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Abstract
This work is concerned with the existence of mild solutions and the
uniqueness of distributional solutions to nonlinear Fokker–Planck equa-
tions with nonlocal operators Ψ(−∆), where Ψ is a Bernstein function.
As applications, the existence and uniqueness of solutions to the corre-
sponding nonlinear martingale problems are proved. Furthermore, it
is shown that these solutions form a nonlinear Markov process in the
sense of McKean such that their one-dimensional time marginal law
densities are the solutions to the nonlocal nonlinear Fokker–Planck
equation. Hence, McKean’s program envisioned in his PNAS paper
from 1966 is realized for these nonlocal PDEs.
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1 Introduction

We are concerned here with the following nonlinear, nonlocal Fokker–Planck
equation of Nemytskii-type

ut + Ψ(−∆)(β(u)) + div(Db(u)u) = 0, on (0,∞)× Rd,
u(0, x) = u0(x), x ∈ Rd,

(1.1)
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where the functions β : R → R, D : Rd → Rd, d ≥ 2, b : R → R are to be
made precise below, and Ψ is a Bernstein function.

The operator Ψ(−∆) is defined as follows. Let S ′ := S ′(Rd) be the dual
of the Schwartz test function space S := S(Rd). Define

DΨ := {u ∈ S ′ : F(u) ∈ L1
loc(Rd),Ψ(|ξ|2)F(u) ∈ S ′}(⊃ L1(Rd)) (1.2)

and Ψ(−∆) : DΨ → S ′ by

F(Ψ(−∆)u)(ξ) := Ψ(|ξ|2)F(u)(ξ), ξ ∈ Rd, u ∈ DΨ, (1.3)

where F stands for the Fourier transform on Rd, i.e.,

F(u)(ξ) = (2π)−d/2
∫
Rd
eix·ξu(x)dx, ξ ∈ Rd, u ∈ L1(Rd).

(F extends from S ′ to itself.)
Furthermore, Ψ : [0,∞) → [0,∞) is a a Bernstein function, i.e. an infi-

nitely differentiable completely monotone function, that is,

(−1)kΨ(k)(r) ≥ 0, ∀r ≥ 0, k = 1, 2, ... .

A Bernstein function Ψ admits the unique representation (see [22], p. 21)

Ψ(r) = a1 + a2r +

∫ ∞
0

(1− e−rt)µ(dt), ∀r ≥ 0, (1.4)

where a1, a2 ≥ 0 and µ is a positive measure on (0,∞) such that

m :=

∫ ∞
0

(1 ∧ t)µ(dt) <∞, (1.5)

which implies
Ψ(r) ≤ m(1 + r), r ≥ 0. (1.6)

Given a Bernstein function Ψ, there is a unique convolution semigroup of
sub-probability (if a1 = 0, probability) measures (ηΨ

t )t≥0 on (0,∞) such that

L(ηΨ
t )(λ) = e−tΨ(λ), ∀λ ≥ 0, (1.7)

where L(ηΨ
t ) is the Laplace transform of ηΨ

t (see [22], p. 49).
A standard example is Ψ(r) ≡ rs, s ∈ (0, 1), which corresponds to

a1, a2 = 0 and

µ(dt) =
s

Γ(1− s)
t−s−1dt. (1.8)

The hypotheses below will be in effect in Sections 2 and 4.1.
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(i) β ∈ C1(R) ∩ Lip(R), β(0) = 0, β′(r) > 0, ∀ r 6= 0.

(ii) D ∈ (C1 ∩ Cb)(Rd;Rd), divD ∈ L2
loc(Rd).

(iii) b ∈ Cb(R).

(iv) (divD)− ∈ L∞, b(r) ≥ 0, ∀r ∈ R.

(v) Ψ : [0,∞) → [0,∞) is a Bernstein function of the form (1.4) with
a1, a2 = 0 which satisfies for some s ∈

(
1
2
, 1
)

and C ∈ (0,∞),

Ψ(r) ≥ Crs, ∀r ≥ 0. (1.9)

Here, we shall study the existence of a mild solution to equation (1.1)
(see Definition 1.1 below) and also the uniqueness of distributional solu-
tions. As regards the existence, we shall follow the semigroup methods used
in [2]–[4] and in the special case Ψ(r) ≡ rs, s ∈

(
1
2
, 1
)

in [6]. Namely, we shall
represent (1.1) as an abstract differential equation in L1(Rd) of the form

du

dt
+ A(u) = 0, t ≥ 0,

u(0) = u0,
(1.10)

where A : D(A) ⊂ L1(Rd)→ L1(Rd) is an m-accretive realization in L1(Rd)
of the operator

A0(u) = Ψ(−∆)(β(u)) + div(Db(u)u), u ∈ D(A0),

D(A0) =
{
u ∈ L1(Rd); Ψ(−∆)(β(u)) + div(Db(u)u) ∈ L1(Rd)

}
,

(1.11)

to be made precise later on. (Here, div and ∆ are taken in the sense of
Schwartz distributions on Rd.)

Definition 1.1. A function u ∈ C([0,∞);L1(Rd)) is said to be a mild solu-
tion to (1.1) if, for each 0 < T <∞,

u(t) = lim
h→0

uh(t) in L1(Rd) uniformly in t ∈ [0, T ], (1.12)

where uh is for each h > 0 the solution to the equation

1

h
(uh(t)− uh(t− h) + A0uh(t)) = 0, ∀t ≥ 0,

uh(t) = u0, ∀t ≤ 0.
(1.13)
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We note that, if u is a mild solution to (1.1), then it is also a Schwartz
distributional solution, that is,∫ ∞

0

∫
Rd

(u(t, x)ϕt(t, x)−Ψ(−∆)(ϕ(t, x))β(u(t, x))

+b(u(t, x))u(t, x)D(x) · ∇ϕ(t, x))dtdx

+

∫
Rd
ϕ(0, x)u0(dx) = 0, ∀ϕ ∈ C∞0 ([0,∞)× Rd),

(1.14)

where u0 is a measure of finite variation on Rd. The main existence re-
sult for equation (1.1) is given by Theorem 2.4 below, which amounts to
saying that under Hypotheses (i)–(v) there is a mild solution u represented
as u(t) = S(t)u0, t ≥ 0, where S(t) is a continuous semigroup of nonlinear
contractions in L1. In Section 3, the uniqueness of distributional solutions to
(1.1), (1.14) respectively, in the class (L1 ∩ L∞)((0, T )× Rd) ∩ L∞(0, T ;L2)
will be proved under Hypotheses (j)–(jjj) on D, b and β stated in Section
3. We would like to stress at this point that as in [5] (see, also, the pionee-
ring papers [7] and [17]), where such a result was proved for local nonlinear
Fokker–Planck equations (i.e. of type (1.1) with −∆ replacing Ψ(−∆)), we
prove uniqueness in the large class of distributional solutions without any a
priori-restrictions such as e.g. weak differentiability of the solutions. There-
fore, our uniqueness results are considerably stronger than uniqueness results
within the much smaller classes of mild solutions or in the local case of en-
tropy solutions (see, e.g., [8]). In Section 4 we apply our analytic results
on (1.1) to prove existence and uniqueness results (see Theorems 4.1 and
4.3, resp.) for the nonlinear martingale problem corresponding to (1.1) in
the spirit of [14], where the latter were studied in the case of local Fokker–
Planck equations with stronger regularity assumptions on the coefficients,
not covering Nemytskii-type equations as above. Furthermore, we prove
that the solutions to such a nonlinear martingale problem form a nonlinear
Markov process in the sense of McKean [16] (see Theorem 4.4 below). The
existence proof (Theorem 4.1) is based on Theorem 2.4 and [21], in which
a nonlocal analogue of the superposition principle (see [12], [23]) is proved.
The uniqueness proof (Theorem 4.3) is based on Theorems 3.1 and 3.3. As
a consequence of this and Corollary 3.8 in [18], we finally obtain Theorem
4.4, which in particular realizes McKean’s vision from [16], i.e. to identify
the solutions of nonlinear PDEs as the one-dimensional time marginal law
densities of a nonlinear Markov process, for nonlocal PDEs as in (1.1).

In the special case Ψ(r) ≡ rs, s ∈
(

1
2
, 1
)
, equation (1.1) was studied [6]
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(see, also, [10], [11], [24] for a direct approach to existence theory in the
case Ψ(r) = rs and D ≡ 0). Though the strategy in the present paper to
prove the existence and uniqueness of solutions to (1.1) follows in great lines
that developed in [6]. There is, however, not a large overlap and the specific
arguments involved here are quite different. In particular, the probabilistic
applications in Section 4 are much more difficult in the case of Bernstein
functions.

Notation. Lp(Rd) = Lp, p ∈ [1,∞] is the standard space of Lebesgue
p-integrable functions on Rd. We denote the corresponding local space by
Lploc and the norm of Lp by | · |p. The inner product in L2 is denoted by (·, ·)2.
Let Hσ(Rd) = Hσ, 0 < σ < ∞, denote the standard Bessel space on Rd

and H−σ its dual space. Let Cb(R) denote the space of continuous and
bounded functions on R and C1(R) the space of continuously differentiable
functions on R, and likewise C1(Rd,Rd) the space of continuously differen-
tiable vector fields from Rd to Rd. For any T > 0 and a Banach space
X , C([0, T ];X ) denotes the space of X -valued continuous functions on [0, T ]
and by Lp(0, T ;X ) the space of X -valued Lp-Bochner integrable functions on
(0, T ). Ck

c (O), O ⊂ Rd, denotes the space of k-differentiable functions with
compact support in O and D′(O) the space of Schwartz distributions on O.
C∞0 ([0,∞)×Rd) denotes the space of differentiable functions on [0,∞)×Rd

with compact in [0,∞) × Rd. S ′(Rd) = S ′ denotes the space of tempered
distributions on Rd and F(y) the Fourier transform of y ∈ S ′(Rd).

2 Existence of a mild solution

We first note that by (1.6) and (1.9) all functions

Rd 3 ξ → (Ψ(ε+ |ξ|2))α, ε > 0, α ∈ R,

are multipliers on S, hence on S ′. Hence, we may define the maps Ψ(εI−∆) :
S ′ → S ′ by

Ψ(εI −∆)u := F−1(Ψ(ε+ |ξ|2)Fu, u ∈ S ′,
which are clearly linear homeomorphisms, and the following Hilbert spaces:

HΨ := HΨ(Rd) :=
{
u ∈ S ′ :

√
Ψ(1 + |ξ|2)F(u) ∈ L2

}
and

ḢΨ := ḢΨ(Rd) :=
{
u ∈ S ′ : F(u) ∈ L1

loc and
√

Ψ(|ξ|2)F(u) ∈ L2
}
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with respective norms

|u|2HΨ :=

∫
Rd

Ψ(1 + |ξ|2)|F(u)(ξ)|2dξ

|u|2
ḢΨ :=

∫
Rd

Ψ(|ξ|2)|F(u)(ξ)|2dξ.

We denote the corresponding inner products by 〈·, ·〉HΨ and 〈·, ·〉ḢΨ , respec-
tively. By (1.6) and (1.9) we have the continuous embeddings

H1 ⊂ HΨ ⊂ Hs ⊂ Ḣs, HΨ ⊂ ḢΨ ⊂ Ḣs, (2.1)

where Ḣs denotes the usual homogeneous Sobolev space of order s. We note
that Ḣs is only complete, if s < d

2
, which holds in our case since s < 1, d ≥ 2.

Clearly, HΨ is complete. But since by (1.9)

1

Ψ(|ξ|2)
≤ 1

C

1

|ξ|2s
∈ L1

loc,

it is easy to show that also ḢΨ is complete.
Furthermore, for ε ≥ 0 we define

Dε,2 := {u ∈ L2 : Ψ(εI −∆)u ∈ L2}.

Then, it is elementary to check that (Ψ(εI−∆), Dε,2) is a nonnegative definite
self-adjoint operators on L2 (to which the usual operator calculus on L2

applies) and that for all u ∈ D0,2

|u|2
ḢΨ =

∫
Rd

∣∣∣√Ψ(−∆)u
∣∣∣2 dξ.

Furthermore, Dε,2 := D1,2, ∀ε > 0 and

|u|2HΨ,ε =

∫
Rd

∣∣∣√Ψ(εI −∆)u
∣∣∣2 dξ,

where | · |HΨ,ε is defined analogously to | · |HΨ with Ψ(ε + |ξ|2) replacing
Ψ(1 + |ξ|2). Then, we have the following
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Lemma 2.1.

(i) ḢΨ and HΨ,ε, ε > 0, as well as Hα, α ∈ (0, 1], are invariant un-
der composition with Lipschitz continuous functions ϕ : R → R with
ϕ(0) = 0.

(ii) For all α ∈ R and ε > 0, we have for the inverse Ψ(εI−∆)−1 : S ′ → S ′

of Ψ(εI −∆) : S ′ → S ′ that

Ψ(εI −∆)−1(Hα) ⊂ Hα+2s

and that the operator Ψ(εI −∆)−1 : Hα → Hα+2s is continuous.

Proof. (i): This is an immediate consequence of [13, Section 1.5, in par-
ticular, Theorem 1.5.3 and Example 1.5.2], since, as it is proved there,(
ḢΨ, 〈·, ·〉ḢΨ

)
,
(
ḢΨ,ε, 〈·, ·〉ḢΨ,ε

)
, ε > 0, and Hα, α ∈ (0, 1] are transient

Dirichlet spaces.

(ii): Using the definition of Hα, α ∈ R, in terms of Fourier transforms,
the proof is elementary by (1.9). �

We shall now prove the following key lemma which is similar to Lemma
2.1 in [6]. (See, also, [2]–[4].)

Lemma 2.2. Let λ0 > 0 be as defined in (2.32) below. Then, under Hypo-
theses (i)–(v) there is a family of operators {Jλ : L1 → L1;λ > 0)}, which
for all λ ∈ (0, λ0) satisfies

(I + λA0)(Jλ(f)) = f, ∀ f ∈ L1, (2.2)

|Jλ(f1)− Jλ(f2)|1 ≤ |f1 − f2|1, ∀f1, f2 ∈ L1, (2.3)

Jλ2(f) = Jλ1

(
λ1

λ2

f +

(
1− λ1

λ2

)
Jλ2(f)

)
, ∀f ∈ L1, λ1, λ2 > 0, (2.4)∫

Rd
Jλ(f)dx =

∫
Rd
f dx, ∀f ∈ L1, (2.5)

Jλ(f) ≥ 0, a.e. on Rd, if f ≥ 0, a.e. on Rd, (2.6)

|Jλ(f)|∞ ≤ (1 + ||D|+ (divD)−|
1
2∞)|f |∞, ∀ f ∈ L1 ∩ L∞, (2.7)

β(Jλ(f)) ∈ HΨ ∩ L1 ∩ L∞, ∀f ∈ L1 ∩ L∞. (2.8)
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Proof of Lemma 2.2. We shall first prove the existence of a solution to
the equation

y + λA0(y) = f in S ′, (2.9)

where f ∈ L1. We consider the approximating equation

y + λΨ(εI −∆)(βε(y)) + λ div(Dεbε(y)y) = f in S ′, (2.10)

where ε ∈ (0, 1], βε(r) := β(r) + εr and

Dε := ηεD, ηε ∈ C1
0(Rd), 0 ≤ ηε ≤ 1, |∇ηε| ≤ 1, ηε(x) = 1 if |x| < 1

ε
.

We have

|Dε| ∈ L2 ∩ L∞, |Dε| ≤ |D|, lim
ε→0

Dε(x) = D(x), a.e. x ∈ Rd,

divDε ∈ L2, (divDε)
− ≤ (divD)− + 1[|x|> 1

ε ]
|D|.

(2.11)

The function bε is defined by

bε(r) ≡
(b ∗ ϕε)(r)

1 + ε|r|
, ∀ r ∈ R,

where ∗ is the convolution product and ϕε(r) = 1
ε
ϕ
(
r
ε

)
is a standard mol-

lifier. We set b∗ε(r) := bε(r)r, r ∈ R, and note that b∗ε is bounded, Lipschitz
and b∗ε(0) = 0.

Let us assume first that f ∈ L2 and rewrite (2.9) as

Fε,λ(y) = f in S ′, (2.12)

where Fε,λ : L2 → S ′ is defined by

Fε,λ(y) := y + λΨ(εI −∆)βε(y) + λ div(Dεb
∗
ε(y)), ∀y ∈ L2.

We set
Gε(y) := Ψ(εI −∆)(y), y ∈ S ′.

Now, we shall show that (2.12) has a unique solution yε ∈ L2. To this end,
we rewrite it as

G−1
ε (Fε,λ(y)) = G−1

ε f(∈ H2s),

that is,
G−1
ε y + λβε(y) + λG−1

ε div(Dεb
∗
ε(y)) = G−1

ε f. (2.13)
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Since Dεb
∗
ε(y) ∈ L2, we have div(Dεb

∗
ε(y)) ∈ H−1, and so, by Lemma 2.1 (ii)

and because s > 1
2
, we have that G−1

ε Fε,λ : L2 → L2 is continuous. Now, it
is easy to see that (2.13) has a unique solution, yε ∈ L2 for small enough λ,
because, by (2.13) we have, for y1, y2 ∈ L2,

(G−1
ε (Fε,λ(y2)− Fε,λ(y1)), y2 − y1)2

= (G−1
ε (y2 − y1), y2 − y1)2 + λ(βε(y2)− βε(y1), y2 − y1)2

−λ H−1〈div(Dε(b
∗
ε(y2)− b∗ε(y1))), G−1

ε (y2 − y1)〉H1

≥ |y2 − y1|2H−s + λε|y2 − y1|22
−λc1|Dε(b

∗
ε(y2)− b∗ε(y1))|2|∇G−1

ε (y2 − y1)|2
≥ |y2 − y1|2H−s + λε|y2 − y1|22 − λcε|D|∞Lip(b∗ε)|y2 − y1|2|y2 − y1|H1−2s ,

(2.14)

where cε ∈ (0,∞) is independent of λ, y1, y2. Since −s < 1 − 2s < 0, by
interpolation we have for θ := 2s−1

s
that

|y2 − y1|H1−2s ≤ |y2 − y1|1−θ2 |y2 − y1|θH−s ,

and so, by Young’s inequality we find that the left hand side of (2.14) dom-
inates

λ(ε− λcε)|y2 − y1|22 +
1

2
|y2 − y1|2H−s

for some cε ∈ (0,∞) independent of λ, y1 and y2. Hence, for some λε ∈ (0,∞),
we conclude that G−1

ε Fε,λ is strictly monotone on L2 for λ ∈ (0, λε).
By Lemma 2.1 (ii), it follows from (2.13) that βε(yε) ∈ H2s−1, hence by

Lemma 2.1 (i), because s < 1 and the inverse of βε is Lipschitz and zero
at zero, the solution yε also belongs to H2s−1, hence b∗ε(yε) ∈ H2s−1. Since
s ∈

(
1
2
, 1
)

and D ∈ C1(Rd;Rd), by simple bootstrapping (2.13) implies that
yε ∈ H1, and therefore, by (2.13) we have

βε(yε) ∈ G−1
ε (L2) and so Gεβε(yε) ∈ L2. (2.15)

Furthermore, for f ∈ L2 and λ ∈ (0, λε), yε is the unique solution of (2.12).
Assume now that λ ∈ (0, λε) and that f ≥ 0, a.e. on Rd. Then, we have

yε ≥ 0, a.e. on Rd. (2.16)

To prove this, consider the function

ηδ(r) =


−1 for r ≤ −δ,
r

δ
r ∈ (−δ, 0),

0 for r ≥ 0,

(2.17)
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where δ > 0, and multiply (2.10), where y = yε, by ηδ(βε(yε)) (∈ H1) and
integrate over Rd. By (2.15) we get∫

Rd
yεηδ(βε(yε))dx+ λ

∫
Rd
Gε(βε(yε))ηδ(βε(yε))dx

=

∫
Rd
fηδ(βε(yε))dx+ λ

∫
Rd
Dεb

∗
ε(yε)η

′
δ(βε(yε)) · ∇βε(yε)dx.

(2.18)

On the other hand, we have

∫
Rd
Gε(u)ϕ(u)dx = 〈u, ϕ(u)〉HΨ,ε ≥

1

2
(Lip(ϕ))−1 〈ϕ(u), ϕ(u)〉HΨ,ε ≥ 0,

∀u ∈ G−1
ε (L2)(⊂ HΨ),

(2.19)

for all non constant, nondecreasing Lipschitz functions ϕ : R → R. This
is a well-known inequality in the theory of Dirichlet forms (see, e.g., [20,
Examples 6.4 and 6.5]). By (2.15), this yields∫

Rd
Gε(βε(yε))ηδ(βε(yε))dx ≥ 0. (2.20)

Taking into account that |βε(yε)| ≥ ε|yε|, we have∣∣∣∣∫
Rd
Dεbε(yε)yεη

′
δ(βε(yε))∇βε(yε)dx

∣∣∣∣
≤ 1

δ
|b|∞

∫
Ẽδε

|yε| |∇βε(yε)| |Dε|dx

≤ 1

ε
|b|∞‖Dε‖L2

(∫
Ẽδε

|∇βε(yε)|2dx
) 1

2

→ 0 as δ → 0.

(2.21)

Here Ẽδ
ε = {−δ < βε(yε) ≤ 0} and we used that ∇βε(yε) = 0, a.e. on

{βε(yε) = 0}.
Since sign βε(r) ≡ sign r, by (2.18)–(2.21) we get, for δ → 0, that y−ε = 0,

a.e. on Rd and so (2.16) holds.
If λ ∈ (0, λε) and yε = yε(λ, f) is the solution to (2.10) in L2, we have for

f1, f2 ∈ L1 ∩ L2

yε(λ, f1)− yε(λ, f2) + λGε(βε(yε(λ, f1))− βε(yε(λ, f2)))

+λ div Dε(b
∗
ε(yε(λ, f1))− b∗ε(yε(λ, f2))) = f1 − f2.

(2.22)
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Now, for δ > 0 consider the function

Xδ(r) =


1 for r ≥ δ,
r

δ
for |r| < δ,

−1 for r < −δ.

If multiply (2.22) by Xδ(βε(yε(λ, f1))− βε(yε(λ, f2))), we get∫
Rd

(yε(λ, f1)− yε(λ, f2))Xδ(βε(yε(λ, f1))− βε(yε(λ, f2)))dx

≤λ 1

δ

∫
Eδε

|b∗ε(yε(λ, f1))−b∗ε(yε(λ, f2))| |Dε||∇(βε(yε(λ, f1))−βε(yε(λ, f2)))|dx

+|f1 − f2|1,

because, by virtue of (2.19),∫
Rd
Gε(βε(yε, f1)− βε(yε, f2))Xδ(βε(yε, f1)− βε(yε, f2))dx ≥ 0.

Set Eδ
ε = {|βε(yε(λ, f1))− βε(yε(λ, f2))| ≤ δ}.

Since |βε(r1) − βε(r2)| ≥ ε|r1 − r2|, Dε ∈ L2(Rd;Rd), b∗ε ∈ Lip(R),
yε(λ, fi) ∈ H1, i = 1, 2, and ∇(βε(yε(λ, f1)) − βε(yε(λ, f2))) = 0, a.e. on
{βε(yε(λ, f1))− βε(yε(λ, f2)) = 0}, we get that

lim
δ→0

1

δ

∫
Eδε

|b∗ε(yε(λ, f1))−b∗ε(yε(λ, f2))||Dε||∇(βε(yε(λ, f1))−βε(yε(λ, f2)))|dx=0.

This yields

|yε(λ, f1)− yε(λ, f2)|1 ≤ |f1 − f2|1, ∀λ ∈ (0, λε). (2.23)

Hence,
|yε(λ, f)|1 ≤ |f |1, ∀ f ∈ L1 ∩ L2, λ ∈ (0, λε). (2.24)

Now, let us remove the restriction on λ ∈ (0, λε). To this purpose, define the
operator Aε : D0(Aε)→ L1 by

Aε(y) := Gε(βε(y)) + div(Dεb
∗
ε(y)),

D0(Aε) := {y ∈ L1 : Gε(βε(y)) + div(Dεb
∗
ε(y)) ∈ L1},
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and
Jελ(f) := yε(λ, f), f ∈ L1 ∩ L2, λ ∈ (0, λε).

Then, by (2.15) and since yε(λ, f) ∈ H1,

Jελ(f) ∈ D0(Aε) ∩H1 and βε(J
ε
λ(f)) ∈ G−1

ε (L2),

∀f ∈ L1 ∩ L2, λ ∈ (0, λε).
(2.25)

Furthermore, by (2.23), Jελ extends by continuity to an operator Jελ : L1 → L1.
We note that the operator (Aε, D0(Aε)) is closed as an operator on L1. Hence,
by (2.23), Jελ(L1) ⊂ D0(Aε) and so, Jελ(f) solves (2.10) for all f ∈ L1.

Now, define D(Aε) := Jελ(L1) and restrict Aε to D(Aε). It is easy to see
that D(Aε) is independent of λ ∈ (0, λε). Furthermore, Jελ(f) is the unique
solution in D(Aε) of (2.10) for all f ∈ L1, λ ∈ (0, λε).

Now let 0 < λ1 < λε. Then, for λ ≥ λε, the equation

y + λAε(y) = f (∈ L1), y ∈ D(Aε), (2.26)

can be rewritten as

y + λ1Aε(y) =

(
1− λ1

λ

)
y +

λ1

λ
f,

equivalently,

y = Jελ1

((
1− λ1

λ

)
y +

λ1

λ
f

)
. (2.27)

Taking into account that, by (2.23), |Jελ1
(f1) − Jελ1

(f2)|1 ≤ |f1 − f2|1, it
follows that (2.27) has a unique solution yε ∈ D(Aε). Let Jελ(f) := yε,
λ ∈ [λε,∞), f ∈ L1, denote this solution to (2.26). Then, Jελ(f) is the
unique solution in D(Aε) of (2.10) for all λ > 0, f ∈ L1. By (2.27) we see
that (2.23), (2.24) extend to all λ > 0, f ∈ L1.

Let us prove that, for f ∈ L1 ∩ L2,

Jελ(f) ∈ H1 and βε(J
ε
λ(f)) ∈ G−1

ε (L2) for all λ > 0. (2.28)

Here is the argument. Fix λ1 ∈ [λε/2, λε) and set λ:=2λ1. Define T : L1→L1

by

T (y):=Jελ1

(
1

2
y +

1

2
f

)
, y ∈ L1.

12



Then, as just proved, for any f0 ∈ L1∩L2 we have lim
n→∞

T n(f0) = Jελ(f) in L1.

It suffices to prove
Jελ(f) ∈ L2, (2.29)

because then Jελ(f) = Jελ1
(g) with g := 1

2
Jελ(f)+ 1

2
f ∈ L1∩L2, and so (2.28)

follows by (2.25).
To prove (2.29), we note that by (2.25) we have, for n ∈ N,

(I + λ1Aε)T
n(f0) =

1

2
T n−1(f0) +

1

2
f

with T n(f0) ∈ H1 and βε(T
n(f0)) ∈ G−1

ε (L2). Hence, multiplying this equa-
tion, by T n(f0) and integrating over Rd we find

|T nf0|22 + λ1(Gε(βε(T
n(f0))), β−1

ε (βε(T
n(f0))))2

= λ1

∫
Rd

(Dεb
∗
ε(T

n(f0))) · ∇(T n(f0))dξ+

(
1

2
T n−1(f0) +

1

2
f, T n(f0)

)
2

.
(2.30)

We set

gε(r) :=

∫ r

0

b∗ε(τ)dτ, r ∈ R. (2.31)

By Hypothesis (iii) we have

0 ≤ gε(r) ≤ |b∗ε|∞r, r ∈ R,

and so the right hand side of (2.30) is equal to

−λ1(div Dε, gε(T
n(f0)))2 +

(
1

2
(T n−1(f0) + f), T n(f0)

)
2

.

By (2.20) we thus obtain

|T n(f0)|22 ≤ λ1|b∗ε|∞|(divDε)
−|2|T n(f0)|2 +

1

2
|T n(f0)|22

+
1

4
(|T n−1(f0)|22 + |f |22),

therefore, using Young’s inequality we obtain

|T n(f0)|22 ≤ Cε +
2

3
|T n−1(f0)|22,

Cε :=
16

3
λ2

1|b∗ε|2∞|(divDε)
−|22 +

2

3
|f |22.

13



Finally, we get

|T n(f0)|22 ≤ Cε

n∑
k=0

(
2

3

)k
+

(
2

3

)n
|f0|22, n ∈ N.

Hence, we get

|Jελ(f)|22 ≤ lim inf
n→∞

|T n(f0)|22 ≤ 3Cε <∞,

so, (2.29) holds for λ = 2λ1, and finally we get (2.29) for all λ > 0. �

We set

λ0 :=
(∣∣(div D)− + |D|

∣∣ 1
2

∞ |b|∞
)−1

, (2.32)

where 1
0

:=∞. Then, for f ∈ L1 ∩ L∞ and yε := Jελ(f), λ > 0, we have

|yε|∞ ≤ (1 +
∣∣|D|+ (divD)−

∣∣ 1
2

∞)|f |∞, ∀λ ∈ (0, λ0). (2.33)

Here is the argument. If Mε = |(divDε)
−|

1
2∞|f |∞, then we get by (2.10) that

(yε − |f |∞ −Mε) + λGε(βε(yε)− βε(|f |∞ +Mε))

+λΨ(ε)(βε(|f |∞ +Mε)) + λ div(Dε(b
∗
ε(yε)− b∗ε(|f |∞ +Mε))) ≤ 0,

(2.34)

because Gε1 = Ψ(ε) and F(1) = (2π)
d
2 δ0. Multiplying with Xδ((βε(yε) −

βε(|f |∞ +Mε)
+) in (2.34), letting δ → 0 and using (2.19), we get by (2.11)

yε ≤ (1 + ||D|+ (divD)−|
1
2∞)|f |∞, a.e. in Rd,

and, similarly, for −yε which yields (2.33) for λ ∈ (0, λ0). This yields

|Jελ(f)|1 + |Jελ(f)|∞ ≤ c1, ∀ε > 0, λ ∈ (0, λ0), (2.35)

where c1 = c1(|f |1, |f |∞) is independent of ε and λ.
Now, fix λ ∈ (0, λ0) and f ∈ L1 ∩ L∞. For ε ∈ (0, 1] set yε := Jελ(f).
Then, since βε(yε) ∈ H1 and Gεβε(yε) ∈ L2 by (2.28),

(yε, βε(yε))2 + λ(Gε(βε(yε)), βε(yε))2

= λ

∫
Rd

(Dεb
∗
ε(yε)) · ∇βε(yε)dr + (f, βε(yε))2.

(2.36)
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Setting

Ψ̃ε(r) :=

∫ r

0

b∗ε(τ)β′ε(τ)dτ, r ∈ R, (2.37)

by Hypotheses (iii), (iv) we have

0 ≤ Ψ̃ε(r) ≤
1

2
|b|∞(|β′|∞ + 1)r2, ∀r ∈ R,

and hence, since yε ∈ H1, the right hand side of (2.36) is equal to

−λ
∫
Rd

div DεΨ̃ε(yε)dx+ (f, βε(yε))2,

which, because (yε, βε(yε))2 ≥ 0 and H1 ⊂ HΨ ⊂ Hs (see (2.1)), by (2.11)
and Hypothesis (iv) implies that

λ|βε(yε)|2HΨ,ε ≤
1

2
λ|b|∞(|β′|∞ + 1)

∣∣(div D)− + |D|
∣∣
∞ |yε|

2
2

+
1

2
|βε(yε)|22 +

1

2
|f |22.

Since |βε(r)| ≤ (Lip(β) + 1)|r|, r ∈ R, by (2.35) we obtain

sup
ε∈(0,1]

|βε(yε)|2HΨ,ε ≤ C, (2.38)

for some C ∈ (0,∞). Obviously, we have for all u ∈ HΨ (⊂ ḢΨ) and all
ε ∈ (0, 1]

|Ψ(−∆)
1
2u|22 ≤ |Ψ(εI −∆)

1
2u|22 ≤ |Ψ(−∆)u|22 + Ψ(ε)|u|22, (2.39)

where we used the sub linearity of Ψ in the second step.
Hence, we conclude from (2.35) and (2.38) that (along a subsequence) as

ε→ 0,

βε(yε) → z weakly in HΨ, hence strongly in L2
loc(Rd) (by (2.1)),

Gε(βε(yε)) → Ψ(−∆)z in S ′,

yε → y weakly in L2 and weakly∗ in L∞.

The second statement follows, because Gε(ϕ)→ Ψ(−∆)ϕ in L2 for all ϕ ∈ S.
Hence (selecting another subsequence, if necessary), β(yε) → z, a.e. Since
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β−1 is continuous, it follows that yε → β−1(z) = y, a.e., and, therefore,
z = β(y) ∈ HΨ. Furthermore, we have

b∗ε(yε)→ b∗(y) weakly in L2.

Recalling that yε solves (2.10), we can let ε→ 0 in (2.10) to find that

y + λΨ(−∆)β(y) + λ div(Db∗(y)) = f in S ′. (2.40)

Since β ∈ Lip(R), the operator (A0, D(A0)) defined in (1.11) is closed in L1.
If y is as in (2.40), we define

Jλ(f) := y ∈ D(A0), λ ∈ (0, λ0).

Then (2.8) holds and it follows by (2.23) (which, as mentioned earlier, holds,
in fact, for all λ > 0) and Fatou’s lemma that for f1, f2 ∈ L1 ∩ L∞

|Jλ(f1)− Jλ(f2)|1 ≤ |f1 − f2|1. (2.41)

Hence Jλ extends continuously to all of L1, still satisfying (2.41) for all
f1, f2 ∈ L1. Then it follows by the closedness of (A0, D(A0)) on L1 that
Jλ(f) ∈ D(A0) and that it solves (2.40) for all f ∈ L1.

Clearly, (2.6) and (2.7) follow from (2.16) and (2.33), respectively.
Hence, Lemma 2.2 is proved except for (2.4) and (2.5). Equation (2.4) is

obvious, since by (2.2) it is equivalent to

(I + λ1A0)Jλ2(f) =
λ1

λ2

f +

(
1− λ1

λ2

)
Jλ2f,

or, equivalently,
(I + λ2A0)Jλ2(f) = f.

Now, let us prove (2.5). We may assume that f ∈ L1 ∩ L∞ and set
y := Jλ(f). Let ψn ∈ C∞0 (Rd), ψn ↑ 1, as n→∞, lim

n→∞
∇ψn = 0 on Rd, with

sup
n
|∇ψn|∞ <∞. Define

ϕn := (I + Ψ(−∆))−1ψn = gΨ
1 ∗ ψn, n ∈ N,

where gΨ
ε is as in the Appendix. Then, we have by (A.2)

ϕn ↑ 1, ∇ϕn → 0 on Rd as n→∞,
sup
n

(|ϕn|∞ + |∇ϕn|∞) <∞, ϕn ∈ L1 ∩H2s, n ∈ N. (2.42)
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Furthermore,

Ψ(−∆)ϕn = ψn − (I + Ψ(−∆))−1ψn ∈ L1 ∩ L∞,

are bounded in L∞ and, as n→∞, Ψ(−∆)ϕn → 0 dx− a.e. Hence,

lim
n→∞

∫
Rd

Ψ(−∆)ϕn β(y)dx = 0. (2.43)

Consequently, since β(y) ∈ L1, y ∈ D(A) with A0y ∈ L1, we have

∫
Rd
A0y dx = lim

n→∞

∫
Rd
ϕnA0y dx

= −
∫
Rd
β(y)dx+ lim

n→∞ S〈ϕn, (I + Ψ(−∆))β(y) + div(Db∗(y))〉S′

= −
∫
Rd
β(y)dx+ lim

n→∞

∫
Rd

(I + Ψ(−∆))ϕn β(y)dx+ lim
n→∞

∫
Rd
∇ϕn ·Db∗(y)dx,

which by (2.42) and (2.43) is equal to zero. Hence, integrating the equation
y + λA0y = f over Rd, (2.5) follows. �

Now, define the operator A by

D(A) := Jλ(L
1) (⊂ D(A0)),

A(y) := A0(y), y ∈ D(A).
(2.44)

It is easily seen that Jλ(L
1) is independent of λ ∈ (0, λ0) and that

Jλ = (I + λA)−1, λ ∈ (0, λ0).

Therefore, we have

Lemma 2.3. Under Hypotheses (i)–(iv), the operator A is m-accretive in L1

and (I+λA)−1 = Jλ, λ ∈ (0, λ0). Moreover, if β ∈ C∞(R), then D(A) = L1.

(Here, D(A) is the closure of D(A) in L1.) Indeed, if β ∈ C∞(R), then by
assumption (ii)

A0(ϕ) = Ψ(−∆)β(ϕ) + div(Db(ϕ)ϕ) ∈ L1, ∀ϕ ∈ C∞0 (Rd),

and so D(A) = L1, as claimed.
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Then, by the Crandall & Liggett theorem (see, e.g., [1], p. 131), the
Cauchy problem (1.10) has, for each u0 ∈ D(A), a unique mild solution
u = u(t, u0) ∈ C([0,∞);L1) and S(t)u0 = u(t, u0) is a C0-semigroup of
contractions on L1, that is,

|S(t)u0 − S(t)ū0|1 ≤ |u0 − ū0|1, ∀u0, ū0 ∈ D(A),

S(t+ τ)u0 = S(t, S(τ)u0), ∀t, τ > 0; u0 ∈ D(A),

lim
t→0

S(t)u0 = u0 in L1(Rd).

Moreover, by (2.7) and the exponential formula

S(t)u0 = lim
n→∞

(
Jnt
n

)−n
u0, ∀ t ≥ 0,

it follows that
|S(t)u0|∞ ≤ eγt|u0|∞, ∀t ≥ 0,

where γ = (1 + ||D|+ (divD)−|
1
2
∞). Hence, if u0 ∈ L1 ∩ L∞, then S(t)u0 ∈

L∞((0, T )× Rd), T > 0. Furthermore, by (2.6) if u0 ≥ 0, then S(t)u0 ≥ 0.
Let us show now that u = S(t)u0 is a Schwartz distributional solution,

that is, (1.14) holds. By (1.12), we have∫ ∞
0

dt

(∫
Rd
ϕ(t, x)(uh(t, x)− uh(t− h, x)

)
dx

+

∫
Rd

(ϕ(t, x)Ψ(−∆)β(uh(t, x))−∇xϕ(t, x) ·D(x)b∗(uh((x)))dx) = 0,

∀ϕ ∈ C∞0 ([0,∞)× Rd).

This yields

1

h

∫ ∞
0

dt

(∫
Rd
uh(t, x)(ϕ(t+ h, x)− ϕ(t, x))

)
dx

+

∫
Rd

(β(uh(t, x))Ψ(−∆)ϕ(t, x)−∇xϕ(t, x) ·D(x)b∗(uh(t, x))dx)

+
1

h

∫ h

0

dt

∫
Rd
u0(x)ϕ(t, x)dx = 0, ∀ϕ ∈ C∞0 ([0,∞)× Rd).

Taking into account that, by (1.12) and assumptions (i)–(iii), β(uh)→ β(u),
b∗(uh) → b∗(u) in C([0, T ];L1) as h → 0 for each t > 0, we get that (1.14)
holds.

We have, therefore, the following existence result for equation (1.1).
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Theorem 2.4. Assume s ∈
(

1
2
, 1
)

and that Hypotheses (i)–(v) hold. Then,
there is a C0-semigroup of contractions S(t) : L1 → L1, t ≥ 0, such that
for each u0 ∈ D(A), which is L1 if β ∈ C∞(R), u(t, u0) = S(t)u0 is a mild
solution to (1.1). Moreover, if u0 ≥ 0, a.e. on Rd,

u(t, u0) ≥ 0, a.e. on Rd, ∀ t ≥ 0, (2.45)∫
Rd
u(t, u0)(x)dx =

∫
Rd
u0(x)dx, ∀ t ≥ 0. (2.46)

Moreover, u is a distributional solution to (1.1) on [0,∞)× Rd. Finally,
if u0 ∈ L1 ∩ L∞, then all above assertions remain true, if we drop the as-
sumption β ∈ Lip(R) from Hypothesis (i), and additionally we have that
u ∈ L∞((0, T )× Rd), T > 0.

3 The uniqueness of distributional solutions

In general, the mild solution u given by Theorem 2.4 is not unique because
the operator A constructed in Lemma 2.3 dependends on the approximating
operators Aεy ≡ Ψ(εI −∆)βε(y) + div(Dεbε(y)y) and so u = S(t)u0 may be
viewed as a viscosity-mild solution to (1.1). However, as seen here, this mild
solution is even unique in the much larger class of distributional solutions
under the following hypotheses on β, b and D:

(j) β ∈ C1(R), β′(r) > 0, ∀ r ∈ R, β(0) = 0.

(jj) D ∈ L∞(Rd;Rd).

(jjj) b ∈ C1(R).

Namely, we have

Theorem 3.1. Assume that 0 < T <∞, d ≥ 2, and that Hypotheses (j)–(jjj)
and (v) hold. Let y1, y2 ∈ L∞((0, T )×Rd) be two distributional solutions to
(1.1) on (0, T )×Rd (in the sense of (1.14)) such that y1−y2 ∈ L1((0, T )×Rd)
∩L∞(0, T ;L2) and

lim
t→0

ess sup
s∈(0,t)

|(y1(s)− y2(s), ϕ)2| = 0, ∀ϕ ∈ C∞0 (Rd). (3.1)

Then y1 ≡ y2. If D ≡ 0, then Hypothesis (j) can be relaxed to

(j)′ β ∈ C1(R), β′(r) ≥ 0, ∀ r ∈ R, β(0) = 0.
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Proof. (The proof is similar to that of Theorem 3.1 in [6], but it has to be
adapted substantially.) Replacing, if necessary, the functions β and b by

βN(r) =


β(r) if |r| ≤ N,

β′(N)(r −N) + β(N) if r > N,

β′(−N)(r +N) + β(−N) if r < −N,

bN(r) =


b(r) if |r| ≤ N,

b′(N)(r −N) + b(N) if r > N,

b′(−N)(r +N) + b(−N) if r < −N,
where N ≥ max{|y1|∞, |y2|∞}, by (j) we may assume that

β′, b′ ∈ Cb(R), β′ > α2 ∈ (0,∞) (3.2)

and, therefore, we have

α1|β(r)− β(r̄)| ≥ |b∗(r)− b∗(r̄)|, ∀ r, r̄ ∈ R, (3.3)

(β(r)− β(r̄))(r − r̄) ≥ α3|β(r)− β(r̄)|2, ∀ r, r̄ ∈ R, (3.4)

where b∗(r) = b(r)r, α1 ≥ 0, and α3 := |β′|−1
∞ . We set

Φε(y) = (εI + Ψ(−∆))−1y, ∀ y ∈ L2,

z = y1 − y2, w = β(y1)− β(y2), b∗(yi) ≡ b(yi)yi, i = 1, 2.
(3.5)

As seen in the Appendix, the operator Φε is well defined. Moreover, it follows
that Φε : Lp → Lp, ∀p ∈ [1,∞] and

ε|Φε(y)|p ≤ |y|p, ∀y ∈ Lp, ε > 0. (3.6)

We have

zt + Ψ(−∆)w + divD(b∗(y1)− b∗(y2)) = 0 in D′((0, T )× Rd).

We set

zε = z ∗ θε, wε = w ∗ θε, ζε = (D(b∗(y1)− b∗(y2))) ∗ θε, (3.7)

where θ ∈ C∞0 (Rd), θε(x) ≡ ε−dθ
(
x
ε

)
is a standard mollifier. We note that

zε, wε, ζε,Ψ(−∆)wε, div ζε ∈ L2(0, T ;L2) and we have
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(zε)t + Ψ(−∆)wε + div ζε = 0 in D′(0, T ;L2). (3.8)

This yields Φε(zε),Φε(wε), div Φε(ζε) ∈ L2(0, T ;L2) and

(Φε(zε))t = −Ψ(−∆)Φε(wε)− divΦε(ζε) = 0 in D′(0, T ;L2). (3.9)

By (3.8), (3.9) it follows that (zε)t = d
dt
zε, (Φε(z))t = d

dt
Φε(zε) ∈ L2(0, T ;L2).

This implies that zε,Φε(zε) ∈ H1(0, T ;L2) and both [0, T ] 3 t 7→ zε(t) ∈ L2

and [0, T ] 3 t 7→ Φε(zε(t)) ∈ L2 are absolutely continuous. Moreover, it
follows by (3.6) and (3.9) that

Φε(zε),Φε(wε) ∈ L2(0, T ;L2). (3.10)

We set hε(t) = (Φε(zε(t)), zε(t))2 and get

h′ε(t) = 2(zε(t), (Φε(zε(t)))t)2 (3.11)

= 2(εΦε(wε(t))−wε(t)−divΦε(ζε(t)), zε(t))2

= 2ε(Φε(zε(t)), wε(t))2+2(∇Φε(zε(t)), ζε(t))2

−2(zε(t), wε(t))2, a.e. t ∈ (0, T ).

By (3.9)–(3.11) it follows that t→ hε(t) has an absolutely continuous dt-
version on [0, T ] which we shall consider from now on. Since, by (3.4), we
have

(zε(t), wε(t))2 ≥ α3| |w(t)| ∗ θε|22 + γε(t), (3.12)

γε(t) := (zε(t), wε(t))2 − (z(t), w(t))2, (3.13)

we get, by (3.3) and (3.10),

0 ≤ hε(t) ≤ hε(0+)+2ε

∫ t

0

(Φε(zε(s)), wε(s))2ds−2α2

∫ t

0

|wε(s)|22ds

+2α1|D|∞
∫ t

0

|∇Φε(zε(s))|2|wε(s)|2ds+ 2

∫ t

0

|γε(s)|ds, ∀t ∈ [0, T ].

(3.14)

Moreover, since z ∈ L∞((0, T )× Rd), by (3.6) we have

ε|Φε(zε(t))|∞ ≤ |zε(t)|∞ ≤ |z(t)|∞, a.e. t ∈ (0, T ). (3.15)

As t→ Φε(zε(t)) has an L2 continuous version on [0, T ], there exists f ∈ L2

such that lim
t→0

Φε(zε(t)) = f in L2. Furthermore, for every ϕ ∈ C∞0 (Rd),

s ∈ (0, T ),

0 ≤ hε(s) ≤ |Φε(zε(s))− f |2|zε(s)|2 + |f − ϕ|2|zε(s)|2 + |(ϕ ∗ θε, z(s))2|,

and so, by (3.1),
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0 ≤ hε(0+) = lim
t↓0

hε(t) = lim
t→0

ess sup
s∈(0,t)

hε(s)

≤
(

lim
t→0
|Φε(zε(t))− f |2 + |f − ϕ|2

)
|zε|L∞(0,T ;L2)

+ lim
t→0

ess sup
s∈(0,t)

|(ϕ ∗ θε, z(s))2| = |f − ϕ|2|zε|L∞(0,T ;L2).

Since C∞0 (Rd) is dense in L2(Rd), we find

hε(0+) = 0. (3.16)

On the other hand, taking into account that, for a.e. t ∈ (0, T ),

εΦε(zε(t)) + Ψ(−∆)Φε(zε(t)) = zε(t), (3.17)

we get that, for a.e. t ∈ (0, T ),

ε|Φε(zε(t))|22 + |(Ψ(−∆))
1
2 Φε(zε(t))|22 = (zε(t),Φε(zε(t)))2 = hε(t), (3.18)

ε|(Φε(zε(t), wε(t)))2| ≤ ε|Φε(zε(t))|∞|wε(t)|1 ≤ |z(t)|∞|w(t)|1. (3.19)

By (3.17), we have

F(Φε(zε(t))) = (ε+ Ψ(|ξ|2))−1F(zε(t)). (3.20)

Therefore, by Parseval’s formula,

|∇Φε(zε(t))|22 =

∫
Rd

|F(zε(t))(ξ)|2|ξ|2

(ε+ Ψ(|ξ|2))2
dξ, ∀t ∈ (0, T ),

hε(t) =

∫
Rd

|F(zε(t))(ξ)|2

ε+ Ψ(|ξ|2)
dξ, ∀t ∈ (0, T ).

Then, by (1.9) this yields for some C ∈ (0,∞) independent of ε

|∇Φε(zε(t))|22 ≤ CR2(1−s)
∫

[|ξ|≤R]

|F(zε(t))(ξ)|2

ε+ Ψ(|ξ|2)
dξ

+C

∫
[|ξ|≥R]

|F(zε(t))(ξ)|2|ξ|2(1−2s)dξ

≤ CR2(1−s)hε(t) + CR2(1−2s)|zε(t)|22,

(3.21)

∀t ∈ (0, T ), R > 0, because 2s ≥ 1.
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We shall now prove that

lim
ε→0

ε(Φε(zε(t)), wε(t))2 = 0, a.e. t ∈ (0, T ). (3.22)

By (3.20) and (1.9) it follows for some C ∈ (0,∞) independent of ε

|(Φε(zε(t)), wε(t))2| = |(F(Φε(zε(t)),F(wε(t)))2|

≤ C

∫
Rd

|F(zε(t))(ξ)| |F(wε(t))(ξ)|
ε+ |ξ|2s

dξ

≤ C

(∫
Rd

∣∣∣∣F(zε(t))

ε+ |ξ|2s

∣∣∣∣2 dξ
) 1

2

|wε(t)|2,

and since
F(zε(t))

ε+ |ξ|2s
= F((εI + (−∆)s)−1zε(t)), t ∈ (0, T ),

this yields

|(Φε(zε(t)), wε(t))2| ≤ C|(εI + (−∆)s)−1zε(t)|2|w(t)|2. (3.23)

On the other hand, for each f ∈ L2(Rd), by [6, Appendix] we have

(εI + (−∆)s)−1f(x) =

∫
Rd
gsε(x− ξ)f(ξ)dξ, (3.24)

where

gsε(x) =

∫ ∞
0

e−ετdτ

∫ ∞
0

e−
|x|2
4r

(4πr)
d
2

ηsτ (dr),

and (ηsτ )τ≥0 is the one-sided stable semigroup of order s ∈
(

1
2
, 1
)
.

By (A.4), (A.7) and (A.10) in [6], we have

ε

∫
Rd
gsε(x)dx = 1, (3.25)

gsε ∈ L∞(Rd \BR(0)), ∀R > 0, gsε(x) = ε
d−2s

2s gs1(ε
1
2s x), (3.26)

where BR(0) is the ball of radius R around the origin in Rd.
Then, by (3.24)–(3.26), we have via the Young inequality
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ε|(εI + (−∆)s)−1zε(t)|2 = ε|gsε ∗ zε(t)|2 ≤ ε|gsε ∗ zε(t)|
1
2∞|gsε ∗ zε(t)|

1
2
1

≤ ε
1
2 |zε(t)|

1
2
1 sup
x∈Rd

(∫
Rd
gsε(x− ξ)|zε(t)(ξ)|dξ

) 1
2

≤ ε
d
4s sup
x∈Rd

(∫
Rd
gs1

(
ε

1
2s (x− ξ)

)
|zε(t)(ξ)|dξ

) 1
2

|z(t)|
1
2
1

≤ Cδ ε
d
4s |z(t)|1

+ ε
d
4s |z(t)|

1
2∞

(∫
[ε

1
2s |x−ξ|≤δ]

gs1

(
ε

1
2s (x− ξ)

)
dξ

) 1
2

|z(t)|
1
2
1 <∞,

(3.27)

where Cδ = sup{gs1(ξ); |ξ| > δ}. Now, letting first ε → 0 and then δ → 0,
(3.22) follows by (3.23) and (3.25).

Then, by (3.19) it follows that

lim
ε→0

ε

∫ t

0

(Φε(zε(s)), wε(s))2ds = 0, t ∈ [0, T ]. (3.28)

Next, by (3.14), (3.16) and (3.21), we have

0 ≤ hε(t) ≤ 2ε

∫ t

0

|(Φε(zε(r)), wε(r))2|dr − 2α3

∫ t

0

|wε(r)|22dr

+2α1|D|∞
∫ t

0

|∇Φε(zε(r))|2|wε(r)|2dr + 2

∫ t

0

|γε(r)|dr

≤ ηε(t) + 2α1|D|∞C
1
2

∫ t

0

(
R1−sh

1
2
ε (r) +R1−2s|zε(r)|2

)
|wε(r)|2dr

−2α3

∫ t

0

|wε(r)|22dr, ∀ t ∈ [0, T ], R > 0,

where

ηε(t) := 2ε

∫ t

0

|(Φε(zε(r)), wε(r))2|dr + 2

∫ t

0

|γε(r)|dr.

This yields

0≤hε(t)≤ηε(t)+2α1|D|∞C
1
2

(
R2(1−s)λ

∫ t

0

hε(r)dr+

∫ t

0

(
R1−2s|zε(r)|22

+
( 1

4λ
+R1−2s

)
|wε(r)|22

)
dr

)
− 2α3

∫ t

0

|wε(r)|22dr, ∀λ > 0, R > 0.

(3.29)
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Taking into account that, by (3.2),

|z(t)|2 ≤ α−1
2 |w(t)|2, ∀t ∈ (0, T ), (3.30)

we have
|zε(t)|2 ≤ α−1

2 |wε(t)|2 + νε(t), ∀t ∈ (0, T ), (3.31)

where νε(t) := α−1
2 |w(t)− wε(t)|2. Then, for

η̃ε(t) := ηε(t) +

∫ t

0

νε(r)dr,

we get for λ, R > 0, large enough

0 ≤ hε(t) ≤ η̃ε(t) + C

∫ t

0

hε(r)dr, for t ∈ [0, T ], (3.32)

where C > 0 is independent of ε and lim
ε→0

η̃ε(t) = 0 for all t ∈ [0, T ].

By (3.32), it follows that

0 ≤ hε(t) ≤ η̃ε(t) exp(Ct), ∀ t ∈ [0, T ]. (3.33)

This implies that hε(t)→ 0 as ε→ 0 for every t ∈ [0, T ], hence by (3.18) the
left hand side of (3.17) converges to zero in S ′. Thus, 0 = lim

ε→0
zε(t) = z(t) in

S ′ for a.e. t ∈ (0, T ), which implies y1 ≡ y2. If D ≡ 0, we see by (3.14) and
(3.16) that 0 ≤ hε(t) ≤ ηε(t), ∀ t ∈ (0, T ), and so by (3.28) the conclusion
follows without invoking that β′ > 0, which was only used to have (3.30). �

Remark 3.2. It should be noted that Theorem 3.1 is compatible with
Theorem 2.4 because under Hypotheses (i)–(v) there is an L1(0, T ;Rd) ∩
L∞(0, T ;Rd) distributional solution to (1.1).

Similarly as Theorem 3.1, one also obtains linearized uniqueness for equa-
tion (1.14).

Theorem 3.3. Under the assumptions of Theorem 3.1, let T > 0, u ∈
L∞((0, T )×Rd) and let y1, y2 ∈ L∞((0, T )×Rd) with y1−y2 ∈ L1((0, T )×Rd)
∩L∞(0, T ;L2) be two distributional solutions to the equation

yt + Ψ(−∆)

(
β(u)

u
y

)
+ div(yDb(u)) = 0 on (0, T )× Rd,

y(0) = u0,

(3.34)

where u0 is a measure of finite variation on Rd and β(0)
0

:= β′(0). If (3.1)
holds, then y1 ≡ y2.
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Proof. The proof is essentially the same as that of Theorem 3.1 and, there-
fore, it will be sketched only. We note first that, by Hypotheses (j)–(jjj),

β(u)

u
, b(u) ∈ L∞((0, T )× Rd),

and, by (3.2)–(3.5),

|Db(u)|∞ ≤ C1

∣∣∣∣β(u)

u

∣∣∣∣
∞
≤ C2

∣∣∣∣β(u)

u

∣∣∣∣ ≥ α2, a.e. in (0, T )× Rd.

If z = y1 − y2, w = β(u)
u

(y1 − y2), we have therefore

wz ≥ α2|w|2, a.e. on (0, T )× Rd, (3.35)

|Db(u)z| ≤ C2|w|, a.e. on (0, T )× Rd. (3.36)

We have
zt + Ψ(−∆)w + div(Db(u)z) = 0 in (0, T )× Rd,

and this yields (see (3.8))

(zε)t + Ψ(−∆)wε + div ζε = 0 in (0, T )× Rd, (3.37)

where zε, wε are as in (3.7) and ζε = (D(b(u))z) ∗ θε. If Φε is given by (3.5),
by (3.37) we get (3.9) and, if hε(t) = (Φε(zε(t), zε(t))), then (3.11) follows
and so, by (3.35) we get also in this case the estimates (3.12) and (3.14).
From now on the proof is exactly the same as that of Theorem 3.1. Namely,
one gets that hε(0+) = 0 and also that (3.21) and (3.28) hold. Finally, one
gets (3.29) and, taking into account (3.30)–(3.31), one obtains that (3.33)
holds and so z ≡ 0, as claimed. �

4 Applications to corresponding nonlinear

martingale problems

In this section we fix T ∈ (0,∞) and need the following additional hypotheses
on Ψ:

(vi)

∫ ∞
1

log sµ(ds) <∞.

This is e.g. fulfilled if µ is as in (1.8).
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4.1 Existence

Assume that Hypotheses (i)–(vi) hold and consider the nonlocal Kolmogorov
operator corresponding to (1.1), i.e.,

Ku(t)f(x) =
β(u(t, x))

u(t, x)
(Ψ(−∆)f)(x)+b(u(t, x))D(x) ·∇f(x), x ∈ Rd, (4.1)

where f ∈ C2
c := C2

c (Rd) and u is the solution to (1.1) from Theorem 2.4
with initial condition u0 ∈ L1 ∩ L∞.

By Theorem 13.6 in [22] it follows that, for all f ∈ C2
c ,

(Ψ(−∆)f)(x) =

∫
(0,∞)

∫
Rd

(f(x)− f(x+ z))
1√
4πt

e−
|z|2
4t dzµ(dt)

=

∫
Rd

(f(x)− f(x+ z))ν(|z|)dz,
(4.2)

where

ν(r) =

∫
(0,∞)

1√
4πt

e−
r2

4t µ(dt), r ∈ (0,∞).

Then, since β(u)
u
∈ L∞((0, T )×Rd), by (vi) it is easily seen that Ku(t) is a Kol-

mogorov operator of the type considered in Section 1.2 in [21], which satisfies
condition (1.18) in [21]. Thus, by Theorem 1.5 (”superposition principle”) in
[21] and Remark 1.6 in [21], we get

Theorem 4.1. Under Hypotheses (i)–(vi), there exists a probability measure
P on the Skorohod space D([0, T ];Rd), which is a solution to the martingale
problem corresponding to (Ku(t,·), C

2
c ) in the sense of Definition 1.3 in [21]

with one dimensional time marginal densities given by u(t, x), t ∈ [0, T ],
x ∈ Rd, i.e. for the canonical process Xt, t ∈ [0, T ], defined by Xt(w) = w(t),
w ∈ D([0, T ];Rd), we have

(P ◦X−1
t )(dx) = u(t, x)dx, t ∈ [0, T ]. (4.3)

Remark 4.2. The probability measure P in Theorem 4.1 is called a solution
to the nonlinear martingale problem corresponding to (K�, C

2
c ), because it

solves the linear martingale problem corresponding to (KLXt , C
2
c ), where LXt

is its own one dimensional time marginal law density and KLXt is defined
as in (4.1) with LXt replacing u(t, ·), t ∈ [0, T ]. We refer to the pioneering
work [14], where such nonlinear martingale problems were studied for local
Kolmogorov operators.
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4.2 Uniqueness

Theorem 4.3. Assume that Hypotheses (j)–(jjj),(v),(vi) (respectively, (j)′,(jj),

(jjj),(v),(vi) if D ≡ 0) hold. Let P, P̃ be probability measures on D([0, T ];Rd)

such that their time marginals, P ◦ X−1
t , P̃ ◦ X−1

t have densities LX(t), and

L̃Xt respectively, w.r.t. Lebesgue measure for all t ∈ [0, T ] such that

((t, x)→ LXt(x)), ((t, x)→ L̃Xt(x)) ∈ L∞((0, T )× Rd). (4.4)

If P and P̃ are solutions to the nonlinear martingale problem (K�, C
2
c ), i.e.

(see Remark 4.2), they are solutions to the linear martingale problems cor-
responding to (KLXt , C

2
c ), (KL

X̃t
, C2

c ), respectively, in the sense of [21], Defi-

nition 1.3, then P = P̃.

Proof. Clearly, by Dynkin’s formula, both

µt(dx) := LXt(x)dx and µ̃t(dx) := LX̃t(x)dx, t ∈ [0, T ],

solve the Fokker–Planck equation (1.14) with the same initial condition
u0(dx) := u0(x)dx, hence satisfy (3.1) with y1(t) := LXt and y2(t) := LX̃t .
Hence, by Theorem 3.1

LXt = LX̃t , for all t ≥ 0,

since t 7→ LXt(x)dx and t 7→ LX̃t(x)dx are both narrowly continuous and
are probability measures for all t ≥ 0, so both are in L∞(0, T ;L1 ∩ L∞) ⊂
L∞(0, T ;L2).

Now, fixing LXt from above, consider the linear Fokker–Planck equation

vt + Ψ(−∆)

(
β(LXt)
LXt

v

)
+ div(Db(u)v) = 0,

v(0, x) = u0(x),

(4.5)

again in the weak (distributional) sense analogous to (1.14). Then, by Theo-
rem 3.3 we conclude that LXt , t ∈ [0, T ], is the unique solution to (4.5) in

L∞(0, T ;L1 ∩ L∞). Clearly, both P and P̃ solve the (linear) martingale pro-
blem with initial condition u0(dx) := u0(x)dx corresponding to (KLXt , C

2
c ).

Since the above is true for all u0 ∈ L1∩L∞, and also holds when we consider
(1.1), resp. (4.5), with start in s > 0 instead of zero, it follows by exactly

the same arguments as in the proof of Lemma 2.12 in [23] that P = P̃. �
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Theorem 4.4. For s ∈ [0,∞) and ζ ∈ Z := {ζ ≡ ζ(x)dx | ζ ∈ L1 ∩ L∞,
ζ ≥ 0, |ζ|1 = 1}, let P(s,ζ) denote the solution to the nonlinear martingale
problem corresponding to (K�, C

2
c ) with the initial condition ζ at the initial

time s from Theorems 4.1 and 4.3. Then, P(s,ζ), (s, ζ) ∈ [0,∞)× Z, form a
nonlinear Markov process in the sense of Definition 2.1 in [18], i.e. in the
sense of McKean [16].

Proof. The assertion follows from Corollary 3.8 in [18] (see also Example
(iii) in Section 4.2 of [18] for the special case with Ψ(r) := rs, s ∈

(
1
2
, 1
)
). �

Remark 4.5. Equation (4.3) in Theorem 4.1 says that our solution u of
(1.1) from Theorem 2.4 is the one dimensional time marginal law density of a
cadlàg nonlinear Markov process. This realizes McKean’s vision formulated
in [16] for solutions to nonlinear parabolic PDEs, namely to identify the
solutions to the latter as one-dimensional time marginal law densities of
a nonlinear Markov process. So, our results show that this is indeed also
possible for nonlocal PDEs of type (1.1).

Appendix: Representation and properties
of the integral kernel of (εI + Ψ(−∆))−1

Let ε > 0. We have, for u ∈ L2, ξ ∈ Rd,

F((εI + Ψ(−∆))−1u)(ξ) =
1

ε+ Ψ(|ξ|2)
Fu(ξ)

=

∫ ∞
0

e−εt e−tΨ(|ξ|2)dtFu(ξ)

(1.7)
==

∫ ∞
0

e−εt
∫ ∞

0

e−r|ξ|
2

ηΨ
t (dr)dtFu(ξ)

= (2π)
d
2

∫ ∞
0

e−εt
∫ ∞

0

F(pr)(ξ)η
Ψ
t (dr)dtFu(ξ),

where

pr(x) :=
1

(4πr)
d
2

e−
1
4r
|x|2 , x ∈ Rd.

Hence, defining

gΨ
ε (x) :=

∫ ∞
0

e−εt
∫ ∞

0

pr(x)ηΨ
t (dr)dt, x ∈ Rd, (A.1)
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we have
(εI + Ψ(−∆))−1u = gΨ

ε ∗ u.

Since ηΨ
t , t ≥ 0, are probability measures, we have

ε

∫
Rd
gΨ
ε dx = 1, ∀ε > 0. (A.2)

Acknowledgements. This work was supported by the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation) – Project ID 317210226 –
SFB 1283 and by a grant of the Ministry of Research, Innovation and Digiti-
zation, CNCS–UEFISCDI project PN-III-P4-PCE-2021-0006, within PNCDI
III. A part of this work was done during a very pleasant stay of the third
named author at the University of Madeira as a guest of the second named
author.

References

[1] Barbu, V., Nonlinear Differential Equations of Monotone Type in Ba-
nach Spaces, Springer, Berlin. Heidelberg. New York, 2010.
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