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Abstract. We investigate three types of averaging principles and the normal deviation for

multi-scale stochastic differential equations (in short, SDEs) with polynomial nonlinearity. More
specifically, we first demonstrate the strong convergence of the solution of SDEs, which involves

highly oscillating components and fast processes, to that of the averaged equation. Then we

investigate the small fluctuations of the system around its average, and show that the normalized
difference weakly converges to an Ornstein-Uhlenbeck type process, which can be viewed as a

functional central limit theorem. Additionally, we show that the attractor of the original system

tends to that of the averaged equation in probability measure space as the time scale ε goes to
zero. Finally, we establish the second Bogolyubov theorem; that is to say, we prove that there

exists a quasi-periodic solution in a neighborhood of the stationary solution of the averaged

equation when the ε is small.
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1. Introduction

Consider the following periodically forced Van der Pol’s equation:

y′′ + µ(y2 − 1)y′ + y = a sin (2πνt) , (1.1)

where µ� 1, ν represents the frequency and a the amplitude of the forcing. Let t = µτ and

x =
1

µ2

dy

dτ
+
y3

3
− 3,

which is also called the Liénard transformation. Define ε = 1
µ2 . Hence we can transform (1.1) into

the following system 
dx

dτ
= a sin

(
2πν

1√
ε
τ

)
− y

dy

dτ
=

1

ε

(
x− y3

3
+ y

)
.

(1.2)

Let θ = 1√
ε
τ . Then note that (1.2) is a multi-scale system, including the slow variable x, the

fast variable y and the highly oscillating time component θ. Van der Pol’s equation is one of the
most important examples of multi-scale systems. It exhibits a wide variety of interesting dynamical
phenomena and appears frequently in applications in various fields, including, but not limited to,
neuroscience, seismology, electrical circuits, networks, and systems biology. Multi-scale models
appear frequently in many real-world dynamical systems, such as climate weather interactions (see
e.g. [29, 37]), macro-molecules (see e.g. [3, 25]), stochastic volatility in finance (see e.g. [15]), etc.

Usually, studying multi-scale models is relatively difficult because of the presence of widely
separated times scales and the interactions between them. To understand the dynamics of multi-
scale models, it is desirable to seek a simplified system, which can simulate and predict the evolution
of the original system over a long time scale. This is the basic idea of the averaging principle.

The averaging principle was first developed for deterministic systems by Krylov, Bogolyubov
and Miltropolsky [4, 34], and extended to SDEs by Khasminskii [27]. After that, numerous studies
have been carried out on the averaging principle for SDEs, see e.g. [2, 16, 19, 28, 36, 38, 40, 44, 46]
and the references therein. Furthermore, similar results concerning stochastic partial differential
equations can be found in references like [5, 7, 9, 10, 12, 13, 18, 21, 45]. Despite considerable
advances in the averaging principle, it seems that there is no work on multi-scale SDEs which
includes the slow variable, the fast variable and the highly oscillating time component.

Building upon the motivations mentioned above, in this paper we investigate the averaging
principle of the following multi-scale SDEs with polynomial nonlinearity:{

dXε
t = f(ε−γt,Xε

t , Y
ε
t )dt+ σ(ε−γt,Xε

t )dW 1
t

dY εt = (ε−2αB(Xε
t , Y

ε
t ) + ε−βb(Xε

t , Y
ε
t ))dt+ ε−αg(Xε

t , Y
ε
t )dW 2

t ,
(1.3)

where 0 ≤ β < 2α, 0 < γ < 2α, f : R1+d1+d2 → Rd1 , σ : R1+d1 → Rd1 ⊗ Rd1 , B : Rd1+d2 → Rd2 ,
b : Rd1+d2 → Rd2 , g : Rd1+d2 → Rd2 ⊗Rd2 , and 0 < ε� 1 is a small parameter. Here W 1 and W 2

are independent standard Brownian motions. See Section 2 for detailed conditions for coefficients
f , σ, B, b and g. If f and σ are time-independent, and b ≡ 0 then (1.3) reduces to the classical
slow-fast SDEs.

More precisely, as the time scale ε goes to zero we first consider the so-called first Bogolyubov
theorem, which focuses on the strong convergence of the solution of (1.3) to that of the following
averaged equation on finite time intervals:

dX̄t = f̄(X̄t)dt+ σ̄(X̄t)dW
1
t , (1.4)

where

f̄(x) = lim
T→∞

1

T

∫ t+T

t

∫
Rd2

f(s, x, y)µx(dy)ds, lim
T→∞

1

T

∫ t+T

t

|σ(s, x)− σ̄(x)|2HSds = 0
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for all (t, x) ∈ R1+d1 (see more details about the assumptions in Section 2.1), where | · |HS is the
Hilbert-Schmidt norm; see Theorem 2.3. Here µx is the invariant measure of

dY xt = B(x, Y xt )dt+ g(x, Y xt )dWt. (1.5)

Secondly, we consider the case where the coefficients f and σ are time-independent. In this case,
we assume 2α = 1 for simplicity. Then by using regularity estimates for the solutions to Poisson
equations, we obtain the optimal strong convergence rate, i.e.

E

(
sup
t∈[0,T ]

|Xε
t − X̄t|2

)
≤ CT ε, (1.6)

where CT is a constant (see Theorem 2.5). Furthermore, if σ is constant, we study the normal
deviation. In other words, we prove that the normalized difference

Zεt :=
Xε
t − X̄t√
ε

weakly converges to Z̄t as ε goes to zero. Here Z̄t is the solution to

dZ̄t = ∇f̄(X̄t)Z̄tdt+G(X̄t)dW̃
1
t , Z̄0 = 0 ∈ Rd1 , (1.7)

where

G(x) =

√∫ ∞
0

∫
Rd2

E
[
f(x, Y xt (y))− f̄(x)

] [
f(x, y)− f̄(x)

]T
µx(dy)dt,

and W̃ 1
t is another standard Brownian motion that is independent of W 1

t (see Theorem 2.6). Here
Y xt (y), t ≥ 0 is the solution to (1.5) with Y x0 = y. Such a result is also known as the Gaussian
approximation. In addition, our investigation includes the study of the global averaging principle
in the weak sense, i.e. we prove that the measure attractor of (1.3) converges, as ε goes to zero, to
that of (1.4) (see Theorem 2.8). Finally, we establish the second Bogolyubov theorem, which states
that the stationary solution of (1.4) approximates the recurrent solution of (1.3) in the sense of
(2.6) in Theorem 2.12.

Compared with [36], where they proved the fist Bogolyubov theorem for two time scale SDEs
with locally Lipschitz coefficients, we study a broader class of SDEs (1.3). The slow process
Xε
t here interacts not only with the fast process Y εt but also with the highly oscillating time

component ε−γt. To overcome the difficulty, we employ the Poisson equation, the technique of
time discretization and the technique of truncation. And we also obtain the optimal rate of strong
convergence when the coefficients of the slow equation are time-independent and f satisfies the
following locally monotone condition: for all x1, x2 ∈ Rd1 and y ∈ Rd2

〈f(x1, y)− f(x2, y), x1 − x2〉 ≤M
(
1 + |y|θ2

)
|x1 − x2|2, (1.8)

where M ≥ 0 and θ2 ≥ 1; see Section 2.2 for more detailed conditions.
The rate of convergence is interesting in its own right since it plays a crucial role in constructing

efficient numerical schemes. The main motivation comes from the well-known Heterogeneous Multi-
Scale Methods used to approximate the slow component; see e.g. [14, 31]. Recall that the optimal
strong convergence order is also obtained in [43] for monotone SDEs. However, it should be noted
that our result cannot be covered by those in [43] because there it is assumed that the coefficient
f must be monotone uniformly with respect to (in short, w.r.t.) y. There are certain classes of
systems, such as f(x, y) = x − x3 + yk sinx, k ∈ N, that do not satisfy monotonicity uniformly
w.r.t. y but satisfy condition (1.8); see Example 2.14.

In order to obtain the optimal strong convergence order under monotonicity conditions, we need
to estimate two crucial terms:

I1 := E

(
sup
t∈[0,T ]

∫ t

0

〈f(Xε
s , Y

ε
s )− f̄(Xε

s ), Xε
s − X̄s〉ds

)
,
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I2 := E

(
sup
t∈[0,T ]

∫ t

0

〈f̄(Xε
s )− f̄(X̄s), X

ε
s − X̄s〉ds

)
.

For I1, regularity estimates for solutions to the Poisson equation can be employed to handle its
estimation. The remaining part of the proof is to show that f̄ is monotone when f satisfies the
locally monotone condition (1.8). Actually, thanks to the stability of the stationary solution to
(1.5), we can complete the proof (see Lemma 5.1 for more details).

The first Bogolyubov theorem can be viewed as a functional law of large numbers, indicating
the convergence of the slow process Xε

t to the averaged process X̄t. However, it is crucial to ac-
knowledge that even for small positive values of ε, the slow process Xε

t still experiences fluctuations
around the averaged process X̄t. Consequently, it is natural to go one step further and consider the
functional central limit theorem, i.e. the normal deviation. By studying these deviations, we can
contribute to the understanding of the behavior of the system and its relationship with the averaged
process. The fundamental paper about the normal deviation of multi-scale SDEs is by Khasminskii
[26]. Since then, further developments were acquired; see e.g. [6, 22, 30, 31, 32, 39, 40, 45].

To the best of our knowledge, it seems that there is no work on the normal deviation for SDEs
with polynomial nonlinearity. Therefore, we focus on investigating the deviations of the solutions
Xε
t to monotone SDEs of type (1.3) from X̄t in this paper. Specifically, we establish that, under

appropriate conditions, the deviation process Zεt converges weakly to an Ornstein-Uhlenbeck type
process Z̄t. Such a result is closely related to the homogenization for solutions of partial differential
equations with singularly perturbed terms; see e.g. [17].

More specifically, we prove that for any ϕ ∈ C∞b (Rd1)

lim
ε→0

sup
t∈[0,T ]

∣∣Eϕ(Zεt )− Eϕ(Z̄t)
∣∣ = 0, (1.9)

where C∞b (Rd1) is the space of all smooth functions with bounded j-th derivatives for all integers
j ∈ [0,∞). To this end, employing Itô’s formula, we have∣∣Eϕ(Zεt )− Eϕ(Z̄t)

∣∣
≤
∣∣∣∣E∫ t

0

1√
ε
〈f(Xε

s , Y
ε
s )− f̄(Xε

s ),∇ϕ(Zεs )〉 − 1

2
Tr[∇2ϕ(Zεs )GGT (Xε

s )]ds

∣∣∣∣
+

∣∣∣∣E ∫ t

0

〈∇f̄(X̄s + ι(Xε
s − X̄s))Z

ε
s ,∇ϕ(Zεs )〉 − 〈∇f̄(X̄s)Z̄s,∇ϕ(Z̄s)〉ds

∣∣∣∣
+

∣∣∣∣E∫ t

0

1

2
Tr[∇2ϕ(Zεs )GGT (Xε

s )]− 1

2
Tr[∇2ϕ(Z̄s)GG

T (X̄s)]ds

∣∣∣∣ =: I1 + I2 + I3,

where ι ∈ [0, 1]. Therefore, we just need to show that I1, I2 and I3 go to zero as ε → 0.
Combining the regularity estimates of the solutions to the Poisson equation and the optimal strong
convergence (1.6), we prove that limε→0 I1 = 0. For I2 and I3, we first prove that the subset

{Zε, Z̄ : 0 < ε ≤ 1} ⊂ C([0, T ];Rd1)

is tight; see Lemma 5.3. By utilizing the tightness of the set and the separation properties of
C([0, T ];Rd1), we can then conclude that limε→0 I2 = 0 and limε→0 I3 = 0, and complete the
proof of (1.9); see Section 5.2 for details. This provides a better approximation and is also known
as Van Kampen’s scheme in physics; see e.g. [1].

Another main ingredient of this paper is to study the long-time asymptotic behavior of solutions
to (1.3). So, we aim to establish the global averaging principle in the weak sense. Namely, we
prove that the attractor of (1.3) tends to that of (1.4) in the space of probability measures. The
global averaging principle of deterministic systems was proved in [20, 23, 24, 47] and the references
therein. There are few works on the global averaging principle for stochastic systems. In [9, 10]
the global averaging principle was established in the weak sense for stochastic partial differential
equations with highly time oscillating components.
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As we mentioned before, the drift coefficient f in (1.3) exhibits a complex and general structure,
and it encompasses not only the highly time oscillating component ε−γt, but also the fast variable
Y εt . Due to the coupling between the slow process Xε

t and the fast process Y εt in (1.3), it is necessary
to consider the attractor of the entire multi-scale system as a unified entity. The dynamics of the
slow process and the fast process are interconnected, and their mutual influence plays a role in
shaping the behavior of the system as a whole. Therefore, we consider the attractor of the whole
multi-scale system (1.3) instead of the single slow equation.

More exactly, fix 0 < ε ≤ 1. Define the transition probability

P ε(s, (x, y), t,D) := P ◦
[(
Xε
s,t(x), Y εs,t(y)

)]−1
(D)

for all s ≤ t, (x, y) ∈ Rd1+d2 and D ∈ B(Rd1+d2), where B(Rd1+d2) is the Borel σ-algebra of Rd1+d2 .
Then for any 0 < ε ≤ 1 it associates the Markov operator P ∗ε acting on the probability measure
space P(Rd1+d2):

P ∗ε (s, t,m)(D) :=

∫
Rd1+d2

P ε(s, (x, y), t,D)m(d(x, y)) (1.10)

for any m ∈P(Rd1+d2) and D ∈ B(Rd1+d2).
Note that P ∗ε is time inhomogeneous, so we employ the method of skew product to consider

its pullback attractors. For detailed definitions of skew product flows, attractors, and pullback
attractors, please see Section 6.1. Finally, we investigate the convergence of pullback measure
attractors for (1.3).

Finally, we establish the second Bogolyubov theorem for (1.3). Since numerous physical models
have periodic forces, such as (1.1), we approximate the periodic solution of the original system
by utilizing the stationary solution to the averaged equation. It is worth noting that we obtain
the convergence of a broader class of recurrent solutions, including periodic, quasi-periodic, almost
periodic solutions among others; see Remark 2.13. For brevity, we focus on the analysis of quasi-
periodic solutions in this paper. To be specific, under some suitable conditions we show that there
exists a unique solution to (1.3), which is quasi-periodic in distribution, if f and σ are quasi-
periodic. Then the law of the slow component of the quasi-periodic solution converges to the law
of the stationary solution for (1.4) uniformly w.r.t. t ∈ R as the time scale ε goes to zero.

Now we summarize the structure of the paper. In Section 2, we state our main results. In
Section 3, we study the frozen equation and the Poisson equation. In Section 4, we investigate
the first Bogolyubov theorem. In Section 5, we first prove the optimal strong convergence order.
Then we establish the normal deviation. In Section 6, we prove the global averaging principle in
the weak sense and the second Bogolyubov theorem. In the appendix at the end, we show the
existence and uniqueness of solutions to (1.3).

Notations. Throughout this paper, let | · | be the Euclidean norm and 〈·, ·〉 be the Euclidean
inner product on Rd, d ∈ N. For a vector-valued or matrix-valued function x 7→ ϕ(x) defined
on Rd or (x, y) 7→ ϕ(x, y) defined on Rd1+d2 , d1, d2 ∈ N, we denote the i-th order derivative
of ϕ by ∇iϕ(x), and the i-th and j-th order partial derivative of ϕ(x, y) w.r.t. x and y by
∂ix∂

j
yϕ(x, y), respectively, where i, j ∈ N. For all i ∈ N, let Ci,2,4(Rd+d1+d2) be the space of all

continuous mappings f : Rd+d1+d2 → Rd1+d2 such that ∂i
′

h f and ∂j
′

x ∂
k′

y f are continuous for any
0 ≤ i′ ≤ i and 0 ≤ 2j′ + k′ ≤ 4. Let [C] denote the integer part of C for any C ≥ 0. We use
Ckb (Rd1) to denote the space of all functions f : Rd1 → R whose j-th derivative is continuous
and bounded for all j ∈ [0, k]. For any complete metric space (X , d), let C(R,X ) be the space
of all continuous mappings ϕ : R → X with the compact-open topology. Define the Hausdorff
semi-metric distX (A,B) := supx∈A infy∈B d(x, y) for any A,B ⊂ X . Let AT denote the transpose
of a matrix A. Let L (X) denote the distribution or law of random variable X, and (Ω,F ,P) be a
complete probability space. We use C with or without subscripts to denote some constant, which
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may change from line to line. In this paper, solutions to SDEs are always meant to be strong
solutions.

2. Statement of the main results

In this section, we formulate our main results.

2.1. The first Bogolyubov theorem. First of all, we introduce the following conditions about
the coefficients B, b, and g:

(H1
y) There exist constants η > 0, η′ ≥ 0, θ ≥ 2, η̃ ∈ R and K1 ∈ R such that for all

(x, y) ∈ Rd1+d2

2〈B(x, y), y〉+ |g(x, y)|2HS ≤ −η|y|2 − η′|y|θ +K1, 2〈b(x, y), y〉 ≤ η̃|y|2 +K1.

(H2
y) There exists a constant K2 > 0 such that for all (x, y) ∈ Rd1+d2

K−1
2 I ≤ a(x, y) ≤ K2I,

where a(x, y) = 1
2gg

T (x, y).

(H3
y) (i) There exist constants η > 0 and θ ≥ 2 such that for all x ∈ Rd1 ,y1, y2 ∈ Rd2

2〈B(x, y1)−B(x, y2), y1 − y2〉+ |g(x, y1)− g(x, y2)|2HS ≤ −η|y1 − y2|2.

(ii) There exists a constant Lg > 0 such that for all (x1, y1), (x2, y2) ∈ Rd1+d2

|g(x1, y1)− g(x2, y2)|HS ≤ Lg(|x1 − x2|+ |y1 − y2|).
(iii) There exist constants κ1, κ2 ≥ 1 and K3 > 0 such that for all x1, x2 ∈ Rd1 and

y ∈ Rd2

|B(x1, y)−B(x2, y)| ≤ K3 (1 + |y|κ2) |x1 − x2|,

|b(x1, y1)− b(x2, y2)|
≤ K3 (1 + |x1|κ1 + |x2|κ1 + |y1|κ2 + |y2|κ2) (|x1 − x2|+ |y1 − y2|) .

(H4
y) There exist constants ς > 0 and ς1 > 8 such that for all (x, y) ∈ Rd1+d2 and ξ ∈ Rd2

2〈∂yB(x, y)ξ, ξ〉+ (ς1 − 1)|∂yg(x, y)ξ|2 ≤ −ς|ξ|2.

(H5
y) There exist K3 > 0 and κ1 ≥ 1 such that B ∈ C3,3(Rd1+d2) and g ∈ C3,3(Rd1+d2) satisfy∑

1≤i+j≤3

(
|∂jy∂ixB|+ |∂jy∂ixg|

)
≤ K3 (1 + |y|κ) .

Remark 2.1. Note that (H4
y) and (H5

y) are not necessarily required if we study the averaging
principle by the technique of time discretization. However, in this context, we aim to investigate
the optimal strong convergence rate for the averaging principle based on the Poisson equation, and
we need (H4

y)–(H5
y) to obtain the well-posedness of the Poisson equation (see e.g. [11, 43]).

Note that if (H1
y) and (H2

y) hold, then for any x ∈ Rd1

dY xt = B(x, Y xt )dt+ g(x, Y xt )dW 2
t (2.1)

admits a unique invariant measure µx; see e.g. [42]. Set

f̂(t, x) :=

∫
Rd2

f(t, x, y)µx(dy), ∀(t, x, y) ∈ R1+d1+d2 .

Next, we introduce the conditions concerning the coefficients f and σ:

(Af) Let R ∈ R+. There exist ωfR : R→ R+ satisfying ωfR(T )→ 0 as T →∞ and f̄ : Rd1 → Rd1
such that for all t ∈ R and |x| ≤ R

1

T

∣∣∣∣∣
∫ t+T

t

(f̂(s, x)− f̄(x))ds

∣∣∣∣∣ ≤ ωfR(T ).
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(Aσ) There exists ωσ : R→ R+ satisfying ωσ(T )→ 0 as T →∞ and σ̄ : Rd1 → Rd1 ⊗Rd1 such
that for all (t, x) ∈ R1+d1

1

T

∫ t+T

t

|σ(s, x)− σ̄(x)|2HSds ≤ ωσ(T )(1 + |x|2).

(H1
x) There exist constants K4,K5 ∈ R such that for all (t, x, y) ∈ R1+d1+d2

2〈f(t, x, y), x〉+ |σ(t, x)|2 ≤ K4(1 + |x|2) +K5|y|θ,
where θ is as in (H1

y).

(H2
x) There exist constants K6 > 0, θ1, θ2 > 1 such that for all (t, x, y) ∈ R1+d1+d2

|∂tf(t, x, y)|+
∑

0≤2i+j≤4

|∂jy∂ixf(t, x, y)| ≤ K6(1 + |x|θ1 + |y|θ2).

(H3
x) There exist constants K7, Lσ > 0 such that for all t ∈ R and x1, x2 ∈ Rd1

|σ(t, x1)− σ(t, x2)|HS ≤ Lσ|x1 − x2|, |σ(t, 0)| ≤ K7.

Remark 2.2. (i) If θ = 2 or K5 = 0 in (H1
x), then we can assume that η′ = 0 in (H1

y).

(ii) Note that (H2
x) implies that there exists a constant C > 0, depending only on K6, θ1, θ2,

such that for all t ∈ R, x1, x2 ∈ Rd1 and y1, y2 ∈ Rd2

|f(t, x1, y1)− f(t, x2, y2)|

≤ C
(
1 + |x1|θ1 + |x2|θ1 + |y1|θ2 + |y2|θ2

)
(|x1 − x2|+ |y1 − y2|) .

(iii) If f and σ satisfy (Af) and (Aσ) respectively then for all t ∈ R and x ∈ Rd1

f̄(x) = lim
T→∞

1

T

∫ t+T

t

f̂(s, x)ds, σ̄(x) = lim
T→∞

1

T

∫ t+T

t

σ(s, x)ds.

(iv) Assume that (H1
y), (H3

y) and (H1
x)–(H3

x) hold. Let 0 < ε ≤ 2α
√
η′/K5 ∧ 1. Then for any

(x, y) ∈ Rd1+d2 there exists a unique solution (Xε
t (x), Y εt (y)) to (1.3) satisfying (Xε

0(x), Y ε0 (y)) =
(x, y); see Lemma A.1 for details. Moreover, if g ∈ Cb(Rd1+d2) then for any x ∈ Rd1 there exists a
unique solution X̄t(x) to (1.4) with X̄0(x) = x; see Remark 4.2.

(v) In this paper, we focus on the asymptotic dynamics of the multi-scale system (1.3) when
ε goes to zero. There exists ε0 > 0 such that our results in this paper hold for any 0 < ε ≤ ε0.
Therefore, we state our results for all 0 < ε ≤ 1 in this section for brevity.

Now we establish the first Bogolyubov theorem for (1.3).

Theorem 2.3. Assume that (H1
x)–(H3

x), (H1
y)–(H5

y), (Af) and (Aσ) hold. Then we have

lim
ε→0

sup
t∈[0,T ]

E|Xε
t (x)− X̄t(x)|2 = 0.

2.2. Normal deviation. Let f and σ be independent of time t. Without loss of generality, assume
that α = 1

2 . Then we can consider the following system
dXε

t = f(Xε
t , Y

ε
t )dt+ σ(Xε

t )dW 1
t

dY εt =

(
1

ε
B(Xε

t , Y
ε
t ) +

1

εβ
b(Xε

t , Y
ε
t )

)
dt+ ε−

1
2 g(Xε

t , Y
ε
t )dW 2

t ,
(2.2)

where β < 1. To obtain the normal deviation, we need the following condition:

(H4
x) (i) There exist M > 0 and θ2 > 1 such that for all x1, x2 ∈ Rd1 and y ∈ Rd2

〈f(x1, y)− f(x2, y), x1 − x2〉 ≤M
(
1 + |y|θ2

)
|x1 − x2|2.

(ii) There exists C > 0 and θ2 > 1 such that for all x ∈ Rd1 and y1, y2 ∈ Rd2

|f(x, y1)− f(x, y2)| ≤ C
(
1 + |y1|θ2 + |y2|θ2

)
|y1 − y2|.
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Remark 2.4. There is a work on the optimal strong convergence rate for monotone SDEs in [43].
Our condition (H4

x)–(i), however, is more general than the condition [43, (2.1)].

The optimal strong convergence rate of the first Bogolyubov theorem for (2.2) we prove in this
paper is contained in the following theorem.

Theorem 2.5. Assume that (H1
x)–(H4

x) and (H1
y)–(H5

y) hold. Then there exists a constant
CT > 0 such that

E

(
sup
t∈[0,T ]

|Xε
t (x)− X̄t(x)|2

)
≤ CT ε. (2.3)

For simplicity, set Xε
t := Xε

t (x), X̄t := X̄t(x) for all x ∈ Rd1 in the following. Define Zεt :=
Xεt−X̄t√

ε
. It is clear that Zεt solves

dZεt =
1√
ε

(
f(Xε

t , Y
ε
t )− f̄(X̄t)

)
dt+

1√
ε

(
σ(Xε

t )− σ(X̄t)
)

dW 1
t , Z

ε
0 = 0 ∈ Rd1 .

If σ(x) ≡ σ is a constant, then we can show that, as ε → 0, Zεt converges weakly to Z̄t, which is
the solution of (1.7) with Z̄0 = 0.

Theorem 2.6. Assume that σ is a constant. Furthermore, suppose that (H1
x)–(H4

x) and (H1
y)–

(H5
y) hold. Then for any ϕ ∈ C∞b (Rd1) we have

lim
ε→0

sup
t∈[0,T ]

∣∣Eϕ(Zεt )− Eϕ(Z̄t)
∣∣ = 0.

2.3. Global averaging principle. Now we investigate the convergence of measure attractors for
multi-scale SDEs (1.3). As mentioned in the Introduction, P ∗ε defined by (1.10) is time inhomoge-
neous for any fixed 0 < ε ≤ 1. Therefore, we employ the classical method called the method of skew
product, which has been widely used in studying non-autonomous problems arising from determin-
istic differential equations and dynamical systems, to analyze its pullback attractor; see Section
6.1 for detailed definitions of cocycle, skew product flow, attractors, and pullback attractors.

More precisely, for any 0 < ε ≤ 1 we characterize P ∗ε as a cocycle over some base space. Indeed,
let

v := (x, y)T , Fε(t, v) :=
(
f(ε−γt, x, y), ε−2αB(x, y) + ε−βb(x, y)

)T
and

Gε(t, v) :=
(
σ(ε−γt, x), ε−αg(x, y)

)T
, W :=

(
W 1,W 2

)T
for all 0 < ε ≤ 1 and (t, x, y) ∈ R1+d1+d2 . Then (1.3) can be written as

dV εt = Fε(t, V
ε
t )dt+Gε(t, V

ε
t )dWt. (2.4)

Fix 0 < ε ≤ 1. Let Fε := (Fε, Gε), and

H(Fε) := {Fτε : τ ∈ R}
with the closure being taken under the metric d given by (2.5) below, where Fτ is the τ -translation
of F for each F : R × Rd1+d2 → Rd1+d2 , i.e. Fτ (t, v) := F(t + τ, v), for all (t, v) ∈ R1+d1+d2 . For
any F1,F2 : R× Rd1+d2 → Rd1+d2 , let

d(F1,F2) :=

∞∑
n=1

1

2n
dn(F1,F2)

1 + dn(F1,F2)
, (2.5)

where dn(F1,F2) := sup|t|≤n,|v|≤n |F1(t, v)− F2(t, v)| .

Remark 2.7. Fix 0 < ε ≤ 1. We note that for any F̃ε := (F̃ε, G̃ε) ∈ H(Fε) there exists {tn} ⊂ R
such that for all l, r > 0

lim
n→∞

sup
|t|≤l,|v|≤r

|Fε(t+ tn, v)− F̃ε(t, v)| = 0, lim
n→∞

sup
|t|≤l,|v|≤r

|Gε(t+ tn, v)− G̃ε(t, v)|HS = 0.
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Therefore, if (Fε, Gε) satisfies (H1
y), (H3

y) and (H1
x)–(H3

x) then F̃ε := (F̃ε, G̃ε) does so for any

F̃ε ∈ H(Fε). Furthermore, let στF := Fτ , τ ∈ R. Then (H(Fε),R, σ) is a shift dynamical system
(also called Bebutov shift flow); see Definition 6.3.

Assume that (H1
y), (H3

y) and (H1
x)–(H3

x) hold. Fix 0 < ε ≤ 1. We aim to show that P ∗ε is a

cocycle over the base space (H(Fε),R, σ). It follows from Remark 2.7 that for each F̃ε ∈ H(Fε)
and v ∈ Rd1+d2 , there exists a unique solution VF̃ε(t, s, v) of (2.4) by replacing Fε with F̃ε, i.e.

dVF̃ε(t, s, v) = F̃ε(t, VF̃ε(t, s, v))dt+ G̃ε(t, VF̃ε(t, s, v))dWt, VF̃ε(s, s, v) = v.

Here we explicitly denote the solution VF̃ε(t, s, v) with a subscript F̃ε to indicate its dependence

on F̃ε. Similarly, we express the dependence of the associated Markov operators on F̃ε by writing

P ∗ε

(
t, s, F̃ε,m

)
(D) :=

∫
Rd1+d2

P ◦
(
VF̃ε(t, s, v)

)−1

(D)m(dv)

for all D ∈ B(Rd1+d2) and m ∈P(Rd1+d2). Set

P ∗ε (t, F̃ε,m)(D) := P ∗ε (0, t, F̃ε,m)(D).

Then we show that for any 0 < ε ≤ 1 P ∗ε is a cocycle over the base space (H(Fε),R, σ), and

Φ(t, F̃ε,m) :=
(
σtF̃ε, P ∗ε (t, σtF̃ε,m)

)
is the homogeneous Markov semi-flow in the extended phase space; see Lemma 6.17. We call (P ∗ε , σ)
a skew product flow. Furthermore, we consider the existence of pullback attractors for (P ∗ε , σ) and
the convergence of the pullback attractors when the time scale goes to zero; see Theorem 2.8 below
for more details. To this end, we need the following dissipativity condition:

(H5
x) There exist λ1,K4,K5 > 0 such that for any (t, x, y) ∈ R1+d1+d2

2〈f(t, x, y), x〉+ |σ(t, x)|2HS ≤ −λ1|x|2 +K5|y|θ +K4,

where θ is as in (H1
y) and (H1

x).

For any v := (x, y)T ∈ Rd1+d2 , let π1(v) := x and π2(v) := y. Define

P2,θ(Rd1+d2) :=

{
m ∈P2(Rd1+d2) :

∫
Rd2
|y|θ m ◦ π−1

2 (dy) <∞
}
,

equipped with the following bounded Lipschitz distance (also called Fortet-Mourier distance)

dBL(m1,m2) := sup

{∣∣∣∣∫
Rd1+d2

fdm1 −
∫
Rd1+d2

fdm2

∣∣∣∣ : ‖f‖BL ≤ 1

}
for all m1,m2 ∈ P2,θ(Rd1+d2), where ‖f‖BL := Lip(f) + ‖f‖∞ for all Lipschitz continuous f ∈
Cb(Rd1+d2). It can be verified that (P2,θ(Rd1+d2), dBL) is a Polish space. We say that D ⊂
P2,θ(Rd1+d2) is bounded if there exist r1, r2 > 0 such that for all m ∈ D∫

Rd1+d2

|v|2m(dv) ≤ r1,

∫
Rd2
|y|θm ◦ π−1

2 (dy) ≤ r2.

Theorem 2.8. Consider equation (1.3). Assume that (H1
y)–(H5

y), (H2
x)–(H3

x), (H5
x), (Af) and

(Aσ) hold. If H(Fε) is compact for any 0 < ε ≤ 1, then the following conclusions hold:

(i) For any 0 < ε ≤ 1 (1.3) is associated with a skew product flow (σ, P ∗ε ) on
(
P2,θ(Rd1+d2), dBL

)
,

and (σ, P ∗ε ) admits a pullback attractor A ε with component subsets AF̃ε , F̃ε ∈ H(Fε);
(ii) The averaged equation has a global attractor Ā;

(iii) Furthermore, for all F̃ε ∈ H(Fε)

lim
ε→0

distP(Rd1 )

(
Π1(AF̃ε), Ā

)
= 0,

where Ā is the global attractor of P̄ ∗ and Π1m := m ◦ π−1
1 for all m ∈P(Rd1+d2).
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2.4. The second Bogolyubov theorem. In this subsection, we will consider the convergence of
the recurrent solutions for (1.3). More precisely, we show that, as the time scale ε goes to 0, the
slow components of the quasi-periodic solutions weakly converge to the stationary solution of the
averaged equation. To this end, we need the following conditions:

(H6
x) There exist constants λ1, λ2 > 0 such that for all t ∈ R and x1, x2 ∈ Rd1 , y1, y2 ∈ Rd2

2〈f(t, x1, y1)− f(t, x2, y2), x1 − x2〉+ |σ(t, x1)− σ(t, x2)|2HS
≤ −λ1|x1 − x2|2 + λ2|y1 − y2|2.

(H6
y) There exists Lb > 0 such that for all t ∈ R and y1, y2 ∈ Rd2

|b(x1, y1)− b(x2, y2)| ≤ Lb (|x1 − x2|+ |y1 − y2|) .

Remark 2.9. It can be verified that (H3
x) and (H6

x) imply (H5
x).

First, we recall the definition of quasi-periodic functions. Let X be a Polish space.

Definition 2.10. A function ϕ ∈ C(R,X ) is called quasi-periodic with the spectrum of frequencies
ν1, ..., νk if it satisfies the following conditions:

(i) the numbers ν1, ..., νk are rationally independent;
(ii) there exists a continuous function φ : Rk → X such that for all (t1, ..., tk) ∈ Rk

φ(t1 + 2π, ..., tk + 2π) = φ(t1, ..., tk);

(iii) ϕ(t) = φ(ν1t, ..., νkt) for t ∈ R.

Definition 2.11. We say a X -valued continuous stochastic process Xt, t ∈ R is quasi-periodic in
distribution, if the mapping L (X·) : R→P(X ) is quasi-periodic.

Now we can formulate our result, which is called the second Bogolyubov theorem.

Theorem 2.12. Let B(x, y) ≡ B(y) and g(x, y) ≡ g(y) for all (x, y) ∈ Rd1+d2 . Assume that β < α

or β = α and λ1 >
L2
b

η . Furthermore, suppose that (H1
y)–(H6

y), (H2
x)–(H3

x) and (H6
x) hold. If f

and g are quasi-periodic, then for any 0 < ε ≤ 1 there exists a unique solution V εt := (Xε
t , Y

ε
t ) , t ∈

R, of (1.3), which is quasi-periodic in distribution, and

lim
ε→0

sup
t∈R

dBL(L (Xε
t ),L (X̄t)) = 0, (2.6)

where X̄ is the unique stationary solution of the averaged equation (1.4).

Remark 2.13. (i) For brevity, we just illustrate the case of quasi-periodic solutions in this paper.
Indeed, our method applies to more general compact recurrent solutions.

(ii) Although there is a more general result on the second Bogolyubov theorem in [9], which can
cover unbounded recurrent solutions such as Levitan almost periodic solutions, the proof presented
here is more concise than [9]. Furthermore, the system (1.3) is more general, and the result (2.6)
is stronger than [9, Theorem 4.7]. Since we employ the global averaging principle to establish the
second Bogolyubov theorem, it is required that the hull H(Fε) is compact. It is worth noting that
H(Fε) is compact provided Fε is Birkhoff recurrent, which includes periodic, quasi-periodic, almost
periodic, almost automorphic, and Birkhoff recurrent functions.

(iii) It is well-known that the uniform attractor (see [9, Definition 5.6]) is a pullback attractor,
but not vice versa. Compared to [9] and [10], we consider the more general pullback attractor
instead of the uniform attractor.

2.5. Examples. To illustrate our results, we will present two examples in this subsection. For
simplicity, we just consider the one-dimensional case, but one can easily extend this to the multi-
dimensional case. Let W 1

t , t ∈ R and W 2
t , t ∈ R be independent two-sided standard Brownian

motions.
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Example 2.14. Consider the following slow-fast SDEs:
dXε

t =
(
Xε
t − (Xε

t )3 + (Y εt )2 sinXε
t + Y εt

)
dt+ dW 1

t

dY εt =
1

ε

(
−(sinXε

t )2(Y εt )5 − (Y εt )3 − Y εt
)

dt+
1√
ε

dW 2
t .

We define f(x, y) := x − x3 + y2 sinx + y, B(x, y) := −(sinx)2y5 − y3 − y, ∀(x, y) ∈ R2. It can
be verified that f and B satisfy (H1

y)–(H5
y) and (H1

x)–(H4
x). Then by Theorems 2.5 and 2.6, one

sees that there exists a constant C > 0 such that

E

(
sup
t∈[0,T ]

|Xε
t − X̄t|2

)
≤ Cε,

where X̄t is the solution to the corresponding equation, and that

Zεt :=
Xε
t − X̄t√
ε

weakly converges to an Ornstein-Uhlenbeck type process, as ε goes to zero.

Example 2.15. Consider the following multi-scale SDEs:
dXε

t =
[
− a1X

ε
t − (Xε

t )3 +
(
a2Y

ε
t + a3(Y εt )3

) (
cos
(
t/
√
ε
)

+ sin
(√

2t/
√
ε
))

− a4X
ε
t (Y εt )4

(
sin(t/

√
ε)
)2 ]

dt+ dW 1
t

dY εt =

[
1

ε

(
−(Y εt )3 − Y εt

)
+

1
3
√
ε

(Xε
t + Y εt )

]
dt+

1√
ε

dW 2
t ,

(2.7)

where a1 > 0, a2, a3 ∈ R and a4 ≥ 0. For all (t, x, y) ∈ R3, define

f(t, x, y) := −a1x− x3 + (a2y + a3y
3)(cos t+ sin

√
2t)− a4xy

4(sin t)2,

B(y) := −y3 − y and b(x, y) := x + y. We note that f , B and b satisfy conditions (H1
y)–(H5

y),

(H2
x)–(H3

x) and (H5
x). Set

Fε(t, x, y) :=
(
f(ε−1/2t, x, y), ε−1B(y) + ε−1/3b(x, y)

)T
, ∀(t, x, y) ∈ R3.

Then by Theorem 2.8, we have the following conclusions:

(i) For any 0 < ε ≤ 1 (2.7) is associated to a skew product flow (σ, P ∗ε ) on
(
P2,6(R2), dBL

)
,

and (σ, P ∗ε ) admits a pullback attractor A ε with component subsets AF̃ε , F̃ε ∈ H(Fε);
(ii) The corresponding averaged equation has a global attractor Ā;

(iii) Furthermore, for all F̃ε ∈ H(Fε)

lim
ε→0

distP(Rd1 )

(
Π1(AF̃ε), Ā

)
= 0.

Furthermore, assume that a4 = 0. Then it can be verified that (H6
x) also holds. Recall that

f is quasi-periodic. Then in view of Theorem 2.12, for all 0 < ε ≤ 1 there is a unique solution
(Xε

t , Y
ε
t ), t ∈ R, which is quasi-periodic in distribution, and

lim
ε→0

sup
t∈R

dBL(L (Xε
t ),L (X̄t)) = 0,

where X̄ is the stationary solution to the following averaged equation:

dX̄t =
(
−a1X̄t − (X̄t)

3
)

dt+ dW 1
t .
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3. Frozen equation and Poisson equation

Consider the following so-called frozen equation

dY x,ys = B(x, Y x,ys )ds+ g(x, Y x,ys )dW 2
s , Y x,y0 = y ∈ Rd2 ,

where x ∈ Rd1 is a frozen parameter.

Lemma 3.1. Assume that (H1
y) and (H3

y) hold. For any ξ ∈ L2(Ω,Fs,P;Rd2), t ≥ s and x ∈ Rd1 ,

let Y xs,t(ξ), t ≥ s be the unique solution to (2.1). Then for any ξ1, ξ2 ∈ L2(Ω,Fs,P;Rd2) we have

E
∣∣Y xs,t(ξ1)− Y xs,t(ξ2)

∣∣2 ≤ E|ξ1 − ξ2|2e−η(t−s). (3.1)

Moreover, if ξ ∈ L2p(Ω,Fs,P;Rd2) and g ∈ Cb(Rd1+d2) for any p ≥ 1, then we have

E
∣∣Y xs,t(ξ)∣∣2p ≤ E|ξ|2pe−

ηp
2 (t−s) +M, (3.2)

and there exists a constant C > 0 such that for all x1, x2 ∈ Rd1

E
∣∣Y x1
s,t (y)− Y x2

s,t (y)
∣∣2 ≤ C (1 + |y|2κ2

)
|x1 − x2|2.

Here M depends on p,K1, ‖g‖∞.

Proof. (i) Employing Itô’s formula and (H3
y)–(i), we have

E
∣∣Y xs,t(ξ1)− Y xs,t(ξ2)

∣∣2
= E|ξ1 − ξ2|2 + E

∫ t

0

2〈B(x, Y xs,r(ξ1))−B(x, Y xs,r(ξ2)), Y xs,r(ξ1)− Y xs,r(ξ2)〉dr

+ E
∫ t

0

|g(x, Y xs,r(ξ1))− g(x, Y xs,r(ξ2))|2HSdr

≤ E|ξ1 − ξ2|2 + E
∫ t

0

−η
∣∣Y xs,r(ξ1)− Y xs,r(ξ2)

∣∣2 dr,

which by Gronwall’s inequality implies that

E
∣∣Y xs,t(ξ1)− Y xs,t(ξ2)

∣∣2 ≤ E|ξ1 − ξ2|2e−η(t−s).

(ii) By Itô’s formula, (H1
y) and Young’s inequality, one sees that for any p ≥ 1

E
∣∣Y xs,t(ξ)∣∣2p

= E|ξ|2p + pE
∫ t

0

|Y xs,r(ξ)|2p−2
(

2
〈
B(x, Y xs,r(ξ)), Y

x
s,r(ξ)

〉
+
∣∣g(x, Y xs,r(ξ))

∣∣2
HS

)
dr

+ 2p(p− 1)E
∫ t

0

|Y xs,r(ξ)|2p−4|gT (x, Y xs,r(ξ))Y
x
s,r(ξ)|2dr

≤ E|ξ|2p + E
∫ t

0

p
[(
−η|Y xs,r(ξ)|2 +K1

)
|Y xs,r(ξ)|2p−2 + 2(p− 1)‖g‖∞|Y xs,r(ξ)|2p−2

]
dr

≤ E|ξ|2p + E
∫ t

0

−ηp
2
|Y xs,r(ξ)|2p + p−p(p− 1)p−1 (η/2)

1−p
(K1p+ 2(p− 1)‖g‖∞)

p
dr.

Then we have

E
∣∣Y xs,t(ξ)∣∣2p ≤ E|ξ|2pe−

ηp
2 (t−s) + 2p−p(p− 1)p−1 (η/2)

1−p
(K1p+ 2(p− 1)‖g‖∞)

p
(ηp)−1.

(iii) In view of Itô’s formula, we get

E
∣∣Y x1
s,t (y)− Y x2

s,t (y)
∣∣2

= E
∫ t

s

2
〈
B(x1, Y

x1
s,r (y))−B(x2, Y

x2
s,r (y)), Y x1

s,r (y)− Y x2
s,r (y)

〉
dr
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+ E
∫ t

s

∣∣g(x1, Y
x1
s,r (y))− g(x2, Y

x2
s,r (y))

∣∣2
HS

dr

= E
∫ t

s

2
〈
B(x1, Y

x1
s,r (y))−B(x1, Y

x2
s,r (y)), Y x1

s,r (y)− Y x2
s,r (y)

〉
dr

+ E
∫ t

s

2
〈
B(x1, Y

x2
s,r (y))−B(x2, Y

x2
s,r (y)), Y x1

s,r (y)− Y x2
s,r (y)

〉
dr

+ E
∫ t

s

(∣∣g(x1, Y
x1
s,r (y))− g(x1, Y

x2
s,r (y))

∣∣2
HS

+
∣∣g(x1, Y

x2
s,r (y))− g(x2, Y

x2
s,r (y))

∣∣2
HS

)
dr

+ E
∫ t

s

2
〈
g(x1, Y

x1
s,r (y))− g(x1, Y

x2
s,r (y)), g(x1, Y

x2
s,r (y))− g(x2, Y

x2
s,r (y))

〉
HS

dr.

Then thanks to (H3
y), Young’s inequality and (3.2), we obtain

E
∣∣Y x1
s,t (y)− Y x2

s,t (y)
∣∣2

≤ E
∫ t

s

(
− η

∣∣Y x1
s,r (y)− Y x2

s,r (y)
∣∣2 + L2

g|x1 − x2|2 + 2L2
g

∣∣Y x1
s,r (y)− Y x2

s,r (y)
∣∣ |x1 − x2|

+ 2K3

(
1 + |Y x2

s,r (y)|κ2
)
|x1 − x2|

∣∣Y x1
s,r (y)− Y x2

s,r (y)
∣∣ )dr

≤ E
∫ t

s

(
−η

2

∣∣Y x1
s,r (y)− Y x2

s,r (y)
∣∣2 +

(
4

η
L4
g + L2

g

)
|x1 − x2|2

)
dr

+

∫ t

s

C

η

(
1 + E|Y x2

s,r (y)|2κ2
)
|x1 − x2|2dr

≤ E
∫ t

s

(
−η

2

∣∣Y x1
s,r (y)− Y x2

s,r (y)
∣∣2 +

(
4

η
L4
g + L2

g

)
|x1 − x2|2

)
dr

+

∫ t

s

C
(

1 + |y|2κ2e−
ηκ2
2 (r−s)

)
|x1 − x2|2dr.

Therefore, by Gronwall’s inequality, we obtain

E
∣∣Y x1
s,t (y)− Y x2

s,t (y)
∣∣2 ≤ C (1 + |y|2κ2

)
|x1 − x2|2.

�

Combining (3.1) and (3.2), we have the following result.

Corollary 3.2. Assume that (H1
y) and (H3

y) hold. If g ∈ Cb(Rd1+d2), then for any m > 0

sup
x∈Rd1

∫
Rd2
|y|mµx(dy) < M.

Now we show the continuous dependence on the parameter x ∈ Rd1 for stationary solutions to
equation (2.1).

Lemma 3.3. Assume that (H1
y) and (H3

y) hold. If g ∈ Cb(Rd1+d2), then for any x ∈ Rd1 there
exist a unique stationary solution Y xt , t ∈ R, to (2.1), and a constant C > 0 such that for any
x1, x2 ∈ Rd1

sup
t∈R

E|Y x1
t − Y

x2
t |2 ≤ C|x1 − x2|2.

Proof. It follows from (3.1) and (3.2) that for any x ∈ Rd1 there exists a unique stationary solution
Y xt , t ∈ R, to (2.1). By Corollary 3.2, we have for all −n ≤ t and x1, x2 ∈ Rd1

E|Y x1
t − Y

x2
t |2 ≤ 3E|Y x1

t − Y
x1
−n,t(0)|2 + 3E|Y x1

−n,t(0)− Y x2
−n,t(0)|2 + 3E|Y x2

−n,t(0)− Y x2
t |2

≤ 6Me−η(t+n) + 3C|x1 − x2|2,
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which implies that

E|Y x1
t − Y

x2
t |2 ≤ C|x1 − x2|2

by letting n→∞, where C does not depend on t. �

Finally, we investigate the well-posedness of the Poisson equation. Consider the following equa-
tion

L2(x, y)u(h, x, y) = −
(
φ(h, x, y)− φ̄(h, x)

)
, y ∈ Rd2 , (3.3)

where (h, x) ∈ Rd+d1 is a parameter, φ̄(h, x) :=
∫
Rd2 φ(h, x, y)µx(dy) and

L2u(h, x, y) := L2(x, y)u(h, x, y) := 〈B(x, y), ∂yu(h, x, y)〉+

d2∑
i,j=1

aij∂
2
yjyiu(h, x, y).

Here (aij) = ggT /2. Similarly, for all (h, x, y) ∈ Rd+d1+d2 we define

Lε1ψ(h, x, y) := Lε1(x, y)ψ(h, x, y) := 〈f(ε−γt, x, y), ∂xψ(h, x, y)〉+

d1∑
i,j=1

Aεij∂
2
xjxiψ(h, x, y),

L3ψ(h, x, y) := L3(x, y)ψ(h, x, y) := 〈b(x, y), ∂yψ(h, x, y)〉,
where

(
Aεij
)

= σεσ
T
ε /2. When f and σ are time independent, we let (Aij) := σσT /2, and

L1ψ(h, x, y) := L1(x, y)ψ(h, x, y) := 〈f(x, y), ∂xψ(h, x, y)〉+

d1∑
i,j=1

Aij∂
2
xjxiψ(h, x, y),

Lx̄ψ(x, y) := Lx̄ψ(x, y) := 〈f̄(x), ∂xψ(x, y)〉+

d1∑
i,j=1

Aij∂
2
xjxiψ(x, y).

Let us first introduce the condition (Hi
φ), where i = 1, 2.

(Hi
φ) There exist constants C1 > 0 and m1,m2,m3 ≥ 0 such that for all (h, x, y) ∈ Rd+d1+d2∑

0≤2k+j≤4

|∂kx∂jyφ(h, x, y)|+ |∂ihφ(h, x, y)| ≤ C1(1 + |h|m1 + |x|m2 + |y|m3).

Similar to [43, Proposition 4.1] and [11, Theorem 3.1], we have the following lemma about the
existence and uniqueness of solutions to (3.3).

Lemma 3.4. Assume that (H1
y)–(H5

y) hold. Furthermore, suppose that φ ∈ Ci,2,4(Rd+d1+d2)

satisfies (Hi
φ). Then there exist a unique solution u(t, x, ·) ∈ C2(Rd2) to (3.3) and constants

m′1,m
′
2,m

′
3, C > 0 such that

|u(h, x, y)|+ |∂yu(h, x, y)|+
i∑

j=1

|∂jhu(h, x, y)|

+ |∂xu(h, x, y)|+ |∂2
xu(h, x, y)| ≤ C(1 + |h|m

′
1 + |x|m

′
2 + |y|m

′
3),

and
2∑
j=1

∣∣∂jxφ̄(h, x)
∣∣ ≤ C (1 + |h|m

′
1 + |x|m

′
2

)
.

4. The first Bogolyubov theorem

In Section 4.1, we will prove some lemmas, which give the properties for f̂ , f̄ and σ̄, moment
estimates of solutions to (1.3) and (1.4), and Hölder continuity of the slow variable in (1.3). In
Section 4.2, we prove Theorem 2.3.
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4.1. Auxiliary lemmas. In the following lemma, we show that f̂ , f̄ and σ̄ inherit some properties
from f and σ.

Lemma 4.1. Assume that f ∈ C1,2,4(R1+d1+d2) and σ satisfy (H1
x)–(H3

x), (Af) and (Aσ).
Furthermore, suppose that (H1

y) and (H3
y) hold. Then the following conclusions hold.

(i) If g ∈ Cb(Rd1+d2) then f̂ and f̄ satisfy (H1
x), σ̄ satisfies (H3

x) and there exists C > 0
such that for all t ∈ R and x1, x2 ∈ Rd1∣∣∣f̂(t, x1)− f̂(t, x2)

∣∣∣+
∣∣f̄(x1)− f̄(x2)

∣∣ ≤ C (1 + |x1|θ1 + |x2|θ1
)
|x1 − x2|,

where θ1 is as in (H2
x).

(ii) If (H2
y) and (H4

y)–(H5
y) hold then f̂ ∈ C2(Rd1) and f̂ satisfies (H2

x).

Proof. (i) We note that

f̂(t, x) =

∫
Rd2

f(t, x, y)µx(dy), ∀(t, x) ∈ R1+d1 .

In view of (H1
x) and Corollary 3.2, we have for any (t, x) ∈ R1+d1

〈f̂(t, x), x〉 =

〈∫
Rd2

f(t, x, y)µx(dy), x

〉
≤
∫
Rd2

(
K4(1 + |x|2) +K5|y|θ

)
µx(dy) ≤ K4(1 + |x|2) + C.

Therefore, for any t ∈ R and x ∈ Rd1 , one sees that

〈f̄(x), x〉 =

〈
f̄(x)− 1

T

∫ T

0

f̂(s, x)ds, x

〉
+

〈
1

T

∫ T

0

f̂(s, x)ds, x

〉

≤

∣∣∣∣∣f̄(x)− 1

T

∫ T

0

f̂(s, x)ds

∣∣∣∣∣ |x|+K4

(
1 + |x|2

)
+ C,

which implies that
〈f̄(x), x〉 ≤ K4

(
1 + |x|2

)
+ C, ∀x ∈ Rd1

by letting T →∞ and because of Remark 2.2 (iii).
Combing (H2

x), Corollary 3.2, Hölder’s inequality and Lemma 3.3, we have for any t ∈ R and
x1, x2 ∈ Rd1∣∣∣f̂(t, x1)− f̂(t, x2)

∣∣∣
=

∣∣∣∣∫
Rd2

f(t, x1, y)µx1(dy)−
∫
Rd2

f(t, x2, y)µx2(dy)

∣∣∣∣
≤
∫
Rd2
|f(t, x1, y)− f(t, x2, y)|µx1(dy) +

∣∣∣∣∫
Rd2

f(t, x2, y) (µx1(dy)− µx2(dy))

∣∣∣∣
≤ C

(
1 + |x1|θ1 + |x2|θ1

)
|x1 − x2| (4.1)

+ CE
(
(1 + |x2|θ1 + |Y x1

s |θ2 + |Y x2
s |θ2)|Y x1

s − Y x2
s |
)

≤ C
(
1 + |x1|θ1 + |x2|θ1

)
|x1 − x2|,

where s ∈ R, Y x1
· and Y x2

· are stationary solutions to (2.1) with x1 and x2 respectively replacing
x. Then (4.1) and (Af) imply that for all x1, x2 ∈ Rd1

|f̄(x1)− f̄(x2)| ≤ C
(
1 + |x1|θ1 + |x2|θ1

)
|x1 − x2|.

It follows from (H3
x) and (Aσ) that σ̄ satisfies (H3

x).
(ii) By (H2

x) and Lemma 3.4, one sees that there exists m1 > 0 such that

|∂ixf̂(t, x)| ≤ K6 (1 + |x|m1 + C) , i = 0, 1, 2.
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It follows from (H2
x) that for all (t, x) ∈ R1+d1∣∣∣∂tf̂(t, x)

∣∣∣ ≤ ∫
Rd2
|∂tf(t, x, y)|µx(dy) ≤ K6

(
1 + |x|θ1

)
+ C.

�

Remark 4.2. Assume that (H1
y), (H3

y), (H1
x)–(H3

x), (Af) and (Aσ) hold. If g ∈ Cb(Rd1+d2),

then it follows from the above lemma and Theorem 3.1.1 in [35] that for any ζ ∈ L2(Ω,F0,P;Rd1)
there exists a unique solution X̄t(ζ) to (1.4) satisfying X̄0(ζ) = ζ.

Now we prove moment estimates for solutions to the slow-fast SDEs (1.3) and the averaged
equation (1.4).

Lemma 4.3. Assume that (H1
y), (H3

y) and (H1
x)–(H3

x) hold. Let (Xε
t (ζε), Y εt (ξε)), t ≥ 0, be the

solution to (1.3), and X̄t(ζ), t ≥ 0, the solution to (1.4). If g ∈ Cb(Rd1+d2), then there exists a
constant 0 < ε0 ≤ 1 such that for all p ≥ 1, T > 0 and 0 < ε ≤ ε0

E

(
sup
t∈[0,T ]

|Y εt (ξε)|2p
)
≤ Cp,T

(
1 + E|ξε|2p

)
, (4.2)

E

(
sup
t∈[0,T ]

|Xε
t (ζε)|2p

)
≤ Cp,T

(
1 + E|ζε|2p + E|ξε|θp

)
(4.3)

and

E

(
sup
t∈[0,T ]

|X̄t(ζ)|2p
)
≤ Cp,T

(
1 + E|ζ|2p

)
, (4.4)

where θ is as in (H1
x), and Cp,T is independent of ε.

Proof. Employing Itô’s formula and (H1
y), we have

|Y εt (ξε)|2p = |ξε|2p + p

∫ t

0

|Y εs (ξε)|2p−2

(
2〈ε−2αB(Xε

s (ζε), Y εs (ξε)), Y εs (ξε)〉

+ 2〈ε−βb(Xε
s (ζε), Y εs (ξε)), Y εs (ξε)〉+ ε−2α|g(Xε

s (ζε), Y εs (ξε))|2HS

)
ds

+ 2p(p− 1)ε−2α

∫ t

0

|Y εs (ξε)|2p−4|gT (Xε
s (ζε), Y εs (ξε))Y εs (ξε)|2ds

+ 2pε−α
∫ t

0

|Y εs (ξε)|2p−2〈Y εs (ξε), g(Xε
s (ζε), Y εs (ξε))dW 2

s 〉

≤ |ξε|2p + p

∫ t

0

−ε−2α
(
η − ε2α−β η̃

)
|Y εs (ξε)|2pds

+ p

∫ t

0

(
ε−2αK1 + ε−βK1 + 2(p− 1)ε−2α‖g‖∞

)
|Y εs (ξε)|2p−2ds

+ 2pε−α
∫ t

0

|Y εs (ξε)|2p−2〈Y εs (ξε), g(Xε
s (ζε), Y εs (ξε))dW 2

s 〉.

Note that there exists a constant 0 < ε0 ≤ 1 such that η − ε2α−β η̃ > η
2 for all 0 < ε ≤ ε0. Then

by Young’s inequality, one sees that for any 0 < ε ≤ ε0

|Y εt (ξε)|2p ≤ |ξε|2p + p

∫ t

0

−1

4
ε−2αη|Y εs (ξε)|2pds

+ 2pε−α
∫ t

0

|Y εs (ξε)|2p−2〈Y εs (ξε), g(Xε
s (ζε), Y εs (ξε))dW 2

s 〉 (4.5)



AVERAGING PRINCIPLE 17

+

∫ t

0

(
p

4(p− 1)
ε−2αη

)1−p (
ε−2αK1 + ε−βK1 + 2(p− 1)ε−2α‖g‖∞

)p
ds,

which implies that for any stopping time τ ≤ T

E|Y ετ (ξε)|2p ≤ E
(
|ξε|2pe− 1

4 ε
−2αpητ

)
+ Cp,T,η,‖g‖∞ ≤ Cp,T

(
1 + E|ξε|2p

)
. (4.6)

Define τεr := inf{t ≥ 0 : |Y εt (ξε)|2p > r} ∧ T . In view of (4.6), for any 0 < α < 1 we have

E

(
sup
t∈[0,T ]

|Y εt (ξε)|2p
)α

= α

∫ ∞
0

rα−1P

(
sup
t∈[0,T ]

|Y εt (ξε)|2p > r

)
dr

≤ α
∫ ∞

0

rα−1
(

1 ∧ r−1E|Y ετεr (ξε)|2p
)

dr

≤ α
∫ ∞

0

rα−1
(
1 ∧ r−1Cp,T

(
1 + E|ξε|2p

))
dr

≤ αCp,T
(
1 + E|ξε|2p

)α ∫ ∞
0

λα−1
(
1 ∧ λ−1

)
dλ

≤ Cp,T
(
1 + E|ξε|2p

)α
by the change of variables r 7→

[
Cp,T

(
1 + E|ξε|2p

)]
λ.

Note that

Xε
t (ζε) = ζε +

∫ t

0

fε(s,X
ε
s (ζε), Y εs (ξε))ds+

∫ t

0

σε(s,X
ε
s (ζε))dW 1

s .

It follows from Itô’s formula and (H1
x) that

|Xε
t (ζε)|2p ≤ |ζε|2p + p

∫ t

0

|Xε
s (ζε)|2p−2

(
K4(1 + |Xε

s (ζε)|2) +K5|Y εs (ξ)|θ
)

ds

+ 2p

∫ t

0

|Xε
s (ζε)|2p−2〈Xε

s (ζε), σε(s,X
ε
s (ζε))dW 1

s 〉

+ 2p(p− 1)

∫ t

0

|Xε
s (ζε)|2p−2|σε(s,Xε

s (ζε))|2ds.

Then by Burkholder-Davis-Gundy’s inequality and Young’s inequality, one sees that

E

(
sup
t∈[0,T ]

|Xε
t (ζε)|2p

)

≤ E|ζε|2p + pE
∫ T

0

|Xε
s (ζε)|2p−2

(
K4(1 + |Xε

s (ζε)|2) +K5|Y εs (ξ)|θ
)

ds

+
1

2
E

(
sup
t∈[0,T ]

|Xε
t (ζε)|2p

)
+ CTE

∫ T

0

(
|Xε

s (ζε)|2p + 1
)

ds

+ 2p(p− 1)E
∫ T

0

|Xε
s (ζε)|2p−2

(
2L2

σ|Xε
s (ζε)|2 + C

)
ds,

which by (4.2) and Gronwall’s inequality implies that

E

(
sup
t∈[0,T ]

|Xε
t (ζε)|2p

)
≤ Cp,T

(
1 + E|ζε|2p + E|ξ|θp

)
.

Similarly, we have

E

(
sup
t∈[0,T ]

|X̄t(ζ)|2p
)
≤ Cp,T

(
1 + E|ζ|2p

)
.

�
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Finally, we prove the Hölder continuity of Xε
t , t ≥ 0.

Lemma 4.4. Assume that (H1
y), (H3

y) and (H1
x)–(H3

x) hold. If g ∈ Cb(Rd1+d2), then there exists
a constant C > 0 such that for all 0 ≤ s ≤ t ≤ T

E|Xε
t (x)−Xε

s (x)|2 ≤ CT,|x|,|y||t− s|. (4.7)

Proof. It follows from Itô’s formula, the Burkholder-Davis-Gundy inequality, (H2
x), (H3

x), (4.2)
and (4.3) that

E|Xε
t (x)−Xε

s (x)|2

≤ 2E
∣∣∣∣∫ t

s

fε(r,X
ε
r (x), Y εr (y))dr

∣∣∣∣2 + 2E
∣∣∣∣∫ t

s

σε(r,X
ε
r (x))dW 1

r

∣∣∣∣2
≤ |t− s|

∫ t

s

E |fε(r,Xε
r (x), Y εr (y))|2 dr + 4E

∫ t

s

|σε(r,Xε
r (x))|2HS dr

≤ |t− s|C
∫ t

s

E
(
1 + |Xε

r (x)|2θ1 + |Y εr (y)|2θ2
)

dr + CE
∫ t

s

(
1 + |Xε

r (x)|2
)

dr

≤ CT,|x|,|y||t− s|.

�

4.2. Proof of Theorem 2.3. Now we are in a position to prove Theorem 2.3.

Proof. For brevity, we define Xε
t := Xε

t (x), Y εt := Y εt (y) and X̄t := X̄t(x) for all t ≥ 0 in this
proof. By Itô’s formula and the Burkholder-Davis-Gundy inequality, we have

E|Xε
t − X̄t|2

≤ 2E
∣∣∣∣∫ t

0

(
fε(s,X

ε
s , Y

ε
s )− f̄(X̄s)

)
ds

∣∣∣∣2 + 2E
∣∣∣∣∫ t

0

(
σε(s,X

ε
s )− σ̄(X̄s)

)
dW 1

s

∣∣∣∣2
≤ 4E

∣∣∣∣∫ t

0

(
fε(s,X

ε
s , Y

ε
s )− f̂ε(s,Xε

s )
)

ds

∣∣∣∣2 + 4E
∣∣∣∣∫ t

0

(
f̂ε(s,X

ε
s )− f̄(X̄s)

)
ds

∣∣∣∣2 (4.8)

+ 4E
∫ t

0

|σε(s,Xε
s )− σ̄(X̄s)|2HSds =: 4I1(t, ε) + 4I2(t, ε) + 4I3(t, ε).

First of all, we estimate I1(t, ε). Set φ(t, x, y) := f(t, x, y) − f̂(t, x). Let ψ be the solution to
the following Poisson equation

L2ψ(t, x, y) = φ(t, x, y), y ∈ Rd2 ,

where t ∈ R and x ∈ Rd1 are parameters. By Lemma 3.4, one sees that ψ ∈ C1,2,2(R1+d1+d2).
Then according to Itô’s formula, we have for any t > 0

ψ(ε−γt,Xε
t , Y

ε
t )

= ψ(0, x, y) +

∫ t

0

(ε−γ∂s + Lε1)ψ(ε−γs,Xε
s , Y

ε
s )ds+

∫ t

0

ε−2αL2ψ(ε−γs,Xε
s , Y

ε
s )ds

+

∫ t

0

ε−βL3ψ(ε−γs,Xε
s , Y

ε
s )ds+

∫ t

0

σ(ε−γs,Xε
s ) · ∂xψ(ε−γs,Xε

s , Y
ε
s )dW 1

s

+ ε−α
∫ t

0

g(Xε
s , Y

ε
s ) · ∂yψ(ε−γs,Xε

s , Y
ε
s )dW 2

s .

Therefore,

E
∣∣∣∣∫ t

0

fε(s,X
ε
s , Y

ε
s )− f̂ε(s,Xε

s )ds

∣∣∣∣2
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≤ ε4αE

∣∣∣∣∣ψ(ε−γt,Xε
t , Y

ε
t )− ψ(0, x, y)−

∫ t

0

(ε−γ∂s + Lε1)ψ(ε−γs,Xε
s , Y

ε
s )ds

−
∫ t

0

ε−βL3ψ(ε−γs,Xε
s , Y

ε
s )ds−M1

t − ε−αM2
t

∣∣∣∣∣
2

,

where

M1
t :=

∫ t

0

σε(s,X
ε
s ) · ∂xψ(ε−γs,Xε

s , Y
ε
s )dW 1

s ,

M2
t :=

∫ t

0

g(Xε
s , Y

ε
s ) · ∂yψ(ε−γs,Xε

s , Y
ε
s )dW 2

s .

Then by Lemma 3.4, (H2
x), (H3

x) and (H3
y), one sees that there exist m′,m′′ > 0 such that

I1(t, ε) := E
∣∣∣∣∫ t

0

fε(s,X
ε
s , Y

ε
s )− f̂ε(s,Xε

s )ds

∣∣∣∣2
≤ ε4αC

(
1 + E

(
sup
t∈[0,T ]

|Xε
t |m

′

)
+ E

(
sup
t∈[0,T ]

|Y εt |m
′′

))

+
(
ε4α−2γ + ε4α + ε4α−2β

)
C

∫ t

0

(
1 + E|Xε

s |m
′
+ E|Y εs |m

′′
)

ds

+ 5ε4αE|M1
t |2 + 5ε2αE|M2

t |2.

And it follows from the Burkholder-Davis-Gundy inequality, Lemma 3.4, (H3
x) and (H3

y) that
there exist m′,m′′ > 0 such that

E|M1
t |2 + E|M2

t |2 ≤ 2

∫ t

0

E
∣∣σε(s,Xε

s ) · ∂xψ(ε−γs,Xε
s , Y

ε
s )
∣∣2 ds

+ 2

∫ t

0

E
∣∣g(Xε

s , Y
ε
s ) · ∂yψ(ε−γs,Xε

s , Y
ε
s )
∣∣2 ds

≤ C
∫ t

0

(
1 + E|Xε

s |m
′
+ E|Y εs |m

′′
)

ds.

Hence, letting α̃ := min{4α− 2γ, 4α− 2β, 2α}, by Lemma 4.3, one sees that

I1(t, ε) ≤ CT εα̃. (4.9)

Now we estimate

I2(t, ε) := E
∣∣∣∣∫ t

0

(
f̂ε(s,X

ε
s )− f̄(X̄s)

)
ds

∣∣∣∣2 .
Define τεn := inf

{
t ≥ 0 : |Xε

t |+ |X̄t| > n
}
∧ T. Then we have

I2(t, ε) ≤ E

(
χ{τεn≥t}

∣∣∣∣∫ t

0

(
f̂ε(s,X

ε
s )− f̄(X̄s)

)
ds

∣∣∣∣2
)

(4.10)

+ E

(
χ{τεn≤t}

∣∣∣∣∫ t

0

(
f̂ε(s,X

ε
s )− f̄(X̄s)

)
ds

∣∣∣∣2
)

=: I1 + I2.

For I2, by Hölder’s inequality, Chebyshev’s inequality, (H2
x), Lemmas 4.1 and 4.3, we have

I2 ≤
(
Eχ2
{τεn≤t}

) 1
2

(
E
∣∣∣∣∫ t

0

(
f̂ε(s,X

ε
s )− f̄(X̄s)

)
ds

∣∣∣∣4
) 1

2

≤ n−1CT

(
E

(
sup
t∈[0,T ]

|Xε
t |2
)

+ E

(
sup
t∈[0,T ]

|X̄t|2
)) 1

2

(4.11)
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×

(
E
∫ T

0

(
|Xε

s |4θ1 + |X̄s|4θ1 + 1
)

ds

) 1
2

≤ CTn−1.

Set X̃ε
s := Xε

kδ for s ∈ [kδ, (k + 1)δ), k ∈ N. For I1, by Hölder’s inequality, Lemmas 4.1 and
4.4, one sees that

I1 ≤ 4E

∣∣∣∣∣
∫ t∧τεn

0

(
f̂ε(s,X

ε
s )− f̂ε(s, X̃ε

s )
)

ds

∣∣∣∣∣
2

+ 4E

(
χ{τεn≥t}

∣∣∣∣∫ t

0

(
f̂ε(s, X̃

ε
s )− f̄(X̃ε

s )
)

ds

∣∣∣∣2
)

+ 4E

∣∣∣∣∣
∫ t∧τεn

0

(
f̄(X̃ε

s )− f̄(Xε
s )
)

ds

∣∣∣∣∣
2

+ 4E

∣∣∣∣∣
∫ t∧τεn

0

(
f̄(Xε

s )− f̄(X̄s)
)

ds

∣∣∣∣∣
2

(4.12)

≤ CTn2θ1

∫ T

0

E|Xε
s − X̃ε

s |2ds+ CTn
2θ1

∫ T

0

E|Xε
s − X̄s|2ds+ I 2

1

≤ CTn2θ1δ + CTn
2θ1

∫ t

0

E|Xε
s − X̄s|2ds+ I 2

1 ,

where

I 2
1 := 4E

(
χ{τεn≥t}

∣∣∣∣∫ t

0

(
f̂ε(s, X̃

ε
s )− f̄(X̃ε

s )
)

ds

∣∣∣∣2
)
.

Employing the technique of time discretization, a change of variables, (Af), Remark 2.2 and (4.3),
we have

I 2
1 ≤ 8E

χ{τεn≥t}
∣∣∣∣∣∣
t(δ)∑
k=0

∫ (k+1)δ

kδ

(
f̂ε(s,X

ε
kδ)− f̄(Xε

kδ)
)

ds

∣∣∣∣∣∣
2


+ 8E

χ{τεn≥t}
∣∣∣∣∣
∫ t

t(δ)δ

(
f̂ε(s,X

ε
t(δ)δ)− f̄(Xε

t(δ)δ)
)

ds

∣∣∣∣∣
2
 (4.13)

≤ CT
[
δ
(
ωfn(δ/εγ)

)2
+ δ2

]
,

where t(δ) :=
[
t
δ

]
. Then (4.12) and (4.13) yield

I1 ≤ CT
[
δ
(
ωfn(δ/εγ)

)2
+ n2θ1δ

]
+ CTn

2θ1

∫ t

0

E|Xε
s − X̄s|2ds. (4.14)

Combining (4.10), (4.11) and (4.14), we have

I2(t, ε) ≤ CT
[
δ
(
ωfn(δ/εγ)

)2
+ n2θ1δ + n−1

]
+ CTn

2θ1

∫ t

0

E|Xε
s − X̄s|2ds. (4.15)

Similarly, for I3(t, ε), it follows from the Burkholder-Davis-Gundy inequality, (Aσ), (H3
x),

Lemma 4.4 and (4.3) that

I3(t, ε) := E
∣∣∣∣∫ t

0

(
σε(s,X

ε
s )− σ̄(X̄s)

)
dW 1

s

∣∣∣∣2
≤ 4E

∫ t

0

|σε(s,Xε
s )− σε(s, X̃ε

s )|2HSds+ 4E
∫ t

0

|σε(s, X̃ε
s )− σ̄(X̃ε

s )|2HSds (4.16)

+ 4E
∫ t

0

|σ̄(Xε
s )− σ̄(X̃ε

s )|2HSds+ 4E
∫ t

0

Lσ|Xε
s − X̄s|2ds
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≤ CT (δ + ωσ(δ/εγ)) + 4E
∫ t

0

Lσ|Xε
s − X̄s|2ds.

In view of (4.8), (4.9), (4.15) and (4.16), we have

sup
t∈[0,T ]

E|Xε
t − X̄t|2 ≤ Cεα̃ + CTn

2θ1

∫ T

0

sup
0≤r≤s

E|Xε
r − X̄r|2ds

+ CT

[
δ
(
ωfn(δ/εγ)

)2
+ n2θ1δ + ωσ(δ/εγ) + n−1

]
,

which by Gronwall’s inequality implies

sup
t∈[0,T ]

E|Xε
t − X̄t|2 ≤ CT

(
εα̃ + n2θ1δ

)
exp(Cn2θ1T ) (4.17)

+ CT

((
ωfn(δ/εγ)

)2
+ n−1 + ωσ(δ/εγ)

)
exp(Cn2θ1T ).

Let δ = εγ/2. Taking ε→ 0 and n→∞, we obtain

lim
ε→0

sup
t∈[0,T ]

E|Xε
t − X̄t|2 = 0.

�

5. Normal deviation

This section is dedicated to proving the normal deviation for slow-fast stochastic differential
equations (2.2). In Section 5.1, we prove the optimal strong convergence rate for (2.2). Subse-
quently, we show the normal deviation in Section 5.2.

5.1. The optimal strong convergence rate. Before investigating the optimal strong conver-
gence rate, let us first show that f̄ is monotone under some suitable conditions.

Lemma 5.1. Assume that (H1
y)–(H3

y) and (H4
x) hold. Then there exists a constant C > 0 such

that for any x1, x2 ∈ Rd1

〈f̄(x1)− f̄(x2), x1 − x2〉 ≤ C|x1 − x2|2.

Proof. It follows from (H4
x), Hölder’s inequality, Corollary 3.2 and Lemma 3.3 that for all x1, x2 ∈

Rd1

〈f̄(x1)− f̄(x2), x1 − x2〉

=

〈∫
Rd2

f(x1, y)µx1(dy)−
∫
Rd2

f(x2, y)µx2(dy), x1 − x2

〉
=

∫
Rd2
〈f(x1, y)− f(x2, y), x1 − x2〉µx1(dy) +

〈∫
Rd2

f(x2, y) (µx1 − µx2) (dy), x1 − x2

〉
≤ |x1 − x2|2

∫
Rd2

M
(
1 + |y|θ2

)
µx1(dy) +

〈∫
Rd2

f(x2, y) (µx1 − µx2) (dy), x1 − x2

〉
≤ C|x1 − x2|2 + CE

[(
1 + |Y x1

t |θ2 + |Y x2
t |θ2

)
|Y x1
t − Y

x2
t |
]
|x1 − x2|

≤ C|x1 − x2|2 + C
[
E
(
1 + |Y x1

t |2θ1 + |Y x2
t |2θ2

)] 1
2

(
E |Y x1

t − Y
x2
t |

2
) 1

2 |x1 − x2|

≤ C|x1 − x2|2,

where t ∈ R and Y x1
· (respectively, Y x2

· ) is the stationary solution to (2.1) with frozen x1 (respec-
tively, x2). �

Now we can give the proof of the optimal strong convergence rate for the first averaging principle.
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Proof of Theorem 2.5. For simplicity, we define

Xε
t := Xε

t (x), X̄t := X̄t(x), Y εt := Y εt (y)

for any t ≥ 0 in this subsection. By Itô’s formula, (H3
x) and Lemma 5.1, we have

|Xε
t − X̄t|2 =

∫ t

0

(
2〈f(Xε

s , Y
ε
s )− f̄(Xε

s ), Xε
s − X̄s〉+ 2〈f̄(Xε

s )− f̄(X̄s), X
ε
s − X̄s〉

+
∣∣σ(Xε

s )− σ(X̄s)
∣∣2
HS

)
ds+ 2

∫ t

0

〈Xε
s − X̄s,

(
σ(Xε

s )− σ(X̄s)
)

dW 1
s 〉

≤
∫ t

0

2〈f(Xε
s , Y

ε
s )− f̄(Xε

s ), Xε
s − X̄s〉+ C|Xε

s − X̄s|2ds (5.1)

+ 2

∫ t

0

〈Xε
s − X̄s,

(
σ(Xε

s )− σ(X̄s)
)

dW 1
s 〉.

Define φ(x, y, x̄) := 2〈f(x, y), x− x̄〉, φ̄(x, x̄) := 2〈f̄(x), x− x̄〉 for all (x, y, x̄) ∈ Rd1+d2+d1 . For any
(x, x̄) ∈ R2d1 let Ψ(x, ·, x̄) be the solution to

L2Ψ(x, y, x̄) = φ(x, y, x̄)− φ̄(x, x̄), y ∈ Rd2 .

By Lemma 3.4, one sees that Ψ ∈ C2,4,2(Rd1+d2+d1) and that there exist constants C,m1,m2,m3 >
0 such that

|Ψ(x, y, x̄)|+
2∑
i=1

(
|∂ixΨ(x, y, x̄)|+ |∂ix̄Ψ(x, y, x̄)|

)
+ |∂yΨ(x, y, x̄)| (5.2)

≤ C (1 + |x|m1 + |y|m2 + |x̄|m3) .

Applying Itô’s formula to t 7→ Ψ(Xε
t , Y

ε
t , X̄t), we have

Ψ(Xε
t , Y

ε
t , X̄t)−Ψ(x, y, x)

=

∫ t

0

(L1 + Lx̄ + ε−1L2)Ψ(Xε
s , Y

ε
s , X̄s)ds+

∫ t

0

σ(Xε
s ) · ∂xΨ(Xε

s , Y
ε
s , X̄s)dW

1
s

+

∫ t

0

σ(X̄s) · ∂x̄Ψ(Xε
s , Y

ε
s , X̄s)dW

1
s + ε−

1
2

∫ t

0

g(Xε
s , Y

ε
s ) · ∂yΨ(Xε

s , Y
ε
s , X̄s)dW

2
s ,

which implies that∫ t

0

2〈
(
f(Xε

s , Y
ε
s )− f̄(Xε

s )
)
, Xε

s − X̄s〉ds

= ε

(
Ψ(Xε

t , Y
ε
t , X̄t)−Ψ(x, y, x)−

∫ t

0

(L1 + Lx̄)Ψ(Xε
s , Y

ε
s , X̄s)ds

)
(5.3)

− ε
∫ t

0

σ(Xε
s ) · ∂xΨ(Xε

s , Y
ε
s , X̄s)dW

1
s − ε

∫ t

0

σ(X̄s) · ∂x̄Ψ(Xε
s , Y

ε
s , X̄s)dW

1
s

−
√
ε

∫ t

0

g(Xε
s , Y

ε
s ) · ∂yΨ(Xε

s , Y
ε
s , X̄s)dW

2
s .

Note that Ψ(x, y, x̄) = 2〈ψ(x, y), x− x̄〉, where ψ is the solution to

L2ψ(x, y) = f(x, y)− f̄(x).

Then in view of (5.1), (5.2), (5.3), (H2
x), (H3

x), Lemma 4.1 and Young’s inequality, there exist
constants m′1,m

′
2,m

′
3 > 0 such that

|Xε
t − X̄t|2

≤
∫ t

0

C|Xε
s − X̄s|2ds+ 2

∫ t

0

〈Xε
s − X̄s,

(
σ(Xε

s )− σ(X̄s)
)

dW 1
s 〉
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+ ε

(
Ψ(Xε

t , Y
ε
t , X̄t)−Ψ(x, y, x)−

∫ t

0

(L1 + Lx̄)Ψ(Xε
s , Y

ε
s , X̄s)ds

)
+ ε

∫ t

0

σ(Xε
s ) · ∂xΨ(Xε

s , Y
ε
s , X̄s)dW

1
s + ε

∫ t

0

σ(X̄s) · ∂x̄Ψ(Xε
s , Y

ε
s , X̄s)dW

1
s

+
√
ε2

∫ t

0

g(Xε
s , Y

ε
s ) · 〈∂yψ(Xε

s , Y
ε
s ), Xε

s − X̄s〉dW 2
s

≤
∫ t

0

C|Xε
s − X̄s|2ds+ 2

∫ t

0

〈Xε
s − X̄s,

(
σ(Xε

s )− σ(X̄s)
)

dW 1
s 〉

+ εC

(
1 + sup

t∈[0,T ]

|Xε
t |m

′
1 + sup

t∈[0,T ]

|Y εt |m
′
2 + sup

t∈[0,T ]

|X̄t|m
′
3

)

+ ε

∫ t

0

σ(Xε
s ) · ∂xΨ(Xε

s , Y
ε
s , X̄s)dW

1
s + ε

∫ t

0

σ(X̄s) · ∂x̄Ψ(Xε
s , Y

ε
s , X̄s)dW

1
s

+
√
ε2

∫ t

0

g(Xε
s , Y

ε
s ) · 〈∂yψ(Xε

s , Y
ε
s ), Xε

s − X̄s〉dW 2
s .

Then thanks to Lemma 4.3 and Burkholder-Davis-Gundy’s inequality, we obtain

E

(
sup
t∈[0,T ]

|Xε
t − X̄t|2

)

≤ C
∫ T

0

E|Xε
s − X̄s|2ds+ 6E

(∫ T

0

|Xε
s − X̄s|2|σ(Xε

s )− σ(X̄s)|2ds

) 1
2

+ εCT

(
1 + E

(
sup
t∈[0,T ]

|Xε
t |m

′
1

)
+ E

(
sup
t∈[0,T ]

|Y εt |m
′
2

)
+ E

(
sup
t∈[0,T ]

|X̄t|m
′
3

))

+
√
ε6E

(∫ T

0

|g(Xε
s , Y

ε
s )|2|∂yψ(Xε

s , Y
ε
s )|2|Xε

s − X̄s|2ds

) 1
2

≤ 1

2
E

(
sup
t∈[0,T ]

|Xε
s − X̄s|2

)
+ C

∫ T

0

E|Xε
s − X̄s|2ds+ CT ε,

which by Gronwall’s inequality implies that

E

(
sup
t∈[0,T ]

|Xε
s − X̄s|2

)
≤ CT ε.

�

5.2. Proof of Theorem 2.6. Prior to presenting the proof of the theorem regarding the normal
deviation, we prove several lemmas.

Lemma 5.2. Assume that (H1
y), (H3

y) and (H1
x)–(H3

x) hold. Let (Xε
t (x), Y εt (y)) be the solution

to (1.3) for any (x, y) ∈ Rd1+d2 . Furthermore, suppose that there exist constants c1, c2, C ≥ 1 such
that for all (x, y) ∈ Rd1+d2

|b(x, y)|+ |B(x, y)| ≤ C (1 + |x|c1 + |y|c2) .

Then there exists a constant CT > 0 such that for any 0 ≤ s < t ≤ T and 0 < ε ≤ 1

εE|Y εt − Y εs |2 ≤ CT |t− s|. (5.4)

Proof. It follows from Itô’s formula, (4.3) and (4.2) that

E|Y εt − Y εs |2 =
1

ε
E
∫ t

s

(
2〈B(Xε

r , Y
ε
r ), Y εr − Y εs 〉+ |g(Xε

r , Y
ε
r )|2HS

)
dr
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+
1

εβ
E
∫ t

s

2〈b(Xε
r , Y

ε
r ), Y εr − Y εs 〉dr

≤ 1

ε
E
∫ t

s

C

(
1 + sup

r∈[0,T ]

|Xε
r |2c1 + sup

r∈[0,T ]

|Y εr |2c2
)

dr ≤ 1

ε
CT |t− s|.

�

Lemma 5.3. If (H1
x)–(H4

x) and (H1
y)–(H3

y) hold, then Zε is tight in C([0, T ];Rd1).

Proof. According to (2.3) and the Arzela-Ascoli theorem, it suffices to show that there exists a
constant CT > 0 such that for all 0 ≤ s ≤ t ≤ T

E|Zεt − Zεs | ≤ CT |t− s|
1
2 .

To this end, by Itô’s formula, the Burkholder-Davis-Gundy inequality, Hölder’s inequality and
(2.3), one sees that

E|Zεt − Zεs |

≤ E
∣∣∣∣∫ t

s

1√
ε

(
f(Xε

r , Y
ε
r )− f̄(X̄r)

)
dr

∣∣∣∣+ E
∣∣∣∣∫ t

s

1√
ε

(σ(Xε
r )− σ(X̄r))dW

1
r

∣∣∣∣
≤ I1 + E

∫ t

s

∣∣∇f̄(X̄r + ι(Xε
r − X̄r))

∣∣ |Zεr |dr + CT |t− s|
1
2 (5.5)

≤ I1 +

(
E
∫ t

s

∣∣∇f̄(X̄r + ι(Xε
r − X̄r))

∣∣2 dr

) 1
2
(
E
∫ t

s

|Zεr |2dr

) 1
2

+ CT |t− s|
1
2 ,

where ι ∈ [0, 1] and

I1 := E
∣∣∣∣∫ t

s

1√
ε

(
f(Xε

r , Y
ε
r )− f̄(Xε

r )
)

dr

∣∣∣∣ .
Employing Lemma 4.1, (4.3), (4.4) and (2.3), we obtain that there exists a constant CT > 0 such
that (

E
∫ t

s

∣∣∇f̄(X̄r + ι(Xε
r − X̄r))

∣∣2 dr

) 1
2
(
E
∫ t

s

|Zεr |2dr

) 1
2

(5.6)

≤
(
E
∫ t

s

(
|Xε

r |2θ1 + |X̄r|2θ1
)

dr

) 1
2

CT |t− s|
1
2 ≤ CT |t− s|.

Now we estimate I1. Note that by the Burkholder-Davis-Gundy inequality, we get

I1 ≤
√
εE |ψ(Xε

t , Y
ε
t )− ψ(Xε

s , Y
ε
s )|+

√
εE
∣∣∣∣∫ t

s

L1ψ(Xε
r , Y

ε
r )dr

∣∣∣∣
+
√
εE
∣∣∣∣∫ t

s

σ(Xε
r ) · ∂xψ(Xε

r , Y
ε
r )dW 1

r

∣∣∣∣+ E
∣∣∣∣∫ t

s

g(Xε
r , Y

ε
r ) · ∂yψ(Xε

r , Y
ε
r )dW 2

r

∣∣∣∣
≤
√
εE |ψ(Xε

t , Y
ε
t )− ψ(Xε

s , Y
ε
s )|+

√
εE
∣∣∣∣∫ t

s

L1ψ(Xε
r , Y

ε
r )dr

∣∣∣∣
+
√
ε3E

(∫ t

s

|σ(Xε
r )∂xψ(Xε

r , Y
ε
r )|2 dr

) 1
2

+ 3E
(∫ t

s

|g(Xε
r , Y

ε
r )∂yψ(Xε

r , Y
ε
r )|2 dr

) 1
2

,

where ψ is the solution to L2ψ(x, y) = f(x, y) − f̄(x). Then in view of Lemma 3.4, (H2
x), (H3

x),
Lemma 4.3 and Hölder’s inequality, (4.7) and (5.4), there exist constants ι1, ι2 ∈ (0, 1), C > 0 and
p1, p2 > 0 such that

I1 ≤
√
εE (|∂xψ(Xε

s + ι1(Xε
t −Xε

s ), Y εt )||Xε
t −Xε

s |)
+
√
εE (|∂yψ(Xε

s , Y
ε
s + ι2(Y εt − Y εs ))||Y εt − Y εs |) (5.7)
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+
√
εCE

∫ t

s

(1 + |Xε
r |p1 + |Y εr |p2) dr

≤ CT
(√

ε
(
E|Xε

t −Xε
s |2
) 1

2 +
(
εE|Y εt − Y εs |2

) 1
2 + |t− s| 12

)
≤ CT |t− s|

1
2 .

Combining (5.5), (5.6) and (5.7), we obtain

E|Zεt − Zεs | ≤ CT |t− s|
1
2 .

�

Lemma 5.4. Assume that (H1
y)–(H5

y) hold and let φ ∈ C2,4,2(Rd1+d2+d1) satisfying (H2
φ). Fur-

thermore, suppose that φ(x, y, ·) ∈ C2
b (Rd1) and ∂jy∂

i
xφ(x, y, ·) ∈ Cb(Rd1) for all (x, y) ∈ Rd1+d2

and 0 ≤ 2i+ j ≤ 4. Then there exists CT > 0 such that for all 0 ≤ t ≤ T

E
(∫ t

0

δφ(Xε
s , Y

ε
s , Z

ε
s )ds

)
≤ CT ε

1
2 ,

where δφ(x, y, z) := φ(x, y, z)−
∫
Rd2 φ(x, y, z)µx(dy), ∀(x, y, z) ∈ Rd1+d2+d1 .

Proof. For any (x, z) ∈ R2d1 , let ψ be the solution to

L2ψ(x, y, z) = δφ(x, y, z), y ∈ Rd2 .
It follows from Lemma 3.4 that ψ ∈ C2,2,2(Rd1+d2+d1) and that there exist constants C,m1,m2 > 0
such that for all (x, y, z) ∈ Rd1+d2+d1

|ψ(x, y, z)|+ |∂xψ(x, y, z)|+ |∂2
xψ(x, y, z)|

+ |∂zψ(x, y, z)|+ |∂2
zψ(x, y, z)|+ |∂yψ(x, y, z)| (5.8)

≤ C (1 + |x|m1 + |y|m2) .

By Itô’s formula, one sees that

Eψ(Xε
t , Y

ε
t , Z

ε
t )− ψ(x, y, 0) = E

∫ t

0

L1ψ(Xε
s , Y

ε
s , Z

ε
s )ds+

1

ε
E
∫ t

0

L2ψ(Xε
s , Y

ε
s , Z

ε
s )ds

+
1√
ε
E
∫ t

0

〈
f(Xε

s , Y
ε
s )− f̄(X̄s), ∂zψ(Xε

s , Y
ε
s , Z

ε
s )
〉

ds,

which by (5.8), Hölder’s inequality, (H2
x) and (H3

x) implies that there exist p1, p2, p3 > 0 such that

E
∫ t

0

δφ(Xε
s , Y

ε
s , Z

ε
s )ds = ε

(
Eψ(Xε

t , Y
ε
t , Z

ε
t )− ψ(x, y, 0)− E

∫ t

0

L1ψ(Xε
s , Y

ε
s , Z

ε
s )ds

)
−
√
εE
∫ t

0

〈
f(Xε

s , Y
ε
s )− f̄(X̄s), ∂zψ(Xε

s , Y
ε
s , Z

ε
s )
〉

ds (5.9)

≤
√
εCE

(
1 + sup

t∈[0,T ]

|Xε
t |p1 + sup

t∈[0,T ]

|Y εt |p2 + sup
t∈[0,T ]

|X̄t|p3
)
.

Combining (5.9) and Lemma 4.3, we have

E
∫ t

0

δφ(Xε
s , Y

ε
s , Z

ε
s )ds ≤ CT ε

1
2 .

�

Now we recall the following lemma, which is from [41, Proposition 3].

Lemma 5.5. If {Zε, Z̄ : 0 < ε ≤ 1} ⊂ C([0, T ];Rd1) is tight, then for any δ > 0 there exist N ∈ N
and z1, ..., zN ∈ C([0, T ];Rd1) such that for any 0 < ε ≤ 1

P

(
N⋂
k=1

{
sup
t∈[0,T ]

|Zεt − zkt | > δ

})
< δ, P

(
N⋂
k=1

{
sup
t∈[0,T ]

|Z̄t − zkt | > δ

})
< δ.
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Remark 5.6. (i) Note that we also have

GGT (x) =

∫
Rd2

(
f(x, y)− f̄(x)

)
ψ(x, y)µx(dy), ∀x ∈ Rd1 , (5.10)

where ψ(x, y) is the solution to L2(x, y)ψ(x, y) = f(x, y)− f̄(x), y ∈ Rd2 .
(ii) It follows from (H2

x), (5.10) and Lemma 3.4 that there exist constants m > 0 and C > 0
such that for any x ∈ Rd1

|G(x)| ∨ |GGT (x)| ∨ |∇(GGT (x))| ≤ C(1 + |x|m).

Therefore, we have for any x1, x2 ∈ Rd1

|GGT (x1)−GGT (x2)| ≤ C(1 + |x1|m + |x2|m)|x1 − x2|.

We are now in a position to prove Theorem 2.6.

Proof of Theorem 2.6. Note that it follows from Itô’s formula that

ϕ(Z̄t) = ϕ(0) +

∫ t

0

〈∇f̄(X̄s)Z̄s,∇ϕ(Z̄s)〉+
1

2
Tr[∇2ϕ(Z̄s)GG

T (X̄s)]ds (5.11)

+

∫ t

0

〈∇ϕ(Z̄s), G(X̄s)dW̃
1
s 〉,

ϕ(Zεt ) = ϕ(0) +

∫ t

0

1√
ε
〈f(Xε

s , Y
ε
s )− f̄(X̄s),∇ϕ(Zεs )〉ds. (5.12)

Combining (5.11) and (5.12), we have

|Eϕ(Zεt )− Eϕ(Z̄t)|

=

∣∣∣∣∣E
∫ t

0

(
1√
ε
〈f(Xε

s , Y
ε
s )− f̄(X̄s),∇ϕ(Zεs )〉 − 〈∇f̄(X̄s)Z̄s,∇ϕ(Z̄s)〉

− 1

2
Tr[∇2

zϕ(Z̄s)GG
T (X̄s)]

)
ds

∣∣∣∣∣ ≤ I1 + I2 + I3,

where

I1 :=

∣∣∣∣E∫ t

0

1√
ε
〈f(Xε

s , Y
ε
s )− f̄(Xε

s ),∇ϕ(Zεs )〉 − 1

2
Tr[∇2ϕ(Zεs )GGT (Xε

s )]ds

∣∣∣∣ ,
I2 : =

∣∣∣∣E∫ t

0

1√
ε
〈f̄(Xε

s )− f̄(X̄s),∇ϕ(Zεs )〉 − 〈∇f̄(X̄s)Z̄s,∇ϕ(Z̄s)〉ds
∣∣∣∣

=

∣∣∣∣E∫ t

0

〈∇f̄(X̄s + ι(Xε
s − X̄s))Z

ε
s ,∇ϕ(Zεs )〉 − 〈∇f̄(X̄s)Z̄s,∇ϕ(Z̄s)〉ds

∣∣∣∣ ,
I3 :=

∣∣∣∣E∫ t

0

1

2
Tr[∇2ϕ(Zεs )GGT (Xε

s )]− 1

2
Tr[∇2ϕ(Z̄s)GG

T (X̄s)]ds

∣∣∣∣
for some ι ∈ [0, 1]. Thus, we only need to demonstrate that limε→0 I1 = 0, limε→0 I2 = 0, and
limε→0 I3 = 0 to establish our result. To this end, we will break the proof into three steps.

(Step 1) Let φ(x, y, z) := 〈f(x, y),∇ϕ(z)〉, φ̄(x, z) := 〈f̄(x),∇ϕ(z)〉, ∀(x, y, z) ∈ Rd1+d2+d1 . It
is obvious that Ψ(x, y, z) := −〈ψ(x, y),∇ϕ(z)〉 is the solution to

L2Ψ(x, y, z) = −
(
φ(x, y, z)− φ̄(x, z)

)
,

where ψ(x, y) is the solution to L2ψ(x, y) =
(
f(x, y)− f̄(x)

)
. Then by Lemma 3.4, one sees that

Ψ ∈ C2,2,2(Rd1+d2+d1) and that there exist constants C,m1,m2 > 0 such that

|Ψ(x, y, z)|+ |∂xΨ(x, y, z)|+ |∂2
xΨ(x, y, z)|

+ |∂zΨ(x, y, z)|+ |∂2
zΨ(x, y, z)|+ |∂yΨ(x, y, z)| (5.13)
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≤ C (1 + |x|m1 + |y|m2) .

Applying Itô’s formula to t 7→ Ψ(Xε
t , Y

ε
t , Z

ε
t ), we have

EΨ(Xε
t , Y

ε
t , Z

ε
t )− EΨ(x, y, 0) = E

∫ t

0

(
L1Ψ(Xε

s , Y
ε
s , Z

ε
s ) +

1

ε
L2Ψ(Xε

s , Y
ε
s , Z

ε
s )

+
1√
ε
〈f(Xε

s , Y
ε
s )− f̄(X̄s), ∂zΨ(Xε

s , Y
ε
s , Z

ε
s )〉
)

ds.

Therefore, by (5.13), (H2
x), (H3

x), Hölder’s inequality, Lemma 4.3 and Theorem 2.5 we obatin

I1 =

∣∣∣∣∣√ε
(
EΨ(x, y, 0)− EΨ(Xε

t , Y
ε
t , Z

ε
t ) + E

∫ t

0

L1Ψ(Xε
s , Y

ε
s , Z

ε
s )ds

)

+ E
∫ t

0

〈f(Xε
s , Y

ε
s )− f̄(X̄s), ∂zΨ(Xε

s , Y
ε
s , Z

ε
s )〉 − 1

2
Tr[∇2ϕ(Zεs )GGT (Xε

s )]ds

∣∣∣∣∣
≤ C
√
ε+

∣∣∣∣E∫ t

0

〈f̄(Xε
s )− f̄(X̄s), ∂zΨ(Xε

s , Y
ε
s , Z

ε
s )〉
∣∣∣∣+ I 3

1 (5.14)

≤ C
√
ε+

∣∣∣∣E∫ t

0

|∇f̄(X̄s + ι(Xε
s − X̄s))||Xε

s − X̄s||∂zΨ(Xε
s , Y

ε
s , Z

ε
s )|ds

∣∣∣∣+ I 3
1

≤ C
√
ε+ I 3

1

for some ι ∈ [0, 1], where

I 3
1 :=

∣∣∣∣E∫ t

0

〈f(Xε
s , Y

ε
s )− f̄(Xε

s ), ∂zΨ(Xε
s , Y

ε
s , Z

ε
s )〉 − 1

2
Tr[∇2ϕ(Zεs )GGT (Xε

s )]ds

∣∣∣∣ .
Note that

〈f(x, y)− f̄(x), ∂zΨ(x, y, z)〉 − 1

2
Tr[∇2ϕ(z)GGT (x)]

=

d1∑
i,j=1

(
fi(x, y)− f̄i(x)

)
ψj(x, y)∂2

zjziϕ(z)

−
d1∑

i,j=1

∫
Rd2

(
fi(x, y)− f̄i(x)

)
ψj(x, y)∂2

zjziϕ(z)µx(dy).

By Lemma 5.4, one sees that limε→0 I 3
1 = 0, which by (5.14) implies that limε→0 I1 = 0.

(Step 2) Now we show that limε→0 I2 = 0. By Lemmas 5.3 and 5.5, for any δ > 0 there exist
z1, ..., zN ∈ C([0, T ];Rd1) such that for any 0 < ε ≤ 1

P

(
N⋂
k=1

{
sup
t∈[0,T ]

|Zεt − zkt | > δ

})
< δ, (5.15)

P

(
N⋂
k=1

{
sup
t∈[0,T ]

|Z̄t − zkt | > δ

})
< δ. (5.16)

Define

Ωε1,k :=

{
sup
t∈[0,T ]

|Zεt − zkt | < 2δ, sup
t∈[0,T ]

|Z̄t − zkt | < 2δ

}
,

Ωε2 :=

N⋂
k=1

{
sup
t∈[0,T ]

|Zεt − zkt | > δ

}
, Ω3 :=

N⋂
k=1

{
sup
t∈[0,T ]

|Z̄t − zkt | > δ

}
.

Let Ω̃ε1,1 = Ωε1,1, Ω̃ε1,k = Ωε1,k\
(
∪k−1
i=1 Ω̃ε1,i

)
, k = 2, ..., N. It is obvious that for any 0 < ε ≤ 1

Ω = ∪Nk=1Ω̃ε1,k ∪ Ωε2 ∪ Ω3, Ω̃ε1,i ∩ Ω̃ε1,j = ∅, i 6= j.
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Therefore,

I2 =

∣∣∣∣E∫ t

0

〈∇f̄(X̄s + ι(Xε
s − X̄s))Z

ε
s ,∇ϕ(Zεs )〉 − 〈∇f̄(X̄s)Z̄s,∇ϕ(Z̄s)〉ds

∣∣∣∣ (5.17)

≤ I2,1 + I2,2 +

N∑
k=1

I k
2,3,

where

I2,1 :=

∣∣∣∣E [χΩε2

∫ t

0

〈∇f̄(X̄s + ι(Xε
s − X̄s))Z

ε
s ,∇ϕ(Zεs )〉 − 〈∇f̄(X̄s)Z̄s,∇ϕ(Z̄s)〉ds

]∣∣∣∣ ,
I2,2 :=

∣∣∣∣E [χΩ3

∫ t

0

〈∇f̄(X̄s + ι(Xε
s − X̄s))Z

ε
s ,∇ϕ(Zεs )〉 − 〈∇f̄(X̄s)Z̄s,∇ϕ(Z̄s)〉ds

]∣∣∣∣ ,
I k

2,3 :=

∣∣∣∣E [χΩ̃ε1,k

∫ t

0

〈∇f̄(X̄s + ι(Xε
s − X̄s))Z

ε
s ,∇ϕ(Zεs )〉 − 〈∇f̄(X̄s)Z̄s,∇ϕ(Z̄s)〉ds

]∣∣∣∣ .
In view of (5.11), Remark 5.6, the Burkholder-Davis-Gundy inequality and (4.4), for any p > 1

there exists m1 > 0 such that

E
∣∣∣∣∫ t

0

〈∇f̄(X̄s)Z̄s,∇ϕ(Z̄s)〉ds
∣∣∣∣p (5.18)

= E
∣∣∣∣ϕ(Z̄t)− ϕ(0)−

∫ t

0

1

2
Tr[∇2ϕ(Z̄s)GG

T (X̄s)]ds−
∫ t

0

〈∇ϕ(Z̄s), G(X̄s)dW̃
1
s 〉
∣∣∣∣p

≤ CT,p,‖∇ϕ‖∞

(
‖ϕ‖p∞ +

∫ T

0

E|X̄s|m1ds+ 1

)
≤ Cp,T .

It follows from Hölder’s inequality, (5.15) and (5.18) that

I2,1 + I2,2

≤ E
[(
χΩε2

+ χΩ3

) ∣∣∣∣∫ t

0

〈∇f̄(X̄s + ι(Xε
s − X̄s))Z

ε
s ,∇ϕ(Zεs )〉ds

∣∣∣∣]
+ E

[(
χΩε2

+ χΩ3

) ∣∣∣∣∫ t

0

〈∇f̄(X̄s)Z̄s,∇ϕ(Z̄s)〉ds
∣∣∣∣]

≤
[
(P({Ωε2}))

1
3 + (P({Ω3}))

1
3

](
E
∣∣∣∣∫ t

0

〈∇f̄(X̄s + ι(Xε
s − X̄s))Z

ε
s ,∇ϕ(Zεs )〉ds

∣∣∣∣
3
2

) 2
3

+
[
(P({Ωε2}))

1
2 + (P({Ω3}))

1
2

](
E
∣∣∣∣∫ t

0

〈∇f̄(X̄s)Z̄s,∇ϕ(Z̄s)〉ds
∣∣∣∣2
) 1

2

≤ CT δ
1
3

(
E
∫ T

0

|∇f̄(X̄s + ι(Xε
s − X̄s))|

3
2 |Zεs |

3
2 ‖∇ϕ‖

3
2∞ds

) 2
3

+ CT δ
1
2 ,

which by Hölder’s inequality and (H2
x) implies that

I2,1 + I2,2 ≤ CT δ
1
3

(
E
∫ T

0

|Zεs |2 + |X̄s|4θ1 + |Xε
s |4θ1ds

) 2
3

+ CT δ
1
2 . (5.19)

Combining (5.19), (4.3), (4.4) and (2.3), we get

I2,1 + I2,2 ≤ CT δ
1
3 . (5.20)



AVERAGING PRINCIPLE 29

Note that for all 1 ≤ k ≤ N

I k
2,3 : ≤

∣∣∣∣E [χΩ̃ε1,k

∫ t

0

〈
(
∇f̄(X̄s + ι(Xε

s − X̄s))−∇f̄(X̄s)
)
Zεs ,∇ϕ(Zεs )〉ds

]∣∣∣∣
+

∣∣∣∣E [χΩ̃ε1,k

∫ t

0

〈∇f̄(X̄s)Z
ε
s ,∇ϕ(Zεs )−∇ϕ(Z̄s)〉ds

]∣∣∣∣ (5.21)

+

∣∣∣∣E [χΩ̃ε1,k

∫ t

0

〈∇f̄(X̄s)(Z
ε
s − Z̄s),∇ϕ(Z̄s)〉ds

]∣∣∣∣ =:

3∑
i=1

Ji.

First of all, by Hölder’s inequality, (H2
x), Lemma 4.3 and Theorem 2.5 we have

J1 ≤ ‖∇ϕ‖∞E
[
χΩ̃ε1,k

∫ t

0

∣∣∇2f̄(X̄s + ιι′(Xε
s − X̄s))

∣∣ ∣∣Xε
s − X̄s

∣∣ |Zεs |‖∇ϕ‖∞ds

]

≤ ‖∇ϕ‖∞

(
E
∫ T

0

|Zεs |2ds

) 1
2
(
E
∫ T

0

|Xε
s − X̄s|2ds

) 1
4

(5.22)

×

(
E
∫ T

0

|∇2f̄(X̄s + ιι′(Xε
s − X̄s))|4

(
|Xε

s |+ |X̄s|
)2

ds

) 1
4

≤ CT ε
1
4 ,

where ι′ ∈ [0, 1]. And in view of Hölder’s inequality we have

J2 + J3 ≤ E
[
χΩ̃ε1,k

∫ t

0

∣∣∇f̄(X̄s)
∣∣ (|Zεs |‖∇2ϕ‖∞ + ‖∇ϕ‖∞)|Zεs − Z̄s|ds

]
(5.23)

≤ CδE

[
χΩ̃ε1,k

∫ T

0

|∇f̄(X̄s)|(|Zεs |+ 1)ds

]
.

Therefore, by (5.17), (5.20), (5.21), (5.22), (5.23), Hölder’s inequality, (H2
x), Lemma 4.3 and

Theorem 2.5 one sees that

I2 ≤ CT
(
δ

1
3 +Nε

1
4

)
+ δCE

∫ T

0

|∇f̄(X̄s)| (|Zεs |+ 1) ds ≤ CT
(
δ

1
4 +Nε

1
4

)
,

which implies that limε→0 I2 = 0 by first letting ε→ 0 and then letting δ → 0.
(Step 3) Now we estimate I3:

I3 : =

∣∣∣∣E∫ t

0

1

2
Tr[∇2ϕ(Zεs )GGT (Xε

s )]− 1

2
Tr[∇2ϕ(Z̄s)GG

T (X̄s)]ds

∣∣∣∣
≤
∣∣∣∣E [χΩε2

∫ t

0

1

2
Tr[∇2ϕ(Zεs )GGT (Xε

s )]− 1

2
Tr[∇2ϕ(Z̄s)GG

T (X̄s)]ds

]∣∣∣∣
+

∣∣∣∣E [χΩ3

∫ t

0

1

2
Tr[∇2ϕ(Zεs )GGT (Xε

s )]− 1

2
Tr[∇2ϕ(Z̄s)GG

T (X̄s)]ds

]∣∣∣∣ (5.24)

+

N∑
k=1

∣∣∣∣E [χΩ̃ε1,k

∫ t

0

1

2
Tr[∇2ϕ(Zεs )GGT (Xε

s )]− 1

2
Tr[∇2ϕ(Z̄s)GG

T (X̄s)]ds

]∣∣∣∣
=: I3,1 + I3,2 +

N∑
k=1

I k
3,3.

Thanks to Hölder’s inequality, (5.15), (5.16), Remark 5.6, (4.3) and (4.4), we have

I3,1 + I3,2 ≤ CT δ1/2. (5.25)
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And it follows from Remark 5.6, Hölder’s inequality, Lemma 4.3 and Theorem 2.5 that there exists
m > 0 such that

I k
3,3 : ≤

∣∣∣∣E [χΩ̃ε1,k

∫ t

0

1

2
Tr
[(
∇2ϕ(Zεs )−∇2ϕ(zks )

)
GGT (Xε

s )
]

ds

]∣∣∣∣
+

∣∣∣∣E [χΩ̃ε1,k

∫ t

0

1

2
Tr[∇2ϕ(zks )GGT (Xε

s )]− 1

2
Tr[∇2ϕ(zks )GGT (X̄s)]ds

]∣∣∣∣
+

∣∣∣∣E [χΩ̃ε1,k

∫ t

0

1

2
Tr
[(
∇2ϕ(Z̄s)−∇2ϕ(zks )

)
GGT (X̄s)

]
ds

]∣∣∣∣
≤ C

∣∣∣∣E [χΩ̃ε1,k

∫ t

0

‖∇3ϕ‖∞|Zεs − zks | (1 + |Xε
s |m) ds

]∣∣∣∣ (5.26)

+

∣∣∣∣E [χΩ̃ε1,k

∫ t

0

‖∇2ϕ‖∞
(
1 + |Xε

s |m + |X̄s|m
)
|Xε

s − X̄s|ds
]∣∣∣∣

+

∣∣∣∣E [χΩ̃ε1,k

∫ t

0

‖∇3ϕ‖∞|Z̄s − zks |
(
1 + |X̄s|m

)
ds

]∣∣∣∣
≤ CT δ

(
E

[
χΩ̃ε1,k

∫ T

0

(
1 + |Xε

s |m + |X̄s|m
)

ds

])
+ CT ε

1
2 .

Therefore, employing (5.24), (5.25), (5.26), Hölder’s inequality, (H2
x) and Lemma 4.3, we have

I3 ≤ CT
(
δ1/2 +Nε

1
2

)
+ CT δ

(
E
∫ T

0

(
1 + |Xε

s |m + |X̄s|m
)

ds

)
≤ CT (δ1/2 +Nε1/2).

Therefore, firstly letting ε→ 0, then taking δ → 0, we obtain limε→0 I3 = 0. �

6. The global averaging principle and second averaging principle

In Section 6.1, we begin with recalling some well-known definitions and results about autonomous
and nonautonomous dynamical systems (see e.g. [33]). Subsequently, we prove Theorem 2.8 in
Section 6.2. Finally, we investigate the second averaging principle in Section 6.3.

6.1. Preliminaries for dynamical systems. Let (X , d) be a complete metric space, and (P, dP)
be a metric space.

Definition 6.1. Let T = R or Z. A semi-dynamical system is defined as a continuous function
φ : T+ ×X → X that satisfies φ(0, x) = x, ∀x ∈ X , and φ(t+ s, x) = φ(t, φ(s, x)) for all s, t ∈ T+

and x ∈ X .

Definition 6.2. We say a nonempty compact subset A ⊂ X is a global attractor of a semi-
dynamical system φ on X if it is φ-invariant and attracts bounded sets, i.e. φ(t, A) = A for all
t ∈ T+ and limt→∞ dist (φ(t,D), A) = 0 for any bounded subset D ⊂ X .

Definition 6.3. A nonautonomous dynamical system (σ, ϕ) (in short, ϕ) comprises two compo-
nents:

(i) A dynamical system σ on P with time set T = Z or R, i.e. σ0(·) = IdP , σt+s(p) = σt(σs(p))
for all t, s ∈ T and p ∈ P, and the mapping (t, p) 7→ σt(p) is continuous.

(ii) A cocycle ϕ : T+ × P × X → X satisfies
(1) ϕ(0, p, x) = x for all (p, x) ∈ P × X ,
(2) ϕ(t+ s, p, x) = ϕ(t, σs(p), ϕ(s, p, x)) for all s, t ∈ T+ and (p, x) ∈ P × X ,
(3) the mapping (t, p, x) 7→ ϕ(t, p, x) is continuous.

Here P is called the base or parameter space and X is the fiber or state space. For convenience, we
also write σt(p) as σtp.

Furthermore, if σt(p)(·) := p(t+ ·) then (P,R, σ) is called a shift dynamical system or Bebutov
shift flow.
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Definition 6.4. The autonomous semi-dynamical system π on P × X defined by

π : T+ × P × X → P ×X , π(t, (p, x)) := (θt(p), ϕ(t, p, x))

is called the skew product flow associated with the nonautonomous dynamical system (θ, ϕ).

Definition 6.5. Let (σ, φ) be a skew product flow on a metric phase space (X , d) with base set
P. A subset M of the extended phase space P × X is called a nonautonomous set, and for each
p ∈ P, the set Mp := {x ∈ X : (p, x) ∈M} is called the p-fiber ofM. In general,M is said to have
a topological property (such as compactness or closeness) if each fiber of M has this property.

Definition 6.6. Let (σ, φ) be a skew product flow on a metric space (X , d) with base set P. A
family A = {Ap}p∈P of nonempty subsets of X is called invariant w.r.t. (σ, φ), or φ-invariant, if
φ(t, p, Ap) = Aσt(p) for all t ≥ 0 and p ∈ P.

Remark 6.7. The compact set-valued mapping t 7→ Aσt(p), induced by a φ-invariant family
(Ap)p∈P of compact subsets, is continuous in t ∈ R w.r.t. the Hausdorff metric for each fixed
p ∈ P.

Definition 6.8. Let (σ, φ) be a skew product flow. A nonempty, compact and invariant nonau-
tonomous set A is called a pullback attractor if the pullback convergence

lim
t→∞

distX (φ(t, σ−t(p), D), Ap) = 0

holds for every nonempty bounded subset D of X and p ∈ P.

Lemma 6.9. Assume that a semi-dynamical system φ on X has an absorbing set B, i.e. for any
bounded subset D ⊂ X , there exists T = T (D) ∈ T+ such that φ(t,D) ⊂ B for all t ≥ T . If B is
positively invariant, i.e. φ(t, B) ⊂ B for all t ∈ T+, then φ has a unique attractor A ⊂ B defined
by A =

⋂
t≥0 φ(t, B).

Definition 6.10. Let (σ, φ) be a skew product flow on X . A nonempty compact subset B of X
is called pullback absorbing if for each p ∈ P and every bounded subset D of X , there exists a
T = T (p,D) > 0 such that φ(t, σ−t(p), D) ⊂ B for all t ≥ T .

Lemma 6.11. Let (σ, φ) be a skew product flow on X with a compact pullback absorbing set B
such that φ(t, p, B) ⊂ B for all t ≥ 0 and p ∈ P. Then there exists a pullback attractor A with

fibers in B uniquely determined by Ap =
⋂
τ≥0

⋃
t≥τ φ(t, σ−t(p), B) for all p ∈ P.

6.2. Proof of Theorem 2.8. In order to prove Theorem 2.8, we need the following decay estimates
of solutions to (1.3) and (1.4) under the dissipativity condition (H5

x).

Lemma 6.12. Assume that (H1
y), (H3

y) and (H2
x)–(H5

x) hold. If g ∈ Cb(Rd1+d2), then for any

(ζε, ξε) ∈ L2(Ω,Fs,P;Rd1+d2) there exists a unique solution V εs,t(ζ
ε, ξε) := (Xε

s,t(ζ
ε), Y εs,t(ξ

ε)) to
(2.4). Furthermore, there exists ε0 > 0 such that for all p ≥ 1 and 0 < ε ≤ ε0

E|Y εs,t(ξε)|2p ≤E|ξε|2pe−
1
4 ε
−2αηp(t−s) +$(p)

(
1− e−

1
4 ε
−2αηp(t−s)

)
, (6.1)

and

E|Xε
s,t(ζ

ε)|2 ≤ E|ζε|2e−λ1(t−s) +
K5$(θ/2) +K4

λ1

(
1− e−λ1(t−s)

)
+K5E|ξε|θ

([
λ−1

1

(
1− e−λ1(t−s)

)]
∧ e−λ1(t−s)

)
,

where $(p) := (8K1 + 8(p− 1)‖g‖∞)
p
η−p, ∀p ≥ 1.

Moreover, for any 1 < p < λ1

2L2
σ

+ 1 there exists a constant C > 0 such that

E|Xε
s,t(ζ

ε)|2p ≤ E|ζε|2pe−
p
2 (λ1−2(p−1)L2

σ)(t−s) + C(E|ξε|θp + 1). (6.2)
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Proof. By (4.5) and Gronwall’s inequality, one sees that there exists a ε0 > 0 such that for all
0 < ε ≤ ε0

E|Y εs,t(ξε)|2p ≤ E|ξε|2pe− 1
4 ε
−2αηp(t−s)

+ (8K1 + 8(p− 1)‖g‖∞)
p
η−p

(
1− e−

1
4 ε
−2αηp(t−s)

)
.

It follows from Itô’s formula, (H3
x), (H5

x) and Young’s inequality that

E|Xε
s,t(ζ

ε)|2p

≤ E|ζε|2p + pE
∫ t

s

|Xε
s,τ (ζε)|2p−2

(
−λ1|Xε

s,τ (ζε)|2 +K5|Y εs,τ (ξ)|θ +K4

)
dτ

+ 2p(p− 1)E
∫ t

s

|Xε
s,τ (ζε)|2p−2

(
L2
σ|Xε

s,τ (ζε)|2 +K2
7 + 2LσK7|Xε

s,τ (ζε)|
)

dτ.

If p = 1, in view of Gronwall’s inequality and (6.1), one sees that there exists ε0 > 0 such that
for all 0 < ε ≤ ε0

E|Xε
s,t(ζ

ε)|2 ≤ E|ζε|2e−λ1(t−s) +
1

λ1

(
K5

(
E|ξε|θ +$(θ/2)

)
+K4

) (
1− e−λ1(t−s)

)
.

On the other hand, in view of Gronwall’s inequality and (6.1), we obtain that there exists ε0 > 0
such that for all 0 < ε ≤ ε0

E|Xε
s,t(ζ

ε)|2 ≤ E|ζε|2e−λ1(t−s) +
K5$(θ/2) +K4

λ1

(
1− e−λ1(t−s)

)
+K5E|ξε|θe−λ1(t−s)

(
1

8
ε−2αηθ − λ1

)−1(
1− exp{(λ1 −

ηθ

8ε2α
(t− s)}

)
≤ E|ζε|2e−λ1(t−s) +K5E|ξε|θe−λ1(t−s) +

K5$(θ/2) +K4

λ1

(
1− e−λ1(t−s)

)
.

In the case where 1 < p < λ1

2L2
σ

+ 1, by Young’s inequality we have

E|Xε
s,t(ζ

ε)|2p

≤ E|ζε|2p + pE
∫ t

s

(
−1

2
(λ1 − 2(p− 1)L2

σ)|Xε
s,τ (ζε)|2p + C|Y εs,τ (ξε)|θp + C

)
dτ,

which by Gronwall’s inequality and (6.1) implies that

E|Xε
s,t(ζ

ε)|2p ≤ E|ζε|2pe−
p
2 (λ1−2(p−1)L2

σ)(t−s) + C(E|ξε|θp + 1).

�

Lemma 6.13. Assume that (H1
y), (H2

y), (H5
x) and (Af) hold. Then there exists a constant

K8 > 0 such that for all x ∈ Rd1

2〈f̄(x), x〉+ |σ̄(x)|2 ≤ −λ1|x|2 +K8.

Proof. Let K ′ := supx∈Rd1
∫
Rd2 |y|

θµx(dy) < ∞. It follows from (H3
x), (H5

x), Hölder’s inequality

and Young’s inequality that for any x ∈ Rd1

2〈f̄(x), x〉+ |σ̄(x)|2HS

= 2

〈
f̄(x)− 1

T

∫ T

0

f̂(s, x)ds, x

〉
+ 2

〈
1

T

∫ T

0

f̂(s, x)ds, x

〉
+

∣∣∣∣∣ 1

T

∫ T

0

σ(s, x)ds

∣∣∣∣∣
2

+

∣∣∣∣∣σ̄(x)− 1

T

∫ T

0

σ(s, x)ds

∣∣∣∣∣
2

+ 2

〈
σ̄(x)− 1

T

∫ T

0

σ(s, x)ds,
1

T

∫ T

0

σ(s, x)ds

〉
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≤ 2

T

∣∣∣∣∣
∫ T

0

(
f̄(x)− f̂(s, x)

)
ds

∣∣∣∣∣ · |x|+ 1

T

∫ T

0

∫
Rd2

(
2 〈f(s, x, y), x〉+ |σ(s, x)|2

)
µx(dy)ds

+
1

T

∫ T

0

|σ̄(x)− σ(s, x)|2ds+ 2

∣∣∣∣∣σ̄(x)− 1

T

∫ T

0

σ(s, x)ds

∣∣∣∣∣
∣∣∣∣∣ 1

T

∫ T

0

σ(s, x)ds

∣∣∣∣∣
≤ −λ1|x|2 +K4 +K ′K5 + 1 +

2

T

∣∣∣∣∣
∫ T

0

(
f̄(x)− f̂(s, x)

)
ds

∣∣∣∣∣ · |x|
+

1

T

∫ T

0

|σ̄(x)− σ(s, x)|2ds+
1

T

∫ T

0

|σ̄(x)− σ(s, x)|2ds
(
2L2

σ|x|2 + 2K2
7

)
,

which by (Af) and (Aσ) implies that

2〈f̄(x), x〉+ |σ̄(x)|2HS ≤ −λ1|x|2 +K4 +K ′K5 + 1

by letting T →∞. �

Similarly to the estimates provided in Lemma 6.12, the following lemma can be derived by
applying the same methodology. Therefore, we omit the proof.

Lemma 6.14. Assume that (H1
y), (H3

y) and (H2
x)–(H5

x) hold. If g ∈ Cb(Rd1+d2), then for any

ζ ∈ L2(Ω,Fs,P;Rd1), there exists a unique solution X̄s,t(ζ) to (1.4). Furthermore, there exists
ε0 > 0 such that for all 0 < ε ≤ ε0

E|X̄s,t(ζ)|2 ≤ E|ζ|2e−λ1(t−s) +
K8

λ1

(
1− e−λ1(t−s)

)
.

Moreover, if ζ ∈ L2p(Ω,Fs,P;Rd1) for any 1 < p < λ1

2L2
σ

+ 1, then there exists a constant C > 0

such that

E|X̄s,t(ζ)|2p ≤ E|ζ|2pe−
p
2 (λ1−2(p−1)L2

σ)(t−s) + C.

Remark 6.15. Assume that f and σ satisfy (Af) and (Aσ). Note that by [9, Lemma 5.10] one

sees that for any F̃ :=
(
F̃ , σ̃

)
∈ H(F), F̃ and σ̃ satisfy (Af) and (Aσ) provided H(F) is compact.

Following a similar approach as in the proof of [8, Theorem 3.1], we establish the following
lemma for the continuous dependence of solutions to (2.4) on initial values and coefficients. For
convenience, we assume ε = 1 in this lemma without loss of generality.

Lemma 6.16. Assume that ξn, ξ ∈ L2(Ω,Fs,P;Rd1+d2). For any n ∈ N let V ns,t(ξ
n) satisfy

V ns,t(ξ
n) = ξn +

∫ t

s

Fn(r, V ns,r(ξ
n))dr +

∫ t

s

Gn(r, V ns,r(ξ
n))dWr, t ≥ s,

and Vs,t(ξ) satisfy

Vs,t(ξ) = ξ +

∫ t

s

F (r, Vs,r(ξ))dr +

∫ t

s

G(r, Vs,r(ξ))dWr, t ≥ s.

Suppose that Fn, Gn, F and G satisfy (H1
y), (H3

y) and (H2
x)–(H5

x). Furthermore, assume that

limn→∞ Fn(t, v) = F (t, v) and limn→∞Gn(t, v) = G(t, v) for all t ∈ R and v ∈ Rd1+d2 . If
limn→∞ dBL (L (ξn),L (ξ)) = 0, then for any t ≥ s

lim
n→∞

sup
r∈[s,t]

dBL
(
L
(
V ns,r(ξ

n)
)
,L (Vs,r(ξ))

)
= 0.

Lemma 6.17. Suppose that (H1
y), (H3

y) and (H2
x)–(H5

x) hold. If g ∈ Cb(Rd1+d2), then for any

0 < ε ≤ 1, (σ, P ∗ε ) is a skew product flow on the phase space (P2,θ(Rd1+d2), dBL) with base space

H(Fε), where σ : R+×H(Fε)→ H(Fε) is defined by σt(F̃ε) := F̃ε(t+·, ·) for all (t, F̃ε) ∈ R+×H(F̃ε).
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Proof. By Remark 2.7 and Lemma 6.12, one sees that

P ∗ε (t, F̃ε, ·) : P2,θ(Rd1+d2)→P2,θ(Rd1+d2)

for any t ≥ 0, F̃ε ∈ H(Fε) and 0 < ε ≤ ε0. Employing Lemma 6.16, the uniqueness in law of the
solutions to (2.4) follows, which completes the proof. �

With the help of the aforementioned results, we are now in a position to prove Theorem 2.8.

Proof of Theorem 2.8. (i) For any R > 0 and r ≥ 1, define

D1,r
R :=

{
µ ∈Pr(Rd1) :

∫
Rd1
|x|rµ(dx) ≤ R

}
,

D2,r
R :=

{
µ ∈Pr(Rd2) :

∫
Rd2
|y|rµ(dy) ≤ R

}
.

Set $1 := λ−1
1 (K5 (2$(θ/2) + 1) +K4) + 1 and $2 := $(θ/2) + 1. Let $ := $1 +$2. Define

B :=

{
m ∈P2,θ(Rd1+d2) :

∫
Rd1+d2

|z|2m(dz) ≤ $,m ◦ π−1
1 ∈ D1,2

$1 ,m ◦ π−1
2 ∈ D2,θ

$2

}
. (6.3)

It can be verified that B is compact. By Lemma 6.12, one sees that B ⊂P2,θ(Rd1+d2) is a pullback

absorbing set such that P ∗ε (t, F̃ε, B) ⊂ B for all t ≥ 0 and F̃ε ∈ H(Fε). It follows from Lemma
6.11 that (σ, P ∗ε ) has a pullback attractor A ε with component subsets

AF̃ε :=
⋂
τ≥0

⋃
t≥τ

P ∗ε (t, σ−t(F̃ε), B) ⊂ B, F̃ε ∈ H(Fε).

(ii) Let

B1 :=

{
µ ∈P2(Rd1) :

∫
Rd1
|x|2µ(dx) ≤ K8λ

−1
1 + 1

}
.

Employing Lemma 6.14, we show that B1 is a positively invariant and absorbing set. Thanks to
Lemma 6.9, P̄ ∗ admits a global attractor Ā, defined by

Ā :=
⋂
t≥0

P̄ ∗(t, B1).

(iii) For any δ > 0 and bounded subset D ⊂ P2(Rd1), since Ā is the attractor of P̄ ∗, there
exists a T > 0 such that for all t ≥ T

P̄ ∗(t,D) ⊂ Oδ/2
(
Ā
)
. (6.4)

In view of (4.17), we have

sup
0≤t≤2T

d(Π1P
∗
ε (t, F̃ε,m), P̄ ∗(t,m ◦ π−1

1 )) < η(T,B)(ε) (6.5)

for all m ∈ B and F̃ε ∈ H(Fε). And there exists ε0 > 0 such that η(T,D)(ε) < δ/2 for all
0 < ε ≤ ε0.

It follows from (6.4) and (6.5) that⋃
F̃ε∈H(Fε)

Π1P
∗
ε (t, F̃ε, B) ⊂ Oδ

(
Ā
)

for all T ≤ t ≤ 2T . Taking some t0 ∈ [T, 2T ], then we have⋃
F̃ε∈H(Fε)

P ∗ε (t0, σ−t0(F̃ε), B) ⊂ Oδ(Ā).

It follows from the P ∗ε -invariance that P ∗ε (t0, σ−t0(F̃ε),Aσ−t0 (F̃ε)) = AF̃ε , which implies that for

all 0 < ε ≤ ε0 and F̃ε ∈ H(Fε)
AF̃ε ⊂ Oδ(Ā),
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because Aσ−t0 (F̃ε) ⊂ B. �

6.3. Proof of Theorem 2.12. In this subsection, we will give the proof of the second Bo-
golyubov theorem. To this end, we shall show the uniqueness and existence of bounded solutions
to (1.3). We say that the solution V εt := (Xε

t , Y
ε
t ), t ∈ R, of (1.3) is L2p

(
Ω,P;Rd1+d2

)
-bounded if

supt∈R E|V εt |2p <∞.

Proposition 6.18. Assume that B(x, y) ≡ B(y) for all (x, y) ∈ Rd1+d2 and β ≤ α. Furthermore,

suppose that (H1
y), (H3

y), (H6
y) and (H2

x)–(H6
x)hold. If β = α and λ1 >

L2
b

η , then there exists

ε0 > 0 such that for all 0 < ε ≤ ε0

E|V εs,t(ξ1)− V εs,t(ξ2)|2 ≤ E|ξ1 − ξ2|2exp

(
−
(
λ1

2
− L2

b

2η

)
(t− s)

)
. (6.6)

If β < α then there exists ε0 > 0 such that for all 0 < ε ≤ ε0

E|V εs,t(ξ1)− V εs,t(ξ2)|2 ≤ E|ξ1 − ξ2|2exp

(
−λ1

2
(t− s)

)
. (6.7)

Moreover, for any 0 < ε ≤ ε0 there exists a unique solution V εt , t ∈ R, to (1.3) such that

sup
t∈R

E|V εt |2p <∞,

where 1 ≤ p < λ1

2L2
σ

+ 1.

Proof. In view of Itô’s formula, we have

E|V εs,t(ξ1)− V εs,t(ξ2)|2

= E|ξ1 − ξ2|2 + E
∫ t

s

(
2〈Fε(τ, V εs,τ (ξ1))− Fε(τ, V εs,τ (ξ2)), V εs,τ (ξ1)− V εs,τ (ξ2)〉 (6.8)

+ |Gε(τ, V εs,τ (ξ1))−Gε(τ, V εs,τ (ξ2))|2HS
)

dτ.

By (H3
x), (H6

x) and (H6
y), for all t ∈ R and v1 := (x1, y1)T , v2 := (x2, y2)T ∈ Rd1+d2 we have

2〈Fε(t, v1)− Fε(t, v2), v1 − v2〉+ |Gε(t, v1)−Gε(t, v2)|2HS
= 2〈fε(t, x1, y1)− fε(t, x2, y2), x1 − x2〉+ |σε(t, x1)− σε(t, x2)|2HS

+ ε−2α2〈B(y1)−B(y2), y1 − y2〉+ ε−2α|g(y1)− g(y2)|2HS (6.9)

+ ε−β2〈b(x1, y1)− b(x2, y2), y1 − y2〉
≤ −λ1|x1 − x2|2 + λ2|y1 − y2|2 − ε−2αη|y1 − y2|2

+ ε−β2Lb(|x1 − x2|+ |y1 − y2|)|y1 − y2|.

If β = α and λ1 > L2
b/η, then it follows from (6.9) and Young’s inequality that there exists a

constant ε0 > 0 such that for all 0 < ε ≤ ε0

2〈Fε(t, v1)− Fε(t, v2), v1 − v2〉+ |Gε(t, v1)−Gε(t, v2)|2HS

≤ −
(
λ1

2
− L2

b

2η

)
|x1 − x2|2

− ε−2α

(
η

(
1− 2L2

b

λ1η + L2
b

)
− ε2αλ2 − ε2α−β2Lb

)
|y1 − y2|2

≤ −
(
λ1

2
− L2

b

2η

)
|v1 − v2|2,

which by (6.8) and Gronwall’s inequality implies that

E|V εs,t(ξ1)− V εs,t(ξ2)|2 ≤ E|ξ1 − ξ2|2exp

(
−
(
λ1

2
− L2

b

2η

)
(t− s)

)
.
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If β < α then based on (6.9) and Young’s inequality there exists ε0 > 0 such that for all
0 < ε ≤ ε0

2〈Fε(t, v1)− Fε(t, v2), v1 − v2〉+ |Gε(t, v1)−Gε(t, v2)|2HS

≤ −λ1

2
|x1 − x2|2 −

(
ε−2αη − ε−2β 2L2

b

λ1
− ε−β2Lb − λ2

)
|y1 − y2|2 ≤ −

λ1

2
|v1 − v2|2,

which by (6.8) and Gronwall’s inequality implies that

E|V ε,1s,t (ξ1)− V ε,2s,t (ξ2)|2 ≤ E|ξ1 − ξ2|2exp

(
−λ1

2
(t− s)

)
.

For any n ∈ N, let V ε−n,t(0) := (Xε
−n,t(0), Y ε−n,t(0)), t ≥ −n, be the solution to (1.3). Thanks

to (6.6), (6.7) and the classical pullback absorbing method (see e.g. [9, Theorem 3.6] for more
details), there exists a L2(Ω,P;Rd1+d2)-bounded solution V εt := (Xε

t , Y
ε
t ), t ∈ R, of (1.3), which is

the limit of V εt (−n, 0) in L2(Ω,P;Rd1+d2) as n→∞. Moreover, by (6.2) and (6.1), one sees that
supt∈R E|V εt |2p ≤ ∞, where 1 ≤ p < λ1

2L2
σ

+ 1. �

Remark 6.19. Note that Proposition 6.18 implies that the bounded solution of (1.3) is globally
asymptotically stable in the square-mean sense.

Now we can show that the bounded solution inherits the quasi-periodic property of the coeffi-
cients, and establish the second Bogolyubov theorem.

Proof of Theorem 2.12. Similar to the proof of Theorem 3.14 in [9], we show that if f and g are
quasi-periodic then for any 0 < ε ≤ ε0, V εt , t ∈ R, is quasi-periodic in distribution.

Note that it can be verified that for all x1, x2 ∈ Rd1

2〈f̄(x1)− f̄(x2), x1 − x2〉+ |σ̄(x1)− σ̄(x2)| ≤ −λ1|x1 − x2|2,

which implies that the global attractor Ā of P̄ ∗ is a singleton set and

Ā = {L (X̄t)}, (6.10)

where X̄t, t ∈ R is the stationary solution to (1.4).

For any F̃ε ∈ H(Fε) define

BF̃ε :=
{

L (V F̃ε
t ) : t ∈ R

}
,

where V F̃ε
t is the bounded solution to (1.3) with F̃ε replacing Fε. Note that

P ∗ε (t, σ−tFε,Bσ−tFε) = BFε

and Bσ−tFε ⊂ B, where is B defined by (6.3). Then we have

BFε ⊂ ∩τ≥0∪t≥τP ∗ε (t, σ−tF,Bσ−tFε) ⊂ ∩τ≥0∪t≥τP ∗ε (t, σ−tF, B) = AFε ,

which by (6.10) and Theorem 2.8 implies that

lim
ε→0

sup
t∈R

dBL
(
L (Xε

t ) ,L
(
X̄t

))
= 0.

�

Appendix A.

In this section, we will show the existence and uniqueness of solutions to (1.3).

Lemma A.1. Suppose that (H1
y), (H3

y) and (H1
x)–(H3

x) hold. Then for any (x, y) ∈ Rd1+d2 there

exists a unique solution (Xε
t (x), Y εt (y)) to (1.3) provided 0 < ε ≤ 2α

√
η′/K5 ∧ 1.
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Proof. Let v := (x, y)T ,

Fε(t, v) :=
(
fε(t, x, y), ε−2αB(x, y) + ε−βb(x, y)

)T
, Gε(t, v) :=

(
σε(t, x), ε−αg(x, y)

)T
and W :=

(
W 1,W 2

)T
. Then equation (1.3) can be written as

dV εt = Fε(t, V
ε
t )dt+Gε(t, V

ε
t )dWt.

Note that by (H1
x) and (H1

y), we have for any t ∈ R and v := (x, y) ∈ Rd1+d2

2〈Fε(t, v), v〉+ |Gε(t, v)|2HS
= 2〈fε(t, x, y), x〉+ |σε(t, x)|2HS + ε−2α

(
2〈B(x, y), y〉+ |g(x, y)|2HS

)
+ ε−β2〈b(x, y), y〉

≤ K4|x|2 + (−ε−2αη + ε−β η̃)|y|2 + (K5 − ε−2αη′)|y|θ +K4 + (ε−2α + ε−β)K1.

If θ = 2 or K5 = 0, then for all 0 < ε ≤ 1

2〈Fε(t, v), v〉+ |Gε(t, v)|2HS ≤ CK4,ε|v|2 + Cε,K1,K4 , ∀(t, v) ∈ R1+d1+d2 .

Otherwise, for all 0 < ε ≤ 2α
√
η′/K5

2〈Fε(t, v), v〉+ |Gε(t, v)|2HS ≤ K4|v|2 + Cε,K1,K4
, ∀(t, v) ∈ R1+d1+d2 .

By (H2
x), (H3

x) and (H3
y), one sees that

2〈Fε(t, v1)− Fε(t, v2), v1 − v2)〉+ |Gε(t, v1)−Gε(t, v2)|2HS
= 2〈fε(t, x1, y1)− fε(t, x2, y2), x1 − x2〉+ |σε(t, x1)− σε(t, x2)|2HS

+ ε−2α2〈B(x1, y1)−B(x2, y2), y1 − y2〉+ ε−2α2|g(x1, y1)− g(x2, y2)|2HS
+ ε−β2〈b(x1, y1)− b(x2, y2), y1 − y2〉
≤ 2|fε(t, x1, y1)− fε(t, x2, y2)||x1 − x2|+ L2

σ|x1 − x2|2

+ ε−2α2〈B(x1, y1)−B(x1, y2), y1 − y2〉+ ε−2α2 (Lg|x1 − x2|+ Lg|y1 − y2|)2

+ ε−2α2|B(x1, y2)−B(x2, y2)||y1 − y2|+ ε−β2|b(x1, y1)− b(x2, y2)||y1 − y2|

≤ 2K7

(
1 + |x1|θ1 + |x2|θ1 + |y1|θ2 + |y2|θ2

)
(|x1 − x2|+ |y1 − y2|) |x1 − x2|+ L2

σ|x1 − x2|2

− ε−2αη|y1 − y2|2 − ε−2αη′|y1 − y2|θ + ε−2α4L2
g

(
|x1 − x2|2 + |y1 − y2|2

)
+ 2ε−2αK3 (1 + |y2|κ2) |x1 − x2||y1 − y2|

+ 2ε−βK4 (1 + |x1|κ1 + |x2|κ1 + |y1|κ2 + |y2|κ2) (|x1 − x2|+ |y1 − y2|) |y1 − y2|

≤ CK4,K7,Lσ,Lg,ε

(
1 + |x1|2θ1∨2κ1 + |x2|2θ1∨2κ1 + |y1|2θ2∨2κ2 + |y2|2θ2∨2κ2

)
|x1 − x2|2

+ CK4,K7,Lσ,Lg,ε,η̃

(
1 + |x1|2θ2∨2κ2 + |x2|2θ2∨2κ2 + |y1|2θ2∨2κ2 + |y2|2θ2∨2κ2

)
|y1 − y2|2

for any t ∈ R and v1 := (x1, y1), v2 := (x2, y2) ∈ Rd1+d2 . Therefore, it follows from [35, Theorem
3.1.1] that for any (x, y) ∈ Rd1+d2 there exists a unique solution (Xε

t (x), Y εt (y)) to (1.3) for all

0 < ε ≤ 2α
√
η′/K5 ∧ 1. �
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M. Röckner: Fakultat für Mathematik, Universität Bielefeld, D-33501 Bielefeld, Germany
E-mail address: roeckner@math.uni-bielefeld.de


	1. Introduction
	2. Statement of the main results
	2.1. The first Bogolyubov theorem
	2.2. Normal deviation
	2.3. Global averaging principle
	2.4. The second Bogolyubov theorem
	2.5. Examples

	3. Frozen equation and Poisson equation
	4. The first Bogolyubov theorem
	4.1. Auxiliary lemmas
	4.2. Proof of Theorem 2.3

	5. Normal deviation
	5.1. The optimal strong convergence rate
	5.2. Proof of Theorem 2.6

	6. The global averaging principle and second averaging principle
	6.1. Preliminaries for dynamical systems
	6.2. Proof of Theorem 2.8
	6.3. Proof of Theorem 2.12

	Appendix A. 
	Acknowledgements
	References

