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Abstract

To study diffusion processes on the p-Wasserstein space Pp for p ∈ [1,∞) over a
separable, reflexive Banach space X, we present a criterion on the quasi-regularity of
Dirichlet forms in L2(Pp,Λ) for a reference probability Λ on Pp. It is formulated in
terms of an upper bound condition with the uniform norm of the intrinsic derivative.
The condition is easy to check in relevant applications and allows to construct a type
of Ornstein-Uhlenbeck process on Pp. We find a versatile class of quasi-regular local
Dirichlet forms on Pp by using images of Dirichlet forms on the tangent space Lp(X →
X,µ0) at a reference point µ0 ∈ Pp. The Ornstein-Uhlenbeck type Dirichlet form is an
important example in this class. An L2-estimate for the corresponding heat kernel is
derived, based on the eigenvalues of the covariance operator of the underlying Gaussian
measure.
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1 Introduction
As a crucial topic in the crossed field of probability theory, optimal transport and partial
differential equations, stochastic analysis on the Wasserstein space has received much attention.
Some measure-valued diffusion processes have been constructed by using the theory of Dirichlet
forms, see [18, 21, 13, 28, 24] and references therein. The pre-Dirichlet forms are defined by
integrating a square field operator with respect to a reference Borel probability measure Λ
on a topological space, whose points are measures over a Riemannian manifold, or Rd. The
square field operators are determined by the intrinsic or extrinsic derivatives, which describe the
stochastic motion and birth-death of particles respectively. In order to establish the integration
by parts formula ensuring the closability of the pre-Dirichlet form, the selection of reference
measures Λ found in the literature are typically supported on the class of singular measures.
Hence, these do not provide natural options when looking for a suitable substitute for a volume
measure or a Gaussian measure on the set of probability measures. On the other hand, for
stochastic analysis on the Wasserstein space, it is essential to construct a diffusion process
which plays a role of Brownian motion in finite-dimensions, or the Ornstein-Uhlenbeck (O-U
for short) process on a separable Hilbert space. This has been a long standing open problem
due to the lack of a volume or Gaussian measure on such a state space, which could serve
as an invariant measure. As a solution to this problem, [23] presents a general technique to
construct an abundance of ‘Gaussian like’ probability measures on P2(Rd) together with the
related O-U type Dirichlet forms. The construction is very natural as the Gaussian measure
and the related Dirichlet form are obtained as images of the corresponding objects form the
tangent space Tµ0,2 := L2(Rd → Rd, µ0) at a fixed element µ0 ∈ P2. Here, µ0 is chosen as being
absolutely continuous with respect to the Lebesgue measure on Rd.

The main idea of [23] is based on the following fact from the theory of optimal transport,
which can be found in [29] or [4], for example. The set P2 coincides with the image set of

Ψ : Tµ0,2 3 h 7→ µ0 ◦ h−1 ∈ P2.

The map Ψ is 1-Lipschitz continuous with respect to the 2-Wasserstein distance

W2(µ, ν) := inf
π∈C (µ,ν)

(∫
Rd×Rd

|x− y|2 dπ(x, y)
) 1

2

, µ, ν ∈ P2,
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where C (µ, ν) denotes the set of all couplings of µ and ν.
More precisely, let G be a non-degenerate Gaussian measure on the Hilbert space Tµ0,2 with

trace-class covariance operator A−1, where (A,D(A)) is a positive definite self-adjoint operator
in Tµ0,2. The associated O-U process on Tµ0,2 is generated by

(1.1) LOUu(h) := ∆u(h)− 〈A∇u(h), h〉Tµ0,2
, h ∈ Tµ0,2, u ∈ D(LOU) ⊆ L2(Tµ0,2, G).

Here, ∇ and ∆ denote the gradient and Lapalcian on Tµ0,2 respectively. The O-U process
(Xt)t≥0 on the tangent space can be constructed as the mild solution of the corresponding
semi-linear SPDE, i.e.

Xt = e−AtX0 +
√
2

∫ t

0

e−(t−s)AdWs, t ≥ 0,

where Wt is the standard cylindrical Brownian motion on Tµ0,2 (see e.g. [11, Chap. 6]). The
associated O-U Dirichlet form (Ẽ ,D(Ẽ )) is the closure of

Ẽ (u, v) :=

∫
Tµ0,2

〈∇u,∇v〉dG, u, v ∈ C1
b (Tµ0,2).

Now, under the map Ψ, the image of the Gaussian measure G gives a reference measure

NG := G ◦Ψ−1

on P2, which is called the Gaussian measure induced by G. It is proved in [23] that the Ψ-
image (E ,D(E )) of (Ẽ ,D(Ẽ )) is a symmetric conservative local Dirichlet form in L2(P2, NG)
satisfying

(1.2) E (u, v) =

∫
P2

〈Df,Dg〉Tµ0,2
dNG, f, g ∈ C1

b (P2),

where D is the intrinsic derivative on P2, which is first introduced in [1] on the configuration
space over Riemannian manifolds, and see [5] or Definition 2.2 below for the class C1

b (Pp), p ≥ 1.
The form E in (1.2) has the same type as the O-U Dirichlet form on a Hilbert space.

Moreover, as shown in [23], it inherits several nice properties from the O-U Dirichlet form Ẽ on
the tangent space Tµ0,2, including the log-Sobolev inequality and compactness of its semigroup.
The generator of E can be formally represented as the intrinsic Laplacian with a drift. So,
(E ,D(E )) in [23] is called an O-U type Dirichlet form in L2(P2, NG). However, the quasi-
regularity of (E ,D(E )) is still open, up to now. Since quasi-regularity is the key to construct
Markov processes using Dirichlet forms, the existence of the corresponding OU type stochastic
process is still an open problem. As such a process is of wide interest, we prove a handy, general
criterion (see Theorem 2.1 below) for the quasi-regularity of Dirichlet forms on the Wasserstein
space. In particular, we verify the existence of the OU type process.

We will work in a more general framework to construct diffusion processes on the p-
Wasserstein space Pp over a separable, reflexive Banach space for p ∈ [1,∞). Applications to
the O-U type process for p = 2 then serve as a typical and highly relevant example. The proof
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of quasi-regularity is inspired by the methods developed in [25] and [26]. The latter of these two
only presumes a Polish state space. Nevertheless, application of the techniques and verification
of conditions require a detailed analysis which takes into account the special nature and proper-
ties of the metric respectively topology involved. An adaptation to the p-Wasserstein distance,
as realized in this article, is completely new. For the configuration space equipped with the
vague topology, a similar result has been achieved in [19]. Regarding the weak topology on the
set of Borel probability measures over a Polish space, [21] provides a quasi-regularity result.
The latter, however, focusses on Dirichlet forms linked to the extrinsic derivative instead of
the intrinsic. Our main results, Theorems 2.1 & 3.1, relating to the intrinsic derivative and
the p-Wasserstein distance, show quasi-regularity for a wide class of Dirichlet forms with state
space Pp. They imply the existence of a versatile class of diffusion processes on Pp and open
up the door to further stochastic analysis via the theory of Dirichlet forms. The methods of
this survey should also be applicable for the Wasserstein space over non-linear metric spaces
like Riemannian manifolds. To save space we leave this for a future study.

Throughout this text, let (X, ‖ · ‖X) be a separable, reflexive Banach space and P be the
space of probability measures on X. For fixed p ∈ [1,∞), we consider the p-Wasserstein space

(1.3) Pp :=
{
µ ∈ P : µ(‖ · ‖pX) <∞

}
.

As stated in [29, Thm. 6.18], the p-Wasserstein distance

(1.4) Wp(µ, ν) := inf
π∈C (µ,ν)

(∫
X×X

‖x− y‖pX dπ(dx, dy)
) 1

p

, µ, ν ∈ Pp,

yields a complete, separable metric on Pp. Hence, its induced topology is second countable
and in particular Lindelöf. It is worth mentioning, that the metric space (Pp,Wp) is not
locally compact, not even in case X = Rd. We study the quasi-regularity of Dirihlet forms in
L2(Pp,Λ) for a reference probability measure Λ on Pp. A typical example for Λ is the above
mentioned Gaussian measure NG. In particular, the quasi-regularity of O-U type Dirichlet
forms is confirmed.

In Section 2, we present a general condition on the quasi-regularity of Dirichlet forms in
L2(Pp,Λ) by finding a comparison criterion involving the uniform norm of the intrinsic deriva-
tive. In Section 3, we apply this criterion to construct a class of quasi-regular local Dirichlet
forms. These are obtained as images of Dirichlet forms on the tangent space at a fixed point
of the Wasserstein space. Finally, in Section 4 we confirm the quasi-regularity of the O-U type
Dirichlet form and give an L2-estimate for the heat kernel, based on the eigenvalues of the
covariance operator for the underlying Gaussian measure.

2 Quasi-regular Dirichlet forms on Pp

We first recall some notions on Dirichlet forms which can be found in [20].
Let (E, ρ) be a Polish (or slightly more general, Lusin) space and Λ be a σ-finite measure

on the Borel σ-algebra B(E). A Dirichlet form (E ,D(E )) on L2(E,Λ) is a densely defined,
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closed bilinear form, which is Markovian, see for instance [20, Chapt. I]. We denote by Λ(f)
the integral of a function f with respect to the measure Λ and set

E1(f, g) := Λ(fg) + E (f, g), f ∈ D(E ).

For an open set O ⊆ E the 1-Capacity associated to E is defined as

Cap1(O) := inf
{
E1(f, f) : f ∈ D(E ), f(z) ≥ 1 for Λ-a.e. z ∈ O

}
with the convention of inf(∅) := ∞. For an arbitrary set A ⊆ E, let

Cap1(A) := inf
{
Cap1(O) : A ⊆ O, O is an open set in E

}
.

An E -nest (or nest for short) is a sequence of closed subsets {Kn}n∈N of E such that

lim
n→∞

Cap1(E \Kn) = 0.

A measurable function f : E → R is called quasi-continuous, if there exists a nest {Kn}n∈N
such that the restriction f |Kn is continuous for each n ∈ N.

A sequence {fk}k∈N of measurable functions is said to converge quasi-uniformly to a function
f : E → R, if there exists a nest {Kn}n∈N such that the sequence of restricted functions fk|Kn ,
k ∈ N, converge to f |Kn uniformly on Kn as k → ∞ for each n ∈ N.

If a property, which an element z ∈ E either has or doesn’t, holds for all z in the complement
of a set N ⊆ E with Cap1(N) = 0, then this property is said to hold quasi-everywhere (q.-e.)
on E.

Definition 2.1 (Definition 3.1 in [20]). The Dirichlet form (E ,D(E )) is called quasi-regular,
if the following three conditions are met.

1) There exists an E -nest of compact sets (i.e. Cap1( · ) is tight).

2) The Hilbert space D(E ) has a dense subspace consisting of quasi-continuous functions.

3) There exists N ⊆ E with Cap1(N) = 0 and a sequence {fi}i≥1 ⊆ D(E ) of quasi-
continuous functions which separate points in E \ N , i.e. for any two different points
z1, z2 ∈ E \N there exists i ∈ N such that fi(z1) 6= fi(z2).

2.1 A criterion of the quasi-regularity
From now on, we consider (E, ρ) = (Pp,Wp) given in (1.3) and (1.4) for some p ∈ [1,∞).
To prove the quasi-regularity of a Dirichlet form (E ,D(E )) in L2(Pp,Λ), we look at the class
C1

b (Pp) defined as follows by using the intrinsic derivative. This derivative is first introduced
in [1] on the configuration space over a Riemannian manifold, and has been extended in [5] to
Pp over a Banach space.

Let X∗ be the dual space of X, i.e. X∗ is the Banach space of bounded linear functionals
X → R. We write

X∗〈x′, x〉X := x′(x), x′ ∈ X∗, x ∈ X.
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Let p∗ = p
p−1

which is ∞ if p = 1. The tangent space of Pp at a point µ ∈ Pp is defined as

Tµ,p := Lp(X → X,µ).

By virtue of [14, Thm. IV 1.1 & Cor. III 3.4], its dual space T ∗
µ,p can be identified with the

space Lp∗(X → X∗, µ). Accordingly, we write

T ∗
µ,p
〈ϕ′, ϕ〉Tµ,p :=

∫
X

X∗〈ϕ′(x), ϕ(x)〉X µ(dx), ϕ′ ∈ T ∗
µ,p, ϕ ∈ Tµ,p.

Definition 2.2. Let f be a continuous function on Pp.

• f is called intrinsically differentiable, if for every µ ∈ Pp,

Tµ,p 3 ϕ 7→ Dϕf(µ) := lim
ε→0

f(µ ◦ (id+ εϕ)−1)− f(µ)

ε

is a bounded linear functional, and the intrinsic derivative of f at µ is defined as the
unique element Df(µ) ∈ T ∗

µ,p such that

Dϕf(µ) = T ∗
µ,p
〈Df(µ), ϕ〉Tµ,p :=

∫
X

X∗〈Df(µ)(x), ϕ(x)〉X µ(dx), ϕ ∈ Tµ,p.

• We denote f ∈ C1(Pp), if f is intrinsically differentiable such that

lim
∥ϕ∥Tµ,p↓0

|f(µ ◦ (id+ ϕ)−1)− f(µ)−Dϕf(µ)|
‖ϕ‖Tµ,p

= 0, µ ∈ Pp,

and Df(µ)(x) has a continuous version in (µ, x) ∈ Pp ×X, i.e. there exists a continuous
map g : Pp × X → X∗ such that g(µ, · ) is a µ-version of Df(µ) for each µ ∈ Pp. In
this case, we always take Df to be its continuous version, which is unique.

• We write f ∈ C1
b (Pp), if f ∈ C1(Pp) and |f |+ ‖Df‖X∗ is bounded on Pp ×X.

A typical subspace of C1
b (Pp) is the class of cylindrical functions introduced as follows.

First, we recall the continuously differentiable cylindrical functions on the Banach space X:

FC1
b (X) :=

{
g(x′1, · · · , x′n) : n ∈ N, x′i ∈ X∗, g ∈ C1

b (Rn)
}
,

where each x′i : X → R is a bounded linear functional. It is well known that each

ψ := g(x′1, · · · , x′n) ∈ FC1
b (X)

belongs to C1
b (X), since ψ is bounded and Fréchet differentiable on X with bounded and

continuous derivative

∇ψ(x) =
n∑

i=1

(∂ig)
(
X∗〈x′1, x〉X , · · · ,X∗〈x′n, x〉X

)
x′i, x ∈ X.
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Next, we consider the space of continuously differentiable cylindrical functions on Pp:

(2.1) FC1
b (P) :=

{
P 3 µ 7→ g(µ(ψ1), · · · , µ(ψn)) : n ∈ N, ψi ∈ FC1

b (X), g ∈ C1
b (Rn)

}
.

It is clear that for a function f ∈ FC1
b (P) with f(µ) := g(µ(ψ1), · · · , µ(ψn)), its restriction to

Pp which is also denoted by f for simplicity, i.e. the map Pp 3 µ 7→ f(µ) ∈ R, is an element
of C1

b (Pp) with

(2.2) Df(µ)(x) =
n∑

i=1

(∂ig)(µ(ψ1), · · · , µ(ψn))∇ψi(x) ∈ X∗, (µ, x) ∈ Pp ×X.

In the following, we sometimes write FC1
b (Pp) for the restrictions of functions in FC1

b (P) to
Pp. We will see that for any probability measure Λ on Pp, FC1

b (Pp) is dense in L2(Pp,Λ)
(Lemma 2.3 below).

From now on, we identify a Λ-square integrable measurable function f on Pp with its
equivalent class in L2(Pp,Λ) by denoting f ∈ L2(Pp,Λ).

Theorem 2.1. A Dirichlet form (E ,D(E )) in L2(Pp,Λ) is quasi-regular if it satisfies the
following two conditions:

(C1) FC1
b (P) ⊆ D(E ) and there exists a constant C ∈ (0,∞) such that

E (f, f) ≤ C sup
µ∈Pp

‖Df(µ)‖2T ∗
µ,p
, f ∈ FC1

b (P).

(C2) The Hilbert space D(E ) has a dense subspace consisting of quasi-continuous functions.

We would like to indicate that the conditions in Theorem 2.1 are easy to check in appli-
cations. When the Dirichlet form (E ,D(E )) is constructed as the closure (i.e. smallest closed
extension) of a bilinear form defined on C1

b (Pp) or FC1
b (P), the second condition holds auto-

matically, and the first condition holds if there exists a positive function F ∈ L1(Pp,Λ) such
that

E (f, f) ≤
∫

Pp

F (µ)‖Df(µ)‖2T ∗
µ,p
Λ(dµ), f ∈ FC1

b (P).

For example, F (·) may be a dominating function for some diffusion coefficient, see Section 3.2
below.

2.2 Proof of the criterion
We first present some lemmas.

Lemma 2.2. There exists a sequence {ψn}n≥1 ⊆ FC1
b (X) with the following properties.

(i) The family {P(X) 3 µ 7→ µ(ψn)}n∈N separates the points on P, and hence separates the
points on Pp.

(ii) The σ-algebra generated by the family {P(X) 3 µ 7→ µ(ψn)}n∈N coincides with the Borel
σ-algebra B(Pp).
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Proof. Since X is a separable Banach space, there exists a sequence {x′i}i∈N separating the
points on X. Let {ψn}n∈N ⊆ FC1

b (X) consist of all functions

ψ(x) :=
m∏
j=1

x′ij(x)

1 + |x′ij(x)|
∈ [0, 1], x ∈ X,

for m ∈ N and i1, . . . , im ∈ N. Since {ψn}n∈N is closed under multiplication and separates the
points on X, it satisfies (i) according to [6, Theorem 11(b)].

To verify (ii), let σ̄ be the σ-algebra on Pp induced by {µ 7→ µ(ψn)}n∈N, and let σ(τρ)
denote the σ-algebra generated by the family of all open sets τρ w.r.t. to the metric

ρ(µ, ν) :=
∞∑
n=1

2−n|µ(ψn)− ν(ψn)|, µ, ν ∈ Pp.

Then σ(τρ) ⊆ σ̄. Noting that {ψn}n∈N are continuous and uniformly bounded, according to [6,
Lemma 3(a)], property (i) of this lemma implies B(Pp) = σ(τρ), so that B(Pp) ⊆ σ̄. On the
other hand, each ψn is a bounded continuous function on X, so that µ 7→ µ(ψn) is continuous
in Pp, and hence σ̄ ⊆ B(Pp). Therefore, (ii) is satisfied.

Lemma 2.3. The linear space FC1
b (Pp) is dense in L2(Pp,Λ).

Proof. Let A be the class of all subsets A ⊆ Pp given by

A :=
m⋂
i=1

{µ ∈ Pp : µ(ψi) ∈ Bi}

for some m ∈ N, B1, . . . Bm ∈ B(R) and ψ1, . . . , ψm ∈ FC1
b (X). Obviously, A is ∩ -stable,

i.e. A1 ∩ A2 ∈ A for A1, A2 ∈ A . Furthermore, Lemma 2.2(ii) implies that σ(A ) = B(Pp).
Now, let V denote the vector space of real-valued, measurable functions on Pp which coincide
in Λ-a.e. sense with some element of C cyl, the topological closure of FC1

b (Pp) in L2(Pp,Λ).
The claim of this Lemma reads C cyl = L2(Pp,Λ). It suffices to show that V contains every
bounded, measurable function. The monotone class theorem for functions (see [7, Preliminaries,
Theorem 2.3]) yields exactly the desired statement if V meets the following properties:

1) V contains the indicator function 1A for any set A ∈ A .

2) If {fn}n∈N ⊆ V is an increasing sequence of non-negative functions such that f( · ) :=
limn→∞ fn( · ) is bounded on Pp, then f ∈ V .

To show 1), let A ∈ A , and m ∈ N, B1, . . . , Bm ∈ B(R) and ψ1, . . . , ψm ∈ FC1
b (X) such

that
1A(µ) =

m∏
i=1

1Bi
(µ(ψi)), µ ∈ Pp.

If we denote the image measure of Λ under Pp 3 µ 7→ (µ(ψ1), . . . , µ(ψm)) ∈ Rm by Λm, then∫
Pp

∣∣g(µ(ψ1), . . . , µ(ψm))− 1A

∣∣2 Λ(dµ) = ∫
Rm

∣∣∣g(x)− m∏
i=1

1Bi
(xi)

∣∣∣2 dΛm(dx)

8



holds for any g ∈ C1
b (Rm). This implies 1A ∈ V , since C1

b (Rm) is dense in L2(Rm,Λm),
Now, let {fn}n∈N ⊆ V and f be in 2). It remains to show that f ∈ V . For ε > 0 there exists

n ∈ N such that (
∫

Pp
|f − fn|2dΛ)1/2 ≤ ε/2. Since fn ∈ V , we find un ∈ FC1

b (Pp) such that
(
∫

Pp
|fn − un|2dΛ)1/2 ≤ ε/2. Then the Minkowski inequality yields (

∫
Pp

|un − f |2dΛ)1/2 ≤ ε.
Hence, f ∈ V as desired.

To verify the tightness of capacity, we shall construct a class of reference functions. For
a, b ∈ R let a ∨ b := max{a, b}, a ∧ b := min{a, b} and a+ := a ∨ 0. For any l ∈ N, let

(2.3) χl(s) := −3l

2
+

∫ s

−∞

[(t
l
+ 2

)+

∧ 1
]
∧
[(

2− t

l

)+

∧ 1
]

dt, t ∈ R.

Then χl ∈ C1
b (R) with

χl(s) = s for s ∈ [−l, l], and 1[−l,l](s) ≤ χ′
l(s) ≤ 1[−2l,2l](s), s ∈ R.

We recall the notation p∗ := p
p−1

for p ∈ [1,∞) as introduced above.

Lemma 2.4. Assume that Condition (1) in Theorem 2.1 holds. Let Φ ∈ C1
b (R) and γ ∈

C1(R, [0,∞)) such that for some constants a, b ∈ (0,∞) it holds

sup
s∈[0,∞)

|Φ′(s)|(1 + s)
1
p∗ ≤ a and sup

s∈R
|γ′(s)|(1 + γ(s))−

1
p∗ ≤ b.

Then for any m ∈ N, Lipschitz function f on Rm, and x′i ∈ X∗ with ‖x′i‖X∗ = 1 for i = 1, . . . ,m,
the function

u(µ) := Φ
(
µ
(
γ ◦ f(x′1, . . . , x′m)

))
for µ ∈ Pp

belongs to D(E ) with

E (u, u) ≤ C(ab)2
∥∥∥ m∑

i=1

|∂if |
∥∥∥2

L∞(Rm)
.

Proof. (a) We first prove under the additional assumption that f is a bounded function, i.e. f ∈
C1

b (Rm). In this case, γ ◦ f ∈ C1
b (Rm) and the function

u(µ) := Φ
(
µ
(
γ ◦ f(x′1, . . . , x′m)

))
, µ ∈ Pp

is in u ∈ FC1
b (Pp). By (2.2), with

T : X 3 x 7→
(
X∗〈x′1, x〉X , . . . ,X∗〈x′m, x〉X

)
∈ Rm

it holds
Du(µ)(x) = Φ′(µ(γ ◦ f ◦ T )

)
(γ′ ◦ f)(Tx)

m∑
i=1

∂if(Tx) x
′
i

for µ ∈ Pp and x ∈ X. So,

sup
µ∈Pp

‖Du(µ)‖2T ∗
µ,p

≤ (ab)2
∥∥∥ m∑

i=1

|∂if |
∥∥∥2

L∞(Rm)
,
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and the desired assertion follows from Condition (1) in Theorem 2.1.
(b) Next, let f ∈ C1(Rm). For l ∈ N the composition fl := χl ◦ f yields an element of

C1
b (Rm) with |∂ifl(z)| ≤ |∂if(z)| for i = 1, . . . ,m, z ∈ Rm. By what has been shown above, for

each l the function
ul(µ) := Φ

(
µ
(
γ ◦ fl(x′1, . . . , x′m)

))
for µ ∈ Pp

is in D(E ) for l ∈ N with

(2.4) E (ul, ul) ≤ C(ab)2 sup
z∈Rm

( m∑
i=1

|∂if(z)|
)2

.

Clearly, liml→∞ γ ◦ fl(Tx) = γ ◦ f(Tx) for x ∈ X. By the condition on γ we find constants
A,B ∈ (0,∞) such that

(2.5)
∣∣γ ◦ fl(Tx)

∣∣ ≤ A
(
1 + |fl(Tx)|p

)
≤ B

(
1 + ‖x‖X)p

)
, x ∈ X.

Then Lebesgue’s dominated convergence applies and

lim
l→∞

µ(γ ◦ fl ◦ T ) = µ(γ ◦ f ◦ T ), µ ∈ Pp.

Consequently, again by dominated convergence, we conclude liml→∞ ul = u in L2(Pp,Λ). Now,
[20, Lemma I.2.12] yields u ∈ D(E ) and E (u, u) ≤ lim inf l→∞ E (ul, ul) as the sequence {ul}l is
bounded w.r.t. E 1/2

1 -norm in view of (2.4). Since (2.4) delivers the desired upper bound, the
proof is complete.

(c) Finally, let f be a Lipschitz continuous function on Rm. Then, f is weakly differentiable
on Rm with weak partial derivatives ∂if ∈ L∞(Rm). Let h be a non-negative smooth function
on Rm with compact support and

∫
h(z)dz = 1. Then the mollifying approximations {f (n)}n∈N

of f defined by

f (n)(x) := n−m

∫
Rm

f(z)h
(
n(z − x)

)
dz =

∫
Rm

f(x+ n−1z)h(z)dz, x ∈ Rm

satisfies f (n) ∈ C1(Rm), limn→∞ f (n) = f and

sup
n∈N

sup
z∈Rm

m∑
i=1

|∂if (n)(z)| ≤
∥∥∥ m∑

i=1

|∂if(z)|
∥∥∥
L∞(Rn)

,

so that

(2.6) lim
n→∞

γ ◦ f (n)(x′1, . . . , x
′
m) = γ ◦ f(x′1, . . . , x′m),

and by step (b), the functions

u(n)(µ) := Φ
(
µ
(
γ ◦ f (n)(x′1, . . . , x

′
m)

))
, µ ∈ Pp, n ∈ N

belong to D(E ) with

(2.7) sup
n∈N

E (u(n), u(n)) ≤ C(ab)2
∥∥∥ m∑

i=1

|∂if(z)|
∥∥∥2

L∞(Rm)
.

10



Moreover, since f is Lipschitz continuous and h is smooth with compact support, we find
constants A,B ∈ (0,∞) such that (2.5) holds. Thus, by the dominated convergence theorem,
(2.6) implies

lim
n→∞

µ
(
γ ◦ f (n)(x′1, . . . , x

′
m)

)
= µ

(
γ ◦ f(x′1, . . . , x′m)

)
, µ ∈ Pp,

while the definition of u and u(n) with Φ ∈ C1
b (R) yields

lim
n→∞

‖u(n) − u‖L2(Pp,Λ) = 0.

According to [20, Lemma I.2.12], this together with (2.7) finishes the proof.

As an application of Lemma 2.4, we have the following assertion.

Proposition 2.5. Let Φ ∈ C1
b (R) and γ ∈ C1(R, [0,∞)) be as in Lemma 2.4 with constants

a, b ∈ (0,∞). For M ∈ N and y1, . . . , yM ∈ X, define

u(µ) := Φ(µ(γ ◦ g)), µ ∈ Pp,

g(x) := min
{
‖x− yj‖X : 1 ≤ j ≤M

}
, x ∈ X.

Then u ∈ D(E ) with E (u, u) ≤ C(ab)2.

Proof. By Lemma 2.4, we need to approximate the distance function by using f(x′1, · · · , x′m)
for m ∈ N, x′1, · · · , x′m ∈ X∗ and Lipschitz functions f on Rm.

(a) For m ∈ N, r ∈ Rm and subsets I1, . . . , Ik of {1, . . . ,m}, the function

f(z) := min
{
max
i∈Ij

(zi + ri) : j = 1, . . . , k
}
, z ∈ Rm

is Lipschitz continuous with
m∑
i=1

|∂if(z)| = 1 for dz-a.e. z ∈ Rm.

By Lemma 2.4, the associated function u : Pp → R belongs to D(E ) with E (u, u) ≤ C(ab)2.
(b) Let {xk : k ∈ N} be a dense subset of X. For each k ∈ N we choose x′k ∈ X∗ with

‖x′k‖X∗ = 1 and X∗〈x′k, xk〉X = ‖xk‖X . Moreover, let M ∈ N, y1, . . . , yM ∈ X and

gl(x) := min
j=1,...,M

(
max

k=1,...,l
X∗〈x′k, x− yj〉X

)
, x ∈ X, l ∈ N.

As shown in step (a) in the present proof, the function

ul(µ) := Φ(µ(γ ◦ gl)) for µ ∈ Pp

is in D(E ) with E (ul, ul) ≤ C(ab)2. By construction of x′k, k ∈ N, it holds supk∈N X∗〈x′k, x〉X =
‖x‖X for x ∈ X. Consequently,

lim
l→∞

gl(x) = min
{
‖x− yi‖X : j ∈ {1, . . . ,M}

}
=: g(x) for x ∈ X.
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Since supl∈N |gl(x)| ≤ maxj=1,...,M ‖x− yj‖X , we find constants c1, c2 ∈ (0,∞) such that∣∣γ ◦ g(x)
∣∣ ≤ c1

(
1 + |g(x)|p

)
≤ c2

(
1 + ‖x‖X)p

)
, x ∈ X.

So, by Lebesgue’s dominated convergence twice as in the proof of Lemma 2.4, we obtain

lim
l→∞

‖ul − u‖L2(Pp,Λ) = 0.

By [20, Lemma I.2.12], this together with E (ul, ul) ≤ C(ab)2 finishes the proof.

Proof of Theorem 2.1. Lemma 2.2(i) together with (C1) yields the existence of a countable set
{fi}i∈N of quasi-continuous functions in D(E ) which separate points in Pp. So, it suffices to
find a E -nest of compact sets in terms of (C2).

First, we recall a characterization of precompact sets in Pp as stated in [22, Proposition
2.2.3]. The closure w.r.t. Wp of a set A ⊆ Pp is compact if and only

(1) (Uniform Integrability) lim
R→∞

sup
µ∈A

µ
(
‖ · ‖pX1[R,∞)(‖ · ‖X

))
= 0,

(2) (Tightness) for every ε > 0 there is a compact set Y ⊆ X such that sup
µ∈A

µ(Y c) ≤ ε.

With this characterization, we only need to find an E -nests of closed sets {K(i)
n }n∈N for i = 1, 2,

such that (1) holds for A = K
(1)
n and (2) holds for A = K

(2)
n . When this is achieved,

{Kn := K
(1)
n ∩K(2)

n }n∈N is a E -nest of compact sets, and hence the proof is finished. Indeed,
as Cap1 is a Choquet capacity on Pp, it holds

Cap1(X \Kn) = Cap1

((
X \K(1)

n

)
∪
(
X \K(2)

n

))
≤ Cap1

(
X \K(1)

n

)
+ Cap1

(
X \K(2)

n

) n→∞−→ 0.

(a) Construction of {K(1)
n }n∈N. For k ∈ N we let

(2.8) uk(µ) := χ1

(
µ
(
γk(‖ · ‖X)

))
, µ ∈ Pp,

where χ1 is the function from (2.3) with l = 1 and

γk(s) :=
(
1 + [(s− k)+]2

) p
2 − 1, s ∈ R.

It is easy to find constants a, b ∈ (0,∞) independent of k such that conditions in Lemma 2.4
holds for (Φ, γ) = (χ1, γk), k ∈ N. So, Proposition 2.5 implies

sup
k∈N

E (uk, uk) <∞,

and by Lebesgue’s dominated convergence theorem twice as in the proof of Lemma 2.4, we have
uk(µ) → 0 as k → ∞ for each µ ∈ Pp, and

lim
k→∞

Λ(|uk|2) = 0.

12



By [20, Lemma I.2.12], there exists a subsequence {ukl}l∈N such that

(2.9) vm :=
1

m

m∑
k=1

ulk
m→∞−→ 0

strongly in the Hilbert space (D(E ),E1). Then, by [20, Proposition III.3.5], there exists an
E -nest of closed sets {K(1)

n }n≥1 and a subsequence {vmk
}k∈N such that

lim
k→∞

sup
µ∈K(1)

n

vmk
(µ) = 0 for every n ∈ N.

Since {uk}k∈N is a decreasing sequence, it holds vm(µ) ≥ ulm(µ) for every m ∈ N and µ ∈ Pp.
In particular, vmk

(µ) ≥ ulmk
(µ) for µ ∈ Pp and k ∈ N. Now, it follows

lim
k→∞

sup
µ∈K(1)

n

ulmk
(µ) = 0 for every n ∈ N,

which in turn implies

(2.10) lim
k→∞

sup
µ∈K(1)

n

µ
(
γlmk

(‖ · ‖X)
)
= 0 for every n ∈ N.

Next, by the definition of γk we can choose Rk ∈ N for each k ∈ N such that

µ
(
γk(‖ · ‖X)

)
≥ µ

(
‖ · ‖pX 1[Rk,∞)(‖ · ‖X)

)
, µ ∈ Pp.

This together with (2.10) yields that for every n ∈ N,

lim inf
k→∞

sup
µ∈K(1)

n

µ
(
‖ · ‖pX1[Rk,∞)(‖ · ‖X

))
≤ lim inf

k→∞
sup

µ∈K(1)
n

µ
(
γk(‖ · ‖X)

)
= 0.

Thus, (1) holds for A = K
(1)
n as desired.

(b) Construction of {K(2)
n }n∈N. Let {yi}i∈N be a countable dense subset of X, and for each

k ∈ N, let
uk(µ) := µ

(
χ1

(
min

{
‖ · −yi‖X : i = 1, . . . , k

}))
, µ ∈ Pp.

Again, χ1 is the function from (2.3) with l = 1. Noting that χ1

(
min

{
‖ · −yi‖X : i = 1, . . . , k

})
decreases to 0 as k → ∞, by Proposition 2.5 and the dominated convergence theorem, we have

sup
k∈N

E (uk, uk) <∞, lim
k→∞

Λ(|uk|2) = 0.

So, as shown above [20, Lemma I.2.12] and [20, Proposition III.3.5] imply the existence of a
subsequence of {uk}k which converges to zero quasi-uniformly. The arguments, which include
the strong convergence w.r.t. E 1/2

1 of the Césaro means for a suitable subsequence together with
the fact that {uk}k is a decreasing in k, are completely analogous to step (a). Hence, there
exists a nest {K(2)

n }n∈N such that for each n ∈ N the following property holds:

(2.11) For ε > 0 there exists {km}m ⊆ N with sup
µ∈K(2)

n

ukm(µ) ≤
ε

m2m
, m ∈ N.
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It remains to show that K(2)
n satisfies property (2) for fixed n ∈ N. Let m ∈ N, ε > 0 be

arbitrary and km be chosen according to (2.11). Since for r ≤ 1 and s ∈ [0,∞) it holds

χ1(s) ≥ r if and only if s ≥ r,

we estimate

µ
({
x ∈ X : min

({
‖x− yi‖X : i = 1, . . . , km

}
≥ 1

m

})
(2.12)

= µ
({
x ∈ X : χ1

(
min

{
‖x− yi‖X : i = 1, . . . , km

})
≥ 1

m

})
≤ mukm(µ) ≤

ε

2m
, m ∈ N, µ ∈ K(2)

n .

Now we define Y :=
⋂

m∈N Ym for

Ym :=
{
x ∈ X : min

{
‖x− yi‖X : i = 1, . . . , km

}
<

1

m

}
.

Obviously, Y is a totally bounded set in X and hence the closure Y a compact set. This proves
the tightness of K(2)

n , because for any µ ∈ K
(2)
n using (2.12) it holds

µ(X \ Y ) ≤ µ
( ⋃

m∈N

X \ Ym
)
≤

∞∑
m=1

µ(X \ Ym) ≤
∞∑

m=1

ε

2m
= ε

and the choice of ε above is arbitrary.

3 Quasi-regular image Dirichlet forms on Pp

In this section, we prove the quasi-regularity for image Dirichlet forms on Pp under the map

(3.1) Ψ : Tµ0,p 3 ϕ 7→ µ0 ◦ ϕ−1 ∈ Pp

from the tangent space Tµ0,p for a fixed element µ0 ∈ Pp. To shorten notation, we denote

T0 := Tµ0,p = Lp(X → X,µ0), T ∗
0 := T ∗

µ0,p
= Lp∗(X → X∗, µ0).

The map Ψ is Lipschitz continuous, since

Wp(Ψ(ϕ1),Ψ(ϕ2))
p ≤

∫
X×X

‖x− y‖pX dπ(x, y)

=

∫
X

‖ϕ1(x)− ϕ2(x)‖pX dµ0(x) = ‖ϕ1 − ϕ2‖pT0
, ϕ1, ϕ2 ∈ T0.

In the case, where X is a separable Hilbert space and µ0 ∈ Pp is absolutely continuous with
respect to a non-degenerate Gaussian measure, the theory of optimal transport provides that
Ψ is surjective and that for any µ ∈ Pp, there exists a unique ϕµ ∈ T0 such that

µ0 ◦ ϕ−1
µ = µ and Wp(µ0, µ) = ‖id − ϕµ‖T0
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(see [4, Theorem 6.2.10]). Here, ϕµ is called the optimal map from µ0 to µ. In particular, this
holds if X = Rd and µ0 ∈ Pp is absolutely continuous w.r.t. the Lebesgue measure.

Let Λ0 be a probability measure on T0. Then the image measure

Λ := Λ0 ◦Ψ−1

is a probability measure on Pp. The map

L2(Pp,Λ) 3 u 7→ u ◦Ψ ∈ L2(T0,Λ0)

is isometric, i.e.

(3.2) Λ(uv) = Λ0

(
(u ◦Ψ)(v ◦Ψ)

)
, u, v ∈ L2(Pp,Λ).

We would like to infer that, if Ψ is surjective, then choosing Λ0 such that

Λ0(U) > 0 for any non-empty open set U ⊆ T0

results in Λ bearing the analogous property, i.e. takes a strictly positive value on each non-empty
open set in Pp. We refer to this property of Λ (resp. Λ0) as full support.

In the following, a class of quasi-regular Dirichlet forms in L2(Pp,Λ) are constructed by
using the image of Dirichlet forms in L2(T0,Λ). This provides quasi-regular local Dirichlet
forms associated with diffusion processes on Pp.

3.1 Main result
From here on, the Dirichlet forms we consider are assumed to be symmetric. Let (Ẽ ,D(Ẽ ))

be a symmetric Dirichlet form in L2(T0,Λ0), where D(Ẽ ) contains the following defined class
C1

b (T0) of functions on T0.

Definition 3.1. C1
b (T0) consists of all bounded Fréchet differentiable functions f on T0 with

T0 3 ϕ 7→ ∇f(ϕ) ∈ L1(X → X∗, µ0)

continuous, and
sup
ϕ∈T0

‖∇f(ϕ)‖L∞(X→X∗,µ0) <∞.

Note that by the dominated convergence theorem, if f ∈ C1
b (T0) then

T0 3 ϕ 7→ ∇f(ϕ) ∈ Lq(X → X∗, µ0)

is continuous for all q ∈ [1,∞). The main result of this section is the following.

Theorem 3.1. Let Λ0 be Borel probability measure on T0, and let (Ẽ ,D(Ẽ )) be a symmetric
Dirichlet form in L2(T0,Λ0) such that C1

b (T0) ⊆ D(Ẽ ). We have the following assertions.
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(1) It holds

(3.3) C1
b (Pp) ◦Ψ :=

{
u ◦Ψ : u ∈ C1

b (Pp)
}
⊆ C1

b (T0),

and the bilinear form

E (u, v) := Ẽ (u ◦Ψ, v ◦Ψ), u, v ∈ C1
b (Pp)

is closable in L2(Pp,Λ), where Λ := Λ0 ◦Ψ−1. Its closure (E ,D(E )) is a Dirichlet form
satisfying

D(E ) ◦Ψ :=
{
u ◦Ψ : u ∈ D(E )

}
⊆ D(Ẽ ),

E (u, v) = Ẽ (u ◦Ψ, v ◦Ψ), u, v ∈ D(E ).
(3.4)

(2) If the generator (L̃,D(L̃)) of (Ẽ ,D(Ẽ )) has purely discrete spectrum, let {σn}n≥1 be all
eigenvalues of −L̃ listed in the increasing order with multiplicities. Then the generator
(L,D(L)) of (E ,D(E )) also has purely discrete spectrum, and eigenvalues {λn}n≥1 of −L
listed in the same order satisfies λn ≥ σn, n ≥ 1. If moreover

∑∞
n=1 e−σnt < ∞ for t > 0,

then the diffusion semigroup Pt := etL has heat kernel pt(µ, ν) with respect to Λ satisfying∫
Pp×Pp

pt(µ, ν)
2Λ(dµ)Λ(dν) ≤

∞∑
n=1

e−2λnt <∞, t > 0.

(3) If there exists a constant C > 0 such that

(3.5) Ẽ (f, f) ≤ C sup
ϕ∈T0

‖∇f(ϕ)‖2T ∗
0
, f ∈ C1

b (T0),

then (E ,D(E )) is quasi-regular.

To prove (3.3), we need the following chain rule.

Lemma 3.2. If u ∈ C1
b (Pp), then u ◦Ψ ∈ C1

b (T0) with

∇(u ◦Ψ)(ϕ) = Du(Ψ(ϕ)) ◦ ϕ, ϕ ∈ T0.

In particular, ∥∥∇(u ◦Ψ)(ϕ)
∥∥
T ∗
0
=

∥∥Du(Ψ(ϕ))
∥∥
T ∗
Ψ(ϕ),p

, ϕ ∈ T0.

Proof. Let ϕ, ξ ∈ T0. On the probability space (X,B(X), µ0) [5, Theorem 2.1] implies

(u ◦Ψ)(ϕ+ ξ)− (u ◦Ψ)(ϕ) =

∫ 1

0

d
dε(u ◦Ψ)(ϕ+ εξ) dε

=

∫ 1

0
T ∗
0

〈
Du(Ψ(ϕ+ εξ)) ◦ (ϕ+ εξ), ξ

〉
T0
.

16



Combining this with the boundedness and continuity of Df on Pp × X, we may apply the
dominated convergence theorem to deduce

(3.6) lim
∥ξ∥T0↓0

∣∣∣∣(u ◦Ψ)(ϕ+ ξ)− (u ◦Ψ)(ϕ)− T ∗
0

〈
Du(Ψ(ϕ)) ◦ ϕ, ξ

〉
T0

‖ξ‖T0

∣∣∣∣ = 0,

hence u ◦Ψ is Fréchet differentiable on T0 with derivative

(3.7) ∇(u ◦Ψ)(ϕ) = Du(Ψ(ϕ)) ◦ ϕ ∈ T ∗
0

satisfying
‖∇(u ◦Ψ)(ϕ)‖L∞(X→X∗,µ0) ≤ ‖Du‖∞ <∞.

Finally, let {ϕn}n ⊆ T0 and ϕ ∈ T0 such that as n→ ∞,

‖ϕn − ϕ‖T0 :=

(∫
X

‖ϕn − ϕ‖pXdµ0

) 1
p

→ 0.

By the continuity of Ψ : T0 → Pp, and the boundedness and continuity of Du : Pp×X → X∗,
we may apply the dominated convergence theorem to derive

lim
n→∞

∫
X

‖Du(Ψ(ϕn))(ϕn)−Du(Ψ(ϕ))(ϕ)‖X∗dµ0 = 0,

which together with (3.7) yields the continuity of T0 3 ϕ 7→ ∇u(ϕ) ∈ L1(X → X∗, µ0).

Proof of Theorem 3.1. (1) The inclusion (3.3) is ensured by (3.2) and Lemma 3.2. Next, by
Lemma 2.3 and C1

b (Pp) ⊇ FC1
b (Pp), C1

b (Pp) is dense in L2(Pp,Λ), which together with (3.3)
and D(Ẽ ) ⊇ C1

b (T0) implies that

Ψ∗D(Ẽ ) :=
{
u : u ◦Ψ ∈ D(Ẽ )

}
⊇ C1

b (Pp)

is a dense subset of L2(Pp,Λ). So, by [9, Chapt. V],

Ψ∗Ẽ (u, v) := Ẽ (u ◦Ψ, v ◦Ψ), u, v ∈ Ψ∗D(Ẽ )

is a Dirichlet form in L2(Pp,Λ). Since E (u, v) = Ẽ (u◦Ψ, v ◦Ψ) for u, v ∈ C1
b (Pp), this implies

that (E , C1
b (Pp)) is a densely defined closable bilinear form in L2(Pp,Λ), its closure (E ,D(E ))

is a Dirichlet form.
(2) As shown in the proof of [23, Theorem 3.2], if L̃ has purely discrete spectrum, then

Theorem 3.4(2) implies that so does L. Moreover, (3.4) and the Courant-Fisher min-max
principle, for any n ∈ N,

λn = inf
C :n-dim. subspace of D(E )

sup
0 ̸=u∈C

E (u, u)

Λ(u2)

= inf
C :n-dim. subspace of D(E )

sup
0 ̸=u∈C

Ẽ (u ◦Ψ, u ◦Ψ)

Λ0((u ◦Ψ)2)
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≥ inf
C̃ :n-dim. subspace of D(Ẽ )

sup
0 ̸=ũ∈C̃

Ẽ (ũ, ũ)

Λ0(ũ2)
= σn.

So, when
∑∞

n=1 e−2σnt < ∞ for t > 0, by the spectral representation (see for instance [12]), Pt

has heat kernel pt with respect to Λ such that

pt(µ, ν) :=
∞∑
n=1

e−λntun(µ)un(ν), µ, ν ∈ Pp,

and hence ∫
Pp×Pp

pt(µ, ν)
2 dΛ(dµ) dΛ(dν) =

∞∑
n=1

e−2λnt <∞.

(3) Since C1
b (Pp) is a dense subspace of D(E ), the proof of (1) implies Condition (C2) in

Theorem 2.1. Moreover, Lemma 3.2, (3.5) and (3.2) imply (C1). So, the quasi-regularity of
(E ,D(E )) follows from Theorem 2.1.

3.2 Local Dirichlet forms and diffusion processes
In classic theory, the Dirichlet form for a symmetric diffusion process on Rd is of gradient type

E (f, g) =

∫
Rd

〈A∇f,∇g〉Rd dΛ

for a nice probability measure Λ on Rd and a diffusion coefficient A = (aij)1≤i,j≤d.
In the following, we develop an analogous concept for the state space Pp with p ∈ [1, 2].

We assume that Λ0 has full support. Let {xi}i∈N ⊂ X be fixed such that

(3.8)
∞∑
i=1

X∗〈x′, xi〉2X ≤M‖x′‖2X∗ x′ ∈ X∗,

for some constant M ∈ (0,∞). We denote by L+(l
2) the set of symmetric, non-negative

definite, bounded linear operators on l2 := L2(N) and fix a measurable map

K : Pp ×X → L+(l
2) ⊂

(
L (l2), ‖ · ‖L (l2)

)
such that

(3.9) CK :=

∫
T0

∥∥∥‖K(Ψ(ϕ), ϕ( · ))‖L (l2)

∥∥∥
L∞(X,µ0)

dΛ0(ϕ) <∞.

Here, and ‖ · ‖L (l2) is the operator norm on the space of bounded operators l2 → l2. Let ei for
i ∈ N denote the i-th unit vector of l2. We may think of

κi,j := 〈Kei, ej〉l2 : Pp ×X → R, i, j ∈ N,

as the coefficients of K.
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For f, g ∈ C1
b (T0) we can define Γ̃(f, g) ∈ L1(T0,Λ0) by

Γ̃(f, g)(ϕ) :=
∞∑

i,j=1

∫
X

κi,j(Ψ(ϕ), ϕ(x))
(
X∗〈∇f(ϕ)(x), xi〉X

)(
X∗〈∇g(ϕ)(x), xj〉X

)
dµ0(x).

Indeed, we can use (3.8), (3.9) and Hölder inequality to estimate

Λ0(|Γ̃(f, g)|)

(3.10)

≤M

∫
T0

∫
X

‖K(Ψ(ϕ), ϕ(x))‖L (l2)‖∇f(ϕ)(x)‖X∗‖∇g(ϕ)(x)‖X∗dµ0(x)dΛ0(ϕ)

≤M

∫
T0

∥∥∥‖K(Ψ(ϕ), ϕ( · ))‖L (l2)dµ0

∥∥∥
L∞(X,µ0)

‖∇f(ϕ)‖L2(X→X∗,µ0)‖∇g(ϕ)‖L2(X→X∗,µ0)dΛ0(ϕ)

≤MCK

(
sup
ϕ∈T0

‖∇f(ϕ)‖Lp∗ (X→X∗,µ0)

)(
sup
ϕ∈T0

‖∇g(ϕ)‖Lp∗ (X→X∗,µ0)

)
<∞,

since p∗ ∈ [2,∞). Hence, the non-negative definite bilinear form

(3.11) Ẽ (f, g) := Λ0(Γ̃(f, g)), f, g ∈ C1
b (T0),

is well-defined.

Remark 3.3. Let u, v ∈ C1
b (Pp) and ϕ ∈ T0, µ := Ψ(ϕ). From the chain rule (as stated in

Lemma 3.2) and a transformation of integrals it follows

Γ̃(u ◦Ψ, v ◦Ψ)(ϕ)

=
∞∑

i,j=1

∫
X

κi,j(Ψ(ϕ), ϕ(x))
(
X∗〈Duf(Ψ(ϕ))(ϕ(x)), xi〉X

)(
X∗〈Dv(Ψ(ϕ))(ϕ(x)), xj〉X

)
dµ0(x)

=
∞∑

i,j=1

∫
X

κi,j(µ, y)
(
X∗〈Du(µ)(y), xi〉X

)(
X∗〈Dv(µ)(y), xj〉X

)
dµ(y).

Hence, we may define a non-negative definite bilinear form

E (u, v) := Λ(Γ(u, v)), u, v ∈ C1
b (Pp),

Γ(u, v)(µ) :=
∞∑

i,j=1

∫
X

κi,j(µ, x)
(
X∗〈Du(µ)(x), xi〉X

)(
X∗〈Dv(µ)(x), xj〉X

)
dµ(x).(3.12)

Due to the above remark it holds

(3.13) E (u, v) = Ẽ (u ◦Ψ, v ◦Ψ), u, v ∈ C1
b (T0).

Theorem 3.4. Assume that Λ0 has full support and the above defined bilinear form (Ẽ , C1
b (T0))

is closable in L2(T0,Λ0) such that its closure (Ẽ ,D(Ẽ )) is a local Dirichlet form. Then the
bilinear form (E , C1

b (Pp)) defined in (3.12) is closable in L2(Pp,Λ), and its closure (E ,D(E ))
is a quasi-regular local Dirichlet form in L2(Pp,Λ) satisfying (3.4).
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Proof. (a) By (3.10),

Ẽ (f, f) = Λ0

(
Γ̃(f, f)

)
≤MCK sup

ϕ∈T0

‖∇f(ϕ)‖2T ∗
0
, f ∈ C1

b (T0).

Combining this with (3.13) and applying (1) from Theorem 3.1, the first assertion except the
locality follows.

(b) To prove the locality of (E ,D(E )), it suffices to show that

(3.14) supp[u ◦Ψ] ⊆ Ψ−1
(
supp[u]

)
for u ∈ L2(Pp,Λ).

If so, then supp[u] ∩ supp[v] = ∅, u, v ∈ D(E ), implies supp[u ◦ Ψ] ∩ supp[v ◦ Ψ] = ∅, so that
(3.4) and the local property of (Ẽ ,D(Ẽ )) yields

E (u, v) = Ẽ (u ◦Ψ, v ◦Ψ) = 0.

Since Ψ is continuous, for any ϕ ∈ supp[u ◦Ψ] and any open set U ⊆ Pp containing Ψ(ϕ), the
set Ψ−1(U) ⊆ T0 is open and contains ϕ. Thus, ϕ ∈ supp[u ◦ Ψ] and that Λ0 has full support
imply ∫

U

|u| dΛ =

∫
Ψ−1(U)

|u ◦Ψ| dΛ0 > 0.

Hence, Ψ(ϕ) ∈ supp[u], i.e. ϕ ∈ Ψ−1(supp[u]). Therefore, (3.14) holds.

Example 3.5. Let H be a separable Hilbert space continuously embedded into X, such that
we have the Gelfand triple:

X∗ ⊆ H∗ = H ⊆ X.

When p ∈ [1, 2], this implies

Lp∗(X → X∗, µ) ⊆ L2(X → H,µ) ⊆ Lp(X → X,µ)

for µ ∈ Pp. Let {xi}i≥1 be an orthonormal basis of H. Then (3.8) holds. A simple choice of
K is the constant field of identity operators, so that (3.11) and (3.12) reduce to

Ẽ (f, g) :=

∫
T0

〈∇f(ϕ),∇g(ϕ)〉L2(X→H,µ0)dΛ0(ϕ), f, g ∈ C1
b (T0),

E (u, v) :=

∫
Pp

〈Du(µ), Dv(µ)〉L2(X→H,µ)dΛ(µ), u, v ∈ C1
b (Pp).

The closability of (Ẽ , C1
b (T0)) can be verified in many relevant cases using results from [3], see

Subsection 4.2 for an example. So, Theorem 3.4 applies.

Theorem 3.4 enables us to construct diffusion processes on Pp. In [16] a correspondence
between regular Dirichlet forms and strong Markov processes is built , see [17] for a complete
theory and more references. This is extended in [2], [20] to the quasi regular setting. According
to [10], a quasi regular Dirichlet form becomes regular under one-point compactification.
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According to [20, Definitions IV.1.8, IV.1.13, V.1.10], a standard Markov process

M = (Ω,F , (Xt)t≥0, (Pµ)µ∈Pp)

with natural filtration {Ft}t≥0 is called a non-terminating diffusion process on Pp if

Pµ

(
X· ∈ C([0,∞),Pp)

)
= 1 for µ ∈ Pp.

It is called Λ-tight if there exists a sequence {Kn}n of compact sets in Pp such that stopping
times

τn := inf{t ≥ 0 : Xt /∈ Kn}, n ∈ N

satisfy
Pµ

(
lim
n→∞

τn = ∞
)
= 1 for Λ-a.e. µ ∈ Pp.

The diffusion process is called properly associated with (E ,D(E )), if for any bounded measur-
able function u : Pp → R and t > 0,

Pp 3 µ 7→
∫
Ω

u(Xt) dPµ

is a quasi-continuous Λ-version of Ptu, where (Pt)t≥0 is the associated Markov semigroup on
L2(Pp,Λ) associated with (E ,D(E )).

Corollary 3.6. In the situation of Theorem 3.4(1), we have the following assertions.

(1) There exists a non-terminating diffusion process M = (Ω,F , (Xt)t≥0, (Pµ)µ∈Pp) on Pp

which is properly associated with (E ,D(E )). In particular, Λ is an invariant probability
measure of M.

(2) M solves the martingale problem for (L,D(L)), i.e. for u ∈ D(L), the additive functional

u(Xt)− u(X0)−
∫ t

0

Lu(Xs)ds, t ≥ 0,

is an {Ft}t-martingale under Pµ for q.e. µ ∈ Pp.

Proof. (1) By [20, Theorem IV.3.5 & Theorem V.1.11], the locality and quasi regularity ensured
by Theorem 3.4 imply the existence of a Λ-tight special standard process

M = (Ω,F , (Xt)t≥0, (Pµ)µ∈Pp∪{∆})

with state space (Pp,Wp), life time ζ and filtration {Ft}t≥0 (as defined in [20, Chap. IV,
Definition IV.1.5, IV.1.8, IV.1.13, V.1.10]) which meets

Pµ({ω ∈ Ω : [0, ζ(ω)) 3 t 7→ Xt(ω) is continuous}) = 1 for µ ∈ Pp.

and is properly associated with (E ,D(E )) in the sense of [20, Definition IV.2.5].
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Since 1Pp ∈ D(E ) and E (1Pp ,1Pp) = 0, it holds Tt1Pp ,= 1Pp for t ≥ 0. This means there
exists a set N ⊆ Pp of zero capacity (referring to the 1-capacity associated with E ) such that
Pµ({ζ = ∞}) = 1 for µ ∈ Pp \ N . Without loss of generality, Pp \ N may be assumed to
be M-invariant, by virtue of [20, Corollariy IV.6.5]. Considering the restriction M|Pp\N (see
[20, Remark IV.6.2(i)]) and then applying the procedure described in [20, Chapt.IV, Sect.3,
pp. 117f.], re-defining M in such way that each element from N is a trap, we may assume
Pµ({ζ = ∞}) = 1 for all µ ∈ Pp. Furthermore, after the procedure of weeding (restricting
the sample space to a subset of Ω), as explained in [15, Chap. III, Paragraph 2, pp. 86f.], we
may assume that M is non-terminating and continuous, i.e. ζ(ω) = ∞ and [0,∞) 7→ Xt(ω) a
continuous map for every ω ∈ Ω.

(2) Let u ∈ D(L) and

At : Ω 3 ω 7→
∫ t

0

Lu(Xs(ω))ds, t ≥ 0.

Then, {At}t≥0 is an continuous additive functional of M with zero energy. Moreover,

Eµ(At) =

∫ t

0

(TsLu)(µ)ds = (Ttu− u)(µ) for Λ-a.e. µ ∈ Pp.

Now, the claim follows from [20, Theorem VI.2.5], resp. [17, Theorem 5.2.2], in combination
with [17, Theorem 5.2.4] and regularization of the Dirichlet form (E ,D(E )) as explained in [20,
Chap. VI].

4 Ornstein-Uhlenbeck type processes
In this section, we study O-U type Dirichlet forms as constructed in Section 3 for Λ0 being
a non-degenerate Gaussian measure on the tangent space T0. We first consider the case that
X = H is a separable Hilbert space and p = 2, so that T0 := L2(H → H,µ0) is a Hilbert
space, which covers the framework in [23] where H = Rd is concerned; then extend to the more
general setting where X is a separable Banach space and p ∈ [1,∞).

4.1 O-U type process on P2 over Hilbert space
Let X = H be a separable Hilbert space and consider the quadratic Wasserstein space P2. For
fixed µ0 ∈ P2, the tangent space is T0 := Tµ0,2 := L2(H → H,µ0). Let (A,D(A)) be a strictly
positive definite self-adjoint linear operator on T0 with pure point spectrum. We denote its
eigenvalues in increasing order with multiplicities by 0 < α1 ≤ α2, . . . and the corresponding
unitary eigenvectors {ϕn}n∈N is an orthonormal basis of T0, which is called the eigenbasis of
(A,D(A)). We assume that

∞∑
n=1

α−1
n <∞,

which ensures the existence of a centred Gaussian measure G on T0 whose covariance operator is
given by the inverse of A. In following, we identify T0 with ℓ2 using the coordinate representation
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w.r.t. {ϕn}n∈N, i.e.
T0 3 ϕ

≃7−→
(
〈ϕn, ϕ〉T0

)
n∈N ∈ ℓ2.

Then, the Gaussian measure G is represented as the product measure

(4.1) G(dϕ) :=
∞∏
n=1

mn(d〈ϕn, ϕ〉T0) with mn(dr) :=
(αn

2π

) 1
2
exp

[
− αnr

2

2

]
dr.

According to [23], the corresponding non-degenerate Gaussian measure on P2 is defined as

NG := G ◦Ψ−1

with Ψ : T0 → P2 as in (3.1), which has full support. Moreover, by [3, Theorem 3.10], the
bilinear form

Ẽ (f, g) := Λ0(〈∇f,∇g〉T0), f, g ∈ C1
b (T0)

is closable in L2(T0,Λ0) and its closure (Ẽ ,D(Ẽ )) is a local Dirichlet form. Moreover, by [27,
Proposition 3.2], the class of smooth cylindrical functions

FC∞
b (T0) :=

{
g(〈·, ψ1〉T0 , · · · , 〈·, ψn〉T0) : n ∈ N, g ∈ C∞

b (Rn), ψ1, . . . , ψn ∈ T0
}

is dense in D(Ẽ ) w.r.t. Ẽ 1/2
1 -norm, so (Ẽ ,D(Ẽ )) is also the closure of (Ẽ ,FC∞

b (T0)).
Now, By Theorem 3.4, the bilinear form

E (u, v) :=

∫
P2

〈
Du(µ), Dv(µ)

〉
Tµ,2

dΛ(µ), u, v ∈ C̃1
b (P2)

is closable in in L2(Pp,Λ), and the closure (E ,D(E )) is a quasi-regular local Dirichlet form.
Moreover, as shown in [23, Theorem 3.2] that (E ,D(E )) satisfies the log-Sobolev inequality has
a semigroup of compact operators. These results are already implied by the arguments from
[23, Theorem 3.2]. Moreover, we have the following consequence of Theorem 3.1(2).

Corollary 4.1. (E ,D(E )) is a quasi-regular, local Dirichlet form on L2(P2, P ). Its generator
L has purely discrete spectrum with eigenvalues 0 > λ1 ≥ λ2 . . . , listed in decreasing order
containing multiplicities. The associated Markov semigroup {Tt}t≥0 has density {pt}t≥0 with
respect to Λ and the estimate∫

P2×P2

pt(µ, ν)
2 dΛ(µ) dΛ(ν) =

∞∑
n=1

e2λnt ≤
∏
n∈N

(
1 +

2e−2αnt

(2αnt) ∧ 1

)
<∞, t > 0,

holds true.

Proof. It suffices to verify the estimate for {pt}t≥0. For any n ∈ N, let P n
t be the O-U process

on R generated by
Ln := ∆− αnx · ∇.

It is well known that −Ln has eigenvalues {kαn}k≥0 with Hermit polynomials as eigenfunctions:

Hk(x) := eαnx2/2 dk

dxk e−αnx2/2.
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Let pnt (x, y) be the heat kernel w.r.t. mn in (4.1). Then for any n ∈ N and t > 0,∫
R×R

pnt (x, y)
2mn(dx)mn(dy) =

∞∑
k=0

e−2kαnt

≤ 1 + e−2αnt +

∫ ∞

1

e−2αntsds ≤ 1 +
2e−2αnt

(2αnt) ∧ 1
.

(4.2)

Noting that
∑∞

n=1 α
−1
n <∞ implies

∞∑
n=1

log
(
1 +

2e−2αnt

(2αnt) ∧ 1

)
≤

∞∑
n=1

2e−2αnt

(2αnt) ∧ 1
<∞,

we conclude that

p∞t (x,y) :=
∞∏
n=1

pnt (xn, yn), x = (xn),y = (yn) ∈ RN

is a well defined measurable function in L2(m∞ ×m∞), where m∞ :=
∏∞

n=1mn, and∫
p∞t (x,y)2m∞(dx)m∞(dy) =

∞∏
n=1

∫
R×R

pnt (x, y)
2mn(dx)mn(dy) ≤ ξ̃t,

holds for
ξ̃t :=

∏
n∈N

(
1 +

2e−2αnt

(2αnt) ∧ 1

)
<∞, t > 0.

Let T̃t be the O-U semigroup associated with (Ẽ ,D(Ẽ )). Then for every t > 0, T̃t has the
following density with respect to G:

p̃t(ϕ, ϕ
′) = p∞t (x(ϕ),x(ϕ′)), x(ϕ) := (〈ϕ, ϕn〉T0)n∈N,

so that by the spectral representation, see for instance [12], the eigenvalues {σn}n∈N of −L̃
satisfies

∞∑
n=1

e−2tσn =

∫
T0×T0

p̃t(ϕ, ϕ
′)2 dG(dϕ) dG(ϕ′) ≤ ξ̃t.

Then the desired assertion is implied by Theorem 3.1(2).

4.2 O-U type process on Pp over Banach space
We go back to the general setting of Example 3.5, where X is a separable Banach space and
H is a separable Hilbert space densely and continuously included in X.

On the tangent space T0 := Lp(X → X,µ0) at µ0 ∈ Pp, let G be a non-degenerate (not
necessarily centred) Gaussian measure on T0. We consider the set S of all G-shifted bounded
linear functionals on T0:

S :=
{
ψ −G

(
T ∗
0
〈ψ, · 〉T0

)
: ψ ∈ T ∗

0

}
.
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Then, S is a subspace of L2(T0, G) and we denote its closure w.r.t. ‖ · ‖L2(T0,G) by S G. Next,
we define HG as the subspace of T0 comprising all elements ϕ ∈ T0 for which there exists an
element ϕ̂ ∈ S

G with∫
T0

(
T ∗
0
〈ψ, ξ〉T0

−G
(
T ∗
0
〈ψ, · 〉T0

))
ϕ̂(ξ) dG(ξ) = T ∗

0
〈ψ, ϕ〉T0

for all ψ ∈ T ∗
0 .

The space HG is the Cameron-Martin space of G (see [8, Sect.’s 2.2 & 2.4, in part. Lem. 2.4.1]).
It is a Hilbert space equipped with the inner product

〈ϕ1, ϕ2〉HG
:= 〈ϕ̂1, ϕ̂2〉L2(T0,G), ϕ1, ϕ2 ∈ HG,

which is densely and continuously included in T0.

Theorem 4.2. Let p ∈ [1, 2], H be a separable Hilbert space densely and continuously embedded
into X. Let G be a non-degenerate (not necessarily centred) Gaussian measure on T0 such that

(4.3) HG ∩ L2(X → H,µ0) is dense in L2(X → H,µ0),

and let Λ = G ◦Ψ−1. Then the pre-Dirichlet form given by

E (u, v) :=

∫
Pp

〈Du(µ), Dv(µ)〉L2(X→H,µ) dΛ(µ), u, v ∈ C1
b (Pp)

is closable in L2(Pp,Λ), and its closure (E ,D(E )) is a quasi-regular, local Dirichlet form. In
particular, there exists a non-terminating diffusion process

M = (Ω,F , (Xt)t≥0, (Pµ)µ∈Pp)

on Pp with invariant measure Λ.

Proof. In view of Example 3.5 together with Theorem 3.4, we only need to verify the closability
of the bilinear form

Ẽ (f, g) :=

∫
T0

〈∇f,∇g〉L2(X→H,µ0)dG, f, g ∈ C1
b (T0)

in L2(T0,Λ0), and its closure (Ẽ ,D(Ẽ )) is a local Dirichlet form. According to [3], it suffices to
show that every ϕ ∈ HG \ {0} is admissible in the sense of [3, Definition 3.4].

By [8, Corollary 2.4.3] the GaussianG is quasi shift invariant under any element ϕ ∈ HG\{0}
and

dG ◦ (id+ sϕ)−1

dG (ψ) = exp
(
sϕ̂(ψ)− 1

2
s2〈ϕ, ϕ〉HG

)
, G-a.e. ψ ∈ T0.

Then

χϕ(ψ) :=

(∫
R

dG ◦ (id+ sϕ)−1

dG (ψ)ds
)−1

=
( 1

2π
〈ϕ, ϕ〉HG

) 1
2
exp

(
− ϕ̂(ψ)2

2〈ϕ, ϕ〉HG

)
,
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and for any ξ ∈ T0,

ρξ,ϕ(t) := χϕ(ξ + tϕ) =
( 1

2π
〈ϕ, ϕ〉HG

) 1
2
exp

(
− ϕ̂(ξ + tϕ)2

2〈ϕ, ϕ〉HG

)
, t ∈ R.

Noting that

R(ρξ,ϕ) :=

{
t ∈ R :

∫ t+ε

t−ε

ρξ,ϕ(s)
−1 ds <∞ for some ε > 0

}
= R,

we have
(ρξ,ϕ1R\R(ρξ,ϕ))(t) = 0 for a.e. t,

so that by [3, Theorem 2.2], ϕ is admissible.
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