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Abstract. If (E ,D) is a symmetric, regular, strongly local Dirichlet form on L2(X,m), admitting a carré du champ
operator Γ, and p > 1 is a real number, then one can define a nonlinear form Ep by the formula

Ep(u, v) =

∫
X

Γ(u)
p−2
2 Γ(u, v)dm,

where u, v belong to an appropriate subspace of the domain D. We show that Ep is a nonlinear Dirichlet form in the sense

introduced by P. van Beusekom. We then construct the associated Choquet capacity. As a particular case we obtain

the nonlinear form associated with the p-Laplace operator on W 1,p
0 . Using the above procedure, for each n-dimensional

quasiregular mapping f we construct a nonlinear Dirichlet form En (p = n) such that the components of f become

harmonic functions with respect to En. Finally, we obtain Caccioppoli type inequalities in the intrinsic metric induced

by E , for harmonic functions with respect to the form Ep.
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1 Introduction

Let Ω ⊂ Rn be a bounded Euclidean domain and p > 1. If u ∈ C2(Ω) then recall that the p-Laplacean ∆pu of
u is defined as

∆pu := −div(|∇u|p−2∇u)

and for all u, v ∈ C2
c (Ω) we have ∫

Ω

v∆pudx =

∫
Ω

|∇u|p−2(∇u,∇v)dx.

This equality allows to define a nonlinear bilinear form associated with the p-Laplace operator:

(1.1) 〈∆pu, v〉 :=

∫
Ω

|∇u|p−2(∇u,∇v) for all u, v ∈W 1,p
0 (Ω).

In [Beu] Petra van Beusekom introduced and studied an abstract class of nonlinear Dirichlet forms on a
Banach space, in order to have as models the above form generated by the p-Laplace operator, but also the one
generated by the Monge-Ampère operator.

Our first aim is to consider a wider class of concrete nonlinear Dirichlet spaces. More precisely, if (E ,D) is
a symmetric, regular, strongly local Dirichlet form on L2(X,m), admitting a carré du champ operator Γ, and
p > 1 is a real number, then one can define a nonlinear form Ep by the formula

Ep(u, v) =

∫
X

Γ(u)
p−2
2 Γ(u, v)dm,

where u, v belong to an appropriate subspace of the domain D. We prove that Ep is a nonlinear Dirichlet form
in the sense introduced by P. van Beusekom and as a particular case we obtain the nonlinear form associated
with the p-Laplace operator on W 1,p

0 . We can then apply the strategy from [HKM] to construct the associated
capacity and we show that it is a Choquet capacity on X, extending the result obtained in [HKM] for the
p-Laplace operator. Following [Beu], we also construct the equilibrium potential for a compact set. Finally,
we prove Caccioppoli type inequalities in the intrinsic metric induced by E for p-harmonic functions, that is,
harmonic with respect to the form Ep.

In the last four decades results from nonlinear potential theory have been used in the study of quasiconformal
and quasiregular mappings; cf. [BI], [IM], and [HKM]. Our second aim is to use the obtained results for each
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n-dimensional quasiregular mapping f and to construct a nonlinear Dirichlet form En (p = n) such that the
components of f become harmonic functions with respect to En. This statement should be compared with
the results from the monograph [HKM], where to a quasiregular mapping it is associated a different structure,
namely a nonlinear harmonic space. We apply the obtained Caccioppoli type inequalities to the quasiregular
mapping and we discuss the connections with the results from [BI].

The structure of the paper is the following. In Section 2 we present, following [Beu], the nonlinear Dirichlet
forms, and as an example the form (1.1) associated with the p-Laplace operator. In Section 3 we study the
nonlinear p-form generated by a linear regular Dirichlet form. The main result is Theorem 3.8, showing that
this form is a nonlinear Dirichlet form in the sense of Section 2. As a consequence, we prove in Corollary
3.9 that the p-form associated with the Dirichlet form given by a uniformly elliptic differential operator is a
nonlinear Dirichlet form on W 1,p

0 (Ω), in particular, the Dirichlet form associated with the p-Laplace operator.
We construct then the equilibrium potential and the induced capacity. The nonlinear Dirichlet p-form associated
with a quasiregular mapping is investigated in Section 4. The main result is Theorem 4.4, proving that the
components of a quasiregular mapping are harmonic functions with respect to a nonlinear Dirichlet En, where E
is an associated linear Dirichlet form. The Caccioppoli type inequalities and the application to the quasiregular
mappings are exposed in Section 5. We collected in an Appendix basic results used in the paper on local and
strongly local Dirichlet forms: the capacity and quasi-continuity, the energy measure, and the carré du champ
operator. We also put in the Appendix basic facts on quasiregular mappings.

Finely, we would like to mention that concerning our results in Section 3 there is a recent related paper [K]
that we learned of recently at a conference in Chemnitz, where the second named author presented a talk about
the results of our paper. We would like to thank Kazuhiro Kuwae for sending us a preliminary version of his
paper, before it appeared on arXiv. We refer to assertion 4) of Remark 3.13 below, where we explain the exact
relation of [K] with the results in Section 3 of our paper.

2 Nonlinear Dirichlet forms

We present in this section the basic facts about the nonlinear Dirichlet forms, in the form developed by P. van
Beusekom in [Beu], in order to include as models the forms generated by the Monge-Ampère and p-Laplace
operators.

We fix a system (L1(X,m), B,K, A), where:
− X is a locally compact separable metric space and m is a Radon measure on X.
− B is a real Banach space, with the norm ‖ · ‖B , continuously embedded in L1(X,m). We denote by 〈, 〉 the
duality between the dual B′ of B and B.
− K ⊂ B is a closed convex cone such that:
1. 0 ∈ K.
2. u, v ∈ K =⇒ u ∧ v ∈ K.
3. u, v ∈ K, α ∈ R+ =⇒ u ∧ (v + α) ∈ K.

− A : K −→ B′ is an operator having the following properties:
1. A0 = 0.
2. A is coercive, i.e. 〈Au, u〉 ≥ c‖u‖pB (where c and p are strictly positive constants) for all u ∈ K.
3. A is strictly monotone, that is 〈Au−Av, u− v〉 > 0, for all u, v ∈ K, u 6= v.
− The triple (A,K, B) satisfies the Browder property for each f ∈ B′: if W is a nonempty convex closed
subset of K then there exists u ∈W such that

(2.1) 〈Au− f, v − u〉 ≥ 0 for all v ∈W.

The map
(u, v) 7−→ 〈Au, v〉, u ∈ K, v ∈ B,

associated to an operator A as before, is called monotone form (on B).
An element u ∈ K is called pure potential if

〈Au, v〉 ≥ 0 for all v ∈ K, v ≥ 0.

A monotone form is called nonlinear Dirichlet form if for each two potentials u a̧nd v and every constant
α > 0, the following condition hold:

D1 〈A(u ∧ v), u− u ∧ v〉 ≥ 0.
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D2 〈A(u ∧ (v + α)), u− u ∧ (v + α)〉 ≥ 0.

A normal contraction T operates on A if

u, v ∈ K =⇒ T (u) ∈ K and 〈A(u+ Tu+ v)−Av, u− Tu〉 ≥ 0.

A normal contraction T C-operates on A if

u, v ∈ K =⇒ T (u) ∈ K and 〈A(v + Tu)−Av, u− Tu〉 ≥ 0.

The nonlinear Dirichlet form associated with the p-Laplace operator. Let Ω ⊂ Rn be a bounded
domain and p > 1. If u ∈ C2(Ω) then the p-Laplacean ∆pu of u is defined by

∆pu = −div(|∇u|p−2∇u)

and for all u, v ∈ C2
c (Ω) we have ∫

Ω

v∆pudx =

∫
Ω

|∇u|p−2(∇u,∇v)dx.

This equality allows the following definition of the nonlinear form associated with the the p-Laplace operator:

∆pu, v〉 :=

∫
Ω

|∇u|p−2(∇u,∇v) for all u, v ∈W 1,p
0 (Ω).

In this case we have
K = B = W 1,p

0 (Ω) and A = ∆p.

The main result from [Beu], Ch. 5, is the following: the nonlinear form associated with the p-Laplace operator
is a Dirichlet form on W 1,p

0 (Ω). (See Theorem 5.2.7 in [Beu].) We show in the sequel that this example is a
particular case of a wider class of nonlinear Dirichlet forms.

3 The nonlinear p-form generated by a linear regular Dirichlet form

In this section we construct, starting with a strongly local regular Dirichlet form (E ,D(E)), admitting a carré
du champ operator Γ, a nonlinear Dirichlet form, for each real number p > 2. We suppose that m is a finite
measure on X and let Γ be the associated carré du champ operator. If p > 2 is a fixed real number then we

denote by ‖ ‖p the norm from Lp(X,m), ‖u‖p := (
∫
X
|u|pdm)

1
p .

Following [BH1] and [BH2] we define:

Dp := {u ∈ D(E) ∩ Lp(X,m) : Γ(u)
1
2 ∈ Lp(X,m)}.

For each B-measurable function u we consider

‖u‖Dp := (

∫
X

|u|pdm+

∫
X

Γ(u)
p
2 dm)

1
p =

(
‖u‖pp + ‖Γ(u)

1
2 ‖pp
) 1

p

.

Proposition 3.1. The following assertions hold.
a) (D, ‖ ‖Dp

) is a normed real vector space.
b) Dp is a vectorial lattice: if u, v ∈ Dp then u ∧ v, u ∨ v ∈ Dp.
c) If u ∈ Dp then u+ ∧ 1 ∈ Dp.
d) If u, v ∈ Dp ∩ L∞(X,m), then u · v ∈ Dp.
e) If u ∈ D(E) a̧nd Γ(u) ∈ L∞(X,m) then u ∈ Dp.
f) Let u ∈ Dp and un := ((−n) ∨ u) ∧ n, n ∈ N. Then (un)n ⊂ Dp and un −→ u in Dp.

Proof. a) Let u, v ∈ Dp. Then Γ(u)
1
2 , Γ(v)

1
2 ∈ Lp(X,m) and from (6.6) we deduce that Γ(u+ v)

1
2 ∈ Lp(X,m)

and therefore u + v ∈ Dp. Consequently Dp is a vector space. Since ‖u‖p ≤ ‖u‖Dp
we get that if ‖u‖Dp

= 0
then u = 0. It remains to show the triangle inequality for ‖ ‖Dp

. Again from (6.6) and then using Minkovski
inequality we get :

‖u+ v‖pDp
= ‖u+ v‖pp + ‖Γ(u+ v)

1
2 ‖pp ≤

∫
X

[|u+ v|p + (Γ(u)
1
2 + Γ(v)

1
2 )p]dm ≤
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∫
X

[
(
|u|p + Γ(u)

p
2

) 1
p

+
(
|v|p + Γ(v)

p
2

) 1
p

]pdm ≤
(∫

X

(|u|p + Γ(u)
p
2 )dm

) 1
p

+

(∫
X

(|v|p + Γ(v)
p
2 )dm)

1
p

)p
=

=
(
‖u‖Dp

+ ‖v‖Dp

)p
.

b) From the truncation formula (6.1) we deduce that Γ(u ∧ v) ≤ Γ(u) + Γ(v) whenever u, v ∈ D(E) and
consequently u ∧ v ∈ Dp.

c) Let us remark firstly that if u ∈ D(E) then, since the unit contraction operates on (E ,D(E)), we obtain
u+ ∧ 1 ∈ D(E) and we have

(3.1) µ〈u+∧1〉 = 1[0<ũ<1] · µ〈u〉 for all u ∈ D(E).

Indeed, applying (6.1) we deduce that

µ〈u+,v〉 = 1[ũ>0] · µ〈u,v〉 and µ〈u+〉 = 1[ũ > 0] · µ〈u〉 for all u, v ∈ D(E)loc;

see [St1]. Again from (6.1) and since E is strongly local (µ〈1〉 = 0), we get µ〈u+∧1,u+∧1〉 = 1[ũ+<1] · µ〈u+〉 +
1[ũ≥1]µ〈1〉 = 1[ũ+<1] · µ〈u+〉 = 1[ũ>0] · 1[ũ+<1] · µ〈u〉 = 1[0<ũ<1] · µ〈u〉 and consequently (3.1) holds.

From (3.1) we deduce further that Γ(u+ ∧ 1) ≤ Γ(u) for all u ∈ D(E) and therefore u+ ∧ 1 ∈ Dp whenever
u ∈ Dp.

d) Let now u, v ∈ Dp ∩ L∞(X,m). Since u · v ∈ D(E), then from Leibnitz rule we get

Γ(u · v) = Γ(u · v, u · v) = uΓ(v, uv) + vΓ(u, uv) = u2Γ(v) + v2Γ(u) + 2u · vΓ(u, v).

As a consequence, since the measure m is finite and Γ(u), Γ(v), Γ(u, v) ∈ Lp(X,m), we conclude that Γ(u ·v)
1
2 ∈

Lp(X,m).
e) The assertion follows directly from L∞(X,m) ⊂ Lp(X,m).
f) From the above assertion b) we know that (un)n ⊂ Dp, un −→ u in Lp(X,m) and from the properties of

the linear Dirichlet forms we also know that un −→ u in D(E). Therefore limn→∞
∫
X

Γ(un − u)dm = 0. The

equality (6.4) implies Γ(un) = 1[−n<ũ<n] · Γ(u) ≤ Γ(u) for all n and so limn→∞ ‖Γ(un − u)
1
2 ‖p = 0.

Proposition 3.2. The following assertions hold.
1) The pair (Dp , ‖ · ‖Dp

) is a real Banach space.
2) The space Dp is reflexive.

Proof. Assertion 1), the fact that Dp is a Banach space, is stated without proof in [BH1] and [BH2], Exercise
6.3. For the reader convenience we presented its proof in Appendix A2.

2) By assertion 5) of Proposition 6.1 it follows that the Dirichlet form (E ,D(E)) admits a gradient D. Clearly,
if u ∈ Dp then Du belongs to Lp(m;H), so, we may consider the map J : Dp −→ D(E)× Lp(m;H) defined as
J(u) := (u,Du) for all u ∈ Dp. Let V := D(E) × Lp(m;H), equipped with the norm ‖ · ‖V of product space,

‖(u, f)‖V := E(u)
1
2 + ‖f‖Lp(m;H). Then for some c ≥ 1

c−1‖u‖Dp
≤ ‖J(u)‖V ≤ c‖u‖Dp

.

Hence J : Dp −→ J(Dp) is a homeomorphism and since by assertion 1) the space (Dp , ‖ · ‖Dp) is complete, it
follows that J(Dp) is a closed subspace of (V, ‖ · ‖V ) which is reflexive. Therefore J(Dp) is reflexive, and hence
so is Dp.

We can introduce now the nonlinear form associated with a linear Dirichlet form.

Definition. For u, v ∈ Dp we define

(3.2) Ep(u, v) :=

∫
X

Γ(u)
p−2
2 · Γ(u, v)dm.

By (6.5) we get

|Γ(u)
p−2
2 · Γ(u, v)| ≤ Γ(u)

p−1
2 · Γ(v)

1
2

but Γ(u)
1
2 , Γ(v)

1
2 ∈ Lp(X,M) and therefore Γ(u)

p−1
2 ∈ Lq(X,m), with 1

p+ 1
q = 1. Consequently Γ(u)

p−2
2 Γ(u, v) ∈

L1(X,m) that is Ep(u, v) is well defined and it is a real number. In addition

Ep(u, u) = ‖Γ(u)
1
2 ‖pp.
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The map
Ep : Dp ×Dp −→ R

given by (3.2), is called the nonlinear p-form associated with the linear Dirichlet form (E ,D(E)).
Since the Dirichlet form (E ,D(E)) admits a gradient (cf. assertion 5) of Proposition 6.1) one can write the

nonlinear p-form Ep using the gradient D:

(3.3) Ep(u, v) =

∫
X

‖Du‖p−2
H (Du,Dv)H for all u, v ∈ Dp.

Proposition 3.3. The following assertions hold.
a) The nonlinear p-form Ep is homogeneous of degree p− 1, that is

Ep(tu, v) = tp−1Ep(u, v) for all u, v ∈ Dp, t ∈ R+.

b) The nonlinear p-form Ep satisfies the sector condition:

|Ep(u, v)| ≤ Ep(u, u)
p−1
p · Ep(v, v)

1
p for all u, v ∈ Dp.

Proof. Assertion a) follows immediately from the bilinearity of the carré du champ operator Γ.
b) Let u, v ∈ Dp. By (3.2) and then using the Hölder inequality we get

(Ep(u, v))2 =

(∫
X

Γ(u)
p−2
2 Γ(u, v)dm

)2

≤
(∫

X

Γ(u)
p
2 dm

)
·
(∫

X

Γ(u)
p−2
2 Γ(v)dm

)
≤

(∫
X

Γ(u)
p
2 dm

)
·
(∫

X

Γ(u)
p
2 dm

) p−2
p

·
(∫

X

Γ(v)
p
2 dm

) 2
p

=

(∫
X

Γ(u)
p
2 dm

)2 p−1
p

·
(∫

X

Γ(v)
p
2 dm

) 2
p

=
(
Ep(u, u)

p−1
p · Ep(v, v)

1
p

)2

.

The definition of the operator A = Lp

Let u ∈ Dp. The functional Lpu : Dp −→ R defined by

Lpu(v) := Ep(u, v)

is linear. From the sector condition (Proposition 3.3 b) ) we deduce that:

Lpu(v) ≤ Ep(u, u)
p−1
p · ‖v‖Dp for all v ∈ Dp.

We conclude that Lpu is an element of the topological dual D′p of Dp. We have defined in this way an operator

Lp : Dp −→ D
′

p

such that

(3.4) Ep(u, v) = 〈Lpu, v〉 for all u, v ∈ Dp.

Proposition 3.4. The operator Lp is homogeneous of degree p− 1 i.e.

Lp(tu) = tp−1Lpu for all u ∈ Dp, t ∈ R+

and it satisfies the sector condition

(3.5) 〈Lpu, v〉 ≤ 〈Lpu, u〉
p−1
p · 〈Lpv, v〉

1
p for all u, v ∈ Dp.

Proof. The inequality (3.5) is precisely the sector condition for the form Ep (Proposition 3.3 b)), expressed
using the operator Lp. Assertion a) from Proposition 3.3 shows that 〈Lp(tu), v〉 = Ep(tu, v) = tp−1Ep(u, v) =
tp−1〈Lpu, v〉 and thus Lp(tu) = tp−1Lpu.
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The nonlinear Dirichlet form associated with the p-Laplace operator
This classical Dirichlet form is strongly local and admits the carré du champ operator

(u, v) 7−→ 2∇u · ∇v, u, v ∈W 1,2
0 (Ω).

If p > 1 is a real number then for u ∈ C2(Ω) we define the p-Laplacean ∆pu of u by

∆pu = −div(|∇u|p−2∇u)

and for all u, v ∈ C2
c (Ω) we have ∫

Ω

v∆pudx =

∫
Ω

|∇u|p−2(∇u,∇v)dx.

This equality permits to define the nonlinear form associated with the p-Laplace operator,

(3.6) 〈∆pu, v〉 :=

∫
Ω

|∇u|p−2(∇u,∇v) for all u, v ∈W 1,p
0 (Ω).

In this case we have
K = B = W 1,p

0 (Ω) and A = ∆p.

The main result from [Beu], Ch. 5, is the following: The nonlinear form associated with the p-Laplace
operator is a Dirichlet form on W 1,p

0 (Ω); see Theorem 5.2.7 in [Beu].
Recall that the generator of the classical Dirichlet form (D,W 1,2

0 (Ω)) is the Laplace operator ∆,

D(u, v) = −(∆u, v)2

and the nonlinear p-form Dp associated with the form D is generated by the p-Laplace operator ∆p:

Dp(u, v) = 〈∆pu, v〉.

Let now L be the generator of the linear Dirichlet form (E ,D(E)), more precisely,

E(u, v) = −(Lu, v)2 for all u ∈ D(L), v ∈ D(E).

The notation ∆p for the p-Laplace operator justifies the notation Lp for the operator generating the nonlinear
p-form Ep, by the equality (3.4).

We prove further that the operator Lp has properties that are similar to those of the p-Laplace operator,
extending the results from [Beu], Ch.5.

Theorem 3.5. . The following assertions hold.
a) The operator Lp : Dp −→ D

′

p is monotone,

〈Lpu− Lpv, u− v〉 ≥ 0 for all u, v ∈ Dp.

In addition
〈Lpu− Lpv, u− v〉 = 0 =⇒ Γ(u− v) = 0

and

(3.7) Γ(u)
p−2
2 Γ(u, u− v)− Γ(v)

p−2
2 Γ(v, u− v) ≥ 0.

b) If the Dirichlet form (E ,D(E)) is coercive i.e. there is a constant k such that

‖u‖22 ≤ k · E(u, u) for all u ∈ D(E),

then the operator Lp is coercive, that is

‖u‖pDp
≤ c · 〈Lpu, u〉 for all u ∈ Dp

where c > 0 is a constant. Particularly, in this case Lp is strictly monotone.
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Proof. We show firstly that inequality (3.7) holds.

Let u, v ∈ Dp. From (6.5) we deduce that −Γ(u, v) ≥ −Γ(u)
1
2 Γ(v)

1
2 and we get

Γ(u)
p−2
2 Γ(u, u− v)− Γ(v)

p−2
2 Γ(v, u− v) = Γ(u)

p
2 + Γ(v)

p
2 − [Γ(u)

p−2
2 + Γ(v)

p−2
2 ]Γ(u, v) ≥

Γ(u)
p
2 + Γ(v)

p
2 − Γ(u)

p−1
2 Γ(v)

1
2 − Γ(v)

p−1
2 Γ(u)

1
2 = [Γ(u)

p−1
2 − Γ(v)

p−1
2 ] · [Γ(u)

1
2 − Γ(v)

1
2 ].

Since the function t −→ tp−1 is strictly monotone on (0,∞) for p > 1, we obtain that (tp−1 − sp−1)(t− s) > 0
for s, t ∈ (0,∞), s 6= t. As a consequence we deduce (3.7).

Integrating (3.7) with the measure m we have 〈Lpu− Lpv, u− v〉 ≥ 0, i.e. Lp is monotone.
If 〈Lpu− Lpv, u− v〉 = 0 then from the above inequalities we conclude that Γ(u) = Γ(v) and thus∫

X

Γ(u)
p−2
2 Γ(u− v)dm = 0.

Therefore Γ(u)·Γ(u−v) = 0. From (6.7) it results Γ(u−v)
1
2 ≤ Γ(u)

1
2 +Γ(v)

1
2 = 2Γ(u)

1
2 and finally Γ(u−v) = 0.

b) Let us suppose now that the form (E ,D(E)) is coercive i.e.∫
X

v2dm ≤ k
∫
X

Γ(v)dm for all v ∈ D(E).

Let u ∈ Dp ∩ L∞. Proposition 6.2.2 in [BH2] implies |u|
p
2 ∈ D(E). Applying the above inequality for v = |u|

p
2 ,

the chain rule and the Hölder inequality, we get:

‖u‖pp =

∫
X

|u|pdm =

∫
X

(|u|
p
2 )2dm ≤ k

∫
X

Γ(|u|
p
2 )dm =

k(
p

2
)2

∫
X

|u|p−2Γ(|u|)dm ≤ k(
p

2
)2(

∫
X

|u|pdm)
p−2
p (

∫
X

Γ(u)
p
2 dm)

2
p = k(

p

2
)2‖u‖p−2

p · ‖Γ(u)
1
2 ‖2p.

Therefore

‖u‖pp ≤ (

√
kp

2
)p〈Lpu, u〉

and thus

‖u‖pDp
≤ (1 + (

√
kp

2
)p)〈Lpu, u〉.

If u ∈ Dp, then exists a sequence (un)n ⊂ Dp ∩ L∞(X,m) such that un → u ı̂n Dp (c.f. Proposition 3.1
f)). Applying the last inequality for any function un and then passing to the limit, we conclude that Lp is
coercive.

Theorem 3.6. The following assertions hold.
a) The unit contraction C-operates on Lp.
b) The contraction T− C-operates on Lp, where T−u := u−.
c) Each C1 normal contraction operates on Lp.

Proof. a) Let u ∈ Dp. From Proposition 3.1 c) we deduce that T1u = u+ ∧ 1 ∈ Dp and (6.4) implies

Γ(T1u,w) = 1[0<ũ<1] · Γ(u,w) for all w ∈ D(E).

Taking into account this equality, we obtain for all u, v ∈ Dp:
〈Lp(v + T1u), u− T1u〉 − 〈Lpv, u− T1u〉 =

∫
X

[Γ(v + T1u)
p−2
2 Γ(v + T1u, u− T1u)− Γ(v)

p−2
2 · Γ(v, u− T1u)]dm =∫

X
(1 − 1[0<ũ<1]) · [Γ(v + T1u)

p−2
2 · Γ(v + T1u, u) − Γ(v)

p−2
2 · Γ(v, u)]dm =

∫
[ũ≤0]∪[ũ≥1]

[Γ(v + T1u)
p−2
2 · Γ(v +

T1u, u) − Γ(v)
p−2
2 · Γ(v, u)]dm = 0. The last equality holds since T1ũ = 0 on [ũ ≤ 0] and T1ũ = 1 on [ũ ≥ 1].

Therefore, using also (6.2) we get Γ(v + T1u) = Γ(v), Γ(v + T1u, u) = Γ(v, u), on [ũ ≤ 0] ∪ [ũ ≥ 1],

Γ(v + T1u)
p−2
2 · Γ(v + T1u, u) = Γ(v)

p−2
2 · Γ(v, u)

on the same set. We conclude that the unit contraction C-operates.

b) Again from Proposition 3.1 b) and (6.4) we deduce that T−u ∈ Dp for all u ∈ Dp and

Γ(T−u,w) = Γ(u ∧ 0, w) = 1[ũ<0] · Γ(u,w) for all w ∈ D(E).
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On the set [ũ ≥ 0] we have T−ũ = 0 and therefore

Γ(v + T−u,w) = Γ(v, w) on [ũ ≥ 0].

As in the proof of assertion a) we have:

〈Lp(v + T−u), u− T−u〉 − 〈Lpv, u− T−u〉 =

∫
X

(
1− 1[ũ<0]

)
[Γ(v + T−u)

p−2
2 Γ(v + T−u, u)− Γ(v)

p−2
2 Γ(v, u)]dm

=

∫
[ũ≥0]

[Γ(v + T−u)
p−2
2 Γ(v + T−u, u)− Γ(v)

p−2
2 · Γ(v, u)]dm = 0.

c) Let T ∈ C1 be a normal contraction. It results |T ′| ≤ 1 and from assertion 2) of Proposition 6.1 we have

Γ(Tu,w) = T ′(u)Γ(u,w) for all u,w ∈ D(E).

We deduce that for u ∈ Dp we have
Γ(Tu) = (T ′(u))2Γ(u) ≤ Γ(u)

and thus Tu ∈ Dp.
We apply now (3.7) for u+ Tu+ v and v:

Γ(u+ Tu+ v)
p−2
2 · Γ(u+ Tu+ v, u+ Tu)− Γ(v)

p−2
2 · Γ(v, u+ Tu) ≥ 0

or equivalently

(1 + T
′
(u))[Γ(u+ Tu+ v)

p−2
2 Γ(u+ Tu+ v, u)− Γ(v)

p−2
2 Γ(v, u)] ≥ 0.

As a consequence, on the set M := [1 + T ′(u) > 0] we have

Γ(u+ Tu+ v)
p−2
2 · Γ(u+ Tu+ v, u)− Γ(v)

p−2
2 Γ(v, u) ≥ 0.

Multiplying with the positive function 1− T ′(u) and taking into account the equality

(1− T ′(u))Γ(w, u) = Γ(w, u− Tu)

we obtain on M

(3.8) Γ(u+ Tu+ v)
p−2
2 · Γ(u+ Tu+ v, u− Tu)− Γ(v)

p−2
2 Γ(v, u− Tu) ≥ 0.

On the set X \M we have 1 + T ′(u) = 0 and therefore on this set we have the equalities

Γ(u+ Tu+ v) = Γ(v), Γ(u+ Tu+ v, u− Tu) = Γ(v, u− Tu)

that lead to
Γ(u+ Tu+ v)

p−2
2 · Γ(u+ Tu+ v, u− Tu)− Γ(v)

p−2
2 · Γ(v, u− Tu) =

Γ(v)
p−2
2 · Γ(v, u− Tu)− Γ(v)

p−2
2 · Γ(v, u− Tu) = 0

on X \M . We conclude that the inequality (3.7) holds on X and integrating with m it results

〈Lp(u+ Tu+ v), u− Tu〉 − 〈Lpv, u− Tu〉 =∫
X

[Γ(u+ Tu+ v)
p−2
2 · Γ(u+ Tu+ v, u− Tu)− Γ(v)

p−2
2 · Γ(v, u− Tu)]dm ≥ 0,

and thus the contraction T operates on Lp.

Remark. For each α > 0 the contraction Tα C-operates on Lp where Tα(u) := u+ ∧ α.
Indeed, the assertion follows from Tαu = αT1

(
u
α

)
, since the contraction T1 C-operates (cf. Theorem 3.6 a))

and using the homogeneity of the operator Lp (see Proposition 3.4).

Proposition 3.7. The operator Lp is hemi-continuous.
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Proof. We have

〈Lp(v + t(u− v)), u− v〉 =

∫
X

Γ(tu+ (1− t)v)
p−2
2 Γ(tu+ (1− t)v, u− v)dm.

If t ∈ [0, 1] then:

Γ(tu+ (1− t)v)
p−2
2 · Γ(tu+ (1− t)v, u− v) =

[t2Γ(u) + 2t(1− t)Γ(u, v) + (1− t)2Γ(v)]
p−2
2 [tΓ(u, u− v) + (1− t)Γ(v, u− v)] ≤

[Γ(u) + 2Γ(u)
1
2 Γ(v)

1
2 + Γ(v)]

p−2
2 Γ(u− v)

1
2 [Γ(u)

1
2 + Γ(v)

1
2 ] ∈ L1(X,m).

By dominated convergence we get the requested continuity.

Theorem 3.8. Let (E ,D(E)) be regular strongly local Dirichlet form, admitting a carré du champ operator. If
(E ,D(E)) is coercive then the associated nonlinear p-form is a nonlinear Dirichlet form.

Proof. By assertion 2) of Proposition 3.2 we get that Dp is reflexive. Proposition 3.7 and Remark 3 at page 14 in
[Beu] imply now that the operator Lp : Dp −→ D′p satisfies the Browder property. We have shown (in Theorem
3.6 b)) that the contraction T− C-operates on Lp. By Lemma 2.3.3 from [Beu] we deduce that property D1
is verified. Since the contractions Tα, α ∈ R+, C-operate, applying Lemma 2.3.6 from [Beu] we deduce that
property D2 also holds. The strict monotonicity and coercivity of the operator Lp derive from Theorem 3.5.

Corollary 3.9. The following assertions hold.
a) The form associated with the p-Laplace operator is a nonlinear Dirichlet form on W 1,p

0 (Ω).
b) The nonlinear p-form associated with the Dirichlet form given by the uniformly elliptic case is a nonlinear

Dirichlet form on W 1,p
0 (Ω).

Proof. It suffices to prove assertion b). Since Dp := (W 1,2
0 (Ω))p is a closed subspace of W 1,p(Ω) that is reflexive,

it follows that Dp is also reflexive. The coercivity of the linear form is a consequence of the Poincaré inequality

for functions from W 1,2
0 (Ω) (see e.g. [HKM]), using the uniform ellipticity. By Theorem 3.8 we deduce that

the associated p-form is a nonlinear Dirichlet form on Dp. The restriction of Lp to W 1,p
0 (Ω) ⊂ Dp is therefore

strictly monotone and coercive. If a contraction T C-operates or operates on (∆p,Dp), then the same property

is transmitted to the restriction of ∆p to W 1,p
0 (Ω), since Tu ∈ Dp whenever u ∈W 1,p

0 (Ω) and from |Tu| ≤ u we

deduce that Tu ∈W 1,p
0 (Ω). We conclude that we have obtained a nonlinear Dirichlet form on W 1,p

0 (Ω).

Capacity and equilibrium potential. Let (E ,D(E)) be a regular strongly local Dirichlet form, admitting a
carré du champ operator Γ and such that (E ,D(E)) is coercive.

We follow the approach from [HKM], Theorem 2.2, to construct the Choquet capacity induced by the
nonlinear p-form (Ep,Dp) associated with (E ,D(E)).

For a compact subset K of X let W (K) := {w ∈ Dp ∩ C(X) : w > 1 on K} and define

capop(K) := inf{〈Lpu, u〉 : u ∈W (K)} provided that W (K) 6= ∅

and capop(K) :=∞ if W (K) = ∅. Recall that we have 〈Lpu, u〉 =
∫
X

Γ(u)
p
2 dm.

If U ⊂ X is open, set
capp(U) := sup{capop(K) : K ⊂ U compact}

and finally, for an arbitrary set E ⊂ X

capp(E) := inf{capp(U) : U open, E ⊂ U}.

We show now that there is no ambiguity for the definition of the capacity of a compact set and we prove
the existence of the equilibrium potential for a compact set.

Proposition 3.10. The following assertions hold for a compact subset K of X.
1) We have capop(K) = capp(K).
2) There exists a unique function eK ∈W (K) such that

〈LpeK , w − eK〉 ≥ 0 for all w ∈W (K)

and we have 0 ≤ eU ≤ 1, eK = 1 on K, and

capp(K) = 〈LpeK , eK〉 =

∫
X

Γ(eK)
p
2 dm.
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Proof. 1) The inequality capop(K) ≤ capp(K) is clear. To prove the converse inequality let ε > 0, u ∈ W (K),
and consider the open set Uε := {x ∈ X : u > 1− ε}. Then K ⊂ Uε and let L be a compact subset of Uε, such
that K ⊂ L and capp(Uε) ≤ capop(L) + ε. We have 1

1−εu ∈ W (L) and therefore capop(L) ≤
∫
X

Γ( 1
1−εu)

p
2 dm.

We conclude that capp(Uε) ≤ (1 − ε)−p
∫
X

Γ(u)
p
2 dm + ε. Taking the infimum over all u ∈ W (K) we get

capp(K) ≤ capp(Uε) ≤ (1− ε)−pcapop(K) + ε and letting ε −→ 0 we obtain the claimed inequality.
2) The existence of the function eK follows by (2.1) because assertion b) of Theorem 3.5 implies that the

operator Lp is strictly monotone. The properties 0 ≤ eK ≤ 1 and eK = 1 on K follow as in the proof of
Theorem 6.2.1 from [Beu]. Arguing as in the proof of Lemma 6.2.1 from [Beu] and using the sector condition
(assertion b) of Proposition 3.3), we obtain the equality capp(K) = 〈LpeK , eK〉.

We show now that capp is a Choquet capacity on X. The next theorem is a generalisation, in our frame
given by a regular strongly local Dirichlet form, of a result for the p-Laplace operator, Theorem 2.2 from [HKM].

Theorem 3.11. The set function E 7−→ capp(E), E ⊂ X, enjoys the following properties.
1) capp is strongly subadditive on compacts sets, that is, if if K,L are compact subsets of X then

capp(K ∪ L) + capp(K ∩ L) ≤ capp(K) + capp(L).

2) The set function E 7−→ capp(E) is a Choquet capacity on X, that is, the following properties hold:
(2a) If E1 ⊂ E2 then capp(E1) ≤ capp(E2).
(2b) If (Ki)i is a decreasing sequence of compact subsets of X with K =

⋂
iKi then capp(K) = limi capp(Ki).

(2c) If (Ei)i is an increasing sequence of subsets of X with E =
⋃
iEi then capp(E) = limi capp(Ei).

3) If E =
⋃
iEi then capp(E) ≤

∑
i capp(Ei).

4) If E ⊂ X and capp(E) = 0 then the set E is m-negligible.

Proof. To prove assertion 1) we argue as in [Beu], page 71. From (6.6) we get
∫
X

Γ(u ∧ v)
p
2 dm +

∫
X

Γ(u ∨
v)

p
2 dm =

∫
X

Γ(u)
p
2 dm +

∫
X

Γ(v)
p
2 dm. This implies that if u ∈ W (K) and v ∈ W (L) then u ∧ v ∈ W (K ∩ L),

u ∨ v ∈W (K ∪ L) and therefore

capp(K ∪ L) + capp(K ∩ L) ≤
∫
X

Γ(u ∧ v)
p
2 dm+

∫
X

Γ(u ∨ v)
p
2 dm =

∫
X

Γ(u)
p
2 dm+

∫
X

Γ(v)
p
2 dm.

Taking now the infimum over W (K) and W (L) we get the strong subadditivity condition for K and L.
Clearly, property (2a) is an immediate consequence of the definition.
(2b) We argue as in the proof of assertion 1) of Proposition 3.10. Let ε > 0, u ∈W (K), and Uε := {x ∈ X :

u > 1−ε}. Then K ⊂ Uε and there exists io such that Kio lies in the open set Uε. Consequently, 1
1−εu ∈W (Kio)

and therefore, using also assertion 1) of Proposition 3.10, we have capp(Kio) = capop(Kio) ≤ (1−ε)−p
∫
X

Γ(u)
p
2 dm

and letting ε −→ 0 we get limi capp(Ki) ≤
∫
X

Γ(u)
p
2 dm for all u ∈ W (K). Taking the infimum over all

u ∈W (K) we get capp(K) ≤ limi capp(Ki) ≤ capp(K).
To prove assertions (2c) and 3) we need the following lemma, which is an adaptation of Lemma 2.3 from

[HKM] to our more general frame. For the reader convenience we present its proof in Appendix A3.

Lemma 3.12. Let E1, . . . , Ek ⊂ X and Fi ⊂ Ei, i = 1, . . . , k, such that capp(
⋃k
i=1 Fi) <∞. Then

(3.9) capp(
k⋃
i=1

Ei)− capp(
k⋃
i=1

Fi) ≤
k∑
i=1

(capp(Ei)− capp(Fi)).

(2c) By the monotonicity property 1) we only have to prove that capp(E) ≤ limi capp(Ei) and we may
assume that capp(Ei) < ∞ for all i. Let ε > 0 be fixed and for each i choose an open set Ui such that

Ei ⊂ Ui and capp(Ui) ≤ capp(Ei) + ε
2i . Because capp(

⋃k
i=1Ei) = capp(Ek) < ∞ for each k, by Lemma

3.12 we get capp(
⋃k
i=1 Ui) − capp(

⋃k
i=1Ei) ≤

∑k
i=1

ε
2i , ε. If K ⊂

⋃∞
i=1 Ui is compact, then K ⊂

⋃k
i=1 Ui for

some k and we have capp(K) ≤ capp(
⋃k
i=1 Ui) ≤ capp(

⋃k
i=1Ei) + ε ≤ limk capp(Ek) + ε. We conclude that

capp(E) ≤ capp(
⋃∞
i=1 Ui) = sup{capp(K) : K compact, K ⊂

⋃∞
i=1 Ui} ≤ limk capp(Ek) + ε and the proof of (2c)

is complete.
3) Lemma 3.12 implies that the finite version of 3) holds. Because

⋃k
i=1Ei increases to

⋃∞
i=1Ei, we may

applying (2c) to obtain 3).
4) Because capp(E) = 0, there exists a Borel set Eo such that E ⊂ Eo and capp(Eo) = 0. So, replacing E by

Eo, we may assume that E ∈ B(X). Recall that by the Choquet capacitability theorem any Borel set (actually,
any analytic set) is capacitable, that is, capp(E) = sup{capp(K) : K compact, K ⊂ E}. Therefore, we may
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assume that E is compact and in this case, by assertion 1) of Proposition 3.10, we have capp(E) = capop(E).
Let u ∈W (E), then since u ≥ 1 on E and by assertion b) of Theorem 3.5 we have m(E) ≤ ‖u‖pDp

≤ c · 〈Lpu, u〉.
We conclude that m(E) ≤ c · inf{〈Lpu, u〉 : u ∈W (E)} = capop(E) = 0.

Remark 3.13. 1) The function eK from assertion 2) of Proposition 3.10 is called equilibrium potential.
2) Assertion 4) of Theorem 3.11 and its proof are standard, the coercivity of the form E is used essentially

here. For the case of the p-Laplace operator see Lemma 2.10 from [HKM].
3) For convenience we assumed that (E ,D(E)) is a regular Dirichlet form on a locally compact separable

metric space X. However, the results from this section may be extended to the quasi-regular case (cf. [MR]),
on a general Lusin topological space X.

4) As we mentioned at the end of the Introduction, an independently achieved result on the p-energy forms and
the induced capacity is contained in [K]. However, our p-form is closer to the classical situation. Indeed, recall
that in (3.3) we succeeded to expressed the p-form Ep by means of a gradient operator. In this way, comparing
(3.3) with (3.6), we emphasised that Ep is a generalisation of the p-form associated with the p-Laplace operator.
The capacity in [K] is constructed starting with the open sets and the existence of the equilibrium potentials. We
constructed the capacity starting with compacts, following the approach from [HKM] for the p-Laplace operator.
We also proved the existence of the equilibrium potentials following [Beu], (see Proposition 3.10). Note that we
need continuous functions from Dp to define the capacity, therefore, in general our capacity might be different
from the capacity considered in [K].

5) Energy forms on Lp-spaces and associated capacities have been studied in [HJ] and [JS], using the Γ-
transform of a given Lp sub-Markovian semigroup.

4 The nonlinear Dirichlet p-form associated with a quasiregular
mapping

.
In the previous section it was proved that to each regular symmetric strongly local (linear) Dirichlet form

(E ,D(E)) on L2(X,m), admitting a carré du champ. Γ, and every real number p > 1, one can associate a

nonlinear form Ep by the formula Ep(u, v) =
∫
X

Γ(u)
p−2
2 Γ(u, v)dm, where u, v ∈ Dp := {w ∈ D(E) ∩ Lp(X,m) :

Γ(w)
1
2 ∈ Lp(X,m)}. It turns out that (Ep,Dp) is a nonlinear Dirichlet form in the sense introduced by P. van

Beusekon in [Beu].
Further on, using the above procedure, we associate with each n-dimensional quasiregular mapping f a

nonlinear Dirichlet form En (p = n), such that the components of f become harmonic functions with respect to
En.

We prove in Section 5 below Caccioppoli type inequalities on balls in the intrinsic metric on X generated
by a general Dirichlet form E as above, for functions that are harmonic with respect to Ep. We deduce in this
way the usual Caccioppoli type inequality in Rn (cf. [BI]).

Let (E ,D(E)) be a symmetric regular Dirichlet form on L2(X,m) that is strongly local and admits a carré
du champ operator Γ (cf. [FOT] and [BH2]). If U is an open subset of X then we put

Dp|U := {u : U −→ R : there exists ū ∈ Dp, u = ū m− a.e. on U}

Dp(U)c := {v ∈ Dp : suppv ⊂ U compact}

For every u ∈ Dp|U and v ∈ Dp(U)c we define

Ep(u, v) := Ep(ū, v),

where u ∈ Dp and u = u m-a.e. on U . Since Γ(u) = 0 on U provided u = 0 m-a.e. on U , we conclude that the
above definition is correct.

We set:

(Dp)l := {f : X −→ R : for all x ∈ X there exists V open with x ∈ V and f |V ∈ Dp|V }.

A function u ∈ (Dp)l is called Lp-harmonic on an open set U provided that Ep(u, v) = 0 for each open set
V ⊂ U such that u|V ∈ Dp|V a̧nd all v ∈ Dp(V )c.

Let Ω be a domain in Rp and A : Ω× Rp −→ Rp defined by

(4.1) A(x, ξ) := (G(x)ξ, ξ)
p−2
2 G(x)ξ,
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where G(x) is a symmetric positive definite p × p-matrix of measurable functions on Ω, and there exists two
strictly positive constants α and β such that the following condition of uniform ellipticity holds:

(4.2) α|ξ|2 ≤ (G(x)ξ, ξ) ≤ β|ξ|2 for all x ∈ Ω and ξ ∈ Rp.

A function u ∈W 1,p
loc (Ω) is called weak solution of the equation

divA(x,∇u(x)) = 0

provided that ∫
Ω

(A(x,∇u(x)),∇v(x))dx = 0 for all v ∈ C∞c (Ω).

The solutions that are continuous functions are named A-harmonic (see [HKM]).

Remark 4.1. The uniform ellipticity condition (4.2) allows the construction, for each A, of a linear regular
Dirichlet form, induced by the matrix G and further of the nonlinear p-form (Ep,Dp) associated Ep(u, v) =

〈Lpu, v〉, a nonlinear Dirichlet form. Note that if u ∈ W 1,p
loc (Ω), then u ∈ (Dp)l; cf. Theorem 1.2.2 in [AH].

From the expression of the carré du champ operator in this particular case, we deduce that an A-harmonic
function is Lp-harmonic on X.

In the sequel we fix a quasiregular mapping f : Ω −→ Rp; see Appendix A4 for the definition and basic facts
on the quasiregular mappings.

We consider the matrix θf , given by (6.10), associated with f . Since f is quasiregular, the uniform ellipticity
condition (6.11) holds. It follows that that G := θf is a symmetric positive definite p× p-matrix of measurable
functions on Ω, satisfying the uniform ellipticity condition. Therefore, by (4.1) we may define A, depending on
f .

The following result may be deduced from Theorem 5.1 in [Re2]; see also [Be] and [HKM].

Proposition 4.2. The components f i, 1 ≤ i ≤ p, of f = (f1, ..., fp) are A-harmonic functions.

Remark 4.3. A second example of A-harmonic function is ln |f |, where f : Ω → Rn \ {0} is quasiregular (cf.
[BI] or [Re1]).

Theorem 4.4. Let Ω ⊂ Rp be a bounded domain and f : Ω −→ Rp a quasiregular mapping. Then there exists a
nonlinear Dirichlet p-form (Ep,Dp) such that the components of f as well as ln |f |, whenever f : Ω −→ Rp \{0},
are Lp-harmonic functions, where Lp is the nonlinear operator generating the form.

Proof. The assertion follows from Remark 4.1, Proposition 4.2, and Remark 4.3 (for the function ln |f |).

5 Caccioppoli type inequlities

We obtain Caccioppoli type inequalities in the general context given by a Dirichlet form and then we apply
these results to the quasiregular mappings.

In this section (E ,D(E)) is a strongly local regular Dirichlet form, admitting a carré du champ opeartor.

Proposition 5.1. Let U ⊂ X be an open set, u ∈ Dp|U a Lp-harmonic function on U and ϕ ∈ D(E)∩L∞(X,m)
having compact support in U , ϕ ≥ 0 and Γ(ϕ) bounded. Then for each c ∈ R we have∫

X

ϕpΓ(u)
p
2 dm

 1
p

≤ p

∫
X

Γ(ϕ)
p
2 |u− c|pdm

 1
p

.

Proof. Let us first remark that, since ϕ and Γ(ϕ) are bounded functions, we deduce that for each β > 0 we have

ϕβ ∈ Dp(G)c.

Let η := ϕp(u − c) and ηn := ϕp(un − c) where un := (u ∧ n) ∨ (−n). It is known that un −→ u in D(E) and
from Proposition 3.1 we deduce that ηn ∈ Dp(G)c. The function u being Lp-harmonic on U and applying the
chain rule, we get

0 = Ep(u, ηn) =

∫
X

Γ(u)
p−2
2 Γ(u, ϕp(un−c))dm =

∫
X

Γ(u)
p−2
2 ϕpΓ(u, un−c)dm+

∫
X

Γ(u)
p−2
2 (un−c)·pϕp−1Γ(u, ϕ)dm
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=

∫
X

Γ(u)
p−2
2 ϕpΓ(u, un)dm+ p

∫
X

ϕp−1(un − c)Γ(u)
p−2
2 · Γ(u, ϕ)dm.

By the Hölder inequality we obtain now∫
X

Γ(u)
p−2
2 ϕpΓ(u, un)dm ≤ p

∫
X

ϕp−1|un − c|Γ(u)
p−2
2 Γ(u, ϕ)dm ≤ p

∫
X

Γ(u)
p−2
2 ϕp−1|un − c|Γ(u)

1
2 Γ(ϕ)

1
2 dm =

p

∫
X

Γ(u)
p−1
2 ϕp−1|un − c|Γ(ϕ)

1
2 dm ≤ p

∫
X

(Γ(u)
p−1
2 · ϕp−1)

p
p−1 dm


p−1
p

·

∫
X

|un − c|pΓ(ϕ)
p
2 dm

 1
p

=

p

∫
X

Γ(u)
p
2ϕpdm


p−1
p

·

∫
X

Γ(ϕ)
p
2 |un − c|pdm

 1
p

.

Therefore we have

∫
X

Γ(u)
p−2
2 ϕpΓ(u, un)dm ≤ p

∫
X

Γ(u)
p
2ϕpdm


p−1
p

·

∫
X

Γ(ϕ)
p
2 |un − c|pdm

 1
p

.

Passing to the limit, un −→ u ı̂n D(E) and Lp(X,m), we conclude that

∫
X

Γ(u)
p
2ϕpdm ≤ p

∫
X

Γ(u)
p
2ϕpdm


p−1
p

·

∫
X

Γ(ϕ)
p
2 |u− c|pdm

 1
p

and consequently we get the required inequality.

Definition. Let D ⊂ U be an open relatively compact subset of U . We say that D admites a truncation
function in U if there exists ϕ ∈ D(E), having the following properties:
0 ≤ ϕ ≤ 1, Γ(ϕ) bounded, ϕ has compact support in U and ϕ = 1 on D.

Theorem 5.2. Let U be an open subset of X, u ∈ Dp|U a Lp-harmonic function on U and D ⊂ U an open
relatively compact subset of U , admitting a truncation function ϕ in U . Then for each c ∈ R we have∫

D

Γ(u)
p
2 dm

 1
p

≤ p · k

∫
F

|u− c|pdm

 1
p

where F = suppϕ şi Γ(ϕ) ≤ k2.

Proof. Applying Proposition 5.1 to the truncation function ϕ we get∫
D

Γ(u)
p
2 dm =

∫
D

ϕpΓ(u)
p
2 dm ≤

∫
X

ϕpΓ(u)
p
2 dm ≤ pp

∫
F

Γ(ϕ)
p
2 |u− c|pdm ≤ (p · k)p

∫
F

|u− c|pdm,

that is the desired equality. Note that we have used the fact that Γ(ϕ) = 0 on X \ F .

Further we use the intrinsic metric ρ on X, induced by the Dirichlet form (E ,D(E)). This technique has been
developed in the works [BM1], [BM2], [St1], and [St2]. For each x, y ∈ X define the map ρ : X ×X −→ [0,∞]
by

ρ(x, y) := sup{u(x)− u(y) : u ∈ Dloc ∩ C(X), µ〈u〉 ≤ m}.

One can verify that ρ(x, y) ≤ ρ(x, z) + ρ(z, y) for each x, y, z ∈ X. ρ is called the intrinsic metric induced by
(E ,D(E)). We denote by Br(x) the ball with radius r > 0 centered in x ∈ X,

Br(x) := {y ∈ X : ρ(x, y) < r},

and let τρ be the topology generated by these balls.
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In the sequel we suppose that:
the initial topology of locally compact space on X is connected and coincides with τρ.

Note that under the above hypothesis ρ becomes a metric on X.
For each x ∈ X a̧nd r > 0 we define the functions ρx, ρx,r : X −→ R+ by

ρx(y) := ρ(x, y) , ρx,r(y) := (r − ρ(x, y)) ∨ 0 for all y ∈ X.

Then the functions ρx and ρx,r have the following properties (see Lemma 1’ in [St1]):

ρx ∈ Dloc ∩ C(X), ρx,r ∈ D ∩ Cc(X), provided that Br(x) is relatively compact and

µ〈ρx〉 ≤ m , µ〈ρx,r〉 ≤ m.

Corollary 5.3. Let U be open, x0 ∈ U , 0 < r < R such that the ball BR(x0) is included in U . If u ∈ Dp|U is
Lp-harmonic on U and c ∈ R, then ∫

Br(x0)

Γ(u)
p
2 dm


1
p

≤ p

R− r
·

 ∫
BR(x0)

|u− c|pdm


1
p

.

Proof. We define the function ψ by

ψ(y) = (R− ρ(x0, y))+ ∧ (R− r) = ρx0,R(y) ∧ (R− r).

It results that ψ ∈ D(E) and Γ(ψ) ≤ 1. Defining ϕ := 1
R−rψ we have obtained a function possessing the following

properties: ϕ ∈ D(E) ∩ L∞(X,m), Γ(ϕ) ≤ 1
(R−r)2 , 0 ≤ ϕ ≤ 1, ϕ = 1 pe Br(x0) şi ϕ = 0 pe X \ BR(x0). We

conclude that ϕ is a truncation function for Br(x0) in U and suppϕ = BR(x0). Applying Theorem 5.2 we obtain
the required inequality.

Final remarks. 1. Proposition 5.1 may be applied to the Dirichlet form of the uniformly elliptic case. Taking
into account the estimates for the carré du champ operator in this case, α|∇u|2 ≤ 1

2Γ(u) ≤ β|∇u|2, we obtain

(5.1)

∫
Ω

ϕp(x)|∇u(x)|pdx

 1
p

≤ p
√
β

α

∫
Ω

|∇ϕ(x)|p|u(x)− c|p
 1

p

.

This is a Caccioppoli type inequality precisely as in [Ri] or [BI], Proposition 6.1 (including the values of the
constants).

2. Corollary 5.3 gives a Caccioppoli type inequality as in [BI], however for balls in the intrinsic metric.
3. Return to the Dirichlet form of the uniformly elliptic case and observe that the Euclidean ball of radius

r admits a truncation function ϕ with |∇ϕ| ≤ 1
r and suppϕ included in the Euclidean ball of radius 2r. In

addition, if u ∈ W 1,n
loc (Ω) then there exists an open set G including suppϕ and such that u ∈ Dp|G; cf. [AH].

Applying now (5.1) we deduce a Caccioppoli type inequality for Euclidean balls, as in [BI], Corollary 6.1: ∫
|x0−x|<r

|∇u(x)|pdx


1
p

≤ p

r

√
β

α

 ∫
|x0−x|<2r

|u(x)− c|pdx


1
p

.

4. Let now Ω ⊂ Rp be a bounded domain and f : Ω −→ Rp a quasiregular mapping. Since we observed that
the component of f as well as ln |f | (provided that f : Ω −→ Rp \ {0}) are Lp-harmonic functions, we can apply
Proposition 5.1, Theorem 5.2, and Corollary 5.3, to obtain Caccioppoli type inequalities for the quasiregular
mapping f .
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6 Appendix

A1. Dirichlet forms. Let (X,B) be a measurable space and m a fixed positive σ-finite measure on this space.
Let (E ,D(E)) be a closed form on L2(X,m). Then there exists a unique selfadjoint operator L : D(L) −→

L2(X,m), such that D(L) ⊂ D(E) is dense in the norm E
1
2
1 , −L positive definite and

E(u, v) = −(Lu, v)2 for all u ∈ D(L) and v ∈ D(E)

(see e.g. [Fu]). The operator L is called the generator of the form (E ,D(E)). A normal contraction T is said
to operate on E provided that if u ∈ D(E) then T (u) ∈ D(E) a̧nd E(T (u), T (u)) ≤ E(u, u).

Let D = D(E) be a dense linear subspace of L2(X,m). A symmetric bilinear map E : D(E)×D(E) −→ R is
called closed form on L2(X,m) provided it is positive (i.e. E(u, u) ≥ 0, for each u ∈ D(E)) and D(E) endowed
with the scalar product E1(u, v) := E(u, v) + (u, v)2, u, v ∈ D(E) is a Hilbert space. We have denoted by ( , )2

the scalar product from L2(X,m) : (u, v)2 :=
∫
X
uvdm.

A normal contraction is a function T : R → R such that T (0) = 0 and | T (x) − T (y) |≤| x − y |
for all x, y ∈ R. An example of normal contraction is the unit contraction T1 : R→ R, defined by T1(x) :=

(x ∨ 0) ∧ 1.
A closed form E on L2(X,m), having the domain D(E) (we write (E ,D(E)), is called Dirichlet form if the

unit contraction operates on E , that is:

u ∈ D(E) =⇒ (u ∨ 0) ∧ 1 ∈ D(E) and E((u ∨ 0) ∧ 1, (u ∨ 0) ∧ 1) ≤ E(u, u),

where we have denoted by ∨, ∧ the lattice operations in L2(X,m).
Further we suppose that X is a locally compact separable Hausdorff topological space, B is the σ-algebra of

Borel measurable subsets of X, and m is a positive Radon measure, having as support the whole space X. We
denote by C(X) (respective Cc(X)) the set of all continuous (respective continuous with compact support) real
valued functions on X.

Let (E ,D(E)) be a Dirichlet form. Then E has the following properties:
1) Each normal contraction operates on E .
2) If u, v ∈ D(E) then u ∧ v, u ∨ v, u ∧ 1 ∈ D(E).

3) If u, v ∈ D(E) ∩ L∞(X,m) then u · v ∈ D(E) a̧nd E(u · v)
1
2 ≤ ‖u‖∞E(v)

1
2 + ‖v‖∞E(u)

1
2 where ‖ · ‖∞ is the

norm in L∞(X,m) and E(u) = E(u, u).

4) If u ∈ D(E) and un := ((−n) ∨ u) ∧ n, n ∈ N, then un ∈ D(E) a̧nd un −→ u (when n→∞) in the norm E
1
2
1 .

Recall that the Dirichlet form (E ,D(E)) on L2(X,m) is termed regular if the set D(E) ∩Cc(X) is dense in

Cc(X) in the uniform norm and dense in D(E) in the norm E
1
2
1 (induced by the scalar product E1 of the Hilbert

space D(E)); see e.g. [Fu].
In the sequel (E ,D(E)) will be a regular Dirichlet form on L2(X,m).

The capacity, quasi-continuity. For each open set G ⊂ X define cap(G) := inf{E1(u, u)/ u ∈ D(E), u ≥
1 m-a.e. on G} with the convention cap(G) =∞, whenever there is no u ∈ D(E) with u ≥ 1 m-a.e. on G. For
an arbitrary set A ⊂ X we put cap(A) = inf{cap(G)/ G open, A ⊂ G}. In this way we obtained a Choquet
capacity on X. A function u : X −→ R is called E-quasi-continuous if for each δ > 0 there exists an open
set G such that cap(G) < δ and u|X\G is continuous. Let A ⊂ X. A property depending on x ∈ A holds quasi
everywhere on (q.e. on) A if there exists a set N such that cap(N) = 0 and the property is true for each
x ∈ A \N . Since (E ,D(E)) is regular then: for each u ∈ D(E) there exist a m-version ũ of u (i.e. u = ũ m-a.e.
on X) that is E-quasi-continuous. Each other E-quasi-continuous m-version of u coincides q.e. with ũ. (see e.g.
Theorem 3.1.3 a̧nd Lemma 3.1.4 in [Fu]).
The energy measure. We present some basic facts about the energy measure following the works [LJ], [BM2],
[Mo] and especially [FOT], [BH2] and [St1]. For each f, u ∈ D(E)

⋂
L∞(X,m) the following inequality holds

(see (3.2.13) from [FOT]):
2E(u · f, u)− E(u2, f) ≤ 2‖f‖∞ · E(u, u).

In addition, if f ≥ 0 then 0 ≤ 2E(u · f, u)− E(u2, f). Consequently, for each u ∈ D(E) ∩ L∞(X,m) there exists
a uniquely determined positive Radon measure µ〈u〉 on X such that∫

X

fdµ〈u〉 = 2E(u · f, u)− E(u2, f) for all f ∈ D(E) ∩ Cc(X).

We have µ〈u〉(X) ≤ 2E(u, u) <∞ and therefore µ〈u〉 is a finite measure. The measure µ〈u〉 is called the energy
measure of u ∈ D(E) ∩ L∞(X,m). If u, v ∈ D(E) ∩ L∞(X,m)0 then we define

µ〈u,v〉 :=
1

2
(µ〈u+v〉 − µ〈u〉 − µ〈v〉).
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Note that µ〈u,v〉 is the unique signed measure on X such that∫
X

fdµ〈u,v〉 = E(uf, v) + E(vf, u)− E(uv, f) for all f ∈ D(E) ∩ Cc(X).

Let u ∈ D(E) şi (un)n ⊂ D(E) ∩ L∞(X,m) a sequence converging to u in the norm E
1
2
1 . We define the energy

measure µ〈u〉 of u by µ〈u〉(f) := limn→∞ µ〈un〉(f) for all f ∈ Cc(X). One can see that the positive Radon
measure µ〈u〉 is well defined and µ〈u〉(X) ≤ 2E(u, u). For each u ∈ D(E), the energy measure µ〈u〉 charges no
set of capacity zero (cf. Lemma 3.2.4 din [FOT]).

(The Cauchy-Schwarz inequality; cf. [St1].) Let u, v ∈ D(E) a̧nd f, g be two bounded B-measurable functions.

Then
∫
X
f · gdµ〈u,v〉 ≤

(∫
X
f2dµ〈u〉

) 1
2 ·
(∫
X
g2dµ〈v〉

) 1
2 ≤ 1

2

(∫
X
f2dµ〈u〉 +

∫
X
g2dµ〈v〉

)
.

The following assertions are equivalent:
i) The form (E ,D(E)) is strongly local.
ii) 1G · dµ〈u〉 = 0 for each u ∈ D a̧nd relatively compact open set G, u constant m-a.e. on G.
iii) For each u, v ∈ D ∩ L∞(X,m) a̧nd w ∈ D we have µ〈u·v,w〉 = ũ · µ〈v,w〉 + ṽ · µ〈u,w〉 (the Leibniz rule).
Assume that (E ,D(E)) is strongly local and let ϕ ∈ C1(Rn) and u1, ..., un ∈ Db,loc , u := (u1, ..., un). Then

the following equality (called the chain rule) holds (cf. Theorem 3.2.2 in [FOT]): µ〈ϕ(u),v〉 =
∑n
i=1

∂ϕ
∂xi

(ũ) ·
µ〈ui,v〉 for all v ∈ Db,loc. If in addition the partial derivatives ∂ϕ

∂xi
are uniformly bounded, then above equality

holds for all u1, ..., un, v ∈ Dloc. If u, v, w ∈ Dloc then the following truncation formula holds (cf. [BM2],
[Mo] and [St1]):

(6.1) µ〈u∧v,w〉 = 1[ũ<ṽ] · µ〈u,w〉 + 1[ũ≥ṽ] · µ〈v,w〉, µ〈u∧v,u∧v〉 = 1[ũ<ṽ] · µ〈u,u〉 + 1[ũ≥ṽ] · µ〈v,v〉.

In addition,

(6.2) if A ∈ B and u = v q.e. on A then 1A · µ〈u,w〉 = 1A · µ〈v,w〉.

A Dirichlet form (E ,D(E)) on L2(X,m) is called local if for each u, v ∈ D(E) with compact supports suppu,
suppv we have E(u, v) = 0 provided that suppu ∩ suppv = ∅, where if u ∈ L2(X,m) we denoted by suppu the
support of the measure u2 ·m.

The form (E ,D(E)) is termed strongly local if for each u, v ∈ D(E) with suppu, suppv compact and v
constant on a neighbourhood of suppu we have E(u, v) = 0.

Further we suppose that (E ,D(E)) is a strongly local regular Dirichlet form.
The following equality holds:

E(u, v) =
1

2

∫
X

dµ<u,v> for all u, v ∈ D(E).

Define the local domain of the form by Dloc:= {u : X → R : for each relatively compact open set G there
exists w ∈ D(E) with u = w, m-a.e. on G}. If u ∈ Dloc we define the energy measure µ<u> of u by

µ<u> := µ<un> on Gn,

where (Gn)n is an exhaustion of the space with relatively compact open sets, Ḡn ⊂ Gn+1, for each n, and
un ∈ D, un = u m-a.e. on Gn. One can see that the σ-finite measure µ<u> is well defined. Denote by Db,loc
the subspace of Dloc of all locally bounded functions.

The form (E ,D(E)) admits a carré du champ operator provided that there exists a subspace H ⊂
D(E) ∩ L∞(X,m) dense in D(E) such that for each u ∈ H there exists u ∈ L1(X,m) with

2E(uf, u)− E(u2, f) =

∫
X

fudm for all f ∈ D(E) ∩ L∞(X,m);

cf. [BH2]. By Proposition 4.1.3 in [BH2] we deduce that: (E ,D(E)) admits a carré du champ if and only if for
each u, v ∈ D(E), the energy measure µ<u,v> is absolutely continuous with respect to m. Let Γ(u, v) denote its
appropriate Radon-Nikodym density, µ<u,v> = Γ(u, v) ·m. We define in this way a positive symmetric bilinear
form

Γ : D(E)×D(E) −→ L1(X,m)

such that E(u · f, v) + E(v · f, u) − E(u · v, f) =
∫
X
fΓ(u, v)dm for all u, v, f ∈ D ∩ L∞(X,m). Whenever

(E ,D(E)) admits a carré du champ operator, the form Γ is called the carré du champ operator associated
with E .
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Assume that (E ,D(E)) is a strongly local Dirichlet form admitting a carré du champ operator Γ. We say
that (E ,D(E)) admits a gradient D (cf. Definition 5.2.1 in [BH2]) provided that there exists a separable
Hilbert space H, a vector subspace D0 dense in D(E) and a linear map D from D0 into L2(m;H) such that

(6.3) Γ(u) = ‖Du‖2H for all u ∈ D0.

The next proposition collects the basic properties of the carré du champ operator.

Proposition 6.1. Let (E ,D(E)) be a strongly local Dirichlet form admitting a carré du champ operator Γ. .
Then the carré du champ operator Γ has the following properties.

1) We have

E(u, v) =
1

2

∫
X

Γ(u, v)dm for all u, v ∈ D(E);

see Proposition 6.1.1 in [BH2].
2) If ll ϕ ∈ C1(Rn) with ϕ(0) = 0 then

Γ(ϕ(u), v) =

n∑
i=1

∂ϕ

∂xi
(ũ)Γ(ui, v) for all u1, ..., un, v ∈ D ∩ L∞(X,m);

cf. Corollary 6.1.3 in [BH2].
3) For all u, v, w ∈ D(E) we have

(6.4) Γ(u ∧ v, w) = 1[ũ<ṽ] · Γ(u,w) + 1[ũ≥ṽ] · Γ(v, w),

(6.5) |Γ(u, v)| ≤ Γ(u)
1
2 Γ(v)

1
2 ,

(6.6) Γ(u ∧ v)p + Γ(u ∨ v)p = Γ(u)p + Γ(v)p,

where Γ(u) := Γ(u, u), p > 0, and

(6.7) Γ(u+ v)
1
2 ≤ Γ(u)

1
2 + Γ(v)

1
2 .

4) If A ⊂ X, A ∈ B a̧nd u = v q.e. on A, then Γ(u,w) = Γ(v, w) m-a.e. on A for all w ∈ D(E).
Particularly, if u ∈ D(E) is constant m-a.e. on an open set G then Γ(u) = 0 m-a.e. on G.

5) The Dirichlet form (E ,D(E)) admits a gradient D. The operator (D0, D) is closable as an operator from
L2(m) in L2(m;H), its closure still denoted by D has D(E) as its domain and it is a continuous operator from
D(E) into L2(m;H).

Further we present several arguments for the proof of Proposition 6.1.
Proof of (6.6). By (6.4) we have Γ(u∧v) = 1[ũ<ṽ] ·Γ(u)+1[ũ≥ṽ] ·Γ(v). We also have Γ(u∨v) = Γ((−u)∧(−v)) =
1[ũ<ṽ] ·Γ(v) + 1[ũ≥ṽ] ·Γ(u). Therefore Γ(u∧ v)p = 1[ũ<ṽ] ·Γ(u)p + 1[ũ≥ṽ] ·Γ(v)p and Γ(u∨ v)p = 1[ũ<ṽ] ·Γ(v)p +
1[ũ≥ṽ] · Γ(u)p. The relation (6.6) follows now by adding the last two equalities.

Proof of assertion 5) of Proposition 6.1. Note first that the domain D(E) of the form is separable in the norm

E
1
2
1 . Indeed, let A be a countable dense subset pf L2(X,m), fix α > 0 and let Uα be the α-level operator of the

resolvent family of the form (E ,D(E)). Then D(L) = Uα(L2(X,m))), one can see that Uα(A) is dense in D(L)

in the graph norm, and since D(L) is dense in D(E) in the norm E
1
2
1 we conclude that Uα(A) is also dense in

D(E) in the norm E
1
2
1 , as claimed. Assertion 5) follows now by Proposition 5.2.2 a) combined with Exercise 5.9

(which is a result of G. Mokobodzki) from [BH2]; alternatively, see Theorem 3.9 from [E].

A2. Proof of assertion 1) of Proposition 3.2. Let (un)n ⊂ Dp be a Cauchy sequence in the norm ‖ · ‖Dp .
It follows that (un)n is a Cauchy sequence in Lp(X,m) and L2(X,m). In addition we have

(6.8) lim
n,m→∞

∫
X

Γ(un − um)
p
2 dm = 0

and so limn,m→∞
∫
X

Γ(un − um)dm = 0. Recall that from assertion 1) of Proposition 6.1 we have E(u) =
1
2

∫
X

Γ(u)dm and therefore limn,m→∞ E(un − um) = 0. We get that (un)n is a Cauchy sequence in the Banach

space (D(E), E
1
2
1 ) and let u ∈ D(E) be such that un −→ u in D(E). We show that un −→ u also in the norm
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‖ · ‖Dp , that is limn→∞ ‖un − u‖p = 0 and limn→∞ ‖Γ(un − u)
1
2 ‖p = 0. The sequence (un)n being Cauchy in

the norm ‖ · ‖p and convergent in ‖ · ‖2 to u, we deduce that un −→ u in Lp(X,m). From (6.7) and (6.8) we

obtain limn,m→∞ ‖Γ(un − u)
1
2 − Γ(um − u)

1
2 ‖p ≤ limn,m→∞ ‖Γ(un − um)

1
2 ‖p = 0 and therefore the sequence

(Γ(un − u)
1
2 )n is Cauchy in Lp(X,m). In addition, since un −→ u in E

1
2
1 we derive that Γ(un − u)

1
2 −→ 0 in

L2(X,m). It results that Γ(un − u)
1
2 −→ 0 in Lp(X,m) and we conclude that (Dp, ‖ · ‖Dp

) is a Banach space.
�
A3. Proof of Lemma 3.12. Let L, K, and F be compact subsets of X with L ⊂ K. By the strong
subadditivity and the monotonicity properties of capp (assertions 1) and (2a) of Theorem 3.11) we get capp(K∪
F )+capp(L) ≤ capp(K∪(L∪F ))+cappK∩(L∪F )) ≤ capp(K)+capp(L∪F ), hence capp(K∪F )−capp(L∪F ) ≤
capp(K)−capp(L). We repeat this procedure for the compacts Ei = Ki and Fi = Li and by induction we obtain

capp(
⋃k
i=1Ki)− capp(

⋃k
i=1 Li) =capp(

⋃k−1
i=1 Ki ∪Kk)− capp(

⋃k−1
i=1 Li ∪Kk) + capp(Kk ∪

⋃k−1
i=1 Li)− capp(Lk ∪⋃k−1

i=1 Li) ≤
∑k−1
i=1 (capp(Ki)− capp(Li)) + capp(Kk)− capp(Lk) =

∑k
i=1(capp(Ki)− capp(Li)). We conclude that

(3.9) holds for compact sets

We show now that (3.9) also holds for open sets Ei and Fi. Observe first that: if K ⊂
⋃k
i=1Ei and Li ⊂ Fi

are compact sets with
⋃k
i=1 Li ⊂ K, then the compact set Ki := K \

⋃
j=1,j 6=iEj is a subset of Ei and it contains

Li. Using this fact we deduce that (3.9) for open sets follows from (3.9) for compact sets. Analogously, (3.9)
for arbitrary sets Fi ⊂ Ei follows from the case of open sets. �

A4. Quasiregular mappings. Let Ω be a domain n Rp. A mapping f : Ω −→ Rp, f = (f1, ..., fp), is called
quasiregular provided that the following conditions are satisfied:

a) f i ∈W 1,p
loc (Ω) for all 1 ≤ i ≤ p;

b) There exists a constant K, 1 ≤ K <∞ , such that

(6.9) ‖Df(x)‖p ≤ KJf (x) for almost every x ∈ Ω,

where Df(x) is identified with a linear mapping on Rp, Df(x) : Rp −→ Rp, Df(x)ei =

p∑
j=1

∂f j

∂xi
(x)ej , and the

norm ‖Df(x)‖ is understood as the operator norm of the linear map of the Euclidean space Rp; recall that
Df(x) is the Jacobi matrix of f which is meaningful at almost every point x ∈ Ω since f is in the Sobolev space
W 1,p
loc (Ω) and Jf (x) is the Jacobian, Jf (x) := detDf(x).
Recall that a mapping f : Ω −→ Rp is called quasiconformal provided that it is quasiregular and homemo-

rphism onto f(Ω).
Let f be a quasiregular mapping. The smallest constant K ≥ 1 for which (6.9) holds is called the outer

dilatation of f in Ω and it is denoted by K0(f). The smallest constant K ′ ≥ 1 for which

Jf (x) ≤ K ′l(Df(x))p for almost every x ∈ Ω

is called inner dilatation of f and it is denoted by KI(f). Here l(Df(x)) := min
|h|=1

|Df(x)h| and since f is

quasiregular it follows that KI(f) <∞.
We consider the matrix θf associated with f ,

(6.10) θf (x) := Jf (x)
2
p [Df(x)]−1[D∗f(x)]−1,

where D∗f(x) = (Df(x))∗ is the transpose of the Jacobi matrix Df(x). Since f is quasiregular, the following
uniform ellipticity condition holds for all ξ ∈ Rp:

(6.11) K0(f)−
2
p |ξ|2 ≤ (θf (x)ξ, ξ) ≤ KI(f)

2
p |ξ|2;

see [Re1] or [Re2]. We get that the G = θf is a symmetric, positive definite p× p-matrix of Borel functions on
Ω, satisfying the uniform ellipticity condition.
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