t<o,
0, t<—%,

which is measurable when C(]0,00)) and C(R) are equipped with their respective Borel-o-algebras. Using
the scaling property of Brownian motion, i.e. Po (05£1)(-))_1 =Po (5£1)((02-))_1 on C([0,0)), and recalling
that | - |ys is measurable on C(R) by Lemma 7.1, we infer

5 3 5 1.2
P({lIRell 10y el iy = €7/31) = PIeleB N5 o oy | GeleBt ][y = C'/3D)
—P M 2118 W/ 235 >0 /3 = T
= P({{[0e[B1 (<™ Ly iy [VelB1 (™| Pamy = C7/3}) = 1.
Since | - |y» is invariant under rescaling, the definition of 1. and Proposition 7.3 imply that
el B Mvagy = 18 lvao.ey < 00 as.
Hence, there is a constant Cy = Co(w) such that
5 5
I < P{CallelBLY ()]s = C'/3Y) = PUCR | BV ]I 10y = €72 - C'/3}) — 0
as ¢ — 00. In the same way, we obtain
5 3
P({llel o oy e ey = €/31) + By = €/3)) — 0

as ¢ — oo. In view of (7.24), this implies (7.23) and thus (7.22).

Next, we show that for every w € A, the solution (z,v) of (1.18) scatters, i.e., that the event A, coincides
with T from (7.1). In combination with (7.22) this proves the assertion of the theorem.

For any w € A., we have |z|| < oo so that Theorem 7.1 in [16] implies the existence of

2, € HY(R*) such that

$1 ([0,00))

. —HA L\ _
Jim [l *22(t) — 2y = 0.
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To show that also v scatters as ¢ — oo, we employ estimate (7.7) from the proof of Theorem 7.4 to deduce
for every w € A,

t
||e—it|V\U(t) _ e—it/\Vlv(t/)”L2 — H/ e—isIV\(hc|v||Z‘2)(S) ds
t/

it|V|

S Ihcllzoqeapll=ls 4 g, ) — 0

as t',t — oo. We conclude that e~ IVIy(t) converges in L?, which finishes the proof of Theorem 1.4. a

Remark 7.6. We remark that the scattering behavior (1.12) also implies that the energy of the Schrodinger
component vanishes, i.e.,

tlgg() IX@®)| g =0, P-as. (7.25)

In fact, since {e~#A} is unitary in H' and eft=W1(t) ig independent of the spatial variable, one has
IX (@) <[le”FWAD (7 HAFWII Y (1) — 2 )| o + €7 ROz ||, (7.26)
where z; is the scattering state as in (1.12). Since e~ Re(B=Wi(t) — e tm ot 81V (0 —(m )%t converges
asymptotically exponentially fast to zero P-a.s., one thus obtains (7.25).
APPENDIX A. DECOMPOSABILITY

We prove the decomposability for the X'-space, which is used in the gluing procedure when extending
local solutions to the maximal existence time.

Lemma A.1 (Decomposability). Let I,Is C R be open intervals such that Iy NIy # 0. If u belongs to
X)) NXY(I), then u € XY([; U 1) and
—1
lullxi(rurey S (L+ 1N |7 2)(Jullx ) + [l )
Proof. We fix a function p € C*°(R) with p(¢t) =1 for t < —1 and p(¢) = 0 for ¢ > 1 such that
p(t) +p(—t) =1
for all t € R. After translation in time, we can assume that Iy NIy = (—¢,¢) for some € > 0. Moreover, we
assume that inf I; < infIy. Let py(t) := p(e™'¢) and pa(t) := p(—e~'t). Let ui be extensions of u|y, with
llurllx2 ) ~ [Jullx2(r,) for k = 1,2. By construction we then have
= pruy + paus on I U . (A.1)
The decomposability of the S %-component of the X!-norm was demonstrated in Lemma 2.8 in [16]. In

the proof of that lemma it was shown that

| o | S (14 e72) Jug s my- (A.2)

SUI(R) ~
It remains to provide an analogous localizability estimate for the lateral Strichartz component of the norm.
In order to estimate Py e, C’< QPA(pkuk) in the L°° 2_norm, we see that Py e C< )2 P, is a convolution

operator with kernel ¢y, where (b,\(t z) = ASp(\%t, /\33) for a Schwartz function ¢ € S(R x R%).
We write

P)\ ej C< 2P)\(pkuk) (P)\ e; C< 2 2PA(pkuk) — ka)\»ejCS(z%VP)\“k) + ka)\yejCS(%g)zP)\uk. (A3)

8

The commutator term can be written as

PA,e]‘ CS(Z%)QPA(pkuk) — kaA,eJ CS(Z%)szuk
- / (Prlt = ) — pu(®))ba(s,9) Prui(t — 5,2 — ) d(s,)
RxR4
1
- / / Pt — ns)dn - (— ) (5, 9) Paua(t — 5,2 — ) d(s,9),
RxR4 JO

and we estimate

||PA,ejC§(2%)2PA(PkUk) - PkPA,ejCS(ZAS)szUk”Lg?Z
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SAZ||Pye,Cu (22 Pa(prtr) = prPre; O ay2 PaurliLz

SA%/ / It = n9)llnz dn - [sléa(s, ) I Paus(t = 5,2 = )|z 22 d(s,9)
RxR

1

U AP P / A6, )] d. )
X 4

~3 5 3 _1.=
S A2 okl e 1 Paunlligers S A7 26”2 ([ Paukllpgere (A4)
where in the last step we used the fact that

1
2 2 _1
161z = / e ) = / W OPzdt )’ <e b (A5)

and the same bound for p).
Moreover, for the last term on the right-hand side of (A.3), we have

ok Pre, C<zye Prunlipge = S lonllze I1Pre, Oc )2 Prunll g2
J

5 ||P)\,ej CS(;)QP)\uk”LSj’Q'

Thus, combining the above estimates we get

1
( D N[ Pae, Cc () 2PA(PkUk)||2Lgo,2)2 S E_%( > ||PAU1<||2L;3°L§>

Ae2n Ae2N

Nl

[N

+ ( Z A3 HPA eJC<( A 2P>\uk||Loo2)

Ae2n
< (147 2)ukllx z) - (A.6)
In view of (A.1), we thus infer
2 2
sy < D Nlowunlloney S (1+e72) 3 llunlley S (U4 110 B3 (lullea iy + el )
i=1 i=1
The definition of the X!(I; U Iy)-norm now implies the assertion of the lemma. O

APPENDIX B. IMPROVEMENT OF REGULARITY

In this part of the appendix we prove an improvement of regularity result, which is used in the proof of
the blow-up alternative in Theorem 1.1.

Lemma B.1. Let I C R be a finite interval with 0 = min I. Let (u,v) € C(I, H'(R*) x L?(R*)) be a solution
of (2.5) with

|wll oo m1 (1 xmray + [l + [vl|Loo L2 (1 xRy < 00

L2w2 " (xR
Then (u,v) € S29(I) x WO00(I). In particular, v can be continuously extended to T in L?(R%).

Proof. Without loss of generality we assume I = [0,T}) for some T} > 0. Standard estimates and embeddings
imply

[ Re(v)ull S Il pzamnliull 4.0

_1
L2H, 2 (IxR%) W2’ (I><R4)

Moreover, we have

16 Vu — cu+ Re(ﬁ(Wg))uHL2 % (1xme)
S0 Vullpzre (rxrey + lleull g2z (rxray + | Re(Te(Wa2))ull L2 2 (1 xre)

1
S TP bl Lee msrxreyl[ull oo a1 xrey + (el poe mrrxrey + (| Re(Te(W2))l Lo i (rxray ) wll 2 4 (1 xr4) -
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In view of the regularity properties of b, ¢, and T;(W5), the last two estimates imply

|10 + A)u||L$H;%(1XR4) = ||Re(v)u —b- Vu — cu + Re(ﬁ(Wg))uHLgH;%([Xw) < 0. (B.1)

Similarly, we obtain
1G0: + VDVl pz gzt S Ml L2 (1 crey S Jlul

S

L?Ong (IxR%) ||U||L$L§(1xR4)

1 [l 1, < 0. (B.2)
LeHZ (IxRY) L2W2 " (IxR4)

We next show that u can be continuously extended to I in H %(R‘L). To that purpose, we define for any
t' € I the extensions

e (1) 7= 1(_o,0) ()€™ ug + Loy ()u(t) + Lyr ooy (1) B u(t), (B.3)
ver () 1= L(—o0,0) ()" wg + Lo ) (0 (1) + Ly o) (B) VI (t).
Note that (us,vy) € C(R, H! x L?) with

ol gy = el e 600+ Ay
< i0; + A B4
O I (L -V [ S (B.4)
loellwgoo = llow ez + 160 + [V 1)ow g0 S 0l acrcrs + 169 + VD0l ey

where the right-hand sides are independent of ¢'. For ¢; < t5 we compute

1
2

ta
e~ 2B u(ty) — e_itlAu(tl)HH% = H / e 58 (Re(v)u — b- Vu — cu + Re(T (Wa))u) ds‘ .

t
< H / =32 (Re(v)u — b - Vu — cu + Re(T(Wa))u) ds

§30([t1,ts])

< | Re(v)ul] + |6 Vu + cu — Re(T-(W2))ul| .1

N3 O([ty,ts]) G ([t1,t2))’

where we employed Lemma 3.4 in the last step. For the first summand on the right-hand side we apply
Proposition 6.1 in the Corrigendum of [16], which yields

1

2

Re(v)ul| 1 R 0,0,0 (2
I Re(@)ull 3.0, 0y S Ielwos e, e el PR L [ VYR

< v 0,0,0 ||U §
S vt lyyo.00ll IIngéA([thtz]XW)\l 2||
(

For the second summand we combine Lemma 3.7 (ii) with (6.5) and (6.7) to infer

1o~ Vu+ cu = Re(T-(Wa))ullg1 (. 1oy
4
S(ta—t1)? (Z ||bHL1 < (IxRr) T [0l Lee mr3 (1xr2) + llcllLoe 2 (1xre) + ||T(W2)||L°°H2(I><JR4))Hu||L°°H1(IXR4)
j=1

Using the estimates in (B.4) and dominated convergence, we obtain that

e u(ta) — e 2u(t)| ) — 0
as t1,ty — Ty. Hence, e *2(t) is Cauchy as t — Ty and we conclude that u(t) converges in Hz (R*) as
t — T1. We call the latter limit u(77).
Replacing ¢’ by T} in (B.3), we obtain an extension v’ of u in C(R, Hz(R*)). As in (B.4), we see that
||u’H 1, < o0. Setting v'(t) = e™Vlyy — Jo[|V|[v/|?], we obtain an extension of v. Proposition 6.2 in the

Corrlgendum of [16] implies ||v’||wo.0.0 < co. Arguing as above for the extension of u, we then also get that
v' € C(R,L?(R*)). This shows in particular that v € W%%0(I) and that v can be continuously extended
to 1. Finally, arguing as above, we find that Re(v)u — b - Vu — cu + Re(T.(Ws)u belongs to G= (1), which
implies u € S2:0(1). O
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APPENDIX C. CONTINUITY OF THE RESTRICTION NORM

Finally, we show the continuity of the adapted spaces in the endpoint of the time interval. This result is
employed in both the proof of local well-posedness in Theorem 1.1 and in a continuity argument in the proof
of Theorem 1.3.

Lemma C.1. Let T > 0.
(i) If u e S200,7), then t = |[ull gy ),
(ii) If v e W2 ((0,T)), then t = [[vl], 0 3 3 o)
(1ii) If v € Y([0,T)), then t — HU‘|Y([07t])+L?W;*4(t0,t]xR4) is continuous on (0,T).

is continuous on (0,T).

is continuous on (0,T).

Proof. We first show part (i) and we start with the right-continuity of the map. Let ¢y € (0,7") and € > 0.
Let u. be an extension of u from [0, %) to R with

|| e + €.

shoa S Nellgiogo.,))
For any 1 € (t9,T) we define

ity (1) = e () + L, (8) (u(t) = ue () + Ly 00) (D™D (ultr) — us(t)),

which extends u from [0, ;) to a function in C(R, Hz (R%)). Using Strichartz estimates, we then estimate

~ 1 1
(|, — Ua||sé,o(R) S ( Z (AZ[|Px(u — Ue)||L;>°L§((t0,n)xR4) + AZ[|Py(u — uE)”L%Lg((to,tl)xR‘*)
Ae2No

1
_1 . 2
+A72[|(i0; + A) Pa(u — Ue)\|L$Lg((to,t1)xR4))Q) + [lu(ty) — ua(h)IIH%(W)

Since u,u. € $2°(0,T)), continuity and dominated convergence imply that

tlliﬁlo ([, — UEHS%,O(R) =0.
We thus obtain
g3 010y = 1 oy 10 g3 gy = el 3 gy & < ity — el g+ < 26

for t; — tg small enough, which shows the right-continuity of ¢ Hu||S§ 0(0.0)°

To prove the left-continuity, let &€ > 0 and let @ be an extension of u from [0,T) in S2:°(R). Then there
exists Ao € 2N such that

implying

<e

Ju = Pexull; shog

< llu = Pergil oo gy < 1= Pessl

5%°([0,¢) 5%°(0,T)
for all t € (0,7) by the monotonicity of the norm. Hence, it is enough to show the assertion for u €
52:0([0,T)) for which there exists a Ao € 2V such that Pyu = 0 for all A > Ao.

So we assume that u has this property in the following. Let to € (0,7T), (t,) be a monotonically increasing
sequence in (0, ty) with lim, . t, = to, and € > 0. Set g = (i9; + A)u on (0,ty). For each n € N we take

an extension u, of u from [0,t,) in $2°(R) such that

ltnll g gy < Ilgpop, ) +2 ©1)
and define g,, := (i0; + A)uy,.
Since ”un”S%’O(R) < Hu||5%70([0’tn)) +e< ||u||S§ (0.to)) +e¢ for all n € N, (u,) is a bounded sequence in

S2:0(R). In particular, (u,) is a bounded sequence in €2L§’°H§ (R x R*) N L3(R, BEQ(R4)) and (g,) is a
bounded sequence in L2(R, H 2 (R%)), where we write /2LI H? (R x R*) for the set of tempered distributions
with
lollesgs = (32 A Pywl2ps)” < oo
xe2MNo
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Since €2L;’OH§ (R x R*) is the dual of the separable space EQL%HI_%(R x R*) and LQ(R,BEQ(R‘L)) and
L2(R, H= 2 (R*%)) are reflexive, we find a subsequence, again denoted by (u,) and (gy), such that w, — @ in
észoHé (RxR*), u, — @ in L*(R, BEQ(R‘l)) and g, — §in L2(R, H~2 (R%)). Since both weak* convergence
in EQLEOHE (R x R*) and weak convergence in L?(R, BEQ(]R{‘l)) imply convergence in S’(R x R*), we have
@ =1 in S’(R x R*). Moreover, testing with ¢ € S(R x I,R‘l), we also infer that

(i0; + A)a = g.

Since § € L2(R, H™ 2 (R%)), the latter identity implies that @ has a representative in C(R, H~2(R*%)). In the
following, we identify @ with this representative. Since w, = w on [0,t,) for all n € N, we also have that
(un) converges to u in C(I, Hz (R*)) for every compact subinterval I C [0, ). Testing with ¢ € C2°(0, ),
we thus obtain 4@ = u on (0,%y). By the continuity properties of @ and u, we conclude that @& = w on [0, o).
In particular, @ is an extension of u from [0,¢y) to R.

We next note that the above convergence properties of (u,) and (g,) also imply that Pyu, X Pyiin
L= (R, L2(RY)), Paxu, — Pyt in L3(R, L*(R%)), and Pyg, — P\g in L*(R, L?(R*)) for every A € 2%o. We
thus obtain

~ 1 ~ 1 ~ _1 ~
liillgy o = (D2 CFIPAEl ez + A3 Priillz g + A2 IPAGllnz2)?)
Ae2No

[N

N

< ( > (A2 liminf || Pyup||zoe g2 + A2 liminf || Paug, || p2ps + A7 1iminf||P,\gnHLzL2)2>
o n—oo t T n—oo t -z n—oo t -

< timinf [[unl gy o) < Hinf(ful gy oo, +2) = T Jull o, +e, (C.2)

where the monotonicity of the norm implies the existence of the limit in the last step. Since ||a| g3
we can find A\ > A\g such that

(R)

3= Pexill g0 <& (C3)

Since Pyu = 0 for all A > Ay, we have

PSMa = PS,\I’LL =Uu
on [0,ty). Moreover, since @ is continuous in H~2 (R*), we have P<y, i € C(R, H2(R*)). Hence, P<y, i is
an extension of u from [0,%,) in S$2-°(R). Employing (C.2) and (C.3), we finally estimate

| < |P<x, @l

el 00,007y = Melg3 00,0, show ~Ilg3ogo,))

IN

130y — 1Pl g3 0| = Il 300,

+ 2e < 3¢

lall g3 o

IN

A il 3o g0,y = llsto g,
for all large enough n. Since € > 0 was arbitrary, we infer
Jim flull gy, = ellghoo,));

which concludes the proof of the left-continuity of ¢ — Hu||S%,O([0 9)"

Part (ii) follows similarly as part (i).

To prove (iii), we again start with the right-continuity. We first fix an extension ¢ of v from [0,7) in
Y(R). Let tg € (0,T) and € > 0.

We take vy € Y([0,%]) and ve € LZWL4([0,¢9] x R*) such that vy + vy = v on [0,%0] and

HUl||Y([07to]) + HU?”L?W,}A([OJO]XR‘*) < HU”Y([O,to])+L%W§’4([O,to]><]R4) +e.

Fix an extension 7 of vy from [0,%] in Y(R) and set 9o = ¥ — ¥;. Note that 7 is an extension of vs.
Moreover, since 2 € Y(R), there exists A\g € 2" such that

||P>A062||Y(]R) <e and va — PSAOUQ||LfWﬂ}’4([07to]><R4) <e. (C4)
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Note that this yields the decomposition v = 91 + Ps,02 + P<x,U2 on every interval [0,¢] with ¢ € (¢o,T).
As t = [Jvllyo )+ L2 W (0,4 xr4) 1S monotonically increasing, we thus obtain

1Vl o,0y+Lzw- 10,0 xre) = 1910 001y + 2224 (0,801 xR0

<191 + PoxgO2llv(oa) + 1P<xo D20l w4 (o, xrsy = lvrllvcostol) = 1v2ll Laws 0,00 xray +€

< NPillvoa + 1P<aat2ll 2wz 4 o xrsy — l0allvioseon = 1v2ll 2y s (0,60 xmey T 265

where we have used (C.4) in the last step. Employing part (ii) and dominated convergence, we derive

1T1llv(po.e) — I9allv(o,eony = llvallvo,tons
||P§>\0772||L%W;"‘([o,t]xW) - ||PS/\0772HL%W;"‘([O,tO]xW) = ||P§/\ov2||L$W;'4([o,t0]x]1{<4)

as t ] tg. In view of (C.4), we conclude that there is § > 0 such that

ol o,0y4 2w (o, xrt) = 101w (0,007 + L2W2 4 ([0, t0) ety | < D€

for all t € (to, T) with |t — to] < d, which implies the right-continuity of ¢ — ”v||Y([0,t])+L$W;/4([o,t]xR4)’

The left-continuity of this map follows from ideas already used in this proof. As in part (i), using the
monotonicity of the norm, it suffices to prove the assertion for v € Y([0, 7)) for which there is \g € 2 such
that Pyv = 0 for all A > A\g. Let ¢ € (0,T) and (¢,) be a sequence in (0,tg) converging to to. Let € > 0. For
every n € N, we take vy, € Y([0,¢,]) and va,, € LZW}L4([0,¢,] x R*) such that v = v ,, + 2, on [0,¢,] and

[o1nllv(o.ta)) + ||”2,n||L’;‘W;v4([o,tn]xR4) < ||“||Y([o,tn])+L§W5*4([o,tn]xR4) +é,
as well as extensions ¥ ,, of vy, in Y(R) satisfying
191,nllvy@®) < lv1nllyo,e.)) + &

Then (|1, y®))n is bounded. Arguing as in the proof of part (ii), i.e., adapting the ideas from part (i),
we obtain a subsequence, again denoted by (91,,), such that oy, X4y in €2Lf°Lz(]R X ]R4) with 7, €
C(R, H 2 (R%)) and
101y ey < lminf (|01, [ly@) < lminf o, lvio.r.) + &
Moreover, (v2,,) weakly converges to some vy in LZW.14([0,t0] x R?) with
<

||/U2||L%W£’4([O,to]><R4) > hnrggf ||v27n||L§W;’4([O,tw,]XR4)’

where we take the trivial extension of vy, to [0,%]. Arguing as in part (i), we infer that v = 91 + v2 on
[0, to]. Using that Pyv = 0 for all A > Ao, we have

v = PS>\1U = PS)\l’f)l + PS)\l'UQ
on [0,%0] and
101 = Pex, U1llv(r) + [[v2 = P, vall g2y o i xray < €

for sufficiently large A;. Then P<y, ¥ € Y(R), P<j,vs € LIZW24([0,29] x R*) and, using the monotonicity
of the norm once more, we arrive at

o llypo,to1)+ 2wt (10,001 xme) — NVllw(0,01)+ LW 4 (0,601 xR0

< IP<xi Ollv(o,te]) + 1P<xiv2ll 2wt (0,601 xrey — IVimllv(o,ta)) = V2l 24 (0., xme) + €

<llorllv@ + ||”2HL,?W§’4([0,tO]xR4) = v llvo.enny — ”va””ngzlA([O,tn]><]R4) + 2¢

< lminf oy g lvo,re)) +Hminf floakll 2y o, xmty = [V1nllvio.en)) = V2l 2w o, xme) + 32 < 4e
for all large enough n. This implies the left-continuity of ¢ — ”U||Y([0,t})+L$W7}*4([0,t]le4)v completing the proof
of the lemma. 0
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