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Abstract. The objective of this paper is to examine the restriction of a right
process on a Radon topological space, excluding a negligible set, and investi-

gate whether the restricted object can induce a Markov process with desirable

properties. We address this question in three aspects: the induced process
necessitates only right continuity; it is a right process, and the semi-Dirichlet

form of the induced process is quasi-regular. The main findings characterize

the negligible set that meets the requirements within a universally measurable
framework. These characterizations can be employed to generate instances of

Markov processes that are non-right or (semi-)Dirichlet forms that are non-

quasi-regular. Specifically, we will construct an example of a non-tight, strong
Feller, symmetric right process on a non-Lusin Radon topological space, whose

Dirichlet form is not quasi-regular.

Contents

1. Introduction 1
2. Restriction outside a negligible set under (HD1) 3
3. Restriction of a right process outside a negligible set 7
4. Restriction of semi-Dirichlet form associated to a right process 11
Appendix A. Basics of right processes 15
Appendix B. Ray-Knight compactification 18
References 20

1. Introduction

In their recent paper [BCR22], Beznea et al. addressed a frequently posed ques-
tion: Can a Markov semigroup (Pt) on a Polish space E with the strong Feller
property always give rise to a desirable Markov process? Here, the strong Feller
property is defined as Pt(bE) ⊂ bC(E), where bE represents the collection of all
bounded Borel measurable functions on E, and bC(E) denotes the family of all
bounded continuous functions on E. A desirable Markov process refers to a (sim-
ple) Markov process exhibiting regular trajectory properties, including right con-
tinuity, càdlàg property, strong Markov property, and more. However, the answer
to this question is unequivocally negative. In their work [BCR22], Beznea et al.
devised a compelling set of counterexamples using the restriction method. They
initiated with a good Markov process that satisfies the strong Feller property, and
subsequently restricted it outside a suitable non-polar set. While this method con-
sistently preserves the strong Feller property, the resulting restricted semigroup
cannot induce another desirable (e.g., càdlàg) Markov process.

Key words and phrases. Right processes, Quasi-polar sets, Quasi-absorbing sets, Quasi-regular
(semi-)Dirichlet forms, Restrictions.
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The objective of this article is to investigate the impact of restricting a general
Markov process outside a negligible set and determine whether the resulting re-
stricted object can still induce a good Markov process. The class of general Markov
processes under consideration here refers to right processes on a Radon space, which
are derived from Meyer’s well-known hypothèses droites (HD1) and (HD2). Accord-
ing to (HD1), the semigroup (Pt) possesses a right-continuous realization, while
(HD2) enables the strong Markov property. We refer readers to [Get75,Sha88], as
well as Appendix A, for a detailed explanation of these fundamental assumptions.
In the context of this study, a negligible set refers to a (weakly) U -negligible set
N ∈ Eu, which satisfies Uα1N = 0 outside N , where (Uα)α>0 represents the re-
solvent of (Pt), and Eu denotes the universally measurable σ-algebra on E. This
condition ensures that the restriction of (Uα) outside N remains a family of ker-
nels that satisfy the resolvent equation. We will examine this problem from three
distinct levels:

(1) If (Pt) satisfies only (HD1), can the restricted resolvent induce a transition
function that satisfies (HD1)?

(2) If (Pt) satisfies both (HD1) and (HD2), can the restricted resolvent induce
a transition function that satisfies both (HD1) and (HD2)?

(3) If, in addition, (Pt) satisfies the sector condition and tightness with re-
spect to a certain σ-finite measure, which corresponds to a quasi-regular
semi-Dirichlet form, is the semi-Dirichlet form restricted outside a set of
zero measure still quasi-regular? What is the relationship between this
restriction and the restriction of the resolvent?

Before addressing these questions, we need to clarify some information regard-
ing topology and measurability. When discussing the restriction of a topological
space, we usually use the subspace topology. This is crucial in the examination
of the first and third levels. However, the second level is an exception. For right
processes, the original topology on the state space only appears in the definition of
(HD1), and it is not the intrinsic topology of the right process (the fine topology
is). As observed by Beznea et al. (see [BCR20]), assigning any so-called natu-
ral topology to the state space, i.e., topologies coarser than the fine topology, the
(Borel) right process is still a (Borel) right process. Therefore, we can also relax the
topological restriction when studying the second level problem. Regarding measur-
ability, the universally measurable σ-algebra has a more complex structure than
the Borel σ-algebra generated by topology. The definition of Radon space, as well
as (HD1), is based on this. The importance of universal measurability lies in the
fact that most Markov process transformations, such as killing, time change, and
h-transformation, do not preserve Borel measurability, but do preserve universal
measurability. However, the setting of universal measurability also brings some
difficulties to the above problem. One of the most prominent difficulties is that
we can no longer use the first hitting/entrance time to define certain universally
measurable exceptional sets because these random times may not be stopping times
in general. To overcome this difficulty, we borrow the concepts of quasi-absorbing
and quasi-polar sets from [Sha88] (see Definition 2.1) using the outer measure. This
approach, which only requires universal measurability, serves as a generalization of
absorbing and polar sets in the Borel measurable sense. It provides a solution for
defining small sets in the universally measurable context.

All three levels of the problem will be thoroughly addressed in this article. For
the first two levels, our results in Theorems 2.4 and 3.3 establish that the stability
holds if and only if the complement of N is quasi-absorbing. This type of restriction
can be likened to a Markov chain being confined to one of its irreducible compo-
nents. Specifically, if N satisfies a slightly stronger condition, namely Uα1N = 0
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on E (not just outside N), then a similar characterization reveals that N can only
be quasi-polar sets; refer to Theorem 3.4 for details. The characterization of the
problem at the third level necessitates that N is contained in the complement of
a (quasi-)absorbing set that is Borel measurable, and it ensures the consistency of
the restrictions on the Dirichlet form and resolvent. At this level, the enhancement
of measurability is primarily attributed to the quasi-regularity assumption, which
guarantees that the corresponding right process is essentially a Borel right process
on a smaller Lusin space. It is important to emphasize that the characterizations
of the first and third levels require the assumption that the restricted state space
is equipped with the subspace topology. Without this assumption, similar charac-
terizations may not hold, as demonstrated by the two counterexamples provided in
Example 4.6.

The aforementioned characterizations can be utilized to construct examples of
non-right Markov processes or non-quasi-regular (semi-)Dirichlet forms. Beznea
et al. presented a simple example in [BCR22]: Consider the restriction of one-
dimensional Brownian motion to R \ {0} ({0} is a U -negligible but non-polar set).
The restricted semigroup still satisfies the strong Feller property but no longer
induces a right-continuous Markov process. Furthermore, the Dirichlet form of
Brownian motion restricted to R \ {0} is not quasi-regular. In the framework of
universal measurability, we can provide even more intriguing examples. Particu-
larly, based on the construction by Salisbury [Sal87], we can obtain a non-Borel
quasi-polar set Z ′ ⊂ Rn (n ≥ 4) for Brownian motion (refer to Examples 3.6 and
4.5) and a right process on Rn\Z ′, corresponding to the restriction of the Brownian
resolvent to Rn \ Z ′, which is strong Feller, symmetric, but not tight. Specifically,
its Dirichlet form is not quasi-regular.

2. Restriction outside a negligible set under (HD1)

Let E be a Radon topological space, meaning it is homeomorphic to a universally
measurable subset of a compact metric space. In this article, we will use the
notations defined in Appendix A. Specifically, E (resp. Eu) denotes the Borel σ-
algebra (universally measurable σ-algebra) on E. Let (Pt)t≥0 be a normal Markov
transition function on (E, Eu) (refer to Definition A.1), and its resolvent is given
by

Uαf =

∫ ∞
0

e−αtPtfdt, α ≥ 0, f ∈ pEu.

Assume that (Pt) satisfies the first of Meyer’s hypothèses droites (HD1) as defined
in Definition A.2. Let us consider the collection

(2.1) X = (Ω,Fu,Fut , Xt, θt,P
x),

which represents the canonical realization of (Pt). In short, Ω is the family of all
right continuous maps from R+ = [0,∞) to E, (Xt) is the coordinate process,
(Fu,Fut ) is the (unaugmented) natural filtration on Ω, and (Xt) satisfies the (sim-
ple) Markov property (A.2) with transition semigroup (Pt) under each Px. For any
finite positive measure µ on E, we set Pµ :=

∫
E
µ(dx)Px. It is important to note

that in this section, X does not necessarily possess the strong Markov property.
Generally, a ceremony and a lifetime should be included in the collection (2.1); how-
ever, for simplicity, we have omitted them. For further explanation, please refer to
§A.8 in the Appendix.

Our objective is to remove a specific negligible subset N from E and investigate
whether the restriction of Uα (or Pt) to E \ N remains associated with a well-
behaved Markov process. However, before delving into this, we need to introduce
some terminologies related to small sets.
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Definition 2.1. Let X and Uα be given above. Let N ∈ Eu.

(1) N is called U -negligible, if Uα1N (x) = 0 for one (equivalently, all) α > 0
and any x ∈ E;

(2) N is called weakly U -negligible, if Uα1N (x) = 0 for one (equivalently, all)
α > 0 and any x ∈ E \N ;

(3) E \ N is called quasi-absorbing, if for any initial law µ carried by E \ N ,
{Xt ∈ E \N, ∀t ≥ 0} has full Pµ-outer measure;

(4) N is called quasi-polar, if for every initial law on E, the Pµ-outer measure
of {Xt /∈ N : ∀t > 0} is equal to 1.

Remark 2.2. (1) Here we utilize outer measures because neither {Xt ∈ E \
N, ∀t ≥ 0} nor {Xt /∈ N : ∀t > 0} necessarily belongs to the augmentation
F of Fu since N is only universally measurable. If the measurability of N
is sufficiently good (e.g., N ∈ E or N is nearly optional when X further
satisfies (HD2)), such that its first hitting/entrance time is Ft+-stopping
times (Ft represents the augmentation of Fut ; see Appendix A.5), then a
quasi-absorbing or quasi-polar set is commonly referred to as an absorbing
or polar set.

(2) It is evident that U -negligible sets are also weakly U -negligible, and the
complement of a quasi-polar set is quasi-absorbing. However, the converse
statements are not necessarily true. To illustrate this, consider the following
example: Let E = [0, 1] ∪ {2}, and let Pt be composed of two parts on
E: Its restriction to [0, 1] represents the transition semigroup of reflecting
Brownian motion on [0, 1], while Pt(2, ·) := δ2(·) denotes a Dirac measure
at 2. In this case, {2} is weakly U -negligible and [0, 1] is quasi-absorbing.
However, {2} is neither U -negligible nor quasi-polar.

(3) It is worth noting that the complement of a quasi-absorbing set is weakly U -
negligible, and a quasi-polar set is U -negligible. Conversely, the contraries
are not true either. To see this, consider the case where E \N is a quasi-
absorbing set. Since Xs ∈ E \N : ∀s ≥ 0 ⊂ Xt ∈ E \N ∈ Fu for any fixed
t ≥ 0, it follows that Pt(x,E \ N) = Px(Xt ∈ E \ N) = 1 for any t ≥ 0
and x ∈ E \N . Hence, Uα1N (x) = 0 for any x ∈ E \N , implying that N
is weakly U -negligible. Similarly, one can deduce that a quasi-polar set is
U -negligible.

(4) In the realm of universal measurability, the concepts of these sets exhibit
a higher level of complexity compared to their counterparts in the Borel
measurable sense. To illustrate this, Salisbury [Sal87] constructed a non-
Borel universally measurable set Z ⊂ Rn (n ≥ 2) for Brownian motion.
Remarkably, this set has the property that all non-constant paths intersect
Z, indicating that Z is not a quasi-polar set. However, it is noteworthy
that every Borel subset of Z is polar. Additionally, Salisbury provided an
example of a non-Borel quasi-polar set Z ′ for n ≥ 4, such that any Borel set
containing Z ′ is not polar. Further details and explanations can be found
in Example 3.6.

For convenience, we use the notation Pµ
∗ to represent the outer measure of Pµ.

This function is defined on the entire collection of subsets of Ω and takes non-
negative values. It is important to highlight that the families of quasi-absorbing
sets and quasi-polar sets remain unchanged regardless of whether we consider the
filtration in (2.1) or its augmented version (F ,Ft).

Lemma 2.3. Let µ be an initial law on E and Ω̃ ⊂ Ω. Then Ω̃ has full (Ω,Fu,Pµ)-
outer measure, if and only if it has full (Ω,F ,Pµ)-outer measure.
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Proof. Let us denote the Pµ-outer measure relative to Fu and F by Pµ
1∗ and Pµ

2∗,
respectively. For any subset A ⊂ Ω, we have

Pµ
1∗(A) = inf{Pµ(B) : A ⊂ B ∈ Fu}, Pµ

2∗(A) = inf{Pµ(B) : A ⊂ B ∈ F}.
Let Fµ be the completion of Fu relative to Pµ and Pµ

3∗ be the Pµ-outer measure
relative to Fµ. Since Fu ⊂ F ⊂ Fµ, it follows that Pµ

3∗ ≤ Pµ
2∗ ≤ Pµ

1∗. It suffices

to show that Pµ
1∗(Ω̃) = 1 implies Pµ

3∗(Ω̃) = 1. To do this, suppose Pµ
1∗(Ω̃) = 1

and take arbitrary B ∈ Fµ with Ω̃ ⊂ B. By means of, e.g., [Fol99, §1.4, Exercise
18b], one gets a set B′ ∈ Fu with B ⊂ B′ and B′ \ B ∈ N (i.e. B′ \ B ∈ Fµ with

Pµ(B′ \B) = 0). Note that Pµ
1∗(Ω̃) = 1 and Ω̃ ⊂ B ⊂ B′ imply Pµ(B′) = 1. Hence

Pµ(B) = 0, as arrives at Pµ
3∗(Ω̃) = 1. That completes the proof. �

Now we have a position to set up the deletion of a negligible set from E. Let
N ∈ Eu and set Ẽ := E \N . The subspace topology on Ẽ inherited from E makes

Ẽ a Radon topological space. The Borel σ-algebra and the universally measurable
σ-algebra on Ẽ are denoted by Ẽ and Ẽu, respectively. It follows that Ẽ = E|Ẽ and

Ẽu = Eu|Ẽ . Suppose that N is weakly U -negligible. Then, we have a well-defined

collection of kernels on (Ẽ, Ẽu) given by:

Ũαf̃ := (Uαf)|Ẽ , α > 0, f̃ ∈ pẼu,

where f ∈ pEu is an arbitrary extension of f̃ to E. Moreover, it is worth noting
that αŨα1Ẽ ≡ 1 on Ẽ and the restriction (Ũα) satisfies the resolvent equation: For

0 < α ≤ β and f̃ ∈ pẼu, we have:

Ũαf̃ = Ũβ f̃ + (β − α)ŨαŨβ f̃ .

The collection (Ũα) is referred to as the restriction of (Uα) to Ẽ.
The presented result expands upon [BCR22, Theorem2.1] by considering a gen-

eral case of a (simple) Markov process with right-continuous paths, rather than
cádlág paths. A technique involving outer measures is employed, enabling the state
space to be a Radon topological space instead of being limited to a Lusin or Polish
space. It is important to note that the definition of (HD1) is closely related to the
topology of the state space, and the utilization of the inherited topology is crucial
in the discussion of Theorem2.4. An example provided in Example 4.6 illustrates
that assigning a non-inherited topology to Ẽ can lead to a situation where (P̃t)

satisfies (HD1) even if Ẽ is not quasi-absorbing for X.

Theorem 2.4. Let N ∈ Eu be weakly U -negligible and (Ũα)α>0 be the restriction

of (Uα)α>0 to Ẽ = E \N , which is equipped with the subspace topology of E. Then

there is a Markov transition function (P̃t)t≥0 on (Ẽ, Ẽu) satisfying (HD1), whose

resolvent is (Ũα)α>0, if and only if Ẽ is quasi-absorbing for X. Meanwhile (P̃t) is

identical to the restriction of (Pt) to Ẽ, i.e. P̃t(x,B) = Pt(x,B) for t ≥ 0, x ∈ Ẽ
and B ∈ Ẽu.

Proof. We first argue the sufficiency and suppose Ẽ is quasi-absorbing for X. In
view of Remark 2.2 (3), Pt(x,N) = 0 for any t ≥ 0 and x ∈ Ẽ. Hence P̃t(x,B) :=

Pt(x,B) for t ≥ 0, x ∈ Ẽ and B ∈ Ẽu(⊂ Eu) defines a collection of Markov kernels

on (Ẽ, Ẽu). It is straightforward to verify that it is a normal transition function

on (Ẽ, Ẽu) whose resolvent is (Ũα). We have to prove (HD1) for (P̃t). To do this,
recall that the collection (2.1) is the canonical realization of (Pt). Set

Ω̃ := {ω ∈ Ω : Xt ∈ Ẽ,∀t ≥ 0}

and for any ω ∈ Ω̃ and t ≥ 0, X̃t(ω) := Xt(ω). Note that θtΩ̃ ⊂ Ω̃. Let θ̃t be

the restriction of θt to Ω̃. Define G̃ and G̃t as the traces of Fu and Fut on Ω̃, i.e.
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G̃ := {B∩Ω̃ : B ∈ Fu} and G̃t := {B∩Ω̃ : B ∈ Fut }. Clearly t 7→ X̃t is an Ẽ-valued,

right continuous process Eu-adapted to G̃t. For any initial law µ carried by Ẽ, let
P̃µ be the trace of Pµ on Ω̃, i.e. P̃µ(B ∩ Ω̃) := inf{Pµ(B ∩ Γ) : Ω̃ ⊂ Γ ∈ Fu} for

any B ∈ Fu. By virtue of [Sha88, (A1.3)] and that Ẽ is quasi-absorbing for X, one

gets that P̃µ is a probability measure on (Ω̃, G̃). Applying [Sha88, (A1.6)] and the

Markov property of (2.1), we have that for any f̃ ∈ bẼu and G̃ ∈ G̃t, there exists

f ∈ bEu with f |Ẽ = f̃ and G ∈ Gt with G̃ = G ∩ Ω̃, so that

P̃µ{f̃(X̃t+s)1G̃} = Pµ{f(Xt+s)1G} = Pµ{Psf(Xt)1G}

= P̃µ{Psf(Xt)|Ω̃1G̃} = P̃µ{P̃sf(X̃t)1G̃},

as leads to the Markov property of X̃ = (Ω̃, G̃, G̃t, X̃t, P̃
µ) with transition semigroup

P̃t. Using [Sha88, (A1.6)] again we also have that for any A ∈ Ẽ , P̃µ(X̃0 ∈ A) =

Pµ(X0 ∈ A) = µ(A). Hence the initial law of X̃ is exactly µ. Eventually (HD1) is

verified for (P̃t).

To the contrary, suppose (P̃t)t≥0 is a transition function on (Ẽ, Ẽu) satisfying

(HD1), whose resolvent is (Ũα)α>0. We first show that (Pt) is an extension of (P̃t)

in the sense that for any x ∈ Ẽ, Pt(x, ·) is carried by Ẽ and its restriction to Ẽ

is equal to P̃t(x, )̇. To do this, suppose E is embedded into the compact metric

space Ê with the metric d compatible to the topology on E, i.e. the subspace
topology of E relative to (Ê, d) is identical to the original topology of E. Denote

by Cd(Ẽ), and Cd(E) the families of all real d-uniformly continuous functions on

Ẽ and E respectively. Note that Cd(Ẽ) = Cd(E)|Ẽ := {f |Ẽ : f ∈ Cd(E)} and,

in view of [Sha88, (A2.1)], E = σ{Cd(E)} and Ẽ = σ{Cd(Ẽ)}. For any f̃ =

f |Ẽ ∈ Cd(Ẽ) with f ∈ Cd(E) and x ∈ Ẽ, both t 7→ Ptf(x) and t 7→ P̃tf̃(x)

are continuous. Hence Uαf(x) = Ũαf̃(x) for all α > 0 imply Ptf(x) = P̃tf̃(x)
for all t ≥ 0. By a monotone class argument, it yields that for any t ≥ 0 and
x ∈ Ẽ, P̃t(f · 1Ẽ)(x) = Ptf(x) for any f ∈ bE . Since the extensions of a Borel
measure to the universally measurable space are unique (see, e.g., [Sha88, (A1.1)]),

it follows that P̃t(f · 1Ẽ)(x) = Ptf(x) for any f ∈ bEu. Particularly, (Pt) is an

extension of (P̃t). Now let X̃ = (Ω̃, F̃u, F̃ut , X̃t, θ̃t, P̃
x) be the canonical realization

of (P̃t) on Ẽ, where Ω̃ is the space of all right continuous maps from R+ to Ẽ.
Applying [Sha88, Proposition (19.9)], one gets that for any initial law µ carried by

Ẽ, Pµ
∗ (Ω̃) = 1. Note that

Ω̃ = {ω ∈ Ω : ω(t) ∈ Ẽ,∀t ≥ 0} = {Xt ∈ Ẽ,∀t ≥ 0}.

Therefore Ẽ is quasi-absorbing for X by the definition. �

We readily have the following corollary, which straightforwardly extends [BCR22,
Theorem 2.1] to right continuous (simple) Markov processes.

Corollary 2.5. Let N ∈ Eu be weakly U -negligible and (Ũα)α>0 be the restriction

of (Uα)α>0 to Ẽ = E \ N , which is endowed with the subspace topology of E. If
there is probability measure µ on E such that µ(N) = 0 and {Xt /∈ N, ∀t ≥ 0}
does not have full Pµ-outer measure, then there is no Markov transition function
on (Ẽ, Ẽ) satisfying (HD1), whose resolvent is (Ũα).

Remark 2.6. Suppose N ∈ E . Then we have

{Xt /∈ N, ∀t ≥ 0} = ({TN =∞} ∩ {X0 /∈ N}) ∈ F ,
where TN := inf{t > 0 : Xt ∈ N} is an Ft+-stopping time. Since Pµ(X0 /∈ N) = 1,
the condition in this corollary is equivalent to Pµ(TN <∞) > 0, which corresponds
to the condition in [BCR22, Theorem 2.1].
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3. Restriction of a right process outside a negligible set

The goal of this section is to examine the restriction of a right process outside
a negligible set. We consider a normal Markov transition function (Pt) on (E, Eu)
satisfying (HD1), and the collection X in (2.1) represents a realization of (Pt). In
this section, we make an additional assumption that X satisfies (HD2) as defined
in Definition A.7. This assumption ensures that the augmented system

(3.1) X = (Ω,F ,Ft, Xt, θt,P
x)

is a right process on E, and (Pt) is a right semigroup, as defined in Definition A.9.
In other words, X remains the canonical realization of (Pt), but with the filtration
replaced by the augmented one. Moreover, for every α > 0 and f ∈ Sα, the
function t 7→ f(Xt) is right continuous Px-almost surely for every x ∈ E. Here,
Sα denotes the family of all α-excessive functions, where f ∈ pEu is in Sα if and
only if e−αtPtf ↑ f as t ↓ 0. This additional assumption (HD2) implies the strong
Markov property of X and the right continuity of the augmented natural filtration
(Ft). The definitions of quasi-absorbing sets and quasi-polar sets remain the same
as in Definition 2.1, thanks to Lemma 2.3.

In the appendix of [BCR20], some interesting observations are made regarding
the (Borel) right process with respect to the natural topology, which encompasses
topologies that are coarser than the fine topology, including the original topology
on E. It is shown that the (Borel) right process under the natural topology always
has almost surely right-continuous trajectories. This observation is significant as it
allows us to relax the restrictions on the topology of E when considering various
problems related to (Borel) right process. Similarly, in the discussion of this section,
we will adopt this approach and consider the right process without placing strong
emphasis on the original topology of E. It is important to note that the original
topology on E is solely used to define right-continuous trajectories in (HD1) and
does not play a role in the measurable structures or (HD2).

3.1. Weakly U-negligible set. Let N ∈ Eu be a weakly U -negligible set and put
Ẽ := E \N . Denote by (Ũα)α>0 the restriction of (Uα)α>0 to Ẽ := E \N . Instead

of equipping Ẽ with the subspace topology, we consider natural topologies relative
to (Ũα) in the following sense.

Definition 3.1. (1) Given α > 0, f̃ ∈ pẼu is called Ũα-excessive provided

that βŨα+β f̃ ≤ f̃ for all β > 0 and limβ→∞ βŨα+β f̃ = f̃ . Denote by S̃α
the family of all Ũα-excessive function.

(2) The Ũ -fine topology τ̃f on Ẽ is defined as the coarsest topology on Ẽ making

all functions in ∪α>0S̃α continuous.
(3) A topology τ̃ on Ẽ is called natural, if it is Radonian, i.e. (Ẽ, τ̃) is ho-

moemorphic to a universally measurable set (equipped with the subspace
topology) of some compact metric space, generates the Borel σ-algebra

B(τ̃) = Ẽ := E|Ẽ and τ̃ ⊂ τ̃f .

(4) A Markov process (resp. transition function) X̃ (resp. (P̃t)) on Ẽ is called

a right process (resp. right semigroup) relative to some topology τ̃ on Ẽ

provided that τ̃ generates the Borel σ-algebra B(τ̃) = E|Ẽ and X̃ (resp.

(P̃t)) satisfies (HD1) and (HD2) relative to τ̃ .

Remark 3.2. (1) When Ũα is the resolvent of some right process on Ẽ, the def-

initions of Ũα-excessive functions and Ũ -fine topology coincide with those
of usual excessive functions and fine topology.

(2) The universally measurable σ-algebra on Ẽ relative to arbitrary natural

topology τ̃ is Bu(τ̃) = Ẽu := Eu|Ẽ .
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(3) The subspace topology τ̃0 on Ẽ (of the original topology on E) is natural.
To see this, let τ and τf be the original topology and fine topology on E.

Since the restriction of α-excessive function for X to Ẽ is Ũα-excessive, it
follows that τf |Ẽ ⊂ τ̃f , where τf |Ẽ stands for the subspace topology of τf
on Ẽ. Therefore τ̃0 = τ |Ẽ ⊂ τf |Ẽ ⊂ τ̃f , as arrives at the conclusion.

(4) If (P̃t) is a right semigroup relative to some topology τ̃ on Ẽ whose resolvent

is (Ũα), then τ̃ must be natural.

Having established the necessary setups, we are now poised to unveil one of the
principal results in this section.

Theorem 3.3. Let N ∈ Eu be weakly U -negligible and (Ũα)α>0 be the restriction

of (Uα)α>0 to Ẽ := E \N . The following are equivalent:

(i) There is a right semigroup (P̃t)t≥0 on Ẽ relative to the subspace topology,

whose resolvent is (Ũα)α>0.

(ii) There is a right semigroup (P̃t)t≥0 on Ẽ relative to some natural topology,

whose resolvent is (Ũα)α>0.

(iii) There is a right semigroup (P̃t)t≥0 on Ẽ relative to all natural topology,

whose resolvent is (Ũα)α>0.

(iv) Ẽ is quasi-absorbing for X.

Meanwhile all the right semigroups above are identical to the restriction of (Pt) to

Ẽ, i.e. P̃t(x,B) = Pt(x,B) for t ≥ 0, x ∈ Ẽ and B ∈ Ẽu.

Proof. Obviously (iii) implies (i), and (i) implies (ii). The assertion that (iv) implies
(i) has already been proved in [Sha88, Theorem (12.30)], The contrary that (i)
implies (iv) is a consequence of Theorem 2.4. It suffices to argue that (ii) implies
(iii).

Suppose that (ii) holds true and that τ̃ is such a natural topology on Ẽ. Let

X̃ = (Ω̃, F̃ , F̃t, X̃t, θ̃t, P̃
x)

be the augmented canonical realization of P̃t relative to τ̃ . The family of null sets
is denoted by Ñ (see Appendix A.5). The fine topology of X̃ is actually the Ũ -fine
topology τ̃f .

Take another natural topology τ̃1 on Ẽ. Let (Ê1, d̃1) be a compact metric space

in which (Ẽ, τ̃1) is embedded. Denote by Cd̃1(Ẽ) the family of all d̃1-uniformly

continuous functions on Ẽ. Take a family C̃1 ⊂ Cd̃1(Ẽ) of countably many functions

such that C̃1 is dense in Cd̃1(Ẽ). (Such a family exists because Cd̃1(Ẽ) = C(Ê1)|Ẽ
and C(Ê1) is separable.) In view of page 251 in [RF10], C̃1 generates the topology

τ̃1. In other words, Ẽ 3 xn → x ∈ Ẽ relative to τ̃1 if and only if f(xn)→ f(x) for

all f ∈ C̃1.
Since τ̃1 ⊂ τ̃f , every f ∈ C̃1 is τ̃f -continuous. By means of, e.g., [Sha88, (10.18)],

t 7→ f(X̃t) is a.s. right continuous for f ∈ C̃1. In other words, there is a null set

Γ̃f ∈ Ñ such that t 7→ f(X̃t(ω)) is right continuous for every ω ∈ Ω̃ \ Γ̃f . Set

Γ̃ := ∪f∈CΓ̃f . Since C̃ is countable, it follows that Γ̃ ∈ Ñ . For any ω ∈ Ω̃ \ Γ̃,

since t 7→ f(X̃t(ω)) is right continuous for all f ∈ C̃1, one obtains that t 7→ X̃t(ω)

is right continuous relative to τ̃1 for every ω ∈ Ω̃ \ Γ̃. Define Ω̃1 := Ω̃ \ Γ̃, and let

(F̃1, F̃1
t , X̃

1
t , P̃

x
1) be the restriction of (Ω̃, F̃ , F̃t, X̃t, P̃

x) to Ω̃1. Obviously θ̃tΩ̃1 ⊂
Ω̃1. Denote its restriction to Ω̃1 by θ̃1

t . It is straightforward to verify that

X̃1 = (Ω̃1, F̃1, F̃1
t , X̃

1
t , θ̃

1
t , P̃

x
1)

is a realization of P̃t relative to τ̃1. Therefore P̃t also satisfies (HD1) relative to τ̃1.

Specifically (P̃t) is a right semigroup relative to τ̃1.



RESTRICTION OF RIGHT PROCESS 9

The identification between P̃t and the restriction of Pt to Ẽ can be easily con-
cluded by virtue of Theorem 2.4. That completes the proof. �

3.2. U-negligible set. Let us now investigate the restriction Ũα of Uα to the
complement Ẽ = E \N of a U -negligible set N ∈ Eu. This stronger assumption on
N has an important implication: N does not contain any non-empty finely open
subsets, as shown in [Sha88, (10.12)]. (In contrast, a weakly U -negligible set may
contain non-empty finely open subsets. For example, in the example mentioned
in Remark 2.2 (2), the set {2} is both weakly U -negligible and finely open.) As a

result, we have less chances to build a right process for Ũα.

Theorem 3.4. Let N ∈ Eu be U -negligible and (Ũα)α>0 be the restriction of

(Uα)α>0 to Ẽ := E \N . The following are equivalent:

(i) There is a right semigroup (P̃t)t≥0 on Ẽ relative to the subspace topology,

whose resolvent is (Ũα)α>0.

(ii) There is a right semigroup (P̃t)t≥0 on Ẽ relative to some natural topology,

whose resolvent is (Ũα)α>0.

(iii) There is a right semigroup (P̃t)t≥0 on Ẽ relative to all natural topology,

whose resolvent is (Ũα)α>0.
(iv) N is quasi-polar for X.

Meanwhile all the right semigroups above are identical to the restriction of (Pt) to

Ẽ, i.e. P̃t(x,B) = Pt(x,B) for t ≥ 0, x ∈ Ẽ and B ∈ Ẽu.

Proof. The equivalences between (i), (ii) and (iii) have been obtained in Theo-
rem 3.3. Since the complement of a quasi-polar set is quasi-absorbing, (iv) is
stronger than the other three due to Theorem 3.3. We only need to show that (i)
implies (iv). Let

X̃ = (Ω̃, F̃ , F̃t, X̃t, θ̃t, P̃
x)

be the augmented canonical realization of P̃t relative to the subspace topology.
We will adopt a well-known Ray-Knight method to complete the proof; see [Get75]
and [Sha88, Chapter V] for more details about this method. A brief summary is
also reviewed in Appendix B for readers’ convenience.

Take a pre-Ray class C ⊂ pCd(E) for the right process X (see Definition B.1).
The rational Ray cone generated by (Uα) and C is denoted by R. It is straightfor-

ward to verify that C̃ := {f |Ẽ : f ∈ C} satisfies all conditions in Definition B.1 with

Ẽ in place of E. Hence C̃ is a pre-Ray class for the right process X̃. Denote by R̃
the rational Ray cone generated by (Ũα) and C̃. Checking the construction proce-
dures of rational Ray cone after Definition B.1 and noting that N is U -negligible,
one may easily obtain R̃ = {f |Ẽ : f ∈ R}. Certainly both R and R̃ are countable.
Hence we may write

R = {gn : n ≥ 1}, R̃ = {g̃n : n ≥ 1},

where g̃n = gn|Ẽ . We argue that

(3.2) ‖gn‖ := sup
x∈E
|gn(x)| = sup

x∈Ẽ
|g̃n(x)| =: ‖g̃n‖.

Let τf be the fine topology on E relative to X. Note that gn ∈ R ⊂ ∪α>0bSα.
Hence gn is τf -continuous. The assumption that N is U -negligible implies that N
contains no non-empty finely open subsets. In particular, for any x ∈ N , there
is a sequence xk ∈ Ẽ such that xk → x as k → ∞ in τf . Since gn(xk) → gn(x)
as k → ∞, we can obtain that ‖gn‖ = supx∈Ẽ |gn(x)| = ‖g̃n‖, as arrives at (3.2).
Then examining the construction of Ray-Knight compactification in Appendix B
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allows us to conclude that (E, d, Uα) with rational Ray cone R and (Ẽ, d, Ũα) with

rational Ray cone R̃ have the same Ray-Knight compactification (Ē, ρ̄, Ūα).
Let D be the set of non-branching points of Ūα and

ẼR := {x ∈ Ē : Ūα(x, ·) is carried by Ẽ}

be the Ray space relative to X̃. Applying [Sha88, (17.14)] to Ūα and X, one gets
that for x ∈ E, Ūα(x, ·) is carried by E and the restriction of Ūα(x, ·) to E is equal

to Uα(x, ·). Since N is U -negligible, Uα(x, ·), hence Ūα(x, ·), is carried by Ẽ for

x ∈ E. This yields Ẽ ⊂ E ⊂ ẼR. Put ẼD := D ∩ ẼR. Since E ⊂ D, it follows that

(3.3) Ẽ ⊂ E ⊂ ẼD.

By virtue of [Sha88, Theorem 39.15] for Ūα and X̃, the restriction of Ūα (or its

Ray semigroup P̄t) to ẼD corresponds to a right semigroup, denoted by Q̃t, on ẼD
and in addition, ẼD \ Ẽ is quasi-polar for the right process on ẼD with transition

semigroup Q̃t. Let

(3.4) Ỹ = (W̃ , W̃, W̃t, Ỹt, ϑ̃t, Q̃
x)

be the augmented canonical realization of Q̃t. On account of (3.3), both ẼD \ E
and E \ Ẽ are quasi-polar sets for Ỹ . Particularly, E is quasi-absorbing for Ỹ .

Restricting (3.4) to W̃ 1 := {ω ∈ W̃ : Ỹt(ω) ∈ E,∀t ≥ 0} and applying [Sha88,
Theorem (12.30)], one gets a new right process

(3.5) Ỹ 1 = (W̃ 1, W̃1, W̃1
t , Ỹ

1
t , ϑ̃

1
t , Q̃

x
1)

on E whose semigroup is the restriction of Q̃t to E. The restriction of Q̃t to
E is actually the restriction of Ray semigroup P̄t to E. According to [Sha88,

Theorem (17.16)], it is exactly equal to Pt. In other words, Ỹ 1 is indeed another
realization of X. Take a probability measure µ on E. Define

Γ1 := {ω ∈ W̃ 1 : Ỹ 1
t (ω) /∈ N, ∀t > 0}

= {ω ∈ W̃ : Ỹt(ω) ∈ Ẽ,∀t > 0, Ỹ0(ω) ∈ E} =: Γ.

Denote the outer measures of (W̃ , W̃, Q̃µ) and (W̃ 1, W̃1, Q̃µ
1 ) by Q̃µ

∗ and Q̃µ
1∗. Since

Q̃µ{Ỹ0 ∈ E} = 1 and Q̃µ
∗{Ỹt(ω) ∈ Ẽ,∀t > 0} = 1 due to that ẼD \ Ẽ is quasi-polar

for Ỹ , one has Q̃µ
∗ (Γ) = 1. We argue Q̃µ

1∗(Γ1) = 1. In fact, take arbitrary B1 ∈ W̃1

with Γ1 ⊂ B1. There is some B ∈ W̃ such that B1 = B ∩ W̃ 1. Then Q̃µ
∗ (Γ) = 1

and Γ = Γ1 ⊂ B1 ⊂ B imply Q̃µ
1 (B1) = Q̃µ(B) = 1. Hence Q̃µ

1∗(Γ1) = 1 holds
true.

Recall that (3.1) is the augmented canonical realization of (Pt), and we already

show that (3.5) is another realization of (Pt). Define a map Φ : W̃ 1 → Ω, as

is characterized by Ỹ 1
t = Xt ◦ Φ; see Remark A.4 (3). Then Φ ∈ W̃1/Fu and

Q̃µ
1 ◦ Φ−1 = Pµ. Put

Γ0 := {ω ∈ Ω : Xt(ω) /∈ N, ∀t > 0}.

For any B ∈ Fu with Γ0 ⊂ B, we have Γ1 ⊂ Φ−1(B) ∈ W̃1. Thus Q̃µ
1∗(Γ1) = 1

yields Pµ(B) = Q̃µ
1 ◦ Φ−1(B) = 1. As a result, Pµ

∗ (Γ0) = 1, as arrives at the
conclusion that N is quasi-polar for X. �

This result, together with Theorem 3.3, readily implies the following.

Corollary 3.5. Let N ∈ Eu be U -negligible. Then N is quasi-polar, if and only if
E \N is quasi-absorbing.

We close this section with two examples in terms of non-Borel universally mea-
surable subsets of Rn.
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Example 3.6. Let X be the Brownian motion on Rn with n ≥ 2 and Uα be its
resolvent. Salisbury [Sal87] constructed a universally measurable set Z ⊂ Rn such
that Z is of zero Lebesgue measure, every non-constant continuous path hits Z
and every Borel subset of Z is polar. Obviously Z is U -negligible and Z is not
quasi-polar. (Rn \Z is not quasi-absorbing either.) Hence there is no right process
on Rn \Z whose resolvent is the restriction of Uα to Rn \Z. (There also exists no
transition function satisfying (HD1) whose resolvent is this restriction if Rn \ Z is
endowed with the subspace topology.)

In addition, Salisbury [Sal87] also constructed another universally measurable
set Z ′ ⊂ Rn for n ≥ 4 such that it is of zero Lebesgue measure and the Pµ-outer
measures of both {Xt ∈ Z ′ : ∃t > 0} and {Xt /∈ Z ′ : ∀t > 0} are equal to 1 for any
probability measure µ on Rn. In particular, Z ′ is quasi-polar (hence any Borel set
contained in Z ′ is polar), while any Borel set containing Z ′ is not polar (in fact, if
B ∈ B(Rn) with Z ′ ⊂ B, then Pµ(TB <∞) = 1 where TB := inf{t > 0 : Xt ∈ B}).
As a result, there is a right process on Rn \ Z ′ whose resolvent is the restriction of
Uα to Rn \ Z ′.

4. Restriction of semi-Dirichlet form associated to a right process

Let X = (Ω,F ,Ft, Xt, θt,P
x) be a right process on a Radon space E whose

right semigroup is (Pt) and whose resolvent is (Uα). Write U for Uα with α =
0. We will regard the ceremony ∆ as a point outside E and hence the lifetime
ζ = inf{t > 0 : Xt = ∆} should be also attaching to X. In this case (Pt) is,
in general, sub-Markov on (E, Eu), every function on E is automatically extended
to E∆ := E ∪ {∆} by setting f(∆) = 0, and X is called a right process on E
with lifetime ζ and transition semigroup (Pt); see Appendix A.8. Furthermore, the
definition of a quasi-absorbing set needs to be adjusted by considering the time
before ζ. Specifically, a set F ∈ Eu is called quasi-absorbing if, for any initial
law µ supported on F , the set {Xt ∈ F,∀0 ≤ t < ζ} has full Pµ-outer measure.
Equivalently, F ∪ {∆} is quasi-absorbing for the Markov extension of (Pt) to E∆.
(The definition of quasi-polar sets remains unchanged.)

In this section, we will introduce two additional conditions on X, which are
adapted from Fitzsimmons [Fit01].

Hypothesis 4.1. The following hypotheses are assumed to hold true for X:

(H1) (Sector condition.) There is a σ-finite positive measure m on (E, E) such
that for any t ≥ 0, the restriction of Pt to L2(E,m)∩bE extends uniquely to
a contraction operating in L2(E,m) and its infinitesimal generator Lf :=
limt→0(Ptf − f)/t with domain D(L) (i.e. the class of functions f ∈
L2(E,m) for which the indicated limit exists in the strong sense in L2(E,m))
satisfies the sector condition: There is a finite constant K ≥ 1 such that the
bilinear form E (f, g) := (f,−Lg) with f, g ∈ D(L) satisfies the estimate

|E (f, g)| ≤ K · (f, f − Lf)1/2(g, g − Lg)−1/2, ∀f, g ∈ D(L),

where (·, ·) stands for the inner product of L2(E,m).
(H2) (m-tightness.) There is an increasing sequence (Kn) of compact subsets of

E such that

lim
n→∞

Pm{TE\Kn
< ζ} = 0,

where the notation Pm means that for m-a.e. x ∈ E, the Px-measure of
this set is 0, and TE\Kn

:= inf{t > 0 : Xt ∈ E \Kn}.

Remark 4.2. Fitzsimmons [Fit01] also included the assumption of transience, which
states that there exists a strictly positive function g ∈ bEu such that Ug is finite
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everywhere. However, this assumption can be dropped because if X is not tran-
sient, we can make it transient by introducing an exponential killing rate, thereby
ensuring that all results established in [Fit01] apply to the killed process, and
the corresponding results for the original process can be easily derived as well;
see [Fit01, Remark 2.8 (b)]. The hypothesis (H2) is replaced by a stronger one
in [Fit01]: E is a metrizable co-Souslin space. For convenience we take the current
version mentioned in [Fit01, (2.1)’].

Assuming hypothesis (H1), let F be the completion of D(L) with respect to the
norm e(f) := (f, f − Lf)1/2. Then (E ,F ) constitutes a semi-Dirichlet form on
L2(E,m) as defined in [MOR95]. The main result of [Fit01] further demonstrates
that under the conditions (H1) and (H2), the right processX is necessarily m-special
and m-standard. Additionally, it implies that (E ,F ) is quasi-regular according
to [MOR95].

Theorem 4.3 (Fitzsimmons [Fit01]). Let X be a right process on a Radon space
E such that (H1) and (H2) hold. Then its semi-Dirichlet form (E ,F ) on L2(E,m)
is quasi-regular, and X is properly associated with (E ,F ) in the sense that Ptf is
quasi-continuous for each f ∈ bpE ∩ L2(E,m).

We will refrain from restating the definitions of (semi-)Dirichlet form, quasi-
regularity or quasi-notions relative to a (semi-)Dirichlet form. The readers can refer
to the literatures such as [Fit01,MOR95,MR92]. Quasi-regularity holds significant
importance as it serves as both a sufficient and necessary condition for a (semi-
)Dirichlet form to be associated with a certain standard Markov process.

The objective of this section is to investigate whether (E ,F ) remains quasi-
regular when it is defined on L2(E \ N,m), where N ⊂ E is an m-negligible set,
i.e. m(N) = 0. It is important to note that (E ,F ) still constitutes a semi-Dirichlet
form on L2(E \N,m), as the semi-Dirichlet form is defined based on m-equivalence
classes. Furthermore, it is worth mentioning that N belongs to Ēm ⊃ Eu, where
Ēm represents the completion of E with respect to m, and N is not necessarily
universally measurable in general.

Let us first examine the restriction of Uα outside a weakly U -negligible set
N ∈ Eu with m(N) = 0. Thanks to Theorem 3.3, this restriction corresponds

to a right process X̃ whenever E \N is quasi-absorbing. Meanwhile the restricted
right process still satisfies (H1). However, in order to ensure the quasi-regularity

of its semi-Dirichlet form, we also require m-tightness for X̃, as indicated by The-
orem 4.3. It is important to note that m-tightness on a process implies that the
process remains within a Lusin space consisting of an increasing sequence of com-
pact subsets. Consequently, X̃ becomes a Borel right process on a smaller absorbing
set, which is the complement of a larger Borel measurable negligible set. This par-
ticular case is the only scenario where quasi-regularity of the semi-Dirichlet form
can be obtained through restriction, as illustrated in Theorem 4.4.

A set B ∈ Ee, the σ-algebra generated by all (α-)excessive functions, is called
m-inessential, if m(B) = 0 and E \ B is (quasi-)absorbing for X (see, e.g., [Fit01,
Definition 3.16 (a)]). Now we have a position to present the main result of this
section.

Theorem 4.4. Let X be a right process on a Radon space E such that (H1) and
(H2) hold, whose quasi-regular semi-Dirichlet form on L2(E,m) is (E ,F ). Let

N ⊂ E be an m-negligible set and Ẽ := E \N endowed with the subspace topology

of E. Then (E ,F ) is quasi-regular on L2(Ẽ,m), if and only if N ⊂ B for some
m-inessential set B ∈ E.

Proof. The sufficiency is trivial because in this case B is m-polar and hence N is
E -exceptional.
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We argue the necessity and the idea of the proof is through the line of [BCR22,

§2.3]. Suppose that (E ,F ) is quasi-regular on L2(Ẽ,m). Write (Ẽ , F̃ ) for (E ,F )

if it is put on L2(Ẽ,m). Denote by Ẽ = E|Ẽ the Borel σ-algebra on Ẽ. (Attention

that B̃ ∈ Ẽ is not necessarily in E .) On account of [MOR95, Theorem 3.8], there is

an Ẽ -exceptional set B̃ ∈ Ẽ and a Borel right process X̃ on the Lusin topological
space Ẽ1 := Ẽ \ B̃ properly associated with (Ẽ , F̃ ). The Borel σ-algebra on Ẽ1 is

Ẽ1 = Ẽ |Ẽ1
= E|Ẽ1

. Denote by P̃t and Ũα the transition semigroup and resolvent

of X̃ on (Ẽ1, Ẽ1). The embedding map ĩ : Ẽ1 → E is obviously Ẽ1/E measurable.

Since Ẽ1 is Lusin, it follows from Lusin’s theorem (e.g., [Sha88, A2.6]) that Ẽ1 ∈ E .

Particularly Ẽ1 ⊂ E .
Put (Ẽ , F̃ ) on L2(Ẽ1,m) and still denoted it by (Ẽ , F̃ ). Obviously (Ẽ , F̃ )

remains quasi-regular on L2(Ẽ1,m). Note that if {Fn ⊂ E : n ≥ 1} is an E -

nest, then {F̃n := Fn ∩ Ẽ1 : n ≥ 1} is an Ẽ -nest. Hence f̃ := f |Ẽ1
is Ẽ -quasi-

continuous for every E -quasi-continuous function f on E. Take a countable dense
subset C of Cd(E). [MOR95, Proposition 3.4] yields Uαf is E -quasi-continuous for

f ∈ C, and hence Uαf |Ẽ1
is Ẽ -quasi-continuous. Since Uαf = Ũαf̃ , m-a.e., where

f̃ := f |Ẽ1
, and Ũαf̃ is Ẽ -quasi-continuous, it follows that Uαf |Ẽ1

= Ũαf̃ outside an

Ẽ -exceptional set B̃α,f ∈ Ẽ1. Let B̃1 ∈ Ẽ1 be an m-inessential set of X̃ containing

the union of the sets B̃α,f as α varies over all strictly positive rationals and as f

varies over C. The existence of such B̃1 is due to, e.g., [CF12, Theorem A.2.15].

Set Ẽ2 := Ẽ1 \ B̃1 with its Borel σ-algebra Ẽ2 = E|Ẽ2
. Then it is easy to obtain

(4.1) Uαf |Ẽ2
= Ũαf̃ |Ẽ2

, ∀α > 0, f ∈ Cd(E).

Since Ẽ2 is absorbing for X̃, it follows that B̃1 is weakly Ũ -negligible and the
restriction Ṽ α of Ũα to Ẽ2 is the resolvent of a Borel right process on Ẽ2. A
monotone class argument based on (4.1) allows us to conclude that E \Ẽ2 is weakly

U -negligible and the restriction of Uα to Ẽ2 ∈ E is equal to Ṽ α. Particularly, the
restriction of Uα to Ẽ2 corresponds to a right process. On account of Theorem 3.3
and Ẽ2 ∈ E , one gets that Ẽ2 is absorbing for X. Note that m(E \ Ẽ2) = 0. We

eventually have an m-inessential set B := E \ Ẽ2 ∈ E with N ⊂ B. That completes
the proof. �

This characterization can be applied to build examples of non-quasi-regular
(semi-)Dirichlet forms, as Beznea et al. did in [BCR22]. In summary, given a quasi-
regular (semi-)Dirichlet form on L2(E,m) and a non-E -exceptional but m-negligible
set N ⊂ E, the same (semi-)Dirichlet form on L2(E \ N,m) is not quasi-regular.
Below, we provide an example illustrating the existence of a non-tight right process
associated with such a non-quasi-regular (semi-)Dirichlet form.

Example 4.5. Let Z ′ ⊂ Rn with n ≥ 4 be the universally measurable set in
Example 3.6. Then the restriction of Brownian resolvent to Rn \Z ′ corresponds to

a right process X̃. Clearly it is symmetric with respect to the Lebesgue measure
m and associated with the Dirichlet form ( 1

2D, H1(Rn)) on L2(Rn \ Z ′), where

H1(Rn) is the Sobolev space of order 1 over Rn and D(f, g) :=
∫
Rn ∇f(x)∇g(x)dx.

However, any Borel set containing Z ′ is not polar. Hence Theorem 4.4 tells us that
( 1

2D, H1(Rn)) is not quasi-regular on L2(Rn \ Z ′). In view of Theorem 4.3, X̃ is
not m-tight.

The choice of the inherited topology in Theorem 4.4 is indeed crucial. The
derivation of formula (4.1) relies on the specific setting of the inherited topology.
In contrast, (4.1) appears as a fundamental assumption in Theorems 3.3 and 3.4.

If different topologies are assigned to Ẽ, then even if N is a non-E -exceptional set,
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the semi-Dirichlet form (E ,F ) may exhibit quasi-regularity on L2(Ẽ,m). An in-
teresting example demonstrating this phenomenon is presented in [BBR06] (specif-
ically, the example before Proposition 3.5). Additionally, the following example,
due to [Sch79,LS20], further illustrates this point.

Example 4.6. Let G := (−∞, 0−]∪ [0,∞) consist of two separate intervals, where
0− is viewed as a distinct zero point from 0. The Lebesgue measure on G is denoted
by m. Consider the Dirichlet form

F :=
{
f ∈ L2(G) : f |(0,∞) ∈ H1((0,∞)), f |(−∞,0−) ∈ H1((−∞, 0−))

}
,

E (f, f) :=
1

2

∫
G\{0−,0}

f ′(x)2dx+
κ

4
(f(0)− f(0−))2, f ∈ F ,

where H1((0,∞)) (resp. H1((−∞, 0−))) is the Sobolev space of order 1 over (0,∞)
(resp. (−∞, 0−)), f(0) (resp. f(0−) is the right (resp. left) limit of f at 0 (resp.
0−), and κ > 0 is a given constant. Note that f ∈ F is tacitly continuous on (0,∞)
and (−∞, 0−) respectively. This Dirichlet form is regular (hence quasi-regular) on
L2(G), and its associated Markov process X is indeed a Feller process on G, called
the snapping-out Brownian motion with parameter κ (see [Lej16]). In addition,
the transition semigoup Pt as well as its resolvent Uα of X is absolutely continuous
with respect to m, and every singleton set is not E -polar. We refer readers to [LS20]
for more details.

Obviously {0−} is m-negligible and hence U -negligible, while Ẽ := G \ {0−} is

not (quasi-)absorbing. We will equip Ẽ with three kinds of topologies generating
the same Borel σ-algebra identical to B(R) and, relative to which examine the

Dirichlet form (E ,F ) on L2(Ẽ,m).

The first topology on Ẽ is the inherited topology of G. In this case the restriction
(P̃t) of (Pt) to Ẽ is still a transition function acting on L2(Ẽ,m) as a strongly
continuous symmetric contraction semigroup; see [Che22]. Particularly, (E ,F ) is

the Dirichlet form of (P̃t) on L2(Ẽ,m). Note that (P̃t) does not satisfy (HD1) due

to Theorem 2.4, and (E ,F ) is not quasi-regular on L2(Ẽ,m).

Next we endow Ẽ with the Euclidean topology, so that it is identical to R.
Currently the restricted transition function (P̃t) on R satisfies (HD1), and one of its
realizations can be obtained by mapping X to R through the surjection r : G→ R
with r(x) = x for x /∈ {0, 0−} and r(0) = r(0−) = 0; see [Sch79, Theorem 4.1]. The

resulting process X̃ is continuous and symmetric, but does not satisfy the strong
Markov property, i.e. (HD2) fails for (P̃t). The Dirichlet form of (P̃t) on L2(R) is
still (E ,F ), which is obviously not quasi-regular.

Finally we construct a third topology τ̃ on Ẽ so that (E ,F ) is quasi-regular on

L2(Ẽ,m) relative to this topology by mimicking the argument in [BBR06]. To do

this, let M̃ := {−1/n : n ≥ 1} and consider the bijection ϕ : G → Ẽ defined as

ϕ(x) := x for x ∈ Ẽ \ M̃ , ϕ(0−) := −1 and ϕ(−1/n) := −1/(n + 1) for n ≥ 1.
Let τ be the original topology of G. Set τ̃ := ϕ(τ) = {ϕ(O) : O ∈ τ}, the

biggest topology on Ẽ making ϕ continuous. It is easy to see that τ̃ is Haursdorff
and hence ϕ : (G, τ) → (Ẽ, τ̃) is a homoemorphism. Every f ∈ F admits a

τ̃ -continuous version f̃ with f̃(x) := f(x) for x ∈ Ẽ \ M̃ , f̃(−1) := f(0−) and

f̃(−1/(n+ 1)) := f(−1/n) for n ≥ 1, and hence

E (f, f) =
1

2

∫
Ẽ\M̃

f̃ ′(x)2dx+
κ

4
(f̃(0)− f̃(−1))2.

Obviously (E ,F ) is regular (thus quasi-regular) on L2(Ẽ,m) relative to the topol-
ogy τ̃ , whose associated Markov process is the homeomorphic image of X under
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ϕ. Denote by (P̃ τ̃t ) its associated transition semigroup. Then P̃ τ̃t is identical with

Pt(ϕ
−1(·), ϕ−1(·)). Particularly, it is not the same as the restriction of (Pt) to Ẽ.

Appendix A. Basics of right processes

A.1. Radon space. Let E be a Radon topological space, i.e. it is homeomorphic
to a universally measurable subset of a compact metric space. The Borel σ-algebra
on E is denoted by B(E), and the universal completion of B(E) is denoted by
Bu(E), i.e.

Bu(E) = ∩µB(E)
µ
,

where B(E)
µ

is the completion of B(E) with respect to µ running over all finite posi-
tive measures on (E,B(E)). Note that every finite measure on (E,B(E)) extends in
a unique way to a measure on (E,Bu(E)), and every finite measure on (E,Bu(E))
is the unique extension of its restriction to B(E); see, e.g., [Sha88, (A1.1)]. Hence
we would also call µ just a measure on E if no confusions caused. The simpler
notations E and Eu in place of B(E) and Bu(E) will be used unless clarity dictates
otherwise.

Suppose E is embedded into the compact metric space Ê with the metric d
compatible to the topology on E, i.e. the subspace topology of E relative to (Ê, d)

is identical to the original topology of E. Note that E = B(Ê)|E := {E ∩ B̂ : B̂ ∈
B(Ê)} and Eu = Bu(Ê)|E := {E ∩ B̂ : B̂ ∈ Bu(Ê)}; see, e.g., [Sha88, (A2.2)].
We set C(E) = C(E, d) to be the family of all real continuous functions on E and
Cd(E) to be the family of all real d-uniformly continuous functions on E. Then
Cd(E) is a separable space with respect to the uniform norm while C(E) may be
not.

A.2. Filtered measurable space. Given a σ-algebraM on a space M , bM (resp.
pM)) stands for the class of bounded (resp. [0,∞]-valued)M-measurable functions
onM . Given two measurable spaces (M1,M1) and (M2,M2). A map f : M1 →M2

is measurable, denoted by f ∈M1/M2, if f−1(B2) ∈M1 for any B2 ∈M2.
Let (Ω,G,P) be a probability space and (Xt)t≥0 be a stochastic process with

values in E. That is, Xt, t ≥ 0, is a collection of measurable maps from (Ω,G)
to (E, E). To emphasize the dependence on E , we call it an E-stochastic process.
Similar definitions will apply when E is replaced by larger σ-algebra E•, e.g., Eu. In
the current paper a stochastic process tacitly means an Eu-stochastic process. It is
required in this case that for any t ≥ 0, {Xt ∈ B} := {ω ∈ Ω : Xt(ω) ∈ B} ∈ G for
every B ∈ Eu rather than every B ∈ E . A filtration (Gt) means an increasing family
of sub-σ-algebras of G, to which (Xt) is (Eu-)adapted in the sense that Xt ∈ Gt/Eu
for t ≥ 0. Then the collection (Ω,Gt,G) is called a filtered measurable space.

Corresponding to a fixed Eu-stochastic process (Xt) on Ω, the natural σ-algebra
Fut is defined as σ {f(Xs) : 0 ≤ s ≤ t, f ∈ Eu} and Fu := σ {f(Xt) : t ≥ 0, f ∈ Eu}.
Obviously Fut ⊂ Gt and Fu ⊂ G.

A.3. Transition function. Fix a σ-algebra E• on E with E ⊂ E• ⊂ Eu. The
notation K(x, dy) is a kernel on (E, E•) provided that, for all x ∈ E, K(x, dy) is a
positive measure on (E, E•), and for every B ∈ E•, x 7→ K(x,B) is E•-measurable.
It is called a Markov (sub-Markov) kernel if K(x,E) = 1 (resp. K(x,E) ≤ 1) for
all x ∈ E. Note that K can be always extended to a kernel on (E, Eu), which is
still denoted by K.

Definition A.1. A family (Pt)t≥0 of Markov kernels on (E, E•) is called a transition
function on (E, E•) if for all t, s ≥ 0 and all x ∈ E,B ∈ E•,

(A.1) Pt+s(x,B) =

∫
E

Pt(x, dy)Ps(y,B).
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It is called a normal transition function if in addition, P0(x,B) = 1B(x).

Let (Xt) be a stochastic process on (Ω,G,P) E•-adapted to (Gt). It satisfies the
Markov property relative to a transition semigroup (Pt) on (E, E•) provided that

(A.2) P{f(Xt+s)|Gt} = Psf(Xt), t, s ≥ 0, f ∈ bE•.

The transition function (Pt) is also called the (Markov) transition semigroup of
(Xt) due to the semigroup property (A.1). The distribution µ of X0 is called the
initial law of (Xt). Clearly µt = µPt is the distribution of Xt.

A.4. The first regularity hypothesis (HD1). Let (Xt)t≥0 be a stochastic pro-
cess defined on (Ω,G,P) and having valued in a topological space E. It is called
right continuous in case that every sample path t 7→ Xt(ω) is a right continuous
map from R+ := [0,∞) to E. The following hypothesis, due to [Sha88, (2.1)], is
essentially the first of Meyer’s hypothèses droites.

Definition A.2 (HD1). Let E be a Radon topological space. A Markov transition
function (Pt)t≥0 on (E, Eu) is said to satisfy (HD1), if given an arbitrary probability
law µ on E, there exists an E-valued right continuous stochastic process (Xt)t≥0 on
some filtered probability space (Ω,G,Gt,P) so that X = (Ω,G,Gt,P, Xt) satisfies
the Markov property (A.2) (E• = Eu) with transition semigroup (Pt)t≥0 and initial
law µ.

In order to facilitate computations we shall work with a fixed collection of random
variables Xt defined on some probability space, and a collection Px specified in such
a way that Px(X0 = x) = 1, and under every Px, Xt is Markov with semigroup
(Pt). That is the following.

Definition A.3. Let E be a Radon space and (Pt)t≥0 be a Markov transition
function satisfying (HD1). The collection X = (Ω,G,Gt, Xt, θt,P

x) is called a
realization of (Pt) if it satisfies the following conditions:

(1) (Ω,G,Gt) is a filtered measurable space, and Xt is an E-valued right con-
tinuous process Eu-adapted to (Gt);

(2) (θt)t≥0 is a collection of shift operators mapping Ω into itself and satisfying
for t, s ≥ 0, θt ◦ θs = θt+s and Xt ◦ θs = Xt+s;

(3) For every x ∈ E, Px(X0 = x) = 1, and the process (Xt)t≥0 has the Markov
property (A.2) with transition semigroup (Pt) relative to (Ω,G,Gt,Px).

Furthermore, a realization of (Pt) is called canonical if Ω is the space of all right
continuous maps from R+ to E, Xt(ω) := ω(t), G = σ {f(Xt) : f ∈ Eu, t ≥ 0} and
Gt = σ {f(Xs) : f ∈ Eu, 0 ≤ s ≤ t}.

Remark A.4. (1) The normal property Px(X0 = x) = 1 is not always built
into the definition of Markov property (A.2). Particularly, it implies that
the transition semigroup (Pt) is normal.

(2) Obviously θt ∈ Fut+s/Fus for any s ≥ 0.
(3) The existence of realization is equivalent to (HD1) for a normal transition

function (Pt). One one hand, such a (canonical) realization of a normal (Pt)
satisfying (HD1) always exists. More precisely, define θtω(s) := ω(t + s)
for t, s ≥ 0 and ω ∈ Ω, the space of all right continuous maps from R+

to E. For x ∈ E, let (Ω̃,G,Gt,P, X̃t) be the collection in Definition A.2

with µ = δx. Define a map Φ : Ω̃ → Ω, ω̃ 7→ Φ(ω̃) with Φ(ω̃)(t) :=

X̃t(ω̃), as is characterized by the formulae X̃t = Xt ◦ Φ, t ≥ 0. Obviously
Φ ∈ G/Fu. Let Px be the image measure of P under the map Φ, so that
X = (Ω,Fu,Fut , Xt, θt,P

x) is the canonical realization of (Pt). To the
contrary, let X = (Ω,G,Gt, Xt, θt,P

x) be a realization of (Pt)t≥0. Note
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that x 7→ Px(B) is Eu-measurable for every B ∈ Fu; see [Sha88, (2.6)].
Hence Pµ(·) :=

∫
E
µ(dx)Px(·) defines a probability measure on (Ω,Fu) for

any probability measure µ on E, and (Xt) satisfies the Markov property
relative to (Ω,Fu,Fut ,Pµ), with transition semigroup (Pt) and initial law
µ. In other words, (Pt) satisfies (HD1).

A.5. Augmented filtration. Now we introduce the notation of augmentation of
the natural filtration Fut (not necessarily on the space of right continuous maps).
The augmentation of general filtration is analogous.

Given an initial law µ on E, let Fµ denote the completion Fu relative to Pµ,
and let N µ denote the σ-ideal of Pµ-null sets in Fµ. Define F := ∩µFµ, where µ
runs over all initial laws on E, N := ∩µN µ, Fµt := Fut ∨N µ and Ft := ∩µFµt . Two
random variables G,H ∈ F are called a.s. equal if {G 6= H} ∈ N . The filtration
(Ft) is called the augmented natural filtration on Ω.

Let X = (Ω,G,Gt, Xt, θt,P
x) be a realization of (Pt) in Definition A.3. Then

θt ∈ Ft+s/Fs for any s ≥ 0, and (Ω,F ,Ft, Xt, θt,P
x) is also a realization of (Pt).

A.6. The second fundamental hypothesis. We assume throughout this sub-
section that X = (Ω,G,Gt, Xt, θt,P

x) is a right continuous Markov process with
transition semigroup (Pt) on a Radon space E.

The resolvent (Uα)α≥0 is the family of kernels on (E, Eu) defined by

Uαf(x) := Px

∫ ∞
0

e−αtf(Xt)dt, α ≥ 0, f ∈ pEu.

It satisfies the well-known resolvent equation: For 0 ≤ α ≤ β and f ∈ pEu,

Uαf = Uβf + (β − α)UαUβf.

The family of α-excessive functions is crucial in the theory of Markov processes.

Definition A.5. Let α ≥ 0 and f ∈ pEu. Then f is α-super-mean-valued in case
e−αtPtf ≤ f for all t ≥ 0, and f is α-excessive if in addition, e−αtPtf → f as t ↓ 0.
It is called simply excessive if f is 0-excessive. The classes of α-excessive, excessive
functions are denoted by Sα, S respectively.

Remark A.6. A function f ∈ pEu is called α-supermedian in case βUα+βf ≤ f for
all β > 0. Note that α-super-mean-valued functions are α-supermedian, but not
vice versa. In addition, Sα = {f is α-supermedian : limβ↑∞ βUα+βf = f}.

We take up now the second fundamental hypothesis, which makes the strong
Markov property available.

Definition A.7 (HD2). The Markov process X = (Ω,G,Gt, Xt, θt,P
x) with tran-

sition semigroup (Pt) is said to satisfy (HD2), if for every α > 0 and every f ∈ Sα,
the process t 7→ f(Xt) is a.s. right process.

Remark A.8. In view of (A.5), “a.s.” means that there is N ∈ N (G) such that
t 7→ f(Xt) is right continuous on Ω \ N , where N (G) is the intersection of all σ-
ideal of Pµ-null sets in the completion of G relative to Pµ. Briefly speaking, it says
that for any x ∈ E, t 7→ f(Xt) is Px-a.s. right continuous. This hypothesis always
implies the strong Markov property of X in the sense of [Sha88, §6]. Particularly,
if E is Lusin, i.e. it is homeomorphic to a Borel subset of a compact metric space,
and Pt(bE) ⊂ bE , then (HD2) is equivalent to the strong Markov property of X.

A.7. Right processes and right semigroups. Now we have a position to raise
the formal definition of right processes.

Definition A.9. A system X = (Ω,G,Gt, Xt, θt,P
x) is a right process on the

Radon space E with transition semigroup (Pt) provided:
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(i) X is a realization of (Pt);
(ii) X satisfies (HD2);
(iii) (Gt) is augmented and right continuous.

If there is some right process with transition semigroup (Pt), then (Pt) is called a
right semigroup.

Remark A.10. (1) When E is a Lusin topological space and Pt(bE) ⊂ bE , X is
called a Borel right process.

(2) If X is a right process, then the augmented natural filtration Ft is right continu-
ous and (Ω,F ,Ft, Xt, θt,P

x) is also a right process with transition semigroup (Pt).
Particularly, if (Pt) is a right semigroup, then its augmented canonical realization,
obtained by replacing the natural filtration in the canonical realization with the
augmented one, is a right process with transition semigroup (Pt).

Let X be a right process on E with right semigroup (Pt). The fine topology
(see [Sha88, §10]) is the coarsest topology on E making all functions in ∪α>0Sα
continuous. It is finer than the original topology of E. The Borel σ-algebra relative
to the fine topology on E is denoted by Ee. Actually E ⊂ Ee = σ{∪α>0Sα} and
Pt(bEe) ⊂ bEe. For any B ∈ Ee (more generally, if B is nearly optional in the sense
of [Sha88, (5.1)]), the first hitting time TB := inf{t > 0 : Xt ∈ B} is an Ft-stopping
time, i.e. {TB ≤ t} ∈ Ft for any t ≥ 0.

A.8. Lifetime. If a transition function (Pt) is only sub-Markovian, it may be ex-

tended to a Markov one (P̃t) on a larger space E∆ by a standard argument as
in [Sha88, (11.1)]. (Take an abstract point ∆ not in E and let E∆ := E ∪ {∆} be
the Radon space obtained by adjoining ∆ to E as an isolated point.) In this case

we call (Pt) a right semigroup if (P̃t) is a right semigroup.

Realizing the right semigroup (P̃t) as a right process (Ω, G̃, G̃t, X̃t, θ̃t, P̃
x) on E∆,

one gets P̃∆(X̃t = ∆,∀t ≥ 0) = 1. Let ζ := {t > 0 : X̃t = ∆}. By the strong

Markov property, X̃t = ∆ for all t > ζ, almost surely. Hence ∆ is usually called
the ceremony for the process and ζ is called the lifetime. The role played by P̃t is
de-emphasized by making the convention that every function on E is automatically
extended to E∆ by setting f(∆) := 0. Defining Xt to be the same as X̃t on Ω and

letting Px := P̃x for x ∈ E, we can obtain another collection (Ω,G,Gt, Xt, θt,P
x) on

E in certain standard manner, which is called the right process on E with lifetime
ζ and transition semigroup (Pt). More details are referred to in [Sha88, §11].

Appendix B. Ray-Knight compactification

Let X = (Ω,G,Gt, Xt, θt,P
x) be a right process on a Radon space E with right

semigroup (Pt). The resolvent of X is denoted by (Uα)α≥0. If X has the cere-
mony, it should be regarded as a point in E throughout this section. The following
introduction to Ray-Knight compactification is due to [Sha88, §9, §17, §18, §39]
and [Get75].

Let Q denote the set of rational numbers, Q+ the positive rational numbers and
Q++ the strictly positive rational numbers. The Q+-cone generated by a family Y
of positive and bounded functions on E is the set of all Q+-linear combinations of
functions in the class Y. Given a Q+-cone Y ⊂ bpEu, set∧

(Y) := {k1 ∧ · · · ∧ kn : n ≥ 1, k1, · · · , kn ∈ Y},

U(Y) := {Uα1k1 + · · ·+ Uαnkn : n ≥ 1, αi ∈ Q++, ki ∈ Y}.

Both operations of
∧

and U keep the property of Q+-cone.
Recall that Cd(E) is the family of all d-uniformly continuous functions on E.

For convenience, we propose to assign a name to the following class of functions.
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Definition B.1. A family C is called a pre-Ray class, if

(i) C ⊂ pCd(E) is countable;
(ii) 1E ∈ C;
(iii) The linear span of C is uniformly dense in Cd(E).

Since Cd(E) is separable, such C always exists. The rational Ray cone R gener-
ated by (Uα) and C is the Q+-cone defined as follows: Let H denote the Q+-cone
generated by C, and let R0 := U(H). For n ≥ 1, let Rn :=

∧
(Rn−1 + U(Rn−1)),

and finally set R := ∪n≥0Rn. Obviously R ⊂ ∪α>0bSα, and R is countable, sta-
ble under the operation

∧
, contains the positive rational constant functions, and

separates the points of E.
Write R = {gn : n ≥ 1}. Define a metric ρ on E as

ρ(x, y) :=
∑
n≥1

2−n‖gn‖−1|gn(x)− gn(y)|,

where ‖gn‖ := supx∈E |gn(x)|. The map

Ψ : E → K :=

∞∏
n=1

[0, ‖gn‖], x 7→ (gn(x))n≥1

is an injection. Since the product topology on K is generated by the metric

ρ′(a, b) :=
∑
n≥1

2−n‖gn‖−1|an − bn|

for a = (an)n≥1 and b = (bn)n≥1, Ψ is an isometry of (E, ρ) to (K, ρ′). It follows
that the completion (Ē, ρ̄) of (E, ρ) is compact. In general Ψ is only Eu-measurable
and Eu = Bu(Ē)|E . If X is a Borel right process, then Ψ is E-measurable.

The topology on E induced by the metric ρ is called the Ray topology on E.
Actually it does not depend on the choice of d or C, and in general, is not compatible
to the original topology on E. Denote by Cρ(E) the space of ρ-uniformly continuous
functions on E. Then for all α > 0, Uα(Cρ(E)) ⊂ Cρ(E), Uα(Cd(E)) ⊂ Cρ(E)
and R−R is uniformly dense in Cρ(E); see [Sha88, (17.8)]. Let Er := σ{Cρ(E)},
i.e. the σ-algebra on E generated by the Ray topology. Then E ⊂ Er ⊂ Eu and
Pt(bEr) ⊂ bEr, Uα(bEr) ⊂ bEr for α > 0.

We may now construct by continuity a resolvent Ūα on Ē that extends Uα on E.
Let f̄ ∈ C(Ē) be the continuous extension of f ∈ Cρ(E). Then Uαf ∈ Cρ(E) and

so Uαf extends continuously to Uαf ∈ C(Ē). Define the map Ūα : C(Ē)→ C(Ē)
as

Ūαf̄ := Uαf, f̄ ∈ C(Ē).

Then (Ūα)α>0 is a so-called Ray resolvent on C(Ē) in the sense of, e.g., [Sha88,
(9.4)]. The collection (Ē, ρ̄, Ūα) is called the Ray-Knight compactification (or Ray-
Knight completion) of (E, d, Uα). It depends not only on E, d and Uα but also
on the choice of C. For every x ∈ E, Ūα(x, ·) is carried by E ∈ Bu(Ē) and its
restriction to E is equal to Uα(x, ·). Let P̄t be the Ray semigroup associated with
Ūα on Ē. Then for all x ∈ E and t ≥ 0, P̄t(x, ·) is also carried by E and its
restriction to E is equal to Pt(x, ·).

The Ray process X̄ associated with Ūα on Ē admits branching points B := {x ∈
Ē : P̄0(x, ·) 6= δx} but may lead to certain right processes by restriction. Note that
B ∈ B(Ē) and the set of non-branching points D := Ē \B always contains E. The
(first) restriction of X̄ to D (⊃ E) is a Borel right process. On the other hand, put

ER := {x ∈ Ē : Ūα(x, ·) is carried by E},
which inherits the subspace topology from Ē. Then ER is independent of α, E ⊂
ER, and ER is a Radon topological space. This space, called the Ray space, is also
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independent of d and C, and depends only on Uα and the original topology on E.
Furthermore, the (second) restriction of X̄ to ED := ER ∩D (⊃ E) is also a (not
necessarily Borel) right process.
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