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Abstract

To study diffusion processes on the p-Wasserstein space &7, for p € [1,00) over a
separable, reflexive Banach space X, we present a criterion on the quasi-regularity of
Dirichlet forms in L?*(22,, A) for a reference probability A on &,. It is formulated in
terms of an upper bound condition with the uniform norm of the intrinsic derivative.
The condition is easy to check in relevant applications and allows to construct a type
of Ornstein-Uhlenbeck process on &7,. We find a versatile class of quasi-regular local
Dirichlet forms on &7, by using images of Dirichlet forms on the tangent space LP(X —
X, po) at a reference point pg € &2,. The Ornstein-Uhlenbeck type Dirichlet form is an
important example in this class. An L?-estimate for the corresponding heat kernel is
derived, based on the eigenvalues of the covariance operator of the underlying Gaussian
measure.
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1 Introduction

As a crucial topic in the crossed field of probability theory, optimal transport and partial
differential equations, stochastic analysis on the Wasserstein space has received much attention.
Some measure-valued diffusion processes have been constructed by using the theory of Dirichlet
forms, see [18, 21, 13, 28, 24] and references therein. The pre-Dirichlet forms are defined by
integrating a square field operator with respect to a reference Borel probability measure A
on a topological space, whose points are measures over a Riemannian manifold, or R?. The
square field operators are determined by the intrinsic or extrinsic derivatives, which describe the
stochastic motion and birth-death of particles respectively. In order to establish the integration
by parts formula ensuring the closability of the pre-Dirichlet form, the selection of reference
measures A found in the literature are typically supported on the class of singular measures.
Hence, these do not provide natural options when looking for a suitable substitute for a volume
measure or a Gaussian measure on the set of probability measures. On the other hand, for
stochastic analysis on the Wasserstein space, it is essential to construct a diffusion process
which plays a role of Brownian motion in finite-dimensions, or the Ornstein-Uhlenbeck (O-U
for short) process on a separable Hilbert space. This has been a long standing open problem
due to the lack of a volume or Gaussian measure on such a state space, which could serve
as an invariant measure. As a solution to this problem, [23] presents a general technique to
construct an abundance of ‘Gaussian like’ probability measures on Zy(R?) together with the
related O-U type Dirichlet forms. The construction is very natural as the Gaussian measure
and the related Dirichlet form are obtained as images of the corresponding objects form the
tangent space T}, 2 := L*(R? — R%, 1) at a fixed element pg € 5. Here, pp is chosen as being
absolutely continuous with respect to the Lebesgue measure on R

The main idea of [23] is based on the following fact from the theory of optimal transport,
which can be found in [29] or [4], for example. The set &, coincides with the image set of

U:Tpodh— pgoh™ € Py,

The map WV is 1-Lipschitz continuous with respect to the 2-Wasserstein distance

WQ(:U’J V) = inf </ |'I - y|2d7T(JI7y)> MV E ng27
RIxR4
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where € (u, v) denotes the set of all couplings of p and v.

More precisely, let G’ be a non-degenerate Gaussian measure on the Hilbert space 7}, » with
trace-class covariance operator A~ where (A4, Z(A)) is a positive definite self-adjoint operator
in 7T),,2. The associated O-U process on T}, » is generated by

(1.1) LOYu(h) := Au(h) — (AVu(h), M Thear € Thps u € P(L°Y) C LA (T2, G).

Here, V and A denote the gradient and Lapalcian on T}, o respectively. The O-U process
(X¢)t>0 on the tangent space can be constructed as the mild solution of the corresponding
semi-linear SPDE, i.e.

t
X, =e Xy + V2 / e~ E=AqIY,, t >0,
0

where W; is the standard cylindrical Brownian motion on 7,5 (see e.g. [11, Chap. 6]). The
associated O-U Dirichlet form (&, 2(&)) is the closure of

&(u,v) ::/ (Vu, Vo)ydG, u,v € Cf(Tyy2)-
T

©Q,2

Now, under the map W, the image of the Gaussian measure G gives a reference measure
Ng:=GoU™!

on &, which is called the Gaussian measure induced by G. It is proved in 23] that the W-
image (&, 2(&)) of (£, 2(&)) is a symmetric conservative local Dirichlet form in L*( %, Ng)
satisfying

(1.2) 8u,v) = /} (Df. Da)r,. NG, fg € CH(P),

where D is the intrinsic derivative on &5, which is first introduced in [1] on the configuration
space over Riemannian manifolds, and see [5] or Definition 2.2 below for the class C}} (22,),p > 1.

The form & in (1.2) has the same type as the O-U Dirichlet form on a Hilbert space.
Moreover, as shown in [23], it inherits several nice properties from the O-U Dirichlet form & on
the tangent space T}, o, including the log-Sobolev inequality and compactness of its semigroup.
The generator of & can be formally represented as the intrinsic Laplacian with a drift. So,
(&,2(&£)) in [23] is called an O-U type Dirichlet form in L?(Z%,, Ng). However, the quasi-
regularity of (&, 2(&)) is still open, up to now. Since quasi-regularity is the key to construct
Markov processes using Dirichlet forms, the existence of the corresponding OU type stochastic
process is still an open problem. As such a process is of wide interest, we prove a handy, general
criterion (see Theorem 2.1 below) for the quasi-regularity of Dirichlet forms on the Wasserstein
space. In particular, we verify the existence of the OU type process.

We will work in a more general framework to construct diffusion processes on the p-
Wasserstein space &2, over a separable, reflexive Banach space for p € [1,00). Applications to
the O-U type process for p = 2 then serve as a typical and highly relevant example. The proof
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of quasi-regularity is inspired by the methods developed in [25] and [26]. The latter of these two
only presumes a Polish state space. Nevertheless, application of the techniques and verification
of conditions require a detailed analysis which takes into account the special nature and proper-
ties of the metric respectively topology involved. An adaptation to the p-Wasserstein distance,
as realized in this article, is completely new. For the configuration space equipped with the
vague topology, a similar result has been achieved in [19]. Regarding the weak topology on the
set of Borel probability measures over a Polish space, [21] provides a quasi-regularity result.
The latter, however, focusses on Dirichlet forms linked to the extrinsic derivative instead of
the intrinsic. Our main results, Theorems 2.1 & 3.1, relating to the intrinsic derivative and
the p-Wasserstein distance, show quasi-regularity for a wide class of Dirichlet forms with state
space &,. They imply the existence of a versatile class of diffusion processes on &2, and open
up the door to further stochastic analysis via the theory of Dirichlet forms. The methods of
this survey should also be applicable for the Wasserstein space over non-linear metric spaces
like Riemannian manifolds. To save space we leave this for a future study.

Throughout this text, let (X, || - ||x) be a separable, reflexive Banach space and & be the
space of probability measures on X. For fixed p € [1,00), we consider the p-Wasserstein space

(1.3) Pyi={ne 2 ull- %) < ).

As stated in [29, Thm. 6.18], the p-Wasserstein distance

WS AVRY)

1
(1.4) W, (u,v) := inf </ |z — yll% dﬂ(dx,dy)) . MV E Py,
XxX

yields a complete, separable metric on &7,. Hence, its induced topology is second countable
and in particular Lindelof. It is worth mentioning, that the metric space (£2,,W,) is not
locally compact, not even in case X = R%. We study the quasi-regularity of Dirihlet forms in
L*(2,, \) for a reference probability measure A on &2,. A typical example for A is the above
mentioned Gaussian measure Ng. In particular, the quasi-regularity of O-U type Dirichlet
forms is confirmed.

In Section 2, we present a general condition on the quasi-regularity of Dirichlet forms in
L*(Z,, A) by finding a comparison criterion involving the uniform norm of the intrinsic deriva-
tive. In Section 3, we apply this criterion to construct a class of quasi-regular local Dirichlet
forms. These are obtained as images of Dirichlet forms on the tangent space at a fixed point
of the Wasserstein space. Finally, in Section 4 we confirm the quasi-regularity of the O-U type
Dirichlet form and give an L?-estimate for the heat kernel, based on the eigenvalues of the
covariance operator for the underlying Gaussian measure.

2 Quasi-regular Dirichlet forms on &,

We first recall some notions on Dirichlet forms which can be found in [20].
Let (E, p) be a Polish (or slightly more general, Lusin) space and A be a o-finite measure
on the Borel o-algebra %(F). A Dirichlet form (&, 2(&£)) on L*(E,A) is a densely defined,



closed bilinear form, which is Markovian, see for instance [20, Chapt. I]. We denote by A(f)
the integral of a function f with respect to the measure A and set

&(f,9) = AMf9)+E(f,9), [eD(&)

For an open set O C E the 1-Capacity associated to & is defined as
Cap,(0) := inf{é’l(f, f): fe2(&), f(z) > 1 for Aae. z € O}
with the convention of inf()) := co. For an arbitrary set A C E, let
Cap,(A) := inf {Cap,(0) : AC O, Ois an open set in E}.
An &-nest (or nest for short) is a sequence of closed subsets { K, },en of E such that

lim Cap, (£ \ K,,) = 0.
n—oo

A measurable function f: E — R is called quasi-continuous, if there exists a nest { K, },en
such that the restriction f|, is continuous for each n € N.

A sequence { fi }ren of measurable functions is said to converge quasi-uniformly to a function
f: E — R, if there exists a nest {K,, },en such that the sequence of restricted functions f |k, ,
k € N, converge to f|k, uniformly on K, as k — oo for each n € N.

If a property, which an element z € E either has or doesn’t, holds for all z in the complement
of a set N C E with Cap,(/N) = 0, then this property is said to hold quasi-everywhere (q.-e.)
on F.

Definition 2.1 (Definition 3.1 in [20]). The Dirichlet form (&, 2(&)) is called quasi-regular,
if the following three conditions are met.

1) There exists an &-nest of compact sets (i.e. Cap, () is tight).
2) The Hilbert space Z(&’) has a dense subspace consisting of quasi-continuous functions.

3) There exists N C E with Cap;(N) = 0 and a sequence {f;}i>1 € 2(&) of quasi-
continuous functions which separate points in £\ N, i.e. for any two different points
21,22 € E'\ N there exists i € N such that f;(z1) # fi(z2).

2.1 A criterion of the quasi-regularity

From now on, we consider (E,p) = (£2,,W,) given in (1.3) and (1.4) for some p € [1,00).
To prove the quasi-regularity of a Dirichlet form (&, 2(&)) in L*(2,, A), we look at the class
CE(ZP,) defined as follows by using the intrinsic derivative. This derivative is first introduced
in [1] on the configuration space over a Riemannian manifold, and has been extended in [5] to
&2, over a Banach space.

Let X* be the dual space of X, i.e. X* is the Banach space of bounded linear functionals
X — R. We write

x (@' x)x =2 (x), ' e X", v e X.
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Let p* = -2 which is oo if p = 1. The tangent space of &2, at a point u € &2, is defined as
p—1 p 2
Typ = LP(X — X, ).

By virtue of [14, Thm. IV 1.1 & Cor. IIT 3.4]; its dual space T , can be identified with the
space LP" (X — X*, p1). Accordingly, we write

Tﬁ7p<¢/7 ¢>Tu,p = / X* <¢,(ZB), ¢(x)>X ,u(dx)a ¢/ € T;p? ¢ S T,u,p
X
Definition 2.2. Let f be a continuous function on &7,.
 f is called intrinsically differentiable, if for every p € 22,

Toy 3 6 Dyf() e lim LU0+ 20)7) = ()

e—0 g

is a bounded linear functional, and the intrinsic derivative of f at p is defined as the
unique element D f(u) € T); , such that

Dof(p) = 1 (Df (), &)1, = / - ADF () (), $(x))x pldz), & € T,

X
o We denote f € C'(Z2,), if f is intrinsically differentiable such that

iy o (id+0)7) = f(p) = Dof ()]

¢z, ,40 19l

=0, NE'@pa

and D f(p)(x) has a continuous version in (i, x) € &, x X, i.e. there exists a continuous
map ¢ : &, x X — X* such that g(y, -) is a p-version of Df(u) for each p € &2,. In
this case, we always take D f to be its continuous version, which is unique.

o We write f € C}H(P,), if f € CH(P,) and |f| + ||Df|

x+ is bounded on &, x X.

A typical subspace of C}(£2,) is the class of cylindrical functions introduced as follows.
First, we recall the continuously differentiable cylindrical functions on the Banach space X:

‘g\Cl}(X) = {g(‘rlh o 71;;1) ne N7 l’; € X*7 g € O;(Rn)}7
where each z} : X — R is a bounded linear functional. It is well known that each
Y= g(ay, o) € FC(X)

belongs to C{(X), since 9 is bounded and Fréchet differentiable on X with bounded and
continuous derivative

n

Vi(z) = Z(@ig)(x* (2], 2) ¢y ,X*<x;,x>X)x;, x e X.

=1



Next, we consider the space of continuously differentiable cylindrical functions on &,
(21) FOUP) = {P 3 p g(ulthr),-- 1)) : neN, ¢y € FCHX), g € CLR™}.

It is clear that for a function f € FCH( ) with f(u) :== g(u(1), -, u(wn)), its restriction to
&, which is also denoted by f for simplicity, i.e. the map &, > u — f(u) € R, is an element
of C}(2,) with

n

(2.2) Df(p)(w) =Y (Big)(u(n), -+, n(wn)) V() € X7, (p,7) € P x X.

=1

In the following, we sometimes write .# C}}(£2,) for the restrictions of functions in .#ZC} () to
Z,. We will see that for any probability measure A on 2, FC}(Z,) is dense in L*(Z,, \)
(Lemma 2.3 below).

From now on, we identify a A-square integrable measurable function f on &7, with its
equivalent class in L*(Z2,, A) by denoting f € L*(Z,, A).

Theorem 2.1. A Dirichlet form (&, 2(&)) in L*(2,,\) is quasi-reqular if it satisfies the
following two conditions:

(C1) FCHP) C 2(&) and there exists a constant C € (0,00) such that

E(f, f) < C sup | Df(p)|

HEPp

%‘;‘p> fegzcl}(‘@)

(Cy) The Hilbert space (&) has a dense subspace consisting of quasi-continuous functions.

We would like to indicate that the conditions in Theorem 2.1 are easy to check in appli-
cations. When the Dirichlet form (&, Z(&)) is constructed as the closure (i.e. smallest closed
extension) of a bilinear form defined on C}(22,) or ZC}(Z?), the second condition holds auto-
matically, and the first condition holds if there exists a positive function F' € L'(Z2,, A) such
that

E(f. 1) < / F()lIDf (1)

Py

?F;;’pA(dﬂ): feFC(2).

For example, F'(-) may be a dominating function for some diffusion coefficient, see Section 3.2
below.

2.2 Proof of the criterion
We first present some lemmas.
Lemma 2.2. There exists a sequence {i}n>1 C FCH(X) with the following properties.

(1) The family {Z(X) 3 u+— p(t,) bnen separates the points on &2, and hence separates the
points on P,,.

(i7) The o-algebra generated by the family { 2 (X) > p > w(n) bnen coincides with the Borel
o-algebra B(P)).



Proof. Since X is a separable Banach space, there exists a sequence {x}};cn separating the
points on X. Let {1, }nen € FC}(X) consist of all functions

x) = ——— € |0,1], ze€X,
V@ =1 ey <0
for m € N and 4y, ...,4, € N. Since {1, }ren is closed under multiplication and separates the

points on X, it satisfies (i) according to [6, Theorem 11(b)].
To verify (i7), let & be the o-algebra on &, induced by {y — p(¢y)}nen, and let o(7,)
denote the o-algebra generated by the family of all open sets 7, w.r.t. to the metric

p(uv) =Y 27" () — v(Whn)l, v € P,
n=1

Then o(7,) C . Noting that {1, }nen are continuous and uniformly bounded, according to [6,
Lemma 3(a)], property (i) of this lemma implies #(%,) = o(7,), so that #(Z,) C . On the
other hand, each 1), is a bounded continuous function on X, so that p +— u(1,) is continuous
in &,, and hence ¢ C #(,). Therefore, (i7) is satisfied. O

Lemma 2.3. The linear space FCL(P,) is dense in L*(P,, \).
Proof. Let @/ be the class of all subsets A C &7, given by

A=({ne P, : ny) € B}

i=1
for some m € N, By,...B,, € Z(R) and vy,...,1¢, € FCL(X). Obviously, & is N-stable,
ie. Ay N Ay € & for Ay, Ay € o/. Furthermore, Lemma 2.2(ii) implies that (<) = ZB(2,).
Now, let V' denote the vector space of real-valued, measurable functions on &2, which coincide
in A-a.e. sense with some element of €1, the topological closure of .# CHZP,) in L*(Z,,\).
The claim of this Lemma reads €1 = L*(Z2,, A). It suffices to show that V contains every

bounded, measurable function. The monotone class theorem for functions (see [7, Preliminaries,
Theorem 2.3]) yields exactly the desired statement if V' meets the following properties:

1) V contains the indicator function 1,4 for any set A € 7.

2) If {fu}nen € V is an increasing sequence of non-negative functions such that f(-) :=
lim,, o0 fn(-) is bounded on &, then f € V.

To show 1), let A € &, and m € N, By,...,B,, € Z(R) and ¥, ...,1,, € FCHX) such
that

LaG) = [ [ 1m.(u@). ne 2,

If we denote the image measure of A under &2, 3 p+— (pu(¢1), ..., u(¢¥m)) € R™ by A,,, then

o) =TT 10| (o)

i=1

/j |9((), -+, (o)) — 1a]” A(dp) :/

m
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holds for any g € C{(R™). This implies 14 € V, since C} (R™) is dense in L*(R™, A,,),
Now, let {f.}neny € V and f be in 2). It remains to show that f € V. For ¢ > 0 there exists
n € N such that (f%) |f — fal?dA)Y2 < /2. Since f, € V, we find u,, € FCLH(P,) such that

(fg’p |f — un|?)dA)/? < £/2. Then the Minkowski inequality yields (fg,,p lu, — fIPdA)Y? < e.
Hence, f € V as desired. [

To verify the tightness of capacity, we shall construct a class of reference functions. For
a,b € Rlet aVb:=max{a,b}, a Ab:=min{a,b} and a™ :=a V0. For any [ € N, let

(2.3) i(s) == —%l+/_; [(§+2)+/\ 1 a[(2- §)+A ta, ter.

Then x; € C}R) with
xi(s)=s forse[=11], and 1 (s) <xi(s) < Loyay(s), seR.
We recall the notation p* := p%l for p € [1,00) as introduced above.

Lemma 2.4. Assume that Condition (1) in Theorem 2.1 holds. Let ® € C}(R) and v €
CY(R,[0,00)) such that for some constants a,b € (0,00) it holds

sup |'(s)|(1+5)7" <a and suply/(s)|(1+7(s)) 7 <b.
$€[0,00) seR
Then for anym € N, Lipschitz function f on R™, and x}, € X* with ||x}|
the function

x»=1fori=1,...,m,
u(p) =@ (u(yo f(ay,...,2),))) forpe 2,
belongs to P(&) with
& (u,u) < C(ab)?

m 2
o, f H .
; | | Loo(]R'm)

Proof. (a) We first prove under the additional assumption that f is a bounded function, i.e. f €
C}(R™). In this case, vy o f € C}(R™) and the function

u(p) =@ (p(yo f(ah,...,aL,))), ne P,
is in u e FCHZ,). By (2.2), with
T:X3z (x (2, %) g, ..., x (2, 2)x) ER™

it holds

for p € &2, and r € X. So,
Z 1’ ‘ ’HLOO(Rm)’

1=

sup [[Du(o)f;, < (ab)®

HEPp



and the desired assertion follows from Condition (1) in Theorem 2.1.

(b) Next, let f € C*(R™). For [ € N the composition f; := y; o f yields an element of
CHR™) with |0;fi(2)| < |0:f(2)| for i = 1,...,m, 2 € R™. By what has been shown above, for
each [ the function

w(p) =@ (p(yo filzl,...,a},))) forpe 2,
is in 2(&) for | € N with

zeR™

(2.4) £, w) < Clab sup (Y |8if(z)]>2.

Clearly, lim; oy o fi(Tz) = vo f(Tx) for z € X. By the condition on v we find constants
A, B € (0,00) such that

(2.5) [vo fi(Tz)| < AL+ |fi(Tz)P) < B(1+ ||lz]|lx)?), =€ X.
Then Lebesgue’s dominated convergence applies and

fim p(yo fioT) = p(yo foTl), pe Py

Consequently, again by dominated convergence, we conclude limy_,, v, = v in L*(£,, A). Now,
20, Lemma 1.2.12] yields u € 2(&) and & (u,u) < liminf, o & (u, u;) as the sequence {u;}; is
bounded w.r.t. &/*-norm in view of (2.4). Since (2.4) delivers the desired upper bound, the
proof is complete.

(c) Finally, let f be a Lipschitz continuous function on R™. Then, f is weakly differentiable
on R™ with weak partial derivatives 0;f € L>°(R™). Let h be a non-negative smooth function
on R™ with compact support and [ h(z)dz = 1. Then the mollifying approximations {f™},cn
of f defined by

fM(z) :=n" f(2)h(n(z —z))dz = fx+n"'2)h(z)dz, =€ R™
R R
satisfies f( € CYH(R™), lim,,_,o, f™ = f and
sup sup 310,57 < || 3 0S|,
i=1

neN zeR™ =1

so that

(2.6) lim 70 £ (), .. al) =70 f(h, . ...al).

n—o0

and by step (b), the functions

W™ (p) =@ (u(yo fM(h,....20,))), ne Py, neN
belong to Z(&) with

(2.7) sup & (u™, u™) < C’(ab)2

neN

\af |

Loo Rm) ’
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Moreover, since f is Lipschitz continuous and h is smooth with compact support, we find
constants A, B € (0,00) such that (2.5) holds. Thus, by the dominated convergence theorem,
(2.6) implies

lim p(yo f (), ..., a0,)) = p(yo f(al,....a})), pe P,

n—oo

while the definition of u and u(™ with ® € C}(R) yields
lim ||U(n) — UHLQ(W,,,A) = 0.
n—oo

According to [20, Lemma 1.2.12], this together with (2.7) finishes the proof. O
As an application of Lemma 2.4, we have the following assertion.

Proposition 2.5. Let ® € C}(R) and v € C*(R,[0,00)) be as in Lemma 2.4 with constants
a,b € (0,00). For M € N and y1,...,yn € X, define

u(p) = (u(yeg)), pe P,
g(z):=min{[lz —y;llx : 1<j <M}, zeX.
Then u € 2(&) with &(u,u) < C(ab)?.

Proof. By Lemma 2.4, we need to approximate the distance function by using f(x},--- 2! )
for m € N z,--- 2/ € X* and Lipschitz functions f on R™.
(a) For m € N,7 € R™ and subsets I3, ..., Iy of {1,...,m}, the function

f(2) ::min{max(zi+ri) : jzl,...,k}, z € R™

icl;

is Lipschitz continuous with
Z 10;f(2)] =1 for dz-a.e. z € R™.
i=1

By Lemma 2.4, the associated function u : £, — R belongs to Z(&) with &(u,u) < C(ab)?.
(b) Let {z) : k € N} be a dense subset of X. For each k& € N we choose z}, € X* with
2% ] - = 1 and x«(z}, k) y = ||zk]| . Moreover, let M € N, y1,...,yn € X and

a(z) = minM (klznlaxl (T, — yj>X>, re X, leN.

As shown in step (a) in the present proof, the function

w(p) == 2(u(yoq)) for pe P,

is in Z(&) with &(w,w) < C(ab)?. By construction of z}, k € N, it holds sup,ey x+ (2}, )y =
||| x for z € X. Consequently,

llim g(z) =min{|lz —yillx : je{l,... . M}} = g(z) forzeX.
—00
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Since sup;ey |gi(x)| < max;—, ||z — ;|| x, we find constants ¢;, c2 € (0,00) such that

[yog(@)| <er(1+]9(@)) <ex(1+|zflx)"), e X.
So, by Lebesgue’s dominated convergence twice as in the proof of Lemma 2.4, we obtain
lliIilo Hul — uHLz((@p’A) = 0

By [20, Lemma 1.2.12], this together with & (u;,u;) < C(ab)? finishes the proof. O

Proof of Theorem 2.1. Lemma 2.2(i) together with (C}) yields the existence of a countable set
{fi}ien of quasi-continuous functions in Z(&) which separate points in #2,. So, it suffices to
find a &-nest of compact sets in terms of (Cy).

First, we recall a characterization of precompact sets in &2, as stated in [22, Proposition
2.2.3]. The closure w.r.t. W, of a set &/ C &, is compact if and only

(1) (Uniform Integrability) }%i_{n sup (]| - 5 Liroo) (|| - [1x)) =0,
o e

(2) (Tightness) for every € > 0 there is a compact set Y C X such that sug u(Ye) <e.
pe

With this characterization, we only need to find an &-nests of closed sets {K,(f)}neN fori=1,2,

such that (1) holds for & = K" and (2) holds for &/ = K2, When this is achieved,

{K, = K& N KY(LQ)}neN is a &-nest of compact sets, and hence the proof is finished. Indeed,
as Cap, is a Choquet capacity on &7, it holds

n n

< Cap, (X \ KV) + Cap, (X \ K?) =3 0.

Cap (X \ K,,) = Capl((X \ K(l)) U (X \ K(2)))

(a) Construction of {Kr(Ll)}nGN. For k € N we let
(2.8) we(p) = xa (el - 11x))), 1€ Py,
where x; is the function from (2.3) with [ = 1 and
Y(s) = (1+[(s — k)+]2)% -1, seR.

It is easy to find constants a,b € (0,00) independent of k such that conditions in Lemma 2.4
holds for (®,v) = (x1,7), k¥ € N. So, Proposition 2.5 implies

sup g(ulﬁ Uk) < o0,
keN

and by Lebesgue’s dominated convergence theorem twice as in the proof of Lemma 2.4, we have
ur(p) — 0 as k — oo for each u € &, and

lim A(Jug|?) = 0.
k—o0
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By [20, Lemma 1.2.12], there exists a subsequence {uy, }ien such that
(2.9) O = iu ety
. m - m - Ui

strongly in the Hilbert space (2(&),&1). Then, by [20, Proposition I11.3.5], there exists an
&-nest of closed sets {Kﬁl)}nzl and a subsequence {vy,, }ren such that

lim sup vy, (u) =0 for every n € N.
k—o0 MEK(l)

Since {ug }ren is a decreasing sequence, it holds vy, (u) > wy,, (1) for every m € N and p € Z2,.
In particular, vy, (1) > w,, (p) for p € &, and k € N. Now, it follows

lim sup w,, (1) =0 for every n € N,
k—o00 uGK(l) k

which in turn implies

(2.10) Jim sup. (v, (I - llx)) =0 for every n € N.
pekKy

Next, by the definition of v, we can choose Ry € N for each k € N such that

p(wl - 1)) = 1l 1% Lreoo (I X)), 1€ P

This together with (2.10) yields that for every n € N,

liminf sup ,u(|| . ]\%1[316700)(]| . ||X)) < liminf sup ,u(%(H . ||X)) = 0.
—00 (1) k—o0 (1)
neKy, HEKS,

Thus, (1) holds for o/ = KV as desired.
(b) Construction of {Kéz)}neN. Let {y;}ien be a countable dense subset of X, and for each
keN, let

up(p) == u(Xl(min{H C—yillx = 1,...,k})>, pwe Py
Again, x; is the function from (2.3) with [ = 1. Noting that x; (min {|| - —yillx : i=1,...,k})
decreases to 0 as k — 0o, by Proposition 2.5 and the dominated convergence theorem, we have

sup & (uy, ug) < oo, lim A(Jugl?) = 0.
kEN k—o0

So, as shown above [20, Lemma 1.2.12] and [20, Proposition I11.3.5] imply the existence of a
subsequence of {uy}r which converges to zero quasi-uniformly. The arguments, which include
the strong convergence w.r.t. éall/ % of the Césaro means for a suitable subsequence together with
the fact that {ug}y is a decreasing in k, are completely analogous to step (a). Hence, there
exists a nest {Kr(f)}neN such that for each n € N the following property holds:

(2.11) For € > 0 there exists {kp}n, C N with sup ug,, (1) < ——~, meN.
peK? m2

13



It remains to show that K\ satisfies property (2) for fixed n € N. Let m € N, ¢ > 0 be

arbitrary and k,, be chosen according to (2.11). Since for r < 1 and s € [0, 0c0) it holds
x1(s) > r if and only if s>,

we estimate

1
(2.12) u({xeX cmin ({2 —yillx s i=1,... kn} > —})
m
. . 1
:u<{x€X ; Xl(mm{”w—yi”X : z:l,...,km}) ZE}>
<muy, (1) < Qim, meN, pe K2,
Now we define Y := (), oy Yo for

1
Y, = {ZEEX : min {2 — yil|x : 7::17"'7km}<_}'
m

Obviously, Y is a totally bounded set in X and hence the closure Y a compact set. This proves
the tightness of KT(LQ), because for any u € K using (2.12) it holds

pAT) < ([ X\ Vi) €30 n(x\ Vo) Zim:

meN

and the choice of € above is arbitrary. ]

3 Quasi-regular image Dirichlet forms on &,

In this section, we prove the quasi-regularity for image Dirichlet forms on &7, under the map
(3.1) U:Typd0 oot € 2,

from the tangent space 7),,, for a fixed element py € &,. To shorten notation, we denote

Toi=Tup = LP(X — X, o), Tg =T =L (X — X* ).

Ho,p

The map WV is Lipschitz continuous, since

W@WQ(MV<LXW—W%W%M

l/wl (I dpiole) = 61 — dollly, brida € To.

In the case, where X is a separable Hilbert space and py € &2, is absolutely continuous with
respect to a non-degenerate Gaussian measure, the theory of optimal transport provides that
U is surjective and that for any u € &2, there exists a unique ¢, € Ty such that

poo ¢, =p and Wy(uo,p) = llid — ¢ulln,

14



(see [4, Theorem 6.2.10]). Here, ¢,, is called the optimal map from g to p. In particular, this
holds if X = R? and py € &2, is absolutely continuous w.r.t. the Lebesgue measure.
Let Ay be a probability measure on Ty. Then the image measure

A:=Ayo !
is a probability measure on &7,. The map
L*(Z,,A) > u— uoW € L*(Ty, A\y)
is isometric, i.e.
(3.2) Auv) = Ag((wo ) (vo W), wu,v € L* (P, A).
We would like to infer that, if U is surjective, then choosing Ay such that
Ao(U) > 0 for any non-empty open set U C Ty

results in A bearing the analogous property, i.e. takes a strictly positive value on each non-empty
open set in &2,. We refer to this property of A (resp. Ay) as full support.

In the following, a class of quasi-regular Dirichlet forms in L?*(42,, A) are constructed by
using the image of Dirichlet forms in L?*(Tp, A). This provides quasi-regular local Dirichlet
forms associated with diffusion processes on &2,

3.1 Main result

From here on, the Dirichlet forms we consider are assumed to be symmetric. Let (&, 2(&))

be a symmetric Dirichlet form in L*(Tp, Ag), where 2(&) contains the following defined class
C}(Tp) of functions on Ty.

Definition 3.1. C}(T}) consists of all bounded Fréchet differentiable functions f on Ty with
Ty > 6= V(9) € LNX — X", o)
continuous, and

sup |V f(9)| oo (x—x+ o) < 00
o€Tp

Note that by the dominated convergence theorem, if f € C}(Tp) then
Ty 3 6 VI(6) € LI(X = X", )
is continuous for all ¢ € [1,00). The main result of this section is the following.

Theorem 3.1. Let Ay be Borel probability measure on Ty, and let (&, 2(&)) be a symmetric
Dirichlet form in L*(Ty, Ao) such that C{(To) C 2(&). We have the following assertions.
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(1)

It holds
(3.3) Cy(Py) oW i={uoV : ueCy(P,)} CCy(Ty),
and the bilinear form

E(u) :=EwoV,voW), uveCHP,)

is closable in L*(2,, ), where A := Ngo U™, Its closure (&, P(&)) is a Dirichlet form
satisfying

P(E) oW :={uoW: ue 9(&)} C 2(&),

(3.4) ~
E(u,v) =E(uoW,voW), uve D).

If the generator (L, 2(L)) of (&, 2(&)) has purely discrete spectrum, let {on}n>1 be all
eitgenvalues of —L listed in the increasing order with multiplicities. Then the generator
(L,2(L)) of (&, 2(&)) also has purely discrete spectrum, and eigenvalues {\, }n>1 of —L

listed in the same order satisfies A\, > o,,n > 1. If moreover Y >~ e~ < oo fort > 0,
then the diffusion semigroup P, := e' has heat kernel p;(u,v) with respect to A satisfying

/ pe(p, v)2A(dp) A(dv) SZ —2Ant t>0.
Ppx Py n=1
If there exists a constant C' > 0 such that
(3.5) E(f. 1) < CSUTQ VAT | e Cy(To),
»€Tp

then (&, 2(&)) is quasi-reqular.

To prove (3.3), we need the following chain rule.

Lemma 3.2. Ifu € C}(P,), then uo ¥ € CL(Ty) with

V(uwo¥)(¢) = Du(¥(¢)) o ¢, ¢ €T

In particular,

|V (uwo ¥)(e) ¢ € Tp.

o = [ Du(e(6))

* )
Ty 6).p

Proof. Let ¢,& € Ty. On the probability space (X, B(X), uo) [5, Theorem 2.1] implies

(o W)(9+€) = (wo1)(0) = [ LluoB)(o+et)de

:/0 s (Du(¥ ¢+€£))O(¢+€§)’£>To
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Combining this with the boundedness and continuity of Df on &2, x X, we may apply the
dominated convergence theorem to deduce

(3.6) o [ W)@ +8) — (o W)(9) — 73 (Du(¥(9) 0 6.€)y, |
Iéllzo 10 (1316

0,

hence u o ¥ is Fréchet differentiable on T with derivative
(3.7) V(uo¥)(¢) = Du(¥()) o ¢ € Ty

satisfying
V(w0 W)(@) | oo (x—sx7 0y < [[Dt]] oo < 0.

Finally, let {¢,}, C Ty and ¢ € Ty such that as n — oo,

60 — 6l = ( [ on- ¢\|§}duo>p S0

By the continuity of ¥ : T, — &7,, and the boundedness and continuity of Du : &, x X — X*,
we may apply the dominated convergence theorem to derive

lim /X | Du(T(6)) () — Du(¥(6))(8)]

n—oo

X*dNO = 07

which together with (3.7) yields the continuity of Ty 3 ¢ — Vu(¢) € L'(X — X*, uo).
]

Proof of Theorem 3.1. (1) The inclusion (3.3) is ensured by (3.2) and Lemma 3.2. Next, by
Lemma 2.3 and C}(2,) 2 FCHZP,), CL(P,) is dense in L*(Z,, A), which together with (3.3)

and 2(&) 2 C}(T,) implies that
VP(E) = {u:uoWe (&) DCHP,)
is a dense subset of L*(2,, A). So, by [9, Chapt. V],

U*E(u,v) = E(uo W, vo W), uve T P(E)
is a Dirichlet form in L2(22,, A). Since &(u,v) = &(uo ¥, vo W) for u,v € CL(F,), this implies
that (&,C}(2,)) is a densely defined closable bilinear form in L*(£,, A), its closure (&, 2(&))
is a Dirichlet form. B
(2) As shown in the proof of [23, Theorem 3.2|, if L has purely discrete spectrum, then
Theorem 3.4(2) implies that so does L. Moreover, (3.4) and the Courant-Fisher min-max
principle, for any n € N,

A = inf élu,u)
% m-dim. subspace of 2(&) (xuec¥ A(Uz)
@g(u oW, uoW)

= inf su
¢':n-dim. subspace of 2(&) 0#u£<g AQ((U o \11)2)
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. &,
> inf _sup ( ’~2) = op.
¢:n-dim. subspace of 2(&) Oséaeg? AO (u )

So, when ) > e 27" < oo for ¢ > 0, by the spectral representation (see for instance [12]), P,
has heat kernel p; with respect to A such that

pt(M7 V) = Ze_/\ntun(lfb)unoj)a w, v € '@pa
n=1

and hence
o0

/ pilp V)2 dA(dp) dA(dy) = 3 et < o,
Pp X Pp

n=1

(3) Since C}(Z,) is a dense subspace of Z2(&), the proof of (1) implies Condition (Cs) in
Theorem 2.1. Moreover, Lemma 3.2, (3.5) and (3.2) imply (C}). So, the quasi-regularity of
(&,2(&)) follows from Theorem 2.1. O

3.2 Local Dirichlet forms and diffusion processes

In classic theory, the Dirichlet form for a symmetric diffusion process on R is of gradient type

&(f.9) = /Rd<AVf, Vg)gae dA

for a nice probability measure A on R? and a diffusion coefficient A = (a;;)1<; j<d-
In the following, we develop an analogous concept for the state space &2, with p € [1,2].
We assume that Ag has full support. Let {z;};en C X be fixed such that

(33) S welrhak < M, @ e X,
=1

for some constant M € (0,00). We denote by .Z, (1) the set of symmetric, non-negative
definite, bounded linear operators on [? := L?*(N) and fix a measurable map

K: 2, xX =2, c (L), - llzw)

such that
(39) Crci= [ 1K@, 6Dl Ao(6) < o0
TO LOO(Xvu‘O)
Here, and || - || #(z2) is the operator norm on the space of bounded operators (* — [*. Let e; for

i € N denote the i-th unit vector of /2. We may think of
Kij = (Kejej)p: Py x X =R, i,jeN,

as the coefficients of K.
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For f,g € CH(Ty) we can define I'(f, g) € L*(Ty, A) by
Z [ (60,6000 (67 F6)) 20) (- (T 0) (0, ) ).

Indeed, we can use (3.8), (3.9) and Holder inequality to estimate
(3.10)

Ao |F f9)l

<M/To/ 1K (W(6), 6| £(6) @)

\|K<\If<¢>,¢<'>>Hz<mduoHLw(M|er<¢>||L2<XHX*m>vameﬁxauwdmw

Vg(9) ()| x-dpo(2)dAe(9)

X*

<M

To

< MCx (300 IV SO 55 ) (390 IV9(0) 1 (xxy) <

»€Tp

since p* € [2,00). Hence, the non-negative definite bilinear form

(3.11) E(f.9) = M(T(f,9), f.g€Cy(Ty),
is well-defined.

Remark 3.3. Let u,v € C}(Z,) and ¢ € Ty, pn := ¥(¢). From the chain rule (as stated in
Lemma 3.2) and a transformation of integrals it follows

T(uo W, voW)(g)

—-E:l/‘ﬂw (2)) (x+(Duf(¥(h))(d(x)), zi) x ) (x= (Dv(¥(9))(¢(x)), ;) x ) dpro ()
= 3 [ ) 5 DU 713) s (P02 ) )

Hence, we may define a non-negative definite bilinear form

& (u, )'IA(F( v)), u,v€Cy(P),

= 30 [ o) D)0 2) (e D) 05 ) )

2,j=1

(3.12)

Due to the above remark it holds
(3.13) E(u,v) =Ewo W, vo W), wu,veCHTy).

Theorem 3.4. Assume that Ag has full support and the above defined bilinear form (g, CHTp))

is closable in L*(Ty, Ag) such that its closure (c;("v, @((;“’v)) is a local Dirichlet form. Then the
bilinear form (&,C{(22,)) defined in (3.12) is closable in L*(2,,\), and its closure (&, 2(&))
is a quasi-reqular local Dirichlet form in L*(2,, \) satisfying (3.4).

19



Proof. (a) By (3.10),

E(f, ) = Mo(T(f, f)) < MOy sup |V f(9)]

»€Tp

%(T’ fEC;(TO)

Combining this with (3.13) and applying (1) from Theorem 3.1, the first assertion except the
locality follows.
(b) To prove the locality of (&, Z(&)), it suffices to show that

(3.14) supplu o U] C U~ (supplu]) for u € L*(Z,, A).

If so, then supp[u] N supp[v] = (Z),Nu,v € 2(&), implies supplu o U] N supplv o ¥] = @, so that
(3.4) and the local property of (&, Z(&)) yields

E(u,v) = E(uoV,vo W) =0.

Since ¥ is continuous, for any ¢ € supp[u o U] and any open set U C &2, containing ¥(¢), the
set U~1(U) C Ty is open and contains ¢. Thus, ¢ € supp[u o ¥] and that Ay has full support

imply
/\u!dA—/ |u o W|dAy > 0.
U v-HU)

Hence, ¥(¢) € supplu], i.e. ¢ € U~ (supp|u]). Therefore, (3.14) holds. O

Example 3.5. Let H be a separable Hilbert space continuously embedded into X, such that
we have the Gelfand triple:
X*CH* =HCX.

When p € [1,2], this implies
LP(X = X", p) € LX(X — H,p) € LP(X — X, p)

for p € &,. Let {x;};>1 be an orthonormal basis of H. Then (3.8) holds. A simple choice of
K is the constant field of identity operators, so that (3.11) and (3.12) reduce to

B(f.g) = / (VF(6), Vo(6)) 12 xmmpmdAo(d), f.g € CA(TH),

8u,0) 1= | (Dulu). Dol o), w0 € G,

The closability of (&, C{(Tp)) can be verified in many relevant cases using results from [3], see
Subsection 4.2 for an example. So, Theorem 3.4 applies.

Theorem 3.4 enables us to construct diffusion processes on &2,. In [16] a correspondence
between regular Dirichlet forms and strong Markov processes is built , see [17] for a complete
theory and more references. This is extended in [2], [20] to the quasi regular setting. According
to [10], a quasi regular Dirichlet form becomes regular under one-point compactification.
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According to [20, Definitions IV.1.8, IV.1.13, V.1.10], a standard Markov process
M = (2, 7, (Xi)iz0, (Pu)ue,)
with natural filtration {.%#;};>¢ is called a non-terminating diffusion process on &, if
P.(X. € C([0,00), 2,)) =1 for pe P,

It is called A-tight if there exists a sequence { K, }, of compact sets in 2, such that stopping
times

T, =inf{t >0: X; ¢ K,}, neN
satisty
P,(lim 7, =o00) =1 for A-ae. p€ P,

n—o0

The diffusion process is called properly associated with (&, Z(&)), if for any bounded measur-
able function u : &2, — R and ¢t > 0,

,@palu,l—)/u(Xt)dPu
Q

is a quasi-continuous A-version of Pu, where (P;);>o is the associated Markov semigroup on
L*(Z,, \) associated with (&, 2(&)).

Corollary 3.6. In the situation of Theorem 3.4(1), we have the following assertions.

(1) There exists a non-terminating diffusion process M = (Q, .7, (X¢)i>0, (Py)ue,) on &
which is properly associated with (&, 2(&)). In particular, A is an invariant probability
measure of M.

(2) M solves the martingale problem for (L, Z(L)), i.e. foru € P(L), the additive functional
t
u(Xy) —u(Xop) — / Lu(Xs)ds, t>0,
0

is an {F }-martingale under P, for q.e. p € &,.

Proof. (1) By [20, Theorem IV.3.5 & Theorem V.1.11], the locality and quasi regularity ensured
by Theorem 3.4 imply the existence of a A-tight special standard process

M = (Qa ﬁ: (Xt)t207 (Pu)uei@pU{A})

with state space (£2,, W,,), life time ¢ and filtration {.%;};>¢ (as defined in [20, Chap. IV,
Definition IV.1.5, IV.1.8, IV.1.13, V.1.10]) which meets

P,({we Q:0,{(w)) 2>t~ X;(w) is continuous}) =1 for p € Z,.

and is properly associated with (&, Z(&)) in the sense of [20, Definition 1V.2.5].
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Since 1, € Z(&) and (1»,,15,) = 0, it holds T}15,,= 15, for t > 0. This means there
exists a set N C &, of zero capacity (referring to the 1-capacity associated with &) such that
P,{¢ = o0}) =1 for p € &, \ N. Without loss of generality, &2, \ N may be assumed to
be M-invariant, by virtue of [20, Corollariy IV.6.5]. Considering the restriction M|, \n (see
[20, Remark IV.6.2(i)]) and then applying the procedure described in [20, Chapt.IV, Sect.3,
pp. 117f], re-defining M in such way that each element from N is a trap, we may assume
P,({¢ = o0}) = 1 for all p € &2,. Furthermore, after the procedure of weeding (restricting
the sample space to a subset of ), as explained in [15, Chap. III, Paragraph 2, pp. 86f.], we
may assume that M is non-terminating and continuous, i.e. ((w) = oo and [0,00) — X;(w) a
continuous map for every w € ).

(2) Let w € 2(L) and

t
A Qow— / Lu(Xs(w))ds, t>0.
0
Then, {A;}+>0 is an continuous additive functional of M with zero energy. Moreover,
t
E,(A) — / (ToLw)()ds = (Tyu — u)(i) for A-ae. p € B,
0

Now, the claim follows from [20, Theorem VI.2.5], resp. [17, Theorem 5.2.2|, in combination
with [17, Theorem 5.2.4] and regularization of the Dirichlet form (&, Z(&)) as explained in [20,
Chap. VIJ. O

4 Ornstein-Uhlenbeck type processes

In this section, we study O-U type Dirichlet forms as constructed in Section 3 for Ay being
a non-degenerate Gaussian measure on the tangent space Ty. We first consider the case that
X = H is a separable Hilbert space and p = 2, so that Ty := L*(H — H,ug) is a Hilbert
space, which covers the framework in [23] where H = R? is concerned; then extend to the more
general setting where X is a separable Banach space and p € [1, 00).

4.1 O-U type process on &, over Hilbert space

Let X = H be a separable Hilbert space and consider the quadratic Wasserstein space &,. For
fixed pg € P, the tangent space is Tp := T}, 2 := L*(H — H, uo). Let (A, 2(A)) be a strictly
positive definite self-adjoint linear operator on 7 with pure point spectrum. We denote its
eigenvalues in increasing order with multiplicities by 0 < a; < as,... and the corresponding
unitary eigenvectors {¢, }nen is an orthonormal basis of Ty, which is called the eigenbasis of
(A, 2(A)). We assume that

Z «,, ' < oo,

n=1

which ensures the existence of a centred Gaussian measure G on T;y whose covariance operator is
given by the inverse of A. In following, we identify Tj with £2 using the coordinate representation
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w.r.t. {¢o,}nen, i€
Ty 3 ¢ — ((¢n, O)), e € -

Then, the Gaussian measure G is represented as the product measure

1 2

(4.1) Hmn (On, P)1,)  With  my(dr) := ((;_;>2 exp [— oz,;r ]dr.

According to [23], the corresponding non-degenerate Gaussian measure on &, is defined as
NG =Go ‘If_l

with U : Ty — &5 as in (3.1), which has full support. Moreover, by [3, Theorem 3.10], the
bilinear form

E(f,9) = Mo((Vf,V9)n), f.g€CHT)

is closable in L2(Ty, Ao) and its closure (&, 2(&)) is a local Dirichlet form. Moreover, by [27,
Proposition 3.2], the class of smooth cylindrical functions

FCX(To) = {g((,¥1)m, » (¥n)n) + REN, g € CP(RY), ¥, ..., ¢, € Ty}

is dense in 2(&) w.r.t. (92511/2—norm, so (&, 2(&)) is also the closure of (&, FCr(Th)).
Now, By Theorem 3.4, the bilinear form

&(u,v) = S (Du(p), Dv(p)),, , dA(p), u,v € Cj(%)
Py ’
is closable in in L*(Z2,,A), and the closure (&, 2(&)) is a quasi-regular local Dirichlet form.
Moreover, as shown in [23, Theorem 3.2] that (&, Z(&)) satisfies the log-Sobolev inequality has
a semigroup of compact operators. These results are already implied by the arguments from
23, Theorem 3.2]. Moreover, we have the following consequence of Theorem 3.1(2).

Corollary 4.1. (&, 2(&)) is a quasi-reqular, local Dirichlet form on L*(Z,, P). Its generator
L has purely discrete spectrum with eigenvalues 0 > A\; > Xo..., listed in decreasing order
containing multiplicities. The associated Markov semigroup {T}}i>0 has density {p:}i>o0 with
respect to A and the estimate

i 2e—2ant
(V)2 dA(n) dA(v) = Y e < (1 + —) < oo, t>0,

holds true.

Proof. 1t suffices to verify the estimate for {p;}:>o. For any n € N, let P;* be the O-U process
on R generated by

L, =A—oa,x-V.

It is well known that — L,, has eigenvalues {ka,, }r>0 with Hermit polynomials as eigenfunctions:

an12/2 dk 7Oznw2/2
Hk(m) =€ @e .
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Let p}(x,y) be the heat kernel w.r.t. m,, in (4.1). Then for any n € N and ¢ > 0,

/ pr (z, y) my,(dx)m,(dy) = Ze 2kant
RxR

26_2a”t
(2a,t) AT

(4.2)
< 1 4 e 2ont +/ e 2l < 1 +
1

Noting that Y 77 a; ! < oo implies

Zlog (1—1—

—2apt o0 2872ant
Z 2 >
(6%
n=1 n

we conclude that
) = Hp:tl(xmyn)a X = (xn)7y = (yn) € RN

is a well defined measurable function in L*(m™ x m®), where m™ := [[’~, m,, and

o0

/ p (o, y )P (dx)m=(dy) = [ / g dn)ma(dy) < &,

holds for

- 28_2a"t
= 1 —) < t > 0.
&=11 ( + Qant) A1) =%

neN

Let T; be the O-U semigroup associated with (g, Q(g)) Then for every t > 0, T; has the
following density with respect to G:

pi(9,9) = pi°(x(¢),x(¢)), x(¢) := ({&, dn) 1y Imen,

so that by the spectral representation, see for instance [12], the eigenvalues {o,},en of L

satisfies
(oo}

St = [ 5.6 d6(de) dG(e) <.
n=1 T()XTO
Then the desired assertion is implied by Theorem 3.1(2). O

4.2 O-U type process on &, over Banach space

We go back to the general setting of Example 3.5, where X is a separable Banach space and
H is a separable Hilbert space densely and continuously included in X.

On the tangent space Ty := LP(X — X, o) at po € &, let G be a non-degenerate (not
necessarily centred) Gaussian measure on Ty. We consider the set S of all G-shifted bounded
linear functionals on Tj:

- {w—G(TO*W% ) ETJ}'
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Then, S is a subspace of L*(Ty, G) and we denote its closure w.r.t. || - || z2(z,c) by 5°. Next,
we define J7;; as the subspace of T, comprising all elements ¢ € T, for which there exists an

element 5 € 5 with
| (o506, = Glag 9, -),) }HO AGE) = w0y, for all ¥ € T,

The space J is the Cameron-Martin space of G (see [8, Sect.s 2.2 & 2.4, in part. Lem. 2.4.1]).
It is a Hilbert space equipped with the inner product

(D1, P2) o = <$17$2>L2(T0,G)7 O1, P2 € HG,

which is densely and continuously included in 7j.

Theorem 4.2. Letp € [1,2], H be a separable Hilbert space densely and continuously embedded
into X. Let G be a non-degenerate (not necessarily centred) Gaussian measure on Ty such that

(4.3) He N LA (X — H, ) is dense in L*(X — H, ),

and let A = G o W™t Then the pre-Dirichlet form given by

& (u,v) = /@ (Du(), Dv(p)) r2(x s m AA(1), u,v € Cp (L)

<P

is closable in L*(2,,\), and its closure (&, D(&)) is a quasi-reqular, local Dirichlet form. In
particular, there exists a non-terminating diffusion process

M = (Qv y? (Xt)tzi); (]P),u),ue(@p)
on &, with invariant measure A.

Proof. In view of Example 3.5 together with Theorem 3.4, we only need to verify the closability
of the bilinear form

g(ﬁg) = /T (VI VO r2xomundG, f,g € Cy (To)
0

in L2(Tp, Ao), and its closure (&, Z(&)) is a local Dirichlet form. According to [3], it suffices to
show that every ¢ € H¢ \ {0} is admissible in the sense of [3, Definition 3.4].

By [8, Corollary 2.4.3] the Gaussian G is quasi shift invariant under any element ¢ € #\{0}
and

dG o (id + s¢)~*
dG

() = exp (s5(6) ~ 3546, 00me ), Grae. v € Ty
Then

v = ([ 2O 00} = (L) oo (- %)
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and for any & € Ty,

~

pea(t) = xXo(€-+ 00) = (500 0huc) oo (— GEEL). te

Noting that

t+e
R(peo) = {t eR: / pe.s(s) tds < oo for some & > O} =R,
t

—&

we have

(p§,¢1R\R(pg,¢))(t) =0 for a.e. t,

so that by [3, Theorem 2.2], ¢ is admissible. O
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