SINGULAR KINETIC EQUATIONS AND APPLICATIONS

ZIMO HAO, XICHENG ZHANG, RONGCHAN ZHU, AND XIANGCHAN ZHU

ABSTRACT. In this paper we study singular kinetic equations on R2?¢ by the paracontrolled distribution
method introduced in [GIP15]. We first develop paracontrolled calculus in the kinetic setting, and use it to
establish the global well-posedness for the linear singular kinetic equations under the assumptions that the
products of singular terms are well-defined. We also demonstrate how the required products can be defined
in the case that singular term is a Gaussian random field by probabilistic calculation. Interestingly, although
the terms in the zeroth Wiener chaos of regularization approximation are not zero, they converge in suitable
weighted Besov spaces and no renormalization is required. As applications the global well-posedness for a
nonlinear kinetic equation with singular coefficients is obtained by the entropy method. Moreover, we also
solve the martingale problem for nonlinear kinetic distribution dependent stochastic differential equations
with singular drifts.
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1. INTRODUCTION
In this paper we are concerned with the following nonlinear kinetic equation with singular drifts in R2?:
Ou=Apu—v-Veu—>b-Vyu— K x(u)- Vyu, u(0)=u, (1.1)
where u : Ry x R* — R is a function of time variable ¢, position  and velocity v, (u)(t, ) = [pq u(t, z,v)dv

stands for the mass, K : R* — R? is a kernel function and

K (u)t,z) = | K@ —y){u)(ty)dy,
R
and for some o € (3,2) and T > 0,
b= (b1, ,ba) € (LFC(p))", (1.2)

is a Gaussian random field and the example of b which we have in mind is white noise in v and colored in
x. Here p is a polynomial weight and C_ *(p) stands for the weighted anistrophic Holder space introduced
in Subsection 2.1. The aim of this paper is to establish the well-posedness for the above singular SPDE and
the associated distributional dependent SDEs (see (1.8) below) under suitable assumptions. In Subsection
1.1 we state the main results under suitable analytic assumptions, which could be verified by probabilistic
assumptions on the covariance of b in Section 7.

The kinetic equation was originally introduced by Landau in 1936 to study the plasma phenomenon in
physics, which is a nonlinear PDE with square and nonlocal second order term (see [Lan36], [AV04] and
references therein). As model equations, we consider the following two linear kinetic equations

L= (0—v- -V —Ayu=f, (1.3)

L'u=(0r+v-Vy—Ayu=f.

where .Z is also called Kolmogorov operator since in [Kol34], he first wrote down the fundamental solution
of .Z (see (3.2) below). These two equations have the following relation:

7L =L (tu), Tu(t,z,v)=u(t,x,—v)

and transform 7 influences nothing in our formulation.
Now we consider the following scaling transform: for A > 0 and a,b,c > 0, let

ux(t, z,v) == XN u(\t, Xz, M),  falt,z,v) == (A%, Az, Av).
It is easy to check that
Luy=fra<=a=-2,b=2,c=3. (1.4)

Next we consider the improvement of the regularities in « and v for (1.3). Suppose that for some « € (0, 1)
and 8,7y > 0, there is a constant C' > 0 such that for all A > 0,

[ur]ga+r S [flegs [un]ga+s Sc [files, (1.5)
where for any ~v > 0,

+1
9oy = sup 65 glloe /IR
heR

with d,.n9(x,v) := g(x + h,v) — g(z,v) and 5;%4'1) = 5r;h5i%), similarly for [g]s. Note that

[ualgatr = )\3(a+7)72[u]0g+% fles = A% [flos,
and
[ur]gats = A"*B‘Q[u]cgw, [falce = A [f]ca.
Under scaling invariant (1.5), we must have

y=2/3, B=2.
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In other words, the gains of the regularities for kinetic equation (1.3) in z and v are % and 2, respectively.
Thus the following Schauder’s estimate is expected: for any «, 8 > 0, there is a constant C = C(«, 8,d) > 0

such that
lull e gotars + ull e cave S llfllges + 11l eocs (1.6)

where C2 and C? stand for the Holder spaces in directions x and v, respectively. Due to different scaling
and regularity between z and v variables, we study (1.1) in the anistrophic Holder space (see Subsection 2.1
for definition).

When o = 3/3 > 0, Schauder’s estimate (1.6) has been studied extensively in [Lo05], [Pr09] (see [HWZ20],
[IS21] for nonlocal version), and the maximal LP-regularity estimates were obtained in [Bo02] (see also [CZ18],
[HMP19] and [ZZ21] for stochastic version). We mention that the structure of Lie group was introduced to
define the kinetic Holder spaces for the Schauder estimates in [IS21] (see also earlier work [Po04]). In the
current work, we introduce the kinetic Holder space, which is equivalent to the one introduced in [IS21],
without using the notion of Lie group.

One motivation for studying kinetic equation (1.1) with distribution valued coefficient b is to develop
solution theory for degenerate singular SPDEs. When « > %, due to the singularity of the coefficients b in
(1.2), the best regularity of the solution to (1.1) is in L C2~%, which makes the linear term b- V,u not well
defined in the classical sense. Such kind of problems also arise in the understanding of singular SPDEs, such
as famous KPZ equations [KPZ86], which have been intensely studied recently. Hairer in [Hail4] developed
the regularity structure theory to give a meaning to a large class of singular SPDEs. Parallel to that, a
paracontrolled distribution method was proposed by Gubinelli, Imkeller and Perkowski [GIP15], which is
also a powerful tool for studying singular SPDEs. The key idea of these theories is to use the structure
of solutions to give a meaning to the terms which are not classically defined. These terms are well-defined
with the help of probabilistic calculation and renormalization for the “enhanced noise”, i.e. the noise and
the higher order terms appearing in the decomposition of the equations. Based on these idea the solution
theories for quasilinear parabolic singular SPDEs, Schrédinger and wave equations driven by singular noise
have been developed in [OW19, OSSW18, GHal9, OSSW21] and [DW18, GKO18, GKO18a] (see also the
references therein). In this paper we aim to develop paracontrolled distribution calculus for the degenerate
kinetic SPDEs with singular coefficients.

Going back to kinetic equation (1.1), it is natural to work on the whole space since the velocity v physically
takes values in the whole space, where the coefficients b, which come from the noise and the renormalized
terms, stay in the weighted Besov spaces. This prevents us from using a fixed point argument in the same
space. To the best of our knowledge, there are two methods to solve this problem. One is to use a clever
construction of exponential weight depending on time variable proposed in [HL18]. The other one is to
use localization trick developed in [ZZZ20]. In this paper we follow the localization method in [ZZZ20]
to solve this problem. We deduce a priori estimates for (1.1) and by a compactness argument obtain the
existence of solutions. The localization argument also implies uniqueness. We refer to Section 1.2 for more
details on the idea of the proof. Compared to the local solutions for singular SPDEs mentioned above, a
priori estimates and the global well-posedness for different parabolic singular SPDEs have been obtained,
see [MW17, MW17a, GH19] for the dynamical ®4-model and [PR19, ZZZ20] for the KPZ equations and
singular HJB equations.

Another motivation is that equation (1.1) can be viewed as the mean field limit of empirical measures for
a second order interacting particle system in random environment. More precisely, consider the following
N-interacting particle system in R?, where each particle obeys the Newtonian second law perturbed by time
Gaussian noise B; and environment noise W:

XY= W XN 5 SR - XN VBB =1 N,
J#i
where (B});cn is a sequence of d-dimensional independent standard Brownian motions on a stochastic basis
(Q,F,P; (Fi)i=0), K : RT — R? is the interaction kernel, and W : R?¢ — R is a vector-valued distribution
and stands for the environmental noise, which acts on all particles. We will see in Section 7 that our condition
on W allows for spatial white noise in v direction for d = 1, which may be derived from average of a sequence
of i.i.d random variables (see e.g. [PR19a, Remark 2.2]). The factor & in front of the interacting force K
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is called mean-field scaling which keeps the total mass of order 1. If we introduce a new velocity variable
VNt = XN and let 2 = (X1, VYY), then the above second order SDE can be written as the familiar
form:

dxNt = vNiat, i=1,2,---,N, o

Qv = W2+ D KX = X0 |dt + v3dB;, o
On the other hand, for each i € N, consider the following kinetic distributional dependent SDE (abbreviated
as DDSDE)

dX} =Vidt, AV =W(Z})dt + (K * pg:)(X])dt + V2dBj, (1.8)

where Z} := (X}, V}}) and for a probability measure p in R?,
Ko px) = y K(z —y)u(dy).

When W and K are globally Lipschitz, it is well-known that there are unique solutions to (1.7) and (1.8),
and the following propagation of chaos holds (see [Szn91, Theorem 1.4]): Suppose Zév’l = Z} and {Z}} are
i.i.d. random variables. Then for each ¢ € N and T > 0,

sup VNE ( sup |z — Z;) < 00. (1.9)
N t€[0,T)

Note that (Z%);en are ii.d. random processes. Let u = (u(t));>0 be the distribution of (Z%);en. By Itd’s
formula, one sees that ju(t) solves the following non-linear Fokker-Planck equation: for any ¢ € C2(R24),

O, &) =(p, Ay + v - Voo + (W + K 5 () - Vo). (1.10)

With a little confusion of notation with (i), we also write

(. 0) = | d(z)pu(d2).
R2d
Now, let un(t) == + Zi\; 5thv,i be the empirical distribution measure. By (1.7) and It6’s formula again,
one finds that for any ¢ € CZ(R??),
V2 Nii ;
dfun, ¢) = (un, Aud + 0 Vo + (W + K * (un)) - Vog)dt + == > V. (Z)dB;. (1.11)

=1

In particular, each term in (1.11) converges to the corresponding one in (1.10) in suitable sense. For examples,
by It6’s isometry, we have

1 [ N
- V(2N dB:
N;/O o(2)

Note that if W, K € Cy°, then u(t) has a smooth density u(t, z) so that

2

N t
_ 12 ZE/ |Vv¢(Z;V’i)’2ds < tvaéb”oo N
=1 0

E _ =
Nz £ N

du = Ayu—v - Vyu — divy (W + K * (u))u). (1.12)

We also mention that when W depends on the random environment w, the empirical measure uy also
converges to the solution to equation (1.12), which corresponds to the conditional law of Z w.r.t. W with
g in (1.8) also given by conditional law. This means that the conditional propagation of chaos holds (see
[CF16] for more details). In particular, if div, W = 0, then the above equation reduces to the form of (1.1).
In physics this assumption is natural which is satisfied if the force only depends on the position. We refer to
Section 1.3 for more background, more references in this direction. In the following we regards (1.12) and
(1.1) as random PDEs; i.e. we fix the a.s. path of W, and solve the SPDE path by path.
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1.1. Main results. The main goal of this article is to give a meaning to the kinetic equation (1.1) and
establish the global well-posedness of (1.1) under (1.2). As mentioned above, since b - V,u does not make
sense, we need to use paracontrolled method and perform renormalizations by probabilistic calculations to
give a rigorous meaning to b - V,u.

First of all, we consider the following linear PDE with distributions b, f:

Ou=Au+v-Vyut+b-Vyu+ f, u(0)=ug. (1.13)
To state our main results, we first introduce some parameters and notations. Let ¢ := ﬁ for some
a € (1/2,2/3). For given kg < 0, k1 € (0, ﬁ], ke € R and k3 := (20 + 1)k + K2, in the statement of our

main results below, we shall use the following weight functions:
pilw,v) = (L+ | /% + o)™, i =0,1,2,3.

Let B%(p1, p2) be the space of renormalized pairs and B$.(p1) the space of renormalized vector fields intro-
duced in Definition 3.17. Formally (b, f) € B%(p1, p2) and b € BF(p1) mean b, f € LP(C,*(p1)) and for
I =L boV,If € LFCL2(p1p2), bo V,Ib € LFCL2%(p?), are well-defined respectively, which in
general could be realized by a probabilistic calculation. Here o is the paraproduct introduced in Subsection
2.2. The example we have in mind is a Gaussian random forcing and our assumption allow, for example,
when d = 1, b to be white in v variable and colored in x variable. Compared to the heat semigroup, the
interesting point is that the terms in the zeroth Wiener chaos are not zero and converge in the corresponding
weighted Besov space. In fact, the terms in the zeroth Wiener chaos minus formally divergence terms which
by symmetry are zero will converge. Hence no renormalization appears in the smooth approximation of
equation (1.1).
The following result provides the well-posedness of the linear singular PDE (1.13).

Theorem 1.1. Suppose that (b, f) € B3:(p1,p2) and b € BY(p1). For any T > 0 and ¢ € C)(p2/p1), where
v > 1+ «, there is a unique paracontrolled solution u € S%Taa(pg) to PDE (1.13) in the sense of Definition

4.1, where S2T,_a°‘ (p3) is the kinetic Holder space introduced in Definition 3.6.

In Section 4 we prove this result. Along the way to Theorem 1.1, we develop paracontrolled calculus in
the kinetic setting and prove a commutator estimate for the kinetic semigroup. We refer to Section 1.2 for
more details on this point. The complete version of Theorem 1.1 is given in Theorem 4.7.

Next we consider the nonlinear kinetic Fokker-Planck equation (1.12).

Theorem 1.2. Let T > 0. Suppose that W € B3 (p1) with div,W = 0 and K € CP/3(RY) with 8 > o — 1.
For v > 1+a, and any probability density function ug with ug € L' (po) NCY and T > 0 there exists at least
a probability density paracontrolled solution u € S%Taa(pg) to equation (1.12).

If in addition that K is bounded, then for any initial data ug € L'(po) N C) with JuoInug < oo, the
solution is unique.

The complete version of Theorem 1.2 is given in Theorem 5.4. By div,W = 0 we can write (1.12) in the
non-divergence form

Ou=Ayu—v-Veu— (W4 K x(u))-Vyu

and Theorem 1.1 can be applied. As mentioned above the solution to (1.12) can be viewed as a probability
density. Hence in this paper we concentrate on such kind of solutions. Formally from the equation we see
the integral of solution is a constant. Also if the initial value is nonnegative, then a maximum principle
implies the solution is always nonnegative. As usual, the key point to prove this theorem is to establish the
a priori estimates (5.7) and (5.8) in Section 5 about entropy. Compared with the previous work in [JW16],
our assumptions are more flexible. We refer to Section 1.2 for details on the idea of the proof.

Finally, as an application we also obtain the well-posedness for the associated nonlinear martingale problem
of (1.8).

Theorem 1.3. Let T > 0. Suppose that W € B3(p1) and K € CP/3(RY) with 8 > o — 1. For any initial
probability distribution v with finite moment [ |z|3v(dz) < oo, where § > %, there exists a martingale
solution to nonlinear SDE (1.8) starting from v. Moreover, if K is bounded measurable, the solution is

unique.
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The complete version of Theorem 1.3 is given in Theorem 6.3. Our martingale problem is considered in
the sense of Either and Kurtz [EK86, Section 4.3, p173], which is a general notion. The usual martingale
problem is that for all functions w in the domain of generator £* := A, +v -V, + (b+ K * u) - V,, the
process u(t, X¢, Vi) — u(0,2,v) — fot((?t + ZLM)u(s, X5, Vs)ds with p, = Law(X) is a martingale. However,
due to singularity of b, smooth function might be not in the domain of .Z,,. We can find such u by solving
the Kolmogorov backward equation. We refer to Section 1.2 for more details on this point. This type of
martingale problem has been treated in [DD16, CC18, KP20] for linear non-degenerated singular SDEs. To
the best of our knowledge, this is the first well-posedness result for singular degenerate nonlinear SDEs.

1.2. Sketch of proofs and structure of the paper. In Section 2, we recall some facts about the
anisotropic weighted Besov spaces and the associated paracontrolled calculus. In particular, a quite use-
ful characterization of anisotropic weighted Besov spaces is stated in Theorem 2.7, whose proof is given in
Appendix A.

For the kinetic semigroup, we introduce a new weighted kinetic Holder space associated with the transport
term v-V,, (see Definition 3.6). On this space, Schauder’s estimate for the kinetic semigroup is established(see
Lemma 3.12). The key point to use the paracontrolled calculus for the kinetic equation (1.1) is a commutator
estimate for the kinetic semigroup which we establish in Subsection 3.4. Note that it seems impossible to
show a commutator estimate in the form [.Z,, f <|g as in [GIP15] for %, := A, + v - V,, since the loss
of regularity from %, and the gain of regularity from the kinetic semigroup do not match i.e. the kinetic
operator loses 1 regularity in z direction while the Schauder estimate for the kinetic semigroup only gains
2/3 regularity in x direction. Moreover, the commutator for the kinetic semigroup under the action of
block operator R is not like the heat semigroup and there is an extra transport term left, which leads to a
commutator estimate in the kinetic Holder space introduced in Definition 3.6 (see Lemma 3.15). We refer
the readers to the argument at the beginning of Section 3.4 for more details on this point. In Subsection
3.5, we give the notion of renormalized pairs as in [ZZZ20] as mentioned in Subsection 1.1.

Sections 4 and 5 are devoted to well-posedness of equations (1.13) and (1.12). We first use paracontrolled
calculus in the kinetic setting, characterization of the weighted Holder space and localization trick developed
in [Z27720] to derive uniform bounds in a polynomial growth weighted Besov space for the solutions to
the linear equation (1.13). The new point is that we prove a localization result for paracontrolled solution
(see Proposition 4.4). This localization property allows us to establish a priori estimate (4.31) for any
paracontrolled solution of (1.13), which automatically yields the uniqueness. Note that the proof of the
uniqueness in [ZZZ20] is to adopt the exponential weight technique developed in [HL18]. For the nonlinear
equation mentioned above, we concentrate on probability density solutions. In this case, to prove existence
of solutions and the convergence of the nonlinear term in (1.1), we need to show the convergence of the
approximation solutions in L'-space, which follows from a moment estimate for some SDEs by a probabilistic
method. Usually people obtained such kind moment estimates for distributional drift SDE by using the
Zvonkin transform to kill the singular drift term (see e.g. [2Z18]). However, the required C!-diffeomorphism
in Zvonkin transform cannot be constructed since in z-direction the regularity cannot be C'. In Section 5
we use Theorem 4.7 to deduce a Krylov type estimate, which can be used to control the distribution drift
(see Lemma 5.8). The uniqueness proof follows from a priori entropy estimate and L!-estimate. To deal
with the distributional drift term, we use linear approximations and Theorem 4.7.

In Section 6 we consider the martingale problem associated with (1.8) and establish the well-posedness.
As mentioned in Subsection 1.1, we solve this martingale problem by analyzing the Kolomogorov backward
equation. Since this is a nonlinear martingale problem, the corresponding Kolomogorov equation should be
nonlinear. However, it is not known a-priori that the law of the solutions to (1.8) is absolutely continuous
w.r.t. Lebesgue measure. As a result, we consider the linear equation for fixed u and we can apply Theorem
1.1 directly. More precisely, we consider the following equation for fixed  : [0, 7] — P(R?):

ou+ L= f, u(T)=u", (1.14)

for a sufficiently large class of functions f and u” and therefore we replace the martingale problem with the
requirement that the process u(t, X, V3) — u(0, 2, v) fo s, Xs, Vs)ds with u; = Law(X;) is a martingale.
For the existence of a martingale solution, we use the standard tlghtnebb argument. Moreover, to obtain
the convergence, we prove the continuity of the nonlinear term (see Lemma 6.5). For the uniqueness of
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martingale solutions, we first show the uniqueness of the solutions to the linear equations (i.e. K = 0), and
then use Girsanov’s transformation and Gronwall’s inequality.

Section 7 is concerned with the probabilistic analysis connected to the construction of the stochastic
objects needed in the sequel. More precisely, we consider a class of stationary Gaussian distributions X
of class C,*(p,). This class includes one dimensional spatial white noise in v direction and colored in x
direction; any covariance operator |0,|™* with A > 5/9 when d = 1 is admissible. For such X we construct
the generalized products V,.# X o X as probabilistic limits of smooth approximations. Some proofs used in
Section 7 are put in Appendix B.

1.3. Further relevant literature. The study of mean field limit and propagation of chaos for interacting
particle system originated from McKean [McK67], see for instance the classical reference [Szn91]. As men-
tioned above, DDSDE which is also called McKean-Vlasov equation is closely related to mean field limit.
To the best of our knowledge, Vlasov [V168] first proposed McKean-Vlasov’s equations, which arise in many
applications, such as multi-agent systems (see [BRTV98, BT97]), filtering (see [CX10]) and so on. Recently
the research on the mean field limit for the 1st order system, with singular interaction kernels has expe-
rienced immense improvements including those results focusing on the vortex model [Osa86, FHM14] and
more general singular kernels as in [JW18] and Serfaty [Ser20]. When W = 0 and K(z) € L>(R%), Jabin
and Wang [JW16] studied the well-posedness of PDE (1.10) and propagation of chaos. In the pioneering
work by Funaki [Fu84] the martingale problem for a non-linear PDE is clearly formulated. After that global
well-posedness of DDSDE has been studied a lot in the literature (see [MV16] [Wal8] [RZ21] and references
therein). In the case where there is a common environmental noise influencing each particles, this suggests
particle systems with common noise like (1.7) and there are also a lot of work concerning the mean field limit
of particle systems with common noise and the limiting DDSDE (see e.g. [CF16, R20, HSS21] and reference
therein). However, so far as we know, most work concentrate on the first order system, which is related to
a parabolic SPDEs, and the related common noise W is trace-class type noise, i.e. the noise W is function
valued w.r.t. spatial variable.

In many applications such as control problems and Coulomb potential from physics, the coefficients for
the related DDSDE are very singular. Hence, studying the nonlinear kinetic equation and DDSDE with
singular coefficients counts for much. In the present paper, we can obtain global well-posedness for these
nonlinear equations with singular environmental noise W, which so far as we know, has not been obtained
in the literature. In this paper we do not show the propagation of chaos like (1.9) when environmental noise
distribution W is allowed. This will be studied in future work.

The study of SDEs with distributional drifts has also attracted much interest in recent years (see [DD16,
7718, CC18, KP20] etc.). Such singular diffusions arise as models for stochastic processes in random media.
When d = 1, based on the rough path method, Delarue and Dielthe [DD16] studied the SDE with rough drift.
In [CC18], based on the theory of paracontrolled calculus, Cannizzaro and Chouk proved the well-posedness
for the martingale problem with singular drift in higher dimensions (see also [KP20] when Brownian motion
is replaced by a-stable processes). For the second order system (1.8), to the best our knowledge, there is no
such kind of result. Finally, we also mention that when K = 0, the strong and weak well-posedness of SDE
(1.8) with Holder drift W was studied in [Ch17] [WZ16] and [Zh18].

1.4. Notations and conventions. Throughout this paper, we use C or ¢ with or without subscripts to
denote an unrelated constant, whose value may change in different places. We also use := as a way of
definition. By A <¢ B and A <¢ B or simply A < B and A < B, we mean that for some unimportant
constant C' > 1,

A<CB, C"'B<A<CB.

For convenience, we collect some commonly used notations and definitions below.

B, 4 (p): weighted Besov space (Def. 2.3) ‘ B, ¢ =Byq(1)
C:(p) =B (p) , C54(p) == L=([0,T; C3(p)) | C; = C3(1)
$% 4(p): Kinetic Holder space (3.20) | S¢,:=5%,(1)

B%(p): Space of renormalized pair (Def. 3.17) | BS :=B%(1)
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f=<g,f>g,fog: Paraproduct (Sec. 2.2) ‘ frg=f=g+fog
com(f,g,h) :=(f <g)oh— f(goh) (Sec. 2.2) | L\ =0y —v-Vo— Ay + A
[z = (z+tv,v), T f(2) := f(Ti2) ‘ Iy = f;l
Pif =Tipe x Ui f = Te(pe * f): Kinetic semigroup ‘ B :={x:|z|, <r}
o(x,v) = ((L+[e)/* + 1+ o)1/ Py :={0" rk €R}

|
Commutator: [, @b f := (s f) — oo f) ‘ Ny :=NuU {0}
onf(@) = f@+h) - f@) S

2. PRELIMINARIES

In this section we introduce the basic notations and recall various preliminary results concerning weighted
anisotropic Besov spaces (see [Di96], [Tri06]). Since the precise results that we need are difficult to locate
in the literature, and for the readers’ convenience, we give some details of the proofs in Subsection 2.1. In
Subsection 2.2 we present paraproduct calculus on the anisotropic Besov spaces which follows in the same
way as the classical argument.

Throughout this section we fix N € N. Let .#(R"™) be the Schwartz space of all rapidly decreasing
functions on RY | and .#/(RY) the dual space of .%(R") called Schwartz generalized function (or tempered
distribution) space. Given f € .%(RY), the Fourier transform f and inverse Fourier transform f are defined,
respectively, by

£ 1 —i&-x

f€) = Gyas [, a)de, €Y,
3 1 i&x

f(z) = (2m)N/2 /szeg f(©d¢, zeRN.

Fix n € N. Let m = (mq,--- ,my) € N* with m; +---4+m, = N and a = (a1, -+ ,a,) € [1,00)" be also
fixed. We introduce the following distance in R by

n
|$C _y|a = Z ‘l'i —yi‘l/ai, i, y; € R™,

i=1
where | - | denotes the Euclidean norm in R™:. For & = (x1,--+ ,z,), t > 0 and s € R, we denote
0 = (g, % ,) €RY, B = {m eRY 2|, < t}. (2.1)
Clearly we have
[tie|q = t|z|a, ¢=0. (2.2)

2.1. Weighted anisotropic Besov spaces. To introduce the anisotropic Besov space, we need a symmetric
nonnegative O —function ¢%, on R with

¢%1(§) =1 for £ € By and ¢2,(§) =0 for § & By 5.
For € = (&1, ,&,) € R™ x --- x R™» and j > 0, we define
$5() = ¢, (27°UHDE) — g2, (27%). (2.3)
By definition, one sees that for j > 0, ¢%(£) = ¢§(27%/¢) and
supp ¢ C Bgjsz )5\ Byioa, Z $U(E) = 6212 (nthag) 51 - oco.
j=-—1

Definition 2.1. For given j > —1, the block operator R is defined on S'(RN) by

RIf(z) = (¢2f) () = ¢4 * f(a),
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with the convention Ry =0 for j < —2. In particular, for j = 0,

RS f(x) =20 - $4(2%y) f(z — y)dy, (2.4)
where a -m = aymy + - + apMy,.
For j > —1, by definition it is easy to see that
RY = RIRY, where RY :=RI_, + RS+ RI,, (2.5)
and R} is symmetric in the sense that
(9, RS f) = (f.R}g), f.ge S (RY),
where (-, -) stands for the dual pair between .#’(R"Y) and .(R¥). Note that
Rif(w) =20 | g5(2y)fla —y)dy, j>1, (2.6)
R
where
$§(&) == 2"¢0(2°€) + @o(§) + 27" do(27¢).
The cut-off low frequency operator Sy is defined by

k—1
Sefi= Y RIf—f k— o (2.7)

j=-1
For f,g € ' (RY), define
f=g:=2 SafRig fog= ) RIIRjg.
k>-1 li—j|<1

The Bony decomposition of fg is formally given by (cf. [BCD11])

fo=f<g+fog+g=f (2.8)
The key point of Bony’s decomposition is
R} (Sk-1fRig) =0 for [k—j| > 3. (2.9)
Indeed, by Fourier’s transform, we have
k—2
(R§ (Sk-1Rig)) = 65 - D (61F) * (#19)-
i=—1

Since the support of Zf;flwf‘f) * (¢1g) is contained in B, \ng/ﬁ, we have

k—2
o7 - (Z (67) = <¢zg>> —0, [k—j>3,
1=—1

which in turn implies (2.9).
To introduce the weighted anisotropic Besov spaces, we recall the following definition about the admissible
weights from [Tri06].

Definition 2.2. A C*-smooth function p : RN — (0,00) is called an admissible weight if for each j € N,
there is a constant C; > 0 such that

V9 p(2)] < Cp(a), Vo €RY, (2.10)
and for some C,x >0,
p(z) < Cp(y)(1L + |z —yl5), Va,y € RY. (2.11)
The set of all the admissible weights is denoted by W .
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For p € # and p € [1, ], we define

1/p
0 = loflh = ( [ o))
Let p1, p2, p3 be three weight functions. Suppose that for some C7 > 0,
pi(x) < Cipa(y)pa(z —y), Va,y e RY.
By the classical Young’s inequality, we have the following weighted version

1 gllLagon) < CrCall fllLr (o) 191l Lo (os) (2.12)

where 7, p, q € [1,00] satisfy 1/¢+1=1/p+ 1/r and Cy = Ca(r,p,q) > 0.
Now we introduce the following weighted anisotropic Besov spaces (see [Di96]).

Definition 2.3. Let p € #, p,q € [1,00] and s € R. The weighted anisotropic Besov space B;:‘;(p) 18

defined by
1/q

Bya(0) = f € S ®RY) sz = | D0 27IR flfngy | <o

j>—1
For simplicity of notation, we write
Ci(p) =Bl (p), C:=Ci(1), Byg :=Byg(l),
and when a = (1,1, ...,1) we shall drop the index a in above notations.
The following inequality of Bernstein’s type is quite useful.

Lemma 2.4. Let p € # be an admissible weight.
(i) For any k € Ng, 1 < p< g < o0 andi=1,2,....,n, there is a constant C = C(p,m,p,q,a,k,i) > 0
such that for all j > —1,

195, RS Fllzagn So 27 G0 |1RS flLg), (2.13)
where V’;i denotes the k-order gradient with respect to x;, and
IRS fllze oy S lfllzrp)- (2.14)
(ii) For any s € R and p € [1,00], there is a constant C' = C(p, m,p,a) > 0 such that for all j > —1,
IR fllzo o) <0 27 RS £l o (o) (2.15)

S A

where J,F(€) = (1 (1 + |62/ @9) f(©).

Proof. We only prove (2.13) and (2.15) for j > 1. For j = —1,0, they follow directly from definition and
oLy, 5 € S (RY).
(i) By (2.5), (2.11) and (2.12), we have

V3RS Fllao) = IVERIRS Fllae) = (V5,85 % RS fllao)
SN+ Ve S5 L RS fll o ()
where 1/p+1/r =14 1/q, k is from (2.11) and
¢f = f_1 + &f + i1
Since k > 0, by (2.6) we have

o ) . o ] 1/r
||(1 + | . |§)V§i¢§\|u < 2a¢k]2(a~m)](1—%) </RN |v§1¢8($)|r(1 + |2—a]m|g)rdx)

. =S 1/r
< 2J(aik+a~m(%*é)) (/ |v’;l¢8(aj)|r(l + Z‘|Z)de) )
RN

Thus we get (2.13). For (2.14), it is similar.
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(ii) By (2.5), (2.11) and (2.12), we similarly have

[JsREfllLr oy S A 41+ ) Jsdf 1L [IRG fll Lo (o)
Note that by definition and the change of variable,

n

(7:65)(€) = (Zu + |si|2>1/<2‘“)> F(€) = 29, ,(27),

where

=1

F(6) = (Z@Q‘“j + I&IZ)”(Q“”) 95(6)-

Since supp(¢§) C BS \BI/Q, we have for any kK € Ngandi=1,--- ,n,
sup [ V8 F (01 < .
j=21 JRN

which in turn implies that

sup sup (14 ]| v ()] < co.
721 zeRN

Hence,
[ Js@2(L+ |- [5) ] g2 = 25920 / 1F, 5 (292)|(1 + || da

RN

=29 [ 1B @I0+ 2 al)da

<29 [ I @0+ lelde 27

Thus, for j > 1
| JsRS fllLe oy Sc 2% [R5 fllLe(p)-
Since JsJ_g = Id, we also have another side inequality. O
Remark 2.5. By definition and (2.15), one sees that for any p, ¢ € [1,00] and s, s’ € R, J; is an isomorphism
between B +5 @ and Bf, O e,
JB e =B e (2.16)

As an easy consequence of Bernstein’s inequality, we have the following embedding theorem of weighted

anisotropic Besov spaces.

Theorem 2.6. Let p e W', s1,52 € R, 1 <r < p < oo be such that
sp =514 (a-m)(L - %)
For any q € [1, 0], there is a constant C = C(p,m,a,p,q,r,s1,52) > 0 such that

1f 1Bz, o) < Cllf B2 () (2.17)
Moreover, for any 1 < ¢1 < g2 < 00 and py < p1,
1flBz:2. (o) < IflB2S, (1) (2.18)

and for 6 € [0,1] and p1,p2 € [1,00], p1,p2 € ¥, s, 51,52 € R with

1;0 = %, 0s1+ (1 —0)sy = s,
the following interpolation inequality holds,

T PP 1 LN V1 e (2.19)

2 Ta(p2)’

Proof. (2.17) is straightforward by Lemma 2.4 with k& = 0. (2.18) and (2.19) are direct consequences of the
definition and Holder’s inequality. ]
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Now we give a characterization of B;:‘;(p). To this end, we introduce the following notations. For
f:RY — Rand h € RV, the first order difference operator is defined by
onf(x) = flz+h)—f(z),
and for M € N, the M-order difference operator is defined recursively by
M M-1
o5 ) = dnoy T f(a).

By induction, it is easy to see that

M
S f(a) = (~nyME (Alf)f(x +kh), heRV, (2.20)
k=0

where (],\f ) is the binomial coefficient. The following characterisation of B;:‘;(p) is probably well-known to
experts. Since we cannot find them in the literature, for the readers’ convenience, we provide detailed proofs
in Appendix A.

Theorem 2.7. Let p € #'. For any s € (0,00) and p,q € [1,00], there exists a constant C = C(p,a,m,p,q,s) >
L such that for all f € B} 3(p),

I lIBg0) = 1fllgge ) =c loflgge (2.21)
where i , a
Wi = [ (i) ] 1
: Ihla<1 |5 |hlgm™
where [s] denotes the integer part of s. Moreover, for any s € R and p,q € [1, 0],
1flBs:200) =c llofllB3c- (2.22)

Remark 2.8. For p = 1, the characterization of (2.21) is proven in [ZZ21, Lemma 2.8]. In particular, for
5> 0, since C;(p) = B3 (p), by (2.21) we have

I fllcs (o) <c 1fllgerar oy o+ 1 fllgeran s (2.23)
T (ﬂ) zn, (p)
where fori =1,--- ,n,
(i P
Iflle, o) = 1 fllzoq) + sup — ==,
i hi|<1 |R;|s/as
and

On f(w) == f( mima, @i + hiyiga, ) = fo @i, Tiy Tiga, o).
As a corollary, we have the following result.

Corollary 2.9. Letp € #'. Foranya € R, s > 0 andp,q € [1,00], there is a constant C = C(p,a, m,p, q, c, 8) >
0 such that for all f € B&t5%(p) and h € RY,

P,
s]+1 s K
16874 Fllee () S RIS+ RN Fllggtee ()0 (2.24)
where k > 0 is from (2.11).
Proof. By (2.21), for |h|, < 1, we have
s]+1 s

103 Loy < 1L

For |hl, = 1, by (2.20) and (2.11) we have

18T ooy S U+ IR ooy S (1 + [RIE)]]

By%(p):

B} % (p)"
Therefore,
+1 s K
185 Loy S RIS+ RISl () (2.25)
Noting that
IR$ flB3e. () = suP 2 IRERG fllLo(e) S 27 IRG S No e
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by (2.25), we have

([s]4+1) aj ([s]+1)p>a
16570 Pl oy = 30 27918 RS TS,

jz—1

SIREQ R Y 2R s

jz-1

< InlE [l S 2R g,

jz—1
— qs K\q q
= B2 (L (B
The proof is complete. 0

‘We finish this subsection with an interpolation lemma for later use.

Lemma 2.10. Let {T;}52_; be a family of linear operators from S"(RN) to some Banach space X. Assume
that for some By < B1 and any j > —1, there are constants Cy; > 0,1 = 0,1 such that

IT5 fllx < Cij27 7% fllgois  i=0,1.
Then for any B8 € (Bo, B1), there is a constant C' = C(a,m, 3, Bo, $1) > 0 such that
IT;fllx < C(Coj + C13)27|| fllgp, 5= —1.
Proof. Since for any k > —1,
IR fllge: S 2P P¥)fllge, i=0,1,

we have by the assumptions, Hao: here (2.7) is useless, we actually need the fact ||Sf — f|| — 0 as k — oo for any

feck.

cho

1Tl < 2 IT/RES e < Co277% ST IRE fllgoo + Cuy2 7 3 IRES g

k>-1 k>j k<j

< C’OJQ*J’BO Z 9(Bo—B)k + Cljgfjﬂl Z 9(Br1—B)k Hf”Cff
k>j k<j

< (Coj + C1i)27%| fll e

The proof is complete. O

2.2. Paraproduct calculus. In this subsection we recall some basic ingredients in the paracontrolled cal-
culus developed by Bony [Bon81] and [GIP15]. The first important fact is that the product fg of two
distributions f € C¢ and g € C? is well defined if and only if a + 3 > 0 as given in the following lemma.

Lemma 2.11. Let p1,p2 € #'. We have for any 5 € R,

1 < 9llgio.pm S 1ol (- (2.26)
and for any a < 0 and B € R,

1 < gllgg sy, pmy S Iz onlgllaz - (2.27)
Moreover, for any a, 8 € R with a4+ 8 > 0,

1 0 Gllagopop Se Iz oo lgllaz o (2.28)
In particular, for any o, B € R with a+ 8 > 0,

I1f- QHCgAﬁ(mm) Sc ||f||03(P1)H9Hc§(p2)- (2.29)
Proof. Totally the same as [GIP15, Lemma 2.1] and [GH19, Lemma 2.14]. O
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For two abstract operators o7, <% acting on functions, we shall use the following notation to denote the
commutator between 2/ and .of:

[, ) f = h(hf) — Aa(Af).
We have the following simple commutator estimate (see [GIP15, Lemma 2.2]).

Lemma 2.12. For any p1,p2 € #, a € (0,1) and 8,7y € R, there is a constant C = C(p1, p2, @, B,7,a,m) >
0 such that for all j > —1,

RS, F19ll Lo (012) S 27 fllcg (o) 191l L (po)- (2.30)
The following lemma is a weighted anisotropic version of Lemma 2.4 in [GIP15].

Lemma 2.13. Let p1,p2,p3 € #'. For any « € (0,1) and 8,7 € R with a+ S+~ >0 and 5+~ < 0, there
exists a trilinear bounded operator com on C2(py) x CB(py) x C)(p3) such that

1Pl 7 (ps)s (2.31)

leom (£, g Wl 5+, popy S I lozon gl o
where
com(f,g,h) = (f <g)oh— f(goh).
In addition, if 8 < 0 and «+ B > 0, then [ho, f]lg can be extended to be a bounded linear operator on
C2(p1) x C2(p2) x Cl(ps) with
170, flgllce+8+7 oy paps) SC I llcgonllglcs (o 1Pl (os) - (2.32)

Proof. By Lemmas 2.11 and 2.12, estimate of (2.31) is completely the same as in [GIP15]. For (2.32), note
that

[ho, flg=ho(gf) — f(hog) =ho(f = g)+com(f,g,h).

By Lemma 2.11, we have

[ho(f = 9)||cg+5+7(plp2p3) S ||h||0;*(p3)||f s chg+f3(p1p2)
< Wl 1 cs oo l9ll o2
which together with (2.31) yields (2.32). O

3. KINETIC SEMIGROUPS AND COMMUTATOR ESTIMATES

In this section we introduce basic estimates about the kinetic semigroup. Compared to the heat semigroup,
due to the presence of the transport term, the kinetic semigroup does not commutate with block operator R{
(see (3.14) below), which brings some new features. In Subsection 3.2, we introduce a kinetic Holder space
which admits velocity transport in time direction, as well as a localization characterization for weighted
Holder space proved in [ZZZ20], which will be used to obtain the well-posedness of linear equation (1.13).
In Subsection 3.3, we establish the Schauder estimate in kinetic Holder spaces. In Subsection 3.4, we prove
a commutator estimate for the kinetic semigroup which is essential to apply the paracontrolled calculus for
the kinetic equations. Finally, in Subsection 3.5 we introduce the renormalized pairs used in the definition
of paracontrolled solutions.

In the remainder of this paper, we consider the following case of the weighted anisotropic Besov spaces:

N=2d,deN, n=2, mi=mgs=d, a=(3,1).
For t > 0, let P, be the kinetic semigroup defined by
Pif(z) == Tupe # Do f(2) = To(pr + f)(2), 2= (z,0) € R, (3.1)
where for t € R,
Ui f(2) := f(T2), Tiz:=(x+tv,v),

and

Aty —d/2 3|x|? + |32 — 2tv|?
00 =) = () - L=t
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is the density of the following process
Zy = (X, V,) = (f/ Byds \th>

where B; is a d-dimensional standard Brownian motion. The reason of choosing multi-scale parameter
a = (3,1) is the following scaling property (see also (1.4)):
(X Vo) @ (XL ATV, A >0,

Note that

[T = Dogs, pe(2) = 4™ 2p (t722), (3.3)
and for ¢ € Cf°(R2%),

atPtQD = (Av + v - vz)Pth
Notation: Let &, be the set of all polynomial weights with the form:

p(z) = o(2)", K €ER, (3.4)
where for z = (z,v),
o(a,v) = ((L+ [[*)/* + 14 )7V < (14 |2]a) ! (3.5)
Clearly, for some Cy = Cy(k,d) > 0,
p(z) < Cop(2)(1 + |2 = 2|7), (3.6)
and for any j € N and some C; = Cj(k,d) > 0,
[Vip(2)l < Cip(2)@’ (), |Vip(2)| < Cip(2)e™ (2), (3.7)
and for any T' > 0, there is a constant Cpr = C (T, k,d) > 0 such that
Cr'p(z) <Tup(z) < Crp(z), z€ R, tel0,T). (3.8)

Moreover, for p1, p2 € Py, we have
p1/p2, p1p2, p1V p2, prAp2 € Py

3.1. Kinetic semigroup estimates. In this subsection, we recall the estimate about the heat kernel of
Kolmogorov operator A, + v -V, under the action of block operator R{ and a crucial decomposition (3.14)
from [HWZ20]. Then we establish the basic properties of the kinetic semigroups in Lemma 3.5. First of all,
we recall the following two lemmas proven in [HWZ20].

Lemma 3.1. For any o, 8,7 > 0 and T > 0, there is a C = C(T,d,«, 3,7v) > 0 such that for all j > —1
and t € (0,7,

/ (2] 0] [RET sy, v) | dardv S 2~ BF+3 (11/295) . (3.9)
R2d

In partzcular forany p € Py, T >0 and a = 0, there is a constant C = C(T,d, «, p) > 0 such that for all
> —1andt e (0,T],

||R‘Ttpt|\L1(p) 50 (t1/22j)_a A 1. (310)
Proof. When j > 0, by [HWZ20, Lemma 5.1 (5.9)], we have for any n € N,
Fi0)i= [ e P R{Tapi (o, o)l dode
R
5 (h3n + hn) (2—(3[3+’)’)j BJM)

_ 2—(36+’Y)j (h?)n + hn) (1 +h 3,3+’Y)>’

where h:=¢"2277. Since n € Ny is arbitrary, we clearly have for any o > 0,

I;(t) S 27 GBI g — 9= (38475 (41/297)
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When j = —1, we have

I a(t) < C < OTY*o/2,
Thus we get (3.9). Estimate (3.10) follows directly by (3.9). O

Remark 3.2. From (3.9), we have for any «, 5 > 0
./]R?d (|| + [tv])” IRGTipe(z,v)|dedy S ./R2'1 \:L'|5\R?Ftpt(w,v)\dxdv + 18 ./RM |”U‘@‘R?Ftpt(ét,v)|d{];dv

< (2—3@@1/223')% +27ﬁjtﬁ(t1/22j)fa72ﬁ>

<2720,
which implies that for any & > 0

/de (|| + |tv])? IRITypy(w,v)|dade S 27397 ((¢47) " A1), (3.11)
where we take o = 2@ and 0.
We recall the following important observation from [HWZ20, Lemma 6.7].
Lemma 3.3. Fort >0 and j € Ny, define
o = {e >1:20 <242 +12Y), ¥ <220 + t234)}.

(i) For any ¢ ©", it holds that

RGTRy = 0. (3.12)
(i) For any 0 # 8 € R, there is a constant C = C(8) > 0 such that
3 25 5o 2P (14 122)7) jeng, t20. (3.13)

L0}
Remark 3.4. By (3.1), one sees that

RYPf = (Dyp) * (RITof) = > (Tepy) * (RITYRE f).
1>—1

In view of (3.12), we have the following decomposition of the kinetic semigroup:
RiPf = Z (L'epe) * (RITRE f) = Z RIPRY [, j € No. (3.14)
Leo} LeO}
By (3.1) and (3.12), we have the following decomposition of the kinetic semigroup:
RIPf = RiTupx TR f = Y RYPRES, j € No.
[2SC) 4SS}
By (3.14), we can show the following basic estimates for the kinetic semigroup P;.

Lemma 3.5. (i) For anyp € Py, a 20, BER and T > 0, there is a constant C = C(p,T,d,, ) > 0
such that for all j > —1, t € (0,T] and f € C2(p),

— Lo
IRGPifllno= (o) Sc 277 (LA (£22)) )| fll o - (3.15)
In particular, for any o > 0,
1P g St F gz (3.16)

(i) For any p € Py, k € Ng, 8 <k and T > 0, there is a constant C = C(T, k, p, ) > 0 such that for all
t€(0,T) and f € CJ(p),

IVAP Il St P2 fla,. (3.17)
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(i1i) For any p € Py, T > 0 and € (0,2), there is a constant C = C(p,d,B,T) > 0 such that for all
t€[0,T] and f € C;(p),

HPtf - th||L°°(p) SC tﬁ/QHf”Cg(p)' (3~18)

Proof. (i) By the interpolation lemma 2.10, we only show (3.15) for 8 # 0. Let p be as in (3.4). For j € Ny,
by (3.14), (3.6) and (2.12), we have

RS Pefll Lo (p) < Z [RGTepe * TyRE fll (o)
Leo!

SNA+ - EDRITepelpr D ITeRE Fll <) - (3.19)
Ze@;

Moreover, by (3.8), we have
Do ITR fllroeoy) S D ITepREN e = Y IpRE fllze

L€} L€} LeO}
P (3.13) ) NI
< Z 2- BHchg(p) S Z_Bj(l + (t47) g )”f”cg(p)-
4SC)
Therefore, by (3.10) and (3.19), for any [ > 0,
1RGPl S ((#7727) 72 A1)279 (14 (847) 1)) Fll e

which implies (3.15) for j € Ny by taking | = § 4 |3] and | = §, respectively. For j = —1, it is obvious.
Moreover, (3.16) follows directly by (3.15).
(ii) For (3.17), by Lemma 2.4, we have

o0

IVEP e < 3 2YIREP Sl < 3 26799(1 A (1529725 | fll s,

j=—1 j=—1

Sfllaggy [ 24P (R2%))as

o0 In 2ds
_ (B—k)/2 k=B —2k
= ||f||c§(p)t /0 sTP(A ST PR

which gives (3.17).
(iii) Note that

P f—Tf 2 Ci(pe* f— ),

and by ps(z) = pt(—2)7

1

por S = 16 = g [ A + 62

By (3.8), (2.25) and (3.6), we have
1 _ _
| Pef — th||L°°(p) S llpe x f — fHLoo(p) < 5/2(1 Pt(z)||52f+5—2f||L°°(p)dZ
R
< )28 (1 + |z)%)dz
< ([, @20+ 21002 Il
where k > 0 is from (3.6) and we have used that for g € [1,2),

b +0-of =07 f(- —2).
Thus we obtain (3.18) by (3.3). O
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3.2. Kinetic Holder spaces and characterization. For 7' > 0, a € R and p € Py, let CF ,(p) be the
space of all space-time distributions with finite norm

1fllcg. ) = sup_|lf()llca(p < oo
' 0<t<T
We introduce the following weighted kinetic Holder space.

Definition 3.6 (Kinetic Holder space). Let p € Py, a € (0,2) and T > 0. Define

%,a(p) = {f : ”fHS%a(p) = Hf”@%a(p) + ||f||C;/I§Lac(p) < OO}: (320)
where for 5 € (0,1),

1(8) = Tesf(s)ll (o)
fllag 7oory = sup || f(t)|lr=(p) + sup .
£l s ros (o) 0<thll )|z (o) A T
For p =1, we simply write
S%.0 = 8F.4(1), CppL™ := CppL™(1).

Remark 3.7. (i) In the above definition, the appearance of I'; reflects the transport role of v -V, (see also
(3.18) for the same reason). It is noticed that this definition is essentially equivalent to the one introduced
in [IS21] by using the language of group.

(ii)Lemma 3.12 below stated the Schauder estimate on kinetic Holder space. If f is independent of time,
we can check the Schauder estimate holds in the classical Holder space.

Next we show a localization characterization for S%’a(p), which shall be used in Section 4 to deduce global
estimate. Let y be a nonnegative smooth function with

x(z) =1, [zla <1/8, x(2) =0, |z[a>1/4, (3.21)

and for r > 0 and zy € R??,

(2 = X(5522), 62(2) = X oy (), (3.22)

where we have used the notation (2.1). The following characterization of weighted Holder spaces is due to
[22720, Lemma 3.8].

Lemma 3.8. Let « > 0 and r € (0,1]. For any p, p1,p2 € Py, there is a constant C = C(r,a,d, p1,p2) > 0
such that

97 llca () So p(2), =€ R, (3.23)
and for any j € N,
IV3dillce (o) + v Vadillcs ) So (ep)(2), (3.24)
where ¢ is defined in (3.5). Moreover,
1fllcopps) ¢ sup (p1(20)167° fllce (ps)) (3.25)
zog€R2d
and
[l o102y =<c sup (p1(20)167° fll o< (p2)) - (3.26)
zp€R2d

Proof. Firstly, we show (3.23) and (3.24) is an easy consequence of (3.23). In fact, by (2.21) we have

163llcs () SUVETFGE Lo () + 195 1))

S 3w 2 (G ) + 2w, PO (rr ) S0

where the last step is from r < 1 and the same argument in [ZZ720, Lemma 3.8]. Based on (2.22), we note
that for any p € Pw,

zZ—z

11

oz = 1S los = sup [625fllcz = sup 63 fllcs )
Z0

20
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since || f||ca, which satidfies (2.23), only depends on the locally information of f. Then, we have

[ fllcaoip) S sup 167 fllca(pip) S sup 1637 lco(on)l167° fllca (p2)
Z0 zZ0
< sup p1(20) |67° fllca (o) s
20

where the first inequality is from ¢2° = ¢3°¢2° and (2.21), and the second inequality is from @20 = ¢3°pZ0.
On the other hand,

sup p1(20)[[97° fllog (pa) < sup p1(20) 197 o ooy 1 F g (o102) S Il (p102)-
20

Z0
Thus (3.25) follows. (3.26) is totally the same. O
By definition (3.22), the following lemma is elementary.

Lemma 3.9. For any zy € R?? and |t| < r® < 1, it holds that

$T; %0 = (3.27)
and for j = 0,1, there is a constant C = C(r,d) > 0 such that
ITeVI¢70 — Vi | Sc [t/ (1 + [20[37). (3.28)

Proof. For |t| < r3 < 1, by Young’s inequality, we have
[to]/? < r (2 + 2.

Equality (3.27) follows by
supp(97°) C Bl142010)/4(20) C TeBl(1 4 4).) (20)

¢7°)
r(14+]z0la) ( 0). For (3.28), note that for z = (x,v),

8),
L Vg0 (2) = V96 (2)] < Sup]tlv\ Vo V307 (Da2)] * 11,2 zola<r(14]0l0)/4)

s€[0,t

and ¢z2 =1 on BY

t|Z| vavaHLOO 1
S o)) s

St/(1+|z0l3 ).
The proof is complete. O
By Lemma 3.8, we have the following characterization for S%ﬁa(p).

Lemma 3.10. For any «a € (0,2), r € (0,1/8), p € Py and T > 0, there is a constant C = C(T,r,a,d, p) >
0 such that

17155 .0 = sup (0167 sz, ) - (3.29)
Proof. By (3.25), we only need to prove that for any « € (0,1),
1flleg =) = sup (p(2) 05 g 2 )
By definition and (3.8), (3.26), it suffices to show
wp Ol ¢ sup  sup PEUSEIO = 6Tl ()l

«
0<t<T 0<|t—s|<r? 2 |t — s

= sup [fOlpegy+ sup sup LSO ~Tia(@r/)(6)lla
< .o |

0<t<T 0<|t—s|<r3 = |t — s|®
Since ¢Z = ¢Z¢3,, it follows (3.27) that
G:Tuf — Tu(02f) = 6000, ) — Tu(0365,.S), ¥t € [0,1°).
Then, by the fact T'y(fg) = T fT+g and (3.28), one sees that
i A —T—s(Z o
o oup PEUNGT L (6) =~ T (@)

0<|t—s|<r3 = ‘t — 8|D‘

(3.30)
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P67 s —s(05, £ (5)) = Tims(¢708, ) (8) |l Lo

= sup sup
0<|t—s|<rd 2 [t — s|™
N o L8 ) 12 et O
0<|t—s|<rd 2 [t — s|@
p()|| D%, f(s)||Le|t — s
g sup sup ( )” 8r ( )” | | < SupTHf(s)||L°°(p)~

0<|t—s|<rd = |t — s|® ™ 0<s<
The proof is complete. O

Next we give a result regarding derivatives in kinetic Holder spaces.

Lemma 3.11. For any « € (1,2), T > 0 and p € Py, there is a constant C = C(p, T, a,d) > 0 such that
for all f € ST ,(p),

192 fllsa— ) Se 1l o0 (3.31)

Proof. First of all, we prove (3.31) for p = 1. Fix a € (1,2), s,t € [0,T] and z € R??. By definition, one sees
that for all z = (0,v) € R4,

I1 = |f(ta zZ+ Z) - f(sart—sz) —v- (va)(sa Ft—sz)‘
<UIftz2+2) = f(s,Dems(Z42)) [+ |f (s, Tems(Z 4+ 2)) — f(s5,2+ Te—s2)|
+ ‘f(S, Z+ thsz> - f(s,l“t,sz) -0 (vvf)(87 Ft,SZ)‘
St=s 1 fllgarz e +1(t = $)015 [ F ()l gare + 101V ()l g
S (It ==+ o) fllss,, .

where we used Young’s inequality in the last step. By exchanging s <+ ¢ and in place of z by I't_sz, we also
have

Ty = |f(5,2 4+ Toos2) = f(t2) = 0+ (Vuf)(t:2)] S (1t — sl + [0])]| s,
Let w be the unit vector in R? so that
I:=|(Vul)(t,2) = (Vo f)(s, Tims2)| = w - (Vo) (t 2) = (Vo f) (s, Ti—s2)].
Let = (t — s)2w and z = (0,). Then
(=) TSI+ Do+ |f(t2+2) = f(5.2+ Tem) 4 (t,2) = [(5.T1-s2)]
ST+ +|(t =)o % 1 f(s)leg + 20 /(1) = Temsf ()|
< (t— )% flsp,,-
Hence,
I =|(Vuf)(t,2) = (Vuf)(s,Time2)| S (t— )7 | fllsg .- (3.32)
Moreover, by Bernstein’s inequality in Lemma 2.4, it is clear that
190 lleg=s S I1fllcs,,-

which together with (3.32) implies (3.31) for p = 1.
Next, for 5 € (0,2), note that by (3.28) and the definition of kinetic Holder space,

IVediglograe S 1+ I2la) " gllgnrzpa

and
IVoigles S IVedillcellglics S (1 +12la) gl s
Hence,

1V.6i0lss . < 0+ I2l)ollss (3.33)
Now, for any r € (0,1/16), by Lemma 3.10 and (3.33) we have
||va\|s;jal(p) = Slzlp P(Z)||¢fvvf||sgfal
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S sup p(2) |V (97 f)llga -1 + sup p(2) | Vo7 fllsa-:
S sup p(2) 197 flisg. , +sup p(2) [ Vo7 (95, f)llga 1
S M llsg o) + 5P p(2) 103, Fllgg 1 S M1/l o0-

Here in the second inequality we used (3.31) for p = 1 we proved above. The proof is complete. |

3.3. Schauder’s estimates. For given A > 0 and f € L _(Ry;.%’(R??)), we consider the following model
kinetic equation:

D= (0 — Ay +A—v-Vy)u=f, u(0)=0.
By Duhamel’s formula, the unique solution of the above equation is given by

u(t,) = /Ot (f’\(t*s)l:’,g_sf(s7 dds = A f(t, ). (3.34)

In other words, .#) is the inverse of %). For ¢ € [1,00], T > 0 and a Banach space B, we write
L7 (B) := LU([0,T); B).
Now we can show the following Schauder estimate.

Lemma 3.12. (Schauder estimates) Let p € Py, B € (0,2) and 0 € (3,2]. For any q € [5%5,00] and T > 0,
there is a constant C = C(d, 8,0,q,T) > 0 such that for all A\ > 0 and f € LL.C;?(p),

ijngeij(p) Sc (AV 1)5 ot ”f”LchgB(p)' (3.35)

Proof. Let q € [2—30, oo] and % + % + g = 1. By (3.15) and Hélder’s inequality, we have for 5 € R,

t
RS FOm) 5 [ €D AN (= 8 D05

ﬁw%/ ”ﬁﬂ%/lA&ﬂéwﬁgmycg

<=0\ v 1)~ (1As™ e)ds) 1l e cze

N

This implies that for 5 € R,
0 1_
19l S OV Dl g oo (3.36)
On the other hand, let v := .#, f. For any 0 < t; < to < T, we have

t1
'U/(tg) - thftlu(tl) = / (e_)\(t2_3) - e_)\(tl_S))Ptzfsf(s)ds

0

to
+ (PtQ—tl - Ft2—t1)j)\f(tl) + / ei)\(bis)Ptz—sf(s)ds
t1
= Il + IQ + 13.
Let
¢ =q/(g—1).
For Iy, by (3.17) and Hélder’s inequality, we have for 8 > 0,

t1
11| poe () < |21 — 1\/0 e M P, F ()| poe (pyds

o . s
SM@—MAHAeAm)w—@ZW@%ymm

t1 ,
<Wm—mﬁw—nr%A &%) " |y o,

‘)

St —t) T (AV 1)2+7_1||f||mc ®(p)°
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For I, by (3.18) and (3.36), we have for 8 € (6 — 2 9)
[12]| Lo (p) < (ta —t1) =" ||fxf\|(ce 5(0)
(tg—tl) (/\\/1) 5+g _1||f||LqC 5 )"

For I3, by (3.17), Holder’s inequality and the change of variable, we have for § € (0, 0),

ta
A (fo—s _8
allm 5 [ 00 = 9 217,
1

ta—t1 , e %
[ e as) iy
0
(t27t1)q'7 q )Hf”L%C;ﬁ(P)
05 0, 1_
§(t2—t1)7)\2 e ||f||ch

where in the third inequahty we have used interpolation inequality a” Ab~7 < a®b?~7 for all a,b > 0 and
0<d<Lyfory:== — é > &= ﬁ =: § > 0. Combining the above calculations, we obtain

041 _
A o512 100y S OV D2 DLy 08

The proof is complete. O

A

3.4. Commutator estimates. In this subsection we prove important commutator estimates about the
kinetic semigroups, which are essential for applying paracontrolled calculus to the kinetic equations. Com-
pared with the case of the classical heat semigroups (see [GIP15]), the kinetic semigroup is not a Fourier
multiplier and there is a I'; in the commutator as stated in the left hand side of (3.37) below, which leads
to a commutator for .#, in the kinetic Holder space (see Lemma 3.15 below). In the estimate of the main
term [ ](-0) in the proof, we find that the commutator for the operator I';p;* gains regularity from f, while the
commutator for I'; cannot have this property. In particular, the decomposition (3.14) plays a crucial role in
the following proof.

Lemma 3.13. Let p1,ps € Py. For any o € (0,1), 8 € R, § 2 0 and T > 0, there is a constant
C = C(p1, p2,a, 3,0, T,d) >0 such that for all f € C%(p1), g € CB(p2) and t € (0,T), j > —1,

IRGP(f < 9) = RE(Tef < Prg)llLe(pip)

SC t_%Q_(a+6+6)j||f‘ (3'37)

Ca(p1) ||9||c§(p2)~

Proof. Without loss of generality, we only prove (3.37) for j > 3 and 8 # 0, —«. For 8 =0 or —q, it follows
by the interpolation Lemma 2.10. First of all, by (2.5), (3.14) and the definition of <, we have

RIP(F=<9)=>_ Y Y RIRIPRY(Sk-1/Rig),

g icOl k2—1
where

bj = [0—j] <3
Noting that by (2.9),

RI(Sk—1fRitg) =0 foriec ©f and k ¢ O} +3,
where
O +3:={k>0:]k—i <3, icO},

we further have

RIPAf <) =D > > RR{ARI(Se-1fRig)

Lrj i€@L keO!E3

(3.14) aa a
=)0 ) RIREP(Sk-1fRLg)-

£vj ke©L£3
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Similarly, by (2.9) we also have
RUTf < Pg) = > RUSeaTef - RiPrg) = 11" + 117,
]
where
IV = 3" RUTSe-1 f - REPrg),
bevj

I = 3" RU([Se-1,T4)f - REPrg).
2]

For Ij(.l), by (3.14) again, we can write

V=353 RIUTWSf - REPREg)
t~j keO®)+3

=Y Y RYTuSe-1 — Sk-1)f - REPREg)

l~j ke©)+3
£33 RIS S REPREg) = 1 4+ 1,
l~j keO©)+3

Combining the above calculations, we obtain

RIP(f < g) — R}(Def < Prg) = ]J(_o) _ Ij(_u) _ IJ(_2)’

where

17:=3" 3 RY(REPASk-1fRig) ~ TiSk1f - REPRLg).
t~j ke®h+3
For Ij(-o), let Fy := Sp_1f and G := Rjg. Note that
o =Ry P(Sk-1fRyg) — TeSk—1f - Ry PRy

3.
U (RITypr) * TH(FeGr) — TeFi(RETypy % T1Gl,)

) szfpt(é)(FtFk(z - 2) - FtFk(Z))FtGk(Z - E)dZ
R2

By (2.25), (3.8) and (3.11), there exists dp > 0 such that for any m > 0,
ialmgueny % [, IRETm@ITAE + 242042 ) DEillos o) 16l
< 27 (1A (1497 fllos o2l

Hence, by (3.13), for 8 # 0,

0 —al— _i1B|—8
I N ooy S D > 27PN #4)T5) | Flics (o l9ll s )
L) ke©)+3

_ila i i\ _|B|—8
S 291+ () A ) D) ez o 1962
<29 (1a7) R

Cf;(pl)”g”cg(pzy
For IJ(-H), by (3.15) we have for any m > 0,

11 a a
IS ooy S D IT(Se—1 — Sko1)f - REPREG 1< (9 o)
lrj ke©)+3

SO Se1 = Sk ) Fllo (o) IREPREG o ()
Irj ke©)+3
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kve

SN ST IR o (LA (457 ™) [Regll o (o)

i) ke®L+3 i=kAL

kve—2
N Z Z ( Z 2@04) (1 A (t4j)7m)”f”03(p1)||Rz9||L<>o(p2)

l~j ke@LE3 \i=kAl—1

S > 2 E00 AN 1)) flloz oo 190z
l~j kEOLES

<271+ tad) PN (1) ™) Fleg (o) 19 )

where in the last step we have used 2~ * e < 9=ke L 9—¢e (313) and B # 0, —a. Taking m = a+|f]+0/2,
we get

11 _ 1 i\ —
IS o () S 277 (447) 7272 Fll g o) 19l -

For I ;2), noting that

[Se—1, Tulf = Z df ==Y IR
=0

i=—1 1=0—1

and

[RETdf(z) = | 9i(2)(f(Le(z — 2)) — f(Tez — 2))dz,

R2d
since |I'y(z — 2) — (T2 — 2)|o = T2 — Z|o < t]0], by (3.8), (3.6), (2.25) and the definition of R?, there is a
dg > 0 such that for all 4,

IR, T fllpoe (o) S sup /R 102(2)|(1 + |2|)% | (f(Ce(z — 2)) — F(Tez — 2))p1(De(z — 2))|dz

z€ER2d
S / |63 (2)|(t1o) F (1 + [2]a)* (L + o)™ | fll gass 2
R2d v
SJ (t272)%Hf”Cff(P1)a

and

oo

HSe—1. Tl fllzeion S D €279 flcaon S 527 F [ flcag-
i=0—1

Hence, by (3.15),
P 2o (prpm) S S NSe—1,Tel Fll e (o) IRE Prgll e

i~

o al _ _a_ S
St fllog o2 (149 F E gl s )
t~j
S 022 B £l (o gl s -

The proof is complete. O

Remark 3.14. For any 6 > 0, by taking § = 20 and 0 in (3.37), we have
HR}LPt(f <g) - R}L( tf = Peg)llLe(pyps)
<c <[t752 (a+B+4268)35 ]/\2 (a+/j)3)

S 27 (149) 70 A1) [ llog o 9]

Using this lemma we can show the following crucial commutator estimate.

(o0 l9llcs ) (3.38)

Cl(p2)’
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Lemma 3.15. Let p1,ps € Py and a € (0,1), BE€R. Fork=0,1,T >0 and 0 € [0,2], there is a constant
C > 0 such that for all A > 0,

||[V§fk,f <]9”({;;)*;{“'9 *(p1p2) Sc (/\VI) z ”f”S‘%a(pl ”9”((:[3 J(p2) (3.39)

Proof. For k = 0, by definition (3.34) of .#\, we can write

A f <at) = [ X (Pe(F9) < g) = F(0) < Proag(s))ds

0

_ / e (P (£(5) < 9(5)) = Tums () < Piosg(s) )ds

/Oe (T f(s) = f(t)) < Pr_sg(s)ds

=: I1(t) + I2(1).
For I1(t), by (3.38) we have

t
IRST (mtorm) $27 [ 5@ )2 A D8l flles o ol

Note that by Holder’s inequality,

/Ote—“((zxjs)—? Al)ds < (/Otez”seds> - </0t((4js)—2 A 1)3013)g

<(Av1)T20, (3.40)
Thus,
RS L) =gy S OV DT 270 flcu gl -
For I5(t), for any v > 0, note that by (2.26),
IRG(Ti—sf(s) = F(#) < Presg(s))ll Lo (p1p2)
S 2 OHIIT, £(5) = £l oo | Prs ()l ez o9s,

<2703 (1= )" | Fllsg . (o) 19z oy

which implies by (3.40) again,

t
IRETa(0) | o o oy S 24 / (A (59) )8 s, o l9llcs )

< 9= (a+ﬁ+9)J(/\ V. 1)

< : HfIIS%a(pl)Hchﬂ (pa)’
Thus we obtain (3.39) for &k = 0. Note that
(Vo f <lg = Vo[ Ix, [ <lg+ Vuf(t) < Frg.

Estimate (3.39) for k = 1 follows by what we have proved and Lemma 2.11 and (3.36). Thus we complete
the proof. O

The following commutator estimate is straightforward by Lemma 3.15, Lemmas 2.11 and Lemma 2.13.
Since we will use it many times later, we write it as a lemma.

Lemma 3.16. Let p1,p2,p3 € Py. Foranya € (1,2),yeR and <0 witha+8>1, a++~v>0 and
1+ 8+~ <0, we have

H[b oV, Ay, ¢]f||([j’1'{:5+’7(p1p2p3) S Hd)”s,‘;:ll(m)”fH(c%a(pg)”bHC},a(pgy
Proof. Note that

[boVyIy,dlf =boVyIN(d = f) +boVyIi(d < f) = ¢(bo VyIrf)
=boVyI\(¢ = [) +bo [VyI, ¢ <|f + com(e, Vy Irf, D).
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By (2.28), (3.35) and (2.27), we have
160 V056 = Dllestsupapn) S IV0I3(@ = Dllens Bl
Sl = ch;j;ﬂ—l(pm)||b||C},a(p3)
< lles=s oy 171z Pl o
By (2.28), (2.29) and (3.39), we have
[bo [V, & <]f]

5547 gy S V05006 <1l Bl o
S ||¢|‘S;71(p1)|‘f||C%a(p2)||b||([:%,a(p3)'
By (2.31), (3.35) and (2.29), we have
lcom(@, V25 f. D)l ce s+ apay S 16011 (I V22 sy Bl o
<16l o 1 e Bl o
Combining the above calculations, we obtain the desired estimate. a

3.5. Renormalized pairs. In this subsection we introduce the renormalized pairs. Fix a € (%, %) and
pr,p2 € Py. For T > 0, let b = (b1,---,bs) and f be d + l-distributions in C7 (p1) and C1%(p2)
respectively. We introduce the following important quantity for later use: for g € [1, 00],

b, —
ATL(PMPQ) = ili% 6o VujAfHLch};?a(mpz) + (”bHc;z(pl) + 1)||f||L‘?TC;“(p2)' (3.41)

By (2.28), b(t) o V.2, f(t) is not well-defined for o > 1 since by Schauder’s estimate, we only have (see
Lemma 3.12)

VoI f € Cr 2 (p2).
However, in the probabilistic sense, it is possible to give a meaning to boV,.#) f when b, f are some Gaussian

noises (see Section 7 for general probabilistic assumptions and examples for Gaussian noises to satisfy the
requirement in Definition 3.17 below). This motivates us to introduce the following notion.

Definition 3.17. We call the above (b, f) € C1.5 (p1) X C15, (p2) a renormalized pair if there exists a sequence
of (bn, fn) € LEC° x LFPCR° with

sug Agﬂ”;;ﬁ" (p1, p2) < 00 (3.42)
ne
and such that

1 (llbn = bl ) + 1 = Flleze ) =0 (3.43)
and for each X\ > 0, there exists a distribution bo V, I\ f € (C%{fa(plpg) such that

lim [|b, © VI fo = bo VoI fer-2e =0. (3.44)

(p1p2)

The set of all the above renormalized pair is denoted by BY(p1,p2). If for each i = 1,---,d, (bb;) €
BZ.(p1,p1), we simply say b € BY.(p1), a renormalized vector field.

A renormalized pair (b, f) € BS.(p1, p2) is always associated with certain approximation sequence (by,, fn)nen-
The key point is of course the convergence in (3.44), which in general does not imply that for (b, f), (V/, f) €
B (p1, p2),

(b + b/, f) c B%(pl, p2)

In other words, B$.(p1, p2) is not a linear space. But we have the following easy lemma.
Lemma 3.18. For (b, f) € B$(p1,p2) and b’ € Cga(pl) with > a — 1, we have

b+, f) € B:(p1, p2)-
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Proof. Let (by, fn)nen be the approximation sequence in the definition of (b, f) € B%(p1, p2). Let ¢, be any
mollifiers in R?? and define b/, (¢,-) := V'(t, ) * ¢, (+). By definition, it is easy to see that

br b, fn b fr by fn
sup Az o T (p1. p2) < sup (AT,OJ; (p1,p2) + AT,OJ; (Phpz)) < oo.
neN neN

For any v € (o« — 1, 8), by (2.24) we clearly have
nh_{{.lo 167, — b/||<c}1a(p1) =0,
and by (2.28) and (3.43),
im. 167, 0 VoIafn = b 0 VuIrflleg,  (pipa)
< nlggo Hb;znc},a(m)nvvf/\(fn - f)||clTjaa(p2)
1 (18, — Ve o IVo 5 Fllesn ) = 0.

The proof is complete. U

To eliminate the parameter A in (3.41), we give the following lemma, the proof of which follows from
[22720, Lemma 2.16].

Lemma 3.19. Let Z!(f) = f: Py, f(r)dr. For any t > 0, we have

sup [[b(t) o Vy I\ f(t)|| g1-20(,) <2 sup [|b(t) o ijst(f)nc};?@(py (3.45)
A=0 s€(0,t]

The following localized property about the operation o is useful.

Lemma 3.20. Let T > 0, p1,p2,p3,p4 € Py, @ € (%, %) and v € (o, 1). Suppose

(b, ) € BT(p1,p2), ¥ € Cq ,(p3), & € Sy ,(pa).

Then (b, fo) € BT (p1ps, papa) with approzimation sequence (bpi, frd), and there is a C > 0 depending
only on T,~v,a,d, p; such that for all X > 0,

H(bw) o vv,ﬂ)\<f¢> - ¢¢(b o vvj)\f)HCITJfJ*h(mmPsM)

(3.46)
SJC ||bHC;z(p1)||f||(c;f:l(p2)Hwnc:}’a(pg)||¢‘|S:1Y—"a(p4)‘

Proof. By approximation, we only prove the a priori estimate (3.46). Note that

I:= (b)) o Vo IN(f)) — ¥o(bo Vy i)
= [(b)) o Vo Ir, O)f + ¢[VuIrfo, ¢]b = I1 + L.

For I, since 1+v—2a>0and 1 —2a <0, y+1—a > 1 by Lemma 3.16, we have

1201 papapa) < IDlsg. L o) 1 leze (oo 10% ez (o10)

S 18155 ol F ez oy Bl oy ¥l o
For I, similarly by (2.32), we have

||12||‘C1TTJ_2"(mpzpsp4) N ||¢||C},a(l)4)mv”j’\fo’w]bHClTT_%(plpaps)

< 18lleg, o IV0 5 et oy Blles oy 1l -

Thus we obtain (3.46) by (3.36). O
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4. LINEAR KINETIC EQUATIONS WITH DISTRIBUTION DRIFTS

Now that the necessary facts about the kinetic semigroup and weighted Besov spaces are established, the
next two sections are devoted to the actual construction of the solution to the stochastic kinetic equation.
The aim of this section is to show the well-posedness of the following linear singular kinetic equation: for
AZ=0,

L= (0 — Ay —v-Ve+Nu=b-Vyu+ f, u(0) =g, (4.1)
where b = (by,--- ,bq) and f satisfy that for some o € (%7 %) and p1, p2 € Py,

{(b7f) EB%(plap2)7 bEB%(P1)7 T>O>

4.2
have the same approximation sequence (by, fr)- (42)

For simplicity of notations, we shall write

b,b;
ZATOO p1,p1) + 1.

We also write
d

= 05(1) AT = ATN(1,1).

=1

In Subsection 4.1, we first introduce the notion of paracontrolled solutions, and then establish a localization
property for paracontrolled solutions. Such a localization is natural for classical solutions by the chain rule.
However, for paracontrolled solutions, it is quite involved since the renormalized pair is defined in the
approximation level. In Subsection 4.2, following the same argument as in [ZZZ20, Section 3] and using
estimate and commutators for the kinetic semigroup, we show the well-posedness for PDE (4.2) in weighted
anisotropic Holder spaces. We emphasize that unlike using the exponential weight technique in [ZZZ20,
Section 3], the uniqueness is a direct consequence of the a priori estimate (4.31) below.

4.1. Paracontrolled solutions. To introduce the paracontrolled solution of PDE (4.1), we make the fol-
lowing paracontrolled ansatz as in [GIP15]:

u= P+ uf + Vyu < Irb+ I\ f, (4.3)
where uf solves the following equation
uf =I\(Vou = b+ bo Vyu) + [Zy, Vyu <]b. (4.4)

Note that b o V,u is not well-defined in the classical sense. We give its definition by paracontrolled ansatz
and renormalized pair as follows: By (4.3), we can write

boVyu="boV,ul+boV,(Vyu=< Fb) +boV,Af+boV,Pp
=boV,u +bo (VZu < S\b) + (bo V,ib) - Vyu
+ com(V,u, Vy Iab,b) + bo VI f +boV,Prp. (4.5)
This motivates us to introduce the following definition.

Definition 4.1. Let T > 0, py € Py, be a bounded weight and p2,ps € Py be any weights. Under (4.2)
and ¢ € CLT*¢(pa/p1) for some ¢ > 0, we call u € S3%(p3) a paracontrolled solution of PDE (4.1)
corresponding to (b, f) if for some py € Py,

u— Pup—Vou < I\b— I f = uf € CF 2 (ps) (4.6)
satisfies (4.4) with bo V,u given by (4.5) which is well-defined by (4.8) below.

Remark 4.2. In the above definition, if we consider u = u — Py, then the initial value is reduced to zero.
In this case, the nonhomogeneous f shall be replaced by

f=7F+b-V,PypeCr%(p2)
By Lemma 3.20 with ¢ = 1,¢ = V, P and p3 = 1, ps = p2/p1,
60V, Ix(b- VuPt80)||(c1Tj(f“(p1p2) S ||SD||c}1+“+f(p2/p1)£g“(P1)~
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Thus, we still have -
(ba f) € B%(pl_a p2)7
and (u, @*) is a paracontrolled solution of (4.1) with f = f and @(0) = 0, where

@ = u' + V,Pyp < Zb— I\(b- V, Pip).
In the following, for simplicity, we may and shall assume ¢ = 0 by this procedure.
We have the following a priori estimate about the regularity of uf.

Theorem 4.3. Let u € Ssza“(pg) be a paracontrolled solution to (4.1) in the sense of Definition 4.1 with
©=0. For any e > 3231 and py == 1T ((p1p3) A p2), there is a constant C = C(T, ¢, a,d, pi, €5 (p1)) > 0
such that for all X > 0,

b,
6 llcs—20 0y Sc llullsz-auyy + Az (o1, p2). (4.7)
Proof. First of all, we show that for any 7,8 € (a,2 — 2] and p5 < (p1p3) A pa,

b,
[bo vv“HclTjM(plpo) ~ ZT(M)(”“H@%U(%) + HuﬁHcgf;(ps)) + AT,’;o(pl,m)- (4.8)
To prove this, it suffices to estimate each term in (4.5).
e Since 8 > «, by (2.28), we have
Hb © Vvuﬁ”L“’(plps) S, ||bHC;z(pl)”Vvuﬁncg’a(%) < eg‘(ﬂl)”“”lc?ﬁ}(ps)'
e Since v > v and v+ a — 2 < 0, by (2.27), (2.28), we have
oo (Viu < I let-20 20y S Dl IViu < Aablicy,

> (p1 2 (p1P3)

S ||b||c;f;l(p1)HV?;“HC;?*(W)‘|fAb“c2Tjaﬂ(pl)
SIIZ. oyl czm gy S Erlon) el o
e Since v > «, by (2.29) we have

|Vyu(bo vakb)”c;j“ N |Vvu||<c;fa“*1(p3) [bo ijkb”c;fa(pf)

(pips) ~ |
< (o)l
e Since v > «, by (2.31), we have
lleom (Vo Vo 7ab b)ller-2e 25 S I8l (o) IV otllegtor o) IVoABlley o)
SIBIZ e oy Ml gty S Crlon) [l -

Combining the above estimates and by p1ps5 < p2ps, we get (4.8).
On the other hand, by (2.27), we have

[Vou = bHCIija(plpS) S ||u||<c2Tjaé(p3)||b||c;f;(p1)7
and by (3.39) with (k,6) = (0,2) and (3.31),
125 Vou <Pblles-2ap, pg) S NVotullsi=a o [Bllcze (o) S Nullgze o) 1Blleze 1)
Thus, by (4.4), (4.8) and Schauder’s estimate (3.36), thanks to ps < p3, we obtain for 8 € (o, 2 — 2a),

b,
1 llga-20 (py gy S Iltellsz-e () + 16 lcta,, + A7 (p1,p2). (4.9)
(p1p (p3) 7.a (P5)
For ¢ > , one can choose f close to « so that
— _ atp-1
0i= 15 = 2L
Let

pa = p1 = ((p1ps) A p2), ps = pl((pips) A p2)' =",

Noting that p1p5 = p4, by (2.19) and Young’s inequality, we have for any ¢ > 0,

# # #
168052y S 101820 I35 g
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<Ol llga-20 ) + Collut -

(pa Toa ((P1P3)AP2)"

Substituting this into (4.9) and by p4s = p1p5 and letting ¢ small enough, we get
b,
||Uﬁ||<c3Tjja(p4) S ||u||s§*a(p3) + ||Uﬁ||c2Tjaa((plp3)/\p2) + AT,’;O(m, p2)- (4.10)
On the other hand, by (4.6), (2.27) and (3.35) we have
W llcz-o (orps1npn) S 1z gy + 1702 < AAbllczoo (o, py T 190 F ez )

S ||U||<c’f‘rjaa(p3) + ||Vvu||L39(ps)HfAbHcZTjj(pl) + ||fH<c;f;(p2)

S \V K%(Pl)Hu”C?ij(%) + ||f||(c;f;(pz)' (4.11)

Substituting this into (4.10), we complete the proof. O
For the uniqueness part we need the following localization result about the paracontrolled solutions.

Proposition 4.4. Let u be a paracontrolled solution to PDE (4.1) with ¢ = 0. Let ¢, € C°(R?4) with
1 = 1 on the support of . Then @ := ug € SQTT:‘ is also a paracontrolled solution to PDE (4.1) corresponding

to (b, g) € BS, where
1_7 = W)? g = (bf - UAv¢ - 2vv¢ -Vyu — (’U ' Vm¢)u - (b : vv¢)u

Proof. Without loss of generality we assume that A\ = 0. First of all, we claim (b, g) € BY. In fact, since
Voou € SZT:I" with 2 — a > «a, by Lemma 3.20, (b, ¢f — (b- V,¢)u) € BS. We note that

b= —ul,d —2V,¢ - Vou — (v-Vid)u € Si;;" C Ci:;“

with 1 — a > a — 1. Thus, by Lemma 3.18, we have (b,g) = (b,¢f — (b- V,¢)u + ') € BS.
By definition, one needs to show that

i— Vi< Ib— Sg=u'cCy (4.12)
satisfies
' = (Vi = b+bo V,a) + [.#, V,a <]b, (4.13)
with
boV,i:=boV,@ +bo (Vi< .#b)+ (boV,.2b) - V,i (4.14)
+ com(V,4,V,.#b,b) +bo V, 7g.
Since u is a paracontrolled solution, by definition we have
u=S(bxVyu-+f), (4.15)
where
bxV,u:=Vyu>=b+boV,u+ Vyu < b (4.16)
Let (by, fn) € LFCE° be as in (4.2). We introduce an approximation of u by
Up = U+ Vo < Iby+ I fr, by :=bpth, Ty = unod, (4.17)
and
b Vi := (bxVyu)p+ (b Vyp)u — Vi < b— Vi = b. (4.18)

In the classical case, it is easy to see b ® V,@ = bo V,@. In the paracontrolled case this is not obvious and
we introduce b ® V, @ which can be easily checked as limit of b, o V, @, (see step (ii) below). Moreover, it is
not hard to prove that @ satisfies (4.13) with bo V@ replaced by b® V, @ (see step (iii) below). Finally we
use approximations to prove b® V, @ = bo V, i (see step (iv) below). Our proof is divided into the following
four steps:

(i) We show that w,, is a suitable approximation of u and for some p € P,

nl;rgo 1o, - Vo, —bx Vvu”(c;i(p) = 0. (4.19)
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i) We prove b ® V,u € C:72% and
( ) p T,a

Jim [[by 0 Vit — b © Vil gze = 0.

(iii) We show that for u* being defined by (4.12) satisfies the following,
Crlesu = 7 (Vo - b+b@ Vyu) + [F, Vi <b.
(iv) With bo V, @ being defined by (4.14), we prove
b® Vi = bo V,i.
Proof of (i): First of all, by (4.6), (4.17), (2.26) and (3.35), we have
[[un — “||C2Tja‘*((p1p3)/\pz) N Hv”uHLE’?(ps)an - b||<C;f;(p1) e - f”C%fi(pz)’

which implies by (3.43) that

lim ||u, — u||Cszaa = 0.

n—ro0 S ((p1p3)Ap2)

Next, by (2.27), (4.23) and (3.43), we also have for some p € Py,

nli}II;o an < Vyun, —b < V”UH(C;_(?‘I(,;) =0,
and by (2.26), (4.23) and (3.43),

nh_}n;@ 1bn, = Vo, —b > Vvu||(c;z(p) =0.
Moreover, note that by (4.17),

bp 0 Vytiy, = by 0 Vot + b, 0 (V2u < Zby,) + (b, 0V Iby,) - Vyu
+ com(Vyu, Vi Iy, by) + by o Vi I .
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(4.20)

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)

By (3.43), (3.44) and Lemmas 2.11 and 2.13, it is easy to see that each term of the above RHS converges to

the one in (4.5) in C;{fo‘ (p) for some p € &,,. Thus,
A [[bn 0 Vatn = bo Voullgy 2 ) = 0.

Since —a < 1 — 2a, combining (4.24), (4.25) and (4.26), we obtain (4.19).

(4.26)

Proof of (ii): In this step we first use the chain rule for approximations and then take the limit. Since

¢ = ¢, by the chain rule we have
Hence, by Bony’s decomposition,
by 0 Vyily = (by - Votin) o + (by - Vud)ty — Vg < by — Vi, = by,.
Since ¢,1 € C°(R?9), by (3.43) and (4.23), we have
nlgrolo ||(bn . vvd’)“n - (b . V’U(rb)u”(c;jfo‘ =0,

and by Lemma 2.11, ) B

lim ||b, < Vytn —b < Vyil[gi-20 =0

n—oo T,a

lim [|b, = Vyin — b > Vyil|e-a =0,
n— oo T,a

which together with (4.19) and (4.18) yields (4.20). On the other hand, we use regularity of b, o V,, to

improve the regularity. Note that
I;n o Vyiy, = (bn¢) © (vvun¢) + (bnw) © (vv¢un)
= [(Vyund)o, ¥lbn + ¢[bno, ¢|Vyun
+ 1% (bn 0 Vyun) + (bpt)) o (Vygun).
Moreover, by (4.20), (2.32) and (4.26), one sees that

||l_) © VUl_LH(ClJza < sup ||En o VU’I_LTLH(leza < 00.
T,a n T,a

(4.27)
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Proof of (iii): By the chain rule, we have in the distributional sense
Ziu=L(up) = ¢ Lu —ulyp — 2V - Vou — (v- Vid)u.
Taking the inverse .#~! = .#, and by (4.15) and definition (4.18), we get
a=S((bxVyu+ f)op —ulydp — 2V, - Vyu— (v- Vyp)u)
=IbeVui+ Vi <b+ Vi = b+ g),
which, combining with definition (4.12), yields (4.21). Moreover, since by (2.27) and (4.27),
Vit = b+b® Vyu € Cp 2,
by (3.35) and (3.39), we clearly have
uf € CJ 2 (4.28)
Proof of (iv): To show (4.22), we first find a suitable approximation for bo V,a. Let
gn = fnd — uldy§ = 2V,0 - Vyu—(by - Vyd)u — (v- Vio)u.
By Lemmas 3.18 and 3.20, one sees that (b,1,g,) is the approximation sequence of (b, g) and g, — g in
Cr4- Noting that
bn o V(@ + Vo < Ib, + I gy,)
= b, 0 Vuii* + by, 0 (V20 < Zby,) + (by 0 Vy.Iby,) - Vi
+ com(V @, VI by, by) + by 0 VI g,
by (4.28), (3.43), (3.44), Lemmas 2.11, 2.13 and some tedious calculations, we have
lim_ by o V(U + Vil < Iby, + Fgy) = bo Vi in C 2. (4.29)
Here we use the decomposition in Lemma 3.20 to deduce the convergence of b, o V,.#b,, to boV,.#b. Hence,
by (4.20) and (4.29), it remains to prove that in suitable space,
nh—>Holo by o Vy(ty, — 0" — Vi < Ib, — Fg,) = nh_}n;o A, =0. (4.30)

Note that by (4.12),
it :ﬂ—VUﬁ<ﬂ5—fg:¢<uﬁ+(vvu<fb)+ﬂf> V,a< Ib— 7y,
which together with (4.17) yields
Ay =b, 0V, ((Vou < IBy)¢ — Vi < I (BuY) + I F, — IG,),

where
B, :=b,—0b, F,:=fo,—f, Gp:=gn—g.
By commutator estimates (see Lemmas 2.11 and 2.13) and (3.43), (3.44), it is easy to see that

lim (En o Vo (Vo < FBp)d) — dVou(by o vvan)) -0

and
Tim. (Bn 0 Vo (Voii < I (Bpt)) — ¥V,ii(by o vvan)) =0.
Moreover, noting that
¢ IF, — IG, =—[I,9|F, + I (B - Vyou),
by Lemma 3.16 and Lemma 3.15, we also have

lim (Bn o Vo(pIFy — FG) — (Vodu)(by o vvan)) = 0.

n—00
Finally, since ¥V,4 = V,(¢u), we have
(Vi — ¢Vu — Vyou) (b, o VI B,) =0,
which together with the above three limits yields (4.30). The proof is complete. O
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Remark 4.5. The above result clearly holds for classical solutions by the chain rule. However, for the
paracontrolled solution we cannot directly apply the chain rule since the paracontrolled solution is in the
renormalized sense, i.e., b-V, b and b- V,.# f are understood in the approximation sense. Therefore, we
have to first construct suitable smooth approximations for the solution so that we can use the chain rule. In
the last step, an obvious difficulty is that although

A (1B = blleze o) = 00 i Jlbn © Vo Ibp = bo Vo Iblgy 2 ) =0,

it does not imply that

lim b, o V,.# (b, —b) =0 in any space.

n—oo
4.2. Well-posedness for (4.1). First of all we have the following well-posedness result for PDE (4.1)
in unweighted kinetic Holder spaces. Since by Lemmas 3.11, 3.12, 3.15 and Theorem 4.3, its proofs are
essentially the same as in [ZZ720, Section 3.2]. The only difference is that we do not introduce the notion <
and cannot obtain time regularity of u* which is used to deduce the convergence of uf. We can use similar
argument as in the proof of Theorem 4.7 below to obtain convergence of uf. Thus we omit the proof of the
following theorem. We would like to emphasize that the role of introducing A is only used in the proof of
the following theorem. We also mention that the maximal principle is easy for the (4.1) when b, f € LFCy°,
since the fundamental solution exists in this case (see [DM10]).

Theorem 4.6. Let T > 0 and ¢ = 0. For any (b, f) € B, there is a unique paracontrolled solution u to
PDE (4.1) in the sense of Definition 4.1. Moreover, there are ¢ > 1 large enough only depending on a and
c1,co > 0 such that

5 9

Julliee < cl(gl})zfsaAglyfq, ||u||S§Taa < @(69)27”1&%}2}0.

Now we give the main result of this section.

Theorem 4.7. Let o € (3,2) and ¥ := 5-%—. Let k1 > 0 and k2 € R with

(20 +2)k1 <1, k3 := (20 + 1)Ky + ko.

With notations in (3.5), let

pi =0 e Py, 1=1,2,3.
Under (4.2), for any T > 0 and ¢ € C)(p2/p1), where v > 1+ «, there is a unique paracontrolled solution
u € S%jao‘(pg) to PDE (4.1) in the sense of Definition 4.1 so that

b,
lullsz-a () S I9llczoason + A7 (01, p2), (4.31)
where C = C(T,d,a, ki, 5(p1)) > 0. Moreover, let (b, fn) € LFC x LECE° be the approzimation in
Definition 3.17, and ¢y, € Cp° with
sup H@”HCZ(M/M) < 0,
n
and @, converges to o in R?? locally uniformly. Let u, be the classical solution of PDE (4.1) corresponding
to (b, fn) and @,. Then for any B > a and ps € Py with lim,_, o (ps/p3)(z) = 0, we have
nli)H;o ||Un — ’I,L||S2T—aﬁ(p4) =0. (432)
Proof. A!l!
We mainly concentrate on showing the a priori estimate (4.31) for any paracontrolled solution u of PDE
(4.1). Without loss of generality we may assume A = 0 and ¢ = 0 (see Remark 4.2). We fix 0 < r < %.

Note that ¢3,. = 1 on the support of ¢Z. For each z € R? by Proposition 4.4, u, := u¢? is a paracontrolled
solution to the following PDE:

Ouz = Ayuz +v-Vouz + b - Vyus + g2, u.(0) =0,
where b, := b¢3,. and
9z = fo7 —2Vou- Vyd] — (Aygf + v Vagi)u —b- Vydru.
By Theorem 4.6, there are ¢ > 1 large enough and two constants ¢y, co > 0 such that for all z € R? |

lusllga-o < ca ()P AR fusllig < calth ) Als-. (4.33)

T,00 ?
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Below, for simplicity of notations, we drop the time variable. By the definition of g,, Lemma 2.11, (3.23)

and (3.24), we have
||gz||C;°‘ < Hf¢f||c;a +2[|Vyu- Vvﬁzsi”c;a + b vvéﬁiUHC;“
+ u(Avgy + v Vadi)| e
S W llczopallorllcr oty + IVoullaze o) IVodilicr o)
+ 1l oz oy lullct (o) Vo i et (p1ps)-1)
F lullzo o) 1A07 + 0 Vadill oo o)
< o3 (M oo oy + (00705 ) lullcs o)-
Hence,
||9z||L;c;a S Pgl(z)\|f||Lch;”(p2) + (prlpgl)(z)HUHLch;(pg)«
Moreover, we have
1(b= © VuIngz)llgr-2e < [1bz 0 VoI (fh7) || gr2e 4 [|bz © Vo IA(b - Vogiu)||g1-2a
+ bz 0 VoA (u(Ay@Z +v - Vo) + 2Vt - Vo) || oo
=If+1; +I3.
For If, by (3.46) with p3 = pfl, Py = pgl and ¢ = ¢7, we have
ITs ||¢§r\|cg(p;1)H¢i||c;(p;1)AltJ,’c{o(P17p2) S (072 ()AL (o1, p2).
For I3, by (3.46) with p3 = p; 2, ps = 1, and ¢ = VZu, we have
I5 S 1165, Nl o2y | Vediulls:, At (o1, 1) S (007205 ) (2) ullst, (o)
where by (3.33) and (3.29), we have
IVodiullsy, S e(2)ll95ullsy, < (o5 )(2)lullsy , (ps)-
For I}, as in (4.34), by (2.28), Lemma 3.12 and (3.24), we have
I3 S bzl gze Vo Ia (u(Dpgr +v - Vi) +2Vu - Viody) [l cr
< P Al oy 1 A0G7 + 0+ Va52) + 290+ Vsl
S (0o o3 @)l (o) S (0013 ) () ulles (s

where in the second step we used

bl S Mbllgs e lélcr oy S ot () bllza o

1

(4.34)

(4.35)

(4.36)

and in the last step we note that p; is bounded. Combining the above calculations, we get for any ¢ € [0, T,

(b 0 Vutrg2) (D)l gr2e < (103 V()AL (o1, p2) + (007 03 ) () llsy (-
Now by the definition of Agﬁ&gz, (4.35), (4.36) and the calculations above, we get

bz,9-
AT’qg = sl)l\p [[b= o ijkngLch;—M + (Ilszc;;Jrl)ngIIL;c;a

T 1/q
< (605 ) (AL (o1, 2) + (001 205 () ( / ||u|;;a(pg)dt> .

On the other hand, by (3.23) and (3.46) with p3 = p; ', pa = p; " and ¢ = ¥ = ¢Z, we have

b2 0 Vb0 < o2 ()16 o TIbles-20 ) 0112

(i ;i(ﬂl))'

Hence, by (4.36)

e = A (1,141 S pr2(2) (o),

(4.37)
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Then, by (4.33) and (4.37) with ¢ = co, we have

lusllgz o S 072 () (o7 02 () AR (o1, 2) + (007205 ) (2l ()|
= (o7 0z VAL (o1, 02) + (0017 05 ) (2l ()

and

T l/q
luzllege < (o= p3 ) (2) AT (o1, p2) + (007203 (2) (/ ||u|§;a<p3>df> :

From these two estimates, and noting that

ps =p1tpa, 0p7 P <1,

by Lemmas 3.10 and 3.8, we get
b,
lullsz- ) S Ao (P, 02) + lullsy, (oo (4.38)

and

< b, f T q l/q
st S AT orsp2) + ([ Tl (,,y00) (4.39)

Note that by (2.19) and Definition 3.6,
< 1/(2—a) (1-a)/(2—a)

Y 1 g il
which by Young’s inequality implies that for any € > 0, there is a constant C. > 0 such that

lullss .y < elltllsae gy + Celltllge ooy
Substituting this into (4.38) and choosing ¢ small enough, we get

b,
lallgz - py) S AT (P1, 92) + lullige o)

which together with (4.39) and by Gronwall’s inequality, we obtain (4.31).

(Uniqueness) Let uj,us be two paracontrolled solutions of PDE (4.1). By definition, it is easy to see
that u = u; — ug is still a paracontrolled solution of (4.1) with ¢ = f = 0. Thus by (4.31), we immediately
have u = 0.

(Existence) Let (by, fn) € LFCP° x LFPCE° be the approximation in Definition 3.17, and u, be the
corresponding solution of PDE (4.1). By the priori estimate (4.31), (4.7) and (3.42), we have the following
uniform estimate:

0. ([ltnllgz-s (o + 18k llcs32 sy ) < 0. (4.40)

By Lemma A.3, for any 8 > a and ps € Py, with lim, o (p5/p3)(z) = 0, there are u € S%Taa(pg) and a
subsequence nj such that

k;li)rgo ||u’l’bk - uHSngaﬁ(ps) =0.
Moreover, let uf := u — V,u < #b — #f. By the above limit, (2.27) and (3.36), it is easy to see that for
some pg € Py,

Jim [, — u*[lLse (o) = 0,
which, together with (4.40), and by Fatou’s lemma and the interpolation inequality (2.19), implies that
uf € C%‘f“(m) and for any 8 > «,

=0.

; LT
klggo Hu"’“ Y HC‘;",_{:,%(PGPU

By a standard limit procedure, one finds that u is a paracontrolled solution in the sense of Definition 4.1
(see [GIP15]). Finally, by the uniqueness of paracontrolled solutions, the full limit (4.32) holds. |
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5. WELL-POSEDNESS OF SINGULAR MEAN FIELD EQUATIONS

In this section we study the nonlinear singular kinetic equations. Throughout this section we fix T' > 0,
e(1,2),9:= 2 and
a&\3,3) V=35,
Ko <0, 0< K < 1/(219+ 2), (51)
and let
Ko := K1, k3 := (20 4 2)k1, p; :== 0™, i=0,1,2,3,
where g is given in (3.5). Consider the following nonlinear kinetic equation with distributional drift
ou=A0Ayu—v-Vyu—W -Vyu—Kx(u) - Vyu, u(0) =, (5.2)

where v : Ry x R2¢ — R is a function of time variable ¢, position = and velocity v, (u)(t, ) := Jga u(t, z,v)dv
stands for the mass, K : R* — R? is a kernel function,

K x (u)(t,x) := /1 K(z —y){(u)(t,y)dy,
and W (t, z,v) satisfies that
W € B (p1) has the approximation sequence W,, with div,W,, = 0. (5.3)
Here we assume that

K € Ugsq_1CP/3. (5.4)

Remark 5.1. (i) For K(z,v) = K(z), it is easy to see that
KeCl «— KeCP/? vBeR.
Moreover, for K(x) = |z|~" with r < (1 — «)/3, (5.4) holds.
(ii) Since div, W =0 and K does not depend on v, one can write (5.2) as the following divergence form:
Ou = Ayu — v - Vyu — divy, (W + K * (u))u), u(0) = . (5.5)

In particular, when W and K are smooth, if ¢ is a probability density function, then so is the solution
U.

To use the framework of the above sections we define the solution to (5.2) by the following transform: for
f e R¥M),pe SR
Tfp) = flre)  Tela,v) = oz, —v).
It is easy to see this transform does not change Besov norm.

Definition 5.2. We call u € S%Tao‘(pg) a probability density paracontrolled solution to PDE (5.2) if Tu is a
paracontrolled solution to PDE (4.1) with A =0 and b = 17W + K * (u) and initial value T¢

u >0, / u(t,z)dz =1, t€][0,T].
R2d

Remark 5.3. (i) This definition should be equivalent to the definition using the semigroup associated with
A, —v-V,.

(ii) Let u be a probability density paracontrolled solution to PDE (5.2). Under (5.3) and (5.4), by Lemma
3.18, it is easy to see that b = 7W + K * (u) € B%(p1), whose approximation sequence can be taken as

by, = TW,, + K, % (u) with div,b, =0,
where K,, = K * ¢,, with ¢,, being the usual mollifier.

For a density solution the nonlinear term can be bounded easily. To prove the existence of solutions we
use smooth approximation and need to prove the convergence not only in the kinetic Holder space but also in
L' space since the nonlinear term contains a nonlocal interaction. The proof of the uniqueness part is more
involved. To deal with the nonlinear term, we have to bound the difference of solutions in L' space which
requires an uniform L? L' bound of the gradient of the solutions. To this end we use an entropy method and
introduce the following entropy. For a probability density function f, one says that f has a finite entropy if

H(f):= - (2)In f(2)dz € (—o0, 0).
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The main result of this section is the following theorem.

Theorem 5.4. Suppose that (5.1), (5.3) and (5.4) hold. Let v > 1+ a.

(Existence) For any probability density function @ € L*(po) N CY, there exists at least a probability density
paracontrolled solution u € S%Taa(pg) to PDE (5.2). Moreover, there is a constant C > 0 such that for all
te 0,17,

[t (o) < CllellLr (o) (5.6)
and if |[H(p)| < oo, then it holds that
H(u(t) + [V oulsr, < Hip), (57)
and
[H (u(t)] + [ VoulZspy < H(@) + Clellrioy) +1). (5.8)

(Stability) If in addition +hat K is bounded, then for any p1, 2 € LY (po) N CY with H(p1) < 0o, and any
probability density paracontrolled solutions u; and us with initial values @1 and o, respectively, there is a
constant C > 0 only depending on ||K ||z, [[01|lL1(py), H(p1) and ||e™P°|[11 such that for all t € [0,T],

lur (8) = ua ()] < e“llr — pall 1 (5.9)

Remark 5.5. ¢ € L'(pg) is a moment requirement, i.e.,

/ |z|1%0lp(2)dz < oco.
R2d

This is a common assumption in the entropy method (see [JW16]), which can be seen from the following
Lemma 5.6.

We need the following elementary lemma.

Lemma 5.6. It holds that for any measurable ¢, f >0, § € [0,1) and p € Py,

Jolsmis+a< [ormis+oy+2( [opr+ [oer).
Proof. By Young’s inequality, we have
—rln(r+d) < —rlnr<ar+e™® Vrel0,1], a=>=0.

Hence,
|rIn(r +6)| = rin(r +0) — 2rIn(r + 0)1{pcr<i—s} < 7In(r+6) +2(ar +e7).
The desired estimate follows by taking a = p. O

We recall the following result (cf. [RXZ21]).
Lemma 5.7. Let b € LXC°(R?Y) and let Z7° = (X4, Vi) be the unique solution of the following SDE:
dX, = Vidt, dV, = V2dB, + b(t, X;, V;)dt, (Xo, V) = 20 € R, (5.10)

Then for any initial probability measure pg,

p(t.dz) = [ P2 € dpoldia)
R2d
is the unique solution to the following Fokker-Planck equation in the distributional sense:
Op = Aypp—v - Vop—divy(bp), p(0) = po-

Now we first derive the following a priori moment and entropy estimates. The proof is divided into three
steps. First for given solution u we can find a linear approximation such that Theorem 4.7 can be applied.
Second we prove (5.6) by a probabilistic method. Finally we use entropy method to prove (5.7) and (5.8).

Lemma 5.8. Under (5.3), let u € S2T,_ao‘(p3) be a probability density paracontrolled solution of (5.2) with
initial value p € L*(po) N C). Then (5.6) holds. Moreover, if H(p) < oo then (5.7) and (5.8) hold.
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Proof. (STEP 1) Let b, € LFCp® (R29) be the approximation sequence as in Remark 5.3 and ¢, = ¢ * ¢,
with ¢,, being the usual mollifier. Since b,, € LF® C’I?O(RM), it is well known that there is a unique probability
density solution u, € LF C’IS’O(RM) to the following approximation Fokker-Planck equation:

Optey, = Ay, — v - Vi — 7by - Vyuy = Ayuy — v - Vauy, — divy (7hpuy,), (5.11)
with u,(0) = ¢,. It is easy to see that 7u,, satisfies the following equation:
OiTUp = AyTUp +0 - VyTUy + by, - VyTUy,.
By (4.32) and definition of solutions, we have for some p € £, and S € (a, 2),
A [Irn = rulls o) =0,
which implies that
Jim. [lun — u||S2T,_f(P) =0. (5.12)
To show (5.6), (5.7) and (5.8), it suffices to show that for some C' > 0 independent of n,
(121 () S In 1oy S 161210, (5.13)
and if H(p) < oo, then
H(un(t)) + ||vvun‘|i§L1 < H(epn). (5.14)

Indeed, it is easy to see that (5.13) implies (5.6) by Fatou’s lemma. Now we prove how to derive (5.7)
and (5.8) from (5.14) and (5.13). First, since r — rlogr is convex on [0,00) and H(yp) < oo, by Jensen’s
inequality, we have

H(pn) = H(p* dn) < H(ep), (5.15)
and by the lower semi-continuity of u — [|Vyullgz2p1,

[Voullzzrr < lim [[Vounllpzz:- (5.16)
n—oo
On the other hand, let kg < kK < 0 and p := o". Recalling (3.5) and py = ¢"°, for any R > 0, we have
l[un () —u(®)lLr(p) < / |un(t, 2) = u(t, 2)| - 1121, <my - p(2)d2
b [ unt,2) =t )] Lo <ol

< / [un (t,2) —u(t, 2)| - 121, <ry - p(2)dz
+ C5up [ (8) 13 B,
which implies by first letting n — oo and then R — oo,
nhﬁn;o |un — ullLseL1(p) = 0. (5.17)

Now we define the relative entropy for nonnegative measurable function f,

(1) = [ F(er) = H) + 02, (5.13)

Since r(Inr — 1) > —1 for r > 0, we have
inf u, () (In(u, (t)e”) — 1) > —e € L',
which by Fatou’s lemma implies that

Hy(u(t)) —1< lim [ up(t)e” (In(uy(t)e”) —1)e™” = lim H,(un(t)) — 1.

n— oo n—o0

This together with (5.17) and (5.18) yields
H(u(®)) < lim H(un (1))

n—oo
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Combining this with (5.14)-(5.16), we obtain (5.7). Moreover, by (5.6) and (5.7) and Lemma 5.6, (5.8)
follows.

(STEP 2) In this step we show (5.13) by showing a moment estimate of solution to (5.10) which is achieved
by establishing a Krylov’s type of estimate for the singular drift term. For simplicity, we drop the subscripts
n below. By Lemma 5.7 one has

022y = [ Bon(Zi)plz0)do

where Z;° = (X, V;) is the unique solution to SDE (5.10) with b = 7b,,. Hence, to show (5.13), it suffices to
prove that for some C' > 0 independent of n,

Ep()(thO) SC p()(Zo), Vzo € R2d. (519)

By It0’s formula, we have

t t
Epo(Z;°) = po(20) + E/ (Avpo + v+ Vapo)(Z7°)ds + E/ (b Voupo)(s, Z5°)ds.
0 0
Noting that by (3.7), for some Cy > 0,
|Aypo + v - Vapo|(2) < Copo(z),

we obtain
t

t
Eoo(Z7%) < polz0) + CoB / po(Z:0)ds + B / (b- Vupo)(s, Z20)ds.
0 0

To estimate the last term, we use Theorem 4.7 to deduce a Krylov’s type of estimate. More precisely, for
fixed ¢ € [0,T], let w! be the unique smooth solution of the following backward PDE:

dsw' + (Ay +v- Vo +b-Vy)w' =b-Vypg, w'(t)=0.

By Ito’s formula again, we have
0 = Bul(t, Z2°) = w'(0, ) + E/t(b Vupo)(s, Z2)ds.
Hence, i
o) < po0) + GO | ()5 —0'(0,20) (5.20)

Let 8 € (a,1) and py := (poo)~'. By (3.7) and (2.21), we have
I¥up0llepy) <

which by (2.29) yields that
16+ Vupolle-

T

% (p1pa) 5 ||b||<c;j:(p1)||VvP0||c§(p4) 5 ||b||<c;f;(p1)~
Moreover, by Lemma 3.20 we obtain
160 Vo Ia(b- Vopo)ller-ze(pzpp <o VoIab)Vopolici—za(,z,,)
+||boVyIr(b-Vyp) — (bo ij)\b)vvp()”(c;:am(p%p“

Slbo Vv]z\bHclij“(p%)vaPOHCfZ(p4) + ||b‘|é;z(pl)||vao||cg(p4)'

Since (20 +2)k; < 1 and p; = 0", ps = o "0~ 1, by Theorem 4.7 we have
b,b-V,
”wt”L;sJ(po—l) S AT P (p1, p1pa) < 00,
which implies that for some C7 > 0 independent of n and zg,
[w*(0, 20)| < C1po(20)-

Substituting this into (5.20) and by Gronwall’s inequality we obtain (5.19).
(STEP 3) In this step we show (5.14) by entropy method. Recall y in (3.21). For § € (0,1) and R > 1, let

Bs(r) :==rln(r +9), xr(z,v):= x(%, %)
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Since u is a smooth solution of PDE (5.11), by the chain rule, it is easy to see that
0Bs(u) = DyBs(u) — v - Vafs(u) —b- Vo s(u) — B3 (u)|Vyul>.
Multiplying both sides by xr, then integrating over [0,#] x R2? and by integration by parts and div,b = 0,

we obtain
[ xwsstutt) = [ xasste / [ xwsi )9

t
— / / (AvXR +v-Voxr+b- vaﬁ)ﬁa(U)
0
t
< HAUXR‘F'U'VQ:XR"'b'VUXR”]LEF / /X2R|66(u)|
0

Co(1 + bl )R / / xerlBs(w)l, (5.21)

where (', only depends on x. For m € N, define

Gm(t) = / X gl (u(®))].

Noting that 5§ > 0 and 2™ > 1, by Lemma 5.6, (5.21) and (5.13), we obtain

GRt) < [ xem sl <>>+2</ ()po+/ep0)

M/ G (s)ds+ [ 1850+ Cllellagoy + 1)

Cy m
R /0 Gth(s)ds + Ao,
where Cp, := Cy (1 + ||b|| ) and
Ag = / 1B5(L)l + CllellLrpo) +1) < / leIno| + 1+ C(llellpr (o) +1) < o0
Here the first inequality is due to

|Bs(r)| < |rlogr|+r, &€ (0,1), r>=0, (5.22)

and the last inequality we used Lemma 5.6. By iteration, we obtain that for any m € N,

m—1
C«ktk om t  pt1 tim—1
GhL(t) < A b —l——b// / G (b))t - - - dty.
r(t) OkoRkk! i ; (tm) 1

Since u € L C°(R?), there is a constant Cs > 0 such that for any R > 1

GE(t) < C5/X2mR Cs(2™R)*

Therefore,
0 Cvt/R " 2qt"
GR(t) < Aoe b + WC’(S(QmR) ﬁ,
which in turn implies that by first letting m — oo and then R — oo,
/Iﬁa )= lim GR(t) < Ao Z/\ﬂa(w)l + Clellzrpe) +1) < oo (5.23)

Thus, by taking limits R — oo on the both sides of (5.21), we obtain

[ sttt //6 NITuu(s)Pds < [ Gs(e).

By (5.23) (5.22) and Fatou’s Lemma, we further have

/ fut) In(u / oln gl + Cllllz oy + 1) < (5.24)
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Letting ¢ | 0, by 85 (r) = leré + ﬁ and Fatou’s lemma,

oo [ [t fons

Here for the first and last term we used (5.24) (5.22) and dominated convergence theorem. On the other
hand, by Holder’s inequality, we have

[1vaas [ (s [T a - [ [OR

Substituting this into (5.25), we obtain (5.14). The proof is complete. O
Now, we can give the proof of Theorem 5.4.

Proof of Theorem 5.4. (Existence) By our definition of solutions it suffices to prove there exists a solution
u to the following equation:

Ou=Au+v-Vyu+7W-Vyu+ K *(u)- Vyu, u(0) = 1. (5.26)
Let W,, € L¥C(R??) be as in (5.3). Let ¢,,(2) = n?¢;(nx) be the usual modifier and K,, := K * ¢,, €
Cboo(]Rd). Since the coefficients are bounded and Lipschitz and div,W,, = div,K,, = 0, by standard fixed

point argument, one can show that there is a unique smooth probability density solution u,, to the following
PDE

Optiy, = Ayt + 0 - Vit + (TWy, + Ky % () - Vytin, un(0) = 70, (5.27)
Define
b (t, x,v) = TW, (¢, 2, v) + Ky * (un)(t, ).
Since for 8 > (« —1)/3
1K (un)llco < Enlles [ (un)llnr < [1Kles llunllr S 1,
by (2.28), (3.31) and (3.35) and Remark 5.1 it is easy to see that
”bn o va](Kn * <un>)”025+1*“(p1) S ||b HCa (pl)”Kn * <un>||02ﬁ 5 1,

where the implicit constant is independent of n. Thus, by definition we have

supél}" (p1) < sup (5 "(p1) +£Kn* Un) )+ ZAWn,K *(un) (p1 71)> < o0,
and by Theorem 4.7 and (4.7),
sup <||un||s2 (o) T ||u§L||C;Taza(p4)) < o0.

Thus, by Lemma A.3, there are u € STTaa(pg) and subsequence ny such that for any 5 > a and p5 € Py,
with lim,_, o (p5/p3)(2) =0,

lim ||up, — u||Sz 8¢ =0.

k— o0
As in the proof of Theorem 4.7, one sees that uf := u— P,p—V,u < #b € C5, 2O‘(p4) and for some pg € Py,
and any 8 > «,

(ps) —

i to_ gt —
dm e, = wlles=20 ) = 0-
It is the same reason as in (5.17), we have
kli}l’go ||Unk - uHL%CLl =0.

In particular,

u >0, /u(t,z) = 1. (5.28)

Since K € C? for some 3 > a — 1,
| K (un, ) — K x (u)|lcs —0 ask— oo.
T,a
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Let e = (8 —a+1)/2 > 0. By (2.24), we have
1K, * (uy ) — K % <7.Ln>||(cgfl+s <SnfK|cs =0 asn— oo,

which implies that

||bn o VfAbn —bo vj)‘b‘|(C1TT(;2a(pf) — 0.
Taking limits on the both sides of (5.27), one sees that u is a probability density paracontrolled solution of
PDE (5.26).

(Stability) By our definition it only suffices to prove the result of solution to (5.26). Let uj,uz be two
paracontrolled solutions of PDE (5.2) with the initial values ¢; and @9, respectively. For i = 1,2, let u} be
the smooth approximation solution of the following linearized Fokker-Planck equation

ou = Ayul +v - Vaul + (W, + Ky (ug)) - Vyul'y, ul (0) = of,

where ¢! = @; * ¢, and W), is the approximation sequence in (5.3), K,, = K * ¢,. By (4.32), we have for
some p € Py,

nl;rr;o [ui = willLse () = 0, i=1,2. (5.29)
Let
Wy = Ul — Uy, W= U] — Ug,
and

b == TWy + Ky x (u2),  fo = Kp* (w) - Vyuy,
and for any § > 0,

Bs(r) :=Vr2 46— Ve, xr(z,v) := X(%, )

ol

It is easy to see that
6twn = Avwn +v- Vmwn + bn ' vvwn + fn7
and similar as (5.21) by the chain rule and the integration by parts,

0 [ xastwn) = [ (A= v Toxn)Bstwn) — [ xnflwn) Vo
Since |Bs(r)| < |7, |85(r)] < 1 and [ |w,| < 2, there is a constant C' > 0 independent of R such that

o, / aBs(wn) < CR2+ bl e B + / by

Integrating both sides from 0 to ¢ and letting R — oo and é — 0, we obtain

t
lwon @)1 < wa ()| + / 1 fullzsds.

Note that by Holder’s inequality,

t t
/0 | fullzrds < / 1K % ()| o |V ]| 1 ds

1
t 3
<l ([ Toleas) 190z
0
Since 7 does not change entropy and (5.14), (5.15) and (5.24) also hold for u,, which implies that

IVoulllpzr < H(et) — H(ui' (1) Seo /|<P1 |+ (lerllLr ooy + 1)

where C' only depends on pg. Thus,

1
2

t
lwoa@®lz < lwn ()2 + Crpnpo ( / ||w(s>||ilds)
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Letting n — oo and by (5.29) and Fatou’s lemma,

N

t
lw(®)][r < lw(0)llLr + Cr 1,00 (/0 ||W(S)|I%1d8) 7
which implies (5.9) by Gronwall’s inequality. a
6. NONLINEAR MARTINGALE PROBLEM WITH SINGULAR DRIFTS
Fix T' > 0. In this section we consider the following nonlinear kinetic DDSDE with distributional drift:
dX, = Vidt, dV; = W(t, X;, V;)dt + (K * px,)(X.)dt + v/2d By, (6.1)
where W € B%(0") for some k > 0 and K (x) : R? — R? satisfies that
K € Upsq_1CP/3.

Here px, stands for the law of X; in R%, and for a probability measure u in R9,

Ko pw) = y K(z —y)u(dy).

Fix T' > 0. Let Cr be the space of all continuous functions from [0, 7] to R?? and P(Cr) the set of all
probability measures over Cp. Let %; be the natural o-filtration, and z be the canonical process over Cr,
i.e., for w € Cr,

zt(w) = (2 (w), vi(w)) = wi.
As mentioned in the introduction, we define the martingale problem by using the linear version of the
Kolomogorov backward equation. More precisely, for a continuous curve y : [0, T] — P(R?) with respect to
the weak convergence, define

%M ::Av+ﬂ'vz+(W(t>+K*Mt>'Vv~

As in Remark 5.3, it is easy to see that W + K x pu; € B$:(0%). Let f € LC,(R??) and ¢ € C)(R??) for some

v >1+aand ¥ := 5-%—. By Theorem 4.7, there exists a unique paracontrolled solution uf € SQTTGO‘(QQWH)“)

to the following equation:

Oy + Ll = f, wH(T) = . (6.2)
For any & > 0, let Ps(R%%) be the space of all probability measures v on R?? with

2)0u(dz) < 212 v(dz 00.
[ e = [ lsliue) <

We introduce the following notion about the martingale problem.

Definition 6.1. (Martingale problem) Let 6 > 0. A probability measure P € P(Cr) is called a martingale
solution to SDE (6.1) starting from v € Ps(R??), if PoZy' = v and for all f € LFCy(R??) and ¢ € CJ(R??)
with some v > 1+ «,

t
Myt 20) — 5 (0.20) [ f.2)ds
0

is a martingale under P with respect to (%), where p; := Po :v;l and u’; is the paracontrolled solution

to (6.2). The set of all martingale solutions P associated with W, K and starting from v is denoted by
AMy,(W, K).

Remark 6.2. The moment assumption for v is necessary for making sense of Il?lujﬁ(()7 20) since the solution
u’; lives in weighted spaces.

Our main result of this section is the following:

Theorem 6.3. Let o € (%, %) and 9 1= 2—9304' Suppose that for some k € (0, ﬁ} and B> a—1,

W e B(o"), K e CP/3.

Then for any v € Ps(R?4) with § > (49 + 4)k, there exists at least one martingale solution P € ., (W, K)
to SDE (6.1). Moreover, if K is bounded measurable, then there exists at most one P € A,(W, K).
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Let W,, be the approximation sequence of W, and K, = K * ¢,, with ¢,,(x) = n%¢;(nz) being the usual
mollifier. We consider the following approximation SDE:

AX7 = Vrdt, AV = Wi (t, Z)dt + (K, + pxp ) (X7)dt + V2d By, (6.3)

where Z" = (X", V") and P71 o Z' = v. Since W,, and K,, are globally Lipschitz, it is well-known that
there is a unique strong solution Z™ to (6.3) (see [Wal8, Theorem 2.1]). We first establish the following
uniform moment estimates for V;* by a PDE’s method.

Lemma 6.4. Suppose § > (49 + 4)k. For any p € (2, M], there is a constant C > 0 such that for all
0<s<t<T,

sup B|V;" — VP <o (- 5)P/%.

Proof. By SDE (6.3), it suffices to prove that

t
/ by, (r, Z)dr

b (t,2,0) 1= Wy (t,2,v) + (I, * pxp)(z) € LFC (R??).
Fix t € [0,T]. Let w, be the smooth solution to the following kinetic equation

Optty, = Ayt +v - Vo, + bl - Vou, — b, u,(0) =0,
where bf (s,2) = b, (t — s,2). By Theorem 4.7, for o := (20 + 2)x, we have

p

sup E Sc |t — s|Gp/2, (6.4)

where

sup Hun||sf;a(gg) < o0. (6.5)

Let

Then v}, satisfies the following equation
Opul, + Ayul, + v - Voul, + b, - Vyul, = by,  ul(t) =0.

By (6.3) and It6’s formula, one sees that

/b (r, ZM)dr = ul (¢, Z}") — ul (s, Z") /Vu (r,Z)d

=l (t, 04— Z7) —ul (s, Z7) — ﬂ/ Voul (r, Z7)dB,,
where the second step is due to
qu(t, ZM)=0= ul n(t, T s 2.
By BDG’s inequality, (3.20) and (3.31), we have for any p € (2

¢
/ by (r, Z1)dr

? (2 9+2):‘i ?

S (=)@ 2 g, B (27)

t p/
IVl e B ([ (2

E

2

S (6= 8) P2 (8 — )2 un | B,y suP Eo™P7(Z)). (6.6)
ta (@ )TE[O,t]
Finally, since po < ¢, as in showing (5.19), we have
sup sup Be*(20) S [ o 0 (w(da). (6.7)
n sel0,t] R2d
By (6.6), (6.7) and (6.5), we obtain (6.4). The proof is complete. O

Now we give the following convergence result.



SINGULAR KINETIC EQUATIONS AND APPLICATIONS 45

Lemma 6.5. Let (,)nen be a family of probability measures on C([0,T];R?). Suppose that p, weakly
converges to . and KK € CP, Then for any By < B, we have

nh_{go | K * pi — K % N||L3§>cﬁo =0.
Proof. Tt suffices to prove the result for §y satisfying 8 — 8o € (0,1). By Skorohod’s representation theorem,
there are a probability space (€2,.%,P) and random variables X,,, X with values in C([0, T]; R?) so that
lim sup |X,(s)—X(s)]=0 a.s.,

n=00 5¢[0,T]

and
Po (Xn)_l = Hn; PoX '= K.
Let R; be the usual block operator with a = (1,---,1) in (2.4). By similar arguments as (2.25) we have for
any j > —1 and h € R?,
IRGE (- +h) = RiK || < B R K | gs-s0 S 2777 1|77 K| s (6.8)
From this, we derive that |R;K||cs s, < 27707 K||cs and
IR K — RiK||pe < m~ PP R K || go-se S 27 P07m™ =) K| 5. (6.9)

Note that
IR (Ko * pin(5) = K % u(s))(@)] = |[ER; Ko (@ — X (s)) — ER; K (x — X (5))]
SE[R; Kn(z — Xu(s)) — RiK(z — Xn(s))]
+ER;K (2 — X,(s)) — RjK(x — X(s))|
= jnlj)(s x) + ._7”2])(8756‘)

—_  —

)
)

For \7,5’1]-)(5,30), by (6.9) we have
1T s oo < IR K — RK |2 < 277000~ (=50 | K| s

For jrgzj) (s,x), by the dominated convergence theorem and (6.8), we have

hm SupQ'B"]HJé ])||L<>CL0<>< E ( lim  sup 277|R;K(z — X,(s)) — R;jK(z — X(s)))

N0 5¢[0,T],j

§E<hm sup |Xn(s>—X(s)|ﬂ—’3°> |Kllce = 0.

n— oo SE[O,T]
From these two estimates, we derive the desired limit. O

Now we can give the proof of Theorem 6.3.

Proof of Theorem 6.3. (Existence) Let P,, = P o Z” be the law of Z™ in (Cp, #r). By Lemma 6.4 and
Kolmogorov’s criterion, we have for each € > 0,

hmsupP sup V" =V >¢e| =0.
=0 n s#t€[0,T),|[t—s|<6

Since XJ' = [7 V*ds+X, and
lim supP(|ZJ| > R) = lim v{z:|z| > R} =0,
R—o0 p R—o00

it is easy to see that for each ¢ > 0,

lim sup P sup |z} = Z2 >¢e | =0.
=0 s£t€[0,T),[t—s|<6S

Thus (P,,)nen is tight in Cp.
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Let P be any accumulation point of (P, ),en. Without loss of generality, we assume P, weakly converges

to P. Let
tn =P, 0 Xfl, uw:="Po XL
Let ¢,, be the usual mollifier in R?? and define
fu(t,2) = f(t,) * dn(2), ¢n(z) =@ *n(2)
and
b =Wy + Ky % iy, b:=W + K xp.

Since by, f, € LFCP(R??), it is well known that there is a smooth solution u, € L$C(R?*?) to the
following PDE:

Oy, + (Ay + v - Vo + by - Vio)un = fry, un(T) = @n. (6.10)

Now we define two functionals on Cr:

M = M (2) i= un(t, 2e) — un(0,20) — /0 fn(s,25)ds

and

My = My(2) = s (t, z¢) — u(0,20) — /Ot 1 (s, zs)ds.
We want to show that for any 0 < s < t < T and %,-measurable bounded continuous functional G4 on Crp,
E¥(M,G,) = E¥ (M,G). (6.11)
For each n € N, by (6.3), (6.10) and It6’s formula,

t
M{’(Z”):/ Votn(s, Z1)dBs
0

is a P-martingale. Hence,
B (M7 G,) = B(M] (2")C(27)) = B(M] (2")G(2") = EP (MG,

Thus, to show (6.11), it suffices to show that

lim B (M['G,) = B (M,G.). (6.12)
Note that by Lemma 6.5, for v € (o — 1, ),

Jim [ Ko o = K x pillcy =0,
which by Lemma 3.18 implies that

(b, f) € BE (0", 1) with approximation sequence (b, fr).

Thus by Theorem 4.7, for any o > (2 4 29)k,

sup [unllLse ooy < 00, [un — ullLse (o) = 0. (6.13)

lim
n—oo
Moreover, by (6.7) we have for any § > (4 + 49)k,

sup EF» (g_‘s(zt) + 9_6(2’0)) < 0.
Note that .
M7= M < i = e oy (077 ) 277 0)) + [ 1f— fl(5, 2.
0
Since for each s € [0,], (P, 0 z; }),en is tight, and for any R > 0,
lim sup |fn(s,2) — f(s,2)] =0,

n—oo ‘Z‘éR

it is easy to see that

t t c ot
lim IEP”'/ |fr — fI(s, 25)ds < / lim sup |fn(s,2) — f(s,2)|ds + —5/ sup EF 97 (2, )ds.
0 0 0 n

n—oo TL—>OO|Z|<R R
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Thus, by (6.13),
Jim [E™ (M} G,) — E™ (MiG)| < |Gl Jim E™[M]" — M| = 0. (6.14)
Moreover, since M; is a continuous functional on Cr, and
6.13)

( (6.7)
Sup B MG S |sup B (70 + 2o + 1 | I~ < o

it is easy to see that
lim E™ (M,G,) = E¥(M,G,).

n—oo

Combining the above calculations, we get (6.12). Thus, we complete the proof of the existence of a martingale
solution.

(Uniqueness) First of all, we show the uniqueness for linear SDE, i.e., K = 0. Let Py,Py € 4, (W,0)
be two solutions of the martingale problem. Let f € L3¥Cy(R??) and let u be the unique paracontrolled
solution to (6.2) with u(¢) = 0. By Definition 6.1, we have

T
/ u(0, z)v(dz) = —EPi/ f(s,Zs)ds, i=1,2,
R2d 0

which means that

T T
/IEPlf(&ZS)ds:/ EF2 f(s, Z,)ds.

0 0
Hence, for any f € Cy(R?4) and t € [0, T,

E™ f(Ze) = E™= f(Zy).
From this, by a standard way (see Theorem 4.4.3 in [EK86]), we derive that
Py =Ps.

For general nonlinear SDE, we use Girsanov’s transformation method. Let P1,Py € .4, (W, K) be two
solutions of the martingale problem. Let W,,, K, be the approximations of W and K as above. We consider
the following approximation of linearized SDEs: for i = 1,2,

AX)" = VErdL, AV = Wa(Z)dt + (Ko = ) (X]™) + V24 B, (6.15)

where pf := P; oz, *. As in the proof of the existence part, and due to the uniqueness of linear SDEs, for
i=1,2, the law of Z%" = (X*" V") weakly converges to P; as n — co. In particular, for any ¢ € Cy,(R?),

Ep(X;") = EFip(ay), i=1,2.
On the other hand, we define

i,mn 1 K i in 1 ! 4 i,ny|2
a = e {- s [ uoeimas, - ¢ [0, o Ras).

Since
[ Ko || e < ||| s (6.16)

by Girsanov’s theorem, under the new probability measure Q%" := AQL"P, for t € [0, T

B = o [ (a0 + B
is still a Brownian motion, and
AXP" = virde, AV = W, (ZF™)dt + V2d B
Since the above SDE admits a unique weak solution, we have
Qi o (Z1m) "L = Q21 o (72m) 71,
Thus, for any ¢ € Cy(R?),
Ep(X,™) = B(A7"o(X; ") /AF") = E(A7"o(X{")YE)
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and
[Bo(X,") — Ep(XP™)| < |lollL~ElAZ" Yy — 1],

where

vp = exp{ﬂ/() (K 1) (3B + 7 [ 10 ) (X2 >|2ds}-

On the other hand, by It6’s formula to A7"Y;" = F (&, 1) with F(£,7) := et17,

I ‘ I ‘ ‘
6= 7 [, e = )OE2AB, and = (0l 1K 2) (X2,
\/i 0 4 0

we have

1 T
AZMYR -1 = 7 / AEYIM(K, ¢ pl — K, p?)(X2™)dB,
0

1 T
£ [ AR 5 X (5, ) (X))
1 T 2 1 2 2 2 2
g [ ARV, < )X = (I« g2 (X P (617)

t t p/2
EJAZ"Y] P <14 ||K] 1~ ( / E|A§’”Yfpds+1@( / Ai*"n'%ds) )
JO 0

By (6.16), it follows BDG’s inequality and Holder’s inequality that for any p > 2

t
<1+ ||K]|p~ / E|A2ny 7 Pds,
JO

which implies that

2.1 ) 17
sup sup E|A7"Y'P < oo
n s€[0,7]

by Gronwall’s inequality. Hence, by (6.17), BDG’s inequality and Holder’s inequality, we arrive at

T 1/2 T
E[AZ"Y] - 1] S (/0 ||u§—uil%vd8> +/0 |12 = ptllrvds,

where || - |7y stands for the total variation norm of a signed measure. Combining the above calculations,
we obtain that for all ¢ € Cy(R9),

[ pler) — B2 p(ar)| = lim [Bo(XE") — Bo(X2")
T 1/2
< llelloc / 62— idyds |
0

T
I — b3y < / 12 — 3y ds.

By Gronwall’s inequality, uf = u7. Finally, we use the same argument as the uniqueness for linear equations
to derive the uniqueness for nonlinear SDEs. O

which in turn implies that

7. EXISTENCE OF RENORMALIZED PAIRS IN PROBABILISTIC SENSE

In this section we perform the construction of stochastic objects, i.e. renormalized pairs of the stochastic
kinetic equations by probabilistic calculations. We state the main result in Subsection 7.1. In Subsection
7.2 we give examples of Gaussian noise satisfying the general assumptions. In the last subsection we give
the proof of the main result.
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7.1. Statement of main result. Let ; be a symmetric tempered measure on R??, that is, for some I € N,
[ a+1eh ) < . (7.1
]RZ

Let LZ(u) be the complex-valued Hilbert space with inner product

m—/ (O 9On(dS) <

Let H be the completion of .#(R2?) with respect to the inner product

<f7 g> <f g>L2(u)

Definition 7.1. Let X be a Gaussian field on H, i.e., X is a continuous linear operator from H to L?(Q, P),
and for each f € H, X(f) is a real-valued Gaussian random variable with mean zero and variance || f||%. In
particular,

E(X(NX() = | | FO#=0n(a0) (72)
We call X the Gaussian noise with spectral measure p (see [SVIT]).

The following result is the main result of this section.

Theorem 7.2. Suppose that p is a Radon measure and satisfies

pu(d€, dn) = p(dg, —dn) = p(—d¢§, dn), (S)
and for some (8 € (%, %),
p(dg) B
sup — 2 < 0. A
22, Lo T T (A7)
Let W = (X1, -+ ,Xq) be d-independent Gaussian noise with common spectral measure u. Then for any

k>0 and o > (3, it holds that
Plw: W(,w)eB(e")} =1
Remark 7.3. (i) Condition (A?) implies that for any o, > 0 with o + v = 23,
p(d¢)
sup /
crerza Jrza (14]¢ 4 Cla)?(1 +[¢la)”

Indeed, it follows by the simple observation:

p(d¢)
</<a><'+<|a " /<|a<|</+ca> (L+1¢" +¢la) (1 +[¢la)”

p(dq) p(dq)
S /R (1+1[¢" +¢la)?? * /R (14 ¢la)??”

(ii) The symmetric assumption of p in the second variable n allows us to use some cancelation to show
the convergence in (7.23) below (see (7.22) below). In the classical case by symmetry the terms in the Oth
Wiener chaos are zero. Here the terms in the Oth Wiener chaos are not zero, but they converge after minus
renormalization terms which are zero by symmetry.

< 00. (7.3)

Let ¢ € .7(R?%) be a symmetric function and define

Xo(2) = X(p(z = ).
Then by Lemma B.1 in appendix, z — X (z) has a smooth version.
Let ¢, @' € .7 (R??) be two symmetric functions. For H € .%(R*4), define

(Xp @ Xy )(H) := /R?d - H(z,2) X, (2) Xy (2")dzd2’. (7.4)

The following result is easy by the properties of Gaussian fields (see [SV97]) and we put the proof in Appendix
B.
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Lemma 7.4. For any H € ./ (R*?), it holds that

E((X,© Xo)(H)) = [ (=030 (Qn(d0),

R2d
and

Var (X, © X ) (1) =2 [ [(8ym Hp0)(6.C)PuldO)n(dc),

R4d
where Hy o(C,¢") = H((, ¢)¢(¢) @' (¢') and
(SymHp,) (G, () = (Hppr (G, ¢") + Hopr (¢',0)) /2.

(7.7)

If we do Wiener chaos decomposition for (X, ® X,/ )(H) (see [Nua06, Ch.1]), Iy := IE((X#7 ® Xw’)(H)>

corresponds to the term in the Oth Wiener chaos and I := (X, ® X/ )(H) — E((Xw ® Xga/)(H)) gives the

term in the second Wiener chaos.

Remark 7.5. If X,Y are two independent Gaussian fields with the same spectral measure, then E((X, ®

Y, )(H)) =0 and
B((X, ®Y,)(H))> = / / (¢, PIB(0) IS () PuO)u(dc).
R2d ]RZd

(7.8)

7.2. Examples for (A”). In this subsection we provide three examples for condition (A?) to illustrate our

result. We need the following simple lemma.
Lemma 7.6. For (1, € [0,d) and v1,7v2 = 0 with
M+ B >d, 361+ B2+ 2 > 4d,

dé
sup < 00,
¢'eRrd /Rd €[ (1+ €+ &)™

it holds that

and for ¢ = (§,m) € R*,

dg¢
sup / < o0.
crerzd Jraa [E1P ] P2 (1 4 ¢ + ¢'|a) 72

Proof. For (7.9), we have

d¢ _ dg
/Rd P +le+ehm </|s+£’|<|£ +/|£+5'>5> 1P (14 |€ + &)

d¢ dé
S /g+5/<|g| €+ &P (1 +[E+ &) " /§+£'>|£| €[5+ (1 + [€])n

d¢ d¢ _ d¢
s /Rd Er P+ Erenn /Rd 1P (1 + ) Q/Rd €171 (1 + 1€

which is finite by v; + 81 > d and 51 < d.
Next we show (7.10) by (7.9). Let

o 8d—p) __ 3d—p)
© 3(d—P)+(d—P2)  4d—3B1 — P
Since v > 4d — 331 — P2, we have

Br+0v2/3>d, Ba+(1—0)y>d

€ (0,1).

By [£]Y3 V |n] < [C|a, we have

/ d¢ </ d¢
wza [/ NP2 (14 1C + ¢la)>  Jra €7 (1 + 1€ + €/[1/3)00

x / a7
za P2 (L+ [+ /[0 -072

(7.11)
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which in turn gives (7.10) by (7.11) and (7.9). O
Example 7.7. Fix 8 € (3,2) and y € (d — 23,d). Let
p(dg, dn) = [§]77d&do (dn),

where d¢ is the Lebsgue measure on R? and &y(dn) is the Dirac measure on R concentrated at 0. By (7.9),
one sees that (A#) holds. In this case, it is well known that for some ¢4, > 0 (see [St70, p117, Lemma 2]),

(z) = fi(z,v) = cdﬁ"x"y_dﬂ z = (z,v).

In particular, for any f, g € .7(R??),

E(X(NXW) = [ FQa-0ua0 = [ [ o) - s
_ /Rd /Rd < 9 f(x,v)dv) (/Rdg(x',v)dv> %.

Fix ¢ € .7 (R?) with [p, ¢ = 1. For any f € .7(R?), if we define

X1(f) = X(F), fla,v) = fx)e),
then for any f,g € .7(R),

B(0 (X)) e, [ [ F@ale) 25 = [ F@ao

where the right hand side is just the inner product of homogenous Bessel potential space H™7 in R? (see
[BCD11]). In particular, X;(f) can be extended to all f € H™"Y. This corresponds to the noise independent
of v variable. Let d = 1 and define

B, (y) = (Xl(l[o,y])1y>0 - Xl(l[y,o])1y<o)’}’1/2(1 +7)2(2¢q,0) V2.
By the elementary calculation, we have
E(Bw(y)Bw(y’)) = syl + YT =y =y 1)

Hence, B, (y) is a fractional Brownian motion with Hurst parameter H = H%Y € (1- g, 1), and for any

g € 7 (R),

X1(g) = —Ca /R 9'(y) B, (y)dy.

In other words, X = ¢4, B/, in the distributional sense.

Example 7.8. For 3 € (5 5) and 0 < v € (d—28,d), let
u(d&dn) = |n|~7d0(d€)dn
By (7.9), one sees that (A”) holds. When d = 1 and « = 0, we have
f(x,v) = d(dv)

E(X(f)X(g)) = /Rd ( » f(%v)dx) (/Rd g(yw)dy) dv.

In particular, for ¢ € &(R?) with [;. ¢ =1, if we define

Xo(f) == X(f), flz,v):=p(z)f(v)
0, ), X5

then X5 is independent of z and is a space white noise on R. As Example 7.7, for general v € [0, 1
corresponds to the derivative of a fractional Brownian motion with Hurst parameter H = HTW € [%, 1).

and
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Example 7.9. For 3 € (3, 2) and 71,72 € [0,d) with 3y; 4+ 72 > 4d — 233, let
p(dg, dn) = [€]77 |n|~72d&dn,
By (7.10), one sees that (A®) holds. When 7,72 # 0, we have
@, v) = cqq | o2
When ~2 = 0, since 5 € (%, %), we have
(4d—2P)/3<m<d=d<28=d=1,

and
dvdzdy
|z —y[m-t

E(X(f —0177/ flz,v)g9(y,v) ——————

In particular, one can regard W being white in v-direction and colored in x-direction. In general W is the
generalized derivative of a fractional Brownian sheet with H; = ”“;r L satisfying 3H, + Hy > 4 — 8.

7.3. Proof of Theorem 7.2. Let

> Q5 (7.12)

li—jI<1

where (¢%);>-1 are defined by (2.3). By the symmetric proposition of ¢2,, we have ¢%(§,n) = ¢5(—§,7) =

¢4(&, —n), for any ¢ = (&,1) € R*. Therefore,

P((&;m), (&) = (=& n), (€, n) = (& —n), (€',7) = (&), (=€) :”lL'((E,"/)»(S’f’f/')()% .

Now we recall some notations used before. Let z = (z,v) € R?? and ¢ = (£,7). For t € R, we define
Tyz:= (x+1tv,0), T4¢:=(&n+1),
and for a function f on R?? and y, z € R?¢,

(Tef)(2) := f(Te2), (7 f)(2) == f(z —y).

Clearly,
FtF,tZ =z, <th7C> = <Z’ft<>a
and
(Fe0)E) = [ mf ety (714)
and

Lef(¢) =T f(Q), Tulf +9) = (Luf) * (Tug)-
Recalling (3.2), we have for some ¢q > 0,
Ds(€,m) = e sl =P 1EF/3=s%(Em) gm0 (s € +sinl*) (7.15)
Now let ¢ be a smooth probability density function with compact support and symmetric in the variable v.
For e € (0,1), let
pe(2) = e 2p(2/e), Xo(2) 1= Xy (2) = X(pe(2 — ).
To verify Theorem 7.2 it suffices to prove X € C,;%(p") P-a.s. and X o V,.#X € C([0,T], CL=2%(p"))
P-a.s.. Now we consider them separately.

(i) Regularity of X. As in (B.1), by the hypercontractivity of Gaussian random variables, for any
a€ (B,6+1), we have

E|R§‘XE(2) 2)|P < <E|Ra 'Ra )| )p/z

- ([ 1s0riex )—12u(dé))p/2

< (L e (do>p/2’
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where the implicit constant does not depend on z. Noting that

16(C) — 1] = |@(e¢) — 1| S el AB3|¢|a=5,

by definition, we have for any o/ > & and p > 4d/k

BIX = X o = 227 [ BIRIX.() = REX G Io(2) s
J

B,
- c2a—p)/3 . p/2 oy .
N(/Rm(lwa)wm c)) /Rum (2)Pdz, (7.16)

which, by (A”), converges to zero as ¢ — 0. Furthermore, for a > &, by Besov’s embedding Theorem 2.6,
for p large enough, we have

. _ P _
B B~ X1 =0
(ii) Regularity of X oV, .#X.
Since X is independent of ¢, by Lemma 3.19 we only need to show

E sup [[XoV,IX(t) = X oV, IX(s)|gr-20yn) < 00.

0<s<t<T
We represent R%(X. o V,.# X (t)) in terms of (X. ® X.)(H;) as given in the following lemma.
Lemma 7.10. For anyt >0 and ¢ > —1, we have
R{(Xe 0 VoI X (1) = (Xo @ Xo)(Hy), (7.17)
where

t
Hiyy)= 3 / RE(ry 62 - 0y (RIV,Tapy))ds.

li—j|<1
Moreover, for ¢ = (&,1) € R??, we have
o~ t . N ’ N A~
HHCC) = =i [ e R0 O O+ 56070, (718)
where V¥ is defined by (7.12).

Proof. By definition, we have

t
RIX. - (RYV,IXL)(t) = / (6% * X2) - (RIV,Laps) * (Do Xo)ds
0

t
— /']R A (/ Tyld)? . Trsy(R(;vv].—‘sps)ds) Xs(y)Xg(y')dydy’
2d JR2d 0

which implies (7.17). For (7.18), letting h := R§(V,I'sps), by easy calculations, we have

/Zd /2d eTHCwrCy )(ZB? * (Ty'é? ) TF,syh)dydyl
R R

= e TGP ¢+ ()l (¢)h(—T0),
where for ¢ = (&,7) € R,
h(¢) = ¢5(Q) (i) (T-sps) (€)-
Thus we obtain (7.18) by I'_,['s¢ = ¢. O

Remark 7.11. Notice that for each y,y’ € R2¢, Hf(y,y') is a R%-valued function of z. In expressions (7.17)
and (7.18), we have suppressed the variable z for simplicity. Without further declaration, we also use such
a convention below.
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For simplicity of notations, we write
M (2) = (Xe 0 Vo I Xc(t))(2)
and
G5 (2) = Mi (2) = M7 (2) = M5 (2) + MS (2). (7.19)

Below we drop the variable z. It is easy to see My = EM; + My —EM; as the Wiener chaos decomposition
for My with EM; in the Oth Wiener chaos and My — EM; in the second Wiener chaos. In the following we
consider them separately.

Terms in the 0th Wiener chaos First we have the following estimates for the terms in the Oth Wiener
chaos. This terms are not zero as the classical case. After subtracting formally divergent terms (see ‘72t27€
below) which are zero by symmetry, the terms in the Oth Wiener chaos converge in the corresponding spaces.
Note that by (7.17),

REM; = (X ® Xo)(HY). (7.20)
and by (7.5),
RYEM{ = BR{M; = | | H{(C,=0@2(On(de) = AL

This corresponds to the zeroth Wiener chaos of random field (X. ® X.)(H}).
By (7.18) we make the following decomposition:

HHC~0) = =1 [ TR 000, = O (900 =0 = 016 =0)Jupn(Ods
t IS ~
=i [ (0= lC (s

t - A A~
Si [ e ORGP - I ~OsE (G
0
=: Jf,e(() + jzt,z(O + J?f,z(C)~
We note that for any ¢, /¢, (, Jf’é(C) = jf_[(C)(J is a function. In the following, we set
1T (Ol = 1T () ()l
For JfVZ(C), noting that for ¢ = (&, 7),

La¢ = ¢ =(0,58), (7:21)
by (B.4) and (B.6) with v = 2ac — 1, we have

t
178 (Ol < / 68 (EC — O (EaC, —¢) — (¢, —O) 1] Po(C)dls

¢ 2a0—1
52(2@—1)@/0 (1+|S§|)1_2a( |S§| |n‘ﬁs(C)dS

1+ [¢fa)?!

t
< 2Ca V(] 4[] )2 % / pe()ds

(7.15),(B.7)
<

~

2(2a—1)€(1 + |<|a)_2a'
For J3 ,(¢), since || <1, by (7.21), we have

t
1T, e < 20201 / (1+ |s€])' 22 s€]p (C)ds
t
< 2(2&—1)6 2—2a As d
< /0 5225, (C)ds

(7.15),(B.7)
S 280 |¢la) R
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For J3 ,(C), by we can write

t
T340 :—1/0 e~ iPe¢=0) V3 (T¢ — g)l/)(g,_C)ne—S\n\2—83\€|2/3(e—82(€7n) ~1)ds

t A
_i/o ei<-,I‘s§*C>¢?(f\sC _ CW(C, _C)nefslnlzisglgﬁ/:gds

=: »72t1,z(C) + thz,e(C)~
For 73, ,(¢), noting that
e 4Em — 1) < |s¢] |sn| e 1l Il
by (7.15) and (B.7), we have

¢
3 2 2
I8, (©)l= £ 20270 [ (1t =22 oo+
0
¢
§2(2a*1)5/ \55\2*20‘|s77||77|e*00(53|€|2+5|”|2)d5
0

t
52(2a—1)£‘§|2—2a|n|2/ 83—2ae—c0(53\5\2-&-s|n|2)ds
0

(B7) 20—1)¢ 2
< 2014 [¢la)”

On the other hand, by (7.21) and (7.13), one sees that
j2t2,l(£7 _77) = _\-72152,2(57 77)
Since p(d€, —dn) = p(d€,dn) and @, is symmetric w.r.t. v variable, we have

/ Ty o(OF(O(dC) = 0. (7.22)

Thus, we get
N = [ (A0 Th Q) + T3 0)) EQm(A0),
R2d

and

148 = Ao S [ (17Ol + 1T o + 1Ol )
R2d
X [2(C) = @2(O)l(dc)
20000 [ (14161 210 - ().
R2d

By the dominated convergence theorem, we obtain

lim sup sup 2(1720¢||ALe _Af’S,HLoc =0, (7.23)
£,6'=0¢>_1+€[0,7)

where the norm || - || is with respect to variable z. Thus, we have

lim sup ||[EM; - EMf/
58—>0t60T]

Hc};h =0.

Terms in the second Wiener chaos By Kolmogorov’s continuity criterion and Besov’s embedding
Theorem 2.6, it suffices to show that for some § > 0, and any o > 8 and p > 2,

lim  sup (t—s)” 6”E(||GEE —EGfs Iz

€,e’—0 0<s<t<T

Bl 2a a( n))
Since G;’Sgl - EG;’j belongs to the second Wiener chaos space, as in (7.16), we only need to show that

lim  sup sup (¢t — s) 02740 Var(RY Gif M= = 0. (7.24)
£,6'=00gs<t<T 21
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Noting that by (7.19) and (7.20),
RiGy: = (X. ® X.)(H{ — HY) - (X0 @ Xoo)(H{ — HY)
= (Xp.—p., ® X,.)(Hf — HY) + (Xp., ® tie—tpgl)(Hte — HY),
by (7.6), we have
Var(R{G5Y) < 2Var<<X¢ . © X, )(Hf — HY))
+2Var((X,,, @ Xp. -y, )(Hf — HY))

=4 /R /R [Sym ((H Hf)K“ ) (6 ¢ Pu(dQ)p(dcy
" 4/]RZd /de |Sym HZ)K(Q )(C C )|
4/de /de ((f ~ Hf)Kg(lQ/)(C,C’)Izu(dc)u(dg’)

)

4 / / (B — HOE®,) (¢, ¢ PO p(dc’), (7.25)
]RQd ]RQd
where
ED(6,¢) = (800 = ¢ (0)¢e(()
and

K2 (¢,¢) = 0 (Q)(@:(¢) — o).
For any 6 € (0,1), we have

IKD(¢, ¢ < 1(@e — @) (O] S e — 118

and
KCL (O < 1 — @) (] S e — 13118,
Moreover, by (7.18) we clearly have

s€

t
I(HE = BOK®, (¢, o S |e— &3 / ®L(C, ¢ + € pr(C)dr

and R X
(¢, (") = 107 (¢ + ) (D, ).
Let 0,7 > 0 with o 4+ v = 23. Noting that by (B.4), (B.5) and (7.3),

294(1 + |F5(|a)7+29
192 Bl < [

a (1+ |f8< + (o) (1 +[¢a)”
we have by Minkowski’s inequality,

p(d¢’) S 2751+ [Tu¢la) 2,

H I|(H Hf K(2)

Es’ ||L°o

L2

/ e — & PPPDEC, Yz In + €l e (C)dr

<Sle—e'|P32% / (14 [P Cla) ™22 + €] 51 (O)dr (7.26)

S

Since [n| V [¢]'* < [¢]a, by lc = (& +rg), we have
(1+ [0r¢la) ™ \n+r£l

y+26 a+
< (14 1<) 2 0l + (€D 5 Inl + (1 + [Cla) (rle])
. 3(y+20)
S (L4 [Ca) B 4 e e T (1 [Ca) A8 4 g, 2

If we choose 0 = 40 — 2 for some « > 3, then

T-1=3-2a< -4
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Thus, by (7.15) and (B.7), for 6 small enough there is a 6 > 0 such that for all 0 < s < ¢t < T and
¢=(&n) eR™,

¢
- ato . _
IR €l (O S (2= 5720+ 1¢La) 2
Substituting this into (7.26), we get

HH Hz K(z) <7 < ‘ _€/|20/32(4a—2)€(t_ 8)6(1 + |<|a)_2

L2 (w)

-

For the term containing K'") we have the similar bounds. Substituting these into the left hand side of (7.25),
we obtain the regularity of the term in the second Wiener chaos. Thus we complete the proof.

APPENDIX A. CHARACTERIZATIONS FOR B¢ (p)

In this appendix, we provide a detailed proof for Theorem 2.7. First of all, we prepare two useful lemmas
for later use.

Lemma A.1l. For any o > 0, there is a constant C' = C(d,a, m,«) > 0 such that for all A > 0,
/ [h|~ 4™ dh Se A, / [h| 74 dh S AT (A.1)
|h]a <A |h]a>A

Proof. Let h = (hy,..,h,) € RY with h; € R™:. Define a transform h — h by

b= (h1, - hy), hi:=|h|*

h;.

Clearly, for each i =1,--- ,n,

\hal = [hi|%, By = [hi|% YRy

and
| det(Dhs /)| < a (7l < a RIS,

where Oh;/ Oh; stands for the Jacobian matrix of the inverse transform h; — h;, and |ﬁ\1 =3 |E| Thus
by the change of variable,

/ |h\g*“'mdh:/~ |R[§~ ™I, | det(Oh;/Oh;) |dR
Ihla<A Ali<A
n ~ ~
<ILar [ JEeYdig o
1-1;[1 [Al1<A '

where N =mq 4+ --- 4+ m,, and

n
/ |hl; e~ mdh < [ af™ /N |h|7o " Ndh < A
[hfa>A i=1 [hl1>X
The proof is complete. O
By the following lemma we can estimate the norm in BJ¢ (p) by duality.

Lemma A.2. Let p€ W withp ' € #,s€R and p,q,p’,q € [1,00] with 1/p+1/p' =1/q+1/q¢ = 1.
(i) For any ¢ € & and f € Byt(p), it holds that

[(Fro)l < 1]
(ii) There is a constant C = C(p,d, s,p,q) > 0 such that for any f € B34 (p),
1/

B4 (p) ||5"||B ey

B2 () < Osup (f, >/||<P||B TR



58 ZIMO HAO, XICHENG ZHANG, RONGCHAN ZHU, AND XIANGCHAN ZHU

Proof. (i) By (2.5) and Holder’s inequality, we have
(fro) =D (RILRGR) < D IR wn IRl o o1y

i>-1 j=—1

< /]
(ii) We follow the proof in [BCD11]. For M € N, let

U]li/l = {(Cj)jeN : Z |Cj|q/ <1, cj = 0, 7> M}
jsM

B3 3(p) HSOHB;/IF;([,A).

By the definition of B;7(p), we have

1/q

mia = Jim | S oeRe,
J<M

11

= lim sup ZCJQJSHR Fllze(p)-

M —o0
(C])EUM J<M

Fix ¢ > 0 and (¢;) € U]C\’;. Since
gllzr = sup {9, 0} /1Al Lo

for any j < M, there is a ¢; € . with [|¢);]|;,» = 1 such that
2778
(T + DGE+1)
€277%
(lejl + DG+ 1)

IR fliriy < [ ple)R Fo) (o) +

= [ @R v @)ae +

Now, if we define wg\cj) €. by

Aot (@) = D7 2R (puy) (@),
J<M
then
IflBsse) < Jim  sup (£.0f7) + (A:2)
(Cj)eUM j=—
Note that for by (2.14),
q/
I I ey = 22275 D0 2 RERG (o)
k>—1 G<M,|i—k|<3 L (p-1)
S lpwill oy = D e lwslL, = > <1 (A.3)
J<M J<M J<M
Hence, by (A.2) and (A.3),
£330 < © 598 (.2 el oy + 22 52
J2+ 241
j=>—1
The proof is complete by letting ¢ — 0. (]
Now we can give the proof of Theorem 2.7.
Proof of Theorem 2.7. (i) In this step we prove
1520 S 13500 (A4)
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For simplicity, we set M := [s] + 1. Note that by (2.11),
190 R5 Fllzo o) S (14 1RIE) D 16mR5 1)

where for h = (hq, -+ ,hy) and © = (21, , Ty),
On f(x) = (o mim, i+ hiy @i, ) = (o i1, Ty Tigr o).
By induction, one sees that

M a K a
18RE Fll ooy S (1 + [RIM") Z Znahq Gy R o)

i1=1 iv=1

Let |h|, < 1. By (2.11) and Bernstein’s inequality (2.13), we have

Héhil "'5}L1M R?f”Lp(p) S |h11|Hle 5h12 hll\/[Raf”Lp
5 .........
5 |h11| e |hi1\l‘ vazl vIzM Raf”L”

< |hi1|2ai1j - |hiM|2aiM.7 HR?fHLT’(p)
S (2J|h|a)ai1 +eotaiy, ||'R‘;f||Lp(p),
Moreover, by (2.11), we clearly have
10n,, =+ Oniy, RS Fllze(oy S NRG fllLe(p)
Hence,
R fllzr(e) S ((27[hla) ¥ F i A RS Lo )
S (27 1hl)™ ADIRS fll Lo (o)
where the second inequality is due to a;, + -+ a;,, = M. Thus we obtain

165" RS £l ooy S ((271Ba)™ ADIRS Fllioge) = ((2]hla)™ A1)27 e, (A.5)

0n;, =+ On,

M

where
Cj = 2sj||R?f||Lp(p).

For ¢ = oo, we have

165 Flleriey < SN RE Nl S S (27 h1)™ A1)2%¢; < [RIE]I Fllmse (p)
7 7

Next we assume ¢ € [1,00). For h € RY with |h|, < 1, we choose j, € N such that

Alzt <27 < 20hl5 (A.6)
Then by (A.5),
155 Fllzoe) < D2 I08RS Fllzoey S D (27]hla)M A1)27 e
jz-1 j=>—1
<Inle" D2 Vey + Y 27 ey =2 (k) + Ia(h).
J<in JZin
For I;(h), by Holder’s inequality, we have
q—1
q h) < |h|gM Z 2(M—S)j Z 2(M—
J<jn J<in

< |h|(11\4—5(1—q) Z Q(M_S)jc?_

J<jn



60 ZIMO HAO, XICHENG ZHANG, RONGCHAN ZHU, AND XIANGCHAN ZHU

Thus by (A.6), Fubini’s theorem and (A.1),

dh dh
o np ) s < [ e 3 20
/h|a<1 @ T pfem |hla<1 Z 7 |hlgm

J<in
< Z 2(M75)jcg\/ v|h|i\/lisia'mdh
=1 |hla<277
< Z o(M—s)j q2 (M—s)j _ ”f‘BS“
j=-1

Similarly, one can show

dh
sqr4 q
/|h M B ) e S 1 ey

Moreover, for s > 0, we clearly have

1 £llzep) S N fllB32 (o)
Thus we obtain (A.4).
(ii) In this step we prove the converse part of (A.4). For j > 0, since [pn ¢ -(h)dh = (27r)d/2¢“( ) =0,
by (2.20) and the change of variable, we have

/]R . ¢4 (n)o™ f(x)dh = Z (M ) » ¢%(h) f(x + kh)dh

k=0
M
— _1\M—k M Ta 2
_;( 1) (k> RNqu(h)f( + kh)dh
M
>

ot (5 [ sseinse+ man

In particular, if we define for j > —1,

a, M a
¢ (€) = M“Z <k)¢>j<kf),
then
V[ 0 fw)h = 165 fl@) = R )
and for j > 0,
RS oy < [ 15010 b = 10+ 1} + 2,

where

19 = / 165 (11337 111y d

hla>1

I :=/ 165 ()16, 1120y A

» M
Zim [ 1M flusydn
2-7<|hla<1
For I, by (2.20) and (2.11), there is a x > 0 such that

M K
165 Fll oy S (14 [RIIF 1o ()

hla<277

which implies that

RSl [ 18mIa+ban
|hla>1

Wl [ I+ 2 g
|h]q>27
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< w2 74D /m 1B+ L an
a> J

<276 fll 1o (),

and

S 29 (100 S 1%,

J=0

For I Jl, by Holder’s inequality and change of variable, we have

q—1
(1)) < ( / ,|¢5<h>|q’dh> [,
[hla<279 [hla<277
g—1
=20 < / |¢33<h>|‘fdh> / 165 £112, A
|hla<1 [h|a<279

Thus, by Fubini’s theorem,

sqj sqj+a-mj M
Sruhrg e [ s, an

>0 >0 [hla<2—

sqj+a-mj M
-/ S st pye
Ihla<1 550, 1h], <2

< (nfg o= 6™ p|e,
/h|a<1 a L (p)

For I f, by Hoélder’s inequality with respect to measure Wﬁ%, we also have

q
16 FllLocsy  dh )

@y =z ([ 2% Rl Mg (2% )] _
/ 2-i <|hla<1 0 |n| M |h[g™

q-1 (M) £1q
<o ([ qugmenggay ) [ I e a
IPla>1 [hlg™ a-igihl,<1 |hla’?  lRlgT™

As above, by Fubini’s theorem,

(M) £11q
ZQSqJ’(IJZ)q < ZZ(S—M)qj/ ||5h Jj\|/I|Lp(p) dh
o P Nk

>0 >0

M
</ ||5;(L )f||%p(p) dh
~ Jinl.<a

[hfa® [hlg™

For j = —1, estimate is easy. Hence,

il 165" £1%, ) di
> 2R L S | 20) S o

ST o<t |Rla® |Algm™

On the other hand, noting that
oM () = o2y (27U Ve) — o (27¢)
and
¢“11(§) =1 for € € B ), and ¢™17(£) = 0 for € ¢ By 5,
we have
supp ¢?7M C B3t \Bgzj—l)/M
Thus, for any 4,j > —1 with |j —i| > logo M + 2 =: ~,

a,M _
Ry REf(x) =0.

61
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Moreover, noting that for any ¢ € RY,

M
S () = (MY 3 (i (A,f ) 92 (k€)

i>—1 k=1j>—1

M+1 Z M k( ) _
- )
we have

Rif= Y RIRGMf= > RyRIMY.

jz—1 |7 —il<vy

Therefore, by (2.13),

S owRef, < S 2w S RIRIV A,

i>—1 i>—1 l[i—j<y
cqi M
S22 ) IRFY SN,
i>—1 li—j|<y
M
S 20 2RGS0 S I a0
j=>-—1

(iii) In this step we prove the second equivalence in (2.21) for s > 0. For s € (0,1) and |h|, < 1, by (2.10)
and (2.11), we have

10, AL o S Fonplle S AR Le (o) < [Plall Fll o (o)
which implies that for s € (0,1),

/]

Bpa(p) = ”fHB‘ O ||Pf||1§gig =
For s € [1,2), we have

10657, 2)F o S11£65” plle + 16np0n f o S [BIZNFplle + [Blallpdn fll o,

which in turn implies (A.7) for s € [1,2) by definition and the equivalence for s € (0,1). By induction one
can show (A.7) for general s > 2.

(iv) In this step we show (2.22) for s < 0. For s < 0, by Lemma A.2 and the equivalence for s > 0 proven
in step (iii), we have
()] 1, )]

IFlles300) S S0 g = S sup ~
O e els ) e T el

For s =0 and ¢ € [1,00), we have
q

110y = S IR < 30 S0 IRSG T REGN vy | <T+E,

i1 j>—1 \k>-1

where

no= 3 (S IR RN o |

i>=1 \k<j
q
L= Y | DR REPH) o)
i>=1 \k>j

Fix a € (0,1). By Holder’s inequality, we have

L= Y (2 MRS (0 R )

jz2=1 kg
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Z (ZQakq/(q 1) ZZ‘aquRa( _1Ra(pf))||LP(p)

jiz—1 k<j k<j

< Z 204 Z 27akq||R?(ﬂfle(Pf))||qu(p)

j=-1 k>—1
=37 2ok ST 00 RS (p R (o)) 4,
k>—1 jz-1
Noting that

Y 2R e = 10 e ) S l9lFe

j=z—1
we further have
LS Y 27 |RE(pf) [FPPS S REPHIE = lpFIIL0.0-
k>—1 k>—1 P

Similarly, one can show

LSS 2RI o S 0S50

k>—1
Thus we get for g € [1, 00),
TP P

For g = oo, it is similar. Moreover, for s < 0, by duality, we also have

Kool < sup I(f, pp)]

S flsse
|| ”B s,a <,0€5’ Hp(p”B;’s;(p71) p.a(p)

IpflBse < sup

The proof is complete. O

By (2.16) and characterization (2.21), the following compact embedding lemma is standard by Ascoli-
Arzeld’s lemma.

Lemma A.3. Let T > 0, p1,p2 € Py and 0 < aq < ag < 2. If p1(z) = o(2)™" for some k > 0, then the
following embedding is compact

S%?a(m p2) = S%la(m)-

Proof. Let f, be a bounded sequence of S772 (p1p2). For any R > 1, by (2.25), there is a constant C' =
C(R,T) > 0 such that for any 21, 22 € B%,

[falt:21) = fault,22)| < Clzr — 22/
and for any z = (x,v) € B}
[fn(t 2) = fu(s, 2)| < |fult,2) = fuls, Dems2)| + | fu(s, Dems2) — fu(s, )|
So [t — 8%/ +|(t = 5)0|*2/% So |t — s]2/C.
Hence, by Ascoli-Arzela’s theorem and a diagonalization method, there are a subsequence ny and a continuous
f such that for any R > 1,

lim sup sup |fn,(t,2) — f(t 2)] =0. (A.8)
k—o04el0,1) 2€B4,

In particular, f € S72,(p1p2). It remains to show
khjgo [ frn = f||s;:}a(p2) =0. (A.9)
Note that by definition, for any R > 1
112105 Ry (Fre = Pz (p2) < N fnk = FllLse (orp) /(1 + R)",
which together with (A.8) implies that
T [ £, (o) = 0. (A10)
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Since (fn, )ken is bounded in 72, (p2) and by the interpolation inequality (2.19),
ai/a l—ay/a
1 lls32, sy < 115842 1Tty
we get (A.9) by (A.10). The proof is complete. O

APPENDIX B. PROOF OF LEMMA 7.4
In this section we collect some useful lemmas used in Section 7 and give the proof of Lemma 7.4.

Lemma B.1. For any p > 2 and k € N, we have

sup E|VFX,(2)P < 0.
z€R24

In particular, z — X, (2) has a smooth version.
Proof. Since W is a bounded linear operator from H to L?({2), we have
VFX,(2) = X(VFp(z — ), a.s.

By the hypercontractivity of Gaussian random variables and (7.2), we have

- p/2
BIVEX, ()P S BV X, = ([ 19 Puiac)) (B.)
which is finite by ¢ € .#(R??) and (7.1). The proof is complete. O
Proof of Lemma 7.4. Note that by (7.2),
B(X,(00Xp () = [ | e R0R On(A0) = o2, (B.2)

By (7.4) and Fubini’s theorem, we have
E((Xgp ® XW)(H)) = / H(z, 2V, (2,2 )dzd?! (B.3)
R2d JR2d

= [ H(-0@(O)¢ (C)u(dC).

R2d
Next we look at (7.6). Noting that for Gaussian random variables (&1, &2, &3,84),

E(£1628384) = E(£1&)E(E38y) + E(£1&3)E(&&y) + E(£184)E(&:¢E3),

by Fubini’s theorem again and (B.2), we have
5 2
E((Xg, ® XW)(H)) —E ( / H(z, )X ,(2)X (z’)dzdz'>
R2d JR2d
= / . H(z,2")H(z,7)E(Xy(2) X () Xp(2) X (7)) dzdz’dzd 7’
R2d R2d
:/ o H(z,z/)H(E,z’)(I¢7¢/(z,z/)I%@/(Z,E')
R2d R2d
+1p (2, 2) o (2, 2) + Lo (2,2 ) 0 (Z, z’)) dzdz'dzdz’.
Hence, by (B.3),
2 2
Var (X, © Xo)(H)) = E((X, @ Xp)(H)) "~ (E((X, ® X)) (H)))
= / . / H(z,2"YH(z, 7" ) p,4(2,2) ] (2, Z')d2zd2' dzd 2’
R2d R2d
+/ . / H(z,2YH (2,2 )15 (2,2 )]0 (2,2 )dzdz'dzdZ’
R2d R2d

= /R 3 /R H(G O H (=6, =B P19 (P (e
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+ /R o o HG=OHC, =22 (OF (nldORAC)

= /R 3 RQdﬁ((aC/)ﬁ(QC')|¢(C>|2|¢/(§/)|2u(d§“)u(dg’)

+ /R o Jons HGOH OO (P (A p(AC),
where the last step is due to the symmetry of ¢, ¢’ and u. From this we get the desired equality (7.6). O

Recall (7.12) and we have the following elementary lemmas.

Lemma B.2. (i) For any v € R, there is a constant C' > 0 such that

65Ol So 1A (271 +[¢la)), §2-1, (eR™, (B.4)
and
WG Se TA(A+[Ca) 71 +¢a)7), ¢ ¢ e R™ (B.5)
(i1) For any v € [0,1], there is a constant C > 0 such that
96, ¢) = (Ol Se [ = RO+l ™, (¢ e R (B.6)

Proof. (i) Note that
K :=suppg] C {¢: 2771 <[¢la <2F'}, >0,
For any « € R, since for j > 0,
1+ [Cla)"1x, S 27, 1+ [Cla)"Tgeucy S 1,
we have

(1+[¢la)” 27

|¢a( )| (1+ ‘C' ]-K (g) 5 m7

and

OIS Y QIS D (2”;1%())( o)
li—j<1 li—j|<1
(L+[¢) - (4 (¢
S 2 O S T

i>—1

(ii) Let v € [0,1]. For j > 0, we have
165(0) = &5 (< = 1¢6(277¢) — 05 (27 ¢ S I¢ = 132777 166 ]l oz
and
1621(0) = 621 (N S I = Clalle% ez
Thus, by (B.4),

W}(Cvg/) - w(<7<)| g |< - C/‘Z Z 27-77(;5?( ) < |C C ‘a Z ]-K
i>-1 (T4 ¢la)

The proof is complete. O

We also need the following simple lemma.

Lemma B.3. For any T, A >0, 0 € [0,1] and v > 0, there is a constant C = C(T,~, 60, \) such that for any
0<s<t<Tand(=(&n) € R¥M,

t
/ P11 AR+ gy < g — | ADA=0) (1 4 [¢],)~20, (B.7)
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Proof. Note that
t 31612 2y t 2
[srie e Ras gl ¥, [ate M las < gl

0 0
and

t
/ P ldr = (1 = 87) /)y S (t—s)"M

Let g(r,¢) := e IEP+r*)  For any 6 € [0,1], we have
t t t
[ratow = ([ rtamaar) ([t oar)
t 1-6 " 0
(o) ([
(/S r r /0 s77 g(s,Q)ds

6
S (0= )OO (1A =5 A7)

~

1-6 2

which in turn gives the result by 1V [¢[/3 V |n] < 1+ |C|a. O
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