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Abstract. We give a new derivation of the finite N master loop equation for lattice Yang-Mills
theory with structure group SO(N), U(N) or SU(N). The SO(N) case was initially proved by
Chatterjee in [Cha19a], and SU(N) was analyzed in a follow-up work by Jafarov [Jaf16]. Our
approach is based on the Langevin dynamic, an SDE on the manifold of configurations, and yields
a simple proof via Itô’s formula.

1. Introduction

Let G be the Lie group SO(N), U(N), or SU(N). The goal of this paper is to derive the finite N
master loop equation for the lattice Yang-Mills theory with gauge group G. This was first obtained
in [Cha19a] for G = SO(N) and then in [Jaf16] for G = SU(N).

We recall the setup, closely following the notation in [Cha19a]. Let Λ be a finite subset of Zd.
We recall that a lattice edge is positively oriented if the beginning point is smaller in lexographic
order than the ending point. Let E+ (resp. E−) be the set of positively (resp. negatively) oriented
edges, and denote by E+

Λ , E
−
Λ the corresponding subsets of edges with both beginning and ending

points in Λ. Define E
def
= E+ ∪ E− and let u(e) and v(e) denote the starting point and ending

point of an edge e ∈ E, respectively. A path ρ in the lattice Zd is defined to be a sequence of
edges e1e2 · · · en with ei ∈ E and v(ei) = u(ei+1) for i = 1, 2, · · · , n− 1. The path ρ is called closed
if v(en) = u(e1). A plaquette is a closed path of length four which traces out the boundary of a
square; more precisely it is non-backtracking in the sense of [Cha19a, Sec. 2]. The set of plaquettes
is denoted as P and PΛ is the set of plaquettes whose vertices are all in Λ, and P+

Λ is the subset of
plaquettes p = e1e2e3e4 such that the beginning point of e1 is lexicographically the smallest among
all the vertices in p and the ending point of e1 is the second smallest.

The lattice Yang-Mills theory (or lattice gauge theory) on Λ for the gauge group G, with β ∈ R
the inverse coupling constant, is the probability measure µΛ,N,β on the set of all collections Q =
(Qe)e∈E+

Λ
of G-matrices, defined as

dµΛ,N,β(Q) := Z−1
Λ,N,β exp

(
NβRe

∑
p∈P+

Λ

Tr(Qp)

) ∏
e∈E+

Λ

dσN (Qe) , (1.1)

where ZΛ,N,β is the normalizing constant, Qp
def
= Qe1Qe2Qe3Qe4 for a plaquette p = e1e2e3e4, and

σN is the Haar measure on G. Note that for p ∈ P+
Λ the edges e3 and e4 are negatively oriented, so

throughout the paper we define Qe
def
= Q−1

e−1 for e ∈ E−, where e−1 denotes the edge with orientation
reversed. Also, Re is the real part, which can be omitted when G = SO(N). We do not intend to
further discuss the background and motivation for the above model (1.1); instead we refer to the
review paper [Cha19b].
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For a closed path ρ = e1 · · · en, ρ′ is said to be cyclically equivalent to ρ if ρ′ = eiei+1 · · · ene1e2 · · · ei−1

for some 2 ⩽ i ⩽ n. Cyclical equivalence classes are referred to as cycles, and a cycle with no back-
tracking is called a loop and denoted by l. By [Cha19a, Lemma 2.1], for any cycle l there is a
unique loop denoted as [l] by successive backtrack erasures until there are no more backtracks.
A loop sequence s = (l1, . . . , lm) is a collection of loops; more precisely it is an equivalence class
understood up to a insertion and deletion of a null cycle (think of ee−1 for instance). The length
of a loop l is denoted by |l|. For a loop sequence s with minimal representation (l1, . . . , ln), the
length is defined as

|s| def
=

n∑
i=1

|li|. (1.2)

We refer to [Cha19a, Sec. 2] for precise definitions of loop sequence, minimal representation, loca-
tion, etc.

Given a loop l = e1e2 · · · en, the Wilson loop variable Wl is defined as

Wl = Tr(Qe1Qe2 · · ·Qen) .

By cyclic invariance of the trace, this definition is independent of the particular representative
chosen in the equivalence class l. Write E for expectation with respect to (1.1). For any non-null
loop sequence s with minimal representation (l1, . . . , lm) such that each li is contained in Λ, define

Ws
def
= Wl1Wl2 · · ·Wlm , ϕ(s)

def
= E

Ws

Nm
. (1.3)

The master loop equation is a recursion which expresses ϕ(s) in terms of a linear combination of
ϕ(s′), where s′ is a loop sequence obtained by performing an operation on s. The operations are
called splitting, twisting, merger, deformation, and expansion; each being further divided into a
positive or negative type. This leads to a definition of sets T±(s), S±(s), M±(s), D±(s), E±(s)
of all loop sequences obtained by performing one of these operations on s. The precise definition
is given in (O1)-(O5) in Section 4, but we also recommend the graphs and further discussion in
[Cha19a, Sec. 2.2] for additional intuition.

Moreover, to state the theorem, we define as in [Jaf16]

ℓ(s)
def
=

∑
e∈E+

t(e)2 , t(e)
def
=

m∑
i=1

ti(e) (e ∈ E+) (1.4)

and ti(e)
def
= the number of occurrences of e minus the number of occurrences of e−1 in the loop li.

The following is the finite N master loop equation for the model (1.1).

Theorem 1.1. Let s be as above, and suppose that all vertices that are at distance ⩽ 1 from any
li belong to Λ. Then for G = SO(N) ([Cha19a, Theorem 3.6])

(N − 1)|s|ϕ(s) = Nβ
∑

s′∈D−(s)

ϕ(s′)−Nβ
∑

s′∈D+(s)

ϕ(s′) +N
∑

s′∈S−(s)

ϕ(s′)−N
∑

s′∈S+(s)

ϕ(s′)

+
∑

s′∈T−(s)

ϕ(s′)−
∑

s′∈T+(s)

ϕ(s′) +
1

N

∑
s′∈M−(s)

ϕ(s′)− 1

N

∑
s′∈M+(s)

ϕ(s′) . (1.5)

For G = SU(N) ([Jaf16, Theorem 4.2])(
N |s| − ℓ(s)

N

)
ϕ(s) =

Nβ

2

∑
s′∈D−(s)

ϕ(s′)− Nβ

2

∑
s′∈D+(s)

ϕ(s′) +N
∑

s′∈S−(s)

ϕ(s′)−N
∑

s′∈S+(s)

ϕ(s′)

+
Nβ

2

∑
s′∈E−(s)

ϕ(s′)− Nβ

2

∑
s′∈E+(s)

ϕ(s′) +
1

N

∑
s′∈M−

U (s)

ϕ(s′)− 1

N

∑
s′∈M+

U (s)

ϕ(s′) .
(1.6)
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1 For G = U(N),

N |s|ϕ(s) = Nβ

2

∑
s′∈D−(s)

ϕ(s′)− Nβ

2

∑
s′∈D+(s)

ϕ(s′) +N
∑

s′∈S−(s)

ϕ(s′)−N
∑

s′∈S+(s)

ϕ(s′)

+
1

N

∑
s′∈M−

U (s)

ϕ(s′)− 1

N

∑
s′∈M+

U (s)

ϕ(s′).
(1.7)

The proof of this theorem in [Cha19a, Jaf16] is based on Stein’s exchangeable pairs and integra-
tion by parts (see Sec. 5 - Sec. 8 therein). Here we reprove it using a simple Langevin dynamic and
Itô calculus. To illustrate the basic idea, recall that for standard Gaussian X, one has integration
by parts (Stein’s lemma) E[Xf(X)] = E[f ′(X)]. This identity can be derived in a simple way from
Itô’s formula applied to a Langevin dynamic as follows. Consider the Ornstein-Uhlenbeck process
dXt = −1

2Xtdt+dBt for a Brownian motion B. Let F be an anti-derivative of f , i.e. F ′ = f . Then

dF (Xt) = F ′(Xt)(−1
2Xtdt + dBt) +

1
2F

′′(Xt)dt. In stationarity, taking expectation yields Stein’s
lemma. Our proof of Theorem 1.1 is based on a generalization of this idea.

Chatterjee and Jafarov [Cha19a, Jaf16] have used the master equations to study various proper-
ties of Wilson loops in the large N limit under a smallness constraint in β. Further investigations
were initiated by Basu and Ganguly [BG18], where more structure is deduced on the limit in the
two dimensional lattice setting. We also mention that the Langevin dynamic can also be used to
prove large N limit, mass gap property and uniqueness of the lattice Yang–Mills model on the
whole lattice, see [SZZ22].

Master loop equations for lattice gauge theories were originally stated in Makeenko-Migdal’s
paper [MM79], thus are also often called Makeenko-Migdal equations. The first rigorous version
was established for two-dimensional Yang-Mills model in continuum in [Lév17], and alternative
proofs and extensions were given in [Dah16, Dri19, DGHK17, DHK17] on plane or surfaces. These
equations belong to a general class of equations arising in quantum field theory and random matrix
theory, known as Integration by Parts or Schwinger–Dyson equations. See for instance [CGMS09,
GN15] who derived Schwinger–Dyson equations for orthogonal and unitary multimatrix models,
which are to some extent related with the lattice Yang–Mills model.

We remark that the lattice cutoff is a key simplification which allows us to prove Theorem 1.1
in any dimension; it would be much more challenging to prove similar results in the continuum
(besides the aforementioned two-dimensional results). It would be natural to conjecture that the
Langevin dynamic in Section 3 - which is the main ingredient in our proof - has a scaling limit
given by the ones recently constructed in [CCHS22a, CCHS22b] on the two and three dimensional
torus. Since our proof is relatively more elementary, we hope that it would make it easier to study
related questions or other gauge theory models. We also refer to [Cha19a, Sec. 18] for a more
comprehensive list of open questions.

Acknowledgments. H.S. gratefully acknowledges financial support from NSF grants DMS-1954091
and CAREER DMS-2044415, and helpful discussions with Ilya Chevyrev. S.S. and R.Z. are grateful
to the financial supports by National Key R&D Program of China (No. 2022YFA1006300). R.Z.
is grateful to the financial supports of the NSFC (No. 12271030) and helpful discussions with Xin
Chen. S. A. Smith is grateful for financial support from the Chinese Academy of Sciences. We also
would like to thank Todd Kemp for discussion on relevant references.

1Compared to [Jaf16, Theorem 4.2] we use a different notation M±
U for the sets of merger terms to distinguish it

from SO(N) case.
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2. Preliminaries

This section collects some standard facts about Brownian motions on a Lie group G or its Lie
algebra g, mostly from [Lév17, Sec. 1].

We write the Lie algebras of SO(N), U(N), SU(N) as so(N), u(N), su(N) respectively. Every
matrix Q in one of these Lie groups satisfies QQ∗ = IN , and every matrix X in one of these Lie
algebras satisfies X+X∗ = 0. Here IN denotes the identity matrix, and for any matrix M we write
M∗ for the conjugate transpose of M . Let MN (R) and MN (C) be the space of real and complex
N ×N matrices.

We endow MN (C) with the Hilbert-Schmidt inner product

⟨X,Y ⟩ = ReTr(XY ∗) ∀X,Y ∈ MN (C). (2.1)

We restrict this inner product to our Lie algebra g, which is then invariant under the adjoint action.
In particular for X,Y ∈ so(N), u(N) or su(N) we have ⟨X,Y ⟩ = −Tr(XY ).

It is well-known that this induces an inner product on the tangent space at every Q ∈ G via the
right multiplication on G. Indeed, given any X ∈ g, the curve t 7→ etXQ is well approximated near
t = 0 by Q + tXQ up to an error of order t2. Hence, for X,Y ∈ g, XQ and Y Q are two tangent
vectors on the tangent space at Q ∈ G, and their inner product is given by Tr((XQ)(Y Q)∗) =
Tr(XY ∗).

Denote by B and B the Brownian motions on G and its Lie algebra g respectively. B is charac-
terized by

E
[
⟨B(s), X⟩⟨B(t), Y ⟩

]
= min(s, t)⟨X,Y ⟩ ∀X,Y ∈ g. (2.2)

By [Lév17, Sec. 1.4], the Brownian motions B and B are related through the following SDE:

dB = dB ◦B = dBB+
cg
2
Bdt, (2.3)

where ◦ is the Stratonovich product, and dBB is in the Itô sense. Here the constant cg is determined

by
∑

α v
2
α = cgIN where (vα)

dimR g
α=1 is an orthonormal basis of g. Note that dimR g indicates that

for matrices with complex entries, dimension is counted with respect to R. Moreover, by [Lév17,
Lem. 1.2],

cso(N) = −1

2
(N − 1), cu(N) = −N, csu(N) = −N2 − 1

N
. (2.4)

Note that in [Lév17, Lem. 1.2], the scalar product differs from (2.1) by a scalar multiple depending
on N and g, so we accounted for this in the expression for cg above.

Denote by δ the Kronecker function, i.e. δij = 1 if i = j and 0 otherwise. For any matrix M , we
write M ij for its (i, j)th entry. The following holds by straightforward calculations:

d⟨Bij , Bkℓ⟩ = 1

2
(δikδjℓ − δiℓδjk)dt, g = so(N); (2.5a)

d⟨Bij , Bkℓ⟩ = −δiℓδjk dt , g = u(N); (2.5b)

d⟨Bij , Bkℓ⟩ =
(
− δiℓδjk +

1

N
δijδkℓ

)
dt , g = su(N). (2.5c)

Remark 2.1. The relation (2.5c) can be deduced from (2.5b) as follows. Given a u(N) Brownian

motion t 7→ Bt, we may define an su(N) Brownian motion t 7→ B̂t by letting B̂t
def
= Bt− 1

NTr(Bt)IN .
Since any X ∈ su(N) ⊂ u(N) is traceless, the identity (2.2) satisfied by B implies the same identity

for B̂ in light of the equality ⟨B̂t, X⟩ = ⟨Bt, X⟩, which follows from ⟨IN , X⟩ = Tr(X) = 0. To obtain

(2.5c) from (2.5b), note that off diagonal entries of B̂ are identical to those of B, so (2.5c) holds
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if i ̸= j and k ̸= ℓ. Similarly, since on-diagonal entries of B are independent from off-diagonal
entries, it holds that ⟨B̂ii, B̂kℓ⟩ = 0 for k ̸= ℓ, again consistent with (2.5c). For k = ℓ, note that

d⟨B̂ii, B̂ℓℓ⟩ = d
〈
Bii− 1

N

N∑
j=1

Bjj , Bℓℓ− 1

N

N∑
j=1

Bjj
〉
=

(
−δiℓ+

1

N
+

1

N
−N · 1

N2

)
dt =

(
−δiℓ+

1

N

)
dt,

where we used the independence of diagonal entries of B.

Remark 2.2. Note that the choice of this inner product (2.1) may differ among the literature by a
constant multiple. (2.4) will then differ by (the inverse of) the same constant. The r.h.s. of (2.5a)
– (2.5c) should then also be multiplied by the suitable constants.

3. Yang Mills SDE

Recall that for any function f ∈ C∞(G), the right-invariant derivative is given by d
dt |t=0f(e

tXQ).

Define the configuration space as the Lie group product Q = GE+
Λ , consisting of all maps Q : e ∈

E+
Λ 7→ Qe ∈ G. Let q = gE

+
Λ be the corresponding direct sum of g and note that q is the Lie algebra

of the Lie group Q. For any matrix-valued functions A,B on E+
Λ , we denote by AB the pointwise

product. Given X ∈ q, the exponential map t 7→ exp(tX) is defined by exp(tX)e
def
= etXe .

As above, the tangent space at Q ∈ Q consists of the products XQ with X ∈ q, and given two
such elements XQ and Y Q, their inner product is defined by

⟨XQ,Y Q⟩ =
∑
e∈E+

Λ

Tr(XeY
∗
e ).

Given any function f ∈ C∞(Q), the right-invariant derivative is given by d
dt |t=0f(exp(tX)Q). For

each Q ∈ Q, the differential ∇f(Q) is an element of the tangent space at Q which satisfies for each
X ∈ q

⟨∇f(Q), XQ⟩ = d

dt

∣∣∣
t=0

f(exp(tX)Q). (3.1)

Denote by B = (Be)e∈E+
Λ

and B = (Be)e∈E+
Λ

the Brownian motions on Q and q respectively.

These are independent on distinct edges, and for each edge e, Be and Be are related through (2.3).

Let S(Q)
def
= NβRe

∑
p∈P+

Λ
Tr(Qp). We consider the Langevin dynamic for the measure (1.1), which

is the following SDE on Q
dQ =

1

2
∇S(Q)dt+ dB . (3.2)

We now derive an explicit expression for ∇S. For a plaquette p = e1e2e3e4 ∈ P, we write p ≻ e1
to indicate that p is a plaquette that starts from edge e1. Note that for each edge e, there are
2(d− 1) plaquettes in P such that p ≻ e. For any Lie algebra g embedded into MN (C), it forms a
closed subspace of MN , and therefore MN has an orthogonal decomposition MN = g⊕ g⊥. Given
M ∈ MN , we denote by pM ∈ g the orthogonal projection onto g.

Lemma 3.1. It holds that

∇S(Q)e = Nβ
∑

p∈PΛ,p≻e

pQ∗
p · (Q∗

e)
−1 , (3.3)

where · is matrix multiplication.

Proof. To prove the claim, fixing an edge e ∈ E+
Λ , let X ∈ g and with a slight abuse of notation

we write X ∈ q to be the function which is X at e and zero elsewhere. Note that for every p̃ ∈ P+
Λ

that contains both the beginning point and the ending point of e, there is a unique way to obtain a
plaquette p ∈ PΛ such that p ≻ e by a cyclic permutation and possibly a reversal of the four edges.



6 HAO SHEN, SCOTT A. SMITH, AND RONGCHAN ZHU

One then has Tr(Qp̃) = Tr(Qp) (without reversal) or Tr(Qp̃) = Tr(Q−1
p ) = Tr(Q∗

p) (with reversal).
We have

d

dt

∣∣∣
t=0

ReTr(exp(tX)Qp) =
d

dt

∣∣∣
t=0

ReTr((exp(tX)Qp)
∗) = ReTr(XQp)

where we used (XQp)
∗ = (XQp)t. Therefore the derivative of S at Q in the tangent direction XQ

is equal to Nβ times∑
p∈PΛ,p≻e

ReTr(XQp) =
∑

p∈PΛ,p≻e

⟨X,Q∗
p⟩ =

∑
p∈PΛ,p≻e

⟨X,pQ∗
p⟩ =

∑
p∈PΛ,p≻e

ReTr(X∗pQ∗
p). (3.4)

Furthermore, note that

⟨∇S(Q)e, XQe⟩ = ReTr(∇S(Q)eQ
∗
eX

∗) = ReTr(X∗∇S(Q)eQ
∗
e) . (3.5)

To ensure that (3.4) and (3.5) agree, we have (3.3). □

For specific choice of Lie algebras, our SDE system reads

dQe =
1

2
∇S(Q)edt+

1

2
cgQedt+ dBeQe , (e ∈ E+

Λ ) (3.6)

where cg is as in (2.4) and

1

2
∇S(Q)e =


−1

4
Nβ

∑
p∈PΛ,p≻e

(Qp −Q∗
p)Qe , g ∈ {so(N), u(N)} ,

−1

4
Nβ

∑
p∈PΛ,p≻e

(
(Qp −Q∗

p)−
1

N
Tr(Qp −Q∗

p)IN

)
Qe , g ∈ su(N) .

(3.7)

While our measure (1.1) and the dynamic are both defined on the configuration space Q = GE+
Λ

(in particular the above SDE system is parametrized by e ∈ E+
Λ ), when we apply it to Wilson loops

later, we will also need to differentiate Qe−1 for e ∈ E+
Λ , which is just Q∗

e. So we give the conjugate
transpose of (3.6):

dQ∗
e =

1

2

(
∇S(Q)e

)∗
dt+

1

2
cgQ

∗
e +Q∗

edB
∗
e , (e ∈ E+

Λ ) . (3.8)

This system is well-posed and has (1.1) as invariant measure, as we show in the next two lemmas.

Lemma 3.2. For fixed N ∈ N, T > 0 and any initial data Q(0) = (Qe(0))e∈E+
Λ
∈ Q, there exists

a unique solution Q = (Qe)e∈E+
Λ
∈ C([0, T ];Q) to (3.6) a.s..

Proof. For fixed N and Λ, we can write (3.6) as the system for the entries of the matrices Qe,
which can be viewed as a finite dimensional SDE with locally Lipschitz coefficients. We introduce
a stopping time

τ := inf{t ⩾ 0 : ∥Qe(t)∥∞ > 2, for at least one e ∈ E+
Λ } ∧ T,

and we obtain local solutions Q = (Qe)e∈E+
Λ

with Qe ∈ C([0, τ ];MN ) for e ∈ E+
Λ , which satisfies

(3.6) before τ , by fixed point argument (see e.g. [LR15, Chapter 3]).

Since for e ∈ E+
Λ , ∇S(Q)e belongs to the tangent space of G at Qe, and the generator associated

with dBeQe+
cg
2 BeQe is given by 1

2 of Laplace-Beltrami operator on G (see (2.3)), exactly the same
argument as in [Lév17, Lemma 1.3] implies that Qe(t) ∈ G, ∀t ⩾ 0, and τ = T a.s.. □

Lemma 3.3. (1.1) is invariant under the SDE system (3.6).
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Proof. By standard calculation (cf. [Hsu02, Chapter 3]) the generator L for our SDE with F ∈
C∞(Q) is

LF =
1

2

∑
e∈E+

Λ

∆QeF +
∑
e∈E+

Λ

1

2
⟨∇S(Q)e,∇QeF ⟩. (3.9)

Here ∆Qe and ∇Qe are the Laplace-Beltrami operator and the gradient (w.r.t. the variable Qe) on
G endowed with the metric given in Sec 2. Using integration by parts w.r.t. the Haar measure, we
have for F,G ∈ C∞(Q)∫

(LF )GdµΛ,N,β =− 1

2

∑
e∈E+

Λ

∫
⟨∇QeF,∇S(Q)e⟩GdµΛ,N,β +

1

2

∑
e∈E+

Λ

∫
⟨∇QeF,∇S(Q)e⟩GdµΛ,N,β

− 1

2

∑
e∈E+

Λ

∫
⟨∇QeF,∇QeG⟩dµΛ,N,β (3.10)

=− 1

2

∑
e∈E+

Λ

∫
⟨∇QeF,∇QeG⟩dµΛ,N,β =

∫
(LG)FdµΛ,N,β,

where we exchange F and G in the last step. Hence, L is symmetric w.r.t. µΛ,N,β and the result
follows by L1 ≡ 0. □

Using Lemma 3.2, we can choose µΛ,N,β as an initial distribution and obtain a stationary solution
Q ∈ C([0, T ];Q). We will fix this stationary solution in the following proof.

Remark 3.4. Dynamics very similar with ours (3.6) seem to have appeared in physics and are
used for Monte Carlo simulations for lattice gauge theory, see e.g. [BKK+85, GL83].

4. Proof of the main theorem

The proof of Theorem 1.1 is based on the Itô formula applied to Ws according to the dynamics
(3.6). The master theorem for ϕ(s) is obtained by normalizing and taking expected value. The
nonlinear drift of the SDE yields the deformation and expansion terms, while the Itô correction
leads to the splitting, twisting and merger terms, in addition to a multiple of Ws, which combined
with cg part gives the left-hand side of the master loop equation (1.5).

We recall from [Cha19a, Sec. 2] and [Jaf16, Sec. 2] the following notation and definitions.

(O1) ×1
x,yl and ×2

x,yl denote the pair of loops obtained by positive splitting of l at x and y if l
contains the same edge e at x and y, or negative splitting if l contains e at location x and

e−1 at location y. For l = aebec (where a, b, c are paths and e is an edge), ×1
x,yl

def
= [aec] and

×2
x,yl

def
= [be]. For l = aebe−1c, ×1

x,yl
def
= [ac] and ×2

x,yl
def
= [b]. We say that a loop sequence s′

is obtained from splitting s provided that exactly two components of s′ arise from splitting a
single loop in s. The sets S+(s) and S−(s) consist of all loop sequences obtained from positive
or negative splitting of s, respectively.

(O2) ∝x,y l denotes the negative twisting if l contains an edge e at both x and y, or positive twisting

if l contains an edge e at location x and e−1 at location y. For l = aebec, ∝x,y l
def
= [ab−1c].

For l = aebe−1c, ∝x,y l
def
= [aeb−1e−1c]. We say that a loop sequence s′ is obtained from

twisting s provided that exactly one component of s′ arises from twisting one loop in s. The
sets T+(s) and T−(s) consist of all loop sequences obtained from positive or negative twisting
of s, respectively.
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(O3) l ⊕x,y l′ and l ⊖x,y l′ are positive and negative mergers of l and l′ at locations x, y. For
l = aeb and l′ = ced (where a, b, c, d are paths and e is an edge), l ⊕x,y l′ = [aedceb],
l ⊖x,y l

′ = [ac−1d−1b]. For l = aeb and l′ = ce−1d, l ⊕x,y l
′ = [aec−1d−1eb], l ⊖x,y l

′ = [adcb]
(here x and y are the unique location in l and l′, respectively, where e or e−1 occurs and e is
the edge occurring at location x in l). We say that a loop sequence s′ is obtained from merging
s provided that exactly one component of s′ arises from merging two loops in s. The sets
M+(s) and M−(s) denote all loop sequences obtained from either positive mergers or negative
mergers of s. Furthermore, we define two more sets M+

U (s) ⊂ M+(s) and M−
U (s) ⊂ M−(s);

the first consists of positive mergers resulting from an edge e appearing in both of the two
merged loops; the second consists of negative mergers where an edge e occurs in one loop and
e−1 in the other.

(O4) l⊕x p and l⊖x p are deformations obtained by merging l and p at locations x and y (here y is
the unique location in p where e or e−1 occurs and e is the edge occurring at location x in l ).
We say that a loop sequence s′ is obtained from deformations of s provided that exactly one
component of s′ arises from deformation of one loop in s. The sets D+(s) and D−(s) consist
of all loop sequences obtained from positive or negative deformations of s, respectively.

(O5) A positive expansion of l at location x by a plaquette p passing through e−1 replaces l with
the pair of loops (l, p). A negative expansion of l at location x by a plaquette p passing
through e replaces l with the pair of loops (l, p). The sets E+(s) and E−(s) consist of all loop
sequences obtained from positive or negative expansions of s, respectively.

In preparation for an application of the Itô formula, we recall a convenient matrix analogue of
Itô differentials. To treat each of the three groups G in a unified way, we introduce parameters λ,
ν, and µ as follows. For G ∈ {SO(N), U(N), SU(N)}, we rewrite (2.5) as

dBijdBkℓ def
= d⟨Bij , Bkℓ⟩ =

(
λδiℓδjk + νδijδkℓ + µδikδjℓ

)
dt , (4.1)

where λ, µ, ν depend on G and the choice of the inner product. Since we will apply Itô formula to
products of matrices, we will use a matrix variant of the standard dBdB notation for formulating
Itô’s rule. Given a matrix M , we use the shorthand dBM or dBMdB, which should always be
understood by writing it in components as a matrix product and in the latter case applying (2.5).
This leads us to two useful identities which will be crucial in the proof of Theorem 1.1.

Given adapted matrix-valued processes M,N , we have the following two identities

dBMdB =
(
λTrM + νM + µM t

)
dt. (4.2)

Tr(dBM)Tr(dBN) =
(
λTr(MN) + νTr(M)Tr(N) + µTr(MN t)

)
dt. (4.3)

The first follows from (4.1) by fixing components i, ℓ and writing

(dBMdB)iℓ =
∑
j,k

dBijM jkdBkℓ =
∑
j,k

M jk
(
λδiℓδjk + νδijδkℓ + µδikδjℓ

)
dt ,

=
(
λδiℓTrM + νM iℓ + µM ℓi

)
dt.

The second follows in a similar way, since

Tr(dBM)Tr(dBN) =
∑
i,j,k,ℓ

dBijM jidBkℓN ℓk =
∑
i,j,k,ℓ

M jiN ℓk
(
λδiℓδjk + νδijδkℓ + µδikδjℓ

)
dt

=
(
λTr(MN) + νTr(M)Tr(N) + µTr(MN t)

)
dt .

We remark that the identities (4.2)-(4.3) are not new, and are sometimes called the “magic formu-
las”, see e.g. [DL22, Lemma 7.1] for more background and literature, or [Sen08, Lemma 4.1].

We now turn to the proof of the main theorem.
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Proof of Theorem 1.1. Let s be a string with minimal representation (l1, . . . , lm), then we may view
the quantity ϕ(s) as the mean of the stationary Itô process N−mΠm

i=1Wli . For each constituent
loop l ∈ {l1, . . . , lm}, there exist edges (depending on l) labelled e1, . . . , en ∈ E such that Wl =
Tr(Qe1 · · ·Qen). Applying Itô’s product rule with (3.6) and (3.8) yields

dWl =
(cg
2
|l|Wl +Dl + Il

)
dt+ dMl, (4.4)

where we define

Dl
def
=

n∑
x=1

1

2
Tr

( x−1∏
i=1

Qei

[
∇S(Q)ex1ex∈E+ + (∇S(Q)e−1

x
)∗1e−1

x ∈E+

] n∏
i=x+1

Qei

)
, (4.5)

dMl
def
=

n∑
x=1

Tr
( x−1∏

i=1

Qei

[
dBexQex1ex∈E+ +QexdB

∗
e−1
x
1e−1

x ∈E+

] n∏
i=x+1

Qei

)
,

Ildt
def
=

∑
x<y

Tr
(
Qa dQexQb dQeyQc

)
, (4.6)

and recall that ex ∈ E− ⇔ e−1
x ∈ E+ (with the usual convention used above and below that an

empty product of matrices is IN ). In the definition of Il we use the shorthand notation

Qa
def
=

x−1∏
i=1

Qei , Qb
def
=

y−1∏
i=x+1

Qei , Qc
def
=

n∏
i=y+1

Qei

and omit the dependence of these quantities on x and y.

Below, in Step 1 we write Il in terms of the splitting and twisting operations, leading to the
identity (4.9). At this stage we have the dynamic for each fixed loop in s and now want to analyze
Ws, which is itself a product of Itô processes, so we apply Itô’s product rule again and obtain

dWs = d
(
Πm

i=1Wli

)
=

m∑
i=1

dWliΠj ̸=iWlj + Isdt

=
cg
2
|s|Wsdt+

m∑
i=1

(
Ili +Dli

)
Πj ̸=iWljdt+ Isdt+ dMs, (4.7)

where Ms is a martingale and Is denotes the Itô correction defined by

Isdt
def
=

∑
i<j

dWlidWljΠk ̸=i,jWlk ,

which is calculated in Step 2 in terms of the merger operation, leading to the identity (4.12). In
Step 3, we express Dl in terms of the deformation and expansion operations using the expression
(3.7) for the drift ∇S, leading to the identity (4.14). Next, we normalize Ws by dividing (4.7) by
Nm, taking expectation on both sides, and using stationarity to obtain

−cg
2
|s|ϕ(s) = 1

Nm
E
[ m∑

i=1

(
Ili +Dli

)
Πj ̸=iWlj + Is

]
. (4.8)

In the final step, we consider each particular Lie group, specifying cg according to (2.4), the pa-
rameters λ, µ, ν as in (2.5), and use the output of Steps 1-3 to show that the RHS of (4.8) can be
closed in terms of ϕ, leading to the master equations (1.5)-(1.7).

Step 1. In this step we analyze an individual loop Wl and argue that

Il = −ν

2
(|l| − ℓ(l))Wl −

λ

2

∑
s′∈S−(l)

Ws′ +
λ

2

∑
s′∈S+(l)

Ws′ +
µ

2

∑
l′∈T−(l)

Wl′ −
µ

2

∑
l′∈T+(l)

Wl′ (4.9)
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where ℓ(l) is as in (1.4) (with m = 1 there). To prove the claim, we apply (3.6)+(3.8) to (4.6).
Since (Be)e∈E+

Λ
are independent, the contribution to (4.6) is restricted to x, y with the property

that ey = ex or ey = e−1
x . Since the dynamics in (4.4) also depends on the orientation of the edge,

we sub-divide each case into two further cases ex ∈ E+ and e−1
x ∈ E+ to obtain the identity

Ildt =
∑
x<y

(
J
(1)
l 1ey=ex∈E+ + J

(2)
l 1e−1

y =e−1
x ∈E+ + J

(3)
l 1e−1

y =ex∈E+ + J
(4)
l 1ey=e−1

x ∈E+

)
, (4.10)

where J
(i)
l , i = 1, 2, 3, 4, are defined by 2

J
(1)
l dt

def
= Tr

(
Qa

(
dBexQex

)
Qb

(
dBeyQey

)
Qc

)
,

J
(2)
l dt

def
= Tr

(
Qa

(
QexdB

∗
e−1
x

)
Qb

(
QeydB

∗
e−1
y

)
Qc

)
,

J
(3)
l dt

def
= Tr

(
Qa

(
dBexQex

)
Qb

(
QeydB

∗
e−1
y

)
Qc

)
,

J
(4)
l dt

def
= Tr

(
Qa

(
QexdB

∗
e−1
x

)
Qb

(
dBeyQey

)
Qc

)
.

(4.11)

Recall that B∗
e = −Be. To analyze each term, we will apply (4.2) with a suitable choice of M

and B, while taking into account the relation between ex and ey imposed by the indicator function

according to (4.10). For J
(1)
l and J

(2)
l , the role of M is played by QexQb and QbQey respectively,

while the role of B is played by Bex and B∗
e−1
x

= −Be−1
x

leading to

J
(1)
l = J

(2)
l = λTr

(
QexQb

)
Tr

(
QaQexQc

)
+ νTr

(
QaQexQbQexQc

)
+ µTr

(
QaQb−1Qc

)
,

where we note that µ ̸= 0 only if G = SO(N) in which case Q∗ = Qt. In a similar way, we obtain

J
(3)
l = J

(4)
l = −λTr

(
Qb

)
Tr

(
QaQc

)
− νTr

(
QaQexQbQe−1

x
Qc

)
− µTr

(
QaQexQb−1Qe−1

x
Qc

)
,

where we used cyclic invariance of the trace and QexQey = QexQ
∗
ex = IN .

From the definition of splitting terms in (O1), the terms above with a coefficient λ contribute
the splitting terms in (4.9). Indeed, recall that after choosing a closed path in l and writing the
loop as l = e1 · · · en, the sets S+(l) and S−(l) consist of all loop sequences s′ = (×1

x,yl,×2
x,yl) where

the locations x ̸= y have the property that ey = ex or ey = e−1
x respectively, according to whether

the splitting is positive or negative. Note that in the calculation above x < y, however if we let
s′′ := (×1

y,xl,×2
y,xl), then Ws′ = Ws′′ . Here, we recall from the discussion in [Cha19a, Sec 2.2]

(below definitions of S−,S+ therein) that if a loop l has a splitting at x and y, then it also has
a splitting at y and x, and they are reverse of each other, and should be counted as two distinct
splittings of l. This gives the coefficient λ/2 before the splitting terms. The same applies to twisting
and we will keep this in mind below.

The sets T+(l) and T−(l) consist of all loops of the form ∝x,y l where the locations x ̸= y have
the property that ey = ex or ey = e−1

x respectively, according to whether the twisting is positive or
negative. Hence, from the definition of the twisting terms (O2), the terms with a coefficient µ lead
to the final two terms in (4.9).

Finally, we turn to the terms with coefficient ν, and begin by introducing the following notation:
for any edge e ∈ E+ we let A(e) be the set of locations in l where e occurs and B(e) be the set of
locations in l where e−1 occurs. The terms with coefficient ν are given by

νWl

∑
x<y

(
1ex=ey − 1ex=e−1

y

)
2When e ∈ E−, (3.8) yields dQe = dQ∗

e−1 = (· · · ) +Q∗
e−1dB

∗
e−1 = (· · · ) +QedB

∗
e−1 where (· · · ) is the drift.
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= νWl

∑
x<y

∑
e∈E+

(
1ex=e1ey=e + 1ex=e−11ey=e−1 − 1ex=e1ey=e−1 − 1ex=e−11ey=e

)
= νWl

∑
e∈E+

(1
2
|A(e)|(|A(e)| − 1) +

1

2
|B(e)|(|B(e)| − 1)− |A(e)||B(e)|

)
= −ν

2
Wl

∑
e∈E+

(
|A(e)|+ |B(e)| − (|A(e)| − |B(e)|)2

)
= −ν

2
Wl(|l| − ℓ(l)),

with ℓ(l) =
∑

e∈E+(|A(e)|− |B(e)|)2, which is precisely the first term in (4.9), completing the proof
of the claim.

Step 2. In this step we consider the m constituent Wilson loops Wli in Ws and argue that

Is =
λ

2

∑
s′∈M+

U (s)

Ws′ −
µ

2

∑
s′∈M+(s)\M+

U (s)

Ws′ −
λ

2

∑
s′∈M−

U (s)

Ws′ +
µ

2

∑
s′∈M−(s)\M−

U (s)

Ws′

+ ν
∑
i<j

∑
e∈E+

ti(e)tj(e)Ws .

(4.12)

To analyze Is, we start by fixing two loops li and lj with i ̸= j, and analyze dWlidWlj . First we
choose a path to represent each loop and write them as

li = Π
|li|
k=1e

i
k = aeixb, lj = Π

|lj |
k=1e

j
k = cejyd,

where we use a shorthand notation

a
def
= Πx−1

k=1e
i
k, b

def
= Π

|li|
k=x+1e

i
k, c

def
= Πy−1

k=1e
j
k, d = Π

|lj |
k=y+1e

j
k.

Using again the independence of edges, taking into account (4.4) we obtain

dWlidWlj =

|li|∑
x=1

|lj |∑
y=1

(1
ejy=eix

+ 1
ejy=(eix)

−1)Tr(QadQeix
Qb)Tr(QcdQejy

Qd).

To ease the notation below, we will drop the superscript from the edge and simply write ex = eix
and ey = ejy. Apply (3.6)+(3.8) to the r.h.s. of the above equation. Using B∗

e = −Be and cyclic
invariance of the trace, we may re-write the r.h.s. above as

|li|∑
x=1

|lj |∑
y=1

(
1ey=ex∈E+J (1)

s + 1e−1
y =e−1

x ∈E+J
(2)
s + 1e−1

y =ex∈E+J
(3)
s + 1ey=e−1

x ∈E+J
(4)
s

)
(4.13)

where J
(i)
s are defined by

J (1)
s dt

def
= Tr

(
dBexQexQbQa

)
Tr(dBeyQeyQdQc

)
,

J (2)
s dt

def
= Tr

(
dBe−1

x
QbQaQex

)
Tr

(
dBe−1

y
QdQcQey

)
,

J (3)
s dt

def
= −Tr

(
dBexQexQbQa

)
Tr

(
dBe−1

y
QdQcQey

)
,

J (4)
s dt

def
= −Tr

(
dBe−1

x
QbQaQex

)
Tr

(
dBeyQeyQdQc

)
.

We calculate these terms similarly as in Step 1 using cyclic invariance of the trace, QexQ
∗
ex = IN ,

the fact that µ ̸= 0 only if G = SO(N) in which case Q∗
ex = Qt

ex , and taking into account the
relation between ex and ey imposed by the indicator functions.
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Applying (4.3) with M = QexQbQa and N = QeyQdQc for J
(1)
s and with M = QbQaQex and

N = QdQcQey for J
(2)
s , under the assumption ex = ey we obtain

J (1)
s = J (2)

s = λTr
(
QaQexQdQcQexQb

)
+ νTr

(
Qli

)
Tr

(
Qlj

)
+ µTr

(
QaQc−1Qd−1Qb

)
.

Similarly, applying (4.3) with M = QexQbQa, N = QdQcQey and M = QbQaQex , N = QeyQdQc,

under the assumption ex = e−1
y we obtain

J (3)
s = J (4)

s = −λTr
(
QaQdQcQb

)
− νTr

(
Qli

)
Tr

(
Qlj

)
− µTr

(
QaQexQc−1Qd−1QexQb

)
.

We first note that for s = (l1, . . . , lm), the set M+(s) is the collection of s′ which can be obtained
from s by merging some li and lj with i ̸= j. If li and lj can be merged at locations x and y
respectively, then s′, s′′ defined by s′ = (l1, . . . , li−1, li⊕x,y lj , li, . . . , lm) and s′′ = (l1, . . . , lj−1, li⊕y,x

lj , lj , . . . , lm) both belong to M+(s). Since i < j we need to account for both contributions, leading
to the factors of 1/2 in (4.12). An analogous characterization holds for M+

U (s),M
−(s), and M−

U (s).

To find the contribution of the terms with coefficient µ to Is, we recall the definition of mergers
terms in (O3) and multiply by

∏
k ̸=i,j Wlj and sum over i < j to obtain

µ
∑
i<j

|li|∑
x=1

|lj |∑
y=1

(
1ey=exWli⊖x,ylj − 1ey=e−1

x
Wli⊕x,ylj

) ∏
k ̸=i,j

Wlj

=
µ

2

∑
s′∈M−(s)\M−

U (s)

Ws′ −
µ

2

∑
s′∈M+(s)\M+

U (s)

Ws′ .

Similarly, collecting the terms with coefficient λ, multiplying by
∏

k ̸=i,j Wlj and summing over i < j
yields

λ
∑
i<j

|li|∑
x=1

|lj |∑
y=1

(
1ey=exWli⊕x,ylj − 1ey=e−1

x
Wli⊖x,ylj

) ∏
k ̸=i,j

Wlj =
λ

2

∑
s′∈M+

U (s)

Ws′ −
λ

2

∑
s′∈M−

U (s)

Ws′ .

Finally, we turn to the terms with coefficient ν, and begin by introducing the following notation:
for any edge e ∈ E+ we let Ar(e) be the set of locations in lr where e occurs and Br(e) be the set
of locations in lr where e−1 occurs. The terms with coefficient ν are given by

∑
x,y of

νWliWlj

(
1ex=ey − 1ex=e−1

y

)
= νWliWlj

∑
e∈E+

(
1ex=e1ey=e + 1ex=e−11ey=e−1 − 1ex=e1ey=e−1 − 1ex=e−11ey=e

)
.

Summing over x, y we obtain

νWliWlj

∑
e∈E+

(
|Ai(e)||Aj(e)|+ |Bi(e)||Bj(e)| − |Ai(e)||Bj(e)| − |Bi(e)||Aj(e)|

)
= νWliWlj

∑
e∈E+

(
(|Ai(e)| − |Bi(e)|)(|Aj(e)| − |Bj(e)|)

)
= νWliWlj

∑
e∈E+

ti(e)tj(e),

with ti(e) = |Ai(e)| − |Bi(e)|. Substituting the ν part into Is, we get the last term in (4.12).

Step 3. In this step, we analyze the gradient terms Dl and claim that

Dl =

{
−1

4Nβ
∑

s′∈D+(l)Ws′ + 1
4Nβ

∑
s′∈D−(l)Ws′ for G ∈ {SO(N), U(N)}

−1
4Nβ

∑
s′∈D+(l)∪E+(l)Ws′ +

1
4Nβ

∑
s′∈D−(l)∪E−(l)Ws′ for G = SU(N)

(4.14)
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Recalling 1
2∇S(Q)e given in (3.7), we first claim that for each of our Lie groups, and for every

e ∈ E−,
1

2
(∇S(Q))∗e−1 =

1

2
∇S(Q)e (4.15)

where the r.h.s. is given by the formula (3.7). Indeed, to calculate the l.h.s. of (4.15), note that∑
p∈PΛ,p≻e−1

(
(Qp −Q∗

p)Qe−1

)∗
=

∑
p∈PΛ,p≻e−1

Qe(Q
∗
p −Qp) =

∑
p̄∈PΛ,p̄≻e

(Qp̄ −Q∗
p̄)Qe

where in the last step we made a change of variable p = e−1e2e3e4 7→ p̄ = e e−1
4 e−1

3 e−1
2 . This

establishes (4.15) in case where G ∈ {SO(N), U(N)}. For the SU(N) case we need to analyze the
additional trace term, so noting that Tr(Qp −Q∗

p) is purely imaginary,∑
p∈PΛ,p≻e−1

(
Tr(Qp −Q∗

p)Qe−1

)∗
= −

∑
p∈PΛ,p≻e−1

Tr(Qp −Q∗
p)Qe

= −
∑

p̄∈PΛ,p̄≻e

Tr(Q−1
p̄ −Qp̄)Qe =

∑
p̄∈PΛ,p̄≻e

Tr(Qp̄ −Q∗
p̄)Qe

so (4.15) holds. In light of (4.15), the constraint in (4.5) on the orientation of the edge may be
removed, and the expression for Dl simplifies to

Dl =
1

2

n∑
x=1

Tr
( x−1∏

i=1

Qei∇S(Q)ex

n∏
i=x+1

Qei

)
.

In light of (3.7), in the case G ∈ {SO(N), U(N)}, we find that Dl is given by

−1

4
Nβ

n∑
x=1

∑
p∈PΛ,p≻ex

Tr
( x−1∏

i=1

Qei

(
Qp −Q−1

p

)
Qex

n∏
i=x+1

Qei

)
= −1

4
Nβ

n∑
x=1

∑
p≻ex

(
Wl⊕xp −Wl⊖xp

)
.

which yields the first case in (4.14) taking into account that each s′ ∈ D+(l) is of the form l ⊕x p
for a plaquette p which contains an edge ex and analogously for s′ ∈ D−(l). Note that here and
below, in the cycle p we choose the path where ex is the first edge.

For the SU(N) case, the quantity Dl is given by adding to the quantity above the term

β

4

n∑
x=1

∑
p∈PΛ,p≻ex

Tr
( n∏

i=1

Qei

)
Tr

(
Qp −Q−1

p

)
=

β

4

n∑
x=1

∑
p∈PΛ,p≻ex

(
WlWp −WlWp−1

)
, (4.16)

which yields the second case in (4.14) taking into account that each s′ ∈ E−(l) is of the form
s′ = (l, p) for a plaquette p which contains an edge ex and analogously for s′ ∈ E+(l). Here we use
Wp−1 = Wp̃ with p̃ ≻ e−1

x .

Step 4. In this final step, we consider each group G ∈ {SO(N), U(N), SU(N)} and use Steps
1-3 to conclude the proof of the master equations (1.5)-(1.7). To this end, we use the identity (4.9)
for each constituent loop li and insert it, together with (4.12) and (4.14) into (4.8). We note in
advance that

N−m
m∑
i=1

∑
s′∈O(li)

Ws′
∏
j ̸=i

Wlj = N−m
∑

s′∈O(s)

Ws′ (4.17)

for each of the operations O ∈ {S±,T±,D±,E±}. Depending on the operation O, the quantity Ws′

on the r.h.s. of (4.17) should be normalized in one of three possible ways according to the following:

s′ ∈ {M+(s),M−(s)} → EWs′

Nm−1
= ϕ(s′). (4.18a)
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s′ ∈ {D+(s),D−(s),T+(s),T−(s)} → EWs′

Nm
= ϕ(s′). (4.18b)

s′ ∈ {S+(s), S−(s),E+(s),E−(s)} → EWs′

Nm+1
= ϕ(s′). (4.18c)

This follows since we have m − 1 loops in Ws′ for s′ ∈ {M+(s),M−(s)}, m loops in Ws′ for
s′ ∈ {D+(s),D−(s), ,T+(s),T−(s)}, and m + 1 loops in Ws′ for s

′ ∈ {S+(s), S−(s)}. Also we have
an extra Wp for the expansion term, which requires an extra 1

N in Ws′ for s
′ ∈ {E+(s),E−(s)}.

We now turn to each of the groups and simplify the r.h.s. of (4.8) in accordance with the
observations above.

Let G = SO(N). By (2.5a), we have λ = −1
2 , µ = 1

2 , ν = 0. Since cso(N) = −1
2(N − 1) from

(2.4), the identity (4.8) takes the form

(N − 1)|s|ϕ(s) = 4

Nm
E
[ m∑

i=1

(Dli + Ili)Πj ̸=iWlj + Is
]
.

Substituting (4.14) for Dli , (4.9) for Ili and (4.12) for Is, the r.h.s. is equal to

−Nβ
∑

s′∈D+(s)

E[Ws′ ]

Nm
+Nβ

∑
s′∈D−(s)

E[Ws′ ]

Nm
−N

∑
s′∈S+(s)

E[Ws′ ]

Nm+1
+N

∑
s′∈S−(s)

E[Ws′ ]

Nm+1

−
∑

s′∈T+(s)

E[Ws′ ]

Nm
+

∑
s′∈T−(s)

E[Ws′ ]

Nm
− 1

N

∑
s′∈M+(s)

E[Ws′ ]

Nm−1
+

1

N

∑
s′∈M−(s)

E[Ws′ ]

Nm−1

where we used (4.17). Identifying the summands with ϕ by (4.18) completes the proof of (1.5).

Let G = U(N). By (2.5b), we have λ = −1, µ = ν = 0. Since cu(N) = −N , the identity (4.8)
takes the form

N |s|ϕ(s) = 2

Nm
E
[ m∑

i=1

(Dli + Ili)Πj ̸=iWlj + Is
]
.

Again substituting (4.14)+(4.9)+(4.12) and using (4.17), the r.h.s. is equal to

− Nβ

2

∑
s′∈D+(s)

E[Ws′ ]

Nm
+

Nβ

2

∑
s′∈D−(s)

E[Ws′ ]

Nm

− 1

N

∑
s′∈M+

U (s)

E[Ws′ ]

Nm−1
+

1

N

∑
s′∈M−

U (s)

E[Ws′ ]

Nm−1
−N

∑
s′∈S+(s)

E[Ws′ ]

Nm+1
+N

∑
s′∈S−(s)

E[Ws′ ]

Nm+1
.

(4.19)

Identifying the summands with ϕ by (4.18) completes the proof of (1.7).

Let G = SU(N). By (2.5c), we have λ = −1, µ = 0, ν = 1
N . Since csu(N) = −N + 1

N by (2.4),
the identity (4.8) takes the form

(N − 1

N
)|s|ϕ(s) = 2

Nm
E
[ m∑

i=1

(Dli + Ili)Πj ̸=iWlj + Is
]
.

We again apply (4.14)+(4.9)+(4.12) using (4.17), and note that the only differences from the U(N)
case are the ν-terms and the expansion terms. The r.h.s. is then equal to

(4.19) − Nβ

2

∑
s′∈E+(s)

E[Ws′ ]

Nm+1
+

Nβ

2

∑
s′∈E−(s)

E[Ws′ ]

Nm+1

− 1

N
|s|E[Ws]

Nm
+

1

N

∑
e∈E+

( m∑
i=1

ti(e)
2 + 2

∑
i<j

ti(e)tj(e)
)E[Ws]

Nm

(4.20)
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where we used
∑m

i=1 |li| = |s| and ℓ(li) =
∑

e∈E+ ti(e)
2. By (1.4), the second line of (4.20) is equal

to − 1
N (|s| − ℓ(s))ϕ(s). This implies (1.6) and completes the proof. □
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