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Abstract

In this paper, we study the quasi-invariant property of a class of
non-Gaussian measures. These measures are associated with the fam-
ily of generalized grey Brownian motions. We identify the Cameron–
Martin space and derive the explicit Radon-Nikodym density in terms
of the Wiener integral with respect to the fractional Brownian motion.
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Moreover, we show an integration by parts formula for the deriva-
tive operator in the directions of the Cameron–Martin space. As a
consequence, we derive the closability of both the derivative and the
corresponding gradient operators.
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1 Introduction
The main goal of this paper (see Theorem 3.5 below) is to prove the Cameron–
Martin theorem for the class of non-Gaussian processes, called generalized
grey Brownian motion (ggBm) denoted by Bβ,α, 0 < β ≤ 1 and 0 < α ≤
2. Specifically, we are looking for suitable (random) shifts ξ such that the
distributions of Bβ,α and Bβ,α + ξ are equivalent. In other words, we are
studying the quasi-invariance property of the ggBm law.

W. Schneider [Sch90a, Sch90b, Sch92] was the first to introduce this type
of process, which he called grey Brownian motion (gBm). This provided
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stochastic models for slow-anomalous diffusion. A. Mura then extended this
to ggBm, which can be used as non-Markovian stochastic models for either
slow or fast-anomalous diffusion; see [Mur08]. The remarkable characteristic
of ggBm is that it can be expressed in terms of Bα/2, a fractional Brownian
motion (fBm) with Hurst parameter α/2. The first representation of ggBm
is given in [MP08] as the product of fBm Bα/2 and a non-negative random
variable Yβ with M -Wright density function (see Subsection 2.3 below for
details), that is, {

Bβ,α(t) t ≥ 0
} L
=
{√

YβB
α/2(t), t ≥ 0

}
, (1)

where L
= means equality in law. The representation (1) is particularly inter-

esting since it allows us to infer a variety of properties of ggBm Bβ,α from
those of fBm Bα/2. For example, the Hölder continuity of the trajectories.

An alternative representation of ggBm is given in terms of a subordina-
tion of fBm. The stochastic representation through subordinated processes
is very natural, as it gives a direct physical interpretation, see Remark 9.3 in
[Mur08]. However, the subordinated representations already given for ggBm
in [MTM08, dSE15, dSE20] represent ggBm only in one dimensional time
marginal law. Therefore, they cannot characterize the complete stochas-
tic structure of the process, nor can they substitute ggBm when more than
one marginal law is involved, as in the Cameron-Martin theorem. So, an-
other representation involving finite-dimensional distributions is needed for
the problem that concerns us here. Our investigation yields the following
representation (see Proposition 2.14){

Bβ,α(t) t ≥ 0
} L
=
{
Bα/2(tY

1/α
β ), t ≥ 0

}
, (2)

which allows us to achieve the main goal of the paper, that is, the Cameron–
Martin theorem for ggBm, the integration by parts formula, and the clos-
ability of the derivative and gradient operators, see Sections 3 and 4 below.
Let us now explain the approach we adopt.

First, the general setting is as follows: Let W be the classical Wiener
space, B(W) its Borel σ-algebra, and H = α/2 ∈ [1/2, 1). Furthermore, let
PH be the unique probability measure on W such that the canonical process
WH is a fBm. The distribution of the random variable Yβ is denoted by PYβ

and Yβ can be realized on R+ as the identity map

Yβ : R+ −→ R+, τ 7→ Yβ(τ) := τ. (3)

3



The ggBm is realized on the probability space
(
W×R+,B(W)⊗B(R+),PH⊗

PYβ

)
as the canonical process Xβ,2H defined by

Xβ,2H(t)(w, τ) = WH
(
tY1/(2H)

β (τ)
)
(w) = w

(
tτ 1/(2H)

)
, t, τ ∈ R+, w ∈ W.

After considering three essential elements - the representation (2) for ggBm,
the Cameron–Martin type theorems for fBm, and subordinated Bm ([DS15])
- we conclude that the natural choice for ξ is h(tYβ), t ≥ 0, where h ∈
Hα/2. Here Hα/2 is the Cameron–Martin space associated with fBm Bα/2; see
Subsection 2.2. Our proof is based on an appropriate use of the exponential
martingale and the Cameron–Martin theorem for fBm.

It is a well-known fact that an important consequence of the quasi-
invariant property is the integration by parts formula. This is what we have
obtained in Theorems 4.3 and 4.8 for the partial derivative of a bounded
smooth cylinder functions F : W × R+ −→ R in the direction of h ∈ HH

defined by

(∂1,hF )(w, τ) := lim
ε→0

F (w + εh, τ)− F (w, τ)

ε
, w ∈ W, τ ∈ R+.

Finally, using the integration by parts formula, we prove in Theorem 4.10
the closability on Lp(W × R+, σ

(
Xβ,2H(t), t ∈ [0, T ]

)
,PH ⊗ PYβ

), p ≥ 1, of
the gradient ∇1, the unique element in HH verifying

(∂1,hF )(w, τ) =
(
∇1F (w, τ), h

)
HH

, w ∈ W, τ ∈ R+,

where (·, ·)HH
denotes the inner product given in Eq. (8); see also the diagram

in Fig. 1.
The paper is organized as follows. In Section 2 we recall the definition and

key properties of fBm that will be needed later. The Cameron–Martin space
of the fBm is recalled and characterized in some detail. The Wiener integral
with respect to fBm and the Cameron–Martin theorem of fBm are presented.
The class of ggBm is described as well as their canonical realization. In
Section 3 we show the main results of the paper concerning the Cameron–
Martin theorem for the class of ggBm. Section 4 contains an integration by
parts formula of the derivative in the directions of the Cameron-Martin space
and the closability of both the derivative and the corresponding gradient.

Notation. In what follows, we denote by (Ω,F ,P) a complete probability
space. In addition, we consider the Hilbert space L2(λ) := L2(R+, λ;R), of
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real-valued square integrable Borel functions on R+ with respect to (w.r.t.)
the Lebesgue measure λ. The scalar product in L2(λ) is denoted by (·, ·)2
and the associated norm by ∥ · ∥2. By (W,B(W)) we denote the classical
Wiener space. More precisely, the path space

W =
{
w : R+ −→ R | w is continuous and w(0) = 0

}
,

endowed with the locally uniform convergence topology and B(W) denotes
the associated Borel σ-algebra. Furthermore, for every T > 0, we define

WT :=
{
w↾[0,T ] | w ∈ W

}
,

where w↾[0,T ] is the restriction of w to the interval [0, T ]. For a continuous
process X, by PX we mean the law of the process X on W.

2 Preliminaries
In this section, we discuss the types of processes we are working with, namely
the fBm and ggBm. In addition, the Cameron–Martin space and the Wiener
integral w.r.t. fBm are reviewed. Finally, two useful representations of ggBm
and its canonical realization are shown.

2.1 Fractional Brownian Motion

In this subsection, we review the definition and important properties of the
fBm motion that are necessary for what follows. For more details, see, for
example, the book [Mis08], and references therein.

Definition 2.1 (Fractional Brownian motion). A (one-side, normalized) fBm
with Hurst index H ∈

[
1/2, 1) is a Gaussian process BH =

{
BH(t), t ∈ R+

}
on (Ω,F ,P), satisfying the properties

1. BH(0) = 0, P-a.s., that is, BH starts at zero almost surely.

2. E[BH(t)] = 0, t ∈ R+, the process BH is centered.

3. The covariance kernel RH of BH is given, for any s, t ∈ R+, by

RH(t, s) := E
[
BH(t)BH(s)

]
=

1

2

(
t2H + s2H − |t− s|2H

)
. (4)
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Remark 2.2. 1. Note that E
[(
BH(t)− BH(s)

)2]
= |t− s|2H and BH is a

Gaussian process, then BH has a modification with continuous trajec-
tories, according to the Kolmogorov theorem. We will always consider
such a modification and keep the same notation.

2. In general, for every n ≥ 1, it holds

E
[
|BH(t)−BH(s)|n

]
=

√
2nπ−1Γ

(
n+ 1

2

)
|t− s|nH .

3. For H = 1/2 the process B1/2 becomes the standard Brownian motion
(Bm) with covariance kernel R1/2(t, s) = t ∧ s.

4. For any a > 0, the process {a−HBH(at), t ∈ R+} has the same distri-
bution as BH . In other words, BH is a H-self-similar process.

5. The characteristic function has the form

Cλ(t) := E

[
exp

(
i

n∑
k=1

λkB
H(tk)

)]
= exp

(
−1

2

(
λ,ΣH(t)λ

⊤)) ,

where λ = (λ1, . . . , λn) ∈ Rn, λ⊤ is the transpose of λ, tk ≥ 0, k =
1, . . . , n, ΣH(t) = (RH(tk, tj))

n
k,j=1 is the covariance matrix and (·, ·) is

the scalar product on Rn.

6. We denote by PH := PBH the unique probability measure in (W,B(W))
such that the canonical process

W (t)(w) := w(t), ∀t ≥ 0, w ∈ W,

is a fractional Brownian motion which we denote by WH . For H = 1/2,
P1/2 becomes the Wiener measure.

The integral representation of the covariance kernel RH plays an impor-
tant role in the construction of the Cameron–Martin space introduced in the
following. We state this representation of RH in the following lemma.

Lemma 2.3 (cf. [DU99] Lemma 3.1). The covariance kernel RH (also called
reproducing kernel Hilbert space (RKHS)) has the following integral repre-
sentation

RH(t, s) =

∫ t∧s

0

KH(t, r)KH(s, r) dr, t, s ≥ 0. (5)

The corresponding kernel KH is given by
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1. For H = 1/2
K1/2(t, r) = 1[0,t](r). (6)

2. For H ∈ (1/2, 1) (see Lemma 4.3 in [Dec22])

KH(t, r) =
r1/2−H

Γ(H − 1/2)

∫ t

r

uH−1/2(u− r)H−3/2 du1(0,t](r). (7)

2.2 Wiener Integral with Respect to Fractional Brown-
ian Motion

Now we introduce the Cameron–Martin space of the fBm with H ≥ 1/2.
It plays an important role in defining the Wiener integral w.r.t. fBm and
the Cameron–Martin theorem below; more details can be found in [BP88],
[Dec22] and the references therein.

Definition 2.4 (Cameron-Martin space of the fBm). Let RH be the vector
space spanned by the covariance kernel RH , that is,

RH := span{RH(t, ·) | t ≥ 0}

equipped with the scalar product(
RH(t ·), RH(s, ·)

)
RH

:= RH(t, s). (8)

The Cameron–Martin space of the fBm with Hurst index H, denoted by HH ,
is the completion of RH with respect to the norm associated with the scalar
product (8).

Remark 2.5. The Cameron–Martin space, as defined above, is not very prac-
tical. It is possible to have a more suitable characterization of HH , see
Theorem 3.3 in [DU99] (in the special case of the time interval [0, 1]) or
Theorem 3.1 in [BP88] for a general time interval.

Therefore, our goal is to obtain a more convenient description of the
Cameron–Martin space HH . To this end, we first introduce the linear oper-
ator KH associated with the kernel KH . More precisely, for every f ∈ L2(λ),
we define

(KHf)(t) :=

∫ t

0

KH(t, s)f(s) ds.
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Note that using (5), the covariance kernel RH is the image of KH(t, ·) under
KH , that is,

KH(KH(t, ·))(s) = RH(t, s), t, s ≥ 0. (9)

Hence KH(t, ·) ∈ L2(λ) for any t ≥ 0, indeed

∥KH(t, ·)∥22 = RH(t, t) = t2H ,

ensuring that the operator KH is well-defined on L2(λ) for every t ≥ 0. This
implies that

KH(KH) = RH , (10)

where KH is the vector space spanned by the kernel KH(t, ·), that is,

KH := span{KH(t, ·) | t ≥ 0}.

Using the explicit forms of KH in (6), (7) and applying the Fubini theorem
(when H > 1/2), KHf can be expressed as follows, with t ≥ 0

(KHf)(t) =


∫ t

0

f(s) ds, H =
1

2
, (11a)

∫ t

0

xH−1/2

Γ(H − 1/2)

∫ x

0

(x− r)H−3/2r1/2−Hf(r) dr dx, H >
1

2
. (11b)

See, for example, [DU99] for (11b). It is not hard to see from the equalities
(11a) and (11b) that

∀t ≥ 0,

∫ t

0

KH(t, s)f(s) ds = 0 =⇒ f = 0, a.e. (12)

meaning that the operator KH is one-to-one and KH is dense in L2(λ) for
H ≥ 1/2. As a consequence, KH : L2(λ) −→ KH

(
L2(λ)

)
is a bijective

isometry when KH

(
L2(λ)

)
is provided with the scalar product

(KHh,KHg)KH(L2(λ)) := (h, g)2, h, g ∈ L2(λ).

On the other hand, (10) and (12) imply that

KH :
(
KH , (·, ·)2

)
−→

(
RH , (·, ·)RH

)
8



(
KH , ∥ · ∥2

) (
L2(λ), ∥ · ∥2

) (
KH

(
L2(λ)

)
, ∥ · ∥KH(L2(λ))

)

(
RH , ∥ · ∥RH

) (
HH , ∥ · ∥HH

)

i

KH

KH

K̃H

Completion

KH◦K̃−1
H

Figure 1: Diagram with the identification of the Cameron–Martin space.
An arrow with a hook means that the map is one-to-one. A double head
indicates that the map is onto or its range is dense. Two arrows pointing in
opposite directions means that the map is an isometric isomorphism. K̃H is
the extension of KH to the complete space L2(λ).

is a bijective isometry. By a density argument, KH is extended to an isomor-
phism between the Hilbert spaces L2(λ) and HH , that is,

K̃H :
(
L2(λ), (·, ·)2

)
−→

(
HH , (·, ·)HH

)
.

The commutative diagram in Fig. 1 summarizes the above considerations
and enhances the understanding of the identification of the Cameron–Martin
space.

We are ready to state the following useful characterization of the Cameron–
Martin space.

Theorem 2.6 (Characterization of HH). The Cameron–Martin space HH

can be identified with KH(L
2(λ)), the space of functions h = KH ḣ, ḣ ∈ L2(λ),

given by

h(t) = (KH ḣ)(t) =

∫ t

0

KH(t, s)ḣ(s) ds, t ≥ 0, (13)

equipped with the inner product (·, ·)KH(L2(λ)).

Remark 2.7. 1. With the identification given in (13), for every h ∈ HH

the function ḣ ∈ L2(λ) is given by ḣ := K−1
H h.

2. In the special case H = 1/2, H1/2 is the well-known space AC(R+,R)
of absolutely continuous functions, vanishing at 0, whose derivative
belongs to L2(λ). The representation (13) takes the form

h(t) =

∫ t

0

ḣ(s) ds, t ≥ 0, (14)
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where ḣ is the derivative in the sense of distributions of h.
We introduce the Wiener integral w.r.t. BH , H > 1/2, following the

approach in [DU99, Dec22, BP88] for which we address the interested reader
for more details.

Definition 2.8 (Wiener integral). The Wiener integral w.r.t. fBm is defined
as the extension to HH of the isometry

δH : KH(KH) −→ L2(P)

defined by

RH(t, ·) = KH(KH(t, ·)) 7→ δH
(
KH(KH(t, ·))

)
:= BH(t), ∀t ≥ 0.

By linearity we have

δH

(
n∑

i=1

aiKH(KH(ti, ·))

)
=

n∑
i=1

aiB
H(ti), ai ∈ R, i = 1, . . . , n.

In general, for every (deterministic) function h ∈ HH , there exists a sequence
hn := KH(ḣn), ḣn ∈ KH , n ∈ N, such that h = HH- limn→∞ hn which leads
to the Wiener integral w.r.t. fBm of h∫ ∞

0

h(t) dBH(t) := δH(h) := L2(P)- lim
n→∞

δH(hn) = L2(P)- lim
n→∞

δH(KH(ḣn)).

Therefore, δH(h) is a centered Gaussian random variable with variance equal
to ∥h∥2HH

.

Remark 2.9. It is easy to conclude from the definition of Wiener integral
that:

1. The process
B := {δH(KH(1[0,t])) | t ≥ 0} (15)

is a standard Brownian motion and

δH(KH(u)) =

∫ ∞

0

u(s) dB(s), u ∈ L2(λ),

where the integral on the right side is taken in the Wiener–Itô sense.
In particular, we have

BH(t) =

∫ t

0

KH(t, s) dB(s). (16)
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2. Using the Remark 2.7-1 we have, for every h ∈ HH∫ ∞

0

h(t) dBH(t) =

∫ ∞

0

(K−1
H h)(t) dB(t) =

∫ ∞

0

ḣ(t) dB(t). (17)

For more details, see [Dec22, Lemma 4.4].

Now we are ready to state the well-known Cameron–Martin theorem for
fBm, cf. [Dec22, Theorem 4.10] or [DU99, Theorem 4.1].

Theorem 2.10. For every h ∈ HH , H > 1/2, and any bounded measurable
functional F : W −→ R we have

E[F (BH + h)] = E
[
F (BH) exp

(∫ ∞

0

h(t) dBH(t)− 1

2
∥h∥2HH

)]
(17)
= E

[
F (BH) exp

(∫ ∞

0

ḣ(s) dB(s)− 1

2
∥ḣ∥22

)]
. (18)

Remark 2.11. Since for every h = KH(ḣ) ∈ HH with ḣ ∈ L2(λ), the expo-

nential martingale
{
E
(∫ ·

0

ḣ(s) dB(s)

)
(t), t ≥ 0

}
is uniformly integrable,

therefore

E
(∫ ·

0

ḣ(s) dB(s)

)
(∞) = exp

(∫ ∞

0

ḣ(t) dB(t)− 1

2

∫ ∞

0

|ḣ(t)|2 dt
)
,

is well-defined. Thus, formula (18) can be rewritten as follows

E[F (BH + h)] = E
[
F (BH)E

(∫ ·

0

ḣ(s) dB(s)

)
(∞)

]
. (19)

Remark 2.12. The above construction may also be realized if we consider a
finite time interval [0, T ], T > 0. That is,

1. the Cameron–Martin space HH(T ) is identified as the Hilbert space
KH

(
L2([0, T ], λ)

)
with the scalar product:

(h, g)HH(T ) = (KH ḣ,KH ġ)KH(L2([0,T ],λ)) := (ḣ, ġ)L2([0,T ],λ),

where ḣ, ġ ∈ L2([0, T ], λ),
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2. the Wiener integral of h ∈ HH(T ):∫ T

0

h(s) dBH(s) :=

∫ T

0

ḣ(s) dB(s),

3. the Cameron–Martin theorem says: for every h ∈ HH(T ) and any
bounded functional F : WT −→ R we have

E[F (BH + h)] = E
[
F (BH) exp

(∫ T

0

h(s) dBH(s)− 1

2
∥h∥2HH(T )

)]
= E

[
F (BH)E

(∫ .

0

ḣ(s) dB(s)

)
(T )

]
, (20)

where E
(∫ .

0

ḣ(s) dB(s)

)
is the exponential martingale associated with

the martingale
{∫ t

0

ḣ(s) dB(s), t ∈ [0, T ]

}
, that is,

E
(∫ .

0

ḣ(s) dB(s)

)
(t) = exp

(∫ t

0

ḣ(s) dB(s)− 1

2

∫ t

0

|ḣ(s)|2 ds
)
.

For more details, see, for example, [Dec22] and [Cou07].

Remark 2.13. For H = 1
2
, it follows from (16) that B

1
2 and B are the same

process. Therefore, to be consistent with the Wiener-Itô integral we identify
H1/2 with L2(λ), so in Equation (17) ḣ should be taken as h. Hence, Equa-
tion (18) includes the classical Cameron–Martin formula for the Brownian
motion, as well as its equivalent forms (20) and (19).

2.3 Generalized Grey Brownian Motion

2.3.1 Definition and Representations

Let 0 < β < 1 and 1 ≤ α < 2 be given. A continuous stochastic process
defined on (Ω,F ,P) is called a ggBm, denoted by Bβ,α = {Bβ,α(t), t ≥ 0},
see [MM09], if:

1. Bβ,α(0) = 0, P-a.s.
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2. Any collection
{
Bβ,α(t1), . . . , Bβ,α(tn)

}
with 0 ≤ t1 < t2 < . . . < tn <

∞ has a characteristic function given, for any θ = (θ1, . . . , θn) ∈ Rn,
by

E

(
exp

(
i

n∑
k=1

θkBβ,α(tk)

))
= Eβ

(
−1

2
θ⊤Σα,nθ

)
, (21)

where
Σα,n =

(
tαk + tαj − |tk − tj|α

)n
k,j=1

and Eβ is the Mittag-Leffler (entire) function

Eβ(z) =
∞∑
n=0

zn

Γ(βn+ 1)
, z ∈ C.

The generalized grey Brownian motion has the following properties:

1. For each t ≥ 0, the moments of any order are given by{
E[B2n+1

β,α (t)] = 0,

E[B2n
β,α(t)] = (2n)!

2nΓ(βn+1)
tnα.

2. The covariance function has the form

E[Bβ,α(t)Bβ,α(s)] =
1

2Γ(β + 1)

(
tα + sα − |t− s|α

)
, t, s ≥ 0. (22)

3. For each t, s ≥ 0, the characteristic function of the increments is

E
[
eiθ(Bβ,α(t)−Bβ,α(s))

]
= Eβ

(
−θ2

2
|t− s|α

)
, θ ∈ R. (23)

4. The process Bβ,α is non Gaussian, α/2-self-similar with stationary in-
crements.

5. The ggBm is not a semimartingale. Furthermore, Bα,β cannot be of
finite variation in [0, 1] and by scaling and stationarity of the increment
on any interval in R+.
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The ggBm admits different representations in terms of well-known pro-
cesses. The most common is given in [MP08] in the form{

Bβ,α(t), t ≥ 0
} L
=
{√

YβB
α/2(t), t ≥ 0

}
. (24)

Here, L
= means equality in law, the nonnegative random variable Yβ has den-

sity Mβ, called the M -Wright probability density function, with the Laplace
transform ∫ ∞

0

e−sτMβ(τ) dτ = Eβ(−s), (25)

and Bα/2 is a fBm independent of Yβ. The generalized moments of the density
Mβ of order δ > −1 are finite and are given (cf. [MP08]) by∫ ∞

0

τ δMβ(τ) dτ =
Γ(δ + 1)

Γ(βδ + 1)
. (26)

For our purposes, we give a more suitable representation of Bβ,α as a subor-
dination of fBm, which is essential in what follows.

Proposition 2.14. The ggBm has the following representation{
Bβ,α(t), t ≥ 0

} L
=
{
Bα/2(tY

1/α
β ), t ≥ 0

}
. (27)

Proof. We only need to show that the representations (24) and (27) have the
same finite-dimensional distribution. For every θ = (θ1, . . . , θn) ∈ Rn, we
have

E

[
exp

(
i

n∑
k=1

θkB
α/2(tkY

1/α
β )

)]

=

∫ ∞

0

E

[
exp

(
i

n∑
k=1

θkB
α/2(tky

1/α)

)]
Mβ(y) dy

=

∫ ∞

0

E

[
exp

(
i

n∑
k=1

θky
1/2Bα/2(tk)

)]
Mβ(y) dy

= E

[
exp

(
i

n∑
k=1

θkY
1/2
β Bα/2(tk)

)]
.dn
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2.3.2 Canonical Realization

We will distinguish two classes from the family Bβ,α depending on the pa-
rameter α.
Case α = 1.

The corresponding class was introduced by Schneider [Sch90a, Sch90b].
We denote it by Bβ := Bβ,1, 0 < β < 1, and call it the grey Brownian motion.
It follows from (27) that Bβ is realized as the subordination of the Brownian
motion by the process {tYβ, t ≥ 0}. In the space of continuous functions,
this realization is given below.

First, recall from Remark 2.2-6 that W 1/2 is a standard Brownian motion
on the classical Wiener space

(
W,B(W),P1/2

)
.

Second, let (R+,B(R+),PYβ
) be the probability space where PYβ

is the
law of the random variable Yβ. Then Yβ is realized on R+ as the identity
map

Yβ : R+ −→ R+, τ 7→ Yβ(τ) := τ. (28)

Since Yβ and B1/2 are independent, the grey Brownian motion Bβ can be
realized as the canonical process Xβ defined on the product space

(
W ×

R+,B(W)⊗ B(R+),P1/2 ⊗ PYβ

)
by

Xβ(t)(w, τ) := W 1/2(tYβ(τ))(w) = w(tτ), t ≥ 0, w ∈ W, τ ∈ R+. (29)

We denote its law by µβ.
Case α ∈ (1, 2].

Let H := α
2
> 1/2 and WH be the fractional Brownian motion on the

space
(
W,B(W),PH

)
, see Remark 2.2-6. As Yβ and BH are independent,

the generalized grey Brownian motion Bβ,2H can be realized as the canonical
process Xβ,2H defined on the product space

(
W× R+,B(W)⊗ B(R+),PH ⊗

PYβ

)
by

Xβ,2H(t)(w, τ) := WH
(
tY1/(2H)

β (τ)
)
(w) = w

(
tτ 1/(2H)

)
, t, τ ∈ R+, w ∈ W.

In this case, the law of Xβ,2H is denoted by µβ,2H .
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3 The Cameron–Martin Theorem

3.1 For Grey Brownian Motion

For every h ∈ H1/2 we denote by Xh
β the process defined on

(
W×R+,B(W)⊗

B(R+),P1/2 ⊗ PYβ

)
by

Xh
β (t) := Xβ(t) + h(tYβ) = W 1/2(tYβ) + h(tYβ), t ≥ 0,

and its law is represented by µh
β.

For T > 0 we consider the processes Xβ,T :=
{
Xβ(t) | t ∈ [0, T ]

}
and

Xh
β,T :=

{
Xh

β (t) | t ∈ [0, T ]
}

and their laws, denoted by µβ,T and µh
β,T ,

respectively.
The Cameron-Martin theorem for the grey Brownian motion Xβ is ex-

pressed as follows:

Theorem 3.1. Let h ∈ H1/2 be given. Then we have:

1. For every T > 0 the measures µh
β,T and µβ,T are equivalent and the

Radon-Nikodym density is given by

dµh
β,T

dµβ,T

= E
(∫ .

0

ḣ(s) dW 1/2(s)

)
(TYβ). (30)

2. The measures µh
β and µβ are equivalent and the Radon-Nikodym density

is
dµh

β

dµβ

= E
(∫ .

0

ḣ(s) dW 1/2(s)

)
(∞). (31)

Remark 3.2. Before proving the theorem, we will elucidate the two equations
(30) and (31).

1. The expectation of E
(∫ .

0

ḣ(s) dW 1/2(s)

)
(TYβ) with respect to P1/2 ⊗

PYβ
is equal to 1, that is,∫

W×R+

E
(∫ .

0

ḣ(s) dW 1/2(s)

)
(Tτ)P1/2(dw)PYβ

(dτ) = 1.

Indeed it follows from Tonelli’s theorem and the fact that the expec-
tation of a martingale is constant in time, that is, for any t ≥ 0 we
have ∫

W
E
(∫ .

0

ḣ(s) dW 1/2(s)

)
(t)P1/2(dw) = 1.
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2. It follows from Remark 2.11 that the right-hand side of (31) is well-
defined. On the other hand, since PYβ

({0}) = 0 we have PYβ
({∞Yβ =

∞}) = 1, thus the r.h.s. of (31) implicitly depends on Yβ in the follow-
ing sense:

E
(∫ ·

0

ḣ(s) dW 1/2(s)

)
(∞) = E

(∫ ·

0

ḣ(s) dW 1/2(s)

)
(∞Yβ),

P1/2 ⊗ PYβ
almost surely.

Proof. 1. Let T > 0 be given. It is sufficient to prove∫
W×R+

f
(
w(t1τ) + h(t1τ), . . . , w(tnτ) + h(tnτ)

)
P1/2(dw)PYβ

(dτ)

=

∫
W×R+

f
(
w(t1τ), . . . , w(tnτ)

)
E
(∫ .

0

ḣ(s) dW 1/2(s)

)
(Tτ)P1/2(dw)PYβ

(dτ),

where n ∈ N, 0 < t1 < · · · < tn ≤ T and f ∈ Cb(Rn) (the set of continuous
bounded functions on Rn), see [Bil95, Thm. 3.3].

For every fixed τ ∈ R+, the classical Cameron–Martin formula applied to
the bounded measurable functional on WTτ

w 7→ f (w (t1τ) , . . . , w (tnτ))

yields∫
W
f
(
w(t1τ) + h(t1τ), . . . , w(tnτ) + h(tnτ)

)
P1/2(dw)

=

∫
WTτ

f
(
w(t1τ) + h(t1τ), . . . , w(tnτ) + h(tnτ)

)
P1/2(dw)

=

∫
WTτ

f (w(t1τ), . . . , w(tnτ)) E
(∫ .

0

ḣ(s) dW 1/2(s)

)
(Tτ)P1/2(dw)

=

∫
W
f (w(t1τ), . . . , w(tnτ)) E

(∫ .

0

ḣ(s) dW 1/2(s)

)
(Tτ)P1/2(dw).

Therefore, we may integrate both sides of the above equality w.r.t PYβ
to

obtain the result.
2. It follows by an easy adaption of the above arguments with 0 ≤

t1 < t2 < · · · < tn < +∞ and the classical Cameron–Martin formula for
functionals defined on W.
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Theorem 3.3. Let h ∈ W be given. If µβ and µβ,h are equivalent, then
h ∈ H1/2.

Proof. Let h ∈ W\H1/2 be given. It is well known that Gaussian measures
PW 1/2 and PW 1/2+h are singular; see Theorem 2.2 on page 339 in [RY99] (see
also Lemma 3.12 in [MR92]). Hence, there exists a measurable set A ⊂ W
such that

PW 1/2(A) = 1 and PW 1/2+h(A) = 0.

Define the subset of W

Ã := {w(·τ) | w ∈ A, τ ∈ R+}.

It is not difficult to see that

µβ(Ã) = PW 1/2(A) = 1

and
µβ,h(Ã) = PW 1/2+h(A) = 0.

A consequence of Theorem 3.1-1 and Theorem 3.3 is the following corol-
lary.

Corollary 3.4. Let h ∈ W be an absolutely continuous function such that∫ T

0
|ḣ(t)|2 dt < ∞ for any T > 0 and

∫∞
0

|ḣ(t)|2 dt = ∞. Then, for any
T > 0 the measures µh

β,T and µβ,T are equivalent, but the measures µβ,h and
µβ are singular.

3.2 For Generalized Grey Brownian Motion

For every h ∈ HH we define on the space
(
W×R+,B(W)⊗B(R+),PH⊗PYβ

)
the process Xh

β,2H , for every t ≥ 0, by

Xh
β,2H(t)(w, τ) := WH(tY1/(2H)

β (τ))(w)+h(tY1/(2H)
β (τ)) = w(tτ 1/(2H))+h(tτ 1/(2H)),

and for any T > 0 the process Xh
β,2H,T

Xh
β,2H,T :=

{
Xh

β,2H(t), t ∈ [0, T ]
}
.

The corresponding laws are denoted by µh
β,2H and µh

β,2H,T , respectively. We
also denote by µβ,2H,T the law of the process Xβ,2H,T :=

{
Xβ,2H(t), t ∈

[0, T ]
}
.

Now we are ready to state the Cameron-Martin theorem for the general-
ized grey Brownian motion.

18



Theorem 3.5. Let h ∈ HH be given. Then we have:

1. for every T > 0 the measures µh
β,2H,T and µβ,2H,T are equivalent and

the Radon-Nikodym density is given by

dµh
β,2H,T

dµβ,2H,T

= exp

(∫ t

0

h(s) dWH(s)− 1

2
∥h∥2HH(t)

)∣∣∣∣
t=TY1/(2H)

β

= E
(∫ .

0

ḣ(s) dW̃ (s)

)
(TY1/(2H)

β ). (32)

2. The measures µh
β,2H and µβ,2H are equivalent, and the Radon-Nikodym

density has the form

dµh
β,2H

µβ,2H

= exp

(∫ ∞

0

h(s) dWH(s)− 1

2
∥h∥2HH

)
= E

(∫ .

0

ḣ(s) dW̃ (s)

)
(∞). (33)

Here, W̃ is the standard Brownian motion related to WH by Equation (15).

Proof. 1. To keep the notation short, we set τH := τ 1/(2H). We have to show∫
W×R+

f
(
w(t1τH) + h(t1τH), . . . , w(tnτH) + h(tnτH)

)
PH(dw)PYβ

(dτ)

=

∫
W×R+

f
(
w(t1τH), . . . , w(tnτH)

)
E
(∫ .

0

ḣ(s) dW̃ (s)

)
(TτH)PH(dw)PYβ

(dτ),

where n ∈ N, 0 < t1 < · · · < tn ≤ T and f ∈ Cb(Rn).
Taking into account the Remark 2.12, applying the classical Cameron–

Martin formula (18) to the bounded measurable functional on WTτH ,

w 7→ f
(
w(t1τH), . . . , w(tnτH)

)
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yields∫
W
f
(
w(t1τH) + h(t1τH), . . . , w(tnτH) + h(tnτH)

)
PH(dw)

=

∫
WTτH

f
(
w(t1τH) + h(t1τH), . . . , w(tnτH) + h(tnτH)

)
PH(dw)

=

∫
WTτH

f
(
w(t1τH), . . . , w(tnτH)

)
E
(∫ .

0

ḣ(s) dW̃ (s)

)
(TτH)PH(dw)

=

∫
W
f
(
w(t1τH), . . . , w(tnτH)

)
E
(∫ .

0

ḣ(s) dW̃ (s)

)
(TτH)PH(dw).

Therefore, we may integrate both sides of the above equality w.r.t. PYβ
to

obtain the result.
2. It follows by an easy adaption of the above arguments with 0 ≤ t1 <

t2 < · · · < tn < ∞ and the Cameron–Martin formula (18) for functionals
defined in W.

Remark 3.6. Note that the results of Theorem 3.1–1 and Theorem 3.5–1 are
still valid if we assume that h ∈ HH(T ) for any T > 0.

Theorem 3.7. Let h ∈ W be given. If µβ,2H and µh
β,2H are equivalent, then

h ∈ HH .

Proof. Let h ∈ W\HH be given. It follows from Proposition 20 in [Cou07]
that the Gaussian measures PWH and PWH+h are singular. Therefore, there
exists a measurable set AH ⊂ W such that

PWH (AH) = 1 and PWH+h(AH) = 0.

Define the subset of W

ÃH := {w(·τH) | w ∈ AH , τ ∈ R+}.

It is not difficult to see that

µβ,2H(ÃH) = PWH (AH) = 1

and
µh
β,2H(ÃH) = PWH+h(AH) = 0.
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Remark 3.8. We would like to specify the support of the laws: µβ, µβ,2H ,
µβ,T , and µβ,2H,T .

supp(µβ) = Ω1/2 :=
{
w (·τ) : [0,∞[−→ R, t 7→ w(tτ) | w ∈ W, τ ≥ 0

}
.

supp(µβ,2H) = ΩH :=
{
w
(
·τ 1/(2H)

)
| w ∈ W, τ ≥ 0

}
.

supp(µβ,T ) = Ω
1/2
T :=

{
w̃↾[0,T ] | w̃ ∈ Ω1/2

}
.

supp(µβ,2H,T ) = ΩH
T :=

{
w̃↾[0,T ] | w̃ ∈ ΩH

}
.

4 Integration by Parts Formula and Closability
of the Derivative Operator

As an application of the Cameron–Martin formulas from Section 3, we first
introduce the directional derivative in the directions of the elements h ∈ HH

for smooth functionals. We show an integration by parts formula leading to
the closability of the directional derivative on Lp(PH ⊗ PYβ

), p ≥ 1.
We begin by analyzing the class of gBm Xβ,T , T > 0, (Subsection 4.1)

and then move on to the broader class Xβ,2H,T , T > 0, of ggBm from Sub-
section 4.2.

4.1 Derivative Operator for Grey Brownian Motion

We start by introducing the directional derivative in special directions (from
the Cameron–Marin space H1/2) of a real-valued measurable function F on(
W× R+,B(W)⊗ B(R+),P1/2 ⊗ PYβ

)
.

Given T > 0, h ∈ H1/2, and F : W× R+ −→ R the partial derivative of
F in the direction h is defined by

(∂1,hF )(w, τ) := lim
ε→0

F (w + εh, τ)− F (w, τ)

ε
, w ∈ W, τ ∈ R+,

whenever the limit exists.
We consider the class FC∞

b of functions F of the form

F
(
w, τ

)
:= f

(
w(t1τ), . . . , w(tnτ)

)
, w ∈ W, τ ∈ R+, (34)

where n ∈ N, 0 < t1 < · · · < tn ≤ T and f ∈ C∞
b (Rn) (the set of C∞

bounded real-valued functions on Rn). Note that this class is closely related
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to the process Xβ,T . In fact, any F ∈ FC∞
b of the form (34) is simply

F (w, τ) = f
(
Xβ,T (t1)(w, τ), . . . , Xβ,T (tn)(w, τ)

)
, (35)

generally referred to as smooth cylindrical function. It is simple to verify
that the derivative ∂1,hF exists for any F ∈ FC∞

b and we have

(∂1,hF )(w, τ) =
n∑

i=1

∂if
(
w(t1τ), . . . , w(tnτ)

)
h(tiτ), w ∈ W, τ ∈ R+, (36)

where ∂i denotes the partial derivative w.r.t. xi.
In what follows, we show that ∂1,hF is represented by an element of the

Cameron-Martin space H1/2, denoted by ∇1F , where the subscript 1 is used
to indicate w.r.t. the first variable w.

Proposition 4.1. Let F ∈ FC∞
b be given. Then, for any w ∈ W, τ ∈ R+,

1. the map
H1/2 ∋ h 7→ (∂1,hF )(w, τ) ∈ R

is a bounded linear functional on H1/2,

2. there exists a unique element ∇1F (w, τ) ∈ H1/2 given by

(
∇1F (w, τ)

)
(t) =

n∑
i=1

∂if
(
w(t1τ), . . . , w(tnτ)

)
(t ∧ tiτ), t ≥ 0 (37)

and

∇̇1F (w, τ)(t) =
n∑

i=1

∂if
(
w(t1τ), . . . , w(tnτ)

)
1[0,tiτ)(t) (38)

satisfying
(∂1,hF )(w, τ) =

(
∇1F (w, τ), h

)
H1/2

. (39)

Proof. 1. Let F ∈ FC∞
b be given as in (34). The linearity of the map is

obvious. For every h ∈ H1/2, using the representation (14) we have

|(∂1,hF )(w, τ)| =

∣∣∣∣∣
n∑

i=1

∂if
(
w(t1τ), . . . , w(tnτ)

)
h(tiτ)

∣∣∣∣∣
≤

n∑
i=1

∥∂if∥∞
∣∣∣∣∫ tiτ

0

ḣ(s) ds

∣∣∣∣ .
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An application of the Cauchy-Schwarz inequality and the fact that ∥ḣ∥2 =
∥h∥H1/2

, yields

|(∂1,hF )(w, τ)| ≤
n∑

i=1

∥∂if∥∞
√
tiτ∥ḣ∥2 =

n∑
i=1

∥∂if∥∞
√
tiτ∥h∥H1/2

. (40)

2. The equality (39) follows from 1. and the Riesz representation theorem.
From (36) and (14) we obtain

(∂1,hF )(w, τ) =
n∑

i=1

∂if
(
w(t1τ), . . . , w(tnτ)

)
h(tiτ)

=
n∑

i=1

∂if
(
w(t1τ), . . . , w(tnτ)

) ∫ tiτ

0

ḣ(s) ds

=

∫ ∞

0

n∑
i=1

∂if
(
w(t1τ), . . . , w(tnτ)

)
1[0,tiτ)(s)ḣ(s) ds.

The equalities (37) and (38) easily follow.

Next, we show that the directional derivative ∂1,hF with F ∈ FC∞
b and

h ∈ H1/2, is an element of Lp(P1/2 ⊗ PYβ
) for any p ≥ 1.

Proposition 4.2. Let F ∈ FC∞
b and p ≥ 1 be given. Then

1. ∂1,hF ∈ Lp(W × R+,FXβ,T ,P1/2 ⊗ PYβ
), for any h ∈ H1/2, where

FXβ,T := σ
(
Xβ,T (t), t ∈ [0, T ]

)
is the natural σ-algebra generated by

the process Xβ up to time T .

2. ∇1F ∈ Lp
H1/2

(FXβ,T ,P1/2⊗PYβ
) := Lp(W×R+,FXβ,T ,P1/2⊗PYβ

;H1/2).

Proof. 1. Let F ∈ FC∞
b be given as in (34). It follows from (35) and (36)

that F and ∂1,hF are FXβ,T -measurable. From the estimate (40) we derive

∥∂1,hF∥pp =

∫
W×R+

|(∂1,hF )(w, τ)|p d(P1/2 ⊗ PYβ
)(w, τ)

≤
∫
W×R+

∣∣∣∣∣
n∑

i=1

∥∂if∥∞
√
tiτ∥h∥H1/2

∣∣∣∣∣
p

d(P1/2 ⊗ PYβ
)(w, τ)

≤ np−1∥h∥pH1/2

n∑
i=1

∥∂if∥p∞t
p/2
i

∫ ∞

0

τ p/2 dPYβ
(τ).

= np−1∥h∥pH1/2

n∑
i=1

∥∂if∥p∞t
p/2
i

Γ(p/2 + 1)

Γ(βp/2 + 1)
< ∞.
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The second inequality is the convexity inequality and the last equality follows
from (26).
2. The FXβ,T -measurability of ∇1F and ∇̇1F can be easily derived from (37)
and (38). From (38) and again the convexity inequality we infer

∥∇1F (w, τ)∥2H1/2
=

∫ ∞

0

|∇̇1F (w, τ)(t)|2 dt

=

∫ ∞

0

∣∣∣∣∣
n∑

i=1

∂if
(
w(t1τ), . . . , w(tnτ)

)
1[0,tiτ)(t)

∣∣∣∣∣
2

dt

≤ n
n∑

i=1

tiτ
(
∂if
(
w(t1τ), . . . , w(tnτ)

))2
.

This implies

∥∇1F (w, τ)∥pH1/2
≤

(
n

n∑
i=1

tiτ
(
∂if
(
w(t1τ), . . . , w(tnτ)

))2)p/2

≤ np/2∨(p−1)

n∑
i=1

(tiτ)
p/2∥∂if∥p∞.

Finally, the norm of ∥∇1F∥
Lp
H1/2

(FXβ,T ,P1/2⊗PYβ
)
is computed as

∥∇1F∥p
Lp
H1/2

(FXβ,T ,P1/2⊗PYβ
)

=

∫
W×R+

∥(∇1F )(w, τ)∥pH1/2
d(P1/2 ⊗ PYβ

)(w, τ)

≤ np/2∨(p−1)

∫
W×R+

n∑
i=1

(tiτ)
p/2∥∂if∥p∞ d(P1/2 ⊗ PYβ

)(w, τ)

≤ np/2∨(p−1)

n∑
i=1

∥∂if∥p∞t
p/2
i

∫
R+

τ p/2dPYβ
(τ)

= np/2∨(p−1)

n∑
i=1

∥∂if∥p∞t
p/2
i

Γ(p/2 + 1)

Γ(βp/2 + 1)
< ∞.

This completes the proof.

To investigate the closability of the directional derivative operator ∂1,h
and ∇1 on Lp(PH ⊗PYβ

), p ≥ 1, we need the integration by parts formula for
the gBm Xβ,T , T > 0. Below the expectation is taken w.r.t. the probability
measure P1/2 ⊗ PYβ

.
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Theorem 4.3. Let T > 0 be given. For any h ∈ H1/2 and F,G ∈ FC∞
b , we

have
E
[
G∂1,hF

]
= E

[
F∂∗

1,hG
]
, (41)

where
∂∗
1,hG = −∂1,hG+G

(∫ ·

0

ḣ(t) dW 1/2(t)

)
(TYβ).

Proof. Let T > 0 and F,G ∈ FC∞
b be given. The Cameron-Martin formula

(see Eq. (30)) for the grey Brownian motion says that, for every ε ∈ R, we
have∫

W×R+

F (w + εh, τ)G(w + εh, τ)P1/2(dw)PYβ
(dτ)

=

∫
W×R+

F (w, τ)G(w, τ) E
(∫ .

0

εḣ(s) dW 1/2(s)

)
(Tτ)P1/2(dw)PYβ

(dτ).

We differentiate this equality w.r.t. ε and set ε = 0. The assumptions on h
and F allow us to interchange the operations of differentiation and integration
by using the dominated convergence theorem, and we obtain the following∫

W×R+

∂1,hF (w, τ)G(w, τ)P1/2(dw)PYβ
(dτ)

+

∫
W×R+

F (w, τ) ∂1,hG(w, τ)P1/2(dw)PYβ
(dτ)

=

∫
W×R+

F (w, τ)G(w, τ)

(∫ Tτ

0

ḣ(s) dW 1/2(s)

)
P1/2(dw)PYβ

(dτ).

Note that by Lemma 5.1, all the terms in the above equality are well-defined.
This concludes the proof.

From the identity (41) we obtain the following theorem.

Theorem 4.4. For every p, q ≥ 1 and h ∈ H1/2 the derivative operator
∂1,h : FC∞

b −→ Lp(W × R+,FXβ,T ,P1/2 ⊗ PYβ
) is closable on Lq(W ×

R+,FXβ,T ,P1/2 ⊗ PYβ
).

Proof. Let p, q ≥ 1 be given. We have to show that if (Fn)n∈N ⊂ FC∞
b is a

sequence such that Fn −→ 0 in Lq(FXβ,T ,P1/2 ⊗ PYβ
) and ∂1,hFn −→ Z in

Lp(FXβ,T ,P1/2 ⊗ PYβ
), then Z = 0 in Lp(FXβ,T ,P1/2 ⊗ PYβ

).
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Let G ∈ FC∞
b be fixed and r ≥ 1. According to Proposition 4.2-1 we

have ∂1,hG ∈ Lr(FXβ,T ,P1/2 ⊗ PYβ
). In addition, using the Burkholder–

Davis–Gundy inequality, there exists a constant dependent only in r such
that ∫ ∞

0

∫
W

∣∣∣∣(∫ Tτ

0

ḣ(t) dW 1/2(t)

)
(w)

∣∣∣∣r dP1/2(w) dPYβ
(τ)

≤ Cr

∫ ∞

0

(∫ Tτ

0

|ḣ(t)|2 dt
)r/2

dPYβ
(τ)

≤ Cr∥ḣ∥r/22 = Cr∥h∥r/2H1/2
.

It is well known that the Wiener integral
∫ ·
0
ḣ(t) dW 1/2(t) can be obtained

as the limit in probability of the Riemann sums; see [RY99]. Consequently,(∫ ·
0
ḣ(t) dW 1/2(t)

)
(TYβ) is FXβ,T -measurable. Thus,

∂∗
1,hG = −∂1,hG+G

(∫ ·

0

ḣ(t) dW 1/2(t)

)
(TYβ) ∈ Lr(FXβ,T ,P1/2 ⊗ PYβ

).

Therefore, the integration by parts (41) and the fact that ∂∗
1,hG ∈ Lq′(FXβ,T ,P1/2⊗

PYβ
), q′ is the conjugate exponent of q, yields

E[GZ] = lim
n→∞

E[G∂1,hFn] = lim
n→∞

E[Fn∂
∗
1,hG] = 0.

We can deduce that Z = 0 from the facts that the σ-algebra FXβ,T is gener-
ated by the elements of FC∞

b and the density of FC∞
b in Lp(FXβ,T ,P1/2 ⊗

PYβ
).

The closability of the operator ∇1 on Lp(PH ⊗ PYβ
) is based on that of

∂1,h. This is the subject of the following theorem.

Theorem 4.5. For every p, q ≥ 1, the operator ∇1 : FC∞
b −→ Lp

H1/2
(FXβ,T ,P1/2⊗

PYβ
) is closable in Lq(W× R+,FXβ,T ,P1/2 ⊗ PYβ

).

Proof. Let p, q ≥ 1 and (Fn)n∈N ⊂ FC∞
b be a sequence such that Fn −→ 0

in Lq(FXβ,T ,P1/2 ⊗ PYβ
) and ∇1Fn −→ Z in Lp

H1/2
(FXβ,T ,P1/2 ⊗ PYβ

). We
have to show that Z = 0 in Lp

H1/2
(FXβ,T ,P1/2 ⊗ PYβ

). First, notice that for
any h ∈ H1/2 we have

∂1,hFn = (∇1Fn, h)H1/2
−→ (Z, h)H1/2

, in Lp(FXβ,T ,P1/2 ⊗ PYβ
) as n → ∞.
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Since ∂1,h is closable (cf. Theorem 4.4), then (Z, h)H1/2
= 0 in Lp(FXβ,T ,P1/2⊗

PYβ
). Hence,

E[G(Z, h)H1/2
] = 0, ∀G ∈ FC∞

b .

By linearity we obtain

E

(Z, n∑
i=1

Gihi

)
H1/2

 = 0,

for any element of the set

S(H1/2) :=

{
n∑

i=1

Gihi

∣∣∣∣∣n ∈ N, Gi ∈ FC∞
b

}
,

where {hi ∈ H1/2, i ∈ N} is an orthonormal basis of H1/2. Since S(H1/2) is
dense in Lp

H1/2
(FXβ,T ,P1/2⊗PYβ

), we conclude that Z = 0 in Lp
H1/2

(FXβ,T ,P1/2⊗
PYβ

).

4.2 Derivative Operator for Generalized Grey Brown-
ian Motion

We intend to broaden the findings from Subsection 4.1 to the class of pro-
cesses Xβ,2H,T , T > 0, introduced in Subsection 3.2.

We fix H ∈ (1/2, 1), T > 0, and consider the class FC∞
b,H of measurable

functions on
(
W× R+,B(W)⊗ B(R+),PH ⊗ PYβ

)
of the form

F
(
w, τ

)
:= f

(
w(t1τH), . . . , w(tnτH)

)
, w ∈ W, τ ∈ R+, (42)

where n ∈ N, 0 < t1 < · · · < tn ≤ T , τH = τ 1/(2H), and f ∈ C∞
b (Rn). Note

that each F ∈ FC∞
b,H of the form (42) is represented as

F (w, τ) = f
(
Xβ,2H,T (t1)(w, τ), . . . , Xβ,2H,T (tn)(w, τ)

)
. (43)

Moreover, we can easily see that for every F ∈ FC∞
b,H and h ∈ HH the partial

derivative ∂1,hF in the direction h exists and we have

∂1,hF (w, τ) =
n∑

i=1

∂if
(
w(t1τH), . . . , w(tnτH)

)
h(tiτH), w ∈ W, τ ≥ 0. (44)

The next proposition shows the two basic properties of the partial deriva-
tive operator ∂1,h, h ∈ HH .
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Proposition 4.6. Let F ∈ FC∞
b,H be given. Then, for any w ∈ W, τ ≥ 0,

1. the map
HH ∋ h 7→ (∂1,hF )(w, τ) ∈ R

is a bounded linear functional on HH ,

2. there exists a unique element ∇1F (w, τ) ∈ HH given, for any t ≥ 0, by

(
∇1F (w, τ)

)
(t) =

n∑
i=1

∂if
(
w(t1τH), . . . , w(tnτH)

)
RH(tiτH , t), (45)

and

(
∇̇1F (w, τ)

)
(t) =

n∑
i=1

∂if
(
w(t1τH), . . . , w(tnτH)

)
KH(tiτH , t) (46)

satisfying

(∂1,hF )(w, τ) =
(
∇1F (w, τ), h

)
HH

, w ∈ W, τ ≥ 0. (47)

Proof. 1. Let F ∈ FC∞
b,H be given. The linearity of the map is obvious. For

every h ∈ HH , using the representation (13) we have

∣∣(∂1,hF )(w, τ)
∣∣ =

∣∣∣∣∣
n∑

i=1

∂if
(
w(t1τH), . . . , w(tnτH)

)
h(tiτH)

∣∣∣∣∣
≤

n∑
i=1

∥∂if∥∞
∣∣∣∣∫ tiτH

0

KH(tiτH , s)ḣ(s) ds

∣∣∣∣ .
An application of the Cauchy-Schwarz inequality, the fact that ∥ḣ∥2 = ∥h∥HH

,
and the equality (5) implies

∣∣(∂1,hF )(w, τ)
∣∣ ≤ n∑

i=1

∥∂if∥∞tHi τ
1/2∥h∥HH

. (48)

2. The equality (47) follows from 1. and the Riesz representation theorem.
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From (44) and (13) we obtain

(∂1,hF )(w, τ) =
n∑

i=1

∂if
(
w(t1τH), . . . , w(tnτH)

)
h(tiτH)

=
n∑

i=1

∂if
(
w(t1τH), . . . , w(tnτH)

) ∫ tiτH

0

KH(tiτH , s)ḣ(s) ds

=

∫ ∞

0

n∑
i=1

∂if
(
w(t1τH), . . . , w(tnτH)

)
KH(tiτH , s)ḣ(s) ds.

Therefore, the equality (46) is immediate and (45) follows from (9).

The estimate (48) is used to demonstrate that the directional derivative
∂1,hF , F ∈ FC∞

b,H , h ∈ HH , is an element of Lp(W×R+,FXβ,2H,T ,PH ⊗PYβ
)

for any p ≥ 1, where FXβ,2H,T := σ
(
Xβ,2H,T (t), t ∈ [0, T ]

)
.

Proposition 4.7. Let F ∈ FC∞
b,H and p ≥ 1 be given. Then

1. ∂1,hF ∈ Lp(W× R+,FXβ,2H,T ,PH ⊗ PYβ
), for any h ∈ HH ,

2. ∇1F ∈ Lp
HH

(FXβ,2H,T ,PH⊗PYβ
) := Lp(W×R+,FXβ,2H,T ,PH⊗PYβ

;HH).

Proof. 1. Let F ∈ FC∞
b,H be given. It follows from (43) and (44) that F and

∂1,hF are FXβ,2H,T -measurable. Using the estimate (48) we obtain

∥∂1,hF∥pp ≤
∫
W×R+

∣∣∣∣∣
n∑

i=1

∥∂if∥∞tHi τ
1/2∥h∥HH

∣∣∣∣∣
p

d(PH ⊗ PYβ
)(w, τ)

≤ np−1∥h∥pHH

n∑
i=1

∥∂if∥p∞tpHi

∫ ∞

0

τ p/2 dPYβ
(τ).

= np−1∥h∥pHH

n∑
i=1

∥∂if∥p∞tpHi
Γ(p/2 + 1)

Γ(βp/2 + 1)
< ∞.

The second estimate is the convexity inequality, and the last equality follows
from (26).
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2. The FXβ,2H,T -measurability of ∇1F and ∇̇1F can be easily derived from
(45) and (46). From (46) and again the convexity inequality we infer

∥∇1F (w, τ)∥2HH
=

∫ ∞

0

∣∣(∇̇1F (w, τ)
)
(t)
∣∣2 dt

=

∫ ∞

0

∣∣∣∣∣
n∑

i=1

∂if
(
w(t1τH), . . . , w(tnτH)

)
KH(tiτH , t)

∣∣∣∣∣
2

dt

≤ n
n∑

i=1

t2Hi τ∥∂if∥2∞.

This implies

∥∇1F (w, τ)∥pHH
≤

(
n

n∑
i=1

t2Hi τ∥∂if∥2∞

)p/2

≤ np/2∨(p−1)

n∑
i=1

tpHi τ p/2∥∂if∥p∞.

Finally, the norm of ∥∇1F∥
Lp
HH

(FXβ,2H,T ,PH⊗PYβ
)
is computed as

∥∇1F∥p
Lp
HH

(FXβ,2H,T ,PH⊗PYβ
)

=

∫
W×R+

∥(∇1F )(w, τ)∥pHH
d(PH ⊗ PYβ

)(w, τ)

≤ np/2∨(p−1)

∫
W×R+

n∑
i=1

tpHi τ p/2∥∂if∥2∞d(PH ⊗ PYβ
)(w, τ)

≤ np/2∨(p−1)

n∑
i=1

∥∂if∥p∞tpHi

∫
R+

τ p/2dPYβ
(τ)

= np/2∨(p−1)

n∑
i=1

∥∂if∥p∞tpHi
Γ(p/2 + 1)

Γ(βp/2 + 1)
< ∞.

This completes the proof.

We now get the integration by parts formula for ggBm that will be used to
prove the closability of the derivative operators ∂1,h and ∇1 on Lp(PH⊗PYβ

).

Theorem 4.8. Let T > 0 be given. For any h ∈ HH and F,G ∈ FC∞
b,H , we

have
E
[
G∂1,hF

]
= E

[
F∂∗

1,hG
]
, (49)
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where
∂∗
1,hG = −∂1,hG+G

(∫ ·

0

ḣ(t) dW̃ (t)

)
(TY1/(2H)

β ).

Proof. The proof is analogous to the one of Theorem 4.3 with slight modifi-
cations.

From the identity (49) we obtain the following

Theorem 4.9. For every p, q ≥ 1 and h ∈ HH the derivative operator
∂1,h : FC∞

b,H −→ Lp(W × R+,FXβ,2H,T ,PH ⊗ PYβ
) is closable in Lq(W ×

R+,FXβ,2H,T ,PH ⊗ PYβ
).

Proof. Let p, q ≥ 1 be given. We have to show that if (Fn)n∈N ⊂ FC∞
b,H is a

sequence such that Fn −→ 0 in Lq(FXβ,2H,T ,PH ⊗ PYβ
) and ∂1,hFn −→ Z in

Lp(FXβ,2H,T ,PH ⊗ PYβ
), then Z = 0 in Lp(FXβ,2H,T ,P1/2 ⊗ PYβ

).
Let G ∈ FC∞

b,H be fixed and r ≥ 1. According to Proposition 4.7-1 we
have ∂1,hG ∈ Lr(FXβ,2H,T ,PH ⊗ PYβ

). In addition, using the Burkholder–
Davis–Gundy inequality, there exists a constant Cr dependent only in r such
that ∫ ∞

0

∫
W

∣∣∣∣(∫ TτH

0

ḣ(t) dW̃ (t)

)
(w)

∣∣∣∣r dPH(w) dPYβ
(τ)

≤ Cr

∫ ∞

0

(∫ TτH

0

|ḣ(t)|2 dt
)r/2

dPYβ
(τ)

≤ Cr∥ḣ∥r/22 = Cr∥h∥r/2HH
.

We know that the Wiener integral
∫ ·
0
ḣ(t) dW̃ (t) is the limit in probability of

Riemann sums; see [RY99]. Furthermore, the σ -algebras of WH and W̃ are
the same; see Corollary 4.1 in [Dec22]. Consequently,

(∫ ·
0
ḣ(t) dW̃ (t)

)
(TYβ)

is FXβ,2H,T -measurable. Thus,

∂∗
1,hG = −∂1,hG+G

(∫ ·

0

ḣ(t) dW̃ (t)

)
(TYβ) ∈ Lr(FXβ,2H,T ,PH ⊗ PYβ

).

Therefore, the integration by parts (49) and the fact that ∂∗
1,hG ∈ Lq′(PH ⊗

PYβ
), q′ is the conjugate exponent of q, yields

E[GZ] = lim
n→∞

E[G∂1,hFn] = lim
n→∞

E[Fn∂
∗
1,hG] = 0.
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We can deduce that Z = 0 from the facts that the σ-algebra FXβ,2H,T is gener-
ated by the elements of FC∞

b,H and the density of FC∞
b,H in Lp(FXβ,2H,T ,PH⊗

PYβ
).

Finally, we are ready to prove the closability of the operator ∇1 on
Lp(PH ⊗ PYβ

), which is the content of the following theorem.

Theorem 4.10. For every p, q ≥ 1, the operator ∇1 : FC∞
b,H −→ Lp

HH
(FXβ,2H,T ,PH⊗

PYβ
) is closable on Lq(W× R+,FXβ,2H,T ,PH ⊗ PYβ

).

Proof. Let p, q ≥ 1 and (Fn)n∈N ⊂ FC∞
b,H be a sequence such that Fn −→ 0

in Lq(FXβ,2H,T ,PH ⊗ PYβ
) and ∇1Fn −→ Z in Lp

HH
(FXβ,2H,T ,PH ⊗ PYβ

). We
have to show that Z = 0 in Lp

HH
(FXβ,2H,T ,PH ⊗ PYβ

). First, notice that for
any h ∈ HH we have

∂1,hFn = (∇1Fn, h)HH
−→ (Z, h)HH

, in Lp(FXβ,2H,T ,PH ⊗ PYβ
) as n → ∞.

Since ∂1,hFn is closable (cf. Theorem 4.9), then (Z, h)HH
= 0 in Lp(FXβ,2H,T ,PH⊗

PYβ
). Hence,

E[G(Z, h)HH
] = 0, ∀G ∈ FC∞

b,H .

By linearity we obtain

E

[(
Z,

n∑
i=1

Gihi

)
HH

]
= 0,

for any element of the set

S(HH) :=

{
n∑

i=1

Gihi

∣∣∣∣∣n ∈ N, Gi ∈ FC∞
b,H

}
,

where {hi ∈ HH , i ∈ N} is an orthonormal basis of HH . Since S(HH) is dense
in Lp

HH
(FXβ,2H,T ,PH ⊗PYβ

), we conclude that Z = 0 in Lp
HH

(FXβ,2H,T ,P1/2 ⊗
PYβ

).

5 Appendix
In this section, we establish the existence of the integrals that appear in the
proof of Theorems 4.3 and 4.8.
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Lemma 5.1. Let H ∈ [1/2, 1) and h ∈ HH be given. Then, for every t ≥ 0,
we have

1. The random variable (w, τ) 7→
(∫ tτ

0

ḣ(s) dW 1/2(s)

)
(w) belongs to

L2
(
W× R+,B(W)⊗ B(R+),P1/2 ⊗ PYβ

)
, H = 1/2.

2. The random variable (w, τ) 7→
(∫ tτ

0

ḣ(s) dW̃ (s)

)
(w) belongs to L2

(
W×

R+,B(W)⊗ B(R+),PH ⊗ PYβ

)
, H ∈ (1/2, 1).

Proof. It is a consequence of the Tonelli theorem and Itô’s isometry formula.
Indeed, since W 1/2 and W̃ are Brownian motions under P1/2 and PH , H ∈
(1/2, 1), respectively, we obtain the bound

∥∥∥∥∫ t·

0

ḣ(s) dW̃ (s)

∥∥∥∥2
L2(PH⊗PYβ

)

=

∥∥∥∥∫ t·

0

ḣ(s) dW 1/2(s)

∥∥∥∥2
L2(P1/2⊗PYβ

)

=

∫
W×R+

(∫ tτ

0

ḣ(s) dW 1/2(s)

)2

(w)P1/2(dw)PYβ
(dτ)

=

∫
R+

(∫ tτ

0

ḣ2(s) ds

)
dPYβ

(τ)

≤ ∥ḣ∥2.
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