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Abstract

By developing a new technique called the bi-coupling argument, we estimate the rel-
ative entropy between different diffusion processes in terms of the distances of initial
distributions and drift-diffusion coefficients. As an application, the log-Harnack inequal-
ity is established for McKean-Vlasov SDEs with multiplicative distribution dependent
noise, which appears for the first time in the literature.
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1 Introduction

In this paper, we introduce the bi-coupling argument to estimate the relative entropy between
two diffusion processes. The relative entropy, also called the Kullback-Leibler divergence or
the information divergence, is a physical quantity measuring the chaos of one distribution with
respect to another. As an application, we establish the log-Harnack inequality for McKean-
Vlasov SDEs with multiplicative distribution dependent noise, which is unknown so far.

As a member in the family of dimension-free Hanranck inequalities (see [18, 19, 21]), the
log-Harnack inequality bounds the entropy by the quadratic Wasserstein distance, hence can be
regarded as an inverse of the Talagrand inequality [17]. The log-Harnack inequality has crucial
applications in optimal transport, curvature on Riemennian manifolds or metric measure spaces,
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and exponential ergodicity in entropy, see for instance [1, 15, 19]. See [20] for more applications
of this type inequalities.

Let T > 0, and let Γ be the space of (a, b), where

b : [0, T ]× Rd → Rd, a : [0, T ]× Rd → Rd ⊗ Rd

are measurable, and for any (t, x) ∈ [0, T ]× Rd, a(t, x) is positive definite. For any (a, b) ∈ Γ,
consider the time dependent second order differential operators on Rd:

La,bt := tr{a(t, ·)∇2}+ b(t, ·) · ∇, t ∈ [0, T ].

Let (ai, bi) ∈ Γ, i = 1, 2, such that for any s ∈ [0, T ), each (Lai,bit )t∈[s,T ] generates a unique

diffusion process (X i,x
s,t )(t,x)∈[s,T ]×Rd with X i,x

s,s = x, and for any t ∈ (s, T ], the distribution P i,x
s,t

of X i,x
s,t has positive density function pi,xs,t with respect to the Lebesgue measure. When s = 0,

we simply denote
X i,x

0,t = X i,x
t , P i,x

0,t = P i,x
t .

The associated Markov semigroup (P i
s,t)0≤s≤t≤T is given by

P
(i)
s,t f(x) := E[f(X i,x

s,t )], 0 ≤ s ≤ t ≤ T, x ∈ Rd, f ∈ Bb(Rd).

If the initial value is random with distributions ν ∈ P, where P is the set of all probability
measures on Rd, we denote the diffusion process by X i,ν

t , which has distribution

P i,ν
t =

∫
Rd
P i,x
t ν(dx), i = 1, 2, t ∈ (0, T ].

Let pi,νt be the density function of P i,ν
t with respect to the Lebesgue measure.

We estimate the relative entropy

Ent(P 1,ν1
t |P 2,ν2

t ) :=

∫
Rd

(
log

dP 1,ν1
t

dP 2,ν2
t

)
dP 1,ν1

t = E
[(

log
p1,ν1
t

p2,ν2
t

)
(X1,ν1

t )

]
, t ∈ (0, T ].

Before moving on, let us recall a nice entropy inequality derived in [5]. For a d × d-matrix
valued function a = (akl)1≤k,l≤d, the divergence is an Rd-valued function defined by

diva :=
( d∑
l=1

∂la
kl
)

1≤k≤d
,

where ∂l := ∂
∂xl

for x = (xl)1≤l≤d ∈ Rd. Let

Φν(s, y) := (a1(s, y)− a2(s, y))∇ log p1,ν
s (y) + div{a1(s, ·)− a2(s, ·)}(y)

+ b2(s, y)− b1(s, y), s ∈ (0, T ], y ∈ Rd, ν ∈P,

where ∇ is the gradient operator for weakly differentiable functions on Rd. In particular,
‖∇f‖∞ is the Lipschitz constant of f .

By [5, Theorem 1.1], the entropy inequality

(1.1) Ent(P 1,ν
t |P

2,ν
t ) ≤ 1

2

∫ t

0

E
[∣∣a2(s,X1,ν

s )−
1
2 Φν(s,X1,ν

s )
∣∣2]ds, t ∈ (0, T ]

holds under the following assumption (H).
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(H) For each i = 1, 2, bi is locally bounded, and there exists a constant K > 1 such that

‖ai(t, x)‖ ∨ ‖ai(t, x)−1‖ ∨ ‖∇ai(t, ·)(x)‖ ≤ K, (t, x) ∈ [0, T ]× Rd.

Moreover, at leat one of the following conditions hold:

(1)
∫ T

0
E
[‖a2(t,X1,ν

t )‖
1+|X1,ν

t |2
+
|b2(t,X1,ν

t )|+|Φν(t,X1,ν
t )|

1+|X1,ν
t |

]
dt <∞;

(2) there exist 1 ≤ V ∈ C2(Rd) with V (x)→∞ as |x| → ∞, and a constant K > 0 such
that

La2,b2t V (x) ≤ KV (x),

∫ T

0

E
[ |〈Φν(t,X1,ν

t ),∇V (X1,ν
t )〉|

V (X1,ν
t )

]
dt <∞.

It is well known that (H) implies the existence and uniqueness of the diffusion processes
(X i,ν

t )i=1,2 for any ν ∈ P, and the existence of the density functions (pi,νt )i=1,2, see for in-
stance [4].

As observed in [5, Remark 1.4] that one may have∫ t

0

E
[
|∇ log p1,ν

s |2(X1,ν
s )
]
ds <∞,

provided ν has finite information entropy, i.e. ρ(x) := dν
dx

satisfies
∫
Rd(ρ| log ρ|)(x)dx < ∞. In

this case, (1.1) provides a non-trivial upper bound for Ent(P 1,ν
t |P

2,ν
t ).

However, for a fixed initial value x, i.e. ν = δx, E[|∇ log p1,x
s |2(X1,x

s )] behaves as c
s

for some
constant c > 0 and small s > 0, so that∫ t

0

E[|∇ log p1,x
s |2(X1,x

s )]ds =∞, t > 0.

Consequently, the estimate (1.1) becomes invalid when

(1.2) inf
(s,x)∈[0,T ]×Rd

‖a1(s, x)− a2(s, x)‖ > 0.

To kill the singularity in (1.1) for small t > 0, we introduce a new technique by constructing
an interpolation diffusion process which is coupled with each of the given two diffusion processes
respectively, so we call it the bi-coupling argument.

1.1 Entropy estimates for diffusion processes

We make the following assumption (A1) and (A2) where bi may have a Dini continuous term
with respect to a Dini function in the class

D :=

{
ϕ : [0,∞)→ [0,∞) is increasing and concave, ϕ(0) = 0,

∫ 1

0

ϕ(s)

s
ds <∞

}
.

For ϕ ∈ D , t > 0 and a function f on [0, t]× Rd, let

‖f‖t,∞ := sup
x∈Rd
|f(t, x)|, ‖f‖r→t,∞ := sup

s∈[r,t]

‖f‖s,∞, r ∈ [0, t],

‖f‖0→T,ϕ := sup
t∈[0,T ],x 6=y∈Rd

(
|f(t, x)|+ |f(t, x)− f(t, y)|

ϕ(|x− y|)

)
.
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(A1) For each i = 1, 2, bi = b
(0)
i + b

(1)
i is locally bounded, and there exists a constant K > 0

such that

‖b(0)
i ‖0→T,∞ ∨ ‖∇b(1)

i ‖0→T,∞ ∨ ‖ai‖0→T,∞ ∨ ‖a−1
i ‖0→T,∞ ∨ ‖∇ai‖0→T,∞ ≤ K.

(A2) There exist i ∈ {1, 2} and ϕ ∈ D such that ‖b(0)
i ‖T,ϕ ≤ K.

For any ν1, ν2 ∈ P, let C (ν1, ν2) be the set of all couplings of ν1 and ν2. Consider the
quadratic Wasserstein distance

W2(ν1, ν2) := inf
π∈C (ν1,ν2)

(∫
Rd×Rd

|x− y|2π(dx, dy)

) 1
2

.

In the following, c = c(K,T, d, ϕ) stands for a constant depending only on K,T, d and ϕ.

Theorem 1.1. Assume (A1) and (A2). Then the following assertions hold for some constants
c = c(K,T, d, ϕ) > 0 and ε = ε(K,T, d, ϕ) ∈ (0, 1

2
].

(1) For any ν1, ν2 ∈P and t ∈ (0, T ],

Ent(P 1,ν1
t |P 2,ν2

t ) ≤ cW2(ν1, ν2)2

t
+
c

t

∫ t

0

{
‖b1 − b2‖2

s,∞ + ‖a1 − a2‖2
s,∞
}

ds

+ c
[

log(1 + t−1)‖a1 − a2‖2
εt→t,∞ +

∫ t

εt

‖div(a1 − a2)‖2
s,∞ds

]
.

(1.3)

(2) If there exists a constant C(K) > 0 such that ‖b1‖0→T,∞ ≤ C(K), then

Ent(P 1,ν1
t |P 2,ν2

t ) ≤ c

t

(
W2(ν1, ν2)2 +

∫ t

0

{
‖b1 − b2‖2

s,∞ + ‖a1 − a2‖2
s,∞
}

ds

)
+ c

(
‖a1 − a2‖2

εt→t,∞ +

∫ t

εt

‖div(a1 − a2)‖2
s,∞ds

)
, ν1, ν2 ∈P, t ∈ (0, T ].

(1.4)

(3) If there exists a constant C(K) > 0 such that

(1.5) ‖∇ib1‖0→T,∞ + ‖∇ia1‖0→T,∞ ≤ C(K), i = 1, 2,

then for any ν1, ν2 ∈ Rd and t ∈ (0, T ],

Ent(P 1,ν1
t |P 2,ν2

t ) ≤ c
t

[
W2(ν1, ν2)2 +

∫ t

0

(
‖b1 − b2‖2

s,∞ + ‖a1 − a2‖2
t,∞
)
ds

]
+

∫ t

εt

‖div(a1 − a2)‖2
s,∞ds.

(1.6)
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1.2 Log-Harnack inequality for DDSDEs

Let P2 := {ν ∈P : ν(| · |2) <∞}, which is a Polish space under W2. Consider the following
distribution dependent SDE on Rd:

(1.7) dXt = b(t,Xt,LXt)dt+ σ(t,Xt,LXt)dWt, t ∈ [0, T ],

where LXt is the distribution of Xt,

b : [0, T ]× Rd ×P2 → Rd, σ : [0, T ]× Rd ×P2 → Rd ⊗ Rd

are measurable, and Wt is a d-dimensional Brownian motion on a complete filtration probability
space (Ω,F , {Ft}t∈[0,T ],P). When this SDE is well-posed for distributions in P2, i.e. for any
initial value X0 with LX0 ∈P2 (correspondingly, any initial distribution ν ∈P2), the SDE has
a unique solution (correspondingly, a unique weak solution) with (LXt)t∈[0,T ] ∈ C([0, T ]; P2),
the space of all continuous maps from [0, T ] to P2 under the weak topology. In this case, let
P ∗t ν = LXt for the solution with LX0 = ν, and define

Ptf(ν) :=

∫
Rd
fd(P ∗t ν), ν ∈P2, t ∈ [0, T ], f ∈ Bb(Rd).

We investigate the log-Harnack inequality

(1.8) Pt log f(ν1) ≤ logPtf(ν2) +
c

t
W2(µ, ν)2, f ∈ B+

b (Rd), t ∈ (0, T ], µ, ν ∈P2(Rd),

where c > 0 is a constant, and B+
b (Rd) is the set of all positive functions in Bb(Rd). By the

definition of Ent and Young’s inequality [2, Lemma 2.4], (1.8) is equivalent to the entropy-cost
inequality

Ent(P ∗t ν|P ∗t µ) ≤ c

t
W2(µ, ν)2, t ∈ (0, T ], µ, ν ∈P2(Rd).

When the noise is distribution free, i.e. σ(t, x, µ) = σ(t, x) does not depend on the distri-
bution argument µ, (1.8) has been established in [8, 10, 15, 22, 24] under different conditions,
see also [6, 7, 23] for extensions to the infinite-dimensional and reflecting models.

However, if the noise coefficient is also distribution dependent, the coupling by change of
measures applied in the above references does not apply. Recently, for σ(t, x, µ) = σ(t, µ)
independent of the spatial variable x, (1.8) has been established in [11] by using a noise decom-
position argument, see also [3] for the study on a special model.

As an application of Theorem 1.1, we are able to establish (1.8) for (1.7) with distribution
dependent multiplicative noise. For any µ ∈ C([0, T ]; P2), let

aµ(t, x) :=
1

2
(σσ∗)(t, x, µt), bµ(t, x) := b(t, x, µt), (t, x) ∈ [0, T ]× Rd.

Correspondingly to (A1) and (A2), we make the following assumption.

(B) There exists a constant K > 0 such that aµ and bµ = bµ,0 + bµ,1 satisfy the following
conditions.

5



(1) For any µ ∈ C([0, T ]; P2), bµ is locally bounded, and for any (t, x, µ) ∈ [0, T ]×Rd×P2,

‖∇bµ,1‖0→T,∞ + ‖aµ‖0→T,∞ + ‖(aµ)−1‖0→T,∞ + ‖∇aµ‖0→T,∞ ≤ K.

(2) There exists ϕ ∈ D such that

‖bµ,0‖T,ϕ ≤ K, µ ∈ C([0, T ]; P2).

(3) For any ν, µ ∈P2,

‖bν − bµ‖0→T,∞ ∨ ‖aν − aµ‖0→T,∞ ∨
∥∥div(aν − aµ)

∥∥
0→T,∞ ≤ KW2(ν, µ).

Theorem 1.2. Assume (B). Then (1.7) is well-posed for distributions in P2, and there exists
a constant c = c(K,T, d, ϕ) > 0 such that (1.8) holds.

In the next section, we introduce the bi-coupling argument by constructing an interpolation
SDE for X i,xi

t , i = 1, 2. This SDE has finite entropy with respect to X1,x1
t , and its density with

respect to X2,x2
t has finite p-moment for some p > 1, so that by the entropy inequality in Lemma

2.1, we are able to prove Theorem 1.1 and Theorem 1.2 in Sections 3 and 4 respectively.

2 Bi-coupling and moment estimate on density

Let σi =
√

2ai, i = 1, 2. According to [14, Theorem 2.1], (A1) implies the well-posedness of the
SDEs:

(2.1) dX i
t = bi(t,X

i
t)dt+ σi(t,X

i
t)dWt, t ∈ [0, T ], i = 1, 2.

For any s ∈ [0, T ) and x ∈ Rd, let X i,x
s,t be the unique solution for t ∈ [s, T ] with X i,x

s,s = x.

Then (X i,x
s,t )(t,x)∈[0,T ]×Rd is the diffusion process generated by (Lai,bit )t∈[s,T ], i = 1, 2.

For fixed x1, x2 ∈ Rd, let X i,xi
t solve (2.1) for X i,xi

0 = xi and σi :=
√

2ai, i = 1, 2. We have

P i,xi
t := L

X
i,xi
t
, i = 1, 2, t ∈ (0, T ].

To estimate Ent(P 1,x1
t1 |P

2,x2
t1 ) for some t1 ∈ (0, T ], we choose t0 ∈ (0, 1

2
t1] and construct a bridge

diffusion process X
〈t0〉x1
t starting at x1 which is generated by La1,b1t for t ∈ [0, t0] and La2,b2t for

t ∈ (t0, t1]. More precisely, let

b〈t0〉(t, ·) := 1[0,t0](t)b1(t, ·) + 1(t0,t1](t)b2(t, ·),
σ〈t0〉(t, ·) := 1[0,t0](t)σ1(t, ·) + 1(t0,t1](t)σ2(t, ·), t ∈ [0, t1].

We consider the interpolation SDE

(2.2) dX
〈t0〉x1
t = b〈t0〉(t,X

〈t0〉x1
t )dt+ σ〈t0〉(t,X

〈t0〉x1
t )dWt, Xx1

0 = x1, t ∈ [0, t1].

Let P
〈t0〉x1
t := L

X
〈t0〉x1
t

. We will deduce from (1.1) a finite upper bound for Ent(P 1,x1
t1 |P

〈t0〉x1
t1 ),

where the singularity at t = 0 disappears since the distance of diffusion coefficients vanishes for
t ∈ [0, t0]. Moreover, we will estimate the moment for the density of P

〈t0〉x1
t1 with respect to P 2,x2

t1 ,

so that by the following Lemma 2.1, we derive the desired upper bound on Ent(P 1,x1
t1 |P

2,x2
t1 ).
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Lemma 2.1. Let µ1, µ2 and µ be probability measures on a measurable space (E,B). Then for
any p > 1,

Ent(µ1|µ2) ≤ pEnt(µ1|µ) + (p− 1) log

∫
E

( dµ

dµ2

) p
p−1

dµ2,

where the right hand side is set to be infinite if dµ1
dµ

or dµ
dµ2

does not exist.

Proof. It suffices to prove for the case that dµ1
dµ

and dµ
dµ2

exist such that the upper bound is
finite. In this case, we have

Ent(µ1|µ2)− Ent(µ1|µ) =

∫
E

{
log

dµ1

dµ2

− log
dµ1

dµ

}
dµ1

=

∫
E

{
log

dµ

dµ2

}
dµ1 =

p− 1

p

∫
E

(dµ1

dµ2

)
log
( dµ

dµ2

) p
p−1

dµ2.

Combining with the Young inequality [2, Lemma 2.4], we obtain

Ent(µ1|µ2)− Ent(µ1|µ) ≤ p− 1

p
Ent(µ1|µ2) +

p− 1

p
log

∫
E

( dµ

dµ2

) p
p−1

dµ2.

By Lemma 2.1, for any p > 1 we have

(2.3) Ent(P 1,x1
t1 |P

2,x2
t1 ) ≤ pEnt(P 1,x1

t1 |P
〈t0〉x1
t1 ) + (p− 1) log

∫
Rd

(
dP
〈t0〉x1
t1

dP 2,x2
t1

) p
p−1

dP 2,x2
t1 .

Noting that a(t, ·)− a1(t, ·) = 0 for t ∈ [0, t0], we may apply (1.1) to derive a non-trivial upper
bound on the first term in the right hand side of (2.3), see Proposition 3.1 for details. So, in
the following, we only estimate the second term.

Proposition 2.2. Assume (A1) and (A2). Then there exist constants p = p(K,T, d) > 1, ε =
ε(K,T, d) ∈ (0, 1

2
] and c = c(K,T, d) > 0, such that for any x1, x2 ∈ Rd, t1 ∈ (0, T ] and t0 = εt1,

log

∫
Rd

(dP
〈t0〉x1
t1

dP 2,x2
t1

) p
p−1

dP 2,x2
t1 ≤ c

t1

(
|x1 − x2|2 +

∫ t1

0

{
‖a1 − a2‖2

t,∞ + ‖b1 − b2‖2
t,∞
}

dt

)
.

Proof. (a) Let

P
〈t0〉
t f(x) := E[f(X

〈t0〉x
t )], P

(2)
t f(x) := E[f(X2,x

t )], f ∈ Bb(Rd), (t, x) ∈ [0, T ]× Rd.

By first taking f := n ∧
(dP

〈t0〉x1
t1

dP
2,x2
t1

) 1
p−1 then letting n → ∞, we see that the desired estimate

follows from∣∣P 〈t0〉t1 f(x1)
∣∣p ≤ (P (2)

t1 |f |
p(x2)

)
× exp

[
c(p− 1)

t1

(
|x1 − x2|2 +

∫ t1

0

{
‖a1 − a2‖2

t,∞ + ‖b1 − b2‖2
t,∞
}

dt

)]
, f ∈ Bb(Rd).

(2.4)
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Let (P
(2)
s,t )0≤s≤t≤T be the semigroup generated by La2,b2t , i.e.

P
(2)
s,t f(x) := E[f(X2,x

s,t )], f ∈ Bb(Rd),

where (X2,x
s,t )t∈[s,T ] solves

dX2,x
s,t = b2(t,X2,x

s,t )dt+ σ2(t,X2,x
s,t )dWt, X2,x

s,s = x, t ∈ [s, T ].

By the Markov property and the SDE (2.2), we obtain

(2.5) P
〈t0〉
t1 f(x1) = E

[
(P

(2)
t0,t1f)(X1,x1

t0 )
]
, P

(2)
t1 f(x2) = E

[
(P

(2)
t0,t1f)(X2,x2

t0 )
]
.

By [14, Theorem 2.2] which applies to a more general setting where b
(0)
2 only satisfies a local

integrability condition, there exists constants p1 = p1(K,T, d) > 0 and c1 = c1(K,T, d) > 0
such that

(2.6)
∣∣P (2)

t0,t1f(x)
∣∣p1 ≤ (P (2)

t0,t1|f |
p1(y)

)
e
c1|x−y|

2

t1 , f ∈ Bb(Rd), x, y ∈ Rd.

Combining this with (2.5) and Jensen’s inequality, for p := 2p1 we obtain∣∣P 〈t0〉t1 f(x1)|p =
∣∣E[P

(2)
t0,t1f(X1,x1

t0 )]
∣∣2p1 ≤ (E[|P (2)

t0,t1f |
p1(X1,x1

t0 )
])2

≤
{
E
[(
P

(2)
t0,t1|f |

p1(X2,x2
t0 )

)
exp

(c1|X1,x1
t0 −X2,x2

t0 |2

t1

)]}2

≤
(
E
[
P

(2)
t0,t1|f |

2p1(X2,x2
t0 )

])
E
[

exp
(2c1|X1,x1

t0 −X2,x2
t0 |2

t1

)]
=
(
P

(2)
t1 |f |

p(x2)
)
E
[

exp
(2c1|X1,x1

t0 −X2,x2
t0 |2

t1

)]
.

(2.7)

Thus, to prove (2.4), it remains to estimate the expectation term in the upper bound.
(b) Since the exponential term is symmetric in (X1,x1

t0 , X2,x2
t0 ), without loss of generality, in

(A2) we may and do assume that ‖b(0)
1 ‖0→T,ϕ ≤ K. We shall use Zvonkin’s transform to kill this

non-Lipschitz term. By [27, Theorem 2.1], for fixed p, q ∈ (2,∞) with d
p

+ 2
q
< 1, there exist

constants c1 = c1(K,T, d, p, q) > 0 and β = β(p, q) ∈ (0, 1) such that for any λ > 0, the PDE

(2.8) (∂t + La1,b1t − λ)ut = −b(0)
1 (t, ·), t ∈ [0, T ], uT = 0

has a unique solution satisfying

(2.9) λβ(‖u‖0→T,∞ + ‖∇u‖0→T,∞) + ‖∂tu‖L̃pq + ‖∇2u‖L̃pq ≤ c1,

where

(2.10) ‖f‖L̃pq := sup
z∈Rd

(∫ T

0

‖1B(z,1)f(t, ·)‖q
Lp(Rd)

dt

) 1
q

.
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Let P
a1,b

(1)
1

s,t be the Markov semigroup generated by L
a1,b

(1)
1

t , and let p
a1,b

(1)
1

s,t be the heat kernel
with respect to the Lebesgue measure. By Duhamel’s formula, we have

(2.11) us =

∫ T

s

e−λ(t−s)P
a1,b

(1)
1

s,t

{
∇
b
(0)
1
ut + b

(0)
1 (t, ·)

}
dt, s ∈ [0, T ].

On the other hand, let ∇2
x be the Hessian operator in x. By [12, Theorem 1.2], under (A1) we

find a constant δ = δ(K,T, d) > 1 such that

|∇2
xp

a1,b
(1)
1

s,t (x, y)| ≤ λ

t− s
gδ(t− s, x, y), 0 ≤ s < t ≤ T, x, y ∈ Rd

holds for

gδ(r, x, y) := (πδr)−
d
2 e−

|θs,t(x)−y|
2

δ , r > 0, x, y ∈ Rd,

where θ : [0, T ]× [0, T ]× Rd → Rd is a measurable map. So, letting

(2.12) ht(y) := ∇
b
(0)
1 (t,y)

ut(y) + b
(0)
1 (t, y),

we obtain

|∇2
xus(x)| ≤

∫ T

s

e−λ(t−s)

t− s
∣∣∇2

xP
a1,b

(1)
1

s,t (ht − ht(z))(x)
∣∣
z=θs,t(x)

dt

≤
∫ T

s

e−λ(t−s)

t− s
dt

∫
Rd

∣∣∇2
xp

a1,b
(1)
1

s,t (x, y)| · |ht(y)− ht(θs,t(x))|dy.
(2.13)

By (A2), (2.9) for λ ≥ 1, and (2.12), we have

(2.14) |ht(y)− ht(θs,t(x))| ≤ (1 + c1)|b(0)
1 (t, y)− b(0)

1 (t, θs,t(x))|+K|∇ut(y)−∇ut(θs,t(x))|.

In the following, we estimate these two terms respectively.
Since ϕ is concave, we find a constant c2 = c2(K,T, d) > 0 such that∫

Rd
|b(0)

1 (t, y)− b(0)
1 (t, θs,t(x))|gδ(t− s, x, y)dy

≤ K

∫
Rd
ϕ(|y − θs,t(x)|)gδ(t− s, x, y)dy

≤ Kϕ

(∫
Rd
|y − θs,t(x)|gδ(t− s, x, y)dy

)
≤ c2ϕ

(√
t− s

)
, 0 ≤ s < t ≤ T, x ∈ Rd.

Hence,

sup
s∈[0,T ]

∫ T

s

e−λ(t−s)

t− s
dt

∫
Rd
|b(0)

1 (t, y)− b(0)
1 (t, θs,t(x))|gδ(t− s, x, y)dy

≤ c2

∫ T

0

e−λtϕ(t
1
2 )

t− s
dt =: ε1,

(2.15)

9



where ε1 = ε1(λ,K, T, d, ϕ) goes to 0 as λ→∞.
On the other hand, let α = 1− d

p
∈ (0, 1) and denote z = θs,t(x). By the Sobolev embedding

theorem, there exists a constant c0 > 0 depending on p and d such that

|∇ut(y)−∇ut(z)| ≤ c0|y − z|α‖1B(z,1)∇2ut‖Lp(Rd), if |y − z| < 1.

Since (2.9) implies ‖∇ut‖ ≤ c1 when λ ≥ 1, we find a constant c3 = c3(K,T, d) > 0 such that

|∇ut(y)−∇ut(θs,t(x))| ≤ c3|y − θs,t(x)|α‖1B(z,1)∇2ut‖Lp(Rd).

Noting that d
p

+ 2
q
< 1 and α = 1 − d

p
imply (1 − α) q

q−1
< 1, we find a constant ε2 =

ε2(λ,K, T, d, p, q) > 0 which goes to 0 as λ→∞, such that∫ T

s

e−λ(t−s)

t− s
dt

∫
Rd
|∇ut(y)−∇ut(θs,t(x))|gδ(t− s, x, y)dy

≤ c3

(∫ T

s

e−λ(t−s)(t− s)−(1−α) q
q−1 dt

) q−1
q

‖∇2u‖L̃pq ≤ ε2, s ∈ [0, T ].

By (2.9), and combining this with (2.13), (2.14), and (2.15), we find large enough λ =
λ(K,T, P, ϕ) > 0 such that ‖∇2u‖0→T,∞ ≤ 1

2
. Combining this with (2.9), we may choose

large enough λ > 0 such that

(2.16) ‖u‖0→T,∞ ∨ ‖∇u‖0→T,∞ ∨ ‖∇2u‖0→T,∞ ≤
1

2
.

In particular, letting

(2.17) X̃ i,xi
t := X i,xi

t + ut(X
i,xi
t ), i = 1, 2,

we have

(2.18)
1

2
|X1,x1

t −X2,x2
t | ≤ |X̃1,x1

t − X̃2,x2
t | ≤ 2|X1,x1

t −X2,x2
t |.

Hence, to bound the exponential moment in (2.7), it suffices to estimate the corresponding
term for |X̃1,x1

t0 − X̃2,x2
t0 |2 replacing |X1,x1

t0 −X2,x2
t0 |2.

(c) Let Id be the d× d identity matrix. By (2.8), (2.17) and Itô’s formula, we obtain

dX̃1,x1
t =

{
λut + b

(1)
1 (t, ·)

}
(X1,x1

t )dt+
{
Id +∇ut(X1,x1

t )
}
σ1(t,X1,x1

t )dWt,

dX̃2,x2
t =

{
λut + (La2,b2t − La1,b1t )ut + (b2 − b(0)

1 )(t, ·)
}

(X2,x2
t )dt

+
{
Id +∇ut(X2,x2

t )
}
σ2(t,X2,x2

t )dWt.

(2.19)

By (A1), (2.16), (2.18), and Itô’s formula, we find k1 = k1(K,T, d, ϕ) > 0 such that

(2.20) d|X̃1,x1
t −X̃2,x2

t |2 ≤ k1

(
|X̃1,x1

t −X̃2,x2
t |2 +‖a1−a2‖2

t,∞+‖b1−b2‖2
t,∞
)
dt+dMt, t ∈ [0, t0],

where Mt is a martingale satisfying

(2.21) d〈M〉t ≤ k1|X̃1,x1
t − X̃2,x2

t |2dt.
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For any n ≥ 1, let

τn := t0 ∧ inf
{
t ≥ 0 : |X̃1,x1

t − X̃2,x2
t | ≥ n

}
, γn := sup

t∈[0,τn]

|X̃1,x1
t − X̃2,x2

t |2.

By (2.18) we have
|X̃1,x1

0 − X̃2,x2
0 |2 ≤ 4|x1 − x2|2,

which together with (2.20), (2.21) and BDG’s inequality implies that for some constant k2 =
k2(K,T, d, ϕ) > 1,

E
[
e

8c1γn
t1

]
≤ e

k2
t1

[
|x1−x2|2+

∫ t1
0 (‖a1−a2‖2t,∞+‖b1−b2‖2t,∞)dt

](
E
[
e

8c1k2t0γn
t1

]) 1
2
(
E
[
e

8c1k2t0γn

t21

]) 1
2
.

Taking ε := 1
2k2(1∨T )

, for any t0 := εt1 and t1 ∈ (0, T ] we have

(k2t0) ∨ k2t0
t1
≤ 1

2
,

so that

E
[
e

8c1γn
t1

]
≤ e

k2
t1

[
|x1−x2|2+

∫ t1
0 (‖a1−a2‖2t,∞+‖b1−b2‖2t,∞)dt

]
E
[
e

8c1γn
2t1

]
≤ e

k2
t1

[
|x1−x2|2+

∫ t1
0 (‖a1−a2‖2t,∞+‖b1−b2‖2t,∞)dt

](
E
[
e

8c1γn
t1

]) 1
2
.

Since γn is bounded, this implies

E
[
e

8c1γn
t1

]
≤ e

2k2
t1

[
|x1−x2|2+

∫ t1
0 (‖a1−a2‖2t,∞+‖b1−b2‖2t,∞)dt

]
, n ≥ 1.

Therefore, by Fatou’s lemma and (2.18),

E
[
e

2c1|X
1,x1
t0

−X2,x2
t0

|2

t1

]
≤ lim inf

n→∞
E
[
e

2c1|X
1,x1
τn −X2,x2

τn |2

t1

]
≤ lim

n→∞
E
[
e

8c1γn
t1

]
≤ e

2k2
t1

[
|x1−x2|2+

∫ t1
0 (‖a1−a2‖2t,∞+‖b1−b2‖2t,∞)dt

]
.

This together with (2.7) implies (2.4) for some constant c = c(K,T, d, ϕ), and hence finishes
the proof.

3 Proof of Theorem 1.1

By (2.3) and Proposition 2.2, to estimate Ent(P 1,x1
t1 |P

2,x2
t1 ), we apply (1.1) to Ent(P 1,x1

t1 |P
〈t0〉x1
t1 ).

To this end, we present the following result.

Proposition 3.1. Assume (A1). Then the following assertions hold.
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(1) There exists a constant c = c(K,T, d) > 0 such that

(3.1)

∫ t

r

ds

∫
Rd

|∇p1,x
s |2

p1,x
s

(y)dy ≤ c log(1 + r−1), 0 < r ≤ t ≤ T, x ∈ Rd.

(2) If |b1| ≤ C(K) for some constant C(K) > 0, then for some constant c = c(K,T, d) > 0,

(3.2)

∫ t

r

ds

∫
Rd

|∇p1,x
s |2

p1,x
s

(y)dy ≤ c log
(

1 +
t

r

)
, 0 < r ≤ t ≤ T, x ∈ Rd.

(3) If (1.5) holds, then exists a constant c = c(K,T, d) > 0 such that

(3.3)

∫
Rd

|∇p1,x
t |2

p1,x
t

(y)dy ≤ c

t
, t ∈ (0, T ], x ∈ Rd.

In the following two subsections, we prove this result and Theorem 1.1 respectively.

3.1 Proof of Proposition 3.1

We first present a lemma.

Lemma 3.2. Assume (A1) with the condition on ‖∇a1‖0→T,∞ replacing by the weaker one:
there exists β ∈ (0, 1) such that

‖a1(t, x)− a1(t, y)‖ ≤ K|x− y|β, t ∈ [0, T ], x, y ∈ Rd.

Then the following assertions hold.

(1) There exists a constant c = c(K,T, d, β) > 0 such that

(3.4)

∣∣∣∣ ∫
Rd

(p1,x
t log p1,x

t )(y)dy

∣∣∣∣ ≤ c log(1 + t−1), t ∈ (0, T ], x ∈ Rd.

(2) If |b1| ≤ C(K) for some constant C(K) > 0, then∣∣∣∣ ∫
Rd

(p1,x
r log p1,x

r )(y)dy −
∫
Rd

(p1,x
t log p1,x

t )(y)dy

∣∣∣∣
≤ c log

(
1 +

t

r

)
, 0 < r ≤ t ≤ T, x ∈ Rd.

(3.5)

Proof. (1) For any x ∈ Rd, let θt(x) solve

(3.6) ∂tθt(x) = b1(t, θt(x)), θ0(x) = x, t ∈ [0, T ].

By [12, Theorem 1.2], there exists a constant c0 = c0(K,T, d) > 1 such that

(3.7)
1

c0t
d
2

e−
c0|θt(x)−y|

2

t ≤ p1,x
t (y) ≤ c0

t
d
2

e
− |θt(x)−y|

2

c0t , x, y ∈ Rd, t ∈ (0, T ].
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Consequently,

(3.8)

∫
Rd

(p1,x
t log p1,x

t )(y)dy ≤ log[c0t
− d

2 ]

∫
Rd
p1,x
t (y)dy = log[c0t

− d
2 ], t ∈ (0, T ], x ∈ Rd.

On the other hand, by Jensen’s inequality and (3.7), we find a constant c1 = c1(K,T, d) > 0
such that

−
∫
Rd

(p1,x
t log p1,x

t )(y)dy = 2

∫
Rd
p1,x
t (y) log{p1,x

t (y)}−
1
2 dy

≤ 2 log

∫
Rd
{p1,x

t (y)}
1
2 dy ≤ 2 log

[
c

1
2
0 t
− d

4

(
πc0t

) d
2

]
≤ log[c1t

d
2 ].

This together with (3.8) implies (3.4).
(2) For any 0 < r ≤ t ≤ T, we have

I(r, t) :=

∫
Rd

(ρr log ρr)(y)dy −
∫
Rd

(ρt log ρt)(y)dy = I1(r, t) + I2(r, t),

I1(r, t) :=

∫
Rd

(
ρr log

ρr
ρt

)
(y)dy, I2(r, t) :=

∫
Rd

(
ρr − ρt)(y) log ρt(y)dy.

(3.9)

If b1 is bounded, then (3.6) implies

|θt(x)− θr(x)| ≤ c1(t− r)

for some constant c1 > 0, so that by (3.7), we find a constant c2 > 0 such that

I1(r, t) ≤ log

[
c2

0

( t
r

) d
2

]
+
c2

0

t

∫
Rd
|θt(x)− y|2r−

d
2 e
− |θr(x)−y|

2

c0r dy

≤ c2 log
(

1 +
t

r

)
, 0 < r ≤ t ≤ T.

(3.10)

On the other hand, by (3.7), we find a constant c3 > 0 such that

I2(r, t) =

∫
Rd

{
(ρr − ρt)+ log ρt

}
(y)dy −

∫
Rd

{
(ρr − ρt)− log ρt

}
(y)dy

≤
∫
Rd

{
(ρr − ρt)+(y) log

[
c0t
− d

2

]
− (ρr − ρt)−(y) log

[
c−1

0 t−
d
2

]}
dy

+
c0

t

∫
Rd

(ρr − ρt)−(y)|θt(x)− y|2dy

≤ log[t−
d
2 ]

∫
Rd

(ρr − ρt)(y)dy + (log c0)

∫
Rd
|ρr − ρt|(y)dy

+
c0

t

∫
Rd
|θt(x)− y|2ρt(y)dy ≤ c3.

Combining this with (3.9) and (3.10), we derive (3.5).
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Proof of Proposition 3.1. Let x ∈ Rd be fixed, and simply denote ρt := p1,x
t .

(a) We first consider the smooth case where

(3.11) ‖∇ib1‖0→T,∞ + ‖∇ia1‖0→T,∞ <∞, i ≥ 1.

By [12, Theorem 1.2], there exist a constant λ > 1 and a measurable map θ : [0, T ]→ Rd such
that

(3.12) λ−1t−
d+i
2 e−

λ|θt−y|
2

t ≤
∣∣∇iρt

∣∣(y) ≤ λt−
d+i
2 e−

|θt−y|
2

λt , t ∈ (0, T ], y ∈ Rd, i = 0, 1, 2.

Moreover, by the Kolmogorov forward equation and integration by parts formula, we have

(3.13) ∂tρt = div
[
a1(t, ·)∇ρt + ρt{diva1(t, ·)− b1(t, ·)}

]
, t ∈ (0, T ].

By (3.12), (3.13) and integration by parts formula, we obtain∫
Rd

{
ρt log ρt − ρr log ρr

}
(y)dy =

∫ t

r

ds

∫
Rd

{
(1 + log ρs)∂sρs

}
(y)dy

= −
∫ t

r

ds

∫
Rd

〈
a1(s, ·)∇ log ρs + diva1(s, ·)− b1(s, ·),∇ρs

〉
(y)dy.

(3.14)

Since a1 ≥ K−1Id, this implies∫
Rd

{
ρt log ρt − ρr log ρr

}
(y)dy +

1

K

∫ t

r

ds

∫
Rd

|∇ρs|2

ρs
(y)dy

≤ −
∫ t

r

ds

∫
Rd

〈
diva1(s, ·)− b1(s, ·),∇ρs

〉
(y)dy

=

∫ t

r

ds

∫
Rd

〈[
b

(0)
1 − diva1

]
(s, ·),∇ρs

〉
(y)dy +

∫ t

r

ds

∫
Rd

〈
b

(1)
1 (s, ·),∇ρs

〉
(y)dy.

(3.15)

By (3.11), (3.12) and Lemma 3.2, we derive

(3.16)

∫ t

r

ds

∫
Rd

|∇ρs|2

ρs
(y)dy <∞.

Noting that (A1) implies |b(0)
1 − diva1| ≤ 2K, so that∫ t

r

ds

∫
Rd

〈[
b

(0)
1 − diva1

]
(s, ·),∇ρs

〉
(y)dy

≤ 1

2K

∫ t

r

ds

∫
Rd

|∇ρs|2

ρs
(y)dy + 2K3

∫ t

r

ds

∫
Rd
ρs(y)dy

=
1

2K

∫ t

r

ds

∫
Rd

|∇ρs|2

ρs
(y)dy + 2K3(t− r).

Moreover, by the integration by parts formula, (3.12) and ‖∇b(1)
1 ‖0→T,∞ ≤ K, we obtain∫ t

r

ds

∫
Rd

〈
b

(1)
1 (s, ·),∇ρs

〉
(y)dy = −

∫ t

r

ds

∫
Rd

div{b(1)
1 (s, y)}ρs(y)dy ≤ K(t− r).
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Combining these with (3.15) and (3.16), we derive∫ t

r

ds

∫
Rd

|∇ρs|2

ρs
(y)dy

≤ 2K

∫
Rd

{
ρr log ρr − ρt log ρt

}
(y)dy + 2K2(2K2 + 1)(t− r).

(3.17)

(b) In general, let 0 ≤ ψ ∈ C∞0 (Rd) such that
∫
Rd ψ(x)dx = 1, and define the smooth

mollifier Sn:

Snf(x) := nd
∫
Rd
f(x− y)ψ(ny)dy, n ≥ 1, f ∈ L1

loc(Rd).

Let
b

(n)
1 (t, ·) := Snb1(t, ·), a

(n)
1 (t, ·) := Sna1(t, ·), n ≥ 1.

Then (a
(n)
1 , b

(n)
1 ) satisfies (3.11) and (A1) for the same constant K. So, by step (a) and Lemma

3.2, the density function ρ
(n)
t for the diffusion process generated by L

a
(n)
1 ,b

(n)
1

t satisfies

(3.18)

∫ t

r

ds

∫
Rd

|∇ρ(n)
s |2

ρ
(n)
s

(y)dy ≤ c log(1 + r−1), 0 < r ≤ t ≤ T, n ≥ 1

for some constant c = c(K,T, d) > 0. Equivalently, for any

f ∈ C0,2
0 ([r, t]× Rd) :=

{
f ∈ Cb([r, t]× Rd) : ∇f,∇2f ∈ C0([r, t]× Rd)

}
,

we have ∣∣∣∣ ∫
[r,t]×Rd

ρ(n)
s (y)∆fs(y)dsdy

∣∣∣∣2 =

∣∣∣∣ ∫ t

r

ds

∫
Rd

{
〈∇ log ρ(n)

s ,∇fs〉ρ(n)
s

}
(y)dy

∣∣∣∣2
≤ c log(1 + r−1)

∫
[r,t]×Rd

|∇fs|2(y)ρ(n)
s (y)dsdy, n ≥ 1.

By [16, Theorem 11.1.4],

lim
n→∞

∫
Rd
ρ(n)
s (y)g(y)dy =

∫
Rd
ρs(y)g(y)dy, g ∈ Cb(Rd), s ∈ [r, t].

So, the above estimate implies∣∣∣∣ ∫
[r,t]×Rd

ρs(y)∆fs(y)dsdy

∣∣∣∣2 ≤ c log(1 + r−1)

∫
[r,t]×Rd

|∇fs|2(y)ρs(y)dsdy

for any f ∈ C0,2
0 ([r, t]× Rd). Therefore, (3.1) holds.

(c) If |b1| ≤ C(K) for some constat C(K) > 0, then (3.5) holds, so that instead of (3.18)
we have ∫ t

r

ds

∫
Rd

|∇ρ(n)
s |2

ρ
(n)
s

(y)dy ≤ c log
(

1 +
t

r

)
, 0 < r ≤ t ≤ T, n ≥ 1.
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Then the above argument implies (3.2).
(d) If (1.5) holds, then by Malliavin’s calculus, see for instance [13] or [25, Remark 2.1], for

any v ∈ Rd with |v| = 1, there exists a martingale M1,x,v
t such that

E[∇vf(X1,x
t )] = E[f(X1,x

t )M1,x,v
t ], f ∈ C1

b (Rd), t ∈ (0, T ]

and E[|M1,x,v
t |2] ≤ c

t
holds for some constant c = c(T,K, d) > 0 and all t ∈ (0, T ]. This implies∣∣∣∣ ∫

Rd

{
〈v,∇x log p1,x

t 〉f
}

(y)p1,x
t (y)dy

∣∣∣∣2 ≤ c

t

∫
Rd
f(y)2p1,x

t (y)dy, f ∈ C1
b (Rd), |v| = 1.

Equivalently, ∫
Rd

|∇p1,x
t |2

p1,x
t

(y)dy ≤ cd

t
, t ∈ (0, T ],

so that (3.3) holds.

3.2 Proof of Theorem 1.1

(1) Let p > 1 and ε ∈ (0, 1
2
] be in Proposition 2.2. By Proposition (3.1) and (A1), (H) holds for

ν = δx1 and (a〈t0〉, b〈t0〉) replacing (a2, b2). By (1.1) with ν = δx1 and (3.1), we find a constant
c1 = c1(K,T, d, ϕ) > 0 such that

Ent(P 1,x1
t1 |P

〈t0〉x1
t1 )

≤ c1

[
log(1 + t−1

1 )‖a1 − a2‖2
εt1→t1,∞ +

∫ t1

εt1

(
‖div(a1 − a2)‖2

t,∞ + ‖b1 − b2‖2
t

)
dt

]
,

t1 ∈ (0, T ], x1 ∈ Rd.

(3.19)

Combining this with (2.3) and Proposition 2.2, we find a constant c = c(K,T, d, ϕ) > 0 such
that for any t1 ∈ (0, T ] and x1, x2 ∈ Rd,

Ent(P 1,x1
t1 |P

2,x2
t1 ) ≤ It1(x1, x2) :=

c

t1

(
|x1 − x2|2 +

∫ t1

0

{
‖b1 − b2‖2

s,∞ + ‖a1 − a2‖2
s,∞
}

ds

)
+ c

(
log(1 + t−1

1 )‖a1 − a2‖2
εt1→t1,∞ +

∫ t1

εt1

‖div(a1 − a2)‖2
s,∞ds

)
.

Equivalently, for any t ∈ (0, T ] and f ∈ B+
b (Rd),

(3.20)

∫
Rd

{
log f(y)

}
P 1,x1
t (dy) ≤ log

∫
Rd
f(y)P 2,x2

t (dy) + It(x1, x2), x1, x2 ∈ Rd.

Let π ∈ C (ν1, ν2) such that

W2(ν1, ν2)2 =

∫
Rd×Rd

|x1 − x2|2π(dx1, dx2).
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we obtain

Ent(P 1,ν1
t |P 2,ν2

t ) = sup
0<f∈Bb(Rd)

{∫
Rd

{
log f(y)

}
P 1,ν1
t (dy)− log

∫
Rd
f(y)P 2,ν2

t (dy)

}
≤
∫
Rd×Rd

It(x1, x2)π(dx1, dx2)

=
c

t

(
W2(ν1, ν2)2 +

∫ t

0

{
‖b1 − b2‖2

s,∞ + ‖a1 − a2‖2
s,∞
}

ds

)
+ c

(
log(1 + t−1)‖a1 − a2‖2

εt→t,∞ +

∫ t

εt

‖div(a1 − a2)‖2
s,∞ds

)
.

Hence, (1.3) holds.
(2) Let |b1| ≤ C(K) for some constant C(K) > 0. By (1.1), (3.2) and noting that t1

t0
= ε−1

for t0 = εt1, we find a constant c1 = c1(K,T, d, ϕ) > 0 such that instead of (3.19),

Ent(P 1,x1
t1 |P

〈t0〉x1
t1 ) ≤ c1‖a1 − a2‖2

εt1→t1,∞ + c1

∫ t1

εt1

[
‖div(a1 − a2)‖2

t,∞ + ‖b1 − b2‖2
t,∞
]
dt,

t1 ∈ (0, T ], x1 ∈ Rd.

By repeating the above argument with this estimate replacing (3.19), we derive (1.4) for some
constant c = c(K,T, d, ϕ) > 0.

(3) Let (1.5) hold. By By (1.1), (3.3) and t0 = εt1, we find a constant c1 = c1(K,T, d, ϕ) > 0
such that for any t1 ∈ (0, T ] and x1 ∈ Rd,

Ent(P 1,x1
t1 |P

〈t0〉x1
t1 ) ≤ c1

∫ t1

εt1

1

t
‖a1 − a2‖2

t,∞dt+ c1

∫ t1

εt1

[
‖div(a1 − a2)‖2

t,∞ + ‖b1 − b2‖2
t,∞
]
dt,

≤ c1

εt1

∫ t1

εt1

‖a1 − a2‖2
t,∞dt+ c1

∫ t1

εt1

[
‖div(a1 − a2)‖2

t,∞ + ‖b1 − b2‖2
t,∞
]
dt.

Then as explained above that using this estimate to replace (3.19), we derive (1.6) for some
constant c = c(K,T, d, ϕ) > 0.

4 Proof of Theorem 1.2

By (B), for any µ ∈ P2, bµ(t, x) := b(t, x, µ) has decomposition b0,µ + b1,µ such that b1,µ is
locally bounded and

|b0,µ| ∨ ‖∇b1,µ‖ ≤ K.

Let b(1) := b1,δ0 , where δ0 is the Dirac measure at 0, and let b(0,µ) := bµ− b(1). Then (B) implies

|∇b(1)| ≤ K, |b(0,µ)| ≤ K +Kµ(| · |2)
1
2 .

This together with the the condition on σ included in (B) implies assumptions (A0) and (A1)
in [9] for k = 2. Therefore, by [9, Theorem 1.1], (1.7) is well-posed for distributions in P2, and
there exists a constant c > 0 such that

(4.1) sup
t∈[0,T ]

E[|Xt|2] ≤ c(1 + E[|X0|2]) <∞
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holds for any solution with LX0 ∈P2. So, it remains to verify (1.8).
For νi ∈P2, i = 1, 2, and (t, x) ∈ [0, T ]× Rd, let

ai(t, x) := a(t, x, P ∗t νi) =
1

2
(σσ∗)(t, x, P ∗t νi),

bi(t, x) := b(t, x, P ∗t νi), b
(k)
i (t, x) := b

k,P ∗t νi
i (t, x), k = 0, 1.

(4.2)

By Theorem 1.1, under (B), there exists a constant c1 = c1(K,T, d, ϕ) > 0 such that for any
t ∈ (0, T ],

Ent(P ∗t ν1|P ∗t ν2) ≤ c1

t
W2(ν1, ν2)2

+ c1‖b1 − b2‖2
t,∞ + c1 log(1 + t−1)‖a1 − a2‖2

t,∞ + c1t‖div(a1 − a2)‖2
t,∞

≤ c1

t
W2(ν1, ν2)2 + c1K

2
{

1 + log(1 + t−1) + t
}

sup
s∈[0,t]

W2(P ∗s ν1, P
∗
s ν2)2.

Then there exists a constant c2 = c2(K,T, d, ϕ) > 0 such that

Ent(P ∗t ν1|P ∗t ν2) ≤ c1

t
W2(ν1, ν2)2 +

c2

t
sup
s∈[0,t]

W2(P ∗s ν1, P
∗
s ν2)2, t ∈ (0, T ].

Combining this with the following result, we derive (1.8) for some constant c > 0, and hence
finish the proof of Theorem 1.2.

Proposition 4.1. Assume (B). Then there exists a constant c > 0 such that

W2(P ∗t ν1, P
∗
t ν2) ≤ cW2(ν1, ν2), t ∈ [0, T ], ν1, ν2 ∈P2.

Proof. Let ai and bi be in (4.2), and let ut be in (2.8) for large enough λ > 0 such that (2.16)
holds. Let X1

0 , X
2
0 be F0-measurable such that

(4.3) LXi
0

= νi, i = 1, 2, E[|X0 −X2
0 |2] = W2(ν1, ν2)2.

Let X i
t solve (2.1) with initial value X i

0. We have LXi
t

= P ∗t νi, so that

(4.4) W2(P ∗t ν1, P
∗
t ν2)2 ≤ E[|X1

t −X2
t |2], t ∈ [0, T ].

Let X̃ i
t = X i

t + ut(X
i
t), i = 1, 2. Then

(4.5)
1

2
|X1

t −X2
t | ≤ |X̃1

t − X̃2
t | ≤ 2|X1

t −X2
t |, t ∈ [0, T ],

and similarly to (2.19), by (2.8), (1.7) for X i
t and Itô’s formula, we have

dX̃1
t =

{
λut + b

(1)
1 (t, ·)

}
(X1

t )dt+
{
Id +∇ut(X1

t )
}
σ1(t,X1

t )dWt,

dX̃2
t =

{
λut + (La2,b2t − La1,b1t )ut + (b2 − b(0)

1 )(t, ·)
}

(X2
t )dt

+
{
Id +∇ut(X2

t )
}
σ2(t,X2

t )dWt.
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Combining this with (B)(1), (2.16), (4.3) and Itô’s formula, we find k1 = k1(K,T, d, ϕ) > 0
such that

d|X̃1
t − X̃2

t |2 ≤ k1

(
|X̃1

t − X̃2
t |2 + ‖a1 − a2‖2

t,∞ + ‖b1 − b2‖2
t,∞
)
dt+ dMt, t ∈ [0, T ].

Noting that (B)(3) and (4.2) imply

‖a1 − a2‖2
t,∞ + ‖b1 − b2‖2

t,∞ ≤ 2K2ξt, ξt := sup
s∈[0,t]

W2(P ∗s ν1, P
∗
s ν2)2,

and due to (2.16), (4.3) and (4.4)

E[|X̃1
0 − X̃2

0 |2] ≤ 4W2(ν1, ν2)2, E[|X̃1
t − X̃2

t |2] ≥ 1

4
E[|X1

t −X2
t |2] ≥ 1

4
W2(P ∗t ν1, P

∗
t ν2)2,

we find a constant k2 = k2(K,T, d, ϕ) > 0 such that

ξt ≤ k2W2(ν1, ν2)2 + k2

∫ t

0

ξsds, t ∈ [0, T ].

Since (4.1) implies ξt <∞, by Gronwall’s inequality, this implies

sup
t∈[0,T ]

W2(P ∗t ν1, P
∗
t ν2)2 = ξT ≤ k2ek2TW2(ν1, ν2)2.

So, the proof is finished.
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