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Abstract. We establish existence of infinitely many stationary solutions as well as ergodic sta-

tionary solutions to the three dimensional Navier–Stokes and Euler equations in the deterministic
as well as stochastic setting, driven by an additive noise. The solutions belong to the regularity

class C(R;Hϑ) ∩ Cϑ(R;L2) for some ϑ > 0 and satisfy the equations in an analytically weak
sense. Moreover, we are able to make conclusions regarding the vanishing viscosity limit and the

anomalous dissipation. The result is based on a new stochastic version of the convex integration

method which provides uniform moment bounds locally in the aforementioned function spaces.
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1. Introduction

1.1. Motivation. Hydrodynamic turbulence is omnipresent in engineering applications and nature.
And yet developing a rigorous mathematical understanding remains one of the big challenges in
contemporary fluid dynamics research. Up to date, the results providing reliable predictions are
very limited. On the physical side, the understanding has been driven by well-accepted theoretical
hypotheses such as those of the celebrated Kolmogorov’s theory [Kol41a, Kol41b, Kol41c], see also
[Fri95]. These hypotheses have been confirmed to a large extent by experiments. However, their
rigorous verification from the basic physical principles and in particular from the incompressible
Navier–Stokes equations remains an outstanding open problem. In what follows, we briefly recall
some of the key aspects of the physical theories of turbulence, namely those that mainly motivated
our investigation, while leaving out many others. Due to the complexity of the subject, we encourage
the reader to discuss e.g. [Fri95, MY13] for thorough expositions.

The Navier–Stokes equations describe the time evolution of the velocity u : [0,∞)×D → R3 of
a viscous fluid confined in a domain D ⊂ R3. They read as

∂tu+ div(u⊗ u) +∇P = ν∆u+ f,

divu = 0,
(1.1)

where P : [0,∞) × D → R denotes the associated pressure, ν > 0 the kinematic viscosity of the
fluid and f : [0,∞) × D → R3 is a given external force. The equations are further supplemented
by initial and boundary conditions. Particularly relevant for the study of turbulence is the regime
of high Reynolds number which corresponds to the vanishing viscosity limit ν → 0. On the formal
level, the Navier–Stokes equations then converge to the Euler equations

∂tu+ div(u⊗ u) +∇P = f,

divu = 0,
(1.2)

which represent an idealized model for the highly turbulent limit regime. Assumptions allowing for
a rigorous passage to the limit ν → 0 are predicted by the physical theories of turbulence. However,
it was shown in [CG12] and also [CV18] that already weaker assumptions allow for the vanishing
viscosity limit, namely, proving convergence of the Navier–Stokes to Euler equations.

From experiments it became clear that exact realizations of turbulent trajectories are not suited
for predictions due to high sensitivity to input data such as initial and boundary conditions. On the
other hand, and rather surprisingly, statistical properties are universal and well-reproducible. Thus,
a certain probabilistic description seems indispensable. Furthermore, one of the basic assumptions in
turbulence theory is the so-called ergodic hypothesis taken for granted by physicists and engineers.
It assures that time averages along trajectories coincide with ensemble averages taken with respect to
some probability measure. This measure is then invariant, i.e., preserved by the flow. Accordingly,
statistically stationary solutions (i.e. solutions whose probability law does not change with time)
play a distinguished role in the modeling of turbulence and it is of essential interest to characterize
these solutions as well as their attraction properties.

As the authors of the survey [DLS21] explain, another argument in favor of a probabilistic descrip-
tion of turbulence is the observed lack of uniqueness, which was recently established for the Euler
as well as Navier–Stokes equation in the deterministic and stochastic setting, see e.g. [BCV18,
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BMS20, BV19b, CL19, CL20, DLS09, DLS10, DLS13, Luo19, HZZ19, HZZ22a, HZZ21, HZZ23].
More precisely, they say: “It is worth emphasizing that the non-uniqueness in such examples is
not a mathematical pathology, but seems to be a generic phenomenon, strongly suggesting that a
probability measure on ensembles with restored symmetries may exist even without having to resort
to stochastic modifications of the basic continuum equations.”

However, it may be possible to profit from the presence of stochastic perturbations of the equa-
tions and some properties of the Navier–Stokes system have indeed been shown to improve under
the presence of a stochastic noise. Namely, the force f is considered to be a Gaussian noise white
in time and colored in space, which models a large scale stirring driving turbulent fluids. In the
deterministic setting, a selection of solutions depending continuously on the initial condition has
not been obtained. But the probabilistic counterpart, i.e. the Feller property and even the strong
Feller property which corresponds to a smoothing with respect to the initial condition, was es-
tablished for a sufficiently non-degenerate noise in [DPD03] and [FR08]. This led in particular to
uniqueness of the invariant measure associated to the constructed selection of a Markov semigroup
in [DPD03, FR08].

Another fundamental principle of Kolmogorov’s K41 theory, also called the zeroth law of turbu-
lence, is the anomalous dissipation. Denoting uν a statistically stationary solution to the Navier–
Stokes equations (1.1) with viscosity ν, it postulates that1

lim
ν→0

εν := lim
ν→0

νE‖∇uν‖2L2 = ε > 0. (1.3)

The quantity on the left hand side is the mean energy dissipation of uν and the expectation is
taken with respect to the underlying randomness. Were uν converging to a sufficiently regular
solution to the Euler equations (1.2) with f = 0, the anomalous dissipation would not take place
as the Euler equations are energy conserving in that case. This is related to Onsager’s conjecture
[Ons49] which attracted a lot of attention lately with a number of groundbreaking results, see
[DLS09, DLS10, DLS13, DS17, BDLIS15, Ise18, BDLSV19].

Finally, let us mention the Kolmogorov two-third’s law, which predicts the behavior of the second
order structure function as

S2(h) := E‖uν(·+ h)− uν(·)‖2L2 ' (εν |h|)2/3,

where εν is the dissipation rate from (1.3) and |h| belongs to the inertial range [ην , L] with ην
the dissipation and L the integral scale of turbulence. Moreover, if the statistics are translation
invariant, the energy spectrum obeys

E(k) := |k|2E|ûν(k)|2 ' ε2/3ν k−5/3,

where ûν(k), k ∈ Z3, denotes the Fourier transform of ûν . This is the so-called Kolmogorov-
Obhukhov 5/3-power spectrum, which is related to H1/3-regularity of solutions.

To summarize the above discussion, it is desired to investigate the validity of the following claims.

(i) Existence and (non)uniqueness of ergodic stationary solutions uν to the Navier–Stokes e-
quations (1.1).

(ii) Relative compactness of the family of stationary solutions uν , ν > 0, and the convergence
towards a statistically stationary solution to the Euler equations (1.2).

(iii) Anomalous dissipation along the vanishing viscosity limit in the sense of (1.3).
(iv) Existence and (non)uniqueness of ergodic stationary solutions to the Euler equations (1.2).

1Here and in various expressions in the sequel, the expected value does not depend on time due to stationarity.
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Up to now, these questions could only be answered in several simplified settings, such as certain shell
models of turbulence [FGHV16] or passive scalar models of turbulence [BBPS19]. However, for the
actual models of interest, i.e. the three dimensional stochastic Navier–Stokes and Euler equations,
the available results are very limited. Mere existence of stationary solutions to the stochastic Navier–
Stokes equations is classical and was proved in [FG95]. The only available result in the direction
of uniqueness of the invariant measure in this context is the unique ergodicity from [DPD03] and
[FR08]. The uniqueness here only relates to the Markov process constructed therein, but as shown in
[HZZ23], there are other Markov processes associated to the same equation with possibly different
invariant measures. Due to the lack of dissipation, even the existence of statistically stationary
solutions to the three dimensional stochastic Euler equations is fully open and nothing is known
about the vanishing viscosity limit in the framework of stationary solutions in three dimensions.

We also mention that nonunique ergodic measures in the Lorenz system were constructed when
adding a noise in the last component in [CH21]. It is also asked in [CH21, Remark 1.3] whether a
bifurcation of invariant measures appears at high Reynolds number for the Navier–Stokes system.

Recently the anomalous dissipation and the property (1.3) were studied for the deterministic
forced 3D Navier–Stokes equations and the advection–diffusion equation in [BD22, CCS22].

1.2. Main results. Our aim is to provide some answers to the above problems (i), (ii), (iii), (iv)
in the physically relevant context of the stochastic Navier–Stokes and Euler equations on T3 driven
by an additive stochastic noise. The Navier–Stokes equations read as

du+ div(u⊗ u) dt+∇P dt = ν∆udt+ dB,

divu = 0,
(1.4)

whereas the Euler equations are

du+ div(u⊗ u) dt+∇P dt = dB,

divu = 0.
(1.5)

In the above, P is the associated pressure, ν > 0 is the viscosity, B is a GG∗-Wiener process on some
probability space (Ω,F ,P) and G is a Hilbert–Schmidt operator from U to L2

σ for some Hilbert
space U and L2

σ the subspace of L2 containing mean and divergence free functions.

As the main tool within this study, we apply a stochastic version of the convex integration method.
Convex integration is an iterative procedure which has already permitted to establish a number of
breakthrough results concerning the Navier–Stokes and Euler equations in the deterministic setting,
see e.g. [BDLSV19, BCV18, BDLIS15, BMS20, BV19b, CL19, CL20, DLS09, DLS10, DLS13, DS17,
Ise18, Luo19]. Unlike our previous works using convex integration for the Navier–Stokes and Euler
equations in the stochastic setting [HZZ19, HZZ22a, HZZ23, HZZ21], we are now inspired by [CDZ22]
and overcome the limitation originating from stopping times, previously used to control the noise
terms in the iteration. More precisely, we no longer work with stopping times and instead we include
expectations in the iterative estimates.

While this is a very natural idea to avoid the stopping times, making it possible is not obvious
at all. Namely, it requires a very careful analysis of each bound, since due to the quadratic non-
linearity, the estimates become superlinear. Accordingly, it is necessary to estimate all moments
simultaneously and when aiming for a finite rth moment, the blow up of all mth moments for m > r
must be controlled. The main reason why this strategy is possible is that any fixed mth moment
of the approximate velocity and the error at step q only depends on m and the parameters up to
the step q of the iteration. Additionally, it is possible to choose the parameters at the level q+ 1 to
guarantee smallness of the velocity perturbations and the error at step q + 1.
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Our key result is then the construction of solutions satisfying global-in-time Hϑ-bounds for some
ϑ > 0 uniformly along the vanishing viscosity limit. In comparison to [CDZ22], this is achieved by
carefully calculating how the mth moment at step q depends on m and on the stochastic terms.
Then it is possible to choose suitable parameters to give an exact convergence rate of the L2-norm
as well as an exact divergence rate of the C1-norm, leading to the desired uniform Hϑ-bound. The
interesting point is that this bound does not depend on the dissipation given by the Laplacian and
consequently all the bounds hold uniformly for ν > 0.

As we are interested in the long time behavior of solutions and particularly in the construction
of statistically stationary solutions, we work with entire solutions solving the equations for all times
t ∈ R. Accordingly, the norms in the convex integration scheme must be chosen appropriately in
order to provide the desired global-in-time estimates. This is achieved through bounds of the form

sup
ν>0

sup
t∈R

E

[
sup

t6s6t+1
‖uν(s)‖2rHϑ

]
<∞,

with r > 1 and ϑ > 0. Such bounds provide uniform moment estimates locally in C(R;Hϑ) and
guarantee the convergence of the corresponding ergodic averages, even in the case of Euler equations.
This leads to the existence of stationary solutions.

Within this study, we focus on analytically weak solutions which satisfy the equations in the
following sense.

Definition 1.1. We say that ((Ω,F , (Ft)t∈R,P), u,B) is an analytically weak solution to the Navier–
Stokes system (1.4) provided

(1) (Ω,F , (Ft)t∈R,P) is a stochastic basis with a complete right-continuous filtration;
(2) B is an R3-valued, spatial mean and divergence free, two-sided trace-class Brownian motion

with respect to the filtration (Ft)t∈R;
(3) the velocity u ∈ L2

loc(R;L2
σ)∩C(R;H−δ) P-a.s. for some δ > 0 and is and (Ft)t∈R-adapted;

(4) for every −∞ < s 6 t <∞ it holds P-a.s.

〈u(t), ψ〉+

∫ t

s

〈div(u⊗ u), ψ〉dr = 〈u(s), ψ〉+ ν

∫ t

s

〈∆u, ψ〉dr + 〈B(t)−B(s), ψ〉

for all ψ ∈ C∞(T3), divψ = 0.

We note that solutions are not required to belong to L2
loc(R, H1) and they do not satisfy the

corresponding energy inequality, obtained formally by testing the equation by the solution itself.
In other words, our solutions are generally not the so-called Leray solutions, a feature common to
all convex integration results treating the Navier–Stokes equations. Analytically weak solutions to
the Euler equations (1.5) are defined exactly the same way, in particular using the same function
spaces, the only difference is that ν = 0.

As pathwise non-uniqueness, non-uniqueness in law and even non-uniqueness of Markov selections
have been established in our previous works [HZZ19, HZZ22a, HZZ23], we understand stationarity
in the sense of shift invariance of laws of solutions on the space of trajectories, see also [BFHM19,
BFH20e, FFH21, HZZ22]. More precisely, we define the joint trajectory space for the solution and
the driving Brownian motion as

T = C(R;L2
σ)× C(R;L2

σ)

and let St, t ∈ R, be shifts on trajectories given by

St(u,B)(·) = (u(·+ t), B(·+ t)−B(t)), t ∈ R, (u,B) ∈ T .
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We note that the shift in the second component acts differently in order to guarantee that for a
Brownian motion B the shift StB is again a Brownian motion.

Stationary solutions to the stochastic Navier–Stokes equations (1.4) are defined as follows.

Definition 1.2. We say that ((Ω,F , (Ft)t∈R,P), u,B) is a stationary solution to the stochastic
Navier–Stokes equations (1.4) provided it satisfies (1.4) in the sense of Definition 1.1 and its law is
shift invariant, that is,

L[St(u,B)] = L[u,B] for all t ∈ R.

Note that this setting is different from the usual setting of invariance with respect to a Markov
semigroup. The latter notion can be applied to problems with uniqueness, i.e. where the Markov
property holds. The construction of invariant measures then additionally requires the Feller property
which corresponds to continuous dependence on initial condition. Since non-uniqueness holds true
for the above Navier–Stokes and Euler equations, we employ the more general notion of invariance
with respect to shifts on trajectories. Another advantage is that continuity of the shift operators
comes for free and therefore there is no need for any Feller property.

Every stationary solution (u,B) defines a dynamical system (T ,B(T ), (St, t ∈ R),L[u,B]) in the
sense of e.g. [DPZ96, Chapter 1], where B(T ) denotes the σ-algebra of Borel sets on T . Accordingly,
we may formulate ergodicity of stationary solutions as ergodicity of the associated dynamical system.
Also with this notion of invariance, the existence of an ergodic stationary solution as defined below
implies the validity of the so-called ergodic hypothesis, i.e. the fact that ergodic averages along
trajectories of the ergodic solution converge to the ensemble average given by its law. This leads us
to the following definition.

Definition 1.3. A stationary solution ((Ω,F , (Ft)t∈R,P), u,B) is ergodic provided

L[u,B](A) = 1 or L[u,B](A) = 0 for all A ⊂ T Borel and shift invariant.

The same definitions are also valid in the setting of the stochastic Euler equations (1.5). Par-
ticularly, the trajectory space and regularity of the solutions is the same as for the Navier–Stokes
equations.

With these definitions at hand, we are able to state our first main result, tackling the problems
(i) and (iv) above. Rather surprisingly, the result is independent of the value of the viscosity
ν. In particular, it holds uniformly along the vanishing viscosity limit ν → 0 and we obtain the
result for both the stochastic Navier–Stokes (1.4) as well as Euler equations (1.5). Only in the
case of Euler equations we require more regularity of the Brownian motion, namely, we postulate
Tr((−∆)σGG∗) <∞ for some σ > 0. The result then reads as follows and is proved in Theorem 4.1,
Theorem 4.2 and Theorem 5.1.

Theorem 1.4. There exist

(1) infinitely many stationary solutions;
(2) infinitely many ergodic stationary solutions;

to the stochastic Navier–Stokes (1.4) and Euler (1.5) equations. Moreover, the solutions belong to
C(R, Hϑ) ∩ Cϑ(R, L2) a.s. for some ϑ > 0.

Regarding the vanishing viscosity limit (ii) as formulated above, we are able to make the following
conclusion which is proved in Theorem 5.1.

Theorem 1.5. Assume Tr((−∆)σGG∗) < ∞ for some σ > 0. There exists K0 > 0 so that for
every K > K0 the following holds: For an arbitrary sequence of vanishing viscosities νn → 0, n ∈ N,
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there exist a sequence of stationary solutions un, n ∈ N, to the following stochastic Navier–Stokes
equations

dun + div(un ⊗ un) dt+∇Pn dt = νn∆un dt+ dB,

so that the corresponding family of laws L[un], n ∈ N, is tight in C(R;L2
σ) and every accumulation

point is a stationary solution to the stochastic Euler equations (1.5) satisfying

E‖u‖2L2 = K.

Furthermore, we are able to prove a result related to anomalous dissipation in the spirit of (iii)
along the vanishing viscosity limit in a stochastic Navier–Stokes–Reynolds system with vanishing
Reynolds stresses. The proof of this result is given in Theorem 5.4.

Theorem 1.6. Assume Tr((−∆)5/2+σGG∗) < ∞ for some σ > 0. There exists K0 > 0 so that
for every K > K0 the following holds: For any ε > 0 there exists a sequence of viscosities νn → 0
and stationary processes (un, R̊n) ∈ C(R;H1)×C(R;L1) satisfying the following stochastic Navier–
Stokes–Reynolds equations

dun + div(un ⊗ un) dt+∇Pn dt = νn∆un dt+ divR̊n dt+ dB,

lim
n→∞

E

[
sup

06s61
‖R̊n(s)‖L1

]
= 0,

and

lim inf
n→∞

νnE‖∇un‖2L2 > ε+
1

2
Tr(GG∗).

Furthermore, the corresponding family of laws L[un], n ∈ N, is tight in C(R;L2
σ) and every accu-

mulation point is a stationary solution to the stochastic Euler equations (1.5) with

E‖u‖2L2 = K.

In particular, the solutions un, n ∈ N, can be chosen as ergodic stationary solutions.

Remark 1.7. The above result related to anomalous dissipation is produced by the nonlinearity
by means of the convex integration at the price of including an additional error term divR̊n, which
vanishes in the limit. More precisely, for the stationary solution to the linear counterpart without
the error term (which is mean and divergence free due to the assumptions on the noise)

dzn = νn∆zn dt+ dB,

Itô’s formula yields for all n ∈ N

νnE‖∇zn‖2L2 =
1

2
Tr(GG∗). (1.6)

If G = 0, the above results Theorem 1.4, Theorem 1.5 and Theorem 1.6 apply to the case of
deterministic Navier–Stokes (1.1) and Euler (1.2) equations with zero force. Furthermore, with a
small modification in the proof, it is possible to show more. The proof is given in Theorem 6.3,
Theorem 6.4 and Theorem 6.6. The latter result also contains further observations regarding the
limit of vanishing viscosity and/or vanishing noise.
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Theorem 1.8. Let G = 0. Let ε > 0, r > 1 be given and let Z be a stationary stochastic process
with smooth trajectories, vanishing mean and divergence and satisfying(

E‖Z‖mL2 + E‖Z‖mC2
t,x

)1/m

6 m1/2L,

for any m > 1 and some L > (2π)3. Then up to a change of probability space,

E
[
‖u− Z‖rCtW 1,1

]
6 ε. (1.7)

holds true for

(1) the stationary as well as ergodic stationary solutions u obtained in Theorem 1.4;
(2) the limit stationary solutions u to the Euler equations (1.2) obtained in Theorem 1.5 as well

as in Theorem 1.6.

In particular, the solutions can be random and time dependent. If Z is uniformly bounded in ω in
C2
t,x then (1.7) holds pathwise, not only in expectation.

In the proof of the above result we make use of our stochastic convex integration construction.
The added value lies particularly in the claim (1.7). It shows that the solutions can possess certain
statistics that are close to those of the prescribed process Z. In particular, Z can be chosen Gaussian
or non-Gaussian. If we dropped this requirement in the case of deterministic Euler equations, no
new convex integration construction would be necessary. Precisely, we can use some of the explicit
smooth steady state solutions (i.e. time independent), together with a Krein–Milman argument as
in our proof to deduce the result of Theorem 1.4 in this Euler case with G = 0.

Due to the dissipation, following the same strategy for the deterministic Navier–Stokes equations
is more delicate. The existence of nontrivial steady state solutions was established in [CL19] by
convex integration. But it is only proved in [CL19] that these solutions belong to L2, no higher
regularity is shown. Hence, these solutions are not suitable for our proof of ergodicity based on
Krein–Milman’s theorem, because of the lacking compactness. Nevertheless, the seminal paper
[BV19a] in particular permits to construct time periodic solutions taking values in Hϑ for some
ϑ > 0. These can be obtained by first prescribing a compactly supported kinetic energy and
then repeating periodically. Consequently, these solutions can be used to prove the existence and
non-uniqueness of ergodic stationary solutions as in the Navier–Stokes part of Theorem 1.4 with
G = 0. The periodicity is used in particular to obtain nontrivial stationary solutions and their
non-uniqueness.

We also remark that in [Luo19] existence and non-uniqueness of Hϑ-steady state solutions for
every ϑ < 1/200 was to the Navier–Stokes system in d = 4 was proved. A corollary of this result is
therefore the existence of non-unique ergodic statistically stationary solutions.

Organization of the paper. In Section 2, we collect the basic notations used throughout the pa-
per. Section 3 is the core of our proofs: here, the stochastic convex integration is developed and em-
ployed to construct entire non-unique analytically weak and probabilistically strong solutions with
a prescribed kinetic energy. This is then used in Section 4 together with a Krylov–Bogoliubov’s
argument to obtain existence of non-unique stationary solutions to the stochastic Navier–Stokes
equations. The results concerning stationary solutions to the stochastic Euler equations, the van-
ishing viscosity limit and the result related to anomalous dissipation can be found in Section 5,
whereas the results for the deterministic systems are proved in Section 6. In Appendix A, we recall
the construction of intermittent jets from [BCV18, BV19a] and in Appendix B we give estimates on
amplitude functions used in the convex integration construction.
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2. Notations

2.1. Function spaces. Throughout the paper, we employ the notation a . b if there exists a
constant c > 0 such that a 6 cb, and we write a ' b if a . b and b . a. We let N0 := N ∪ {0}.
Given a Banach space E with a norm ‖ · ‖E and t ∈ R, we write CtE = C([t, t + 1];E) for the
space of continuous functions from [t, t + 1] to E, equipped with the supremum norm ‖f‖CtE =
sups∈[t,t+1] ‖f(s)‖E . For α ∈ (0, 1) we define Cαt E as the space of α-Hölder continuous functions from

[t, t+1] to E, endowed with the norm ‖f‖Cαt E = sups,r∈[t,t+1],s6=r
‖f(s)−f(r)‖E
|r−s|α +sups∈[t,t+1] ‖f(s)‖E .

Here we use Cαt to denote the case when E = R. We also write Cb(R;E) for functions in C(R;E) such

that ‖f‖Cb(R;E) := supt∈R ‖f(t)‖E <∞. For β ∈ (0, 1] we define Cβb (R;E) as functions in Cβ(R;E)
such that ‖f‖Cβb (R;E) := supt∈R ‖f‖Cβt E <∞. We use Lp to denote the set of standard Lp-integrable

functions from T3 to R3. For s > 0, p > 1 we set W s,p := {f ∈ Lp; ‖(I −∆)s/2f‖Lp <∞} with the
norm ‖f‖W s,p = ‖(I −∆)s/2f‖Lp . Set L2

σ = {f ∈ L2;
∫
T3 f dx = 0,divf = 0}. For s > 0, we define

Hs := W s,2 ∩ L2
σ. For s < 0 we define Hs to be the dual space of H−s. For t ∈ R and a domain

D ⊂ R+ we denote by CNt,x and CND,x, respectively, the space of CN -functions on [t, t+ 1]× T3 and

on D × T3, respectively, N ∈ N0. The spaces are equipped with the norms

‖f‖CNt,x =
∑

06n+|α|6N
n∈N0,α∈N3

0

‖∂nt Dαf‖L∞
[t,t+1]

L∞ , ‖f‖CND,x =
∑

06n+|α|6N
n∈N0,α∈N3

0

sup
t∈D
‖∂nt Dαf‖L∞ .

For a Polish space H we denote by B(H) the σ-algebra of Borel sets in H. We also use ⊗̊ to denote
the trace-free part of the tensor product.

By P we denote the Helmholtz projection. We recall the inverse divergence operator R from
[BV19a, Section 5.6], which acts on vector fields v with

∫
T3 vdx = 0 as

(Rv)kl = (∂k∆−1vl + ∂l∆
−1vk)− 1

2
(δkl + ∂k∂l∆

−1)div∆−1v,

for k, l ∈ {1, 2, 3}. Then Rv(x) is a symmetric trace-free matrix for each x ∈ T3, and R is a right
inverse of the div operator, i.e. div(Rv) = v. By [CL20, Theorem B.3] we know

‖Rf(σ·)‖Lp . σ−1‖f‖Lp for σ ∈ N. (2.1)

By S3×3 we denote the set of symmetric 3× 3 matrices and by S3×3
0 the set of symmetric trace-

free matrices. Let C∞0 (T3,R3×3) be the set of periodic smooth matrix valued functions with zero
mean. We also introduce the bilinear version B : C∞(T3,R3)× C∞0 (T3,R3×3) → C∞(T3,S3×3

0 ) as
in [CL20, Section B.3] by

B(v,A) = vRA−R(∇vRA).

Then by [CL20, Theorem B.4] we have div(B(v,A)) = vA− 1
(2π)3

∫
T3 vAdx and

‖B(v,A)‖Lp . ‖v‖C1‖RA‖Lp . (2.2)

2.2. Probabilistic elements. For a given probability measure P we denote by EP the expectation
under P . Regarding the driving noise, we assume that B is an R3-valued two-sided GG∗-Wiener
process with zero spatial mean and zero divergence, defined on some probability space (Ω,F ,P)
and G is a Hilbert–Schmidt operator from U to L2

σ for some Hilbert space U .
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For p ∈ [1,∞) we denote

|||u|||pL2,p := sup
t∈R

E

[
sup

t6s6t+1
‖u(s)‖pL2

]
, |||u|||p

C1
t,x,p

:= sup
t∈R

E

[
‖u(s)‖p

C1
[t,t+1],x

]
.

These norms define function spaces of random variables on Ω taking values in C(R, L2) and C1(R×
T3), respectively, with bounds in Lp(Ω;C(I, L2)) and Lp(Ω;C1(I × T3)) for any bounded interval
I ⊂ R. Furthermore, the bounds only depend on the length of the interval I, not on its location
within R. In the sequel, we simply say that u has a uniform moment of order p locally in C(R;L2)
provided |||u|||L2,p < ∞. Similarly, we define the corresponding norms with L2 replaced by Lp, Hϑ

or C1
t,x replaced by C

1
2−2δ
t L∞, Cϑt L

2 and CtW
1,p.

3. Stochastic convex integration

The previous works using convex integration in the stochastic setting always reduced the problem
to the deterministic setting by introducing suitable stopping times.2 This permitted to control the
noise uniformly in ω so that the convex integration could proceed pathwise up to the stopping
time. The stopping times were then removed a posteriori by a suitable extension of solutions.
Such an approach is not suitable for the construction of stationary solutions. Hence, inspired by
[CDZ22] we present an honest stochastic convex integration, constructing directly solutions on the
whole time line R. This is achieved by introducing expectations to the iterative estimates in convex
integration. The main difficulty lies in the fact that due to the quadratic nonlinearity the estimates
are superlinear. More precisely, the estimate of any pth moment at the level q + 1 necessarily
contains higher moments at the level q. Accordingly, all the estimates need to be tracked down very
carefully, paying a particular attention to the appearing constants, what they depend on and how
precisely. Otherwise, it would not be possible to close the estimates. The key observation is that
the superlinear terms always contain a small constant which may be used to absorb the bounds.

As the first step, we decompose a solution to the Navier–Stokes system (1.4) with ν = 1 into the
sum u = z + v where z is the unique stationary solution to the linear stochastic heat equation

dz − (∆− 1)z dt = dB, (3.1)

where B is a R3-valued two-sided trace-class Wiener process with spatial zero mean (see e.g. [PR07,
page 99]), and v solves the nonlinear deterministic equation

∂tv −∆v − z + div((v + z)⊗ (v + z)) +∇P = 0,

divv = 0.
(3.2)

Here, z is divergence free by the assumptions on the noise and by P we denote the pressure term
associated to v.

Remark 3.1. For notational simplicity, we work in this section as well as in Section 4 with the unit
viscosity ν = 1. This fact is used only in Proposition 3.2 below, which profits from the smoothing
effect of the Laplacian. More precisely, the spatial regularity is needed for the convergence rate
in the convex integration in order to deduce the Hϑ-estimate. Only a bound in L2 would not
be enough. For a general ν, the bound in Proposition 3.2 would depend on ν−p. Hence, for the
results regarding stationary solutions to the Euler equations, the vanishing viscosity limit and the
anomalous dissipation in Section 5 and Section 6, it is necessary to increase the regularity of the
noise in order to compensate for the lack of smoothing of the linear part.

2The first exception was our previous work on a class of supercritical/critical SPDEs with an irregular spatial
perturbation [HZZ22]. Due to the time independence of the noise, no stopping times were necessary.
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We included the linear zero order term z on the left hand side of (3.1) in order to obtain a
stabilization of the equation needed for the necessary global in time estimates. It will be seen in the
course of the construction that the corresponding counter term in (3.2) will not cause any difficulties.
Using the factorization method it is standard to derive regularity of the stochastic convolution z on
a given stochastic basis (Ω,F , (Ft)t∈R,P) with (Ft)t∈R canonical filtration given in [PR07, page 99].
In particular, the following result follows from [DPZ92, Theorem 5.16] together with the Kolmogorov
continuity criterion.

Proposition 3.2. Suppose that Tr(GG∗) <∞. Then for any δ ∈ (0, 1/2), p > 2

sup
t∈R

E

[
sup

t6s6t+1
‖z(s)‖p

H1−δ + ‖z‖p
C

1/2−δ
t L2

]
6 (p− 1)p/2Lp, (3.3)

where L > 1 depends on Tr(GG∗), δ and is independent of p.

Proof. We recall that the unique stationary solution to (3.1) has the explicit form z(t) =
∫ t
−∞ S(t−

s)dB(s) where S(t) = et(∆−I), t > 0. The Wiener process B is given by B =
∑
k∈N ckekβk for an

orthonormal basis {ek}k∈N of L2
σ, a sequence of mutually independent standard two-sided Brownian

motions {βk}k∈N and the coefficients satisfy
∑
k∈N c

2
k <∞. Then it holds for γ ∈ (0, 1/2), t > s

E‖z(t)− z(s)‖2L2 =

∞∑
k=1

c2k

∫ t

s

‖S(t− σ)ek‖2L2dσ +

∞∑
k=1

∫ s

−∞
c2k‖[S(t− σ)− S(s− σ)]ek‖2L2dσ

6MTr(GG∗)
[
(t− s) +

∫ s

−∞
e−2(s−σ)

∣∣∣ ∫ t−σ

s−σ

1

r
dr
∣∣∣2dσ

]
6MTr(GG∗)

[
(t− s) +

∫ s

−∞
e−2(s−σ)(s− σ)−2γ

∣∣∣ ∫ t−σ

s−σ
rγ−1dr

∣∣∣2dσ
]

6MTr(GG∗)[(t− s) + (t− s)2γ ],

where the constant M depends only on the semigroup and γ but is independent of time. Using
Gaussianity we have

E‖z(t)− z(s)‖pL2 6 (p− 1)p/2
(
E‖z(t)− z(s)‖2L2

)p/2
.

Similar computations can be performed for the H1−δ-norm as well, only the resulting time regularity
is lower and depends on δ. The result then follows from Kolmogorov’s continuity criterion. �

In the following we choose L > (2π)3/2 for simplicity.

Global in time estimates of the form (3.3) are well-suited for the application of a Krylov–
Bogoliubov argument leading to existence of stationary solutions as limits of ergodic averages. Our
goal in this section is to construct solutions to the Navier–Stokes system (1.4) satisfying similar
bounds. To this end, we use the norms ||| · |||L2,p and ||| · |||C1

t,x,p
introduced in Section 2.2, which play

the essential role in the construction.

Let us now explain how the convex integration iteration is set up. We consider an increasing
sequence {λq}q∈N0

⊂ N which diverges to ∞, and a sequence {δq}q∈N ⊂ (0, 1) which is decreasing
to 0. We choose a ∈ N, b ∈ N, β ∈ (0, 1] and let

λq = a(bq), δ1 = 1, δq =
1

2
λ2β

2 λ−2β
q , q > 2.
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Here β will be chosen sufficiently small and a as well as b will be chosen sufficiently large. We

assume
∑
r>1 δ

1/2
r 6 1 +

∑
r>2 a

b2β−(r−1)b2β = 1 + 1
1−a−βb2

6 3 which boils down to

aβb
2

> 2. (3.4)

Here we require more than is necessary for the later use and we keep this assumption from now on.
More details on the choice of these parameters will be given below in the course of the construction.
The iteration is indexed by a parameter q ∈ N0. At each step q, a pair (vq, R̊q) is constructed solving
the following system

∂tvq − zq −∆vq + div((vq + zq)⊗ (vq + zq)) +∇pq = divR̊q,

divvq = 0.
(3.5)

In the above we define zq = P6f(q)z with f(q) = λ
α/8
q+1 and R̊q is trace-free and we put the trace

part into the pressure. Thanks to this approximation of z, we are able to lower the assumption on
the spatial regularity of the noise B, namely, to cover the case of any trace-class noise. We observe
that

|||zq|||L∞,p 6 (p− 1)1/2Lλ
α/8
q+1, |||zq|||

C
1
2
−2δ

t L∞,p
6 (p− 1)1/2Lλ

α/4
q+1. (3.6)

We intend to construct approximations vq with a uniform moment of order 2r for a given r > 1
locally in C(R, Hϑ) and Cϑ(R, L2) for some ϑ > 0, in the sense of the norms |||·|||Hϑ,2r and |||·|||Cϑt L2,2r.
But to this end, it is necessary to quantify the blow up of the higher moments, as these also appear
in the estimates.

Under the above assumptions, our main iteration reads as follows, the proof of this result is
presented in Section 3.1 below.

Proposition 3.3. Assume (3.3) and let r > 1 be fixed. Given smooth function e : R → (0,∞)
so that ē > e(t) > e > 1 with ‖e′‖C0 6 ẽ for some constants e, e, ẽ > 0, there exists a choice of

parameters a, b, β and α ∈ (0, 1/49) with αb > 32/7 such that the following holds true: Let (vq, R̊q)
for some q ∈ N0 be an (Ft)t>0-adapted solution to (3.5) satisfying

|||vq|||L2,2r 6M0ē
1/2

q∑
k=1

δ
1/2
k (3.7)

for a universal constant M0, and for m > 1

|||vq|||L2,m 6M0(6q−1 · 12mL2)3(6q−1) +M0ē
1/2

q∑
r=1

δ1/2
r , (3.8)

and

|||vq|||C1
t,x,m

6 λ23/7
q (6q−1 · 16mL2)4(6q−1), |||vq|||C2

t,x,m
6 λ37/7

q (6q−1 · 20mL2)5(6q−1), (3.9)

|||R̊q|||L1,r 6
1

48
δq+2e, (3.10)

and for m > 1

|||R̊q|||L1,m 6 (6q · 4mL2)(6q). (3.11)

Moreover, for any t ∈ R
3

4
δq+1e(t) 6 e(t)−E‖(vq + zq)(t)‖2L2 6

5

4
δq+1e(t), (3.12)
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Then there exists an (Ft)t>0-adapted process (vq+1, R̊q+1) which solves (3.5), obeys (3.7)– (3.12) at
the level q + 1 and satisfies

|||vq+1 − vq|||L2,2r 6M0ē
1/2δ

1/2
q+1. (3.13)

and for p = 32
32−7α

|||vq+1 − vq|||CtW 1,p,r 6 λ
−α/2
q+1 + λ

−1/7+6α
q+1 . (3.14)

Using (3.9) and the choice of the parameters in Section 3.1.1 we have

|||vq|||C1
t,x,2r

6 λ4
q, |||vq|||C2

t,x,r
6 λ6

q. (3.15)

We start the iteration from v0 ≡ 0 on R. In that case, we have R̊0 = z0⊗̊z0 −Rz0 so that

|||R̊0|||L1,m 6 |||z|||2L2,2m + (2π)3/2|||z|||L2,m 6 4mL2

and (3.10), (3.11) are satisfied on the level q = 0, since δ2 = 1/2 and provided 8 · 48rL2 6 e. Here,
we used L > (2π)3/2. For (3.12) we require

3

4
e(t) 6 e(t)−E‖z0(t)‖2L2 6

5

4
e(t),

which is satisfied provided e(t) > 4L2.

We deduce the following result.

Theorem 3.4. Let r > 1 and a smooth function e : R→ (0,∞) satisfying ē > e(t) > e > 8·48rL2 be
given. There exists an (Ft)t∈R-adapted process u which belongs to C(R, Hϑ)∩Cϑ(R, L2) P-a.s. for
some ϑ > 0 and is an analytically weak solution to (1.4) in the sense of Definition 1.1. Moreover,
the solution satisfies

|||u|||Hϑ,2r + |||u|||Cϑt L2,2r <∞, (3.16)

and for all t ∈ R
E‖u(t)‖2L2 = e(t). (3.17)

There are infinitely many such solutions by choosing different energies e. Furthermore, for every
ε > 0 one may find solution such that v = u− z satisfying

|||v|||CtW 1,1,r 6 ε. (3.18)

Proof. By interpolation we deduce for ϑ ∈ (0, β
4+β ),∑

q>0

|||vq+1 − vq|||Hϑ,2 .
∑
q>0

|||vq+1 − vq|||1−ϑL2,2|||vq+1 − vq|||ϑH1,2 .
∑
q>0

δ
1−ϑ
2

q+1 λ
4ϑ
q+1 <∞.

Similarly we could change Hϑ to Cϑt L
2. As a consequence, a limit v = limq→∞ vq exists and lies in

L2(Ω, C(R, Hϑ) ∩ Cϑ(R, L2)). Since vq is (Ft)t∈R-adapted for every q ∈ N0, the limit v is (Ft)t∈R-

adapted as well. Furthermore, it follows from (3.10) that limq→∞ R̊q = 0 in L1(Ω, C(R;L1)) and
limq→∞ zq = z in Lp(Ω, C(R;L2)) for any p > 1. Thus v is an analytically weak solution to (3.2).
Hence letting u = v+z we obtain an (Ft)t∈R-adapted analytically weak solution to (1.4). Moreover,
the estimate for u holds. Finally, (3.17) follows from (3.12).

For the last result, we use (3.14) and conditions on α to have

|||v|||CtW 1,p,r .
∞∑
q=0

|||vq+1 − vq|||CtW 1,p,r
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6
∞∑
q=0

(λ
−α/2
q+1 + λ

−1/7+6α
q+1 ) .

a−αb/2

1− a−αb/2

=
1

aαb/2 − 1
6

1

a16/7 − 1
6 ε,

where we use αb > 32/7 and −1/7 + 6α < −α/2 and we may choose a large enough such that the
last inequality holds. �

3.1. Proof of Proposition 3.3. The proof proceeds in several main steps which are the same in
many convex integration schemes. First of all, we start the construction by fixing the parameters in
Section 3.1.1 and proceed with a mollification step in Section 3.1.2. Section 3.1.3 introduces the new
iteration vq+1. This is the main part of the construction which differs in each convex integration
scheme. Here, we construct new amplitude functions a(ξ) similarly to [HZZ23] but we replace the
pathwise construction by a stochastic variant, namely, we work explicitly with expectations of vq+zq.
Section 3.1.4 contains the inductive estimates of vq+1, especially the moment estimates, whereas
in Section 3.1.5 we show how the energy is controlled. Finally, in Section 3.1.6, we define the new
stress R̊q+1 and establish the inductive moment estimate on R̊q+1 in Section 3.1.7.

3.1.1. Choice of parameters. In the sequel, additional parameters will be indispensable and their
value has to be carefully chosen in order to respect all the compatibility conditions appearing in the
estimations below. First, for a sufficiently small α ∈ (0, 1) to be chosen below, we let ` ∈ (0, 1) be a
small parameter satisfying

`λ4
q 6 λ

−α
q+1, `−1 6 λ2α

q+1, ē 6 `−1. (3.19)

In particular, we define

` := λ
−3α/2
q+1 λ−2

q . (3.20)

In the sequel, we use the following bounds

αb > 32/7, 43α < 1/14, α > 40βb2, 6/b+ 2βb2 < 1/14, 2βb <
1

7
− 127α,

which can be obtained by choosing α small such that 1
128·7 > α, and choosing b ∈ N large enough

such that αb > 32/7 and finally choosing β small such that α > 40βb2. Hence, we shall choose
rational α small first and b large, then β small enough. The last free parameter is a which satisfies
the lower bounds given through (3.4) and the last bound in (3.19). Let c satisfy q6q 6 c7q. We then
choose a > (192L2r)c ∨ (252L2)3c. In the sequel, we increase a in order to absorb various implicit
and universal constants.

3.1.2. Mollification. We intend to replace vq by a mollified velocity field v`. To this end, let {φε}ε>0

be a family of standard mollifiers on R3, and let {ϕε}ε>0 be a family of standard mollifiers with
support in (0, 1). The one-sided mollifier here is used in order to preserve adaptedness. We define

a mollification of vq, R̊q and zq in space and time by convolution as follows

v` = (vq ∗x φ`) ∗t ϕ`, R̊` = (R̊q ∗x φ`) ∗t ϕ`, z` = (zq ∗x φ`) ∗t ϕ`,

where φ` = 1
`3φ( ·` ) and ϕ` = 1

`ϕ( ·` ). Since the mollifier ϕ` is supported on (0, 1), it is easy to see

that z` is (Ft)t∈R-adapted and so are v` and R̊`. Since (3.5) holds, it follows that (v`, R̊`) satisfies

∂tv` − z` −∆v` + div((v` + z`)⊗ (v` + z`)) +∇p` = div(R̊` +Rcom)

divv` = 0,
(3.21)
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where
Rcom = (v` + z`)⊗̊(v` + z`)− ((vq + zq)⊗̊(vq + zq)) ∗x φ` ∗t ϕ`,

p` = (pq ∗x φ`) ∗t ϕ` −
1

3

(
|v` + z`|2 − (|vq + zq|2 ∗x φ`) ∗t ϕ`

)
.

We have
‖vq(t)− v`(t)‖L2 . `‖vq‖C1

[t−1,t+1],x
, (3.22)

which by (3.15) implies that

|||vq − v`|||L2,2r . `|||vq|||C1
t,x,2r

6 `λ4
q 6

1

4
ē1/2δ

1/2
q+1, (3.23)

where we used the fact that `λ4
q < λ−βq+1. In addition,

‖v`‖CtL2 6 ‖vq‖C[t−1,t+1]L2 . (3.24)

3.1.3. Construction of vq+1. Let us now proceed with the construction of the perturbation wq+1

which then defines the next iteration by vq+1 := v`+wq+1. To this end, we employ the intermittent
jets introduced in [BCV18] and presented in [BV19a, Section 7.4], which we recall in Appendix A.
In particular, the building blocks W(ξ) = Wξ,r⊥,r‖,λ,µ for ξ ∈ Λ are defined in (A.3) and the set Λ is

introduced in Lemma A.1. The necessary estimates are collected in (A.7). We choose the following
parameters

λ = λq+1, r‖ = λ
−4/7
q+1 , r⊥ = r

−1/4
‖ λ−1

q+1 = λ
−6/7
q+1 , µ = λq+1r‖r

−1
⊥ = λ

9/7
q+1. (3.25)

It is required that b is a multiple of 7 to ensure that λq+1r⊥ = a(bq+1)/7 ∈ N.

Now we define ρ as follows

ρ := 2

√
`2 + |R̊`|2 + γ`, (3.26)

γq(t) :=
1

3 · (2π)3

[
e(t)(1− δq+2)−E‖vq(t) + zq(t)‖2L2

]
,

and
γ` := γq ∗t ϕ`.

We observe that (3.4) and b > 2 implies in particular 4
3 6 a2βb(b−1), i.e. 3

4δq+1 > δq+2, it follows
that γq > 0. In view of the definition of ρ in (3.26), we obtain for any p ∈ [1,∞],

‖ρ‖Lp 6 2`(2π)3/p + 2‖R̊`‖Lp +
1

2
δq+1ē. (3.27)

Furthermore, by mollification estimates, the embedding W 4,1 ⊂ L∞ we obtain for N > 0

‖R̊`‖CNt,x . `
−4−N‖R̊q‖C[t−1,t+1]L1 ,

which in particular leads to

‖ρ‖C0
t,x
. `+ `−4‖R̊q‖C[t−1,t+1]L1 + δq+1ē. (3.28)

We put further details on the CNt,x-estimates of ρ in Appendix B and by (B.1) we obtain

‖ρ‖CNt,x . `
−4−N‖R̊q‖C[t−1,t+1]L1 + `−6N+1‖R̊q‖NC[t−1,t+1]L1 +

1

2
`−Nδq+1ē. (3.29)

Now, we define the amplitude functions

a(ξ)(ω, t, x) := aξ,q+1(ω, t, x) := ρ(ω, t, x)1/2γξ

(
Id− R̊`(ω, t, x)

ρ(ω, t, x)

)
, (3.30)
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where γξ is introduced in Lemma A.1. By (A.5) we have

(2π)−3
∑
ξ∈Λ

a2
(ξ)

∫
T3

W(ξ) ⊗W(ξ)dx = ρId− R̊`, (3.31)

and using (B.2)

‖a(ξ)‖CtL2 6
M

4|Λ|

(
2‖R̊q‖C[t−1,t+1]L1 +

1

2
δq+1ē

)1/2

, (3.32)

where M denotes the universal constant from Lemma A.1. Moreover, we could get the following
CNt,x-norm of a(ξ). Since the calculation is similar as in [HZZ23] except the explicit dependence on

‖R̊q‖C[t−1,t+1]L1 , we put the main part in Appendix B. In particular, by (B.9)-(B.8) we obtain for
N > 1

‖a(ξ)‖CNt,x . `
−7−6N (‖R̊q‖C[t−1,t+1]L1 + 1)N+1, (3.33)

and

‖a(ξ)‖C0
t,x
. `−2(‖R̊q‖C[t−1,t+1]L1 + 1)1/2. (3.34)

Here, the implicit constant depends on N and in the following we only used N 6 9.

With these preparations in hand, we define the principal part w
(p)
q+1 of the perturbation wq+1 as

w
(p)
q+1 :=

∑
ξ∈Λ

a(ξ)W(ξ). (3.35)

Since the coefficients a(ξ) are (Ft)t>0-adapted and W(ξ) is a deterministic function we deduce that

w
(p)
q+1 is also (Ft)t>0-adapted. Moreover, according to (3.31) and (A.4) it follows that

w
(p)
q+1 ⊗ w

(p)
q+1 + R̊` =

∑
ξ∈Λ

a2
(ξ)P 6=0(W(ξ) ⊗W(ξ)) + ρId, (3.36)

where we use the notation P 6=0f := f − 1
(2π)3

∫
T3 fdx.

We also define the incompressibility corrector by

w
(c)
q+1 :=

∑
ξ∈Λ

curl(∇a(ξ) × V(ξ)) +∇a(ξ) × curlV(ξ) + a(ξ)W
(c)
(ξ) , (3.37)

with W
(c)
(ξ) and V(ξ) being given in (A.6). Since a(ξ) is (Ft)t>0-adapted and W(ξ),W

(c)
(ξ) and V(ξ) are

deterministic it follows that w
(c)
q+1 is also (Ft)t>0-adapted. By a direct computation we deduce that

w
(p)
q+1 + w

(c)
q+1 =

∑
ξ∈Λ

curl curl(a(ξ)V(ξ)),

hence

div(w
(p)
q+1 + w

(c)
q+1) = 0.

Next, we introduce the temporal corrector

w
(t)
q+1 := − 1

µ

∑
ξ∈Λ

PP 6=0

(
a2

(ξ)φ
2
(ξ)ψ

2
(ξ)ξ
)
, (3.38)
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where P is the Helmholtz projection. Similarly as above, w
(t)
q+1 is (Ft)t>0-adapted and by a direct

computation (see [BV19a, (7.20)]) we obtain

∂tw
(t)
q+1 +

∑
ξ∈Λ

P 6=0

(
a2

(ξ)div(W(ξ) ⊗W(ξ))
)

= − 1

µ

∑
ξ∈Λ

PP 6=0∂t

(
a2

(ξ)φ
2
(ξ)ψ

2
(ξ)ξ
)

+
1

µ

∑
ξ∈Λ

P6=0

(
a2

(ξ)∂t(φ
2
(ξ)ψ

2
(ξ)ξ)

)
= (Id− P)

1

µ

∑
ξ∈Λ

P6=0∂t

(
a2

(ξ)φ
2
(ξ)ψ

2
(ξ)ξ
)
− 1

µ

∑
ξ∈Λ

P6=0

(
∂ta

2
(ξ)(φ

2
(ξ)ψ

2
(ξ)ξ)

)
.

(3.39)

Note that the first term on the right hand side can be viewed as a pressure term ∇p1.

Finally, the total perturbation wq+1 is defined by

wq+1 := w
(p)
q+1 + w

(c)
q+1 + w

(t)
q+1, (3.40)

which is mean zero, divergence free and (Ft)t>0-adapted. The new velocity vq+1 is defined as

vq+1 := v` + wq+1. (3.41)

Thus, it is also (Ft)t∈R-adapted.

3.1.4. Inductive estimates for vq+1. Next, we verify the inductive estimates (3.7) on the level q + 1
for v and we prove (3.13).

In the following we use [CL20, Lemma B.1]. This result is applied to bound w
(p)
q+1 in L2 whereas

for the other Lp-norms we use a different approach. By (3.32), (B.2) and (3.33) we obtain

‖w(p)
q+1‖CtL2 .

∑
ξ∈Λ

‖a(ξ)‖CtL2‖W(ξ)‖CtL2 +
1

(λq+1r⊥)1/2
‖a(ξ)‖C1

t,x
‖W(ξ)‖CtL2

6
M0

8
(‖R̊q‖C[t−1,t+1]L1 + ēδq+1)1/2 +

1

(λq+1r⊥)1/2
`−13(‖R̊q‖C[t−1,t+1]L1 + 1)2 (3.42)

where we used the fact that due to (A.3) together with the normalizations (A.1), (A.2) it holds
‖W(ξ)‖L2 ' 1 uniformly in all the involved parameters. Here, we may choose M0 = cM > 1 with a
universal constant c.

For a general Lp-norm we apply (A.7) and (3.34) to deduce for p ∈ (1,∞)

‖w(p)
q+1‖CtLp .

∑
ξ∈Λ

‖a(ξ)‖C0
t,x
‖W(ξ)‖CtLp . `−2(‖R̊q‖C[t−1,t+1]L1 + 1)1/2r

2/p−1
⊥ r

1/p−1/2
‖ , (3.43)

‖w(c)
q+1‖CtLp .

∑
ξ∈Λ

(
‖a(ξ)‖C0

t,x
‖W (c)

(ξ) ‖CtLp + ‖a(ξ)‖C2
t,x
‖V(ξ)‖CtW 1,p

)
. `−19(‖R̊q‖C[t−1,t+1]L1 + 1)3r

2/p−1
⊥ r

1/p−1/2
‖

(
r⊥r

−1
‖ + λ−1

q+1

)
. `−19(‖R̊q‖C[t−1,t+1]L1 + 1)3r

2/p
⊥ r

1/p−3/2
‖ ,

(3.44)

and
‖w(t)

q+1‖CtLp . µ−1
∑
ξ∈Λ

‖a(ξ)‖2C0
t,x
‖φ(ξ)‖2L2p‖ψ(ξ)‖2CtL2p

. `−4(‖R̊q‖C[t−1,t+1]L1 + 1)r
2/p−1
⊥ r

1/p−2
‖ (µ−1r−1

⊥ r‖)

= `−4(‖R̊q‖C[t−1,t+1]L1 + 1)r
2/p−1
⊥ r

1/p−2
‖ λ−1

q+1.

(3.45)



18 MARTINA HOFMANOVÁ, RONGCHAN ZHU, AND XIANGCHAN ZHU

We note that for p = 2 (3.43) provides a worse bound than (3.42). Hence, we obtain for p = 32
32−7α >

1 so that r
2/p−2
⊥ r

1/p−1
‖ 6 λαq+1 it holds that

‖wq+1‖CtLp . λ
−8/7+5α
q+1 (‖R̊q‖C[t−1,t+1]L1 + 1)3, (3.46)

where we use (3.19) and the fact that λ
19α− 1

7
q+1 < 1 by our choice of α. The bound (3.46) will be used

below in the estimation of the Reynolds stress.

Combining (3.42), (3.44) and (3.45) we obtain

‖wq+1‖CtL2 6
M0

8
‖R̊q‖1/2C[t−1,t+1]L1 + ē1/2δ

1/2
q+1

M0

4
+ λ
−1/14
q+1 `−13(‖R̊q‖C[t−1,t+1]L1 + 1)2

+ λ
−2/7
q+1 `−19(‖R̊q‖C[t−1,t+1]L1 + 1)3 + λ

−1/7
q+1 `−4(‖R̊q‖C[t−1,t+1]L1 + 1)

6
M0

8
‖R̊q‖1/2C[t−1,t+1]L1 + ē1/2δ

1/2
q+1

M0

4
+ λ
−1/14+26α
q+1 (‖R̊q‖3C[t−1,t+1]L1 + 1)

M0

8
.

(3.47)

Thus by (3.10) and (3.11) we obtain

|||wq+1|||L2,2r 6
M0

4
|||R̊q|||1/2L1,r + ē1/2δ

1/2
q+1

M0

4
+
M0

4
λ
−1/14+26α
q+1 (|||R̊q|||3L1,6r + 1)

6
M0

4
ē1/2δ

1/2
q+1 +

1

4
M0ē

1/2δ
1/2
q+1 +

M0

4
λ
−1/14+26α
q+1 ((6qr · 24L2)3(6q) + 1)

6
M0

2
ē1/2δ

1/2
q+1 +

M0

4
λ
−1/14+26α
q+1 (λ3

q + 1)

6
3M0

4
ē1/2δ

1/2
q+1.

(3.48)

Here we used a > (144L2r)c and −1/14+26α+3/b < −β by the choice of parameters in Section 3.1.1.
The bound (3.48) can be directly combined with (3.23) and the definition of the velocity vq+1 (3.41)
to deduce

|||vq+1 − vq|||L2,2r 6 |||wq+1|||L2,2r + |||v` − vq|||L2,2r 6M0ē
1/2δ

1/2
q+1,

hence (3.13) holds and (3.7) follows at the level of q + 1. Moreover, by (3.47) and (3.11) we obtain

|||wq+1|||L2,m 6
M0

4
|||R̊q|||1/2L1,m/2 + ē1/2δ

1/2
q+1

M0

4
+
M0

4
λ
−1/14+26α
q+1 (|||R̊q|||3L1,3m + 1)

6
M0

4
(6q2mL2)

1
2 6q +M0ē

1/2δ
1/2
q+1 +

M0

4
λ
−1/14+26α
q+1 (6q · 12mL2)3(6q)

6
M0

2
(6q · 12mL2)3(6q) +M0ē

1/2δ
1/2
q+1.

(3.49)

Thus combined with (3.24) and (3.8) we deduce that (3.8) holds at level of q + 1.

As the next step, we shall verify the first bound in (3.9). The C1
t,x-bound follows similarly as in

[HZZ23] but with an explicit dependence on ‖R̊q‖C[t−1,t+1]L1 . Hence, we omit most details for these

estimates. Using (3.33)-(3.34) and (A.7) we have

‖w(p)
q+1‖C1

t,x
. `−13(‖R̊q‖C[t−1,t+1]L1 + 1)2r−1

⊥ r
−1/2
‖ λ2

q+1, (3.50)

‖w(c)
q+1‖C1

t,x
. `−25(‖R̊q‖C[t−1,t+1]L1 + 1)4r

−3/2
‖ λ2

q+1, (3.51)
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and

‖w(t)
q+1‖C1

t,x
6

1

µ

∑
ξ∈Λ

[‖a2
(ξ)φ

2
(ξ)ψ

2
(ξ)‖CtW 1+α,p + ‖a2

(ξ)φ
2
(ξ)ψ

2
(ξ)‖C1

tW
α,p ]

. `−21(‖R̊q‖C[t−1,t+1]L1 + 1)3r−1
⊥ r−2
‖ λ1+α

q+1 ,

(3.52)

where we chose p large enough and applied the Sobolev embedding in the first inequality. This was
needed because PP 6=0 is not a bounded operator on C0. In the last inequality in (3.52), we used
interpolation and an extra λαq+1 appeared. Combining (3.50), (3.51), (3.52) with (3.19) we obtain

‖vq+1‖C1
t,x
6 ‖v`‖C1

t,x
+ ‖wq+1‖C1

t,x

6 (‖R̊q‖C[t−1,t+1]L1 + 1)4
(
Cλ

26α+22/7
q+1 + Cλ

50α+20/7
q+1 + Cλ43α+3

q+1

)
+ ‖vq‖C1

[t−1,t+1],x
.

Thus,

|||vq+1|||C1
t,x,m

. (|||R̊q|||4L1,4m + 1)λ
26α+22/7
q+1 + |||vq|||C1

t,x,m

6 λ23/7
q+1 (6q · 16mL2)4(6q),

which implies the first inequality in (3.9) holds true on the level q + 1.

Similarly, we have

‖w(p)
q+1‖C2

t,x
. `−19(‖R̊q‖C[t−1,t+1]L1 + 1)3r−1

⊥ r
−1/2
‖ λ2

q+1

(
1 +

r⊥µ

r‖

)2

. λ38α+36/7
q+1 (‖R̊q‖C[t−1,t+1]L1 + 1)3,

(3.53)

‖w(c)
q+1‖C2

t,x
. `−31(‖R̊q‖C[t−1,t+1]L1 + 1)5r

−3/2
‖

(
λq+1

r⊥µ

r‖

)2

. λ34/7+62α
q+1 (‖R̊q‖C[t−1,t+1]L1 + 1)5,

(3.54)

and

‖w(t)
q+1‖C2

t,x
. `−27(‖R̊q‖C[t−1,t+1]L1 + 1)5r−2

⊥ r−1
‖ λ2+α

q+1µ
−1

(
1 +

r⊥µ

r‖

)2

. (‖R̊q‖C[t−1,t+1]L1 + 1)5λ55α+5
q+1 .

(3.55)

Hence, we obtain

‖vq+1‖C2
t,x
. (‖R̊q‖C[t−1,t+1]L1 + 1)5λ

38α+36/7
q+1 + ‖vq‖C2

t,x
,

which implies

|||vq+1|||C2
t,x,m

. (|||R̊q|||5C[t−1,t+1]L1,5m + 1)λ
38α+36/7
q+1 + |||vq|||C2

t,x,m

6 λ37/7
q+1 · (6q · 20mL2)5·6q .

Hence, the second inequality in (3.9) holds true on the level q + 1.

We conclude this part with further estimates of the perturbations w
(p)
q+1, w

(c)
q+1 and w

(t)
q+1, which

will be used below in order to bound the Reynolds stress R̊q+1 and to establish (3.14). These

estimates follow similarly as in [HZZ23] with an explicit dependence on ‖R̊q‖C[t−1,t+1]L1 . We omit
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most details and derive the following estimates: by using (3.19), (3.33), (3.34) and (A.7)

‖w(p)
q+1 + w

(c)
q+1‖CtW 1,p

6
∑
ξ∈Λ

‖curl curl(a(ξ)V(ξ))‖CtW 1,p

. r2/p−1
⊥ r

1/p−1/2
‖

(
`−25λ−2

q+1 + `−19λ−1
q+1 + `−13 + `−2λq+1

)
(‖R̊q‖C[t−1,t+1]L1 + 1)4

. r2/p−1
⊥ r

1/p−1/2
‖ `−2λq+1(‖R̊q‖C[t−1,t+1]L1 + 1)4,

(3.56)

and

‖w(t)
q+1‖CtW 1,p .

1

µ
r

2/p−2
⊥ r

1/p−1
‖

(
`−15 + `−4λq+1

)
(‖R̊q‖C[t−1,t+1]L1 + 1)5/2

. r2/p−2
⊥ r

1/p−1
‖ `−4λ

−2/7
q+1 (‖R̊q‖C[t−1,t+1]L1 + 1)5/2.

(3.57)

We then obtain for p = 32
32−7α

‖wq+1‖CtW 1,p . (r
2/p−1
⊥ r

1/p−1/2
‖ `−2λq+1 + r

2/p−2
⊥ r

1/p−1
‖ `−4λ

−2/7
q+1 )(1 + ‖Rq‖CtL1)4

. (λ
−2/7+9α
q+1 + λ

−1/7+5α
q+1 )(1 + ‖Rq‖CtL1)4. (3.58)

Taking expectation we obtain

E‖wq+1‖rCtW 1,p . λ
−r/7+5rα
q+1 (1 + E‖Rq‖4rCtL1) . λ−r/7+5rα

q+1 (6q · 16rL2)6q·4r 6 λ−r/7+6rα
q+1 ,

where we used (6q · 16rL2)6q 6 λq , λ4
q 6 λ

α
q+1 and we chose a large enough to absorb the constant.

Moreover, by (3.15) we obtain

E‖v` − vq‖rCtW 1,p 6 `rλ6r
q 6 λ

−αr/2
q+1 .

Now, (3.14) follows.

3.1.5. Proof of (3.12). We define

δE(t) :=
∣∣∣e(t)(1− δq+2)−E‖vq+1(t) + zq+1(t)‖2L2

∣∣∣.
Proposition 3.5. It holds for t ∈ R

δE(t) 6
1

4
δq+2e(t). (3.59)

Proof. By definition of γq we find

δE(t) 6 E
∣∣‖w(p)

q+1‖2L2 − 3γq(2π)3
∣∣+ E‖w(c)

q+1 + w
(t)
q+1‖2L2 + 2E‖(v` + zq+1)(w

(c)
q+1 + w

(t)
q+1)‖L1

+ 2E‖(v` + zq+1)w
(p)
q+1‖L1 + 2E‖w(p)

q+1(w
(c)
q+1 + w

(t)
q+1)‖L1

+ E‖v` − vq + zq+1 − zq‖2L2 + 2E‖(v` − vq + zq+1 − zq)(vq + zq)‖L1 ,

(3.60)

which shall be estimated. Let us begin with the bound of the first term on the right hand side of
(3.60). We use (3.36) and the fact that R̊` is traceless to deduce for t ∈ R

|w(p)
q+1|2 − 3γq = 6

√
`2 + |R̊`|2 + 3(γ` − γq) +

∑
ξ∈Λ

a2
(ξ)P6=0|W(ξ)|2,



NON-UNIQUE ERGODICITY FOR 3D NAVIER–STOKES AND EULER EQUATIONS 21

hence

E|‖w(p)
q+1‖2L2 − 3γq+1(2π)3|

6 6 · (2π)3`+ 6E‖R̊`‖L1 + 3 · (2π)3|γ` − γq|+ E
∑
ξ∈Λ

∣∣∣ ∫ a2
(ξ)P6=0|W(ξ)|2

∣∣∣. (3.61)

Here we estimate each term separately. Using (3.20) we find

6 · (2π)3` 6 6 · (2π)3λ
−3α/2
q+1 6

1

48
λ−2βb
q+1 e(t) 6

1

48
δq+2e(t),

which requires 2βb < 3α/2 and choosing a large to absorb the constant. Using (3.10) on R̊q and
suppϕ` ⊂ [0, `] we know for t ∈ R

6E‖R̊`(t)‖L1 6
1

8
δq+2e(t).

For the third term in (3.61) we use (3.3) and (3.7), (3.15) to have for 0 6 δ 6 1/6

3 · (2π)3|γ` − γq| . `‖e′‖C0
t−1

+ `E‖vq‖C1
t−1,x

(‖vq‖Ct−1L2 + ‖zq‖Ct−1L2)

+ `1/2−δE‖zq‖C1/2−δ
t−1 L2(‖vq‖Ct−1L2 + ‖zq‖Ct−1L2)

. `ẽ+ `λ4
q(ē

1/2M0 + L) + `1/2−δL(M0ē
1/2 + L)

. λ−3α/2
q+1 ẽ+ λ−αq+1(M0ē

1/2 + L) + λ
− 3α

2 (1/2−δ)
q+1 L(M0ē

1/2 + L)

. λ−α/2q+1 (ē+ ẽ+ L2) 6
1

48
δq+2e(t),

where we choose a large to absorb the constant.

For the last term in (3.61) we apply (3.33), (3.34) and ‖a2
(ξ)‖CN . ‖a(ξ)‖C0‖a(ξ)‖CN to bound∑

ξ∈Λ

∣∣∣ ∫
T3

a2
(ξ)P6=0|W(ξ)|2dx

∣∣∣ =
∑
ξ∈Λ

∣∣∣ ∫
T3

a2
(ξ)P>r⊥λq+1/2|W(ξ)|2dx

∣∣∣
=
∑
ξ∈Λ

∣∣∣ ∫
T3

|∇|Na2
(ξ)|∇|

−NP>r⊥λq+1/2|W(ξ)|2dx
∣∣∣

. ‖a2
(ξ)‖CN (r⊥λq+1)−N‖|W(ξ)|2‖L2 . `−6N−9(‖R̊q‖C[t−1,t+1]L1 + 1)N+3/2(r⊥λq+1)−Nr−1

⊥ r
− 1

2

‖

6 `−6N−9(‖R̊q‖C[t−1,t+1]L1 + 1)N+3/2λ
8−N

7
q+1 .

Thus

E
∑
ξ∈Λ

∣∣∣ ∫
T3

a2
(ξ)P6=0|W(ξ)|2dx

∣∣∣ . λ(12N+18)α+ 8−N
7

q+1 (6q · 4(N + 3/2)L2)6q(N+3/2)

6 λ127α−1/7
q+1 6

1

48
δq+2e(t).

Here we may choose N = 9, a > [252L2]3c such that (6q · 4(N + 3/2)L2)6q(N+3/2) < λ4
q < λαq+1 and

use 2βb < 1/7− 127α. This completes the bound for (3.61).

Going back to (3.60), it remains to control

E‖w(c)
q+1 + w

(t)
q+1‖2L2 + 2E‖(v` + zq+1)(w

(c)
q+1 + w

(t)
q+1)‖L1

+ 2E‖(v` + zq+1)w
(p)
q+1‖L1 + 2E‖w(p)

q+1(w
(c)
q+1 + w

(t)
q+1)‖L1
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+ E‖v` − vq + zq+1 − zq‖2L2 + 2E‖(v` − vq + zq+1 − zq)(vq + zq)‖L1 .

Using the estimates (3.44), (3.45) and (3.19) we have

E‖w(c)
q+1 + w

(t)
q+1‖2L2 . (1 + |||R̊q|||6L1,6)λ

76α−4/7
q+1 + (1 + |||R̊q|||2L1,2)λ

16α−2/7
q+1

. (6q · 24L2)6q+1

λ
16α−2/7
q+1 6

δq+2

48
e(t),

where we use a similar bound for the parameters as above. Next, we use (3.24) together with (3.42)
to have

E[2‖(v` + zq+1)(w
(c)
q+1 + w

(t)
q+1)‖L1 + 2‖w(p)

q+1(w
(c)
q+1 + w

(t)
q+1)‖L1 ] . (M0ē

1/2 + L)|||w(c)
q+1 + w

(t)
q+1|||L2,2

. (M0ē
1/2 + L)(1 + |||R̊q|||3L1,6)λ

8α−1/7
q+1

6
1

48
λ−2βb
q+1 6

δq+2

48
e(t),

with similar arguments for the second last inequality as above. We employ (3.19), (3.15), (3.43) as
well as ‖v`‖C1

t,x
6 ‖vq‖C1

[t−1,t+1],x
to have for every ε > 0

2E‖(v` + zq+1)w
(p)
q+1‖L1 . (|||v`|||L∞,2 + |||zq|||L∞,2)|||w(p)

q+1|||L1,2 + |||zq+1 − zq|||L4,2|||w
(p)
q+1|||L4/3,2

. (λ4
q + λ

α/8
q+1L)`−2δ

1/2
q+2r

1−ε
⊥ r

1
2 (1−ε)
‖ + λ

−α8 ( 1
4−δ)

q+1 L`−2δ
1/2
q+2r

1/2
⊥ r

1/4
‖

. Lλ
5α− 8

7 (1−ε)
q+1 + Lλ

4α− 4
7

q+1 6
1

96
λ−2βb
q+1 6

δq+2

96
e(t).

(3.62)

For the last terms, we apply (3.23) and obtain for 0 < δ < 1/9

E‖v` − vq + zq+1 − zq‖2L2 + 2E‖(v` − vq + zq+1 − zq)(vq + zq)‖L1

. |||v` − vq|||L2,2(|||vq|||L2,2 + |||zq|||L2,2 + 1) + E‖zq+1 − zq‖2L2

+ |||zq+1 − zq|||L2,2(|||vq|||L2,2 + |||zq|||L2,2)

. `λ4
q(M0ē

1/2 + L) + λ
−α8 (1−δ)
q+1 (M0ē

1/2 + L)

6 λ−α/2q+1 (M0ē
1/2 + L) + λ

−α8 (1−δ)
q+1 (M0ē

1/2 + L)

6
1

96
λ−2βb
q+1 6

δq+2

96
e(t).

(3.63)

Here, we choose again a large enough to absorb the extra constant.

Combining the above estimates, (3.12) follows on the level q + 1. �
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3.1.6. Definition of the Reynolds stress R̊q+1. Subtracting from (3.5) at level q+1 the system (3.21),
we obtain

divR̊q+1 −∇pq+1

= −∆wq+1 + ∂t(w
(p)
q+1 + w

(c)
q+1) + div((v` + z`)⊗ wq+1 + wq+1 ⊗ (v` + z`))︸ ︷︷ ︸

div(Rlin)+∇plin

+ div
(

(w
(c)
q+1 + w

(t)
q+1)⊗ wq+1 + w

(p)
q+1 ⊗ (w

(c)
q+1 + w

(t)
q+1)

)
︸ ︷︷ ︸

div(Rcor)+∇pcor

+ div(w
(p)
q+1 ⊗ w

(p)
q+1 + R̊`) + ∂tw

(t)
q+1︸ ︷︷ ︸

div(Rosc)+∇posc

+ div (vq+1⊗zq+1 − vq+1⊗z` + zq+1⊗vq+1 − z`⊗vq+1 + zq+1⊗zq+1 − z`⊗z`) + (z` − zq+1)︸ ︷︷ ︸
div(Rcom1)+∇pcom1

+ div(Rcom)−∇p`.
(3.64)

By using R introduced in Section 2 we define

Rlin := −R∆wq+1 +R∂t(w(p)
q+1 + w

(c)
q+1) + (v` + z`)⊗̊wq+1 + wq+1⊗̊(v` + z`),

Rcor := (w
(c)
q+1 + w

(t)
q+1)⊗̊wq+1 + w

(p)
q+1⊗̊(w

(c)
q+1 + w

(t)
q+1),

Rcom1 := vq+1⊗̊zq+1 − vq+1⊗̊z` + zq+1⊗̊vq+1 − z`⊗̊vq+1 + zq+1⊗̊zq+1 − z`⊗̊z` +R(z` − zq+1).

In order to define the remaining oscillation error from the third line in (3.64), we apply (3.36)
and (3.39) to obtain

div(w
(p)
q+1 ⊗ w

(p)
q+1 + R̊`) + ∂tw

(t)
q+1

=
∑
ξ∈Λ

div
(
a2

(ξ)P 6=0(W(ξ) ⊗W(ξ))
)

+∇ρ+ ∂tw
(t)
q+1

=
∑
ξ∈Λ

P 6=0

(
∇a2

(ξ)P 6=0(W(ξ) ⊗W(ξ))
)

+∇ρ+
∑
ξ∈Λ

P6=0

(
a2

(ξ)div(W(ξ) ⊗W(ξ))
)

+ ∂tw
(t)
q+1

=
∑
ξ∈Λ

P 6=0

(
∇a2

(ξ)P6=0(W(ξ) ⊗W(ξ))
)

+∇ρ+∇p1 −
1

µ

∑
ξ∈Λ

P6=0

(
∂ta

2
(ξ)(φ

2
(ξ)ψ

2
(ξ)ξ)

)
Therefore,

Rosc :=
∑
ξ∈Λ

B
(
∇a2

(ξ),P6=0(W(ξ) ⊗W(ξ))
)
− 1

µ

∑
ξ∈Λ

R
(
∂ta

2
(ξ)(φ

2
(ξ)ψ

2
(ξ)ξ)

)
=: R(x)

osc +R(t)
osc,

with B given in Section 2.

Finally we define the Reynolds stress on the level q + 1 by

R̊q+1 := Rlin +Rcor +Rosc +Rcom +Rcom1.
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3.1.7. Inductive estimate for R̊q+1. To conclude the proof of Proposition 3.3, we shall verify the

estimates in (3.10) and (3.11). To this end, we estimate each term in the definition of R̊q+1 sepa-
rately.

In the following we choose p = 32
32−7α > 1 so that it holds in particular that r

2/p−2
⊥ r

1/p−1
‖ 6 λαq+1.

For the linear error we obtain

‖Rlin‖CtLp . ‖R∆wq+1‖CtLp + ‖R∂t(w(p)
q+1 + w

(c)
q+1)‖CtLp

+ ‖(v` + z`)⊗̊wq+1 + wq+1⊗̊(v` + z`)‖CtLp

. ‖wq+1‖CtW 1,p +
∑
ξ∈Λ

‖∂tcurl(a(ξ)V(ξ))‖CtLp

+ (‖vq‖C[t−1,t+1]L∞ + ‖zq‖C[t−1,t+1]L∞)‖wq+1‖CtLp ,

where by (A.7) and (3.33)∑
ξ∈Λ

‖∂tcurl(a(ξ)V(ξ))‖CtLp 6
∑
ξ∈Λ

(
‖a(ξ)‖CtC1

x
‖∂tV(ξ)‖CtW 1,p + ‖∂ta(ξ)‖CtC1

x
‖V(ξ)‖CtW 1,p

)
. (‖R̊q‖C[t−1,t+1]L1 + 1)2`−13r

2/p
⊥ r

1/p−3/2
‖ µ

+ (‖R̊q‖C[t−1,t+1]L1 + 1)3`−19r
2/p−1
⊥ r

1/p−1/2
‖ λ−1

q+1.

In view of (3.58) as well as (3.46), we deduce

‖Rlin‖CtLp .
(
λ

5α−1/7
q+1 + λ

9α−2/7
q+1 + λ

27α−1/7
q+1 + λ

39α−15/7
q+1

)
(‖R̊q‖C[t−1,t+1]L1 + 1)4

+ (‖vq‖C[t−1,t+1]L∞ + ‖zq‖C[t−1,t+1]L∞)λ
5α−8/7
q+1 (‖R̊q‖C[t−1,t+1]L1 + 1)3.

The corrector error is estimated using (3.43), (3.44), (3.45) as

‖Rcor‖CtLp 6 ‖w
(c)
q+1 + w

(t)
q+1‖CtL2p‖wq+1‖CtL2p + ‖w(c)

q+1 + w
(t)
q+1‖CtL2p‖w(p)

q+1‖CtL2p

.
(
`−19r

1/p
⊥ r

1/(2p)−3/2
‖ + `−4r

1/p−1
⊥ r

1/(2p)−2
‖ λ−1

q+1

)
`−2r

1/p−1
⊥ r

1/(2p)−1/2
‖ (‖R̊q‖C[t−1,t+1]L1 + 1)7/2

+ ‖w(c)
q+1 + w

(t)
q+1‖2CtL2p

. λ−1/7+13α
q+1 (‖R̊q‖C[t−1,t+1]L1 + 1)7/2 + λ

−2/7+17α
q+1 (‖R̊q‖C[t−1,t+1]L1 + 1)6.

We continue with the oscillation error Rosc. Using (2.1), (2.2) and the definition of W(ξ) we have

‖R(x)
osc‖CtLp 6

∑
ξ∈Λ

∥∥B(∇a2
(ξ),P>r⊥λq+1/2(W(ξ) ⊗W(ξ))

)∥∥
CtLp

. ‖∇a2
(ξ)‖CtC1‖R(W(ξ) ⊗W(ξ))‖CtLp . ‖∇a2

(ξ)‖CtC1

‖W(ξ) ⊗W(ξ)‖CtLp
r⊥λq+1

. ‖∇a2
(ξ)‖CtC1

‖W(ξ)‖2CtL2p

r⊥λq+1
. `−21(‖R̊q‖C[t−1,t+1]L1 + 1)4r

2/p−2
⊥ r

1/p−1
‖ (r−1

⊥ λ−1
q+1)

. λ43α−1/7
q+1 (‖R̊q‖C[t−1,t+1]L1 + 1)4.
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For the second term R
(t)
osc we use Fubini’s theorem to integrate along the orthogonal directions of

φ(ξ) and ψ(ξ) and apply (A.7) to deduce

‖R(t)
osc‖CtLp 6 µ−1

∑
ξ∈Λ

‖∂ta2
(ξ)‖C0

t,x
‖φ(ξ)‖2CtL2p‖ψ(ξ)‖2CtL2p

. (‖R̊q‖C[t−1,t+1]L1 + 1)5/2µ−1`−15r
2/p−2
⊥ r

1/p−1
‖ . λ31α−9/7

q+1 (‖R̊q‖C[t−1,t+1]L1 + 1)5/2.

In view of the standard mollification estimates and (3.7) it holds

‖Rcom‖CtL1 . `‖vq‖C1
[t−1,t+1],x

(‖vq‖C[t−1,t+1]L2 + ‖zq‖C[t−1,t+1]L2)

+ `1/2−δ(‖zq‖C1/2−δ
[t−1,t+1]

L2 + ‖zq‖C[t−1,t+1]H1−δ)(‖vq‖C[t−1,t+1]L2 + ‖zq‖C[t−1,t+1]L2),

where δ < 1
12 . Finally, we use (3.6) to obtain

‖Rcom1‖CtL1 . (‖vq+1‖CtL2 + ‖zq+1‖C[t−1,t+1]L2 + ‖zq‖C[t−1,t+1]L2 + 1)‖z` − zq+1‖CtL2

6 (`
1
2−δ‖z‖

C
1/2−δ
[t−1,t+1]

L2 + ‖z‖C[t−1,t+1]H1−δλ
−α8 (1−δ)
q+1 )(‖vq+1‖CtL2 + ‖z‖C[t−1,t+1]L2 + 1)

6M0|||z|||λ
−α8 (1−δ)
q+1 (‖vq+1‖CtL2 + ‖z‖C[t−1,t+1]L2 + 1).

Here |||z||| = ‖z‖
C

1/2−δ
[t−1,t+1]

L2 + ‖z‖C[t−1,t+1]H1−δ . Summing up all the above estimates, we obtain

‖R̊q+1‖CtL1 . λ43α−1/7
q+1 (‖R̊q‖C[t−1,t+1]L1 + 1)4 + λ

−2/7+17α
q+1 (‖R̊q‖C[t−1,t+1]L1 + 1)6

+ (‖vq‖C[t−1,t+1]L∞ + ‖zq‖C[t−1,t+1]L∞)λ
5α−8/7
q+1 (‖R̊q‖C[t−1,t+1]L1 + 1)3

+ |||z|||λ−
α
8 (1−δ)

q+1 (‖vq+1‖CtL2 + ‖z‖C[t−1,t+1]L2 + 1)

+ (`‖vq‖C1
[t−1,t+1],x

+ `
1
2−δ|||z|||)(‖vq‖C[t−1,t+1]L2 + ‖z‖C[t−1,t+1]L2).

Thus taking the r-th moment, using Hölder’s inequality and (3.15), (3.11), (3.6) we obtain

|||R̊q+1|||L1,r . λ
43α−1/7
q+1 (|||R̊q|||4L1,4r + 1) + λ

−2/7+17α
q+1 (|||R̊q|||6L1,6r + 1)

+ (|||vq|||C1
t,x,2r

+ |||zq|||L∞,2r)λ5α−8/7
q+1 (|||R̊q|||3L1,6r + 1)

+ λ
−α8 (1−δ)
q+1 (|||vq+1|||L2,2r + (2r − 1)1/2L)L(2r − 1)1/2

+ (`|||vq|||C1
t,x,2r

+ `
1
2−δL(2r − 1)1/2)(|||vq|||L2,2r + L(2r − 1)1/2)

. λ43α−1/7
q+1 (6q · 24L2r)6q+1

+ λ
5α−8/7
q+1 (6q · 24L2r)3(6q)(λ4

q + λ
α/8
q+1L)

+ (M0ē
1/2 + L)(Lλ

−α8 (1−δ)
q+1 + `λ4

q + `
1
2−δL)

. λ43α−1/7
q+1 λ6

q + (λ
5α−8/7
q+1 λ3

q + λ
−3α/2
q+1 )(λ4

q + λ
α/8
q+1) + λ

−α8 (1−δ)
q+1

6
1

48
δq+3e.

Here in the third inequality we used (6q ·24L2r)6q 6 λq and in the last inequality we used 43α < 1/14
and 6/b+ 2βb2 < 1/14 and α > 40βb2 and αb > 32/7. Hence (3.10) holds on the level q + 1.
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Similarly, for m > 1 we use the first inequality as above with r replaced by m and instead of
(3.7) we use (3.9) and (3.8) to obtain

|||R̊q+1|||L1,m . λ
43α−1/7
q+1 (|||R̊q|||4L1,4m + 1) + λ

−2/7+17α
q+1 (|||R̊q|||6L1,6m + 1)

+ (|||vq|||C1
t,x,2m

+ |||zq|||L∞,2m)λ
5α−8/7
q+1 (|||R̊q|||3L1,6m + 1)

+ λ
−α8 (1−δ)
q+1 (|||vq+1|||L2,2m + (2m)1/2L)(2m)1/2L

+
(
`|||vq|||C1

t,x,2m
+ `

1
2−δL(2m)1/2

)
(|||vq|||L2,2m + L(2m)1/2)

. λ43α−1/7
q+1 (6q · 24mL2)6q+1

+ λ
5α−8/7
q+1 (6q · 24mL2)3(6q)

(
λ23/7
q (6q−1 · 32mL2)4(6q−1) + λ

α/8
q+1(2m)1/2L

)
+ (2m)1/2Lλ

−α8 (1−δ)
q+1

(
(6q · 24mL2)3(6q) + ē1/2 + (2m)1/2L

)
+
(

(6q · 4mL2)3(6q−1) + ē1/2 + (2m)1/2L
)

×
(
`λ23/7
q (6q−1 · 32mL2)4(6q−1) + `

1
2−δL(2m)1/2

)
6 (6q+1 · 4mL2)6q+1

.

The proof of Proposition 3.3 is therefore complete.

4. Stationary solutions to the stochastic Navier–Stokes system

We recall that the trajectory space is T = C(R;L2
σ)×C(R;L2

σ) and the corresponding shifts St,
t ∈ R, on trajectories are given by

St(u,B)(·) = (u(·+ t), B(·+ t)−B(t)), t ∈ R, (u,B) ∈ T .

The notion of stationary solution was introduced in Definition 1.2. Our first result of this section is
existence of stationary solutions as limits of ergodic averages of solutions constructed in the previous
section. This in particular implies their non-uniqueness.

Theorem 4.1. Let u be a solution obtained in Theorem 3.4 with e(t) = K for some K > 8 · 48L2r
and satisfying (3.16) and (3.18) with given ε > 0 and r > 1. Then there exists a sequence Tn →∞
and a stationary solution ((Ω̃, F̃ , P̃), ũ, B̃) to (1.4) such that

1

Tn

∫ Tn

0

L[St(u,B)]dt→ L[ũ, B̃]

weakly in the sense of probability measures on T as n→∞. Moreover, it holds true that

Ẽ‖ũ‖2L2 = K, (4.1)

and for ε > 0

|||ũ− z̃|||W 1,1,r 6 ε, (4.2)

for z̃(t) = P
∫ t
−∞ e(t−s)(∆−1)dB̃s and for some ϑ > 0 and for every N ∈ N

Ẽ sup
t∈[−N,N ]

‖ũ(t)‖2rHϑ + E‖ũ‖2rCϑ([−N,N ],L2) . N. (4.3)
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Proof. We define the ergodic averages of the solution (u,B) as the probability measures on the space
of trajectories T

νT =
1

T

∫ T

0

L[St(u,B)]dt, T > 0.

By Theorem 3.4 we obtain

sup
s∈R

E sup
t∈[−N,N ]

‖u(t+ s)‖2rHϑ 6 sup
s∈R

N−1∑
i=−N

E sup
t∈[i,i+1]

‖u(t+ s)‖2rHϑ

6 2N sup
s>0

E sup
t∈[0,1]

‖u(t+ s)‖2rHϑ . N,

and similarly

sup
s∈R

E‖u(·+ s)‖2Cϑ([−N,N ],L2) . N.

For RN > 0, N ∈ N, we note that the set

KM := ∩∞N=M

{
g1; ‖g1‖Cϑ

[−N,N]
L2 + sup

t∈[−N,N ]

‖g1(t)‖Hϑ 6 RN
}

is relatively compact in C(R;L2
σ). As a consequence, we deduce that the time shifts Stu, t ∈ R, are

tight on C(R;L2
σ). Since StB is a Wiener process for every t ∈ R, the law of StB does not change

with t ∈ R and is tight. Accordingly, for any ε > 0 there is a compact set K̄ε in T such that

sup
t∈R

P(St(u,B) ∈ K̄c
ε) < ε.

This implies

νT (K̄c
ε) =

1

T

∫ T

0

P(St(u,B) ∈ K̄c
ε)dt < ε

and therefore there is a weakly converging subsequence of the probability measures νT , T > 0. That
is, there is a subsequence Tn →∞ and ν ∈ P(T ) such that νTn → ν weakly in P(T ).

Define the set

A =
{

(u,B) ∈ T ; 〈u(t), ψ〉+

∫ t

s

〈div(u⊗ u), ψ〉dr

= 〈u(s), ψ〉+

∫ t

s

〈∆u, ψ〉dr + 〈B(t)−B(s), ψ〉, ∀ψ ∈ C∞(T3), divψ = 0, t > s
}
.

Since (u,B) in the statement of the theorem satisfies the equation, we have for all t ∈ R
L[St(u,B)](A) = 1.

Hence, also νTn(A) = 1 for all n ∈ N. By Jakubowski–Skorokhod representation theorem, there

is a probability space (Ω̃, F̃ , P̃) with a sequence of random variables (ũn, B̃n), n ∈ N, such that

L[ũn, B̃n] = νTn and (ũn, B̃n) satisfy equation (1.4) on R. By (3.17) we know

Ẽ‖ũn(t)‖2L2 =
1

Tn

∫ Tn

0

E‖Ssu(t)‖2L2ds = K. (4.4)

By (3.16)

sup
n

Ẽ‖ũn(t)‖2rL2 = sup
n

1

Tn

∫ Tn

0

E‖Ssu(t)‖2rL2ds <∞. (4.5)
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Moreover, there is a random variable (ũ, B̃) having the law L[ũ, B̃] = ν so that

(ũn, B̃n)→ (ũ, B̃) P̃-a.s. in T .

Thus, we can pass to the limit in the equation to deduce that ν is a law of a solution on R.

The shift invariance follows from the same argument as in [BFH20e, Lemma 5.2]. Namely, it
holds for G ∈ Cb(T ) and r ∈ R∫

T
G ◦ Sr(u,B)dν(u,B) =

∫
T
G(u,B)dν(u,B).

Finally, (4.1) follows from (4.4), (4.5) and (4.2), (4.3) follow from a lower-semicontinuity argument
and the related bound for the approximations. In fact, we define

z̃n(t) :=

∫ t

−∞
e(t−s)(∆−I)dB̃n = B̃n(t) +

∫ t

−∞
(∆− I)e(t−s)(∆−I)B̃nds.

We know that z̃(t)n → z̃(t) =
∫ t
−∞ e(t−s)(∆−I)dB̃ in C(R, H−2) P̃ a.s. Thus (4.2) follows from

lower-semicontinuity. �

Using the above result and choosing different K, the first claim in Theorem 1.4 follows.

By a general result applied also in [BFH20e, FFH21, HZZ22] and using Theorem 4.1 we obtain
existence of infinitely many ergodic stationary solutions as follows.

Theorem 4.2. Let r > 1. For K > 8 · 48L2r there exists C > 0 and an ergodic stationary solution
((Ω,F ,P), u,B) satisfying

E‖u‖2L2 = K, (4.6)

and for some ϑ > 0 and for every N ∈ N

E sup
t∈[−N,N ]

‖u(t)‖2rHϑ + E‖u‖2rCϑ([−N,N ],L2) 6 CN. (4.7)

Proof. In view of Theorem 4.1, this is a consequence of a Krein–Milman argument. In particular,
we observe that the set of all laws of stationary solutions satisfying (4.6) and (4.7) is non-empty,
convex, tight and closed which follows from the arguments in the proof of Theorem 4.1. Hence there
exist an extremal point. By a classical contradiction argument, it is the law of an ergodic stationary
solution.

Non-uniqueness of ergodic stationary solutions follows from choosing different K. �

5. Stationary solutions to the stochastic Euler equations

We proceed with a construction of stationary solutions to the stochastic Euler equations (1.5).

Theorem 5.1. Assume that Tr((−∆)σGG∗) < ∞ for some σ > 0. There exist infinitely many
stationary solutions ((Ω,F ,P), u,B) to stochastic Euler equations (1.5) on R × T3. In particular,
let r > 1 and for a given K > 8 · 48L2r with L being the bound for the noise in Proposition 3.2,
there exists a stationary solution ((Ω,F ,P), u,B) to (1.5) satisfying

E‖u‖2L2 = K,

as well as (4.3) for some ϑ > 0.
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Moreover, for an arbitrary sequence of vanishing viscosities νn → 0, n ∈ N, there exist a sequence
of stationary solutions un, n ∈ N, to the following stochastic Navier–Stokes equations

dun + div(un ⊗ un) dt+∇Pn dt = νn∆un dt+ dB, (5.1)

so that the corresponding family of laws L[un], n ∈ N, is tight in C(R;L2
σ) and every accumulation

point is a stationary solution to (1.5).

Finally, there exist infinitely many ergodic stationary solutions to (1.5).

Proof. In order to construct stationary solutions to the stochastic Euler equations (1.5), we decom-
pose its solution u as v + z where z solves the linear stochastic problem

dz + z dt = dB, (5.2)

whereas v is a solution to the nonlinear equation with random coefficients

∂tv − z + div((v + z)⊗ (v + z)) +∇P = 0,

divv = 0.
(5.3)

Suppose that z is the unique stationary solution to (5.2) such that the bound from Proposition 3.2
is changed to: for any δ ∈ (0, 1/2), p > 1

sup
t∈R

E
[
‖z‖p

C
1/2−δ
t Hσ

]
6 (p− 1)p/2Lp. (5.4)

Here, unlike in Proposition 3.2, we cannot use the smoothing effect of the Laplacian and hence we
get the spatial regularity of z from the strengthened assumption on the Wiener process.

Accordingly, (3.6) changes to

|||zq|||L∞,p 6 |||zq|||C1/2−2δ
t L∞,p

6 λα/4q+1(p− 1)1/2L. (5.5)

In Section 3.1.5, we need to modify the bounds (3.62) and (3.63). The former one now reads for
every ε > 0 as

2E‖(v` + zq+1)w
(p)
q+1‖L1 . (|||v`|||L∞,2 + |||zq|||L∞,2)|||w(p)

q+1|||L1,2 + |||zq+1 − zq|||L2,2|||w
(p)
q+1|||L2,2

. (λ4
q + λ

α/8
q+1L)`−2δ

1/2
q+2r

1−ε
⊥ r

1
2 (1−ε)
‖ + λ

−ασ/8
q+1 M0ē

1/2

. Lλ
5α− 8

7 (1−ε)
q+1 + λ

−ασ/8
q+1 M0ē

1/2 6
1

96
λ−2βb
q+1 6

δq+2

96
e(t),

where we use (3.42) and (3.48) to control |||w(p)
q+1|||L2,2 and we need ασ > 16βb. The latter one now

relies on

E‖zq+1 − zq‖2L2 6 Lλ
−ασ/8
q+1 ,

which requires M0(ē1/2 + L) 6 λ
ασ/8−2βb
q+1 , i.e. ασ > 16βb and a large enough to absorb the extra

constant.

For the control of R̊q+1 we can use (5.5) to derive the same bounds for most of the terms as in
Section 3.1.7. The main change comes from the following two parts in Rcom and Rcom1, namely,

`σ‖zq‖C[t−1,t+1]Hσ (‖vq‖C[t−1,t+1]L2 + ‖zq‖C[t−1,t+1]L2 + ‖vq+1‖C[t−1,t+1]L2),

and

‖z‖C[t−1,t+1]Hσλ
−ασ/8
q+1 (‖vq‖C[t−1,t+1]L2 + ‖zq‖C[t−1,t+1]L2 + 1).
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Then, when we estimate |||R̊q+1|||L1,r we have the following extra term

(M0ē
1/2 + L)L(λ

−ασ/8
q+1 + `σ),

which requires (M0ē
1/2 + L)L 6 λ

ασ/8−2bβ2

q+1 , i.e. ασ > 16βb2. We obtain this additional bound by
choosing β small enough.

Consequently, we deduce existence and non-uniqueness of solutions to stochastic Euler equations
as in Theorem 3.4. Furthermore, existence and non-uniqueness of stationary solutions follow by the
same argument as in Theorem 4.1. This completes the proof of the first claim in Theorem 5.1.

For the second result in Theorem 5.1, we first apply Theorem 4.1 to derive the existence of
stationary solutions un, n ∈ N, to equations (5.1) with un satisfying (4.3) uniformly in n. More
precisely, we choose zn satisfying

dzn + zn dt = νn∆zn dt+ dB. (5.6)

Then zn satisfies (5.4) uniformly in n, using again the regularity of the noise instead of the smoothing
effect of the Laplacian. Hence, by exactly the same argument as above and Theorem 4.1 we know
that (4.3) holds uniformly in n, which implies tightness of un, n ∈ N, in C(R;L2

σ). By Jakubowski–
Skorokhod representation theorem, we can modify the stochastic basis and pass to the limit in the
approximate Navier–Stokes equations (5.1) and derive the claim.

Existence and non-uniqueness of ergodic stationary solutions follows from the same argument as
in Theorem 4.2. �

Motivated by the recent work [BD22], we note that our construction can be employed to give
a result related to anomalous dissipation along a vanishing viscosity limit in a Navier–Stokes–
Reynolds system. Unlike [BD22], our result holds in the context of statistically stationary solutions,
bringing our theory even closer to the fundamental principles of the Kolmogorov’s 1941 theory
of homogeneous, isotropic turbulence [Kol41a, Kol41b, Kol41c]. To this end, we first recall the
following version of the geometric lemma from [DK20, Lemma 3.2], which we use as a replacement for
Lemma A.1. It permits to derive a lower bound on the L2-norm of the gradient of the perturbations
vq+1 (see Lemma 5.3 below) and leads to the anomalous dissipation produced by convex integration.
In particular, we point out that the anomalous dissipation is not a consequence of the behavior of
the linear part of the equations as discussed in Remark 1.7.

Lemma 5.2. Let Λ = {ξi}6i=1 be a set of vectors in Q3 and C > 0 such that

6∑
i=1

ξi ⊗ ξi = CId, {ξi ⊗ ξi}6i=1 forms a basis of S3×3. (5.7)

Then there exists a positive constant N0 such that for any N 6 N0, there are functions {γξi}6i=1 ⊂
C∞(BN0(Id)) satisfying for K ∈ BN (Id)

K =

6∑
i=1

γ2
ξi(K)(ξi ⊗ ξi).

Moreover, γ2
ξi

(K) > 1
2C for K ∈ BN0

(Id).

Now, we choose ξi ∈ S2 ∩Q3 as ( 3
5 ,±

4
5 , 0), ( 4

5 , 0,±
3
5 ) and (0, 3

5 ,±
4
5 ). They satisfy the condition

(5.7) with C = 2. In this case we could find N0 such that for every matrix R ∈ BN0(Id) the result
in Lemma 5.2 holds with γ2

ξ > 1/4. This is the key point in the following lemma.
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Lemma 5.3. In the setting of Proposition 3.3 it holds that for q ∈ N0 and every t ∈ R

E‖∇vq+1(t)‖2L2 >
1

4N0
`λ2
q+1 − λ

13/7+14α
q+1 .

Proof. Since we use a modified geometric lemma we change the definition of ρ with 2 replaced by
1/N0. Since N0 is a universal constant we only need to change the bound (3.10) as

|||R̊q|||L1,r 6
1

48
N0eδq+2,

and we choose M0 in (3.7) depending on N0. We calculate ‖∇vq+1‖2L2 and have

‖∇vq+1‖2L2 = ‖∇v`‖2L2 + ‖∇w(p)
q+1‖2L2 + ‖∇(w

(c)
q+1 + w

(t)
q+1)‖2L2 + 2〈∇v`,∇(w

(p)
q+1 + w

(c)
q+1 + w

(t)
q+1)〉

+ 2〈∇w(p)
q+1,∇(w

(c)
q+1 + w

(t)
q+1)〉.

We use the lower bound of γξ from Lemma 5.2, the fact that ρ > N−1
0 `, a direct calculation showing

‖∇W(ξ)‖L2 ∼ λq+1 and (3.33) and (A.7) to have

‖∇w(p)
q+1‖2L2 >

∑
ξ

1

4N0
`‖∇W(ξ)‖2L2 −

∑
ξ

‖a(ξ)‖2C1
t,x
‖W(ξ)‖2L2

&
1

4N0
`λ2
q+1 − `−26(‖R̊q‖4L1 + 1).

Taking expectation we use (3.11) to get

E‖∇w(p)
q+1‖2L2 &

1

4N0
`λ2
q+1 − `−26E(‖R̊q‖4L1 + 1)

&
1

4N0
`λ2
q+1 − λ52α

q+1λ
4
q.

For the rest thems we first use (3.15) to have

sup
t∈R

E‖∇v`‖2L2 6 λ8
q.

For the other terms we apply (A.7) and (3.33)-(3.34) to have

‖∇w(c)
q+1‖2L2 . ‖a(ξ)‖2C1

t,x
‖∇W (c)

(ξ) ‖
2
L2 + ‖a(ξ)‖2C3

t,x
‖V(ξ)‖2CtH2

. `−26λ2
q+1r

2
⊥r
−2
‖ (‖R̊q‖4L1 + 1) + `−50(‖R̊q‖8L1 + 1),

and

‖∇w(t)
q+1‖2L2 .

1

µ2

∑
ξ∈Λ

(
‖a(ξ)‖C0

t,x
‖a(ξ)‖C1

t,x
‖φ(ξ)‖2L4‖ψ(ξ)‖2CtL4

+ ‖a(ξ)‖2C0
t,x
‖φ(ξ)‖L4‖∇φ(ξ)‖L4‖ψ(ξ)‖2CtL4

+ ‖a(ξ)‖2C0
t,x
‖φ(ξ)‖2L4‖∇ψ(ξ)‖CtL4‖ψ(ξ)‖CtL4

)2

.
1

µ2

(
`−15(‖R̊q‖5/2L1 + 1)r−1

⊥ r
−1/2
‖

+ `−4(‖R̊q‖L1 + 1)λq+1r
−1
⊥ r
−1/2
‖ (1 +

r⊥
r‖

)
)2

.
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Hence, in view of (3.11) we use a > (192rL2)c to have |||R̊q|||L1,8 6 λq to obtain

E‖∇w(c)
q+1‖2L2 + E‖∇w(t)

q+1‖2L2 . λ
10/7+52α
q+1 λ4

q + λ100α
q+1 λ

8
q + λ

60α−2/7
q+1 λ5

q + λ
12/7+16α
q+1 λ2

q

. λ12/7+17α
q+1 .

We use (3.33), (A.7) and have

E‖∇w(p)
q+1‖2L2 . `−4λ2

q+1λq + `−26E(‖R̊q‖4L1 + 1)

. `−4λ2
q+1λq.

As a result, we apply Hölder’s inequality for the cross term and get

2E|〈∇v`,∇(w
(p)
q+1 + w

(c)
q+1 + w

(t)
q+1)〉|+ 2E|〈∇w(p)

q+1,∇(w
(c)
q+1 + w

(t)
q+1)〉|

. λ4
qλ

1+4α
q+1 λ1/2

q + λ1+4α
q+1 λ

6/7+9α
q+1 . λ13/7+13α

q+1 .

Summing up the above estimates the result follows. �

Our result related to anomalous dissipation then reads as follows.

Theorem 5.4. Suppose that Tr((−∆)5/2+σGG∗) < ∞ for some σ > 0. Let ε > 0, r > 1 and
K > 48 · 8L2r/N0 be given with L being the bound for the noise in Proposition 3.2. There exists a

sequence of viscosities νn → 0 and stationary processes (un, R̊n) ∈ C(R;H1) × C(R;L1) satisfying
the following stochastic Navier–Stokes–Reynolds equations

dun + div(un ⊗ un) dt+∇Pn dt = νn∆un dt+ divR̊n dt+ dB, (5.8)

lim
n→∞

|||R̊n|||L1,r = 0,

and

lim inf
n→∞

νnE‖∇un‖2L2 > ε+
1

2
Tr(GG∗). (5.9)

Furthermore, the corresponding family of laws L[un], n ∈ N, is tight in C(R;L2
σ) and every accumu-

lation point is a stationary solution to the stochastic Euler equations (1.5) with E‖u‖2L2 = K and
satisfying (4.3) for some ϑ > 0. In particular, the solutions un, n ∈ N, can be chosen as ergodic
stationary solutions.

Proof. Let zn to be the stationary solution to (5.6). Here, we suppose that G satisfies the stronger
condition from the statement of the theorem so that for δ ∈ (0, 1/2) and n ∈ N

|||zn|||C1/2−δ
t C1

x,p
+ |||zn|||H5/2,p 6 (p− 1)1/2L.

For a fixed n ∈ N, we run the stochastic convex integration as in Section 3 but we do not project zn
as before. More precisely, we construct a sequence of solutions (vn,q, R̊n,q) satisfying the following
equations

∂tvn,q − zn + div((vn,q + zn)⊗ (vn,q + zn)) +∇pn,q = νn∆vn,q + divR̊n,q,

divvn,q = 0.

Set un = vn,n + zn and R̊n = R̊n,n. Using the estimates in Proposition 3.3 with e(t) = K we obtain

|||un|||Hϑ,2r + |||un|||Cϑt L2,2r . 1, (5.10)



NON-UNIQUE ERGODICITY FOR 3D NAVIER–STOKES AND EULER EQUATIONS 33

with the proportional constant independent of n and

|||un − zn|||C1
t,x,2r

6 λ4
n, |||un − zn|||C2

t,x,r
6 λ6

n, |||R̊n|||L1,r 6
1

48
N0δn+2K, (5.11)

and for any t ∈ R
3

4
δn+1K 6 K −E‖un(t)‖2L2 6

5

4
δn+1K. (5.12)

In order to derive (5.9) we apply Lemma 5.3 to have

E‖∇vn,n‖2L2 >
1

4N0
λ2−3α/2
n λ−2

n−1 − λ13/7+14α
n .

On the other hand, we estimate using (3.14)

E〈∇vn,n,∇zn〉 6 E‖vn,n‖W 1,1‖∇zn‖L∞ 6 (E‖vn,n‖2W 1,1)1/2(E‖∇zn‖2L∞)1/2

6
n∑
q=0

(λ−α/2q + λ−1/7+6α
q )L 6 L,

where we could choose a large enough as in the proof of Theorem 3.4. We then get

E‖∇un‖2L2 &
1

4N0
λ2−3α/2
n λ−2

n−1 − λ13/7+14α
n − 2L+ E‖∇zn‖2L2 ,

with a proportional constant independent of n. We denote this constant by c and let

νn =

(
ε+

1

2
Tr(GG∗)

)
c−14N0λ

−2+3α/2
n λ2

n−1, (5.13)

we deduce for t ∈ R

νnE‖∇un(t)‖2L2 > ε+
1

2
Tr(GG∗) + νnc

(
−λ13/7+14α

n − 2L+ E‖∇zn‖2L2

)
. (5.14)

Next, we recall that zn is a stationary solution to (5.6). Hence it follows from Itô’s formula that

E‖zn‖2L2 + νnE‖∇zn‖2L2 =
1

2
Tr(GG∗).

On the other hand, since

zn(t) =

∫ t

−∞
e(t−s)(νn∆−I)dB,

a direct computation yields

lim
n→0

E‖zn‖2L2 =
1

2
Tr(GG∗),

which further implies

lim
n→∞

νnE‖∇zn‖2L2 = 0.

Therefore, in view of (5.13) and (5.14), and the choice of the parameter α, (5.9) follows for
un(t), t ∈ R.

Furthermore, we use (3.53)-(3.55) to have for δ > 0

sup
t∈R

E‖R̊n‖rCδtW δ,1 . C(n). (5.15)

We need the above estimate for the tightness in the trajectory space for R̊n in order to construct a
stationary solution below. Here, the constant may depend on n.
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Based on these estimates, we consider (un, B, R̊n) on the trajectory space T1 = C(R;L2
σ) ×

C(R;L2
σ)× C(R;L1). The corresponding shifts St, t ∈ R are given by

St(u,B, R̊)(·) = (u(·+ t), B(·+ t)−B(t), R̊(·+ t)), t ∈ R, (u,B, R̊) ∈ T1.

Using (5.10) and the last estimate in (5.11) and (5.15) it follows that for a fixed n, the ergodic
averages

νn,T =
1

T

∫ T

0

L[St(un, B, R̊n)]dt, T > 0,

form a tight set in T1. Furthermore, using the second estimate in (5.11) the probability measures
1
T

∫ T
0
L[Stun]dt, T > 0, form a tight set in C(R;H1). Hence similar arguments as in the proof

of Theorem 4.1 lead to the existence of a stationary solution to (5.8), which is still denoted by

(un, B, R̊n) and satisfies (5.9)-(5.12).

Now, we apply a tightness argument to the stationary solutions (un, B, R̊n), n ∈ N, and the third

estimate in (5.11) to obtain |||R̊n|||L1,r → 0. Letting n→∞ we obtain that the tight limit of un is a
stationary solution to the stochastic Euler equations.

Furthermore, Krein–Milman’s theorem permits to choose un as ergodic stationary solutions and
the final result follows. �

6. Stationary solutions to the deterministic Navier–Stokes/Euler equations

In this section, we construct random statistically stationary solutions to the deterministic Navier–
Stokes/Euler equations on R×T3. As mentioned in the introduction, a lot has been already achieved
by using the known deterministic results about Euler and Navier–Stokes equations. Furthermore,
also the results of Section 3, Section 4 and Section 5 can be applied with G = 0. Therefore, here
we focus on proving that the constructed stationary solutions may be genuinely random as well as
time dependent. Precisely, we show that the solutions can be close in a certain sense to a given
stationary stochastic process. This further highlights the fact how arbitrary the stationary solutions
to the deterministic Navier–Stokes/Euler equations can be. In particular, the constructed stationary
solutions can possess “almost” Gaussian or non-Gaussian statistics.

In the sequel, we make a few modifications in the construction of Section 3. We consider the
iteration

∂tuq + div(uq ⊗ uq) +∇pq = ν∆uq + divR̊q (6.1)

with ν = 1 or 0, which corresponds to the Navier–Stokes and Euler equations, respectively. In this
case Proposition 3.3 holds for (uq, R̊q) satisfying (6.1). Its proof simplifies as we do not need to
include the process zq anymore. Based on this, we obtain the following result.

Theorem 6.1. Let r > 1 be fixed and Z be an F-measurable stationary stochastic process with
smooth trajectories and vanishing mean and divergence and satisfying(

E‖Z‖mL2 + E‖Z‖mC2
t,x

)1/m

6 m1/2L, (6.2)

for any m > 1 and some L > (2π)3. Let a smooth function e : R → (0,∞) satisfying ē >
e(t) > e > 192rL2 and ε > 0 be given. There exists an F-measurable process u which belongs
to C(R;Hϑ) ∩ Cϑ(R;L2) P-a.s. and is an analytically weak solution to the deterministic Navier–
Stokes/Euler equations on R× T3. Moreover, there exists ϑ > 0 such that

|||u|||Hϑ,2r + |||u|||Cϑt L2,2r <∞,
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and for t ∈ R
E‖u(t)‖2L2 = e(t), (6.3)

and

sup
t∈R

E‖u− Z‖rCtW 1,1 6 ε. (6.4)

Proof. We start the iteration with u0 = Z, so (6.1) on the level q = 0 reads as

∂tZ + div(Z ⊗ Z) +∇p0 − ν∆Z =: div R̊0

with
R̊0 = Z⊗̊Z −R(ν∆Z − ∂tZ).

The last term is the reason why we require smoothness of trajectories of the process Z and we also
need a bound for the C2

t,x-norm of v0 = Z. Hence, for some r > 1 such that e > 192rL2

|||R̊0|||L1,r 6 2rL2 + (2π)3 · 2rL 6 1

48
e,

and for m > 1

|||R̊0|||L1,m 6 2mL2 + (2π)3 · 2mL 6 4mL2.

Now, we run the convex integration from Proposition 3.3 and we get a limit u = limq→∞ uq in
C(R, Hϑ) ∩Cϑ(R, Hϑ) which solves the deterministic Navier–Stokes/Euler equations. Moreover, it
holds

u− Z =

∞∑
q=0

(uq+1 − uq).

Thus, as in Proposition 3.3 we could choose a large enough so that (3.14) implies (6.4). The rest of
the proof follows exactly the same arguments as in the proof of Theorem 3.4. �

Remark 6.2. From the proof it can be seen that the stochastic convex integration is not necessary
provided Z satisfies certain stronger assumptions. For instance, if Z possesses a uniform in ω
bound in C2

b (R × T3), a deterministic convex integration à la [BV19b] can be applied pathwise,
an ω-dependent energy can be prescribed pathwise and the expectation in (6.4) can be dropped.
Furthermore, the stochastic convex integration is also not necessary provided the trajectories of Z
belong to C2

b (R × T3) a.s. In this case, we can apply the deterministic convex integration on each
of the sets

ΩL =
{
ω ∈ Ω; L− 1 6 ‖Z(ω)‖C2

b (R×T3) < L
}

and glue the solutions together similarly to [HZZ22, Theorem 3.2]. Restricting to the sets ΩL permits
to obtain the F-measurability of the solutions, since the parameters in the convex integration only
differ for different L but not for each different ω.

Combining the above with the proof of Theorem 5.1 we obtain the following result.

Theorem 6.3. Let r > 1, ε > 0, let Z be as in Theorem 6.1 and let K > 192rL2. There exist a
random, time dependent, stationary solution (Ω̃, F̃ , P̃, ũ) to the deterministic Navier–Stokes/Euler
equations on R× T3 satisfying

Ẽ‖ũ‖2L2 = K,

and a stochastic process Z̃ defined on the same probability space, L[Z̃] = L[Z], so that

Ẽ‖ũ− Z̃‖rCtW 1,1 6 ε. (6.5)
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Furthermore, there exist non-unique ergodic stationary solutions.

Proof. The proof proceeds similarly to the proof of Theorem 4.1. The main difference is that now
we consider the ergodic averages

νT :=
1

T

∫ T

0

L[St(u, Z)]dt :=
1

T

∫ T

0

L[(u, Z)(t+ ·)]dt, T > 0.

The uniform bounds of u and Z imply tightness of νT in C(R;L2
σ) × C(R;C1). We could find a

stationary solution (Ω̃, F̃ , P̃ , ũ, Z̃) such that Ẽ‖ũ‖2L2 = K for some given K and

sup
t∈R

Ẽ‖ũ− Z̃‖CtW 1,1 6 ε.

This also implies that the stationary solution depends on time and is genuinely random provided
Z is time dependent and genuinely random. For different K we have different stationary solutions
which also gives non-unique ergodic stationary solutions. �

The above results offer a lot of freedom in the choice of the process Z, showing how arbitrary
the law of constructed stationary solutions can be. For instance, the construction can be performed
with a Gaussian stationary process Z with smooth trajectories. A simple example is given by

Z(t) = (cos(t)ξ1 + sin(t)ξ2) eik·xek,

where ξ1, ξ2 are independent standard Gaussians and k, ek ∈ R3 \ {0} are orthogonal. In this case,
we could find L > 0 such that for every m > 2, |||Z|||C2

t,x,m
+ |||Z|||L2,m 6 (m − 1)1/2L. Hence, (6.2)

is satisfied. Note that this corresponds to the second situation discussed in Remark 6.2, namely,
where the trajectories of Z belong to C2

b (R× T3) a.s.

To construct a Gaussian process Z outside of the simplified setting of Remark 6.2, we may
consider z as in Section 3, i.e. a stationary solution to (3.1), and define Z to be its space-time
mollification. Then (6.2) follows from Proposition 3.2 and the stochastic convex integration as used
in Theorem 6.1 can be applied.

But we may as well define Z to be non-Gaussian. For example, we let Z(t) = X(t) = cos(t +
Y )eik·xek, where k, ek ∈ R3 \ {0} are orthogonal and Y is uniformly distributed on (0, 2π]. Alter-
natively, we use the process X given above and define Z(t) =

∫∞
0
es(ν∆−I)X(t − s)ds which is a

stationary solution to the following equation

∂tZ + Z = ν∆Z +X, (6.6)

which is also of zero mean and divergence free. Both these examples have uniform in ω bounds as
discussed in Remark 6.2 and they are non-Gaussian.

Theorem 6.4. Let r > 1, ε > 0, ε > 0, let Z be as in Theorem 6.1 and let K > 48 · 4rL2. Up to
a change of probability space, there exist νn → 0 and stationary processes (un, R̊n) ∈ C(R;H1) ×
C(R;L1), satisfying the following random Navier–Stokes–Reynolds equations

∂tun + div(un ⊗ un) +∇Pn = νn∆un + divR̊n, (6.7)

lim
n→∞

|||R̊n|||L1,1 = 0,

and

lim inf
n→∞

νnE‖∇un‖2L2 > ε. (6.8)
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Furthermore, the corresponding family of laws L[un], n ∈ N, is tight in C(R;L2
σ) and every accu-

mulation point is a stationary solution to the deterministic Euler equations

∂tu+ div(u⊗ u) +∇p = 0,

with E‖u‖2L2 = K and satisfying (4.3) for some ϑ > 0 and

E‖u− Z‖rCtW 1,1 6 ε. (6.9)

This implies that the solution u can be random and time dependent. In particular, the solutions un,
n ∈ N, can be chosen as ergodic stationary solutions.

Proof. For a fixed n ∈ N, we run the stochastic convex integration as in Section 3 starting at
un,0 = Z and we obtain a sequence of solutions (un,q, R̊n,q) satisfying the following equations

∂tun,q + div(un,q ⊗ un,q) +∇pn,q = νn∆un,q + divR̊n,q,

divvn,q = 0.

Similarly as in the proof of Theorem 6.3 it holds

|||R̊n,0|||L1,r 6 2rL2 + (2π)3 · 2rL 6 1

48
e,

and for m > 1

|||R̊0|||L1,m 6 2mL2 + (2π)3 · 2mL 6 4mL2.

Set un = un,n and R̊n = R̊n,n. Using the estimates in Proposition 3.3 with e(t) = K we obtain

|||un|||Hϑ,2r + |||un|||Cϑt L2,2r . 1, sup
t∈R

E‖un − Z‖rCtW 1,1 6 ε. (6.10)

with the proportional constant independent of n and

|||un|||C1
t,x,2r

6 λ4
n, |||un|||C2

t,x,r
6 λ6

n, |||R̊n|||L1,r 6
1

48
δn+2K, (6.11)

and for any t ∈ R
3

4
δn+1K 6 K −E‖un(t)‖2L2 6

5

4
δn+1K. (6.12)

Similarly as in (5.14) and applying Lemma 5.3 we get

νnE‖∇un(t)‖2L2 > ε, (6.13)

for n large enough. Furthermore, we use (3.53)-(3.55) to have for δ > 0

sup
t∈R

E‖R̊n‖rCδtW δ,1 . C(n). (6.14)

We need the above estimate for tightness in trajectory space for R̊n in order to construct a stationary
solution below. Here, the constant may depend on n.

Based on these estimates, we consider (un, R̊n, Z) on the trajectory space T1 = C(R;L2
σ) ×

C(R;L1)× C(R;L2
σ). The corresponding shifts St, t ∈ R are given by

St(u, R̊, Z)(·) = (u(·+ t), R̊(·+ t), Z(·+ t)), t ∈ R, (u, R̊, Z) ∈ T1.

Using (6.10) and the second estimate in (6.11) and (6.14) it follows that for a fixed n, the ergodic
averages

νn,T =
1

T

∫ T

0

L[St(un, R̊n, Z)]dt, T > 0,
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form a tight set in T1. Furthermore, 1
T

∫ T
0
L[St(un)]dt form a tight set in C(R;H1). Hence similar

arguments as in the proof of Theorem 4.1 lead to the existence of a stationary solution to (6.7),

which is still denoted by (un, R̊n, Zn) and satisfies (6.10)-(6.14).

Now, we apply a tightness argument together with a Skorokhod representation theorem for the
stationary solution (un, R̊n, Zn). For notational simplicity, we do not rename the objects after

changing the probability space. Applying the third estimate in (6.11) we obtain |||R̊n|||L1,r → 0. The
strong convergence of un in C(R;L2

σ) follows from (6.10). Letting n → ∞, we see that the tight
limit is a stationary solution to the deterministic Euler equations.

Thus, we use (6.13) to deduce that (6.8) holds and

lim inf
n→∞

νnE‖∇un‖2L2 > ε.

The claim (6.9) as well as randomness and time dependendence of the limit solutions follow from
similar arguments as in Theorem 6.3.

Furthermore, Krein–Milman’s theorem permits to choose un as ergodic stationary solutions and
the final result follows. �

Remark 6.5. The regularity corresponding to the Kolmogorov 2/3-law, implying the decay of the
energy spectrum as discussed in the introduction, remains out of reach for our solutions. Neverthe-
less, our solutions satisfy a weaker version of the corresponding Kolmogorov hypothesis in the spirit
of [CG12, CV18] which is sufficient to perform rigorously the vanishing viscosity limit and obtain
stationary solutions to the Euler equations.

We conclude this section by an observation that stationary solutions to the deterministic Navier–
Stokes/Euler equations can also be obtained as limits of stationary solutions to the stochastic
counterparts of the equations, possibly combining with a vanishing viscosity limit. More precisely,
we have the following result.

Theorem 6.6. Suppose that Tr((−∆)3/2+σGG∗) < ∞ for some σ > 0. Let r > 1 fixed, Z be
as in Theorem 6.1, K > 384rL2 and ε > 0. For an arbitrary sequence of vanishing constants
γ1,n, γ2,n > 0, n ∈ N, γ1,n, γ2,n → 0, up to a change of probability space, there exist a sequence of
stationary solutions un, n ∈ N, to the following stochastic Navier–Stokes/Euler equations (for ν = 1
or ν = 0)

dun + div(un ⊗ un) dt+∇Pn dt = (ν + γ1,n)∆un dt+ γ2,ndB, (6.15)

so that the corresponding family of laws L[un], n ∈ N, is tight in C(R;L2
σ) and every accumula-

tion point is a stationary solution to the deterministic Navier–Stokes/Euler equations on R × T3.
Furthermore, every accumulation point u satisfies

E‖u‖2L2 = K,

and

E‖u− Z‖rCtW 1,1 6 ε. (6.16)

Remark 6.7. The formulation of the above theorem in particular permits a simultaneous limit of
vanishing viscosity and vanishing noise. We recall that the particular choice of γ2,n =

√
γ1,n was

treated in [Kuk04] (see also [GHSV15]) in two spatial dimensions. It gave rise to the so-called Kuksin
measures, a genuinely random statistically stationary solutions to the deterministic Euler equations
on T2. It was argued on page 472 in [Kuk04] that in three dimensions, the correct scaling is γ2,n = 1
in order to be consistent with Kolmogorov’s prediction of anomalous dissipation. This is indeed
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what is suggested by the formal energy equality, but in this setting the limit satisfies the stochastic
Euler system. For the approximation (6.15) we are not able to obtain the anomalous dissipation.
More precisely, we cannot prove (1.3) due to the worse spatial regularity of our solutions. This issue
can be overcome by including an additional vanishing Reynolds stress as shown in Theorem 5.4.

Proof of Theorem 6.6. We decompose (6.15) with zn a stationary solution to

dzn + zndt+∇P1,n = (ν + γ1,n)∆zndt+ γ2,ndB,

divzn = 0.

Then we have for any p > 2, 0 < δ < 1/2

|||zn|||C1/2−δ
t L∞,p

+ |||zn|||CtH3/2,p 6 γ2,n(p− 1)1/2L1,

for some L1 > 0. For each fixed n, we run the convex integration iteration as in Proposition 3.3
indexed by q and starting from v0 = Z, which gives

|||R̊0|||L1,r 6 4rL2 + 2 · (2π)3rL+ γ2,nL1 + 2γ2
2,nrL

2
1 6 8rL2 6

1

48
e.

Here we may choose n large enough such that γ2,n4rL2
1 +γ2,nL1 is small. We then could use similar

argument as in Theorem 6.1 and Theorem 6.3 to construct, up to a change of probability space,
stationary solutions (un, zn) so that

E‖un‖2L2 = K,

and

sup
t∈R

E‖un − zn − Z‖rCtW 1,1 6 ε. (6.17)

Furthermore, for some ϑ > 0 we obtain

|||un|||Hϑ,2r + |||un|||Cϑt L2,2r . 1,

with the proportional constant independent of n. Hence, we obtain tightness of un in C(R;L2
σ)

as in the proof of Theorem 5.1 and conclude that the tight limit is a stationary solution to the
deterministic Navier–Stokes/Euler equations. Since zn → 0 in C(R;H1), (6.17) leads to (6.16). �

Appendix A. Intermittent jets

In this part we recall the construction of intermittent jets from [BV19a, Section 7.4]. We point
out that the construction is entirely deterministic, that is, none of the functions below depends on
ω. Let us begin with the following geometric lemma which can be found in [BV19a, Lemma 6.6].

Lemma A.1. Denote by B1/2(Id) the closed ball of radius 1/2 around the identity matrix Id, in the

space of 3 × 3 symmetric matrices. There exists Λ ⊂ S2 ∩ Q3 such that for each ξ ∈ Λ there exists
a C∞-function γξ : B1/2(Id)→ R such that

R =
∑
ξ∈Λ

γ2
ξ (R)(ξ ⊗ ξ)

for every symmetric matrix satisfying |R − Id| 6 1/2. For CΛ = 8|Λ|(1 + 8π3)1/2, where |Λ| is the
cardinality of the set Λ, we define the constant

M = CΛ sup
ξ∈Λ

(‖γξ‖C0 +
∑
|j|6N

‖Djγξ‖C0).
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For each ξ ∈ Λ let us define Aξ ∈ S2 ∩Q3 to be an orthogonal vector to ξ. Then for each ξ ∈ Λ we
have that {ξ, Aξ, ξ ×Aξ} ⊂ S2 ∩Q3 form an orthonormal basis for R3. We label by n∗ the smallest
natural such that

{n∗ξ, n∗Aξ, n∗ξ ×Aξ} ⊂ Z3

for every ξ ∈ Λ.

Let Φ : R2 → R be a smooth function with support in a ball of radius 1. We normalize Φ such
that φ = −∆Φ obeys

1

4π2

∫
R2

φ2(x1, x2)dx1dx2 = 1. (A.1)

By definition we know
∫
R2 φdx = 0. Define ψ : R → R to be a smooth, mean zero function with

support in the ball of radius 1 satisfying

1

2π

∫
R
ψ2(x3)dx3 = 1. (A.2)

For parameters r⊥, r‖ > 0 such that
r⊥ � r‖ � 1,

we define the rescaled cut-off functions

φr⊥(x1, x2) =
1

r⊥
φ

(
x1

r⊥
,
x2

r⊥

)
, Φr⊥(x1, x2) =

1

r⊥
Φ

(
x1

r⊥
,
x2

r⊥

)
, ψr‖(x3) =

1

r
1/2
‖

ψ

(
x3

r‖

)
.

We periodize φr⊥ ,Φr⊥ and ψr‖ so that they are viewed as periodic functions on T2,T2 and T
respectively.

Consider a large real number λ such that λr⊥ ∈ N, and a large time oscillation parameter µ > 0.
For every ξ ∈ Λ we introduce

ψ(ξ)(t, x) := ψξ,r⊥,r‖,λ,µ(t, x) := ψr‖(n∗r⊥λ(x · ξ + µt))

Φ(ξ)(x) := Φξ,r⊥,λ(x) := Φr⊥(n∗r⊥λ(x− αξ) ·Aξ, n∗r⊥λ(x− αξ) · (ξ ×Aξ))
φ(ξ)(x) := φξ,r⊥,λ(x) := φr⊥(n∗r⊥λ(x− αξ) ·Aξ, n∗r⊥λ(x− αξ) · (ξ ×Aξ)),

where αξ ∈ R3 are shifts to ensure that {Φ(ξ)}ξ∈Λ have mutually disjoint support.

The intermittent jets W(ξ) : R× T3 → R3 are defined as in [BV19a, Section 7.4].

W(ξ)(t, x) := Wξ,r⊥,r‖,λ,µ(t, x) := ξψ(ξ)(t, x)φ(ξ)(x). (A.3)

By the choice of αξ we have that

W(ξ) ⊗W(ξ′) ≡ 0, for ξ 6= ξ′ ∈ Λ, (A.4)

and by the normalizations (A.1) and (A.2) we obtain

1

(2π)3

∫
T3

W(ξ)(t, x)⊗W(ξ)(t, x)dx = ξ ⊗ ξ.

These facts combined with Lemma A.1 imply that

1

(2π)3

∑
ξ∈Λ

γ2
ξ (R)

∫
T3

W(ξ)(t, x)⊗W(ξ)(t, x)dx = R, (A.5)

for every symmetric matrix R satisfying |R − Id| 6 1/2. Since W(ξ) are not divergence free, we
introduce the corrector term

W
(c)
(ξ) :=

1

n2
∗λ

2
∇ψ(ξ) × curl(Φ(ξ)ξ) = curl curlV(ξ) −W(ξ). (A.6)
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with

V(ξ)(t, x) :=
1

n2
∗λ

2
ξψ(ξ)(t, x)Φ(ξ)(x).

Thus we have

div
(
W(ξ) +W

(c)
(ξ)

)
≡ 0.

Finally, we recall the key bounds from [BV19a, Section 7.4]. For N,M > 0 and p ∈ [1,∞] the
following holds

‖∇N∂Mt ψ(ξ)‖CtLp . r
1/p−1/2
‖

(
r⊥λ

r‖

)N (
r⊥λµ

r‖

)M
,

‖∇Nφ(ξ)‖Lp + ‖∇NΦ(ξ)‖Lp . r
2/p−1
⊥ λN ,

‖∇N∂Mt W(ξ)‖CtLp +
r‖

r⊥
‖∇N∂Mt W

(c)
(ξ) ‖CtLp + λ2‖∇N∂Mt V(ξ)‖CtLp

. r2/p−1
⊥ r

1/p−1/2
‖ λN

(
r⊥λµ

r‖

)M
,

(A.7)

where the implicit constants may depend on p,N and M , but are independent of λ, r⊥, r‖, µ.

Appendix B. Estimates of ρ and a(ξ)

For completeness, we include here the detailed proof of the estimates (3.33) and (3.34) employed
in Section 3.1.3.

We first aim at estimating the CNt,x-norm of ρ for N ∈ N. To this end, we first apply the chain

rule [BDLIS15, Proposition C.1] to the function Ψ(z) =
√
`2 + z2, |DmΨ(z)| . `−m+1 to obtain

‖ρ‖CNt,x .
∥∥∥∥√`2 + |R̊`|2

∥∥∥∥
C0
t,x

+ ‖DΨ‖C0‖R̊`‖CNt,x + ‖DΨ‖CN−1‖R̊`‖NC1
t,x

+ ‖γ`‖CNt (B.1)

. `−4−N‖R̊q‖C[t−1,t+1]L1 + `−6N+1‖R̊q‖NC[t−1,t+1]L1 +
1

2
`−Nδq+1ē.

For the amplitude functions a(ξ) defined in (3.30) we deduce using (3.27)

‖a(ξ)‖CtL2 6 ‖ρ‖1/2CtL1‖γξ‖C0(B1/2(Id)) 6
M

8|Λ|(1 + 8π3)1/2

(
2`(2π)3 + 2‖R̊q‖C[t−1,t+1]L1 +

1

2
δq+1ē

)1/2

6
M

4|Λ|

(
2‖R̊q‖C[t−1,t+1]L1 +

1

2
δq+1ē

)1/2

,

(B.2)
where M denotes the universal constant from Lemma A.1.

Let us now estimate the CNt,x-norm of a(ξ). By Leibniz rule, we get

‖a(ξ)‖CNt,x .
N∑
m=0

‖ρ 1
2 ‖Cmt,x

∥∥∥∥∥γξ
(

Id− R̊`
ρ

)∥∥∥∥∥
CN−mt,x

(B.3)

and estimate each norm separately. First, by (3.28)

‖ρ1/2‖C0
t,x
. `−2‖R̊q‖1/2C[t−1,t+1]L1 + δ

1/2
q+1ē

1/2,
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and by Lemma A.1 ∥∥∥∥∥γξ
(

Id− R̊`
ρ

)∥∥∥∥∥
C0
t,x

. 1.

Second, applying [BDLIS15, Proposition C.1] to the function Ψ(z) = z1/2, |DmΨ(z)| . |z|1/2−m,
for m = 1, . . . , N , and using (B.1) and ρ > ` and `−1 > ē we obtain for m > 1

‖ρ1/2‖Cmt,x . ‖ρ
1/2‖C0

t,x
+ `−1/2‖ρ‖Cmt,x + `1/2−m‖ρ‖mC1

t,x

. `−3m+1/2δmq+1 + `−2‖R̊q‖1/2C[t−1,t+1]L1 + `−9/2−m‖R̊q‖C[t−1,t+1]L1

+ `−6m+1/2‖R̊q‖mC[t−1,t+1]L1 + `−m−3/2δq+1 + `−1/2δ
1/2
q+1.

(B.4)

For m > 1 using δq+1 6 1 the above is bounded by

`−6m+1/2(1 + ‖R̊q‖mC[t−1,t+1]L1).

We proceed with a bound for
∥∥∥γξ (Id− R̊`

ρ

)∥∥∥
CN−mt,x

for m = 0, . . . , N − 1. Keeping [BDLIS15,

Proposition C.1] as well as Lemma A.1 in mind, we need to estimate∥∥∥∥∥ R̊`ρ
∥∥∥∥∥
CN−mt,x

+

∥∥∥∥∥∇t,xR̊`ρ

∥∥∥∥∥
N−m

C0
t,x

+

∥∥∥∥∥ R̊`ρ2

∥∥∥∥∥
N−m

C0
t,x

‖ρ‖N−m
C1
t,x

. (B.5)

We use ρ > ` to have∥∥∥∥∥∇t,xR̊`ρ

∥∥∥∥∥
N−m

C0
t,x

. `−(N−m)`(−4−1)(N−m)‖R̊q‖N−mC[t−1,t+1]L1 . `
−6(N−m)‖R̊q‖N−mC[t−1,t+1]L1 ,

and in view of | R̊`ρ | 6 1 ∥∥∥∥∥ R̊`ρ2

∥∥∥∥∥
N−m

C0
t,x

.

∥∥∥∥1

ρ

∥∥∥∥N−m
C0
t,x

. `−(N−m),

and by (B.1) and ēδq+1 6 `−1

‖ρ‖N−m
C1
t,x
. `−5(N−m)‖R̊q‖N−mC[t−1,t+1]L1 + `−2(N−m).

To estimate the first term in (B.5), we write∥∥∥∥∥ R̊`ρ
∥∥∥∥∥
CN−mt,x

.
N−m∑
k=0

‖R̊`‖Ckt,x

∥∥∥∥1

ρ

∥∥∥∥
CN−m−kt,x

, (B.6)

where for N −m− k = 0 we have ∥∥∥∥1

ρ

∥∥∥∥
C0
t,x

. `−1

and for k = 0, . . . , N −m− 1 using (B.1)∥∥∥∥1

ρ

∥∥∥∥
CN−m−kt,x

.

∥∥∥∥1

ρ

∥∥∥∥
C0
t,x

+ `−2‖ρ‖CN−m−kt,x
+ `−(N−m−k)−1‖ρ‖N−m−k

C1
t,x

. `−4(N−m−k)−1 + `−6−(N−m−k)‖R̊q‖C[t−1,t+1]L1 + `−6(N−m−k)−1‖R̊q‖N−m−kC[t−1,t+1]L1 .
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Altogether, we therefore bound (B.6) as∥∥∥∥∥ R̊`ρ
∥∥∥∥∥
CN−mt,x

. `−5−4(N−m)‖R̊q‖C[t−1,t+1]L1 + `−10−(N−m)‖R̊q‖2C[t−1,t+1]L1

+ `−5−6(N−m)(‖R̊q‖N−m+1
C[t−1,t+1]L1 + 1).

(B.7)

Finally, plugging (B.7), and the other bounds into (B.5) leads to∥∥∥∥∥γξ
(

Id− R̊`
ρ

)∥∥∥∥∥
CN−mt,x

.`−5−4(N−m)‖R̊q‖C[t−1,t+1]L1 + `−10−(N−m)‖R̊q‖2C[t−1,t+1]L1

+ `−5−6(N−m)(‖R̊q‖N−m+1
C[t−1,t+1]L1+1) + `−3(N−m).

For N −m > 1 the above is bounded by

`−5−6(N−m)(‖R̊q‖N−m+1
C[t−1,t+1]L1 + ‖R̊q‖2C[t−1,t+1]L1 + 1).

Combining this with the bounds for ρ1/2 above and plugging into (B.3) yields for N > 2

‖a(ξ)‖CNt,x . `
−7−6N (‖R̊q‖C[t−1,t+1]L1 + 1)N+3/2.

It is easy to see that

‖a(ξ)‖C0
t,x
. `−2(‖R̊q‖C[t−1,t+1]L1 + 1)1/2. (B.8)

By interpolation ‖a(ξ)‖CNt,x . ‖a(ξ)‖
1/2

C0
t,x
‖a(ξ)‖

1/2

C2N
t,x

, the following estimate

‖a(ξ)‖CNt,x . `
−7−6N (‖R̊q‖C[t−1,t+1]L1 + 1)N+1. (B.9)

holds.
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