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Abstract

In this work we prove uniqueness of distributional solutions to 2D
Navier–Stokes equations in vorticity form ut− ν∆u+ div(K(u)u) = 0
on (0,∞) × R2 with Radon measures as initial data, where K is the
Biot–Savart operator in 2-D. As a consequence, one gets the unique-
ness of probabilistically weak solutions to the corresponding McKean–
Vlasov stochastic differential equations. It is also proved that for ini-
tial conditions with density in L4 these solutions are strong, so can
be written as a functional of the Wiener process, and that pathwise
uniqueness holds in the class of weak solutions, whose time marginal
law densities are in L

4
3 in space-time. In particular, one derives a

stochastic representation of the vorticity u of the fluid flow in terms
of a solution to the McKean–Vlasov SDE. Finally, it is proved that
the family Ps,ζ , s ≥ 0, ζ =probability measure on Rd, of path laws of
the solutions to the McKean–Vlasov SDE, started with ζ at s, form a
nonlinear Markov process in the sense of McKean.
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1 Introduction

Consider here the 2-D incompressible Navier–Stokes equation

yt − ν∆y + (y · ∇)y = ∇p in (0,∞)× R2,

∇ · y = 0 in (0,∞)× R2,

y(0, x) = y0(x), x ∈ R2.

(1.1)

Let u = u(t, x) denote the vorticity of the velocity field y = {y1, y2}, that is,

u(t, x) = curl y(t, x) = D1y2(t, x)−D2y1(t, x), (t, x) ∈ (0,∞)× R2,

where Dj = ∂
∂xj
, j = 1, 2, and the symbol ∇, div refer to spatial derivatives.

Equation (1.1) can then be rewritten as the vorticity equation

ut − ν∆u+ div(yu) = 0 in (0,∞)× R2,

u(0, x) = u0(x) = curl y0(x), x ∈ R2.
(1.2)

Here, the velocity field y(t, x) is given by the Biot–Savart formula

y(t, x) = (∇⊥E ∗ u(t))(x), ∀(t, x) ∈ (0,∞)× R2, (1.3)

where

E(x) =
1

2π
ln |x|, x ∈ R2,

hence

∇⊥E(x) =
(−x2, x1)

2π|x|2
, x = (x1, x2) ∈ R2 \ {0},

which is the Biot–Savart kernel. We set

K(z) = ∇⊥E ∗ z, z ∈ Lp(R2), p ∈ (1, 2) (1.4)

and note (see, e.g., [21], Lemma 2.2) that by the generalized Young inequality

|K(z)|Lq(R2) ≤ C|z|Lp(R2), ∀z ∈ Lp(Rd), (1.5)

and, if y ∈ Lp(R2,R2) with div y = 0 and u = curl y ∈ Lq, that we have

y = K(u), (1.6)

where p ∈ (1, 2) and 1
q

= 1
p
− 1

2
. Then, we may write (1.2) as
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ut − ν∆u+ div(uK(u)) = 0 in (0,∞)× R2,

u(0, x) = u0(x), x ∈ R2.
(1.7)

This is a special case of a so called generalized mean-field Fokker–Planck
equation with locally integrable singular kernel K usually derived from Riesz
potentials. Besides this kernel, other singular potentials of this form arise in
chemotaxis mathematical models and in some classes of mean field equations
(see [18]–[23], [27]).

There is an extensive literature on the well-posedness of the vorticity
equation (1.7) and, implicitly, on the Navier–Stokes equation (1.1) in the
spaces Lp((0,∞) × R2) (see, e.g., [6], [13], [21], [24]) and in (BMO)−1(R2),
(see [25]).

Our main objective here is the relationship of (1.7) with the McKean–
Vlasov stochastic differential equation

dX(t) = K(u(t, ·))(X(t))dt+
√

2ν dW (t), t ≥ 0,

X(0) = X0,
(1.8)

on a probability space (Ω,F ,P) with the normal filtration (Ft)t≥0 and 2-D
(Ft)-Brownian motion W (t), where

u(t, x)dx = P ◦X(t)−1(dx); t > 0, u0(dx) = P ◦X−1
0 (dx). (1.9)

SDE (1.8) describes the microscopic dynamics of the vorticity flow u = u(t, x)
and, implicitly, of the Navier–Stokes velocity field y(t) = K(u(t)). Whereas
weak existence of solutions to (1.8) is a consequence by the above mentioned
existence results for (1.7) (see, e.g., Theorem 2.1 below) and the general
technique from Section 2.2 in [2] (see Theorem 4.1 below), weak uniqueness
results for (1.8) appear to be less known.

Another open question is whether the path laws of the solutions to (1.8)
form a nonlinear Markov process in the sense of McKean (see [26] and the
recent paper [29]). It turns out that to solve both problems, weak uniqueness
for (1.8) and the question whether the laws of its solutions lead to a Markov
process, require a new uniqueness result for (1.7), namely uniqueness in the
most general class of solutions for (1.7), the so-called distributional solutions
(see (2.2) and (2.3) below).

So, the first main result (which is purely analytic) of this paper is such a
uniqueness result in the class of distributional solutions to (1.7) with measure
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initial data, formulated as Theorem 2.4 (under the restrictions (2.19)–(2.21))
and as Corollary 3.1, where the latter is devoted to the case of probability
measures as initial data. Furthermore, we also prove distributional unique-
ness for the linearized equation corresponding to (1.7) (see Theorem 4.2 and
Corollary 4.3, which is crucial for the subsequent probabilistic applications).
As a consequence of both, we prove the existence of probabilistically weak
solutions to (1.8) (see Theorem 4.4). For initial conditions which are proba-
bility measures with densities in L4 we prove that these solutions are in fact
strong and that pathwise uniqueness holds in the class of all solutions whose
path laws have time marginals densities in L

4
3 in space-time (see Theorem

4.5). Our last main result, Theorem 4.6, guarantees that the family of the
path laws Ps,ζ of the solutions to (1.8), started at time s ≥ 0 with proba-
bility measure ζ on Rd, form a nonlinear Markov process in the sense of
McKean [26] (see Definition 4.7 and also [29]). We would like to stress that
all these results are heavily depending on our uniqueness result in Theorem
2.4, and the fact that it gives uniqueness in the class of distributional solu-
tions. Uniqueness in smaller classes as, e.g., mild solutions (see [21] or the
more general results in [22]) does not suffice. We refer, e.g., to the proof of
Theorem 4.4, where this becomes obvious.

As a by-product of our existence result, Theorem 4.1, for (1.8), we get
a a probabilistic representation of the solutions to (1.7) as time-marginal
law densities of the nonlinear Markov process gotten from the paths laws of
the solutions to (1.8). Thus, McKean’s general programme, already envi-
sioned in [26], is completed in this paper for the 2D vorticity Navier–Stokes
equation (1.7).

For the existence theory for nonlinear Fokker–Planck equations with Ne-
mytski-type drift term and their implications to McKean–Vlasov SDEs, we
refer to [2]–[4]. As regards the literature on the stochastic representation of
solutions to Navier–Stokes equations, the works [10], [11], [15], [18] should be
primarily cited. In particular, in [10] one gets the probabilistic representation
of solutions to the vorticity equation (1.7) as

u(t, x) = E[u0(X t,x(t))], (t, x) ∈ (0,∞)× Rd,

where X t,x is the stochastic flow map defined by the equation

dX t,x(s) = −v(t− s,X t,x(s))ds+
√

2ν dWs,
X t,x(0) = x,

v(t, x) = −1

2

∫ ∞
0

1

s
E[u(t, x+W (s))W⊥

s ]ds,
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and W (t) = (W 1(t),W 2(t))) is a 2−D Brownian motion and W⊥(t) =
(W 2(t),W 1(t)). This representation formula is extended later on in [11] to
3−D equations of the form (1.1). In the present paper, however, we use a
different approach which takes advantage of the interpretation of the vortici-
ty equation (1.7) as a nonlinear Fokker–Planck equation, which is associated
with a McKean–Vlasov SDE by virtue of the superposition principle (see [2]
and see also [31] for the case of usual SDEs).

Finally, let us comment on probabilistic approaches to (1.8) and also
(1.7). We start with pointing out the recent paper [23] which contains a
substantial discussion on the related literature, and we also refer to the refe-
rences therein. Furthermore, we would like to mention reference [32] where
also weak existence of solutions to (1.8) for every probability measure on
R2 as initial data was proved, however, by a completely different method,
not employing the nonlinear superposition principle. Furthermore, in [23]
(see Theorem 6.3) it is proved that there exists a unique strong solution to
(1.8) with initial data in certain Besov spaces (which include L1+ε data). So,
this result is quite different from ours and again the methods are completely
different from those in our present paper. In addition, uniqueness of smooth
solutions to (1.7) under additional restrictions on the behaviour at t = 0 is
proved (see [23, Theorem 6.1]). A further related paper should be mentioned,
namely [33], in which a very nice theory for existence and uniqueness of
soloutions to ordinary SDEs with singular drifts beyond the Ladyzhenskaya–
Prodi–Serrin condition is developed, which applies to (1.8) after determining
and fixing u. However, the general weak uniqueness results in [23] only give
uniqueness in a class of martingale solutions obtained by a certain limiting
procedure, and the Markov property is only proved for Lebesgue almost all
times. So, our result in the present paper on (1.8) giving rise to a nonlinear
Markov process (in the sense of McKean, i.e., Theorem 4.6) is much more
general.

Notations. Lp(R2), 1 ≤ p ≤ ∞ (denoted Lp) is the space of all Lebesgue
measurable and p-integrable functions on R2, with the standard norm | · |p.
(·, ·)2 denotes the inner product in L2. By Lploc we denote the correspon-
ding local space. For any open set O ⊂ R2 let W k,p(O), k ≥ 1, denote
the standard Sobolev space on O and by W k,p

loc (O) the corresponding local
space. We set W 1,2(O) = H1(O), W 2,2(O) = H2(O), H1

0 (O) = {u ∈ H1(O),
u = 0 on ∂O}, where ∂O is the boundary of O. By H−1 = H−1(R2) we
denote the dual space of H1(Rd). C∞0 (O) is the space of infinitely differen-
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tiable real-valued functions with compact support in O and D′(O) is the
dual of C∞0 (O), that is, the space of Schwartz distributions on O. By Cb(R),
we denote the space of continuous and bounded functions on R2. We shall
denote by M(R2) the space of all finite Radon measures on R2. Given a
Banach space X and 0 < T ≤ ∞, we denote by C([0, T ];X ) the space of
all continuous X -valued functions on [0, T ]. For 1 ≤ p ≤ ∞, we shall de-
note by Lp(0, T ;X ) the space of X -valued, Lp-Bochner integrable functions
on (0, T ). By C∞0 ([0,∞) × R2) we denote the space {y ∈ C∞([0,∞);R2);
y with compact support in [0,∞)}. For 1 < p <∞, let Lp,∞(R2) denote the
Lorentz space of all measurable functions y : R2 → R2 such that

|y|Lp,∞ := sup
λ>0
{λp meas(x ∈ R2; |y(x)| > λ)}

1
p <∞.

Throughout this work, ∇ = grad refers only to the spatial derivatives, i.e.,
in the x-variables and

∇ · y = div y, ∀y ∈ (Lp(R2))2, 1 ≤ p ≤ ∞.

If X1, X2 are two Banach spaces, we shall denote by L(X1, X2) the space of
linear continuous operators from X1 to X2. By P we denote the set of all
probability measures on R2 and set

Pa =

{
y ∈ L1(R2); y ≥ 0, a.e. in R2;

∫
R2

y(x)dx = 1

}
. (1.10)

2 The existence and uniqueness

for the vorticity equation (1.7)

A function u ∈ Lr1loc(0,∞;Lr2), r1, r2 ≥ 1, is called a mild solution to (1.7) if
it is a solution to the integral equation

u(t) = eνt∆u0 − div

∫ t

0

eν(t−s)∆(K(u(s))u(s))dx, t > 0, (2.1)

where et∆ is the heat semigroup in R2, which is well defined on all Lp,

1 ≤ p ≤ ∞. (If u0 ∈ M(R2), then ‖et∆u0‖Lp ≤ Ct−1+ 1
p‖u0‖M, ∀t > 0,

for all p > 1.)
This definition extends to mild solutions y to (1.1) via the Biot–Savart

formula (1.6).
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Given u0 ∈ M(R2), a function u ∈ L1
loc(0,∞;Lp) for some p ∈ (1, 2) is

said to be a distributional solution to (1.7) if

K(u)u ∈ L1
loc((0,∞)× R2), (2.2)∫ ∞

0

∫
R2

u(t, x)(ϕt(t, x) + ν∆ϕ(t, x) +K(u(t, x)) · ∇ϕ(t, x))dtdx

+

∫
R2

ϕ(0, x)u0(dx) = 0, ∀ϕ ∈ C∞0 ([0,∞)× R2).
(2.3)

The next existence theorem is due to Y. Giga, T. Miyakawa & H. Osada
(see [21], Theorem 4.2).

Theorem 2.1 Assume that u0 = curl y0 ∈ M(R2), where y0 ∈ L2,∞(R2),
∇ · y0 = 0 on R2. Then, equation (1.7) has a solution u : [0,∞)→M(R2),
which is bounded and continuous in the weak topology. Moreover, one has
the estimate

|u(t)|r ≤ Cr t
−1+ 1

r , ∀ t > 0, 1 < r <∞, (2.4)

and u(t) = curl y(t), where y is a mild solution to the Navier–Stokes equation
(1.1) and

|y(t)|r ≤ Cr t
1
r
− 1

2 , ∀ t > 0, 2 < r ≤ ∞, (2.5)

sup{|Dk
xD

j
tu(t)|∞; t ∈ [ε, T ]} ≤ CT

ε,k,j, (2.6)

for all 0 < ε < T <∞ and all k, j = 0, 1, ...

Remark 2.2 According to Theorem 1.2 in [20], Theorem 2.1 extends to all
initial conditions u0 ∈M(R2).

We set

k(x) = (k1(x), k2(x)) := ∇⊥E(x) =
(−x2, x1)

2π|x|2
,

x ∈ (x1, x2) ∈ R2 \ {0},
(2.7)

and
Ki(u) := ki ∗ u, u ∈ Lp, p ∈ (1, 2), i = 1, 2.

We have

∇k(x) = (∂jk
i)1≤i,j≤2 =

1

2π|x|2


2x1x2

|x|2
−
(

1− 2x2
2

|x|2

)
(

1− 2x2
1

|x|2

)
−2x1x2

|x|2

 ,
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and hence, all four components ∂jk
i of ∇k(x) define kernels of degree (−2)

satisfying all assumptions of Theorem 1 in [12], which implies that, for all
p ∈ (1,∞); i, j ∈ {1, 2},

∂jK
i(u)(x) := lim

ε→0+

∫
|x−y|≥ε

∂jk
i(x− y)u(y)dy, x ∈ R2, u ∈ Lp, (2.8)

defines bounded, linear operators ∂iK
j : Lp → Lp. The limit in (2.8) is meant

in Lp as well as a.e. Moreover, the p-norm of the right hand side of (2.8) with
sup
ε∈(0,1]

replacing lim
ε→0+

is up to a constant (only depending on p) dominated by

|u|p. On the other hand, it is elementary to check and well known that for
the distributional derivatives ∂j(K

i(u)) of Ki(u), i = 1, 2, u ∈ Lp, p ∈ (1, 2),

∂j(K
i(u)) = ∂jK

i(u) +
1

2
sign(i− j)u (2.9)

for some numerical constant c > 0. In particular, we have

div(K(u)) = 0 and curl(K(u)) = u, ∀u ∈ Lp, p ∈ (1, 2), (2.10)

where div and curl are taken in the sense of Schwartz distributions. Fur-
thermore, together with the fact that the operators in (2.8) are bounded on
every Lp, p ∈ (1,∞), (2.9) implies that

|∇K(u)|p ≤ cp|u|p, ∀u ∈ Lp ∩

 ⋃
q∈(1,2)

Lq

 , p ∈ (1,∞). (2.11)

Theorem 2.1 can be complemented as follows.

Theorem 2.3 Let u be the solution of (1.7) from Theorem 2.1 and let T > 0.
Then u is a distributional solution to equation (1.7) and

(i)

∫ T

0

∫
Rd
|u(t, x)| |K(u(t, ·))(x)|dx dt <∞. (2.12)

(ii) If u0 ∈ P, then
u(t) ∈ Pa, ∀t > 0. (2.13)
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(iii) Assume that u0 ∈ Lq for some q ∈ (1, 2). Then, for all p ∈ [1,∞] we
have u ∈ L∞(0, T ;Lp) and

|u|L∞(0,T ;Lp) ≤ c|u0|p, (2.14)

where c only depends on p.

Therefore, u ∈ L4(0, T ;L
4
3 ∩ L4) ∩ L∞(0, T ;H−1) for u0 ∈ L

4
3 ∩ L4.

Proof. (i): Let p ∈ (1, 2), q := 2p
2−p and q′ := q

q−1
. Then, by (1.5),∫ T

0

∫
Rd
|u(t, x)| |K(u(t, x))|dx dt ≤ C

∫ T

0

|u(t)|q′|u(t)|pdt.

But by (2.4) the last integral is finite. In particular, (2.2) holds, hence clearly
u is a distributional solution to (1.7).

(ii): As seen in the proof of Theorem 4.2 in [21], the solution u to (1.7) given
by Theorem 2.1 can be obtained by

u = lim
u→∞

un uniformly on compact sets of (0,∞)× R2 (2.15)

where un are the unique global smooth solutions to (1.7) with un(·, 0) = un0
and {un0} is a smooth approximation of the initial data u0 ∈ M(R2) in the
narrow topology. Moreover, un is expressed as (see, e.g., (2.1) in [21])

un(t, x) =

∫
R2

ΓK(un)(t, x; 0, ξ)un0 (ξ)dξ, (2.16)

where Γv ≡ Γv(t, x; s, ξ) is the fundamental solution to the linear parabolic
operator

Lv(u) = ut − ν∆u+ (u · ∇)v, (t, x) ∈ (0,∞)× R2.

We have

Γv ≥ 0;

∫
R2

Γv(t, x; s, ξ)dξ = 1, 0 ≤ s ≤ t <∞, x ∈ R2,

lim
t↓s

∫
R2

Γv(t, x; s, ξ)f(ξ)dξ = f(x), ∀f ∈ Cb(R2).

(2.17)
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If u0 ∈ P , then the sequence {un0} can be chosen in such a way that un0 ≥ 0
and un0 → u0 inM(R2) narrowly as n→∞. Then, by (2.15)–(2.17) it follows
that u ≥ 0. Furthermore, by Theorem 1.2 in [20] we know that∫

R2

u(t, x)dx =

∫
R2

u0(x)dx = 1, ∀t ∈ (0, T ),

as claimed.

(iii) Since q ∈ (1, 2), by (2.10) we know that u = curl(K(u)). Hence, we may
apply Theorem 4.3 in [21] to obtain the following representation

u(x, t) =

∫
R2

Γ(t, x; 0, ξ)u0(x)dξ, t ≥ 0, x ∈ Rd, (2.18)

where Γ(t, x; s, ξ), x, ξ ∈ R2, t > s ≥ 0, is a positive continuous function,
which satisfies ∫

R2

Γ(t, x; s, ξ)dξ =

∫
R2

Γ(t, x; s, ξ)dx = 1,

Γ(t, x; s, ξ) ' 1

(t− s)
e−

C|x−ξ|2
(t−s) , t > s ≥ 0.

By the Young inequality ∀1 ≤ p ≤ ∞, if u0 ∈ Lp, this yields

|u(t)|p =

∣∣∣∣∫ Γ(t, x; 0, ξ)u0(ξ)dξ

∣∣∣∣
p

≤ C

∣∣∣∣∫ 1

t− s
e−

C|x−ξ|2
t−s u0(ξ)dξ

∣∣∣∣
p

≤ C

∣∣∣∣∫ 1

t
e−

C|x|2
t dx

∣∣∣∣ |u0|p

≤ C|u0|p.

Thus, u ∈ L∞(0, T ;Lp), and |u|L∞(0,T ;Lp) ≤ c|u0|p, as claimed. �

Theorem 2.1 is completed in [21] by a uniqueness theorem for (1.1) and
implicitly for (1.7), in the class of mild solutions with sufficiently small atomic
part (u0)pp of the Radon measure u0. Such a uniqueness result was extended
in [20] to u0 ∈M(R2) in the class of mild solutions u ∈ C((0, T ];L1 ∩L∞)∩
L∞(0, T ;L1).
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We shall prove here for the purposes of the McKean–Vlasov equation
(1.8) a sharper uniqueness result, namely within the much larger class of all
distributional solutions to (1.7), in the sense of (2.2), (2.3), which belong to

the class {u∈L4(0, T ; L4 ∩ L 4
3 ); ∀T > 0}. More precisely, we prove

Theorem 2.4 Let u1, u2 be two distributional solutions to (1.7) such that

u1, u2 ∈ L4(0, T ;L4 ∩ L 4
3 ), ∀T > 0, (2.19)

u1 − u2 ∈ L∞(0, T ;H−1), (2.20)

u1(t)− u2(t) ∈ L1 for a.e. t ∈ (0, T ), (2.21)

lim
t↓0

ess sup
s∈(0,t)

∫
R2

(u1(s, x)− u2(s, x))ϕ(x)dx = 0, ∀ϕ ∈ C∞0 (R2). (2.22)

Then, u1 ≡ u2.

We note that the uniqueness class considered here is larger than that
covered by [20] and the method of proof is different. In fact, in the case of
nonlinear Fokker–Planck equations with Nemytski-type drift term, a result
of this type was proved in [5] in the class of L2((0, T ) × R2) distributional
solutions u1, u2 such that u1 − u2 ∈ L∞(0, T ;H−1), ∀T > 0, but there is not
a large overlap. Though the idea of the proof is borrowed from [5], the argu-
ment used here requires sharp estimates specific to the drift term div(uK(u)).
It should be also mentioned that the uniqueness condition (2.22) does not
exclude the class of solutions with measure initial data u0 ∈M(R2). In fact,
such a condition agrees with Theorem 2.1 which provides a distributional so-
lution u : [0,∞) →M(R2), which is weakly continuous. We also note that,
as in the proof of (2.12), by (2.19) it follows that uiK(ui) ∈ L1

loc((0,∞)×Rd),
i = 1, 2, which is a condition required by (2.2).

3 Proof of Theorem 2.4

We set z = u1 − u2. Then, we have by (1.7)

zt − ν∆z + div(K(z)u1 − zK(u2)) = 0 in D′((0, T )× R2), (3.1)

where K is the Biot–Savart operator (1.4).
We also recall that in 2-D we have

|w|24 ≤ 2|w|2|∇w|2, ∀w ∈ H1. (3.2)
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It follows by (1.5) that, for u1, u2 ∈ L4 ∩ L 4
3 ,

|u1K(z)|2 ≤ |K(z)|4|u1|4 ≤ C|z| 4
3
|u1|4. (3.3)

Similarly, we get the estimate

|zK(u2)|2 ≤ C|z|4|u2| 4
3
, (3.4)

for some constant C independent of u1, u2. Since for u ∈ L 4
3 ∩ L4, by inter-

polating between L
4
3 and L4, it follows also that |u|2 ≤ |u|

1
2
4
3

|u|
1
2
4 . Therefore,

since u1, u2 ∈ L2(0, T ;L
3
4 ∩ L4),

z ∈ L2(0, T ;L2) ∩ L∞(0, T ;H−1). (3.5)

Consider the operator Φε : L2 → L2,

Φε(y) = (εI −∆)−1y, ∀y ∈ L2, ε > 0. (3.6)

and we note that

Φε ∈ L(L2, H2) ∩ L(H−1, H1) ∩ L(L2, L2). (3.7)

Then, applying Φε in (3.1), we get

(Φε(z(t)))t−ν∆Φε(z(t))+Φε(div(K(z(t))u1(t)−z(t)K(u2(t)))) = 0

in D′((0, T )× R2).
(3.8)

Taking into account that, by (3.3), (3.4), and (2.19),

K(z)u1 − zK(u2) ∈ L2(0, T ;L2),

it follows by (3.7), (3.8) and (3.5) that

d

dt
Φε(z) ∈ L2(0, T ;L2) (3.9)

and since, by (3.5) and (3.7), Φε(z) ∈ L2(0, T ;H2), we infer that Φε(z) ∈
C([0, T ];H1). In particular, this implies that there is

lim
t→0

Φε(z(t)) = fε in H1. (3.10)
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Now, we set
hε(t) = (Φε(z(t)), z(t))2, t ∈ (0, T ), (3.11)

and
Kε(y) = ∇⊥Φε(y), ∀y ∈ L2, ε > 0. (3.12)

We note that Kε(z) = ∇⊥Φε(z) ∈ L2(0, T ;H1) ∩ C([0, T ];L2). Taking into
account that, by (3.6),

εΦε(z)−∆Φε(z) = z on R2, (3.13)

it follows by (3.11), (3.12) that

hε(t) = |Kε(z(t))|22 + ε|Φε(z(t))|22, t ∈ (0, T ). (3.14)

Since Φε(z) ∈ C([0, T ];H1), by (3.9) we see that hε is absolutely continuous
on [0, T ] and, by (3.8) and (3.13) we have, for ε ∈ (0, 1),

h′ε(t) = 2

(
d

dt
Φε(z(t)), z(t)

)
2

= 2(ν∆Φε(z(t))−Φε(div(K(z(t))u1(t)−z(t)K(u2(t)))), z(t))2

= −2ν|z(t)|22 + 2εν(Φε(z(t)), z(t))2

+2(K(z(t))u1(t)− z(t)K(u2(t)),∇Φε(z(t)))2

≤ −2ν|z(t)|22 + 2ενhε(t) + 2(K(z(t)u1(t),∇Φε(z(t))))2

+2|z(t)K(u2(t)) · ∇Φε(z(t))|1, a.e. t ∈ (0, T ).

(3.15)

On the other hand, we have

hε(0+) = lim
t↓0

hε(t) = 0. (3.16)

Indeed, we have, for a.e. t > 0,

0 ≤ hε(t) ≤ |Φε(z(t))− fε|H1 |z|L∞(0,T ;H−1) + (fε − ϕ, z(t))2 + (ϕ, z(t))2,

∀ϕ ∈ C∞0 (R2),

and so, by (3.10) and (2.22) we have

hε(0+) = lim
t↓0

ess sup
s∈(0,t)

hε(s) ≤ |fε − ϕ|H1|z|L∞(0,T ;H−1), ∀ϕ ∈ C∞0 (R2).

Since |fε − ϕ|H1 can be chosen sufficiently small for a suitable ϕ ∈ C∞0 (R2),
by (2.20) we get (3.16), as desired.
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Now, taking into account that |∇Φε(z(t))|22 = |Kε(z(t))|22, we see by (3.15)
that

h′ε(t)+2ν|z(t)|22 ≤ 2νεhε(t) + 2|Kε(z(t))|2 |K(z(t))u1(t)|2
+2|z(t)K(u2(t)) · ∇Φε(z(t))|1, a.e. t ∈ (0, T ).

(3.17)

Note that

|Kε(z(t))|2|K(z(t))u1(t)|2 ≤ |K(z(t))|4|u1(t)|4|Kε(z(t))|2,
≤ |K(z(t))|24 + |u1(t)|24|Kε(z(t))|22, a.e. t ∈ (0, T ).

(3.18)

We also have, by (1.5) and (3.2),

|z(t)K(u2(t)) · ∇Φε(z(t))|1 ≤ |z(t)|2|K(u2(t))|4|Kε(z(t))|4

≤ C|z(t)|2|u2(t)| 4
3
|Kε(z(t))|

1
2
2 |∇Kε(z(t))|

1
2
2

≤ C|z(t)|2|u2(t)| 4
3
||Kε(z(t))|

1
2
2 |z(t)|

1
2
2

≤ C|z(t)|
3
2
2 |u2(t)| 4

3
||Kε(z(t))|

1
2
2

≤ ν

4
|z(t)|22 + Cν |u2(t)|44

3
|Kε(z(t))|22, a.e. t ∈ (0, T ).

(3.19)

Here, we have used the inequality

|∇Kε(z)|2 ≤ C|z|2, ∀z ∈ L2 ∩ L
4
3 , (3.20)

which follows, since by Lemma A.1 in the Appendix we know that

Kε(z) = −K(z) + εK(Φε(z)),

and, therefore, by (2.11),

|∇Kε(z)|2 ≤ |∇K(z)|2 + ε|∇K(Φε(z))|2
≤ C(|z|2 + ε|Φε(z)|2)

≤ 2C|z|2.

(Here and everywhere in the following we have denoted by C several positive
constants independent of ε and u1, u2.)

Then, substituting (3.18)–(3.19) into (3.17) and recalling that, by (3.14),
|Kε(z)|22 ≤ hε, yields
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h′ε(t) + ν|z(t)|22 (3.21)

≤C(εhε(t)+|u1(t)|24|Kε(z(t))|22+|K(z(t))|24+|u2(t)|44
3
|Kε(z(t))|22)

≤C
((
ε+|u1(t)|24+|u2(t)|44

3

)
hε(t)

)
+C|K(z(t))|24, a.e. t ∈ (0, T ),

we get by (3.21) that

d

dt

(
hε(t) exp

(
−C

(
εt+

∫ t

0

(
|u1(s)|24+|u2(s)|44

3

)
ds

)))
≤C|K(z(t))|24 exp

(
−C
(
εt+

∫ t

0

(
|u1(s)|24 + |u2(s)|44

3

)
ds

))
,

a.e. t ∈ (0, T ).

(3.22)

Since, by (1.5),

|K(z(t))|24 ≤ C(|u1(t)|24
3

+ |u2(t)|24
3
), a.e. t ∈ (0, T ),

and so |K(z)|24 ∈ L1(0, T ), we see by (3.16) and (3.22) that

0 ≤ hε(t)

≤ C

∫ t

0

|K(z(s))|24 exp

(
C

(
ε(t−s)+

∫ t

s

(
|u1(τ)|24+|u2(τ)|44

3

)
dτ

))
ds,

∀ε > 0, t ∈ [0, T ].

(3.23)

Taking into account that, by (2.19),

|u1|24 + |u2|44
3
∈ L1(0, T ),

by (3.14) and (3.23) we have

sup
ε∈(0,1]

‖Kε(z)‖C([0,T ];L2) = sup
ε∈(0,1]

‖∇⊥(εI −∆)−1z‖C([0,T ];L2) <∞. (3.24)

We set θε(t) = Φε(z(t)) and note that

εθε(t)−∆θε(t) = z(t), a.e. t ∈ (0, T ) (3.25)

and, by (3.14), (3.23), it follows that, for all ε ∈ (0, 1), t ∈ [0, T ],
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ε|θε(t)|22 + |∇θε(t)|22 = hε(t) ≤ sup
ε∈(0,1)
t∈[0,T ]

hε(t) ≤ C <∞. (3.26)

We introduce the space

G := {u ∈ L2
loc(R2) : |∇u| ∈ L2(R2)}

equipped with the inner product (∇·,∇·)2 (see p. 11 in [19]). Then, by [17],
we have

(G.1) G =
{
T ∈ D′(R2) : ∂T

∂xi
∈ L2(R2), 1 ≤ i ≤ 2

}
.

(G.2) The quotient space
Ġ := G/{constants}

is a Hilbert space. Furthermore, for every Cauchy sequence un ∈ G,
n ∈ N, there exist u ∈ G and cn ∈ R such that lim

n→∞
un = u in G and

lim
n→∞

(un + cn) = u in L2
loc.

By (3.26) there exist subsequences εk ∈ (0, 1], k ∈ N, and `n ∈ N, n ∈ N,

such that εk → 0, as k →∞ and for vn := 1
`n

`n∑
k=1

θεk , n ∈ N, we have

∇vn → F in L2((0, T )× R2), (3.27)

and, for some Lebesgue zero set N ⊆ (0, T ),

∇vn(t)→ F (t) in L2(R2), for every t ∈ (0, T ) \N . (3.28)

Below we fix t ∈ (0, T ) \N . By (G.2) we know that there exist θ(t) ∈ G and
cn(t) ∈ R such that

lim
n→∞

∇vn(t) = ∇θ(t) in L2 (3.29)

and
lim
n→∞

(vn(t) + cn(t)) = θ(t) in L2
loc. (3.30)

Furthermore, by (3.25) we have, for every n ∈ N,

1

`n

`n∑
k=1

εkθεk(t)−∆vn(t) = z(t). (3.31)
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Hence, taking the limit n→∞ in D′(R2), by (3.26) we conclude that, for all
t ∈ (0, T ) \N ,

−∆θ(t) = z(t), in D′(R2). (3.32)

Moreover, by (3.29)–(3.30) it follows that θ(t) ⊂ W 1,2
loc (R2), for all t ∈ (0, T ) \N ,

and by (3.27), (3.28) that ∇θ ∈ L2((0, T )× R2). Furthermore, by (3.26)

|∇θ(t)|2 ≤ C <∞, a.e.t ∈ (0, T ).

This yields

lim
n→∞

∫
[1≤|x|≤2]

|∇θ(t, nx)|dx = lim
n→∞

1

n2

∫
[n≤|y|≤2n]

|∇θ(t, y)|dy

≤
√

3π lim
n→∞

1

n

(∫
|∇θ(t, y)|2dy

)1
2

= 0, a.e. t ∈ (0, T ).

We recall also that z(t) ∈ L1, a.e. t ∈ (0, T ) by (2.21). Then, by Lemma
A.11 in [7], we have

∇θ(t) = −∇E ∗ z(t), a.e. t ∈ (0, T ), (3.33)

and this yields

∇⊥θ(t) = −∇⊥E ∗ z(t) = −K(z(t)), a.e. t ∈ (0, T ), (3.34)

where E(x) ≡ 1
2π

ln |x|. It follows, therefore, by (3.26) that

Kε(z(t)) = ∇⊥θε(t)→ −∇⊥E ∗ z(t) = −K(z(t)) weakly in L2

for a.e. t ∈ (0, T ).
(3.35)

Now, by (3.24), it follows by the lower semicontinuity of the L2-norm that

|K(z(t))|2 ≤ C, a.e. t ∈ (0, T ),

and so |K(z)|2 ∈ L∞(0, T ).
For 0 < ε′ < ε ≤ 1 by the resolvent equation for (εI −∆)−1 and (3.35),

we have for a.e. t ∈ (0, T ) and h ∈ L2, |h|2 ≤ 1,

(h,Kε(z(t)))2 = (h,∇⊥Φε′(z(t)))2 +
(ε′−ε)
ε

(h, ε(εI−∆)−1∇⊥Φε′(z(t)))2.
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Hence,

|(h,Kε(z(t)))2| ≤ lim sup
ε′→0

|(h,Kε′(z(t)))2|

+ lim sup
ε′→0

|(ε(εI −∆)−1h,Kε′(z(t)))2|

= |(h,K(z(t)))2|+ |(ε(εI −∆)−1h,K(z(t)))2|
≤ 2|K(z(t))|2 a.e. t ∈ (0, T ).

Therefore,

|Kε(z(t))|2 ≤ 2|K(z(t))|2, a.e. t ∈ (0, T ), ∀ε > 0. (3.36)

We come back to (3.17) and, taking into account (3.2) and (2.11), we obtain
that

2|K(z(t))u1(t)|2|Kε(z(t))|2 ≤ |K(z(t))u1(t)|22 + |Kε(z(t))|22
≤ C|K(z(t))|2|∇K(z(t))|2|u1(t)|24 + |Kε(z(t))|22
≤ C|K(z(t))|2|z(t)|2|u1(t)|24 + |Kε(z(t))|22

≤ ν

4
|z(t)|22+

C

ν
|K(z(t))|22|u1(t)|44+|Kε(z(t))|22, a.e. t ∈ (0, T ).

(3.37)

Then, substituting (3.19), (3.37), (3.36) in (3.17), we get

h′ε(t)+|z(t)|22 ≤ C(hε(t)+(1+|u1(t)|44+|u2(t)|44
3

)|K(z(t))|22),

a.e. t ∈ (0, T ),
(3.38)

Then, recalling that |K(z)|2 ∈ L∞(0, T ) and that z, u1, u2 ∈ L4(0, T ;L
4
3∩L4),

it follows that the right-hand side of (3.38) is in L1(0, T ). Then, integrating
over (0, t) and taking into account (3.16), it follows via Gronwall’s lemma
that

hε(t) ≤ C

∫ t

0

(
1 + |u1(s)|44 + |u2(s)|44

3

)
|K(z(s))|22ds, ∀t ∈ (0, T ),

and, therefore, once again by (3.14) we have

|Kε(z(t))|22 ≤ C

∫ t

0

(
1 + |u1(s)|44 + |u2(s)|44

3

)
|K(z(s))|22ds, a.e. t ∈ (0, T ).
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Then, by (3.35) and the weak lower semicontinuity of the L2-norm, it follows
that

|K(z(t))|22 ≤ C

∫ t

0

(
1 + |u1(s)|44 + |u2(s)|44

3

)
|K(z(s))|22ds, a.e. t ∈ (0, T ).

The latter implies via Gronwall’s lemma that K(z(t)) = 0, for a.e. t ∈ (0, T ).
Hence, by (3.34) and (3.32), we have therefore z ≡ 0, a.e. on [0, T ], as
claimed. �

Theorem 2.4 implies the uniqueness of distributional solutions y to (1.7) in
the sense of (2.2)–(2.3) satisfying (2.19)–(2.21) with initial data u0 ∈M(R2),
u0 ≥ 0. Namely, we have

Corollary 3.1 Let u0∈Pa and let u1, u2 ∈ L4(0, T ;L4) be two nonnegative
distributional solutions to (1.7) in the sense of (2.2), (2.3), such that u1−u2 ∈
L∞(0, T ;H−1). Then u1 ≡ u2.

Proof. We note first that, if u is such a solution to (1.7), then we have∫
R2

u(t, x)dx =

∫
R2

u0(dx) = 1, a.e. t ∈ (0, T ). (3.39)

Indeed, if uε = u∗ρε, where ρε = 1
ε3
ρ
(
t
ε
, x
ε

)
is a mollifier in R3, then we have

uεt − ν∆uε + div((K(u)u) ∗ ρε) = 0 on (0, T )× R2,

and, integrating over R2, we get∫
R2

uε(t, x)dx =

∫
R2

uε0dx, ∀t ∈ (0, T ), ∀ε > 0,

which for ε→ 0 yields (3.39), as claimed.
In particular, u1, u2 ∈ L∞(0, T ;L1), hence by interpolation u1, u2 ∈

L4(0, T ;L4 ∩ L 4
3 ).

Then, it follows from Lemma 2.3 in [28] that there is a dt ⊗ dx version
ũ of u such that, for ũ(t, dx) := ũ(t, x)dx, t > 0, and ũ(0, dx) := u0(dx) we
have that t 7→

∫
Rd ϕ(x)ũ(t, dx) is continuous on [0, T ], for every ϕ ∈ Cb(R2).

If ũ1, ũ2 are two such dt⊗ dx versions of u1, u2, respectively, we have

lim
t→0

ess sup
s∈(0,t)

|(u1(s)− u2(s), ϕ)2|

= lim
t→0

ess sup
s∈(0,t)

∣∣∣∣∫
R2

(ũ1(s, x)− ũ2(s, x))ϕ(x)dx

∣∣∣∣ = 0, ∀ϕ ∈ C∞0 (R2).

Then, by Theorem 2.4 it follows that u1 ≡ u2 dt⊗ dx a.e., as claimed. �
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Remark 3.2 Following the previous proof, one can get the uniqueness in
Theorem 2.4 in the class of solutions u ∈ Lq1(0, T ;Lp1)∩Lq2(0, T ;Lp2), where
p1 ∈ (2,∞), p2 ∈ (1, 2) and 1

q1
+ 1

p1
≤ 1, i = 1, 2. This class of solutions

seems to be more appropriate if one takes into account estimate (2.4).

4 Existence and weak uniqueness

for the McKean–Vlasov equation (1.8)

It is well known (see [2], [3]) that the existence of a distributional narrowly
continuous solution u for a Fokker–Planck equation with Nemytskii drift
terms implies the existence of a probabilistically weak solution X(t) to the
corresponding McKean–Vlasov equation such that

u(t, x) = LX(t)(x), ∀ t > 0 and u0(dx) = P ◦X(0)−1(dx), (4.1)

where LX(t) is the density of P◦X(t)−1 w.r.t. Lebesgue measure. This result
follows by the nonlinear superposition principle in [2, Section 2] (which in
turn is derived from the linear superposition principle in [31]). Applying
this to equation (1.8) and, respectively, to the vorticity equation (1.7), which
as seen earlier can be viewed as a Fokker–Planck equation with the drift
K(u) satisfying uK(u) ∈ L1, the following existence result for equation (1.8)
follows by Theorem 2.3 and [2, Section 2].

Theorem 4.1 Let u0 ∈ P. Then, there is a probabilistically weak solution
X to (1.8) such that (4.1) holds, where u is the mild solution to equation
(1.7), from Theorem 2.1. (See also Remark 2.2.)

We recall that the process X = X(t) is called a probabilistically weak
solution to (1.8) if there is a 2-dimensional (Ft)-Brownian motion W (t), ≥ 0,
on a stochastic basis (Ω,F , (Ft)t≥0,P) such that X : [0,∞) × Ω → R2 is
progressively measurable, P-a.s. continuous in t and satisfies (1.8), i.e.,

dX(t) = K(u(t, ·))(X(t))dt+
√

2ν dW (t), t ≥ 0, (4.2)

with one dimensional time marginal laws LX(t) = P ◦X(t)−1 = u(t), t ≥ 0.
The process X(t) is called the probabilistic representation of the solution

u to the vorticity equation (1.7).
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In particular, we have by the Biot–Savart formula (1.6) the probabilistic
representation

y(t) = K(LX(t)), ∀t ≥ 0, (4.3)

of the solution y to the Navier–Stokes equation (1.1).
We shall discuss now the weak uniqueness of probabilistically weak so-

lutions X to the McKean–Vlasov equation (1.8). To this purpose, we shall
prove first the linearized uniqueness for equation (1.7). Namely, we have

Theorem 4.2 Let u ∈ L4(0, T ;L
4
3 ) and let

u1, u2 ∈ L4(0, T ;L4 ∩ L 4
3 ), u1 − u2 ∈ L∞(0, T ;H−1),

u1(t)− u2(t) ∈ L1 for a.e. t ∈ (0, T ),
(4.4)

such that

lim
t↓0

ess sup
s∈(0,T )

∫
R2

(u1(s, x)− u2(s, x))ϕ(x)dx = 0, ∀ϕ ∈ C∞0 (R2) (4.5)

be two solutions to the equation∫ ∞
0

∫
R2

(ϕt + ν∆) +K(u) · ∇ϕ)v dxdt+

∫
R2

ϕ(0, x)u0(dx) = 0,

∀ϕ ∈ C2
0([0, T ];R2),

(4.6)

where u0 ∈M(R2). Then, u1 ≡ u2.

Proof. The proof is the same as that of Theorem 2.4, but with some sim-
plifications. Namely, we set z = u1 − u2 and get, by (4.1),

zt − ν∆z + div(K(u)z) = 0 in D′((0, T )× R2),

z(0) = u0.
(4.7)

If zε = Φε(z), we obtain for zε the equation

(zε)t − ν∆zε + Φε(div(K(u)z)) = 0 in (0, T )× R2

and so, arguing as in the proof of Theorem 2.4, we obtain (see (3.14)–(3.15))

|Kε(z)(t)|22 +

∫ t

0

|z(s))|22ds ≤ C

∫ t

0

|K(u(s))|24|Kε(z)|22ds

≤ C

∫ t

0

|u(s)|24
3
|Kε(z)|22ds, ∀t ∈ [0, T ],

(4.8)
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from which, taking into account (3.36), we get for ε→ 0

|K(z(t))|22 ≤ C

∫ t

0

(1 + |u(s)|44 + |u(s)|44
3
)|K(z(s))|22ds, a.e. t ∈ (0, T ),

which implies as above that z ≡ 0. �

Arguing as in the proof of Corollary 3.1, it follows, by Theorem 4.2, the
following uniqueness result.

Corollary 4.3 Let u0 ∈ Pa and let u1, u2 ∈ L4(0, T ;L4) be two nonnegative
solutions to (4.6) such that u1 − u2 ∈ L∞(0, T ;H−1). Then, u1 ≡ u2.

Now, let us prove weak uniqueness for the McKean–Vlasov equation (1.8).
(For the definition of weak solutions we refer to Definition 3.1 (a) part (i) in
[29].)

Theorem 4.4 Let T > 0 and let X(t), X̃(t), t ≥ 0, on stochastic bases

(Ω,F , (Ft)t≥0,P), (Ω̃, F̃ , (F̃t)t≥0, P̃) respectively, be two probabilistically weak
solutions to (1.8) such that, for

u(t, ·) = LX(t), ũ(t, ·) = LX̃(t), t > 0,

we have
u, ũ ∈ L4(0, T ;L4) ∩ L∞(0, T ;H−1). (4.9)

Then X and X̃ have the same laws, that is,

P ◦X−1 = P̃ ◦ X̃−1. (4.10)

Proof. By Itô’s formula, both u and ũ satisfy (2.3) and by our definition of
weak solution also (2.2). Hence, by Corollary 3.1, u ≡ ũ. Furthermore, again

by Itô’s formula, both P ◦X−1 and P̃ ◦ X̃−1 satisfy the martingale problem
with the initial condition u0 for the linearized Kolmogorov operator

Lu := ∆ +K(u) · ∇. (4.11)

Note that Theorem 4.2 above remains true if we replace the role of the
starting time 0 by any s ≥ 0. Therefore, the assertion follows by Lemma 2.12
in [31] applied to the linear Kolmogorov operator in (4.11) and the family
R[s,T ], 0 ≤ s ≤ T , of R-regular narrowly continuous solutions are defined
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as follows. R[s,T ] is the set of all narrowly continuous solutions (u(t))t≥s of
(2.2), (2.3) starting at (s, ζ) with ζ ∈ P(Rd) such that

u ∈ L4(s, T ;L4) ∩ L∞(s, T ;H−1).

Obviously, this family fulfills conditions (2.9) and (2.14) in [31], as is required
for Lemma 2.12 in [31]. �

Now, let us turn to the probabilistically strong solutions to (1.8).

Theorem 4.5 Let u0 ∈ Pa ∩ L4. Then, the solution to (1.8) from Theo-
rem 4.1 is, in fact, a probabilistically strong solution, i.e., is a functional
of the Brownian motion W (t), t ≥ 0. Furthermore, pathwise uniqueness
holds in the class of all probabilistically weak solutions to (1.8) with the same
Brownian motion, having path laws with one dimensional time marginal law
densities in L

4
3 (0, T ;L

4
3 ).

Proof. Let u be as in Theorem 4.1, with initial u0 and let (X,W ) be the
corresponding weak solution to (1.8). Then, fixing u in (1.8), we are in the
case of a usual SDE and may apply the results in Sections 1.3 and 2.1.1 in
[22]. To this end, we aim to prove

K(u) ∈ L∞(0, T ;W 1,4). (4.12)

Since u0 ∈ Pa∩L4 ⊂ L
4
3 , by Theorem 2.3 (iii) we know that u ∈ L∞(0, T ;L

4
3 ),

hence by (1.5) and (2.14) we have K(u) ∈ L∞(0, T ;L4). Furthermore, by
(2.11) and (2.14), ∇K(u) ∈ L∞(0, T ;L4) and thus (4.12) is proved. Hence,
the assertion follows by Theorems 1.3.1 and 2.1.3 in [22] and Lemmas A.2
and A.3 in [16]. �

Finally, we prove that the path laws of the probabilistically weak solution
to (1.8) from Theorem 4.1 form a Markov process. To this end, we first note
that clearly both Theorems 2.1 and 2.4 hold if we consider (1.7) on [s,∞)×R2

for any s ≥ 0. Then, renaming the initial condition in (2.3) by ζ ∈ P , due to
Theorem 2.1 and Remark 2.2 we have, for each (s, ζ) ∈ [0,∞)×P , a solution
to (2.2), (2.3) with the initial condition ζ at time s, which according to
Lemma 2.3 in [28] has a narrowly continuous version on [0,∞). Let us denote
this narrowly continuous solution by µs,ζ = (µs,ζt )t≥s. Below we identify a
measure which is absolutely continuous w.r.t. Lebesgue measure dx with its
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density. Furthermore, for (s, ζ) ∈ [0,∞) × P , we denote the corresponding
probabilistically weak solution by X(t, s, ζ)t≥s, defined on a stochastic basis
(Ωs,ζ ,F s,ζ , (F s,ζ)t≥s,Ps,ζ) and define

Ps,ζ := Ps,ζ ◦X(·, s, ζ)−1.

Then, Ps,ζ is a probability measure on Ωs := C([s,∞);Rd), i.e., the set of
all continuous paths in Rd starting at time s equipped with the topology of
locally uniform convergence and corresponding Borel σ-algebra B(Ωs).

Define, for τ ≥ s,

πsτ : Ωs → Rd, πsτ (w) := w(τ), w ∈ Ωs,

and, for r ≥ s,
Fs,r := σ(πsτ : s ≤ τ ≤ r).

Theorem 4.6 The family Ps,ζ , (s, ζ) ∈ [0,∞)×P, forms a nonlinear Markov
process in the sense of Definition 4.7 below with P0 := P.

The following is a moderately concretized version of the one by McKean
from [26].

Definition 4.7 Let P0 ⊆ P . A nonlinear Markov process is a family
(Ps,ζ)(s,ζ)∈R+×P0 of probability measures Ps,ζ on B(Ωs) such that

(i) The marginals Ps,ζ ◦ (πst )
−1 =: µs,ζt belong to P0 for all 0 ≤ s ≤ r ≤ t

and ζ ∈ P0.

(ii) The nonlinear Markov property holds, i.e. for all 0 ≤ s ≤ r ≤ t, ζ ∈ P0

Ps,ζ(πst ∈ A|Fs,r)(·) = p(s,ζ),(r,πsr(·))(π
r
t ∈ A) Ps,ζ − a.s.

for all A ∈ B(Rd),
(MP)

where p(s,ζ),(r,y), y ∈ Rd, is a regular conditional probability kernel from
Rd to B(Ωr) of Pr,µs,ζr [ · |πrr = y], y ∈ Rd (i.e., in particular, p(s,ζ),(r,y) ∈
P(Ωr) and p(s,ζ),(r,y)(π

r
r = y) = 1).

The term nonlinear Markov property originates from the fact that in the
situation of Definition 4.7 the map P0 3 ζ 7→ µs,ζt is, in general, not convex.
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Remark 4.8 The one-dimensional time marginals µs,ζt = Ps,ζ ◦ (πst )
−1 of a

nonlinear Markov process satisfy the flow property, i.e.,

µs,ζt = µr,µ
s,ζ
r

t , ∀ 0 ≤ s ≤ r ≤ t, ζ ∈ P0. (4.13)

Proof of Theorem 4.6. For (s, ζ) ∈ [0,∞) × P , consider the narrowly
continuous solution µs,ζ = (µs,ζt )t≥s, to (2.2), (2.3) introduced in front of the
formulation of Theorem 4.6 and define

P0 := {u0 ∈ Pa : u0 ∈ L4}.

Then, by Theorem 2.3 (iii) we have for every (s, u0) ∈ [0,∞)×P0,

µs,u0 ∈ L∞(s, T ;L4) ⊂ L4(s, T ;L4) ∩ L∞(s, T ;H−1),

and (2.6), (2.13) imply that µs,u0t ∈ P0 for every 0 ≤ s ≤ t, u0 ∈ P0 and
µt,ζ ∈ P0 for every 0 ≤ s < t, ζ ∈ P . Furthermore, Corollary 3.1 implies
that µs,u0 , (s, u0) ∈ [0,∞) ×P0, satisfy the flow property (4.13). Then, by
Corollary 4.3 and [29, Lemma 3.4] we see that Corollary 3.9 in [29] (with
P0 := P) applies to prove the assertion. �

Appendix

Proof of (3.20)

Lemma A.1 Let z ∈ L 4
3 , ε > 0. Then

Kε(z) = −K(z) + εK(Φε(z)). (A1)

Proof. We first recall that εΦε is a contraction on every Lp, p ∈ [1,∞], and
that

Φε(z) = (gε ∗ z),

where

gε(x) :=

∫ ∞
0

e−εt
1

4πt
e−

1
4t
|x|2dt, x ∈ R2. (A2)

(See, e.g., [30, p. 132, formula (26)].) Then, εgε ∈ Pa and an elementary
computation yields

∇⊥gε(x) = −k(x)

∫ ∞
0

e−ε|x|
2t γ(dt), x ∈ R2 \ {0}, (A3)
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where γ is a probability measure on [0,∞) with density

t 7→ 1

4t2
e−

1
4t , t ∈ [0,∞),

and k is as in (2.7). Hence, if B1 denotes the unit ball in R2 with centre zero,
we have

sup
ε>0

(
1B1|∇⊥gε|

)
≤ 1B1|k| ∈ L1 and sup

ε>0

(
1Bc1 |∇

⊥gε|
)
≤ 1Bc1 |k| ∈ L

∞ (A4)

and

|∇⊥gε(x)| ↗ |k(x)| = 1

2π|x|
, ∀x ∈ R2 \ {0}. (A5)

We first prove (A1) for ϕ ∈ C∞0 =: D. Let D′ denote its dual and S the space
of all Schwartz test functions. Then, we have by the resolvent equation of
Φε′ , ε

′ > 0, that, for all ε′ ∈ (0, ε),

Φε(ϕ) = Φε′(ϕ) + (ε′ − ε)Φε′(Φε(ϕ)). (A6)

By (A4), (A5) and Lebesgue’s dominated convergence theorem, we have

∇⊥Φε′(ϕ) = (∇⊥gε′) ∗ ϕ −→
ε′→0
−k ∗ ϕ = −K(ϕ) in L1, hence in D′,

and, for all ϕ̃ ∈ D, since Φε(ϕ) ∈ S, hence Φε(ϕ) ∗ ϕ̃ ∈ S,

D′

〈
∇⊥Φε′(Φε(ϕ)), ϕ̃

〉
D=

∫
R2

∇⊥gε′Φε(ϕ) ∗ ϕ̃ dx −→
ε′→0
−
∫
R2

kΦε(ϕ) ∗ ϕ̃ dx

= −
∫
R2

k ∗ Φε(ϕ)ϕ̃ dx

= −
∫
R2

K(Φε(ϕ))ϕ̃ dx.

Therefore,
∇⊥Φε′(Φε(ϕ))→ −K(Φε(ϕ)) in D′,

and, consequently, applying ∇⊥ to (A6), and passing to the limit in D′ with

ε′ → 0, we obtain that (A1) holds for ϕ ∈ C∞0 . Now, we approximate z in L
4
3

by ϕn ∈ C∞0 , n ∈ N, and since then also Φε(ϕn) → Φε(z) in L
4
3 as n → ∞,

using the generalized Young inequality and the fact that k, ∇⊥gε ∈ L2,∞, we
can pass to the limit with n→∞ in L4 to obtain (A1), for z ∈ L 4

3 . �
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