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Abstract. We consider the asymptotic behaviour of the fluctuations for the empirical measures
of interacting particle systems with singular kernels. We prove that the sequence of fluctuation

processes converges in distribution to a generalized Ornstein-Uhlenbeck process.

Our result considerably extends classical results to singular kernels, including the Biot-Savart law.
The result applies to the point vortex model approximating the 2D incompressible Navier–Stokes

equation and the 2D Euler equation. We also obtain Gaussianity and optimal regularity of the lim-
iting Ornstein-Uhlenbeck process. The method relies on the martingale approach and the Donsker-

Varadhan variational formula, which transfers the uniform estimate to some exponential integrals.

Estimation of those exponential integrals follows by cancellations and combinatorics techniques and
is of the type of large deviation principle.
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1. Introduction

In this article, we consider interacting particle systems characterized by the following system of
SDEs on the torus Td, d > 2,

dXi =
1

N

∑
j 6=i

K(Xi −Xj)dt+ F (Xi)dt+
√

2σNdBit, i = 1, ..., N, (1.1)

with random initial data {Xi(0)}Ni=1. The collection {Bi·}Ni=1 consists of N independent d dimensional
Brownian motions on a stochastic basis, i.e. (Ω,F ,P) with a normal filtration (Ft), induced by the
Laplacian operator on the torus, independent of {Xi(0)}Ni=1. The coefficient σN > 0 is a non-negative
scalar for simplicity. In this model, XN (t) := (X1(t), ..., XN (t)) ∈ (Td)N represents the positions of
particles, which are interacting through the kernel K and confined by the exterior force F .

Many particle systems written in the canonical form (1.1) or its variant are now quite ubiquitous.
Such systems are usually formulated by first-principle agent based models which are conceptually
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simple. For instance, in physics those particles Xi can represent ions and electrons in plasma physics
[Dob79], or molecules in a fluid [JO04] or even large scale galaxies [Jea15] in some cosmological models;
in biological sciences, they typically model the collective behavior of animals or micro-organisms (for
instance flocking, swarming and chemotaxis and other aggregation phenomena [CCH14]); in economics
or social sciences particles are usually individual “agents” or “players” for instance in opinion dynamics
[FJ90] or in the study of mean-field games [LL07, HMC+06]. Motivation even extends to the analysis of
large biological [BFT15] or artificial [MMN18] neural networks in neuroscience or in machine learning.

Under mild assumptions, it is well-known (see for instance [MJ, BH77, Dob79, Osa86, Szn91,
FHM14, JW18, Ser20b, Jab14, BJW20] and Section 1.3 for more details) that the empirical measure

µN (t) := 1
N

∑N
i=1 δXi(t) of the particle system (1.1) converges to the solution ρ̄(t) of the following

deterministic mean-field PDE

∂tρ̄ = σ∆ρ̄− div([F +K ∗ ρ̄]ρ̄), (1.2)

as N → ∞, where σ = limN→∞ σN . This is equivalent to the propagation of chaos, i.e. the k−th
marginal ρN,k of the particle system (1.1) will converge to the tensor product of the limit law ρ̄⊗k

as N goes to infinity, given for instance the i.i.d. initial data. This law of large numbers type result
implies that the continuum model (1.2) is a suitable approximation to the particle system (1.1) when
N is large, i.e. µN ≈ ρ̄+ o(1).

Inspired in particular by quantitative estimates of propagation of chaos by Jabin and Wang [JW18],

which is ‖ρN,k− ρ̄⊗k‖L∞([0,T ],L1) 6 CT /
√
N , we aim to study the central limit theorem of (1.1), which

provides a better continuum approximation to (1.1). More precisely, we study the limit of fluctuation
measures around the mean-field law, which are defined by

ηN :=
√
N(µN − ρ̄) =

1√
N

N∑
i=1

(δXi − ρ̄) . (1.3)

In this article, we establish that the fluctuation measure ηN converges in distribution as N → ∞ to
an infinite-dimensional continuous Gaussian process η for a large class of particle systems (1.1). This
implies that there exists a continuum model η such that

µN
d
≈ ρ̄+

1√
N
η + o(

1√
N

),

where
d
≈ means that the approximation holds in distribution.

1.1. Assumptions. To state our main results we first give the framework in this article. Recall that
the relative entropy H(µ|ν) between probability measures µ and ν on a Polish space E is defined by

H(µ|ν) :=

{∫
E

dµ
dν log dµ

dν dν if µ� ν,

∞ otherwise,

where dµ
dν is the Radon-Nikodym derivative of µ with respect to ν. Note that throughout this article,

all the relative entropy is of the classical form. We will not normalize it as what have been done for
instance in [JW18].

Our assumptions are listed as follows.

(A1)-CLT for initial values. There exists η0, which belongs to the space of tempered distributions
S ′(Td), such that the sequence {ηN0 }N>1 converges in distribution to η0 in S ′(Td). Here η0 will be
the initial data for our expected limit SPDE (1.5) below.
(A2)-Regularity of the kernel. The kernel K : Td → Rd, d > 2, satisfies one of the following
conditions

(1) K is bounded.
(2) For each x ∈ Td, K(x) = −K(−x) and |x|K(x) ∈ L∞.
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(A3)-Uniform relative entropy bound. Let XN (t) = (X1(t), ..., XN (t)) be a solution to the
particle system (1.1), and let ρN (t) represent the joint distribution of XN (t). It holds that

sup
t∈[0,T ]

sup
N
H(ρN (t)|ρ̄N (t)) <∞,

where ρ̄N (t) denotes the tensor product ρ̄⊗Nt . We may use Ht(ρN |ρ̄N ) to represent H(ρN (t)|ρ̄N (t))
for simplicity.

The global well-posedness of the limit equation (1.5) will be obtained by two different approaches,
depending on the diffusion coefficient σ is positive or zero. Hence we distinguish the extra assumptions
into the following two cases.

For the case when σ > 0, in addition to the assumptions (A1)-(A3), we need the following extra
assumption:

(A4)-The case with non-vanishing diffusion.

(1) σ > 0 and |σN − σ| = O
(

1
N

)
.

(2) There exists some β > d/2 such that ρ̄ ∈ C([0, T ], Cβ(Td)) and F ∈ Cβ(Td), where ρ̄ solves
equation (1.2) in the weak sense.

On the other hand, for the case with vanishing diffusion, besides (A1)-(A3), we require that

(A5)-The case with vanishing diffusion. The diffusion coefficients and the mean-field equation
(1.2) satisfy that,

(1) σ = 0 and |σN − σ| = O
(

1
N

)
.

(2) ρ̄ ∈ C1([0, T ], Cβ+2(Td)) and F ∈ Cβ+1(Td) with β > d/2 where ρ̄ solves (1.2).
(3) divK ∈ L1.

We make several remarks on our assumptions. Firstly, when {Xi(0)}i∈N are i.i.d. with a common
probability density function µ, which is the usual setting to study the fluctuations, one can easily
check that (A1) holds true. Indeed, for each ϕ ∈ C∞(Td), we have

〈
ηN0 , ϕ

〉
=

1√
N

N∑
i=1

[
ϕ(Xi(0))− 〈ϕ, µ〉

]
N→∞−−−−→ N

(
0,
〈
ϕ2, µ

〉
− 〈ϕ, µ〉2

)
,

where N (0, a) denotes the centered Gaussian distribution on R with variance a. Hereafter we use
the bracket 〈·, ·〉 as a shorthand notation for integration. We also state a central limit theorem under
an assumption on H(ρN (0)|ρ̄N (0)) in Section 5.2, where {Xi(0)}i∈N can be neither independent nor
identically distributed.

Assumption (A2) on interaction kernels allows our framework to cover smooth kernels and some
singular kernels, in particular the Biot-Savart kernel related to the vorticity formulation of 2D Navier-
Stokes/Euler equation on the torus. See Theorem 1.7 and Section 5 for more details.

Assumption (A3) seems quite nontrivial and demanding, but fortunately it has been established
by Jabin and Wang in [JW18] for a quite large family of interacting kernels, including all the kernels
satisfying (A2). Indeed, once we have that the relative entropy between the joint distribution ρN
of the interacting particle system (1.1) and the tensorized law ρ̄⊗N of the mean-field PDE (1.2) is
uniformly bounded with respect to N , then easily the particle system (1.1) converges to the mean-
field equation (1.2) with a rate CT√

N
, in the total variation norm or the Wasserstein metric. More

precisely, since all particles in (1.1) are indistinguishable, the joint distribution ρN is thus assumed to
be symmetric/exchangeable, so is any k-marginal distribution ρN,k of ρN , which is defined as

ρN,k(t, x1, ..., xk) :=

∫
Td(N−k)

ρN (t, x1, ..., xN )dxk+1...dxN .
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Then by the sub-additivity of relative entropy, in particular H(ρN,k|ρ̄⊗k) 6 k
NH(ρN |ρ̄⊗N ) and the

classical Csiszár–Kullback–Pinsker inequality [Vil08, (22.25)], it follows that for fixed k ∈ N,

W1

(
ρN,k(t), ρ̄⊗k(t)

)
. ‖ρN,k(t)− ρ̄⊗k(t)‖TV 6

√
2Ht(ρN,k|ρ̄⊗k) .

√
k

N
−→ 0, (1.4)

where W1(·, ·) denotes the 1-Wasserstein distance, ‖ · ‖TV denotes the total variation norm and the
first inequality is guaranteed by [Vil08, Theorem 6.15] since now Td is compact.

1.2. Main results. Under the assumptions (A1)-(A3) and either (A4) or (A5), depending on
σ > 0 or σ = 0, we establish that as N →∞, the sequence of the fluctuation measures (ηN· ) converges
in distribution to the centered Gaussian process η solving the following stochastic PDE (SPDE)

∂tη = σ∆η −∇ · (ρ̄K ∗ η)−∇ · (ηK ∗ ρ̄)−∇ · (Fη)−
√

2σ∇ ·
(√
ρ̄ξ
)
, η(0) = η0, (1.5)

where η0 is given in Assumption (A1) and ξ is vector-valued space-time white noise on R+ × Td, i.e.
a family of centered Gaussian random variables {ξ(h) : h ∈ L2(R+ × Td;Rd)} such that E[|ξ(h)|2] =
‖h‖2L2(R+×Td;Rd), and ρ̄ solves the mean-field equation (1.2). But when σ = 0, the SPDE (1.5) becomes

a deterministic PDE.

As a first step, we need a proper notion of solutions to the SPDE (1.5). When σ > 0, it turns out
to be the martingale solutions defined as below.

Definition 1.1. We call η a martingale solution to the SPDE (1.5) on some stochastic basis (Ω,F ,Ft,P)
if

(1) η is a continuous (Ft)-adapted process with values in H−α−2 and η ∈ L2([0, T ], H−α) for
every α > d/2, P-almost surely.

(2) For each ϕ ∈ C∞(Td) and t ∈ [0, T ], it holds that

〈ηt, ϕ〉 − 〈η0, ϕ〉 =

∫ t

0

〈σ∆ϕ, η〉ds+

∫ t

0

〈∇ϕ, ρ̄K ∗ η + ηK ∗ ρ̄+ Fη〉ds+Mt(ϕ),

where M is a continuous (Ft)-adapted centered Gaussian process with values in H−α−1 for
every α > d/2 and its covariance given by

E[Mt(ϕ1)Ms(ϕ2)] = 2σ

∫ s∧t

0

〈∇ϕ1 · ∇ϕ2, ρ̄r〉dr,

for each ϕ1, ϕ2 ∈ C∞(Td) and s, t ∈ [0, T ].

Remark 1.2. (1) The stochastic basis in Definition 1.1 might be different from the stochastic
basis where the particle system (1.1) lives.

(2) By Lemma A.2 and Lemma A.4 given in Appendix A, ρ̄K ∗ η, ηK ∗ ρ̄, and Fη are all well-
defined under Assumption (A4).

(3) The noise M is equivalent to be characterized as: for each ϕ ∈ C∞, M(ϕ) is a continuous
(Ft)-adapted martingale with quadratic variation given by

E
[
|Mt(ϕ)|2

]
= 2σ

∫ t

0

〈|∇ϕ|2, ρ̄r〉dr.

Similarly, when σ = 0, the equation (1.5) actually becomes a deterministic PDE. We define solutions
to this first order PDE as follows.

Definition 1.3. Given that σ = 0, we call η a solution to the PDE (1.5) with random initial data η0,
if

(1) η ∈ L2([0, T ], H−α) ∩ C([0, T ], H−α−2) for every α > d/2 almost surely.
(2) For each ϕ ∈ C∞(Td) and t ∈ [0, T ], it holds that

〈ηt, ϕ〉 = 〈η0, ϕ〉+

∫ t

0

〈∇ϕ, ρ̄K ∗ η + ηK ∗ ρ̄+ Fη〉ds.
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Our first main result gives the convergence of fluctuation measures when the diffusion coefficient σ
is positive (which may be generalized to the case with a non-degenerate coefficient matrix though).

Theorem 1.4. Under the assumptions (A1)-(A4), the sequence ηN defined in (1.3) converges in
distribution to η in the space L2([0, T ], H−α) ∩ C([0, T ], H−α−2) for every α > d/2, where η is the
unique martingale solution to the SPDE (1.5).

The proof of Theorem 1.4 will be given in Section 3.2.

It is worth emphasizing that the condition α > d/2 is optimal due to the optimal regularity of
η established in Proposition 3.18. Since the driven noise of equation (1.5) is very rough, so are the
solutions. In Section 3.3, we rewrite the equation (1.5) in the mild form and study the regularity of
the stochastic part by Kolmogorov’s theorem. Using the Schauder estimate, we obtain in Proposition
3.18 the optimal regularity of η given by C([0, T ], C−α) P-a.s. for every α > d/2.

Comparing to the previous result by Fernandez and Méléard [FM97], Theorem 1.4 requires less
regularity of the kernel but more regularity of the solution to the mean-field equation, which eventually
would lead to a more restrictive condition on the initial value ρ̄(0). The extra assumption on the mean-
field equation is indeed fairly reasonable, moreover, by regularity analysis, the condition β > d/2 in
(A4) is optimal on the scale of Hölder spaces.

Furthermore, η is characterized as a solution to the following generalized Ornstein-Uhlenbeck pro-
cess in the weak formulation:

〈ηt, ϕ〉 = 〈η0, Q0,tϕ〉+
√

2σ

∫ t

0

∫
Td

(∇Qs,tϕ)
√
ρ̄s ξ(dx,ds), (1.6)

for each ϕ ∈ C∞. Here the time evolution operators {Qs,t}06s6t6T is defined for each t ∈ [0, T ] and
ϕ ∈ C∞,

Q·,tϕ := f(·), (1.7)

with

(1) f ∈ L2([0, t], Hβ+2) ∩ C([0, t], Hβ+1) with ∂tf ∈ L2([0, t], Hβ) for β > d/2.
(2) f is the unique solution with terminal value ϕ to the following backward equation

fs = ϕ+ σ

∫ t

s

∆frdr +

∫ t

s

[
K ∗ ρ̄r · ∇fr +K(−·) ∗ (∇frρ̄r) + F∇fr

]
dr, s ∈ [0, t],

where K(−·) ∗ g(x) :=
∫
K(y − x)g(y)dy and we use this convention throughout the article. For the

definition of {Qs,t} we refer to Section 3.4 for more details. The formulation (1.6) gives rise to the
Gaussianity of the limit of fluctuation measures. We state the result as follows and we give the proof
in Section 3.4.

Proposition 1.5. Under the assumptions (A1)-(A4), for the η obtained in Theorem 1.4, assume in
addition that ρ̄ ∈ C([0, T ], Cβ+1(Td)), F ∈ Cβ+1(Td) with β > d/2, and η0 in (A1) is characterized
by

〈η0, ϕ〉 ∼ N (0,
〈
ϕ2, ρ̄0

〉
− 〈ϕ, ρ̄0〉2), ϕ ∈ C∞(Td).

Then it holds for each test function ϕ ∈ C∞ and t ∈ [0, T ] that

〈ηt, ϕ〉 ∼ N
(

0,
〈
|Q0,tϕ|2, ρ̄0

〉
− 〈Q0,tϕ, ρ̄0〉2 + 2σ

∫ t

0

〈
|∇Qs,tϕ|2, ρ̄s

〉
ds
)
.

We now focus on the fluctuation problem for the case with vanishing diffusion. In contrast to
the non-degenerate case with σ > 0, due to the vanishing diffusion, the limit equation becomes
a deterministic PDE but with random initial data. We then analyze the limit equation with the
method of characteristics, and obtain the following result in Section 4.
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Theorem 1.6. Under the assumptions (A1)-(A3) and (A5), assume further that η0 in (A1) is
characterized by

〈η0, ϕ〉 ∼ N (0,
〈
ϕ2, ρ̄0

〉
− 〈ϕ, ρ̄0〉2), ϕ ∈ C∞(Td).

Let η be the unique solution to (1.5) with σ = 0 on the same stochastic basis with the particle system
(1.1). Then the sequence ηN defined in (1.3) converges in probability to η in the space L2([0, T ], H−α)∩
C([0, T ], H−α−2) for every α > d/2. Furthermore, η satisfies

〈ηt, ϕ〉 = 〈η0, Q0,tϕ〉 ∼ N
(

0,
〈
|Q0,tϕ|2, ρ̄0

〉
− 〈Q0,tϕ, ρ̄0〉2

)
,

for each test function ϕ and t ∈ [0, T ]. Here the time evolution operator {Q0,t}06t6T is given by (1.7)
with σ = 0.

Our main results validate that the relative entropy bound supt∈[0,T ] supN H(ρN |ρ̄N ) . 1 which

has been established by Jabin and Wang in [JW18] is actually optimal. But the convergence rate

for the marginal distributions ‖ρN,k − ρ̄⊗k‖L∞([0,T ],L1) . CT /
√
N is less optimal possibly due to the

naive application of the CKP inequality as in (1.4). Notice that very recently Lacker [Lac21] obtains
a sharp estimate for marginal distributions, which is ‖ρN,k − ρ̄⊗k‖L∞([0,T ],L1) . CT /N by local

relative entropy analysis of the BBGKY hierarchy, but under stronger assumptions H(ρN,k(0)|ρ̄⊗k0 ) .
k2/N2 as well. Even though it is well-known that the convergence of empirical measures and the k-
marginal distributions are equivalent in the qualitative sense for instance in [Szn91], their quantitative
behaviors can be quite complicated when it comes to the order of N . See some related discussions in
[Lac21, MM13, HM14, MMW15].

As an guiding example for our main results in Theorem 1.4 and Theorem 1.6, we consider the
famous vortex model for approximating the 2D Navier-Stokes equation in the vorticity formulation
when σ > 0 and also the 2D Euler equation when σ = 0. More precisely, given a sequence of i.i.d.
initial random variables {Xi(0)}i∈N with a common probability density function ρ̄0 on T2, and consider
the particle system

dXi =
1

N

∑
j 6=i

K(Xi −Xj)dt+
√

2σdBit, i = 1, 2, · · · , N, (1.8)

with the Biot–Savart law K : T2 → R2 defined by

K = ∇⊥G = (−∂2G, ∂1G) (1.9)

where G is the Green function of the Laplacian on the torus T2 with mean 0. Note in particular that

K(x) =
1

2π

x⊥

|x|2
+K0(x),

where x⊥ = (x1, x2)⊥ = (−x2, x1) ∈ R2 and K0 is a smooth correction to periodize K on the torus
T2. Obviously the Biot-Savart kernel K satisfies our assumption (A2).

One major corollary of our main results Theorem 1.4 and Theorem 1.6 is the following result.

Theorem 1.7. If ρ̄0 ∈ C3(T2) when σ > 0 and ρ̄0 ∈ C4(T2) when σ = 0, and inf ρ̄0 > 0 for both cases,
then the sequence of fluctuation measures {ηN}N∈N associated with (1.8) converges in distribution to
η in the space L2([0, T ], H−α) ∩ C([0, T ], H−α−2) for every α > 1. Here η is a generalized Ornstein-
Uhlenbeck process solving the equation (1.5) with K given by (1.9) and F = 0. Moreover, 〈η, ϕ〉 is a
centered continuous Gaussian process with covariance〈

|Q0,tϕ|2, ρ̄0

〉
− 〈Q0,tϕ, ρ̄0〉2 + 2σ

∫ t

0

〈
|∇Qs,tϕ|2, ρ̄s

〉
ds,

where {Qs,t} is introduced in (1.7) with F = 0 and ρ̄ is the solution to the vorticity formulation of 2D
imcompressible Navier-Stokes equation when σ > 0 and 2D Eurler equation when σ = 0.
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The point vortex approximation towards 2D Navier-Stokes/Euler equation arouses lots of interests
since 1980s. The well-posednesss of the point vortex model (1.8) was established in [Osa85, MP12,
Tak85, FM07]. The main part is to show that Xi(t) 6= Xj(t) for all t ∈ [0, T ] and i 6= j almost surely,
thus the singularity of the kernel will not be visited almost surely. The routine method for instance
in [Tak85] is based on estimating the quantity

∑
i 6=j G(|Xi − Xj |), where G is the Green function.

Using the fact ∇G · ∇⊥G = 0 and by regularization in the intermediate step, it can be shown that∑
i 6=j G(|Xi − Xj |) is finite almost surely for all t ∈ [0, T ]. In [MP12] by Marchioro and Pulvirenti

and [FM07] by Fontbona and Martinez, the well-posedness of point vortex model with more general
circulations/intensities was established by estimating the displacements of particles. Osada in [Osa85]
obtained the same result by an analytic approach, which depends on Gaussian upper and lower bounds
for the fundamental solution and the result from [Kan67].

Osada [Osa86] firstly obtained a propogation of chaos result for (1.8) with bounded initial distri-
bution and large viscosity. More recently, Fournier, Hauray, and Mischler [FHM14] obtained entropic
propagation of chaos by the compactness argument and their result applies to all viscosity, as long as
it is positive, and all initial distributions with finite k-moment (k > 0) and finite Boltzmann entropy.
A quantitative estimate of propagation of chaos has been established by Jabin and Wang in [JW18]
by evolving the relative entropy between the joint distribution of (1.8) and the tensorized law at the
limit. Note in particular that [JW18] provided the uniform relative entropy bound as in (A3) for all
the kernels satisfying (A2), including the Biot-Savart law.

To the authors’ knowledge, Theorem 1.7 is the first result on the fluctuation problems for the 2D
Navier-Stokes/Euler equation.

1.3. Related literatures. Mean field limit and propagation of chaos for the 1st order system given
in our canonical form (1.1) have been extensively studied over the last decade. The basic idea of
deriving some effective PDE describing the large scale behaviour of interacting particle systems dates
back to Maxwell and Boltzmann. But in our setting, the very first mathematical investigation can be
traced back to McKean in [MJ]. See also the classical mean field limit from Newton dynamics towards
Vlasov Kinetic PDEs in [Dob79, BH77, JH15, Laz16] and the review [Jab14]. Recently much progress
has been made in the mean field limit for systems as (1.1) with singular interaction kernels, including
those results focusing on the vortex model [Osa86, FHM14], Dyson Brownian motions [BO19, SYY20,
LLX20] and very recently quantitative convergence results on general singular kernels for example
as in [JW18, BJW20] and [Ser20b, Due16, Ros20, NRS21]. See also the references therein for more
complete development on the mean field limit.

However, the study of central limit theory for the system (1.1), in particular for those with singular
interactions, is quite limited, due to the lack of proper mathematical tools. The fluctuation problem
around a limiting PDE was popularized for the Boltzmann equation in 1970-1980s for instance in
[McK75, Tan82, Tan83, Uch83], but those results focus more on the jump-type particle systems. We
also refer to [BGSRS20] for the recent breakthrough on the deviation of the hard sphere dynamics
from the kinetic Boltzmann equation. For the fluctuations of interacting diffusions, which is the focus
of our article, to the best of the authors’ knowledge, one of the earliest results is due to Itô [Itô83] ,
where he showed that for the system of 1D independent and identically distributed Brownian motions,
the limit of the corresponding fluctuations is a Gaussian process. In the literature, there are mainly
two type results for the fluctuations of interacting processes, either in the path space or in the time
marginals. This article focuses on the later one for bounded kernels and some singular ones. When
studying fluctuations in the path space, one treats processes {Xi} as random variables valued in some

functional space, for instance the fluctuation measures may be defined as
√
N
(

1
N

∑N
i=1 δXi −L(X)

)
,

with the process X ∈ C([0, T ],Rd) solves the nonlinear stochastic differential equation

X(t) = X(0) +

∫ t

0

∫
Rd
K(X(s)− x)dµs(x) +

√
2σBt, with µs = L(X(s)).
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To the best of our knowledge, the fluctuation in path space type result was firstly obtained by Tanaka
and Hitsuda [TH81] and by Tanaka [Tan84] for interacting diffusions. They proved that the fluctuation
measures on the path space converges to a Gaussian random field when the interacting kernels are
bounded and Lipschitz continuous on R1, with respect to differentiable test functions on the path space.
Later Sznitmann [Szn84] removed the differentiability condition on test functions and generalized the
result to Rd, using Girsanov’s formula and the method of U -statistics.

The article by Fernandez and Méléard [FM97] is probably the one closest to our article when it
comes to the basic setting, where they studied interacting diffusions with regular enough coefficients,
using the so-called Hilbertian approach. Their result cannot cover kernels which are only bounded or
even singular. The systems they consider are on the whole space and allow multiplicative independent
noises. It is worth emphasizing that the Hilbertian approach introduced in [FM97] has been amplified
to study various interacting models, see [JM98, Che17, CF16, LS16] etc. The Hilbertian approach
is based on the martingale method (as used in this article and many other stochastic problems),
coupling method, and analysis in negative weighted Sobolev spaces. The coupling method, which is
based on directly comparing the N− particle system (1.1) and N−copies of the limit McKean-Vlasov
equation, is also widely used in classical propagation of chaos result [Szn91], but usually requires
strong assumptions on the interacting kernels and diffusion coefficients. In contrast, our new method
enables us to obtain uniform estimates and hence convergence results through directly comparing the
Liouville equation and the limit mean-field equation.

We also quickly review some related central limit theory result for general interacting particle
systems. In a classical work [BH77] by Braun and Hepp, the authors established the stability of char-
acteristic flow in the phase space R2d with respect to the initial measure and thus established the mean
field limit for Newton dynamics with regular interactions towards the Vlasov kinetic PDE. Further-
more, the authors proved that the limiting behavior of normalized fluctuations around the mean-field
characteristics is a Gaussian process and a precise SDE governing this limit was also presented. See
its recent generalization by Lancellotti [Lan09]. Budhiraja and Wu [BW16] studied some general
interacting systems with possible common factors, which do not necessarily have the exchangability
property as usual. Their result is in the flavor of fluctuation in the path space and its proof follows the
strategy by Sznitmann [Szn84], i.e. using Girsanov transform and U-statistics. Furthermore, Kurtz
and Xiong [KX04] studied some interacting particle system from filtering problems. Those SDE’s are
driven by common noise. The fluctuation result is similar to the one driven by independent noises,
but the limiting fluctuation is not Gaussian in general.

For particle systems in the stationary state with possible singular interaction kernels, there are also
many results in the flavor of central limit theory. We only refer to a few results and readers can find
more in reference therein. Fluctuations for point vortices charged by canonical Gibbs ensembles with
the limits given by the so-called energy-enstrophy Gaussian random distributions has been studied
by Bodineau and Guionnet [BG99] and recently by Grotto and Romito [GR20]. Those results can be
regarded as stationary counterparts of our main theorem in the 2D Euler setting. See also a recent
generalization [GR21] for more singular point vortex model leading to generalized 2D Euler equation
but also in the stationary setting. Moreover, Leblé and Serfaty [LS18] and Serfaty [Ser20a] considered
the fluctuation of Coulomb gas on dimension 2 and 3, where the joint distribution of N -particle is
given by the following Gibbs measure

dPN,β =
1

ZN,β
e−

β
2HN (XN ),

where ZN,β is the partition function, β is the temperature, and HN is the energy including interacting

and confining potentials. Now the fluctuation measure, defined as
∑N
i=1 δxi − Nµ0, where µ0 is the

equilibrium measure, is shown to converge to a Gaussian free field by using the Laplace transform and
many delicate analysis. In a similar context as above, the large deviation principle for the empirical
measure charged by a Gibbs distribution with possible singular Hamiltonian has been obtained by
Liu and Wu in [LW20], even though its dynamical counterpart is still missing and believed to be
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challenging. Moreover, see for instance [PAT07] on some study the fluctuations of eigenvalues of
random matrices and a particular case when the eigenvalues are given by Dyson Brownian motions
investigated in Theorem 4.3.20 [AGZ10] where the fluctuations of moments, when properly normalized,
converge to Gaussian processes.

1.4. Methodology and difficulties. The main result (Theorem 1.4) follows by the martingale ap-
proach, which has also been used to study the fluctuation problem of interacting diffusions with
regular kernels as in [Mél96, FM97]. The proof consists of three steps: tightness, identifying the limits
of converging subsequences, and well-posedness of the SPDE (1.5). By Itô’s formula, we have

d〈ηNt , ϕ〉 =〈σ∆ϕ, ηNt 〉dt+KNt (ϕ)dt+ 〈∇ϕ, FηNt 〉dt+

√
2σN√
N

N∑
i=1

∇ϕ(Xi)dB
i
t

+
√
N(σN − σ)〈∆ϕ, µN (t)〉dt, (1.10)

P-a.s. for each ϕ ∈ C∞(Td). Here the interacting term KNt : C∞(Td)→ R is defined by

KNt (ϕ) =
√
N〈∇ϕ,K ∗ µN (t)µN (t)〉 −

√
N〈∇ϕ, ρ̄K ∗ ρ̄〉. (1.11)

To show the tightness of ηN , we need to derive some uniform estimates for ηN in (1.10). However, due
to the singularity of kernels K in Assumption (A2), it seems challenging to directly obtain uniform
estimates for terms involving ηN in the negative Sobolev spaces. In fact, the optimal regularity for
the limit η obtained in Section 3.3 is in CTC

−α with α > d/2. It is natural to consider the energy
estimate for ηN in H−α using (1.10). For the purpose of illustration, let us assume that σN = σ ≡ 0,
and the exterior force F = 0 as well, so we can rewrite (1.10) as the following form

∂tη
N + div(µNK ∗ ηN ) + div(ηNK ∗ ρ̄) = 0.

To control nonlinear terms appearing in the time evolution d
dt 〈η

N , ηN 〉H−α , such as 〈∇ηN ,K ∗
µNη

N 〉H−α , we need K ∈ Cβ with β > d/2 by multiplicative inequality in Appendix A, which is
much more demanding than the assumptions we made on our kernels K.

We overcome this difficulty caused by the singularity of interaction kernels by using the Donsker-
Varadhan variational formula [DE11, Proposition 4.5.1] (see (2.1) below) and two large deviation type
estimates, one is from [JW18, Theorem 4] and the other is our contribution (see Lemma 2.3). More
precisely, now the uniform estimate of fluctuation measures can be controlled by two terms, one is
the relative entropy H(ρN |ρ̄N ) and the other is some exponential integrals with a tensorized reference
measure ρ̄N = ρ̄⊗N (see (2.2)). On one hand, the uniform bound on H(ρN |ρ̄N ), as summarized in
Assumption (A3), has already been established by Jabin and Wang in [JW18] for a large family
of interaction kernels, in particular including those specified in (A2). On the other hand, exploiting
cancellation properties from the interaction terms for instance KNt would enable us to obtain a uniform
bound of the exponential integrals (see Lemma 2.1 and Lemma 2.3 for details). This large deviation
type estimate enables the authors of [JW18] to conclude quantitative estimates of propagation of chaos
and also serves a major technical contribution in our proof. See Remark 2.5 for further comments
about the exponential integrals in terms of U -statistics.

Recall the decomposition (1.10), we also need to estimate the martingale part and show its conver-
gence as well. We shall find a pathwise realization MN of the martingale part (see Appendix B) and
then establish its tightness. The tightness of laws of fluctuation measures then follows by applying
Arzela-Ascoli theorem.

When characterizing the limit of a converging subsequence, the difficulty still comes from the
singularity of kernels. For the illustration example (σN ≡ 0 and F = 0), we notice that it has the
following representation

∂tη
N + div(ηNK ∗ ρ̄) + div(ρ̄K ∗ η̄N ) +

1√
N

div(ηNK ∗ ηN ) = 0, (1.12)
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More precisely, the convergence of the interaction term KNt (ϕ) cannot be directly deduced from
convergence of µN and ηN . We notice that the interaction term can be splitted into two terms. One
term is a continuous function of ηN , or more precisely ρ̄K ∗ ηN + ηNK ∗ ρ̄, which definitely converges
as N goes to infinity. The other term is of the form 1√

N
ηNK ∗ηN , which is not easy to handle directly

since the formal limit K ∗ ηη is not well-defined (see Lemma A.2) in the classical sense due to the
singularity of K. Instead, we obtain a uniform bound of this singular term by using the variational
formula trick again (see Lemma 2.9 below). The remaining part for identifying limits is classical.

The last step to Theorem 1.4 is the uniqueness of martingale solutions to the SPDE (1.5), which
follows by pathwise uniqueness (see Lemma 3.11) and Yamada-Watanabe theorem. Proposition 1.5 is
obtained by solving the dual backward equation of (1.5) without noises, which gives the Gaussianity
of the limit process of fluctuation measures.

For the case with vanishing diffusion (which includes the purely deterministic dynamics with σN ≡
0), the only difference is on the well-posedness of the limit equation (1.5), which is a first order
PDE. The well-posedness follows from the method of characteristics. Since now the limit equation is
deterministic, by a useful lemma in [GK96] by Gyöngy and Krylov (see Lemma 4.3 below) we obatin
the convergence in probability of the fluctuation measures.

1.5. Notations. Throughout the paper, we use the notation a . b if there exists a universal constant

C > 0 such that a 6 Cb. We shall use {ek}k∈Zd to represent the Fourier basis on Td or ek(x) = e
√
−1k·x.

For simplicity, we define 〈k〉 :=
√

1 + |k|2.

We will mostly work on Sobolev spaces, Besov spaces, and the space of k-differentiable functions.
The norm of Sobolev space Hα(Td), α ∈ R, is defined by

‖f‖2Hα :=
∑
k∈Zd
〈k〉2α|〈f, ek〉|2,

with the inner product 〈·, ·〉Hα . Moreover, we also use the bracket 〈·, ·〉 to denote integrals when
the space and underlying measure are clear from the context. The precise definition and some basic
properties of Besov spaces on torus Bαp,q(Td) with α ∈ R and 1 6 p, q 6 ∞, will be given in the

Appendix A for completeness. We remark that Bα2,2(Td) coincides with Sobolev space Hα(Td). We

say f ∈ Cα(Td), α ∈ N, if f is α-times differentiable. For α ∈ R \ N, the Cα(Td) is given by
Cα(Td) = Bα∞,∞(Td). We will often write ‖ · ‖Cα instead of ‖ · ‖Bα∞,∞ . In the case α ∈ R+ \ N,

Cα(Td) coincides with the usual Hölder space. We use C∞(Td) to denote the space of infinitely
differentiable functions on Td, S(Rd) to denote the class of Schwartz functions on Rd and S ′(Td) to
denote the space of tempered distributions. Given a Banach space E with a norm ‖ · ‖E and T > 0,
we write CTE = C([0, T ];E) for the space of continuous functions from [0, T ] to E, equipped with
the supremum norm ‖f‖CTE = supt∈[0,T ] ‖f(t)‖E . For p ∈ [1,∞] we write LpTE = Lp([0, T ];E) for

the space of Lp-integrable functions from [0, T ] to E, equipped with the usual Lp-norm.

For simplicity, we may omit the underlying space Td without causing confusions.

1.6. Structure of the paper. This paper is organized as follows. Section 2 is devoted to obtaining
three main estimates which are based on the variational formula and the large deviation type, including
uniform estimates on terms related to ηN , KN , and a singular term derived from KN (ϕ). The critical
part is to establish some uniform in N estimate of some partition functions. The proof of Theorem
1.4 and Proposition 1.5 is completed in Section 3. First, in Section 3.1, we obtain tightness of the
laws of {ηN} in the space C([0, T ], H−α) for every α > d/2 + 2, meanwhile we prove tightness of laws
for the pathwise realizations {MN} of the martingale part in (1.10). Then we identify the limits of
converging (in distribution) subsequences of {ηN} as a martingale solution to the SPDE (1.5) and
finish the proof of Theorem 1.4 in Section 3.2. The optimal regularity of solutions to the SPDE (1.5)
is shown in Section 3.3. Lastly, we prove Proposition 1.5 in Section 3.4.

Section 4 is concerned with the case with vanishing diffusion, where we give the proof of Theorem
1.6. Section 5 focuses on some examples which fulfill assumptions (A1)-(A5), including the point
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vortex model approximating the vorticity formulations of the 2D Navier-Stokes/Euler equation on the
torus.

Finally in Appendix A, we collect the notations and lemmas about Besov spaces used throughout
the paper for completeness. In Appendix B we give the proof of Lemma 3.1, which shows existence
of pathwise realizations.

Acknowledgments. We would like to thank Pierre-Emmanuel Jabin for helpful discussion. Z.W. is
supported by the National Key R&D Program of China, Project Number 2021YFA1002800, NSFC
grant No.12171009, Young Elite Scientist Sponsorship Program by China Association for Science and
Technology (CAST) No. YESS20200028 and the start-up fund from Peking University. R.Z. is grateful
to the financial supports of the NSFC (No. 11922103). The financial support by the DFG through
the CRC 1283 “Taming uncertainty and profiting from randomness and low regularity in analysis,
stochastics and their applications” are greatly acknowledged.

2. Large Deviation Type Estimates

This section collects uniform estimates on µN − ρ̄, the interaction term KN , and a singular term
derived fromKN (ϕ), whereKN is defined in (1.11). These estimates shall play crucial roles in obtaining
tightness and identifying the limit in Section 3. Indeed, proving the uniform estimates is the main
difficulty and technical contribution of this article. Surprisingly, this type estimate, which has been
shown to be very useful for many purposes, can be actually obtained through a simple unified idea.
The quantity we want to bound can be put in the integral form

∫
ΦρN , where Φ is a nonnegative

function on TdN . Applying the famous variational formula from [DE11, Proposition 4.5.1], that is

log

∫
TdN

ρ̄Ne
ΦdXN = sup

ν∈P(TdN ),H(ν|ρ̄N )<∞

{∫
TdN

Φdν −H(ν|ρ̄N )

}
, ∀Φ > 0, (2.1)

with XN := (x1, .., xN ), P(TdN ) the probability measures on TdN , one can easily control
∫

ΦρN as
follows ∫

TdN
ΦρNdXN 6

1

κN

(
H(ρN |ρ̄N ) + log

∫
TdN

ρ̄Ne
κNΦdXN

)
, (2.2)

for any κ > 0, simply noticing that ρN plays the role of ν and replacing Φ with κNΦ. See also a
direct proof of this inequality (2.2) in [JW18, Lemma 1] . As we will see in Lemma 3.3, the extra

factor 1
N is essential to obtain uniform estimate for fluctuations ηN =

√
N(µN − ρ̄), but it comes with

a cost that we have to bound the exponential integral
∫
ρ̄N exp(κNΦ) uniformly in N . Controlling

such exponential integrals will be achieved in Section 2.1, then the uniform estimates will be stated
and proved in Section 2.2.

2.1. Large deviation type estimates. As we mentioned before, the major difficulty of our main
estimates is to bound some exponential integrals, which can be understood as some proper partition
functions. To prove Lemma 2.6 below, the following result from Jabin and Wang [JW18] is crucial,
and we adapt it a bit below for convenience.

Lemma 2.1 (Jabin and Wang [JW18, Theorem 4]). For any probability measure ρ̄ on Td, and any
φ(x, y) ∈ L∞(T2d) with

γ := C‖φ‖2L∞ < 1,

where C is a universal constant. Assume that φ satisfies the following cancellations∫
Td
φ(x, y)ρ̄(x)dx = 0 ∀y,

∫
Td
φ(x, y)ρ̄(y)dy = 0 ∀x.

Then

sup
N>2

∫
TdN

ρ̄N exp
(
N〈φ, µN ⊗ µN 〉

)
dXN 6

2

1− γ
<∞,

where µN = 1
N

∑N
i=1 δxi , X

N := (x1, .., xN ) ∈ TdN , and ρ̄N = ρ̄⊗N .
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Here we abuse the notation ρ̄ since applications below are for the solution ρ̄ to (1.2). In this section
we also abuse the notations µN and XN , but we shall always point out the dependence on time when
we mention the empirical measure and vector associated to the particle system (1.1).

Remark 2.2. The proof of the above lemma in [JW18] relies on the observation that eA 6 eA + e−A

and it is then sufficient to control the series
∞∑
k=0

1

(2k)!

∫
TdN

ρ̄NA
2kdXN .

Then of course under the same assumptions, we also have∫
TdN

ρ̄N exp
(
N |〈φ, µN ⊗ µN 〉|

)
dXN 6

2

1− γ
<∞.

Here adding | · | in the exponential part will be convenient for proving Lemma 2.9.

We also need the following novel large deviation type estimate on the uniform in N control of a
partition function, and use it to obtain the uniform estimate of the interaction term. The proof below
is inspired by [JW18, Theorem 4], using combinatorics techniques and some cancellation properties
of functions.

Lemma 2.3. For any probability measure ρ̄ on Td. Assume further that functions φ(x, y) ∈ L∞(T2d)
with ‖φ‖L∞ is small enough, and that∫

T2d

ρ̄(x)ρ̄(y)φ(x, y)dxdy = 0. (2.3)

Then ∫
TdN

ρ̄N exp
(
N |〈φ, µN ⊗ µN 〉|2

)
dXN 6 1 +

α0

1− α0
+

β0

1− β0
,

where
α0 := e9‖φ‖2L∞ < 1, β0 := 4e‖φ‖2L∞ < 1.

Proof. We start with the Taylor expansion:∫
TdN

ρ̄N exp
(
N |〈φ, µN ⊗ µN 〉|2

)
dXN =

∞∑
m=0

1

m!

∫
TdN

ρ̄N
(
N |〈φ, µN ⊗ µN 〉|2

)m
dXN .

For the m-th term, we use µN = 1
N

∑N
i=1 δxi to expand it as

1

m!

∫
TdN

ρ̄N

(
N |〈φ, µN ⊗ µN 〉|2

)m
dXN =

1

m!
Nm

∫
TdN

ρ̄N

(
1

N2

N∑
i,j=1

φ(xi, xj)

)2m

dXN

=
1

m!
N−3m

N∑
i1,...,i2m,j1,...,j2m=1

∫
TdN

ρ̄N

2m∏
ν=1

φ(xiν , xjν )dXN .

(2.4)

We shall divide the rest proof into two different cases: 4m > N and 4m 6 N .

In the case of 4m > N , the m−th term, i.e. (2.4) can be bounded trivially

1

m!
N−3m

N∑
i1,...,i2m,j1,...,j2m=1

∫
TdN

ρ̄N

2m∏
ν=1

φ(xiν , xjν )dXN

6
1

m!
N−3mN4m‖φ‖2mL∞ 6 m−

1
2 4mem‖φ‖2mL∞ .

Here we used the following Stirling’s formula with x = m

x! = cx
√

2πx
(x
e

)x
, (2.5)

where 1 < cx <
11
10 and cx → 1 as x→∞.
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In the case of 4 6 4m 6 N , we estimate the m-th term via counting how many choices of multi-
indices (i1, . . . , i2m, j1, . . . , j2m) that lead to a non-vanishing integral. If there exists a couple (iq, jq)
such that

iq 6= jq and iq, jq /∈ {iν , jν} for any ν 6= q,

then variables xiq and xjq enter exactly once in the integration. For simplicity, let (xiq , xjq ) = (x1, x2),
then by Fubini and the cancellation rule (2.3) of φ,∫

TdN
ρ̄N

2m∏
ν=1

φ(xiν , xjν )dXN

=

∫
Td(N−2)

(∫
T2d

ρ̄(x1)ρ̄(x2)φ(x1, x2)dx1dx2

)
·

(
2m∏
ν=2

φ(xiν , xjν )

) ∏
i 6=1,2

ρ̄(xi)

 dx3 . . . dxN

= 0.

In this case, we introduce auxiliary notations:

• l denotes the number of xiν or xjν which appears exactly once in the integral.

• p denotes the number of xiν or xjν which appears at least twice in the integral.
A crucial observation is that for multi-indices (i1, . . . , i2m, j1, . . . , j2m) which lead to a non-vanishing
integral, these l variables enter in different couples. This gives 0 6 l 6 2m. We summarize the
following relations among {l, p,m,N} as

4 6 4m 6 N ; 0 6 l 6 2m; 1 6 p 6 (4m− l)/2

For a fixed (l, p), notice that there are
(
N
l

)(
N−l
p

)
choices of variables. For each choice of variables,

there exists
(

2m
l

)
2l choices of place to arrange the l unique variables. Lastly, for each arrangement,

there are at most l!p4m−l plans where l! is for the l unique variables while p4m−l is for the other p
variables.

In conclusion, we have when 4 6 4m 6 N ,

1

m!
N−3m

N∑
i1,...,i2m,j1,...,j2m=1

∫
TdN

ρ̄N

2m∏
ν=1

φ(xiν , xjν )dXN

6
1

m!
N−3m‖φ‖2mL∞

2m∑
l=0

2m−l/2∑
p=1

(
N

l

)(
N − l
p

)(
2m

l

)
2l l! p4m−l

= ‖φ‖2mL∞
2m∑
l=0

2m−l/2∑
p=1

N !N−3m

(N − p− l)!

(
2m
l

)
2l p4m−l

m!p!
. (2.6)

Applying Stirling’s formula (2.5) with x = m, p gives

2m∑
l=0

2m−l/2∑
p=1

N !N−3m

(N − p− l)!

(
2m
l

)
2lp4m−l

m!p!
6

2m∑
l=0

2m−l/2∑
p=1

Np+l−3m2lep+m
(

2m
l

)
p4m−l−p

mm
. (2.7)

Furthermore, observe that (
2m
l

)
pm

mm
6

22m
(
2m− l

2

)m
mm

6 23m,

where we used 22m =
∑2m
l=0

(
2m
l

)
and p 6 2m− l

2 . Taking this estimate into (2.7) yields

2m∑
l=0

2m−l/2∑
p=1

Np+l−3m2lep+m
(

2m
l

)
p4m−l−p

mm
6

2m∑
l=0

2m−l/2∑
p=1

Np+l−3m2l+3mep+mp3m−p−l.
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Since p+ l− 3m 6 0 and p < N , the above inequality is bounded by e9m. Combining this with (2.6),
we find for every m ∈

[
1,
⌊
N
4

⌋]
,

1

m!
N−3m

N∑
i1,...,i4m=1

∫
TdN

ρ̄N

2m∏
ν=1

φ(xiν , xjν )dXN 6 ‖φ‖2mL∞e9m.

Combining the two cases 4 6 4m 6 N and 4m > N , it follows that∫
TdN

ρ̄N exp
(
N |〈φ, µN ⊗ µN 〉|2

)
dXN 6 1 +

bN4 c∑
m=1

‖φ‖2mL∞e9m +

∞∑
bN4 c+1

m−
1
2 4mem‖φ‖2mL∞ .

Recall that

α0 = e9‖φ‖2L∞ < 1, β0 = 4e‖φ‖2L∞ < 1.

The proof is thus completed by noticing that

bN4 c∑
m=1

‖φ‖2mL∞e9m 6
∞∑
m=1

αm0 =
α0

1− α0

and
∞∑
bN4 c+1

m−
1
2 4mem‖φ‖2mL∞ 6

∞∑
m=1

βm0 =
β0

1− β0
.

�

Remark 2.4. Lemma 2.3 and Lemma 2.1 can be generalized in several aspects. Firstly, the space Td
could be replaced by any measurable spaces. Also, when φ is vector-valued, the result still holds with a
slight modification in the proof as follows

2m∏
ν=1

φ(xiν , xjν )
replaced by−−−−−−−→

m∏
ν=1

φ(xiν , xjν ) · φ(xkν , xlν ).

Indeed, given φ a vector-valued function, the modification only comes from the expanding

|〈φ, µN ⊗ µN 〉|2 =
∣∣∣ 1

N2

N∑
i,j=1

φ(xi, xj)
∣∣∣2 =

1

N4

N∑
i,j,k,l=1

φ(xi, xj) · φ(xk, xl).

Remark 2.5. In Lemma 2.1 and Lemma 2.3, we proved that two exponential integrals which are in
the form of EeNUN are uniformly bounded with respect to N . In the first case as in [JW18],

U1
N =

1

N2

N∑
i,j=1

φ(Xi, Xj),

while in the second case, U2
N = (U1

N )2, or U2
N may be expressed as

U2
N =

1

N4

N∑
i1,i2,i3,i4=1

φ(Xi1 , Xi2)φ(Xi3 , Xi4).

Those UN in both cases are U -statistics, which are symmetric functions of N i.i.d random variables.
The degree of UN is said to be k if UN is a symmetric version of an interaction function between
k variables. So UN in Lemma 2.1 is of degree 2 and UN in Lemma 2.3 is of degree 4. Here the
cancellation properties actually imply the first order degeneracy of U -statistics, which together with
the boundedness condition gives the weak convergence of the law of NU iN , i = 1, 2. We refer to [Lee19]
for more details.
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2.2. Uniform estimates. Now we are in the position to state and prove the uniform estimates.

The first estimate concerns on the convergence from µN (t) to ρ̄t in H−α, for α > d/2.

Lemma 2.6. For each α > d/2, there exists a constant Cα such that, for all t ∈ [0, T ],

E‖µN (t)− ρ̄t‖2H−α 6
Cα
N

(Ht(ρN |ρ̄N ) + 1),

where we recall µN (t) = 1
N

∑N
i=1 δXi(t) and the expectation is taken according to the joint distribution

ρN (t, ·) of the particle system (1.1) and ρ̄N (t, ·) = ρ̄(t)⊗N .

This lemma has a direct consequence. Recall that the fluctuation measure ηN (t) =
√
N(µN (t)−ρ̄t).

Under Assumption (A3), i.e. supt∈[0,T ] supN Ht(ρN |ρ̄N ) . 1, one can then immediately obtain

sup
t∈[0,T ]

sup
N

E‖ηN (t)‖2H−α . 1, for α > d/2.

Proof. Since the Dirac measure belongs to H−α(Td) for every α > d/2, it follows that µN (t) − ρ̄t ∈
H−α(Td). Then by (2.2) , we find for any κ > 0,

E‖µN (t)− ρ̄t‖2H−α =

∫
TdN
‖µN − ρ̄t‖2H−αρN (t,XN )dXN

6
1

κN

(
Ht(ρN |ρ̄N ) + log

∫
TdN

exp
(
κN‖µN − ρ̄t‖2H−α

)
ρ̄NdXN

)
.

(2.8)

Recalling {ek}k∈Zd is the Fourier basis, and

‖µN − ρ̄t‖2H−α =
∑
k∈Zd
〈k〉−2α|〈ek, µN − ρ̄t〉|2.

Since the exponential function is convex, using Jensen’s inequality gives that∫
TdN

exp
(
κN‖µN − ρ̄t‖2H−α

)
ρ̄NdXN 6

1

C

∑
k∈Zd
〈k〉−2α

∫
TdN

exp
(
κNC|〈ek, µN − ρ̄t〉|2

)
ρ̄NdXN

6 sup
k∈Zd

∫
TdN

exp
(
κNC|〈ek, µN − ρ̄t〉|2

)
ρ̄NdXN , (2.9)

where the constant C =
∑
k∈Zd〈k〉−2α depends only on α and is finite since α > d/2.

We define

φ1(t, k, x, y) :=[ek(x)− 〈ek, ρ̄t〉][e−k(y)− 〈e−k, ρ̄t〉],
therefore∫

TdN
exp

(
κNC|〈ek, µN − ρ̄t〉|2

)
ρ̄NdXN =

∫
TdN

exp
(
κNC 〈φ1(t, k, ·, ·), µN ⊗ µN 〉

)
ρ̄NdXN .

Since ρ̄ is a probability measure, ‖φ1‖L∞ is bounded uniformly in t and k. One can also easily check
that ∫

Td
φ1(t, k, x, y)ρ̄t(x)dx = 0 ∀y,

∫
Td
φ1(t, k, x, y)ρ̄t(y)dy = 0 ∀x.

Then by Lemma 2.1 with κ (depending on α) small enough, we deduce that

sup
N

sup
k∈Zd

∫
TdN

exp
(
κNC|〈ek, µN − ρ̄t〉|2

)
ρ̄NdXN

= sup
N

sup
k∈Zd

∫
TdN

ρ̄N exp(κNC〈φ1(t, k, ·, ·), µN ⊗ µN 〉)dXN

= sup
N

sup
k∈Zd

∫
TdN

ρ̄N exp(κNC〈Reφ1(t, k, ·, ·), µN ⊗ µN 〉)dXN <∞, (2.10)
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where the equalities follows by

|〈ek, µN − ρ̄t〉|2 = 〈φ1(t, k, ·, ·), µN ⊗ µN 〉 ∈ R.

Combining (2.8)-(2.10) yields

E‖µN (t)− ρ̄t‖2H−α 6
1

κN
(Ht(ρN |ρ̄N ) + Cα),

where Cα is a constant depending only on α. We thus arrive at the result. �

In particular, Lemma 2.6 gives the tightness of laws of {ηN (0)} on H−α under the condition that
H(ρN (0)|ρ̄N (0)) is finite, which together with Assumption (A1) yields the convergence of {ηN (0)} in
the negative Sobolev spaces.

Corollary 2.7. For every α > d/2, ηN0 converges in distribution to η0 given by (A1) in H−α.

The next lemma concerns on the interaction part in the decomposition (1.10).

Lemma 2.8. If the kernel K satisfies Assumption (A2), then for each α > d/2 + 2, there exists a
constant Cα such that, for all t ∈ [0, T ],

E‖∇ · [K ∗ µN (t)µN (t)− ρ̄tK ∗ ρ̄t]‖2H−α 6
Cα
N

(Ht(ρN |ρ̄N ) + 1),

where the expectation is taken according to the joint distribution ρN (t, ·) of the particle system (1.1).

Proof. The proof is similar to Lemma 2.6. First, by (2.2) we find for any κ > 0,

E‖∇ · [K ∗ µN (t)µN (t)− ρ̄tK ∗ ρ̄t]‖2H−α

6
1

κN

(
Ht(ρN |ρ̄N ) + log

∫
TdN

ρ̄N exp
(
κN‖∇ · [K ∗ µNµN − ρ̄tK ∗ ρ̄t]‖2H−α

)
dXN

)
. (2.11)

Next, we find that

‖∇ · [K ∗ µNµN − ρ̄tK ∗ ρ̄t]‖2H−α =
∑
k∈Zd
〈k〉−2α|〈∇ek,K ∗ µNµN − ρ̄tK ∗ ρ̄t〉|2

6
∑

k∈Zd\{0}

〈k〉−2α|k|2|〈ek,K ∗ µNµN − ρ̄tK ∗ ρ̄t〉|2.

For the case |x|K(x) ∈ L∞ and K(x) = −K(−x), we do a symmetrization trick. That is, for any
ϕ ∈ C∞(Td) and a probability measure µ,∫

Td
ϕ(x)K ∗ µ(x)µ(dx) =

∫
T2d

ϕ(x)K(x− y)µ⊗2(dxdy)

=
1

2

∫
T2d

(ϕ(x)− ϕ(y)) ·K(x− y)µ⊗2(dxdy).

We define that

Kϕ(x, y) :=
1

2
K(x− y)[ϕ(x)− ϕ(y)], ∀ϕ ∈ C∞(Td).

Thus in this case, ‖Kϕ‖L∞ . ‖∇ϕ‖L∞‖|x|K‖L∞ . Consequently, since

〈ek,K ∗ µNµN − ρ̄tK ∗ ρ̄t〉 = 〈Kek(·, ·), µ⊗2
N − ρ̄

⊗2
t 〉,

and ‖Kek‖ . |k|, one proceeds as

‖∇ · [K ∗ µNµN − ρ̄tK ∗ ρ̄t]‖2H−α =
∑

k∈Zd\{0}

〈k〉−2α|k|2|〈Kek , µN ⊗ µN − ρ̄t ⊗ ρ̄t〉|2

=
∑

k∈Zd\{0}

〈k〉−2α|k|4|〈Kek
|k|

, µN ⊗ µN − ρ̄t ⊗ ρ̄t〉|2,
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where now
Kek
|k| is bounded.

For the case that K ∈ L∞ but K is not necessarily anti-symmetric, we directly write

〈ek,K ∗ µNµN − ρ̄tK ∗ ρ̄t〉 = 〈ek(x)K(x− y), µ⊗2
N − ρ̄

⊗2
t 〉.

To sum it up, we define φ2 : [0, T ]× {Zd \ {0}} × T2d → Rd by

φ2(t, k, x, y) :=

{
K(x− y)ek(x)− 〈ek, ρ̄tK ∗ ρ̄t〉, if K ∈ L∞
Kek (x,y)

|k| − 〈Kek|k| , ρ̄t ⊗ ρ̄t〉, if |x|K(x) ∈ L∞,K(x) = −K(−x).

Using Jensen’s inequality, for both cases we have∫
TdN

ρ̄N exp
(
κN‖∇ · [K ∗ µNµN − ρ̄tK ∗ ρ̄t]‖2H−α

)
dXN

=

∫
TdN

ρ̄N exp

(
κN

∑
k∈Zd\{0}

〈k〉−2α|k|2|〈ek,K ∗ µNµN − ρ̄tK ∗ ρ̄t〉|2
)

dXN

6
∫
TdN

ρ̄N exp

(
κN

∑
k∈Zd\{0}

〈k〉−2α+4|〈φ2(t, k, ·, ·), µN ⊗ µN 〉|2
)

dXN

6
1

C

∑
k∈Zd\{0}

〈k〉−2α+4

∫
TdN

ρ̄N exp
(
κNC|〈φ2(t, k, ·, ·), µN ⊗ µN 〉|2

)
dXN

6 sup
k∈Zd\{0}

∫
TdN

ρ̄N exp
(
κNC|〈φ2(t, k, ·, ·), µN ⊗ µN 〉|2

)
dXN , (2.12)

where the constant C :=
∑
k∈Zd\0〈k〉−2α+4 depends only on α, and is finite since α > d/2 + 2.

Furthermore, since φ2 is complex-valued, we find

sup
N

sup
k∈Zd\{0}

∫
TdN

ρ̄N exp
(
κNC|〈φ2(t, k, ·, ·), µN ⊗ µN 〉|2

)
dXN

6
1

2
sup
N

sup
k∈Zd\{0}

∫
TdN

ρ̄N exp
(
2κNC|〈Reφ2(t, k, ·, ·), µN ⊗ µN 〉|2

)
dXN

+
1

2
sup
N

sup
k∈Zd\{0}

∫
TdN

ρ̄N exp
(
2κNC|〈Imφ2(t, k, ·, ·), µN ⊗ µN 〉|2

)
dXN , (2.13)

where the inequality follows by Jensen’s inequality and the fact that

|〈φ2(t, k, ·, ·), µN ⊗ µN 〉|2 = |〈Reφ2(t, k, ·, ·), µN ⊗ µN 〉|2 + |〈Imφ2(t, k, ·, ·), µN ⊗ µN 〉|2.

One can easily find that ‖φ2‖L∞ is bounded uniformly in (t, k), and satisfies the cancellation∫
T2d

φ2(t, k, x, y)ρ̄t(x)ρ̄t(y)dxdy = 0,

and so do the real and imaginary part of φ2.

Choosing κ (depending on α) sufficiently small, then we are able to apply Lemma 2.3 to obtain
that

sup
N

sup
k∈Zd\0

∫
TdN

ρ̄N exp
(
κNC|〈φ2(t, k, ·, ·), µN ⊗ µN 〉|2

)
dXN 6Cα,

where the universal constant Cα only depends on α. The proof is then completed by combining this
with (2.11) and (2.12). �

The last estimate in this section plays a crucial role in identifying the limit in Section 3.2.
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Lemma 2.9. If the kernel K satisfies assumption (A2), then for each ϕ ∈ C1, there exists a universal
constant C such that, for all t ∈ [0, T ],

E|〈ϕK ∗ (µN (t)− ρ̄t), µN (t)− ρ̄t〉| 6
C

N
(Ht(ρN |ρ̄N ) + 1),

where the expectation is taken according to the joint distribution ρN (t, ·) of the particle system (1.1).

Proof. We first write the quantity in the following form

E|〈ϕK ∗ (µN (t)− ρ̄t), µN (t)− ρ̄t〉| = E|Φ(t,XN
t )| =

∫
TdN
|Φ(t,XN )|ρNdXN , (2.14)

where Φ is defined by

Φ(t,XN ) = 〈ϕK ∗ (µN − ρ̄t), µN − ρ̄t〉.

For the case K ∈ L∞, we find

Φ(t,XN ) = 〈φ3(t, ·, ·), µN ⊗ µN 〉,

with φ3 defined by

φ3(t, x, y) :=K(x− y)ϕ(x)− ϕ(x)K ∗ ρ̄t(x)− 〈K(· − y)ϕ, ρ̄t〉+ 〈ϕK ∗ ρ̄t, ρ̄t〉.

For the case |x|K(x) ∈ L∞ and K(x) = −K(−x), we do a symmetrization for Φ as in the proof of
Lemma 2.8, i.e.

Φ(t,XN ) = 〈Kϕ, (µN − ρ̄t)⊗ µN − ρ̄t〉 = 〈φ3(t, ·, ·), µN ⊗ µN 〉,

with φ3 defined by

φ(t, x, y) :=Kϕ(x, y)− 〈Kϕ(x, ·), ρ̄t〉 − 〈Kϕ(·, y), ρ̄t〉+ 〈Kϕ, ρ̄t ⊗ ρ̄t〉.

By (2.2), it holds for any κ > 0 that∫
TdN
|Φ(t,XN )|ρNdXN 6

1

κN

(
H(ρN |ρ̄N ) + log

∫
TdN

ρ̄Ne
κN |Φ|dXN

)
. (2.15)

On the other hand, one can easily check the following cancellations∫
Td
φ3(t, x, y)ρ̄t(x)dx = 0 ∀y,

∫
Td
φ3(t, x, y)ρ̄t(y)dy = 0 ∀x.

Since in both cases, φ3 is bounded uniformly in t, we can choose κ such that
√
κ‖φ3‖L∞ sufficiently

small. Letting ρ̄t and
√
κφ3 play the roles of ρ̄ and φ in Remark 2.2 respectively, we deduce that∫

TdN
ρ̄Ne

κN |Φ|dXN 6C,

where C is a constant depending only on ϕ. Combining this with (2.14) and (2.15), we thus arrive at
the result. �

3. The SPDE Limit

The aim of this section is to analyze fluctuation behavior of the empirical measure µN for the non-
degenerate case, i.e. σ > 0. It will be shown that ηN =

√
N(µN − ρ̄) converges in distribution to the

unique solution η to the linear SPDE (1.5). We shall start with proving that the sequence of (ηN )N>1

is tight. Then each tight limit of the subsequence from (ηN )N>1 will be identified as a martingale
solution to the equation (1.5). The next step is to show pathwise uniqueness of (1.5), which allows us
to conclude the proof of Theorem 1.4. In Section 3.3, we prove the optimal regularity of solutions to
the limit SPDE (1.5). Finally, the proof of Proposition 1.5, which gives the Gaussianity of the unique
limit of fluctuation measures, is given in Section 3.4.
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3.1. Tightness. Before proving tightness, we introduce pathwise realization of the martingale part
in the decomposition (1.10). Recall that the martingale part is given by

√
2σN√
N

N∑
i=1

∫ t

0

∇ϕ(Xi)dB
i
s,

for each ϕ ∈ C∞(Td). Formally, one could define a random operatorMN
t : Ω×Hα → R, α > d/2+1,

for each t ∈ [0, T ] through

MN
t (ϕ) =

√
2σN√
N

N∑
i=1

∫ t

0

∇ϕ(Xi)dB
i
s, P− a.s. (3.1)

However, the measurability ofMN
t : Ω→ H−α is nontrivial due to the fact that the above stochastic

integral is defined as a P-equivalence class for each ϕ. Finding a measurable mapMN
t from Ω to H−α

requires a pathwise meaning of the map MN
t (ϕ), such that MN

t (ϕ) is continuous with respect to ϕ
for almost every ω ∈ Ω.

Pathwise realization has been studied for different function spaces, for instance in [Itô83, Theorem
3.1], [FGGT05], [MW17, Lemma 9], etc. Adapting the idea of investigating stochastic currents in
[FGGT05] by Flandoli, Gubinelli, Giaquinta, and Tortorelli, a pathwise realization MN with values
in Hilbert spaces can be obtained with a relatively simple proof, which is postponed into Appendix
B. We state the result as follows.

Lemma 3.1. For each N , there exists a progressively measurable process MN with values in H−α,
for any α > d/2 + 1, such that (3.1) holds almost surely for all t ∈ [0, T ] and ϕ ∈ C∞.

In the following, we are going to prove tightness of (ηN ,MN )N>1. To start, recall the following
tightness criterion given by Arzela-Ascoli theorem [Kel17, Theorem 7.17]. Suppose that (uN )N>1 is
a class of random variables in C([0, T ], E) with a given Polish space E. The sequence of (uN )N>1 is
tight in C([0, T ], E) if and only if the following conditions hold:

(1) For each ε > 0 and each t ∈ [0, T ], there is a compact set A ⊂ E (possibly depending on t)
such that

sup
N

P(uNt ∈ A) > 1− ε.

(2) For each ε > 0,

lim
h→0

sup
N

P( sup
s,t∈[0,T ]

sup
|t−s|6h

‖uNt − uNs ‖E > ε) = 0.

Since the embedding H−α
′
↪→ H−α is compact if α′ < α (see [Tri06, Proposition 4.6]), using Cheby-

shev’s inequality, one can get the following sufficient conditions for tightness in C([0, T ], H−α)

(i) For each t ∈ [0, T ], there exists some α′ < α such that

sup
N

E‖uNt ‖H−α′ <∞. (3.2)

(ii) There exists θ > 0 such that

sup
N

E‖uNt ‖Cθ([0,T ],H−α) = sup
N

E
(

sup
06s<t6T

‖uNt − uNs ‖H−α
(t− s)θ

)
<∞. (3.3)

Therefore to obtain tightness of {ηN ,MN}N∈N it suffices to justify (i) and (ii) with MN and ηN

playing the role of uN .

The following lemma gives tightness of the martingale part.

Lemma 3.2. For every α > d/2 + 1, the sequence of (MN )N>1 is tight in the space C([0, T ], H−α).
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Proof. By the above tightness criterion, it is indeed sufficient to prove that: for each α > d/2 + 1 and
θ′ ∈ (0, 1

2 ), it holds that

sup
N

E(‖MN‖2
Cθ′ ([0,T ],H−α)

) <∞.

First, for the Fourier basis {ek}k∈Zd and t ∈ [0, T ], we find

MN
t (ek) =

√
2σN√
N

N∑
i=1

∫ t

0

∇ek(Xi) · dBis =
√
−1

√
2σN√
N

N∑
i=1

∫ t

0

ek(Xi)k · dBis. (3.4)

For any θ > 1 and 0 6 s < t 6 T , we deduce from Hölder’s inequality that

sup
N

E(‖MN
t −MN

s ‖2θH−α) = sup
N

E
[( ∑

k∈Zd
〈k〉−2α|MN

t (ek)−MN
s (ek)|2

)θ]

6 sup
N

E
( ∑
k∈Zd
〈k〉−α1θ|MN

t (ek)−MN
s (ek)|2θ

)( ∑
k∈Zd
〈k〉−α2

θ
θ−1

)θ−1

,

where α1 + α2 = 2α and α1, α2 > 0. Further choosing α1 = α + 1− d
2 + d

θ and α2 = α − 1 + d
2 −

d
θ ,

then we have (α1 − 2)θ > d and α2
θ
θ−1 > d, due to θ > 1 and the condition α > d/2 + 1. Hence the

summation
∑
k∈Zd〈k〉

−α2
θ
θ−1 is finite. Moreover, using the equality (3.4) gives

sup
N

E(‖MN
t −MN

s ‖2θH−α) .α2,θ sup
N

∑
k∈Zd
〈k〉−α1θE(|MN

t (ek)−MN
s (ek)|2θ)

.α2,θ

∑
k∈Zd
〈k〉−α1θ+2θ sup

N
E

∣∣∣∣∣
√

2σN√
N

N∑
i=1

∫ t

s

ek(Xi)dB
i
r

∣∣∣∣∣
2θ

.α2,θ

∑
k∈Zd
〈k〉−α1θ+2θ sup

N
E

(∫ t

s

2σN
N

N∑
i=1

|ek(Xi)|2dr

)θ
.α2,θ (t− s)θ

∑
k∈Zd
〈k〉−α1θ+2θ .α1,α2,θ (t− s)θ, (3.5)

where the third inequality follows by the Burkholder-Davis-Gundy’s inequality. Therefore, (3.5) allows
us to apply the Kolmogorov continuity theorem [BFH18, Theorem 2.3.11], and we find

sup
N

E(‖MN‖2θ
Cθ′ ([0,T ],H−α)

) <∞, (3.6)

for any 0 < θ′ < θ−1
2θ , θ > 1, and α > d/2 + 1. The result follows by arbitrary θ > 1. �

Next, we need the tightness of the fluctuation measures.

Lemma 3.3. Under the assumptions (A2)-(A4), for every α > d/2 + 2, the sequence of (ηN )N>1 is
tight in the space C([0, T ], H−α).

Proof. First, by Assumption (A3) and Lemma 2.6, one can easily deduce (3.2) with ηN playing the
role of uN for any α > d/2 + 2. Indeed, taking µN (·)− ρ̄ = 1√

N
ηN into Lemma 2.6 immediately gives

sup
t∈[0,T ]

sup
N

E‖ηNt ‖2H−α+2 . sup
t∈[0,T ]

sup
N
H(ρN |ρ̄N )(t) + 1. (3.7)

Then (A3) implies that the right hand side of (3.7) is finite. Thus (3.2) follows by α− 2 playing the
role of α′.
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As for (3.3), it suffices to prove the case α − 2 ∈ (d/2, β), where β is given in Assumption (A5).
Recall the decomposition (1.10), ‖ηNt −ηNs ‖H−α , 0 6 s < t < T , is controlled via the following relation

‖ηNt − ηNs ‖2H−α .
5∑
i=1

J is,t, (3.8)

where J is,t, i = 1, . . . , 5, are defined by

J1
s,t :=

∥∥∥∥σ ∫ t

s

∆ηNr dr

∥∥∥∥2

H−α
, J2

s,t :=

∥∥∥∥∫ t

s

KNr dr

∥∥∥∥2

H−α
,

J3
s,t :=

∥∥∥∥∫ t

s

∇ · (FηNr )dr

∥∥∥∥2

H−α
, J4

s,t :=

∥∥∥∥∫ t

s

√
N(σN − σ)∆µN (r)dr

∥∥∥∥2

H−α
,

J5
s,t :=‖MN

t −MN
s ‖2H−α .

For J1
s,t, applying Hölder’s inequality gives

sup
N

E

(
sup

06s<t6T

J1
s,t

t− s

)
. sup

N
E
∫ T

0

‖∆ηNt ‖2H−αdt . sup
N

sup
t∈[0,T ]

E‖ηNt ‖2H−α+2 <∞, (3.9)

where we used (3.7) in the last step.

For J2
s,t, similarly, applying Hölder’s inequality gives

sup
N

E

(
sup

06s<t6T

J2
s,t

t− s

)
. sup

N
E

(∫ T

0

‖KNt ‖2H−αdt

)
. sup

N
sup
t∈[0,T ]

E‖KNt ‖2H−α .

Recall that KNt =
√
N∇ · [K ∗ µN (t)µN (t) − ρ̄tK ∗ ρ̄t], and thus Lemma 2.8 and the assumptions

(A2)-(A3) deduces that

sup
N

E

(
sup

06s<t6T

J2
s,t

t− s

)
. sup

N
sup
t∈[0,T ]

H(ρN |ρ̄N ) + 1 <∞. (3.10)

Similarly, we obtain

sup
N

E

(
sup

06s<t6T

J3
s,t

t− s

)
. sup

N
sup
t∈[0,T ]

E‖FηNt ‖2H−α+2 ,

and

sup
N

E

(
sup

06s<t6T

J4
s,t

t− s

)
. sup

N
sup
t∈[0,T ]

N |σN − σ|2E‖µN (t)‖2H−α+2 .

Furthermore, Lemma A.1 together with Lemma A.2 shows that

‖Fη‖H−α+2 . ‖F‖Cβ‖ηN‖H−α+2 .

Hence using (3.7) and Assumption (A4) gives

sup
N

E

(
sup

06s<t6T

J3
s,t

t− s

)
. sup

N
sup
t∈[0,T ]

‖F‖2CβE‖η
N
t ‖2H−α+2 <∞. (3.11)

On the other hand, Assumption (A4), µN = N−1/2ηN + ρ̄ and (3.7) imply that

sup
N

E

(
sup

06s<t6T

J4
s,t

t− s

)
→ 0. (3.12)
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For J5
s,t, we deduce from (3.6) that for any θ ∈

(
0, 1

2

)
,

sup
N

E

(
sup

06s<t6T

J5
s,t

(t− s)2θ

)
= sup

N
E(‖MN‖2Cθ([0,T ],H−α)) <∞. (3.13)

We are in a position to conclude (3.3) with ηN playing the role of uN for any α > d/2 + 2, and
tightness of the sequence (ηN )N>1 follows. Indeed, combining (3.8)-(3.13) yields that

sup
N

E(‖ηN‖2Cθ([0,T ],H−α)) = sup
N

E
(

sup
06s<t6T

‖ηNt − ηNs ‖2H−α
(t− s)2θ

)

.T sup
N

5∑
i=1

E

(
sup

06s<t6T

J is,t
(t− s)2θ

)
<∞,

for any θ ∈
(
0, 1

2

)
. The result then follows. �

Remark 3.4. Careful readers may find that it suffices to assume |σN −σ| = o( 1√
N

) in order to obtain

the tightness of (ηN ). But we still adopt the assumption that |σN − σ| = O
(

1
N

)
in Assumption (A4)

and Assumption (A5) since this is one of the assumptions used in [JW18] to obtain the uniform bound
for H(ρN |ρ̄⊗N ), i.e. our Assumption (A3).

Define the topological space X :

X :=

{⋂
k∈N

[
C([0, T ], H−

d
2−2− 1

k ) ∩ L2([0, T ], H−
d
2−

1
k )
]}
×

{⋂
k∈N

C([0, T ], H−
d
2−1− 1

k )

}
.

The space Y := ∩k∈NYk with C([0, T ], H−
d
2−2− 1

k )∩L2([0, T ], H−
d
2−

1
k ) or C([0, T ], H−

d
2−1− 1

k ) playing
the role of Yk is endowed with the metric dY (f, g) =

∑∞
k=1 2−k(1∧ ‖f − g‖Yk). Thus the convergence

in Y is equivalent to the convergence in Yk for every k ∈ N. Moreover, X is a Polish space.

We then deduce the following result by the Skorokhod theorem.

Theorem 3.5. There exists a subsequence of (ηN ,MN )N>1, still denoted by (ηN ,MN ) for simplicity,

and a probability space (Ω̃, F̃ , P̃) with X -valued random variables (η̃N ,M̃N )N>1 and (η̃, M̃) such that

(1) For each N ∈ N, the law of (η̃N ,M̃N ) coincides with the law of (ηN ,MN ).

(2) The sequence of X -valued random variables (η̃N ,M̃N )N>1 converges to (η̃,M̃) in X P̃-a.s.

Proof. By the Skorokhod theorem, the result follows by justifying the fact that the joint law of
(ηN ,MN )N>1 is tight on X .

We start with proving the set A defined below is relatively compact in the space C([0, T ], H−α−2)∩
L2([0, T ], H−α) for each α > d/2,

A :=

{
u ∈ K;

∫ T

0

‖u(t)‖2
H−

2α+d
4

dt 6M,

}
,

where K is relatively compact in C([0, T ], H−α−2). Suppose a sequence {un} ⊂ A, then there is a
subsequence {unm} converging in C([0, T ], H−α−2). On the other hand, by the Sobolev interpolation
theorem [BCD11, Proposition 1.52], we find for n, n′ ∈ N and −α− 2 < −α < − 2α+d

4∫ T

0

‖un(t)− un′(t)‖2H−αdt

6
∫ T

0

‖un(t)− un′(t)‖2θ
H−

2α+d
4
‖un(t)− un′(t)‖2(1−θ)

H−α−2dt

6

(∫ T

0

‖un(t)− un′(t)‖2
H−

2α+d
4

dt

)θ (∫ T

0

‖un(t)− un′(t)‖2H−α−2dt

)1−θ

.
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6

(∫ T

0

‖un(t)− un′(t)‖2
H−

2α+d
4

dt

)θ (
T sup
t∈[0,T ]

‖un(t)− un′(t)‖2H−α−2

)1−θ

,

where the interpolation constant θ ∈ (0, 1) depends on α and d. This implies the convergence of
the subsequence {unm} in L2([0, T ], H−α) for each α > d/2, and A is thus relatively compact in
C([0, T ], H−α−2)∩L2([0, T ], H−α). For each ε > 0, by (3.7) and Lemma 3.3, one can findM sufficiently
large and a compact set K in C([0, T ], H−α−2) such that

P(ηN /∈ A) 6P (ηN /∈ K) + P
(∫ T

0

‖ηN (t)‖2
H−

2α+d
4

dt > M
)

6P (ηN /∈ K) +
T

M
sup
t∈[0,T ]

sup
N

E‖ηN (t)‖2
H−

2α+d
4

< ε,

where the second line follows by Chebyshev’s inequality. Therefore the sequence of laws of (ηN )N>1

is tight on C([0, T ], H−α−2) ∩ L2([0, T ], H−α) for every α > d/2.

Furthermore, recall that Lemma 3.2 gives that the sequence of laws of (MN )N>1 is tight on
C([0, T ], H−α−1) for every α > d/2. For each ε > 0 and k ∈ N, choose compact sets Aεk and Bεk in

C([0, T ], H−
d
2−

1
k−2) ∩ L2([0, T ], H−

d
2−

1
k ) and C([0, T ], H−

d
2−

1
k−1), respectively, such that

P(ηN /∈ Aεk) < ε2−k, P(MN /∈ Bεk) < ε2−k, ∀N ∈ N.

Thus the set Aε ×Bε in X defined by

Aε ×Bε :=

(⋂
k∈N

Aεk

)
×

(⋂
k∈N

Bεk

)
is relatively compact and satisfies

P
(

(ηN ,MN ) /∈ Aε ×Bε
)
6
∑
k∈N

P(ηN /∈ Aεk) + P(MN /∈ Bεk) < 2ε, ∀N ∈ N,

which shows the tightness of (ηN ,MN )N>1 in X . �

Corollary 3.6. For every α > d/2, it holds that

Ẽ
∫ T

0

‖η̃Nt − η̃t‖H−αdt
N→∞−−−−→ 0. (3.14)

Proof. Notice that

Ẽ
∫ T

0

‖η̃t‖2H−αdt 6 sup
N

Ẽ
∫ T

0

‖η̃Nt ‖2H−αdt 6 T sup
t∈[0,T ]

sup
N

Ẽ‖η̃Nt ‖2H−α <∞, ∀α > d

2
,

which provides the uniform (in [0, T ] × Ω) integrability of ‖η̃Nt − η̃t‖H−α , thus the convergence of

‖η̃Nt − η̃t‖H−α dt× dP̃-a.e. leads to (3.14). �

For each N , let (F̃Nt )t>0 and (F̃t)t>0 be the normal filtration generated by (η̃N ,M̃N ) and (η̃,M̃),
respectively. Then we have

M̃N
t = η̃Nt − η̃N0 − σ

∫ t

0

∆η̃Ns ds+

∫ t

0

K̃Ns ds+

∫ t

0

∇(F η̃Ns )ds− R̃Nt , (3.15)

where K̃N and R̃N are defined with µ̃N := ρ̄+ 1√
N
η̃N and

K̃Nt :=
√
N∇ ·

(
K ∗ µ̃N (t)µ̃N (t)−K ∗ ρ̄tρ̄t

)
, R̃Nt :=

√
N(σN − σ)

∫ t

0

∆µ̃N (s)ds.
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Here K̃N is well-defined since µ̃N is linear combination of Dirac measure and K ∗ µ̃N µ̃N is understood
as

〈K ∗ µ̃N µ̃N , ϕ〉 =

∫
Td×Td

K(x− y)ϕ(x)µ̃N (dx)µ̃N (dy),

for ϕ ∈ C1.

3.2. Characterization of the limit. In this section, we conclude that the original sequence (ηN )N>1

converges in distribution to the equation (1.5). Recall that the sequence (η̃N )N>1 converges in

C([0, T ], H−α−2) ∩ L2([0, T ], H−α) P̃-a.s. for α > d/2 and shares the same distribution with a subse-
quence of (ηN )N>1. Hence it is sufficient to justify two facts. One is that each limit η̃ is a martingale
solution to (1.5). The other is that the law of the solution to (1.5) is unique, which would follow by
pathwise uniqueness and the Yamada-Watanabe theorem.

Throughout this section, we always assume (A1)-(A4).

Identifying the limit of the interacting term K̃N is one of the main difficulties in this article, it
derseves to be treated separately from other terms in the decomposition (1.10). The following lemma

identifies the limit of the interacting term K̃N . The idea of the proof is to split the interacting term
into some regular part and a term in the form of a function of µN − ρ̄, which can be controlled in
Lemma 2.9 by the techniques developed in Section 2.

Lemma 3.7. For each ϕ ∈ C∞(Td), it holds that

Ẽ

(
sup
t∈[0,T ]

∣∣∣∣∫ t

0

K̃Ns (ϕ)− 〈ρ̄sK ∗ η̃s + η̃sK ∗ ρ̄s,∇ϕ〉ds
∣∣∣∣
)

N→∞−−−−→ 0.

Proof. Direct computations give the following identity
√
N
(
µ̃NK ∗ µ̃N − ρ̄K ∗ ρ̄

)
= ρ̄K ∗ ηN + ηNK ∗ ρ̄+

1√
N
ηNK ∗ ηN .

Consequently, for each ϕ ∈ C∞,

sup
t∈[0,T ]

∣∣∣∣∫ t

0

K̃Ns (ϕ)− 〈ρ̄sK ∗ η̃s + η̃sK ∗ ρ̄s,∇ϕ〉ds
∣∣∣∣ 6 JN1 (ϕ) + JN2 (ϕ), (3.16)

where

JN1 (ϕ) :=
√
N

∫ T

0

|〈∇ϕK ∗ (µ̃N (t)− ρ̄t), µ̃N (t)− ρ̄t〉|dt,

JN2 (ϕ) :=

∫ T

0

|〈ρ̄tK ∗ η̃Nt + η̃Nt K ∗ ρ̄t,∇ϕ〉 − 〈ρ̄tK ∗ η̃t + η̃tK ∗ ρ̄t,∇ϕ〉|dt.

On one hand, we deduce from Lemma 2.9 that

ẼJN1 (ϕ) 6 T
√
N sup

t∈[0,T ]

Ẽ|〈∇ϕK ∗ (µ̃N (t)− ρ̄t), µ̃N (t)− ρ̄t〉|

= T
√
N sup

t∈[0,T ]

E|〈∇ϕK ∗ (µN (t)− ρ̄t), µN (t)− ρ̄t〉

. N−
1
2 sup

N
sup
t∈[0,T ]

(H(ρN |ρ̄N ) + 1)
N→∞−−−−→ 0,

where the limit follows by Assumption (A3). On the other hand, we find

ẼJN2 (ϕ) 6 Ẽ
∫ T

0

|〈ρ̄tK ∗ (η̃Nt − η̃t),∇ϕ〉|+ |〈(η̃Nt − η̃t)K ∗ ρ̄t,∇ϕ〉|dt. (3.17)

For each t ∈ [0, T ], it holds for every α ∈ (d/2, β) that

|〈ρ̄tK ∗ (η̃Nt − η̃t),∇ϕ〉| = |〈K(−·) ∗ (ρ̄t∇ϕ), η̃Nt − η̃t〉| 6 ‖η̃Nt − η̃t‖H−α‖K(−·) ∗ (ρ̄t∇ϕ)‖Hα ,
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|〈(η̃Nt − η̃t)K ∗ ρ̄t,∇ϕ〉| 6 ‖η̃Nt − η̃t‖H−α‖∇ϕ ·K ∗ ρ̄t‖Hα ,
where

K(−·) ∗ g(x) :=

∫
K(y − x)g(y)dy. (3.18)

Applying Lemma A.4 with p = p1 = q = 2 and Lemma A.3 yields that

|〈ρ̄tK ∗ (η̃Nt − η̃t),∇ϕ〉| . ‖η̃Nt − η̃t‖H−α‖K‖L1(‖ρ̄t‖Hα‖∇ϕ‖L∞ + ‖ρ̄t‖L∞‖∇ϕ‖Hα),

|〈(η̃Nt − η̃t)K ∗ ρ̄t,∇ϕ〉| . ‖η̃Nt − η̃t‖H−α‖K‖L1(‖ρ̄t‖Hα‖∇ϕ‖L∞ + ‖ρ̄t‖L∞‖∇ϕ‖Hα).

Here the fact K ∈ L1 follows by Assumption (A2). Then taking these two estimates into (3.17),
applying Sobolev embedding Hα ↪→ L∞ with α > d/2, we thus arrive at

ẼJN2 (ϕ) .ϕ ‖K‖L1 sup
t∈[0,T ]

‖ρ̄t‖HαE
∫ T

0

‖η̃Nt − η̃t‖H−αdt
N→∞−−−−→ 0,

where the limit follows by (3.14). Using inequality (3.16) and EJN1 (ϕ)→ 0, the proof is completed. �

Remark 3.8. One may easily find that in the “identifying the limit” part, we only need to assume that
the relative entropy grow slower than the order

√
N , i.e. H(ρN |ρ̄N ) = o(

√
N) as N →∞. However,

in the tightness part we need a stronger assumption, namely our Assumption (A3). As a separate
question, it would be interesting to show whether or not there exists some symmetric probability mea-
sure ρN ∈ PSym(SN ) such that H(ρN |ρ̄⊗N ) = Nθ with θ ∈ (0, 1), where ρ̄ is a given probability
measure on the Polish space S.

Now we are in the position to conclude that η̃ solves (1.5).

Theorem 3.9. The limit η̃ is a martingale solution to (1.5) in the sense of Definition 1.1.

Proof. We deduce from (3.15) that

M̃N
t (ϕ) =〈η̃Nt , ϕ〉 − 〈η̃N0 , ϕ〉 − σ

∫ t

0

〈∆ϕ, η̃Ns 〉ds−
∫ t

0

K̃Ns (ϕ)ds−
∫ t

0

〈∇ϕ, F η̃Ns 〉ds

−
√
N(σN − σ)

∫ t

0

〈∆ϕ, µ̃N (s)〉ds,

for each ϕ ∈ C∞(Td) and t ∈ [0, T ]. By Lemma 3.7, σN −σ = O
(

1
N

)
, and the fact that η̃N converges

to η̃ in C([0, T ], H−α−2) ∩ L2([0, T ], H−α) for every α > d/2 P̃-a.s., one can take limit of every term
above on both sides and have

M̃t(ϕ) = 〈η̃t, ϕ〉 − 〈η̃0, ϕ〉 − σ
∫ t

0

〈∆ϕ, η̃s〉ds−
∫ t

0

〈∇ϕ, ρ̄sK ∗ η̃s + η̃sK ∗ ρ̄s + F η̃s〉ds, P̃− a.s.

To indentify η̃ is a martingale solution, we need to justify properties of M̃. Since M̃N are centered
Gaussian process and by Theorem 3.5, the limit M̃ is a centered Gaussian process with values in
H−α−1 for every α > d/2.

As for the covariance functions, on one hand, applying Burkholder-Davis-Gundy’s inequality, we
have for each 1 < θ 6 2

sup
N

Ẽ[ sup
t∈[0,T ]

|M̃N
t (ϕ)|2θ] = sup

N
E[ sup
t∈[0,T ]

|MN
t (ϕ)|2θ]

. sup
N

E

(∫ T

0

N∑
i=1

σN
N
|∇ϕ(Xi)|2 dt

)θ
= sup

N
E

(∫ T

0

σN 〈|∇ϕ|2, µN (t)〉dt

)θ
.ϕ sup

N
σθNT

θ‖∇ϕ‖2θL∞ <∞.

This implies uniform integrability of |M̃N
t (ϕ)|2 for each t ∈ [0, T ].
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On the other hand, we have that |M̃N
t (ϕ1)M̃N

s (ϕ2)| converges to |M̃t(ϕ1)M̃s(ϕ2)| P̃-a.s. for

s, t ∈ [0, T ] and ϕ1, ϕ2 ∈ C∞. Thus by the uniform integrability of |M̃N
t (ϕ)|2 and

|M̃N
t (ϕ1)M̃N

s (ϕ2)| 6 |M̃N
t (ϕ1)|2 + |M̃N

s (ϕ2)|2,
we arrive at

Ẽ[M̃t(ϕ1)M̃s(ϕ2)] = lim
N→∞

Ẽ[M̃N
t (ϕ1)M̃N

s (ϕ2)] = lim
N→∞

E[MN
t (ϕ1)MN

s (ϕ2)].

Furthermore, using (3.1) and Ito’s isometry we obtain that

E[MN
t (ϕ1)MN

s (ϕ2)] =
2σN
N

E

[(
N∑
i=1

∫ t

0

∇ϕ1(Xi)dB
i
r

)(
N∑
i=1

∫ s

0

∇ϕ2(Xi)dB
i
r

)]

=
2σN
N

E

[
N∑
i=1

∫ s∧t

0

∇ϕ1(Xi)∇ϕ2(Xi)dr

]

=2σN

∫ s∧t

0

E〈∇ϕ1 · ∇ϕ2, µN (r)〉dr.

The proof is thus completed since

2σN

∫ s∧t

0

E〈∇ϕ1 · ∇ϕ2, µN (r)〉dr N→∞−−−−→ 2σ

∫ s∧t

0

〈∇ϕ1 · ∇ϕ2, ρ̄r〉dr.

�

The rest of this subsection is devoted to obtain the well-posedness of the SPDE (1.5), and finish
the proof of Theorem 1.4.

Let us first introduce an equivalent definition of martingale solutions to (1.5), which is used in the
proof of Theorem 1.4. For notations’ simplicity, we omit the tildes in the following.

Definition 3.10. We call (η,M) a probabilistically weak solution to (1.5) on stochastic basis (Ω,F ,Ft,P)
with initial data η0 if

(1) η is a continuous (Ft)-adapted process with values in H−α−2 and η ∈ L2([0, T ], H−α) for
every α > d/2, P-a.s.

(2) M is a continuous (Ft)-adapted centered Gaussian process with values in H−α−1 for every
α > d/2, with covariance given by

E[Mt(ϕ1)Ms(ϕ2)] = 2σ

∫ s∧t

0

〈∇ϕ1 · ∇ϕ2, ρ̄r〉dr, (3.19)

for each ϕ1, ϕ2 ∈ C∞ and s, t ∈ [0, T ].
(3) For each ϕ ∈ C∞(Td) and t ∈ [0, T ], it holds that

Mt(ϕ) =〈ηt, ϕ〉 − 〈η0, ϕ〉 −
∫ t

0

〈σ∆ϕ, η〉ds−
∫ t

0

〈∇ϕ, ρ̄K ∗ η〉ds−
∫ t

0

〈∇ϕ, ηK ∗ ρ̄〉ds

−
∫ t

0

〈∇ϕ, Fη〉ds.

Furthermore, given a centered Gaussian process M on stochastic basis (Ω,F ,Ft,P) with covari-
ance characterized by (3.19), we call η is a probabilistically strong solution to (1.2) if (η,M) is a
probabilisttically weak solution and η is adapted to the normal filtration generated by M.

Uniqueness in law of the solutions to (1.5) usually follows by the Yamada-Watanabe theorem, which
requires existence of probabilistically weak solutions and pathwise uniqueness. Since the martingale
solutions and the probabilistically weak solutions are equivalent, Theorem 3.9 means that there exists
a stochastic basis (Ω,F ,Ft,P) such that (η,M) is a probabilistically weak solution to (1.5), it thus
suffices to prove the pathwise uniqueness.
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We now briefly explain the concept of pathwise uniqueness of probabilistically weak solutions in-
troduced before. Equation (1.5) can be viewed as a system, for which the information of the initial
data and the nosie is given (i.e. the distribution of (M, η0) is fixed), and (M, η0) can be seen as the
input and η is the output. Pathwise uniqueness means that if on some fixed stochastic basis there
exist two outputs η and η̃ with given η0 and M, then η coincides with η̃ P-a.s..

Notice that the covariance function of M and Assumption (A1) have determined the distribution
of (M, η0). Since equation (1.5) is linear and is driven by additive noise, pathwise uniqueness of
solutions to the equation (1.5) follows from uniqueness of solutions to the following PDE

∂tu = σ∆u−∇ · (ρ̄K ∗ u)−∇ · (uK ∗ ρ̄)−∇ · (Fu), u0 = 0. (3.20)

Lemma 3.11. Under the assumptions (A2) and (A4) with parameter β, for each α ∈ (d/2, β), u ≡ 0
is the only solution with zero initial value to (3.20) in the sense that

(1) u ∈ L2([0, T ], H−α) ∩ C([0, T ], H−α−2).
(2) For each ϕ ∈ C∞ and t ∈ [0, T ],

〈ut, ϕ〉 =

∫ t

0

〈σus,∆ϕ〉ds+

∫ t

0

〈ρ̄sK ∗ us + usK ∗ ρ̄s + Fus,∇ϕ〉ds.

Proof. Testing u with the Fourier basis {ek}k∈Zd , then we find for every t ∈ [0, T ] and k ∈ Zd,

∂t|〈ut, ek〉|2 =− 2σ|k|2〈ut, ek〉〈ut, e−k〉+ 〈ut, e−k〉[J1
t (k) + J2

t (k)] + 〈ut, ek〉[J1
t (−k) + J2

t (−k)]

+
√
−1k〈ut, e−k〉〈Fut, ek〉 −

√
−1k〈ut, ek〉〈Fut, e−k〉, (3.21)

where J1
t (k) and J2

t (k), for each k ∈ Zd, are defined by

J1
t (k) :=

√
−1k

∫
Td
K ∗ ut(x)ek(x)ρ̄t(x)dx,

J2
t (k) :=

√
−1k

∫
Td
K ∗ ρ̄t(x)ek(x)ut(x)dx.

Integrating (3.21) over time, summing up over k with weight 〈k〉−2α−2, and applying Young’s inequal-
ity yields that there exists a constant Cε for each ε > 0 such that∑

k∈Zd
〈k〉−2α−2|〈ut, ek〉|2 + 2σ

∑
k∈Zd
〈k〉−2α

∫ t

0

|〈ut, ek〉|2ds

6Cε
∑
k∈Zd
〈k〉−2α−2

∫ t

0

|〈us, ek〉|2ds+ ε
∑
k∈Zd
〈k〉−2α−2

∫ t

0

|J1
s (−k) + J2

s (−k)|2ds

+ ε
∑
k∈Zd
〈k〉−2α−2|k|2

∫ t

0

|〈Fus, ek〉|2ds. (3.22)

To make (3.22) suitable for applying Gronwall’s lemma, we first find estimates related to J1
t (k) and

J2
t (k), ∑

k∈Zd
〈k〉−2α−2|J1(k)|2 =

∑
k∈Zd
〈k〉−2α−2|k|2〈K ∗ uρ̄, ek〉〈K ∗ uρ̄, e−k〉 6 ‖K ∗ uρ̄‖2H−α ,

and ∑
k∈Zd
〈k〉−2α−2|J2(k)|2 =

∑
k∈Zd
〈k〉−2α−2|k|2〈K ∗ ρ̄u, ek〉〈K ∗ ρ̄u, e−k〉 6 ‖K ∗ ρ̄u‖2H−α .

Then applying Lemmas A.1 and A.2 gives that

‖K ∗ uρ̄‖H−α 6 Cα‖K ∗ u‖H−α‖ρ̄‖Cβ , ‖K ∗ ρ̄u‖H−α 6 Cα‖u‖H−α‖K ∗ ρ̄‖Cβ .
Furthermore, by Lemma A.4, we deduce
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k∈Zd
〈k〉−2α−2|J1(k)|2 +

∑
k∈Zd
〈k〉−2α−2|J2(k)|2 6 Cα‖u‖2H−α‖K‖

2
L1‖ρ̄‖2Cβ . (3.23)

Similarly, we obtain∑
k∈Zd
〈k〉−2α−2|k|2|〈Fu, ek〉|2 6 ‖Fu‖2H−α 6 Cα‖F‖

2
Cβ‖u‖

2
H−α . (3.24)

Since u ∈ L2([0, T ], H−α), we obtain ∂tu ∈ L2([0, T ], H−α−2), which by Lions-Magenes Lemma implies
u ∈ C([0, T ], H−α−1). Combining (3.22)-(3.24) leads to

‖ut‖2H−α−1 + 2σ

∫ t

0

‖us‖2H−αds

6Cε

∫ t

0

‖us‖2H−α−1ds+ εCα

∫ t

0

(
‖K‖2L1‖ρ̄s‖2Cβ + ‖F‖2Cβ )‖us‖2H−αds. (3.25)

Choosing ε such that

εCα‖K‖2L1

(
sup
s∈[0,t]

‖ρ̄s‖2Cβ + ‖F‖2Cβ
)
<2σ,

then using Gronwall’s inequality gives

‖ut‖2H−α−1 +

∫ t

0

‖us‖2H−αds = 0.

This completes the proof. �

Proof of Theorem 1.4 . We have proved that the sequence of laws of {ηN}N∈N is tight and every tight
limit is a martingale solution to (1.5) ( Theorem 3.9). As a result, existence of martingale solutions
(equivalently probabilistically weak solutions) follows. On the other hand, Lemma 3.11 together with
Corollary 2.7 implies pathwise uniqueness of probabilistically weak solutions. Then applying the
general Yamada-Watanabe theorem [Kur14, Theorem 1.5] gives that the law of martingale solutions
starting from the same initial distribution is unique, and every probabilistically weak solution is a
probabilistically strong solution. Therefore ηN converges in distribution to the unique (in distribution)
martingale solution η. �

Remark 3.12. From the proof of Theorem 1.4, we also obtain the well-posedness of probabilistically
strong solutions to the SPDE (1.5).

3.3. Optimal regularity. In this subsection we improve the regularity of η by using the mild for-
mulation and the smooth effect of the heat kernel.

Recall that M is a centered Gaussian process with covariance given by

E[Mt(ϕ1)Ms(ϕ2)] = 2σ

∫ s∧t

0

〈∇ϕ1 · ∇ϕ2, ρ̄r〉dr,

for ϕ1, ϕ2 ∈ C∞(Td). Therefore, the distribution of M is uniquely determined, and one can regard
M as ∇ ·

∫ ·
0

√
ρ̄ξ(ds,dx) with ξ = (ξi)di=1 being vector valued space-time white noise on R+ × Td. In

fact, for every ϕ ∈ C∞,

Mt(ϕ)
d
= −
√

2σ

∫ t

0

∫
Td
∇ϕ(x)

√
ρ̄s(x)ξ(ds,dx), (3.26)

where
d
= means equal in distribution and we omit the inner product in Rd between ξ and ∇ϕ.We start

with investigating the regularity of a stochastic integral, which will be the stochastic term in the mild
form of equation (1.5). Define a stochastic process Z as

Zt :=

∫ t

0

∫
Td
∇Γt−s(· − y)

√
ρ̄s(y)ξ(ds,dy), (3.27)
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where Γ is the heat kernel of σ∆ on Td.
Recall that {χn}n>−1 is the Littlewood-Paley partition functions and χn(·) = χ0(2−n·) for n > 0

(see Appendix A). Denote ψn be the inverse Fourier transform of χn for every n, we then have the
following result.

Lemma 3.13. For each κ > 0 and every n > −1, it holds for all s, t ∈ [0, T ] and x ∈ Td that

E |〈Zt, ψn(· − x)〉|2 . 2dn,

E |〈Zt, ψn(· − x)〉 − 〈Zs, ψn(· − x)〉|2 . 2dn+2κn(t− s)κ,
where the proportional constants depend on ‖ρ̄‖CTL∞ .

Proof. For simplicity we set σ = 1 in the proof. First, we use Fourier transform to represent
〈Zt, ψn(· − x)〉 as follows,

〈Zt, ψn(· − x)〉 =

∫ t

0

∫
Td

∫
Td
∇Γt−r(y − z)

√
ρ̄r(z)ψn(y − x)dyξ(dr, dz)

=

∫ t

0

∫
Td
〈∇Γt−r(· − z), ψn(· − x)〉

√
ρ̄r(z)ξ(dr, dz)

=

∫ t

0

∫
Td

∑
k∈Zd

Gt−r(k)e−k(z)
√
ρ̄r(z)ξ(dr, dz), (3.28)

where Gt(k) is defined by

Gt(k) :=

∫
Td
〈∇Γt(· − z′), ψn(· − x)〉 ek(z′)dz′

and we used 〈∇Γt−r(·−z), ψn(·−x)〉 ∈ L2(Td) and the sum in (3.28) converges in L2(Td). Furthermore,
noticing that Gt(−k) is the complex conjugate of Gt(k), we thus have

E |〈Zt, ψn(· − x)〉|2 =

∫ t

0

∫
Td

∣∣∣∣∣∣
∑
k∈Zd

Gt−r(k)e−k(z)

∣∣∣∣∣∣
2

ρ̄r(z)dzdr

.‖ρ̄‖CTL∞
∑
k1∈Zd

∑
k2∈Zd

∫ t

0

∫
Td
Gt−r(k1)Gt−r(−k2)e−k1(z)ek2(z)dzdr

.‖ρ̄‖CTL∞
∑
k∈Zd

∫ t

0

Gt−r(k)Gt−r(−k)dr, (3.29)

where the last inequality follows by
∫
Td ek2−k1(z)dz = Cdδk2=k1 , Cd is the volume of Td.

For each k ∈ Zd and t ∈ [0, T ], we find that

Gt(k) =

∫
Td

∫
Td
∇Γt(y − z′)ψn(y − x)ek(z′)dydz′

= 〈∇Γt, e−k〉 〈ψn, ek〉 ek(x)

=−
√
−1ke−t|k|

2

χn(−k)ek(x). (3.30)

Here we used the facts that Γ is the heat kernel on Td and 〈ψn, e−k〉 = χn(k).

Combining (3.29) and (3.30) yields that

E |〈Zt, ψn(· − x)〉|2 . ‖ρ̄‖CTL∞
∑
k∈Zd

∫ t

0

|k|2e−2|k|2(t−r)χn(−k)χn(k)dr.

Notice that ∫ t

0

|k|2e−2|k|2(t−r)dr =
1

2

(
1− e−2|k|2t

)
,
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which implies that for n > 0

E |〈Zt, ψn(· − x)〉|2 .ρ̄
∑
k∈Zd

χn(−k)χn(k)
(

1− e−2|k|2t
)

.ρ̄ 2dn
∫
χ0(−k′)χ0(k′)

(
1− e−22n+1|k′|2t

)
dk′ .ρ̄ 2dn. (3.31)

Here we used χn(·) = χ0(2−n·) and the fact that χ0 is of compact support. The case n = −1 is
similar.

Next, we deduce by (3.28) that

〈Zt, ψn(· − x)〉 − 〈Zs, ψn(· − x)〉

=

∫ t

0

∫
Td

∑
k∈Zd

Gt−r(k)e−k(z)
√
ρ̄r(z)ξ(dr, dz)−

∫ s

0

∫
Td

∑
k∈Zd

Gs−r(k)e−k(z)
√
ρ̄r(z)ξ(dr, dz)

=

∫ t

s

∫
Td

∑
k∈Zd

Gt−r(k)e−k(z)
√
ρ̄r(z)ξ(dr, dz) +

∫ s

0

∫
Td

∑
k∈Zd

[
Gt−r(k)−Gs−r(k)

]
e−k(z)

√
ρ̄r(z)ξ(dr, dz)

:=Jn1 + Jn2 .

Moreover, we have

E |〈Zt, ψn(· − x)〉 − 〈Zs, ψn(· − x)〉|2 6 2E|Jn1 |2 + 2E|Jn2 |2. (3.32)

Again, it suffices to check the cases with n > 0. Similar as in (3.31), we have

E|Jn1 |2 .ρ̄
∑
k∈Zd

∫ t

s

|k|2e−2|k|2(t−r)χn(k)χn(−k)dr

.ρ̄
∑
k∈Zd

(
1− e−2|k|2(t−s)

)
χn(k)χn(−k)

.ρ̄2
dn

∫ (
1− e−22n+1|k′|2(t−s)

)
χ0(k′)χ0(−k′)dk′ .ρ̄ 2dn(1− e−C22n(t−s)),

where C > 0 is a universal constant determinded by the support of χ0. Notice that for each κ > 0, it
holds that 1− e−a . aκ for a > 0. Therefore, for each κ > 0, let C22n(t− s) in the above inequality
play the role of a, we arrive at

E|Jn1 |2 .ρ̄ 2dn+2κn(t− s)κ. (3.33)

Similarly, one can study Jn2 and find

E|Jn2 |2 .ρ̄
∑
k∈Zd

∫ s

0

|k|2χn(k)χn(−k)
(
e−|k|

2(s−r) − e−|k|
2(t−r)

)2

dr

.ρ̄
∑
k∈Zd

(
1− e−2|k|2s

)
χn(k)χn(−k)

(
1− e−|k|

2(t−s)
)2

.ρ̄2
dn

∫
k′∈Rd

χ0(k′)χ0(−k′)
(

1− e−22n|k′|2(t−s)
)2

dk′ .ρ̄ 2dn+2κn(t− s)κ,

for each κ > 0. This together with (3.32) and (3.33) leads to

E |〈Zt, ψn(· − x)〉 − 〈Zs, ψn(· − x)〉|2 .ρ̄ 2dn+2κn(t− s)κ.

The proof is thus completed. �

We now apply the above result to study regularity of the process Z.
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Lemma 3.14. Suppose that ρ̄ ∈ C([0, T ], L∞). It holds that Z ∈ C([0, T ], C−α) P-a.s. for every
α > d/2. Moreover, for all p > 2,

E sup
t∈[0,T ]

‖Zt‖pC−α <∞.

Proof. Since Z is a centered Gaussian process, Lemma 3.13 together with the hypercontractivity
property [Nua06, Theorem 1.4.1] implies that

E |〈Zt, ψn(· − x)〉|p .
(
E |〈Zt, ψn(· − x)〉|2

) p
2

. 2
dnp
2 ,

E |〈Zt, ψn(· − x)〉 − 〈Zs, ψn(· − x)〉|p .
(
E |〈Zt, ψn(· − x)〉 − 〈Zs, ψn(· − x)〉|2

) p
2

. 2( d2 +κ)np(t− s)
κp
2 ,

for each κ > 0, p > 2, and every n > −1. This allows us to apply the Kolmogorov criterion [MW17,
Lemma 10] to conclude that Z ∈ C([0, T ], B−αp,p ) P-a.s., for each p > 2 and every α > d/2 + 2/p.
Moreover,

E sup
t∈[0,T ]

‖Zt‖pB−αp,p <∞.

The result follows by the embedding B−αp,p ↪→ B−β∞,∞ for β > α+ d/p (see Lemma A.1). �

Next we rewrite the unique solution η to (1.5), which has been obtained in Section 3.2, in the mild
form.

Proposition 3.15. Under the assumptions (A1)-(A4), the unique solution η to (1.5) satisfies

ηt = Γt ∗ η0 −
∫ t

0

∇Γt−s ∗ (ρ̄K ∗ η + ηK ∗ ρ̄+ Fη)ds−
√

2σZ̃t, P− a.s,

where Z̃ has the same distribution as Z.

Proof. We start with the following statement: for every function ϕ of class C1([0, t], C∞(Td)) and
t ∈ [0, T ], it holds that,

〈ηt, ϕ(t)〉 − 〈η0, ϕ(0)〉 =

∫ t

0

〈ηs, ∂sϕ+ σ∆ϕ〉ds+

∫ t

0

〈ρ̄sK ∗ ηs + ηsK ∗ ρ̄s + Fηs,∇ϕ〉ds

+
√

2σ

∫ t

0

∫
Td
∇ϕ(x)

√
ρ̄s(x)ξ(ds,dx). (3.34)

It is straightforward to check the statement for finite linear combinations of functions ϕ of the form
ϕ(s, x) = ϕ1(s)ϕ2(x), where ϕ1 ∈ C∞([0, t]) and ϕ2 ∈ C∞(Td). Then one can uniformly approximate
functions in C1([0, t], C∞(Td)) with such combinations and find (3.34).

For every ϕ0 ∈ C∞(Td) and 0 6 s 6 t, define ϕ(s) := Γt−s ∗ ϕ0, then ∂sϕ(s) = −σ∆ϕ(s) and
ϕ(t) = ϕ0. By (3.34), we find

〈ηt, ϕ0〉 − 〈η0,Γt ∗ ϕ0〉 =

∫ t

0

〈ρ̄sK ∗ ηs + ηsK ∗ ρ̄s + Fηs,∇Γt−s ∗ ϕ0〉ds

+
√

2σ

∫ t

0

∫
Td

(∇Γt−s ∗ ϕ0)(x)
√
ρ̄s(z)ξ(ds,dx)

=−
∫ t

0

〈∇Γt−s ∗ (ρ̄K ∗ η + ηK ∗ ρ̄+ Fη), ϕ0〉ds

−
√

2σ

∫
Td
ϕ0(x)

(∫ t

0

∫
Td
∇Γt−s(x− y)

√
ρ̄(y)ξ(ds,dy)

)
dx,

where we used symmetry of Γ at the last inequality. The result then follows by arbitrary ϕ0 ∈ C∞(Td)
and the definition of Z. �



32 ZHENFU WANG, XIANLIANG ZHAO, AND RONGCHAN ZHU

This result gives rise to the definition of mild solutions to (1.5) on a stochastic basis (Ω,Ft,F ,P).
We set Z given by (3.27) with ξ being vector-valued space-time white noise on (Ω,Ft,F ,P).

Definition 3.16. Assume that K ∈ L1, ρ̄ ∈ C([0, T ], Cβ), and F ∈ Cβ for some β > d/2. We call
η ∈ C([0, T ],S ′(Td))∩L2([0, T ], B−αp,q ) with α < β, p, q ∈ [1,∞] is a mild solution to (1.5) with initial
condition η0 if for every ϕ ∈ C∞

〈ηt, ϕ〉 = 〈Γt ∗ η0, ϕ〉 −
∫ t

0

〈∇Γt−s ∗ (ρ̄K ∗ η + ηK ∗ ρ̄+ Fη), ϕ〉ds−
√

2σ 〈Zt, ϕ〉 .

Remark 3.17. By Proposition 3.15, we know, under the assumptions (A1)-(A4), the solutions to
(1.5) obtained from Theorem 3.9 have the same law as the mild solutions.

To make sense of ρ̄K ∗ η, ηK ∗ ρ̄, and Fη in the definition of mild solutions, we need the condition
ηt ∈ B−αp,q for a.e. t ∈ [0, T ] with α < β and p, q ∈ [1,∞], where β is from (A4).

The following result based on the smoothing effect of heat kernel (see Lemma A.5) gives the optimal
regularity of η.

Proposition 3.18. Suppose that Assumption (A4) holds with parameter β > d/2 and η is a mild
solution to (1.5), and assume η0 ∈ Lr(Ω, B−αp,q ) for some r > 2, α ∈ (d/2, β), and p, q ∈ [1,∞]. Then

η ∈ C([0, T ], B−αp,q ) almost surely. Moreover,

E sup
t∈[0,T ]

‖ηt‖rB−αp,q <∞.

Proof. Firstly, applying Lemma A.5, we have

‖ηt‖B−αp,q .‖η0‖B−αp,q +

∫ t

0

(t− s)− 1
2

[
‖ρ̄K ∗ η‖B−αp,q + ‖ηK ∗ ρ̄‖B−αp,q + ‖Fη‖B−αp,q

]
ds

+ ‖Zt‖B−αp,q .

To further estimate the right hand side of the above inequality, by α < β, applying Lemmas A.1-A.4
gives that

‖ρ̄K ∗ η‖B−αp,q + ‖ηK ∗ ρ̄‖B−αp,q . ‖ρ̄‖Cβ‖K‖L1‖η‖B−αp,q , ‖Fη‖B−αp,q . ‖F‖Cβ‖η‖B−αp,q .

Hence,

‖ηt‖B−αp,q .‖η0‖B−αp,q +

∫ t

0

(t− s)− 1
2 ‖ηs‖B−αp,q ds+ ‖Zt‖B−αp,q . (3.35)

By Hölder’s inequality, we find∫ t

0

(t− s)− 1
2 ‖ηs‖B−αp,q ds .

(∫ t

0

‖ηs‖rB−αp,q ds
) 1
r
(∫ t

0

(t− s)−
r

2(r−1) ds
) r−1

r

.
(∫ t

0

‖ηs‖rB−αp,q ds
) 1
r

t
1
2−

1
r , (3.36)

where in the last step we used r > 2 to have r
2(r−1) < 1. Furthermore, applying Gronwall’s inequality

to (3.35) yields that
E sup
t∈[0,T ]

‖ηt‖rB−αp,q . E‖η0‖rB−αp,q + E‖Z‖r
CTB

−α
p,q

+ 1.

By the assumption on η0 and Lemma 3.14, the right hand side of the above inequality is thus finite.

Using (3.35), the continuity of η on [0, T ] follows by the continuity of Z and continuity of Γt from
Lemma A.5. The proof is thus completed. �

Remark 3.19. By [Hai14] we know the space-time white noise ξ ∈ C−
d
2−1−ε

t,x P-a.s. for every ε > 0,

where C
− d2−1−ε
t,x is endowed with suitable parabolic time space scaling. Hence by Schauder estimates

η ∈ C([0, T ], C−α) for α > d/2 gives the best regularity by taking p, q =∞ in Proposition 3.18.
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Remark 3.20. By the optimal regularity of η and Lemma A.2, K ∗ ρ̄ needs to stay in Cβ with β > d/2
so that the term K ∗ ρ̄η appearing in SPDE (1.5) is well-defined. Applying Lemma A.4 and noticing
K ∈ L1 for K satisfying (A2), the assumption about ρ̄ in (A4) is thus a sufficient condition for
K ∗ ρ̄ ∈ Cβ. Moreover, β > d/2 is optimal in general. With appropriate modifications of the proof
in Section 3.2 and by the convolution inequality in Lemma A.4, we could also weaken the condition
of ρ̄ to ρ̄ ∈ Cβ−β1 with β > d/2 and β1 ∈ (0, d2 ), at the cost of stronger condition on the interacting

kernel: K ∈ Cβ1 .

3.4. Gaussianity. This section is devoted to the proof of Proposition 1.5. As mentioned in the
introduction, we need a class of time evolution operators {Qs,t} in order to rewrite η as the generalized
Ornstein-Uhlenbeck process (1.6), which would be given by the following result.

Lemma 3.21. Assume that ρ̄ ∈ C([0, T ], Cβ+1(Td)) and F ∈ Cβ+1(Td) with β > d/2, for each
ϕ ∈ C∞(Td) and t ∈ [0, T ], there exists a unique solution f ∈ L2([0, t], Hβ+2) ∩ C([0, t], Hβ+1) with
∂sf ∈ L2([0, t], Hβ) to the following backward equation:

fs = ϕ+ σ

∫ t

s

∆frdr +

∫ t

s

[
K ∗ ρ̄r · ∇fr +K(−·) ∗ (∇frρ̄r) + F · ∇fr

]
dr, s ∈ [0, t], (3.37)

where K(−·) ∗ g is given in (3.18).

Proof. Similar to (3.25), we obtain the following a priori energy estimate for any ε > 0

‖fs‖2Hβ+1 + 2σ

∫ t

s

‖fr‖2Hβ+2dr

6‖ϕ‖2Hβ+1 + Cε

∫ t

s

‖fr‖2Hβ+1dr + ε(‖K‖2L1‖ρ̄‖2CTCβ+1 + ‖F‖2Cβ+1)

∫ t

s

‖fr‖2Hβ+2dr.

Choosing ε > 0 sufficiently small, f ∈ L2([0, t], Hβ+2) follows from the Gronwall’s inequality. Fur-
thermore, by Lemma A.2 and Lemma A.4, we find

‖K ∗ ρ̄ · ∇f‖Hβ . ‖K ∗ ρ̄‖Cβ‖f‖Hβ+1 . ‖K‖L1‖ρ̄‖Cβ‖f‖Hβ+1 , ‖F · ∇f‖Hβ . ‖F‖Cβ‖f‖Hβ+1 ,

‖K(−·) ∗ (ρ̄∇f)‖Hβ . ‖K‖L1‖ρ̄∇f‖Hβ . ‖K‖L1‖ρ̄‖Cβ‖f‖Hβ+1 .

Hence we deduce from equation (3.37) that ∂tf ∈ L2([0, t], Hβ), which combined with f ∈ L2([0, t], Hβ+2)
implies that f ∈ C([0, t], Hβ+1) by Lions-Magenes Lemma. When ϕ = 0, the above energy estimate
implies that f = 0. This fact together with linearity of equation implies the uniqueness of solutions.
On the other hand, one can obtain the existence of solutions to (3.37) by classical Galerkin method
(cf. [Eva98, Chapter 7]). �

Define the space X βt and time evolution operators {Q·,t}06t6T : C∞(Td)→ X βt as

X βt :=
{
f ∈ L2([0, t], Hβ+2) ∩ C([0, t], Hβ+1); ∂sf ∈ L2([0, t], Hβ)

}
,

Qs,tϕ := f(s).

where f is the unique solution to (3.37) with terminal value ϕ at time t and is given by Lemma 3.21.

Now we are in the position to justify the Gaussianity of the unique (in distribution) limit of
fluctuation measures.

Proof of Proposition 1.5. Recall that η ∈ L2([0, T ], H−α) for any α > d/2. Then for each test function

f ∈ X βt with β > d/2, by Lemma A.2 and Lemma A.4, we have

‖〈ηs, ∂sf〉‖L1
T
. ‖η‖L2

TH
−β‖∂sf‖L2

TH
β , ‖〈ηs,∆fs〉‖L1

T
. ‖η‖L2

TH
−β‖f‖L2

TH
β+2 ,

‖〈ρ̄sK ∗ ηs + ηsK ∗ ρ̄s + Fηs,∇fs〉‖L1
T
.
(
‖K‖L1‖ρ̄‖CTCβ + ‖F‖Cβ

)
‖η‖L2

TH
−β+ε‖f‖L2

TH
β+1 . 1,
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where ε > 0 is sufficiently small, so that the weak formulation (3.34) extends to all the test fucntions

f ∈ X βt with β > d/2. For each ϕ ∈ C∞, choosing Q·,tϕ as the test function in (3.34), we find

〈ηt, ϕ〉 − 〈η0, Q0,tϕ〉 =

∫ t

0

〈ηs, ∂sQs,tϕ+ σ∆Qs,tϕ〉ds+

∫ t

0

〈ρ̄sK ∗ ηs + ηsK ∗ ρ̄s + Fηs,∇Qs,tϕ〉ds

+
√

2σ

∫ t

0

∫
Td
∇Qs,tϕ(x)

√
ρ̄s(x)ξ(ds,dx)

=
√

2σ

∫ t

0

∫
Td
∇Qs,tϕ(x)

√
ρ̄s(x)ξ(ds,dx),

where we used Lemma 3.21 with Qs,tϕ = f(s). The result follows by the assumption on η0 and the
fact that the stochastic integral is a centered Gaussian process with quadratic variation

2σ

∫ t

0

〈
|∇Qs,tϕ|2, ρ̄s

〉
ds.

�

4. The Vanishing Diffusion Case

In this section, we study particle systems with vanishing diffusion, i.e. σ = 0. We denote the
fluctuation measures by ηN :=

√
N(µN − ρ̄) as well. Instead of the SPDE limit (1.5) in the case

when σ > 0, now the fluctuation measures converge to a deterministic first order nonlocal PDE with
random initial value η0, which reads

∂tη = −∇ · (ρ̄K ∗ η)−∇ · (ηK ∗ ρ̄)−∇ · (Fη). (4.1)

With the same proof as in Section 3.1 and Section 3.2, we can deduce that under the assumptions
(A1)-(A3), (A5), we have

(1) The sequence of laws of (ηN )N>1 is tight in the space L2([0, T ], H−α)∩C([0, T ], H−α−2), for
every α > d/2.

(2) Any limit η of converging (in distribution) subsequence of (ηN )N>1 is an analytic weak solution
to (4.1) in the sense that

〈ηt, ϕ(t)〉 = 〈η0, ϕ(0)〉+

∫ t

0

∫
Td
ηs[∂sϕ+K(−·) ∗ (ρ̄∇ϕ) +K ∗ ρ̄ · ∇ϕ+ F∇ϕ]dxds, (4.2)

for every ϕ ∈ C1([0, t], Cβ+1) with β > d/2, P-a.s. and K(−·) ∗ g is given in (3.18).

However, for the case with vanishing diffusion, we cannot deduce uniqueness of the solutions to
(4.1) by the proof of Lemma 3.11, due to the lack of the energy inequality (3.25). The following
uniqueness result follows by the method of characteristics. We also recall the definition of flow from
[Kun97, Chapter 4]1, which is used in the following proof. φs,t be a continuous map from Td into
itself for any s, t ∈ [0, T ] is called a flow if it satisfies the following property

(1) φs,u = φt,u ◦ φs,t holds for all s, t, u, where ◦ denotes the composition of maps;
(2) φs,s = Id;
(3) φs,t : Td → Td is an onto homeomorphism for all s, t.

We refer to [Kun97, Chapter 4] for the relation between flows and ODEs. In general the solutions to
ODEs with regular coefficients could generate a flow.

Proposition 4.1. Under the assumptions (A2) and (A5), η ≡ 0 is the only solution with zero initial
value to (4.1) in the space L2([0, T ], H−α) ∩ C([0, T ], H−α−2) for α ∈ (d/2, β), the parameter β is
from (A5).

1Although the framework in [Kun97] is for the flow on Rd, it also holds for the periodic case since the functions

on Td could be viewed as periodic functions on Rd and the framework in [Kun97, Chapter 4] has been extended to
Riemannian manifold.
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Proof. We first claim that a similar result to Lemma 3.21 holds for σ = 0. That is, there exists a
unique solution ϕ ∈ C1([0, t], Cβ

′
) with β′ ∈ (α+1, β+1) for any ϕ(t, x) = ψ(x) ∈ C∞ to the following

backward equation

∂sϕ+K(−·) ∗ (ρ̄∇ϕ) +K ∗ ρ̄ · ∇ϕ+ F · ∇ϕ = 0, ∀s ∈ [0, t]. (4.3)

Suppose that the claim holds. Then for every ψ ∈ C∞ and t ∈ [0, T ], we use (4.2) with the test
function given by the solution ϕ to (4.3) and η0 = 0. Then we conclude that

∫
Td η(t, x)ψ(x)dx = 0,

which implies the result. It thus suffices to justify the claim.

In the following we verify the claim by considering the backward flow (φt,s)06s6t6T generated by

φt,s = x+

∫ t

s

(K ∗ ρ̄r(φt,r) + F (φt,r))dr, x ∈ Td, s ∈ [0, t]. (4.4)

Define the forward flow φs,t := φ−1
t,s , 0 6 s 6 t 6 T . Since F ∈ Cβ+1 and K ∗ ρ̄ ∈ C1([0, T ], Cβ+2) by

Assumption (A5) and Lemma A.4, the existence of the flow (φt,s)t,s∈[0,T ] in Cβ
′

for any β′ < β + 1
follows from [Kun97, Theorem 4.6.5]. For fixed t ∈ [0, T ], denote φs := φt,s and φ−s := φs,t for
s ∈ [0, t], then φ−s ◦ φs = Id.

The next step is the one-to-one correspondence between the solutions to (4.3) and the solutions to
the following equation

gs(x) =ψ(x)−
∫ t

s

[
K(−·) ∗ (gr ◦ φ−r∇ρ̄)

]
◦ φr(x)dr −

∫ t

s

[
divK(−·) ∗ (gr ◦ φ−rρ̄)

]
◦ φr(x)dr

:=ψ(x) + Φs(g), s ∈ [0, t]. (4.5)

Here the notation K(−·) ∗ f is given in (3.18). We also write g(s, x) := gs(x). We will prove that

g(s, x) := ϕ(s, φs) satisfies (4.5). Indeed, suppose that ϕ ∈ C1([0, t], Cβ
′
) with β′ > α+ 1 solves (4.3),

then by the chain rule, we have

∂s{ϕ(s, φs(x))} =∂sϕ(s, φs(x)) +∇ϕ(s, φs(x)) · ∂sφs(x) = −K(−·) ∗ (ρ̄∇ϕ)(φs(x))

=K(−·) ∗ (ϕ∇ρ̄)(φs(x)) + divK(−·) ∗ (ϕρ̄)(φs(x))

=
[
K(−·) ∗ {(ϕ ◦ φs ◦ φ−s)∇ρ̄}

]
◦ φs(x) +

[
divK(−·) ∗ {(ϕ ◦ φs ◦ φ−s)ρ̄}

]
◦ φs(x),

where we used integration by parts formula in the third step. Therefore ϕ(s, φs) satisfies (4.5).

Conversely, if g ∈ C1([0, t], Cβ
′
) is a solution to equation (4.5), let ϕ(s, x) := g(s, φ−s(x)), then

g(s, x) = ϕ(s, φs(x)). Similarly, we have

∂sg(s, x) =∂s{ϕ(s, φs(x))} = ∂sϕ(s, φs(x)) +∇ϕ(s, φs(x)) · ∂sφs(x),

∂sg(s, x) =K(−·) ∗ (ϕ∇ρ̄)(φs(x)) + divK(−·) ∗ (ϕρ̄)(φs(x)) = −K(−·) ∗ (ρ̄∇ϕ)(φs(x)),

where the first line follows by the chain rule, while the second line follows by integration by parts.
Substituting (4.4) into the first line, we obtain that ϕ is a solution to (4.3). Hence justifying the claim

is turned into obtaining the well-posedness of backward equation (4.5) in C1([0, t], Cβ
′
).

Notice that Φ· : C([s, t], Cβ
′
)→ C([s, t], Cβ

′
) satisfies

sup
r∈[s,t]

‖Φr(g)‖Cβ′ 6
∫ t

s

∥∥∥[K(−·) ∗ (gr ◦ φ−r∇ρ̄)
]
◦ φr

∥∥∥
Cβ′

+
∥∥∥[divK(−·) ∗ (gr ◦ φ−rρ̄)

]
◦ φr

∥∥∥
Cβ′

dr

.
∫ t

s

‖K‖L1‖gr‖Cβ′
(

1 + ‖φ−r‖β
′

Cβ′

)
‖ρ̄‖Cβ′+1(1 + ‖φr‖β

′

Cβ′
)dr

+

∫ t

s

‖divK‖L1‖gr‖Cβ′
(

1 + ‖φ−r‖β
′

Cβ′

)
‖ρ̄‖Cβ′

(
1 + ‖φr‖β

′

Cβ′

)
dr, (4.6)
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where we used Lemma A.2, Lemma A.4, and the fact that ‖f1 ◦ f2‖Cα . ‖f1‖Cα(1 + ‖f2‖αCα) when

α > 1. Recalling Assumption (A5) and φ ∈ C([0, t], Cβ
′
), we find

sup
r∈[s,t]

‖Φr(g)‖Cβ′ . (t− s) sup
r∈[s,t]

‖gr‖Cβ′ .

Choosing s close to t enough, by the linearity of Φ, we find g 7→ ψ + Φ·(g) is a contraction mapping

on C([s, t], Cβ
′
), hence it has a unique fixed point solving (4.5) on [s, t]. Applying this argument

a finite number of times, we remove the constraint on s. Therefore, there exists a unique solution
g ∈ C([0, t], β′) to the ODE (4.5). Finally, we deduce g ∈ C1([0, t], β′) from ∂sΦs ∈ C([0, t], Cβ

′
), which

follows by the calculation in (4.6). Now we obtain the global well-posedness of (4.5) in C1([0, t], β′),
which by the one-to-one correspondence between ϕ and g concludes the result. �

Now we are able to conclude the result for vanishing diffusion cases similar to Theorem 1.4.

Theorem 4.2. Under the assumptions (A1)-(A3), (A5), let η be the unique solution to (4.1) on
the same stochastic basis with the particle system (1.1), the sequence (ηN )N>1 converges in probability
to η in L2([0, T ], H−α) ∩ C([0, T ], H−α−2), for every α > d/2.

Proof. By the facts that (ηN )N>1 are tight, the tight limits of converging subsequences solve (4.1),
and there exists a unique analytic weak solution to the equation (4.1), which is ensured by Proposition
4.1, it follows immediately that the sequence (ηN )N>1 converges in distribution to the unique solution
η .

Similar to (ηN )N>1, one can first obtain tightness of laws of (ηl, ηm)l,m∈N. Without loss of gener-
ality, we assume (ηl, ηm)l,m∈N to be two converging subsequences. Then using Skorohod theorem and
identifying the limit we deduce that (ηl) and (ηm) converge in distribution to η and η′, which both
solve random PDE (4.1) with the same initial value η0. Furthermore, Proposition 4.1 leads to η = η′

P-a.s.. Therefore, we can deduce by Lemma 4.3 below that (ηN )N>1 converges in probability to the
unique solution η. �

Lemma 4.3 (Gyöngy and Krylov [GK96]). Let (ZN )N>1 be a sequence of random elements in a
Polish space E equipped with the Borel σ-algebra. Then (ZN )N>1 converges in probability to an E-
valued random element if and only if for every pair of subsequences (Zl) and (Zm) there exists a
subsequence uk := (Zl(k), Zm(k)) converging in distribution to a random element u supported on the
diagonal {(x, y) ∈ E × E : x = y}.

Proof of Theorem 1.6. The proof is similar to Proposition 1.5. In addition to the convergence obtained
in Theorem 4.2, we need to check the Gaussianity of the unique solution η to (4.1) with Gaussian
initial value η0.

Define the time evolution operators {Qs,t}06s6t6T by Qs,tϕ := f(s), where f ∈ C1([0, t], Cβ
′
),

β′ ∈ (d/2 + 1, β + 1), is the unique solution to (4.3) with terminal value ϕ at time t. Then for each
ϕ ∈ C∞ and t ∈ [0, T ], let Q·,tϕ play the role of test function in (4.2). We find

〈ηt, ϕ〉 = 〈η0, Q0,tϕ〉 .

Finally, the result follows by the assumption on η0. �

5. Applications

In this section we finish the proof of Theorem 1.7 and then give a similar result for the particle
system (1.1) with C1 kernels. At last, we prove a central limit theorem for the initial values, which
gives a sufficient condition to (A1).
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5.1. Examples. Let us start with proving Theorem 1.7, which concerns on the most important
example of this article: the Biot-Savart law.

Proof of Theorem 1.7. By our main results Theorem 1.4, Proposition 1.5, and Theorem 1.6, it suffices
to check the assumptions (A1)-(A5).

(A1) is automatically satisfied since the point vortex model (1.8) is of i.i.d initial data, and one
can easily check that the Biot-Savart law satisfies the second case of Assumption (A2). Moreover, by
[JW18, Theorem 2], the following condition (5.1) yields (A3),

ρ̄ ∈ C([0, T ], C3) and inf ρ̄ > 0. (5.1)

Now we check (5.1). On one hand, when σ > 0 we deduce ρ̄ ∈ C([0, T ], C3) under the assumption
that ρ̄0 ∈ C3 by [BA94, Theorem A]. The fact that ρ̄ ∈ C([0, T ], C3) for the case σ = 0 follows by
[MP12, Theorem 2.4.1]. On the other hand, ρ̄ ∈ C([0, T ], C3) and Lemma A.4 implies that K ∗ ρ̄ is
bounded and Lipschitz continuous, which yields the global well-posedness for the Cauchy problem to
the following SDE:

ϕt = x+

∫ t

0

K ∗ ρ̄s(ϕs)ds+
√

2σBt. (5.2)

where B is a d-dimensional Brownian motion. Let {ϕt}t∈[0,T ] be the unique solution to (5.2), and
notice that ρ̄ is the density of the time marginal law of solution to (5.2) with initial value ρ̄0-distributed.

Since K is divergence free and σ is a constant, the flow {ϕt}t∈[−T,T ] ( recall that ϕ−t := ϕ−1
t ) is

measure preserving (see [Kun97, Lemma 4.3.1]). Then for any bounded measurable function f , we
have

〈f, ρ̄t〉 = E
∫
Td
f(ϕt(x))ρ̄0(x)dx = E

∫
Td
f(x)ρ̄0(ϕ−t(x))dx,

which implies inf ρ̄ > 0 since inf ρ̄0 > 0. Thus we obtain (5.1) and thus obviously Assumption (A4)
for the 2D Navier-Stokes equations. Lastly, for the 2D Euler equations, we deduce Assumption (A5)
from [MP12, Theorem 2.4.1]. �

For general cases, our main result Theorem 1.4 only requires bounded kernels. However, in order to
check Assumption (A3) using [JW18] , the extra condtion divK ∈ L∞ is necessary. Thus we consider
the system (1.1) with C1 kernels below, and give a complete result with the only assumption on the
initial data and the confined potential F . Nevertheless, the following result considerably relaxes the
condition on kernels in the classical work by Fernandez and Méléard [FM97], where the kernel K they
considered should be regular enough, for instance in C2+d/2.

Example 5.1 (C1 kernels). Consider the particle system (1.1) on Td and a sequence of independent
initial random variables {Xi(0)}i∈N with identical probability density ρ̄0. Assume that σ > 0, K ∈ C1,
F, ρ0 ∈ Cβ for some β > 2 ∨ d/2, and inf ρ̄0 > 0. Then the assumptions (A1)-(A4) hold. In
particular, Theorem 1.4 and Proposition 1.5 hold in this case.

Proof. The assumptions (A1)-(A2) follow immediately. For simplicity, we set σ = 1 and prove the
required regularity for ρ̄. Consider the McKean-Vlasov equation:

dXt = K ∗ ρ̄t(Xt)dt+ F (Xt)dt+
√

2dBt, ρ̄t = L(Xt), (5.3)

where B is a d-dimensional Brownian motion. Since K and F are bounded and Lipschitz continuous,
one can obtain the well-posedness of (5.3), c.f. [CG19, Theorem 3.3]. Furthermore, applying Itô’s
formula and superposition principle (see [BRS21, Tre16]) we have the one-to-one correspondance
between the solutions to the Mckean-Vlasov equation (5.3) and the solutions to the mean field equation
(1.2), which implies the global well-posedness of the mean field equation in the space C([0, T ],P(Rd)).
Recall that the mild form of the mean-field equation (1.2) is stated as

ρ̄t = Γt ∗ ρ̄0 +

∫ t

0

∇Γt−s ∗ (K ∗ ρ̄sρ̄s + F ρ̄s)ds,
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where Γ is the heat kernel of ∆. Since K is bounded and Lipschitz continuous, K ∗ ρt is bounded and
Lipschitz continuous as well, hence belongs to the Besov space B1

∞,∞. Next we consider the following
linearized equation

ρt = Γt ∗ ρ̄0 +

∫ t

0

∇Γt−s ∗ (K ∗ ρ̄sρs + Fρs)ds, (5.4)

where ρ̄ is the unique solution to the mean field equation in C([0, T ],P(Rd)). We are going to exploit
the regularity of the kernel to improve the regularity of ρ̄. Notice first that Γ· ∗ ρ̄0 ∈ C([0, T ], Cβ) and
we use Lemma A.5 to have∥∥∥∥∫ t

0

∇Γt−s ∗ (K ∗ ρ̄sρs + Fρs)ds

∥∥∥∥p
B1
∞,∞

.

(∫ t

0

(t− s)− 1
2 ‖K ∗ ρ̄sρ+ Fρ‖B1

∞,∞
ds

)p
.

Furthermore, let p > 2, then Lemma A.2 and Hölder’s inequality yield that∥∥∥∥∫ t

0

∇Γt−s ∗ (K ∗ ρ̄sρs + Fρs)ds

∥∥∥∥p
B1
∞,∞

.

(∫ t

0

(t− s)− 1
2 ‖K ∗ ρ̄s + F‖B1

∞,∞
‖ρ‖B1

∞,∞
ds

)p

.K,ρ̄,F

(∫ t

0

(t− s)−
p

2(p−1) ds

) p−1
p
∫ t

0

‖ρs‖pB1
∞,∞

ds

.K,ρ̄,F t
p−2
2p

∫ t

0

‖ρs‖pB1
∞,∞

ds.

The constant omitted here depends on ‖F‖Cβ and supt∈[0,T ] ‖K ∗ ρ̄s‖B1
∞,∞

. Thus we have

‖ρt‖pB1
∞,∞
. ‖ρ̄0‖pB1

∞,∞
+

∫ t

0

‖ρs‖pB1
∞,∞

ds,

for any ρ satisfies the linearized equation (5.4). Since the solution ρ̄ to the mean field equation also
satisfies (5.4), we find ρ̄ ∈ C([0, T ], B1

∞,∞) by Gronwall’s inequality.

Recall that we first obtained probability measure-valued solution to (1.2). As ρ̄ ∈ C([0, T ], B1
∞,∞),

the coefficient K ∗ ρ̄ has better regularity, which provides the possibility to improve the regularity
of ρ̄. In fact, by K ∈ B1

∞,∞, Lemma A.2 and Lemma A.4, we deduce K ∗ ρ̄t ∈ Bα+1−ε
∞,∞ whenever

ρ̄ ∈ Bα∞,∞, for sufficiently small ε > 0. Therefore, ρ̄ helps improving the regularity of the coefficient

to the linearized equation (5.4). As a result, we could repeat the above estimates with B1
∞,∞-norm

replaced by B2−ε
∞,∞-norm for some ε > 0 and conclude ρ̄ ∈ C([0, T ], B2−ε

∞,∞). We iterate this procedure

again and we get ρ̄ ∈ C([0, T ], Bβ∞,∞) for β > 2 ∨ d/2, which implies Assumption (A4).

As to Assumption (A3), by [JW18, Theorem 2] and ρ̄ ∈ C([0, T ], Bβ∞,∞), it is sufficient to check
inf ρ̄ > 0. Similar to the proof of Theorem 1.7, we need the auxiliary SDE

ϕt = x+

∫ t

0

K ∗ ρ̄s(ϕs)ds+

∫ t

0

F (ϕs)ds+
√

2Bt.

Then for any nonnegative measurable function f on Td, we have

〈f, ρ̄t〉 = E
∫
Td
f(ϕt(x))ρ̄0(x)dx = E

∫
Td
f(x)ρ̄0(ϕ−t(x))|det ∂ϕ−s(x)|dx,

> inf ρ̄0

∫
Td
f(x)e−

∫ s
0
‖div(K∗ρ̄r+F )‖L∞drdx

> inf ρ̄0e
−T (‖K‖C1+‖F‖C1 )

∫
Td
f(x)dx,

where the first inequality follows by the representation of the determinant for the Jacobian matrix
det ∂ϕ−s, see [Kun97, Lemma 4.3.1]. This implies (A3). �
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5.2. A sufficient condition for (A1). Motivated by the main Assumption (A3) in this article, we
give a sufficient condition for central limit theorem for random variables in terms of relative entropy.
These random variables may be neither independent nor identical distributed. This result could be
applied to check (A1).

In the following, we let {XN
i }16i6N be a class of random variables with values in Rd or Td, here

{XN
i }16i6N plays the role of {Xi(0)}16i6N in (A1). More general, the laws of {XN

i }16i6N are
allowed to be different and these random variables might take values in the whole space Rd so that
one can compare our result with the general central limit theorems in the literature. We abuse the
notation ρN to denote the joint distribution of {XN

i }16i6N , and let ρ̄ denote a probability measure
on Rd (or Td). For simplicity, we omit the torus case in the following discussion.

For fixed ϕ ∈ S(Rd), define Y Nϕ by

Y Nϕ :=

∑N
i=1 ϕ(XN

i )−N 〈ϕ, ρ̄〉√
N

.

Thus 1√
N

∑N
i=1(δXNi −ρ̄) converges in distribution to the Gaussian variable η0 in S ′(Rd) which satisfies

〈η0, ϕ〉
d∼ N (0,

〈
ϕ2, ρ̄

〉
− 〈ϕ, ρ̄〉2), ∀ϕ ∈ S(Rd),

if and only if the law of Y Nϕ converges weakly to N (0,
〈
ϕ2, ρ̄

〉
− 〈ϕ, ρ̄〉2), which is denoted by Gϕ.

Recall that the bounded Lipschitz distance dbL(µ, ν) between two probability measures µ, ν on Rd
is defined as

dbL(µ, ν) = sup

{∫
Rd
g(y)µ(dy)−

∫
Rd
g(y)ν(dy); ‖g‖L∞ + ‖g‖Lip 6 1

}
, (5.5)

where ‖g‖Lip denotes the Lipschitz constant of g. The bounded Lipschitz distance metrizes the weak
convergence (see [Vil08]). We are going to control the bounded Lipschitz distance between the law
of Y Nϕ and Gϕ, denoted by dbL(L(Y Nϕ ), Gϕ), by the relative entropy H(ρN |ρ̄N ) and the bounded

Lipschitz distance between Gϕ and SNϕ , which is defined as

SNϕ :=

∑N
i=1 ϕ(Zi)−N 〈ϕ, ρ̄〉√

N
,

where {Zi}i∈N is a class of i.i.d random variables with distribution ρ̄.

Proposition 5.2. There is λ > 0 such that for every κ > 0,

dbL(L(Y Nϕ ), Gϕ) 6
1

κ
H(ρN |ρ̄N ) +

κ

2λ
+ dbL(L(SNϕ ), Gϕ).

By taking κ =
√

2λH(ρN |ρ̄N ), then

dbL(L(Y Nϕ ), Gϕ) 6

√
2

λ

√
H(ρN |ρ̄N ) + dbL(L(SNϕ ), Gϕ).

Assume further

H(ρN |ρ̄N )
N→∞−−−−→ 0,

then L(Y Nϕ ) converges to Gϕ weakly, as N →∞.

Proof. From (5.5) we know

dbL(L(Y Nϕ ), Gϕ) = sup

{∫
Rd
g(y)dL(Y Nϕ )−

∫
Rd
g(y)Gϕ(y)dy; ‖g‖L∞ + ‖g‖Lip 6 1

}
. (5.6)

First, we find ∫
Rd
g(y)dL(Y Nϕ ) =Eg(Y Nϕ ) = Eg

(∑N
i=1 ϕ(XN

i )−N 〈ϕ, ρ̄〉√
N

)
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=

∫
RdN

g
(∑N

i=1 ϕ(xi)−N 〈ϕ, ρ̄〉√
N

)
ρNdxN

:=

∫
RdN

g ◦ ΦN (xN )ρNdxN ,

with xN = (x1, . . . , xN ). Then applying the Donsker-Varadhan variational formula (2.1) gives∫
Rd
g(y)dL(Y Nϕ ) 6

1

κ

(
H(ρN |ρ̄N ) + log

∫
RdN

eκg◦ΦN (xN )ρ̄NdxN
)
, (5.7)

for every κ > 0. Since {Zi}i∈N is a class of i.i.d random variables with distribution ρ̄, we have∫
RdN

eκg◦ΦN (xN )ρ̄NdxN = E exp
[
κg
(∑N

i=1 ϕ(Zi)−N 〈ϕ, ρ̄〉√
N

)]
=

∫
R
eκg(y)dL(SNϕ ). (5.8)

Combining (5.6)-(5.8), we arrive at

dbL(L(Y Nϕ ), Gϕ) 6
1

κ
H(ρN |ρ̄N ) + dbL(L(SNϕ , Gϕ))

+ sup

{
1

κ
log

∫
R
eκg(y)dL(SNϕ )−

∫
R
g(y)dL(SNϕ ); ‖g‖L∞ + ‖g‖Lip 6 1

}
, (5.9)

for every κ > 0.

To handle the last term on the right hand side of (5.9), we need uniform Gaussian concentration
of {L(SNϕ )}N∈N. That is, there is a > 0 such that

sup
N

∫
R
eay

2

dL(SNϕ ) <∞. (5.10)

Indeed, recall (5.8) and the definition of ΦN , for (5.10) it is sufficient to show that

sup
N

∫
RdN

exp

(
aN

∣∣∣∣〈ϕ, 1

N

N∑
i=1

δxi − ρ̄
〉∣∣∣∣2)ρ̄NdxN

= sup
N

∫
RdN

exp

(
aN

∣∣∣∣〈ϕ− 〈ϕ, ρ̄〉 , 1

N

N∑
i=1

δxi

〉∣∣∣∣2)ρ̄NdxN <∞.

This follows by Lemma 2.1 with sufficient small a, which depends only on ‖ϕ‖L∞ . Hence (5.10) holds.

Therefore, this uniform Gaussian concentration (5.10) allows us to apply [Vil08, Theorem 22.10],
which yields that {L(SNϕ )}N∈N satisfies the dual formulation of Talagrand-1 inequality uniformly.

More precisely, there is λ > 0 such that for any g ∈ Cb(Rd), N ∈ N, and κ > 0,∫
R

exp
[
κ inf
z∈R

(
g(z) + |y − z|

)]
dL(SNϕ ) 6 exp

(κ2

2λ
+ κ

∫
R
g(y)dL(SNϕ )

)
.

Recall (5.9), we are only interested in functions with Lipschitz constant smaller than 1, for which

functions it holds that infy∈R

(
g(z) + |y − z|

)
= g(y). Thus we have

1

κ
log

∫
R
eκg(y)dL(SNϕ )−

∫
R
g(y)dL(SNϕ ) 6

κ

2λ
, ∀κ > 0.

Taking the above dual formulation of Talagrand-1 inequality into (5.9) gives

dbL(L(Y Nϕ ), Gϕ) 6
1

κ
H(ρN |ρ̄N ) + dbL(L(SNϕ , Gϕ)) +

κ

2λ
,

the result then follows by the canonical central limit theorem. �
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Remark 5.3. Similar as the central limit theorems in general, the convergence still holds if just a
fixed number of elements are changed. This gives rise to the more reasonable condition

lim
m→∞

lim
N→∞

H(ρN−τN,m |ρ̄N−m) = 0,

where τN,m is a subset of {1, ..., N} with m elements and ρN−τN,m be the joint distribution of {XN
i }i/∈τN,m .

Indeed, define Y
τN,m
ϕ as

Y τN,mϕ :=

√
N√

N −m

(
Y Nϕ −

∑
i∈τN,m ϕ(XN

i )−m 〈ϕ, ρ̄〉
√
N

)
.

It is easy to check that dbL(L(Y Nϕ ),L(Y
τN,m
ϕ )) . m/

√
N , which together with Proposition 5.2 applied

to {XN
i }i/∈τN,m yields the convergence of L(Y Nϕ ) to the Gaussian distribution Gϕ.

Appendix A. Besov spaces

In this section we collect useful results related to Besov spaces. Recall that Besov spaces on the
torus Bαp,q(Td) (c.f [Tri06], [MW17]), with α ∈ R and 1 6 p, q 6 ∞, are defined as the completion of
C∞ with respect to the norm

‖f‖Bαp,q :=
( ∑
n>−1

(
2nαq‖F−1(χnF (f))‖q

Lp(Td)

)) 1
q

,

where F represents Fourier transform on Rd and {χn}n>−1 : Rd → [0, 1] are compact supported
smooth functions satisfying

suppχ−1 ⊆ B(0,
4

3
); suppχ0 ⊆ B(0,

8

3
) \B(0,

4

3
), χn(·) = χ0(2−n·) for n > 0;

∑
n>−1

χn = 1.

Here B(0, R) denotes the ball of center 0 and radius R.

We collect the following results which are frequently used in this article.

Lemma A.1 ([Tri06, Proposition4.6]). Let α ∈ R, β ∈ R and p1, p2, q1, q2 ∈ [1,∞]. Then the
embedding

Bαp1,q2 ↪→ Bβp2,q2
is compact if and only if,

α− β > d
( 1

p1
− 1

p2

)
+
.

Lemma A.2. (i) Let α, β ∈ R and p, p1, p2, q ∈ [1,∞] be such that 1
p = 1

p1
+ 1

p2
. The bilinear map

(u, v) 7→ uv extends to a continuous map from Bαp1,q × Bβp2,q to Bα∧βp,q if α + β > 0 (cf. [MW17,
Corollary 2]).

(ii) (Duality.) Let α ∈ (0, 1), p, q ∈ [1,∞], p′ and q′ be their conjugate exponents, respectively.
Then the mapping (u, v) 7→ 〈u, v〉 =

∫
uvdx extends to a continuous bilinear form on Bαp,q × B−αp′,q′ ,

and one has |〈u, v〉| . ‖u‖Bαp,q‖v‖B−α
p′,q′

(cf. [MW17, Proposition 7]).

Lemma A.3 ([BCD11, Corollary 2.86] ). For any positive real number α and any p, q ∈ [1,∞], it
holds that

‖fg‖Bαp,q . ‖f‖L∞‖g‖Bαp,q + ‖f‖Bαp,q‖g‖L∞ ,

with the proportional constant independent of f, g.

Lemma A.4 ([KS21, Theorem 2.1 and 2.2]). Let α, β ∈ R, q, q1, q2 ∈ (0,∞] and p, p1, p2 ∈ [1,∞] be
such that

1 +
1

p
=

1

p1
+

1

p2
,

1

q
6

1

q1
+

1

q2
.
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(1) If f ∈ Bαp1,q and g ∈ Lp2 , then f ∗ g ∈ Bαp,q and

‖f ∗ g‖Bαp,q . ‖f‖Bαp1,q · ‖g‖Lp2 ,

with the proportional constant independent of f, g.
(2) If f ∈ Bαp1,q1 and g ∈ Bβp2,q2 , then f ∗ g ∈ Bα+β

p,q and

‖f ∗ g‖Bα+β
p,q
. ‖f‖Bαp1,q1 · ‖g‖Bβp2,q2 .

Recall the result about smoothing effect of the heat kernel Γ.

Lemma A.5 ([MW17, Propositions 3.11, 3.12]). Let u ∈ Bαp,q for some α ∈ R, 1 6 p, q 6 ∞. Then
for every κ > 0

‖Γt ∗ u‖Bα+2κ
p,q

. t−κ‖u‖Bαp,q ,

and

‖Γt ∗ u− u‖Bαp,q . t
κ/2‖u‖Bα+κ

p,q
.

Appendix B. Proof of Lemma 3.1

In this section we give the proof of Lemma 3.1. First recall the following result from [FGGT05].

Lemma B.1. Let ϕ → S(ϕ) be a linear continuous mapping from a separable Banach space E to
L0(Ω) ( random variables with convergence in probability). Assume that there exists a random variable
C(ω) such that for any given ϕ ∈ E we have

|S(ϕ)(ω)| 6 C(ω)‖ϕ‖E for P− a.s. ω ∈ Ω.

Then there exists a pathwise realization S of S(ϕ) from (Ω,F ,P) to the dual space of E in the sense
that

[S(ϕ)](ω) =[S(ω)](ϕ), P− a.s,

for every ϕ ∈ E.

Proof of Lemma 3.1. The proof consists of two step. The first step is to find a pathwise realization for
each t ∈ [0, T ]. The second step is justifying the pathwise realization forms a progressively measurable

process. We denote
√

2σN√
N

by CN below for simplicity.

We first apply [FGGT05, Lemma 8] to obtain the following equality, for ϕ ∈ C∞,

CN

N∑
i=1

∫ t

0

∇ϕ(Xi)dB
i
s =CN

N∑
i=1

∑
ki∈Zd

〈∇ϕ, e−ki〉
∫ t

0

eki(Xi)dB
i
s, P− a.s.

Furthermore, using Hölder’s inequality we have∣∣∣∣∣CN
N∑
i=1

∫ t

0

∇ϕ(Xi)dB
i
s

∣∣∣∣∣ 6CN
N∑
i=1

 ∑
ki∈Zd

〈ki〉2α−2|〈∇ϕ, e−ki〉|2
 1

2

×

 ∑
ki∈Zd

〈ki〉−2α+2

∣∣∣∣∫ t

0

eki(Xi)dB
i
s

∣∣∣∣2
 1

2

6‖ϕ‖HαCN
N∑
i=1

 ∑
ki∈Zd

〈ki〉−2α+2

∣∣∣∣∫ t

0

eki(Xi)dB
i
s

∣∣∣∣2
 1

2

.
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To apply Lemma B.1 with E = Hα(Td) for α > d/2 + 1, it is sufficient to find

E

 N∑
i=1

 ∑
ki∈Zd

〈ki〉−2α+2

∣∣∣∣∫ t

0

eki(Xi)dB
i
s

∣∣∣∣2
 1

2


2

.NE

 N∑
i=1

∑
ki∈Zd

〈ki〉−2α+2

∣∣∣∣∫ t

0

eki(Xi)dB
i
s

∣∣∣∣2


.N t
N∑
i=1

∑
ki∈Zd

〈ki〉−2α+2 <∞.

Therefore, we thus obtain a pathwise realization of CN
∑N
i=1

∫ t
0
∇ϕ(Xi)dB

i
s for each t ∈ [0, T ], denoted

by MN
t .

Define MN := (MN
t )t∈[0,T ]. Since the stochastic integrals are t-continuous, the equality

MN
t (ϕ) =CN

N∑
i=1

∫ t

0

∇ϕ(Xi)dB
i
s

holds almost surely for all t ∈ [0, T ] and ϕ ∈ C∞(Td). To justify measurability of MN . Notice that
for each ϕ ∈ C∞, 〈MN , ϕ〉 = MN

t (ϕ) is a continuous adapted process. Hence for each t ∈ [0, T ],
〈MN , ϕ〉 : Ω × [0, t] → R is Ft × B([0, t])-measurable. Since C∞ is dense in the separable Hilbert
space Hα, using Pettis measurability theorem and Lemma B.1 we thus find MN : Ω× [0, T ]→ H−α

is progressively measurable. �

Data sharing not applicable to this article as no datasets were generated or analysed during the
current study.
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