
Convergence in Wasserstein Distance for
Empirical Measures of Non-Symmetric

Subordinated Diffusion Processes∗

Feng-Yu Wang
Center for Applied Mathematics, Tianjin University, Tianjin 300072, China

wangfy@tju.edu.cn

March 17, 2023

Abstract
By using the spectrum of the underlying symmetric diffusion operator, the convergence

in Lp-Wasserstein distance Wp(p ≥ 1) is characterized for the empirical measure µt of non-
symmetric subordinated diffusion processes in an abstract framework. The main results
are applied to the subordinations of several typical models, which include the (reflecting)
diffusion processes on compact manifolds, the conditional diffusion processes, the Wright-
Fisher diffusion process, and hypoelliptic diffusion processes on SU(2). In particular,
for the (reflecting) diffusion processes on a compact Riemannian manifold with invariant
probability measure µ:

(1) the sharp limit of tW2(µt, µ)2 is derived in Lq(P) for concrete q ≥ 1, which pro-
vides a precise characterization on the physical observation that a divergence-free
perturbation accelerates the convergence in W2;

(2) the sharp convergence rates are presented for (E[W2p(µt, µ)q])
1
q (p, q ≥ 1), where a

critical phenomenon appears with the critical rate t−1 log t as t→∞.

AMS subject Classification: 60B05, 60B10.
Keywords: Empirical measure, Wasserstein distance, non-symmetric diffusion process, subor-
dination.

1 Introduction

A. Background of the study. In statistical physics, the empirical measure is a fundamental
object to simulate the stationary distribution (Gibbs measure). Since the ground breaking
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series work [12] (1975-1983) where Donsker and Varadhan developed their celebrated larger
deviation principle, the long time behavior of empirical measures has become a key research
topic in the study of Markov processes, see [39, 40] for criteria on the central limit theorem and
large deviations for hyperbounded Markov processes.

On the other hand, the Wasserstein distance is intrinsic in the theory of optimal transport
and calculus on Wasserstein space, see [1, 28] and references therein. So, it is crucial and
interesting to study the convergence in Wasserstein distance for the empirical measure of Markov
processes.

Moreover, it was observed in [16] that a divergence-free perturbation to symmetric stochastic
systems may accelerate the algorithm of Gibbs measures. This has been confirmed in several
papers for the convergence of Markov semigroups to stationary distributions, see [17, 19, 20]
and references therein. It is interesting to provide a sharp characterization on the acceleration
for the convergence of empirical measures in Wasserstein distance.

In recent years, the sharp convergence rate in the second moment of the L2-Wasserstein
distance has been derived in [33, 36, 34, 35, 38] for empirical measures of symmetric diffusion
processes. In particular, in lower dimensions the precise limit is explicitly formulated by using
eigenvalues and eigenfunctions of the generator. These results have been extended to subordi-
nated processes in [37, 22, 23, 24] and the fractional Brownian motion on torus in [18], see also
[13] for the study of McKean-Vlasov SDEs.

B. Purpose of the present work. Based on the above background, this paper investigates
the convergence of empirical measures for non-symmetric subordinated diffusion processes in
an abstract framework, describes the acceleration of the convergence for divergence-free pertur-
bations to symmetric systems, and illustrates the main results by typical examples.

To figure out a clear picture of our general results (see Section 2 for details), in the follow-
ing we only consider non-symmetric diffusion processes on a compact manifold. See Section
5 for applications of the general results to three more examples including the subordinated
conditional diffusion process, the subordinated Wright-Fisher process, and the subordinated
subelliptic diffusion process on SU(2).

C. A picture for non-symmetric diffusion processes on compact manifolds. Let M
be an n-dimensional compact connected Riemannian manifold possibly with a boundary ∂M .
Let P be the space of all probability measures on M , let ρ be the Riemannian distance, and
for any p ≥ 1, let Wp be the Lp-Wasserstein distance induced by ρ, cf. (2.1) below.

Let µ(dx) := eV (x)dx ∈P, where V ∈ C2(M) and dx is the volume measure on M , and let
Z be a C1-vector field with divµZ = 0, i.e.

µ(Zf) :=

∫
M

〈Z,∇f〉dµ = 0, f ∈ C1(M).

Then the spectrum of L̂ := ∆ +∇V (with Neumann boundary if ∂M exists) is discrete, and
all eigenvalues {λi}i≥0 of −L̂ listed in the increasing order counting multiplicities satisfy

c1i
n
2 ≤ λi ≤ c2i

n
2 , i ≥ 0
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for some constants c1, c2 > 0, see for instance [9]. Let {φi}i≥0 with φ0 ≡ 1 being the corre-
sponding unitary eigenfunctions in L2(µ).

Let Xt be the diffusion process on M generated by

L := ∆ +∇V + Z,

with reflecting boundary if ∂M exists. We consider the empirical measure

µt :=
1

t

∫ t

0

δXsds, t > 0,

where δXs is the Dirac measure at Xs. By the central limit theorem (see [39]), for any

f ∈ L2
0(µ) :=

{
f ∈ L2(µ) : µ(f) = 0

}
,

we have

(1.1) lim
t→∞

√
tµt(f) = lim

t→∞

1√
t

∫ t

0

f(Xs)ds = N(0,V(f)) in law,

where N(0,V(f)) is the centered normal distribution on R with variance

(1.2) V(f) :=

∫ ∞
0

µ(fPsf)ds = µ(|∇L−1f |2).

For any k,R ≥ 1, let

(1.3) Pk,R :=
{
ν ∈P : dν = hdµ, ‖h‖k ≤ R

}
,

where ‖ · ‖k is the norm in Lk(µ). For any ν ∈ P, let Eν be the expectation for the diffusion
process Xt with initial distribution ν.

We first consider the long time behavior of W2(µt, µ). The following result shows that when
n ≤ 3 and ∂M is either empty or convex, for long time tW2(µt, µ)2 behaves as

Ξ(t) :=
∞∑
i=1

1

λi
|ψi(t)|2, ψi(t) :=

1√
t

∫ t

0

φi(Xs)ds,

so that uniformly in ν ∈P, tEν [W2(µt, µ)2] converges to

(1.4) ηZ :=
∞∑
i=1

2V(φi)

λi
=
∞∑
i=1

2

λ2i

(
1− 1

λi
V(Zφi)

)
,

where the second equality follows from Lemma 4.2 below.

Theorem 1.1. There exists a constant κ ≥ 1 with κ = 1 when ∂M is either empty or convex,
such that the following assertions hold.
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(1) When n ≤ 2, for any q ∈ [1, 2n
(3n−4)+ ),

(1.5) lim
t→∞

sup
ν∈P

Eν
[∣∣{tW2(µt, µ)2 − Ξ(t)

}+
+
{

Ξ(t)− κtW2(µt, µ)2
}+∣∣q] = 0,

so that when ∂M is either empty or convex,

(1.6) lim
t→∞

sup
ν∈P

Eν
[∣∣tW2(µt, µ)2 − Ξ(t)|q

]
= 0.

(2) When n = 3, for any R ∈ [1,∞), k ∈ (3
2
,∞] and q ∈ [1, 6

5
),

(1.7) lim
t→∞

sup
ν∈Pk,R

Eν
[∣∣{tW2(µt, µ)2 − Ξ(t)

}+
+
{

Ξ(t)− κtW2(µt, µ)2
}+∣∣q] = 0,

so that when ∂M is either empty or convex,

(1.8) lim
t→∞

sup
ν∈Pk,R

Eν
[∣∣tW2(µt, µ)2 − Ξ(t)|q

]
= 0.

(3) For n ≤ 3, we have ηZ ∈ (0,∞) and

(1.9) lim
t→∞

sup
ν∈P

({
tEν [W2(µt, µ)2]− ηZ

}+
+
{
ηZ − κtEν [W2(µt, µ)2]

}+)
= 0.

In particular, when ∂M is either empty or convex,

(1.10) lim
t→∞

sup
ν∈P

∣∣tEν [W2(µt, µ)2]− ηZ
∣∣ = 0.

(4) For n = 4, there exist constants c1, c2, t0 > 0 such that

(1.11)
c1
t

log(1 + t) ≤ inf
ν∈P

Eν [W2(µt, µ)2] ≤ sup
ν∈P

Eν [W2(µt, µ)2] ≤ c2
t

log(1 + t), t ≥ t0.

(5) For n ≥ 5, there exist constants c1, c2, t0 > 0 such that

c1t
− 2
d−2 ≤ inf

ν∈P

(
Eν [W1(µt, µ)]

)2 ≤ sup
ν∈P

Eν [W2(µt, µ)2] ≤ c2t
− 2
d−2 , t ≥ 1.(1.12)

Remark 1.1. (1) By (1.4) we have ηZ < η0 for Z 6= 0, so (1.9) and (1.10) provide a precise
characterization on the acceleration of a divergence-free perturbation Z for the convergence of
empirical measures in W2.

(2) When Z = 0 (i.e. the symmetric case), (1.9), (1.10), (1.12) and the upper bound in
(1.11) have been presented in [38], which are covered by Theorem 1.1. The Lq-convergence
(1.5)-(1.8) appear here for the first time, which together with the lower bound in (1.11) are
new also in the symmetric case.
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(3) It is proved in [38] that for M being the 4-dimensional torus and L = ∆, there exists a
constant c > 0 such that

inf
ν∈P

(
Eν [W1(µt, µ)]

)2 ≥ ct−1 log(1 + t), t ≥ 1.

We hope that this estimate also holds for general non-symmetric diffusions on 4-dimensional
compact manifolds, such that the lower bound estimate in (1.11) is strengthened with W1

replacing W2.

In the next result, we estimate
(
E[W2p(µt, µ)2q]

) 1
q for all p, q ∈ [1,∞). Besides the critical

phenomenon in Theorem 1.1 with the critical convergence rate t−1 log t for dimension n = 4,
the critical rate also appears to dimensions n = 2, 3 with different (p, q).

Theorem 1.2. There exist c, t0 ∈ (0,∞) and κ : [1,∞) × [1,∞) → (0,∞), such that the
following assertions hold.

(1) When n = 1, for any (p, q) ∈ [1,∞)× [1,∞),

(1.13)
c

t
≤ inf

ν∈P

(
Eν [W1(µt, µ)]

)2 ≤ sup
ν∈P

{
Eν [W2p(µt, µ)2q]

} 1
q ≤ κp,q

t
, t ≥ t0.

(2) Let n = 2. Then (1.13) holds for any p ∈ [1,∞) and q ∈ [1, p
p−1). Next, for any p ∈ (1,∞)

and q = p
p−1 ,

(1.14) sup
ν∈P

{
Eν [W2p(µt, µ)2q]

} 1
q ≤ κp,q

t
log(1 + t), t ≥ t0.

Finally, for any p ∈ (1,∞) and q ∈ ( p
p−1 ,∞),

(1.15) sup
ν∈P

{
Eν [W2p(µt, µ)2q]

} 1
q ≤ κp,qt

− 2
n(3−p−1−q−1)−2 , t ≥ 1.

(3) Let n = 3. Then (1.13) holds for any p ∈ [1, 3
2
) and q ∈ [1, 3p

5p−3); (1.14) holds for p ∈ [1, 3
2
)

and q = 3p
5p−3 ; and (1.15) holds for any p ∈ [1,∞) and q ∈ ( 3p

5p−3 ,∞) ∩ [1,∞).

(4) Let n = 4. Then (1.14) holds for p = q = 1, and (1.15) holds for any (p, q) ∈ [1,∞) ×
[1,∞) \ {(1, 1)}.

(5) When n ≥ 5, (1.15) holds for any (p, q) ∈ [1,∞)× [1,∞).

D. Structure of the paper. In Section 2, we state our main results for non-symmetric
subordinated diffusion processes in an abstract framework. In Sections 3 and 4, we prove the
main results on upper and lower bound estimates respectively. In Section 5, we apply the main
results to some concrete models, where the result for the first model covers Theorems 1.1 and
1.2 as direct consequences with B(λ) = λ (hence, α = 1).
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2 Main results in an abstract framework

We first introduce the framework of the study, then state the main results on the Wasserstein
distance of the empirical measures for non-symmetric subordinated diffusion processes.

2.1 The framework

A. State space. Let (M,ρ) be a length space, let P be the set of all probability measures on
M , let Bb(M) be the class of bounded measurable functions on M , and let Cb,L(M) be the set
of all bounded Lipschitz continuous functions on M . For any p ∈ [1,∞), the Lp-Wasserstein
distance is defined as

(2.1) Wp(ν1, ν2) := inf
π∈C (ν,γ)

(∫
M×M

ρ(x, y)pπ(dx, dy)

) 1
p

, ν1, ν2 ∈P,

where C (ν1, ν2) is the set of all couplings for ν1 and ν2.

B. Symmetric diffusion process. Let X̂t be a reversible Markov process on M with the
unique invariant probability measure µ ∈ P having full support. For any q ≥ p ∈ [1,∞], let
‖·‖p be the norm in Lp(µ), and let ‖·‖p→q the operator norm from Lp(µ) to Lq(µ). Throughout
the paper, we simply denote µ(f) =

∫
M
fdµ for f ∈ L1(µ).

The Markov semigroup P̂t is formulated as

P̂tf(x) = Ex[f(X̂t)], t ≥ 0, x ∈M, f ∈ Bb(M),

where and in the sequel, Ex stands for the expectation for the underlying Markov process
starting at point x. In general, for any ν ∈P, Eν is the expectation for the underlying Markov
process with initial distribution ν.

Let (Ê ,D(Ê )) and (L̂,D(L̂)) be, respectively, the associated symmetric Dirichlet form and

self-adjoint generator in L2(µ). We assume that Cb,L(M) is a dense subset of D(Ê ) under the

Ê1-norm ‖f‖Ê1
:=

√
µ(f 2) + Ê (f, f), and

Ê (f, g) =

∫
M

Γ(f, g)dµ, f, g ∈ Cb,L(M)

holds for a symmetric local square field (champ de carré)

Γ : Cb,L(M)× Cb,L(M)→ Bb(M),

such that for any f, g, h ∈ Cb,L(M) and φ ∈ C1
b (R), we have

√
Γ(f, f)(x) = |∇f(x)| := lim sup

y→x

|f(y)− f(x)|
ρ(x, y)

, x ∈M,

Γ(fg, h) = fΓ(g, h) + gΓ(f, h), Γ(φ(f), h) = φ′(f)Γ(f, h).
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We also assume that L̂ satisfies the chain rule

L̂Φ(f) = Φ′(f)L̂f + Φ′′(f)|∇f |2, f ∈ D(L̂) ∩ Cb,l(M),Φ ∈ C2(R).

C. Non-symmetric perturbation. Let

Z : Cb,L(M)→ Bb(M)

be a bounded vector field with divµZ = 0, i.e. it satisfies

Z(fg) = fZg + gZf, Z(φ(f)) = φ′(f)Zf, f, g ∈ Cb,L(M), φ ∈ C1(R),

‖Z‖∞ := inf
{
K ≥ 0 : |Zf | ≤ K|∇f |, f ∈ Cb,L(M)

}
<∞,

µ(Zf) :=

∫
M

(Zf)dµ = 0, f ∈ Cb,L(M).

Consequently, Z uniquely extends to a bounded linear operator from D(Ê ) to L2(µ) with

(2.2) µ(Zf) = 0, f ∈ D(Ê ),

and
E (f, g) := Ê (f, g) + µ(fZg), f, g ∈ D(E ) = D(Ê )

is a (non-symmetric) conservative Dirichlet form with generator

L := L̂+ Z, D(L) = D(L̂),

which satisfies the chain rule

LΦ(f) = Φ′(f)Lf + Φ′′(f)|∇f |2, f ∈ D(L̂) ∩ Cb,l(M),Φ ∈ C2(R).

Assume that L generates a unique diffusion process Xt on M , such that the associated Markov
semigroup is given by

Ptf(x) = Ex[f(Xt)], x ∈M, t ≥ 0, f ∈ Bb(M).

By Duhamel’s formula,

(2.3) Ptf = P̂tf +

∫ t

0

Ps{ZP̂t−sf}ds, f ∈ D(Ê ), t ≥ 0.

C. Subordination. Let B be the set of Bernstein functions B satisfying B(0) = 0 and
B(r) > 0 for r > 0. For each B ∈ B, there exists a unique stable increasing process SBt on
[0,∞) with Laplace transform

(2.4) E[e−rS
B
t ] = e−B(r)t, t, r ≥ 0.

Let SBt be independent of Xt. We consider the subordinated diffusion process

XB
t := XSBt

, t ≥ 0,
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and study the convergence to µ in Wp (p ≥ 1) for the empirical measure

µBt :=
1

t

∫ t

0

δXB
s

ds, t > 0.

We will mainly consider α-stable type time change for α ∈ [0, 1], i.e. the Bernstein function
B is in the classes

Bα :=
{
B ∈ B : lim inf

r→∞
B(r)r−α > 0

}
, Bα :=

{
B ∈ B : lim sup

r→∞
B(r)r−α <∞

}
.

2.2 Upper bound estimates

We make the following assumption, where (2.5) implies that the spectrum of −L̂ is discrete
and all eigenvalues {λi}i≥0 listed in the increasing order counting multiplicities satisfy

λi ≥ ci
2
d , i ∈ Z+

for some constant c > 0, where λ1 ≥ λ, see for instance [11]. In general, λi may increase faster

than i
2
d , see for instance Subsection 5.2 where d = n + 2 but λi ∼ i

2
n , we make the additional

assumption (2.6).

(A1) Let B ∈ Bα for some α ∈ [0, 1]. There exist constants c, λ > 0, d ≥ d′ ≥ 1 and a map
k : (1,∞)→ (0,∞) such that

(2.5) ‖P̂t − µ‖1→∞ ≤ ct−
d
2 e−λt, t > 0,

(2.6) λi ≥ ci
2
d′ , i ∈ Z+,

(2.7) |∇P̂tf | ≤ k(p)(P̂t|∇f |p)
1
p , t ∈ [0, 1], p ∈ (1,∞), f ∈ Cb,L(M).

We will also need the following condition on the continuity of X̂t.

(A2) For any p ∈ [1,∞) there exists a constant c(p) > 0 such that

(2.8) Eµ
[
ρ(X̂0, X̂t)

p
]
≤ c(p)t

p
2 , t ∈ [0, 1].

Let {φi}i≥0 with φ0 ≡ 1 be the unitary eigenfunctions for {λi}i≥0, i.e.

(2.9) L̂φi = −λiφi, P̂tφi = e−λitφi, µ(φiφj) = 1{i=j}, i, j ∈ Z+, t ≥ 0.

Let

(2.10) ΞB(t) :=
∞∑
i=1

ψBi (t)2

λi
, ψBi (t) :=

1√
t

∫ t

0

φi(X
B
s )ds, t > 0, i ∈ N.
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Let Pk,R be in (1.3), let

(2.11) qα :=
2d

(2d+ d′ − 2− 2α)+
,

and denote the integer parts of q ∈ [1,∞) by

i(q) := sup
{
i ∈ N : i ≤ q

}
.

The first main result of the paper is the following.

Theorem 2.1. Assume (A1) and (A2) with d′ < 2(1 + α).

(1) If qα >
d
2α

and

α > α(d, d′) :=
1

4

(√
(2 + d− d′)2 + 4d(d+ d′ − 2) + d′ − d− 2

)
,

then

(2.12) lim
t→∞

sup
ν∈P

Eν
[∣∣∣{tW2(µ

B
t , µ)2 − ΞB(t)

}+∣∣∣q] = 0, q ∈ [1, qα).

(2) For any q ∈ [1, qα) and k ∈ ( d
2αi(q)

,∞] ∩ [1,∞], where we set ( d
2αi(q)

,∞] = {∞} if α = 0,

(2.13) lim
t→∞

sup
ν∈Pk,R

Eν
[∣∣∣{tW2(µ

B
t , µ)2 − ΞB(t)

}+∣∣∣q] = 0, R ∈ (0,∞).

To estimate E[W2(µ
B
t , µ)2], we let

ηBZ :=
∞∑
i=1

2VB(φi)

λi
, VB(φi) :=

∫ ∞
0

µ(φiP
B
s φi)ds.

Theorem 2.2. Assume (A1) and (A2). Let q ∈ [1,∞).

(1) If d′ < 2(1 + α), then ηBZ <∞ and

(2.14) lim sup
t→∞

sup
ν∈P

tEν [W2(µ
B
t , µ)2] ≤ ηBZ .

(2) Let d′ ≥ 2(1 + α). Then there exists a constant c > 0 such that for any t ≥ 1,

(2.15) sup
ν∈P

Eν [W2(µ
B
t , µ)2] ≤

{
ct−1 log(1 + t), if d′ = 2(1 + α),

ct−
2

d′−2α , if d′ > 2(1 + α).
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To estimate Wp(µ
B
t , µ), we will use the Lp-boundedness of the Riesz transform ∇(a0− L̂)−

1
2

for some a0 ≥ 0. According to [3], together with the non-degeneracy condition, the volume
doubling condition and the scaled Poincaré inequality, (2.7) implies

(2.16) ‖∇(a0 − L̂)−
1
2‖p <∞ for some a0 ∈ [0,∞) and all p ∈ (2,∞).

Under assumption (A1), let

γα,p,q :=
d′

2
+
d

2

(
2− p−1 − q−1

)
− α− 1, p, q ∈ [1,∞), α ∈ [0, 1].

Theorem 2.3. Assume (A1) and (A2).

(1) If γα,p,q < 0, then there exists a constant c > 0 such that

(2.17) sup
ν∈P

(
Eν [W2p(µ

B
t , µ)2q

) 1
q ≤ ct−1, t ≥ 1.

(2) If γα,p,q ≥ 0, then for any γ > γα,p,q, there exists a constant c > 0 such that

(2.18) sup
ν∈P

(
Eν [W2p(µ

B
t , µ)2q]

) 1
q ≤ ct−

1
1+γ , t ≥ 1.

(3) Let (2.16) hold. If γα,p,q ≥ 0, then there exists a constant c > 0 such that for any t ≥ 1,

(2.19) sup
ν∈P

(
Eν [W2p(µ

B
t , µ)2q]

) 1
q ≤

{
ct−1 log(1 + t), if γα,p,q = 0,

ct
− 1

1+γα,p,q , if γα,p,q > 0.

2.3 Lower bound estimate

To derive sharp lower bound for E[W2(µ
B
t , µ)2], we make the following assumption.

(B) (M,ρ) is a geodesic space, there exist constants θ,K > 0 and m ≥ 1 such that

(2.20) |∇P̂tef |2 ≤ (P̂te
f )P̂t(|∇f |2ef ) +Ktθ‖∇f‖2∞(P̂te

2mf )
1
m , t ∈ [0, 1], f ∈ Cb,L(M),

and there exists a function h ∈ C([0, 1]; [1,∞)) such that

(2.21) W2(νP̂r, µ)2 ≤ h(r)W2(ν, µ)2, ν ∈P, r ∈ [0, 1].

When M is a Riemannian manifold without boundary or with convex boundary, if the
Bakry-Emery curvature of L̂ is bounded below by a constant −K, then (B) holds for m = 1
and h(r) = e2Kr, see for instance [32, Theorem 2.3.3(2′)(9)] or [26].

Theorem 2.4. Assume (A1) and (B) with d′ < 2(1 + α).

(1) If α > α(d, d′) and qα >
d
2α
, then

lim
t→∞

sup
ν∈P

Eν
[∣∣∣{th(0)W2(µ

B
t , µ)2 − ΞB(t)

}−∣∣∣q] = 0, q ∈ [1, qα).
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(2) For any q ∈ [1, qα) and k ∈ ( d
2αi(q)

,∞] ∩ [1,∞), where we set ( d
2αi(q)

,∞] = {∞} if α = 0,

lim
t→∞

sup
ν∈Pk,R

Eν
[∣∣∣{th(0)W2(µ

B
t , µ)2 − ΞB(t)

}−∣∣∣q] = 0, q ∈ [1, qα), R ∈ [1,∞).

(3) lim inf
t→∞

sup
ν∈P

tEν [W2(µ
B
t , µ)2] ≥ h(0)−1ηBZ .

The next result manages the critical case where the convergence rate of E[W2(µ
B
t , µ)2] is at

most t−1 log t, correspondingly to (2.15) on the upper bound estimate.

Theorem 2.5. Assume (2.5), (2.7), (A2), (B) and that

(2.22) k′i
2
d′ ≤ λi ≤ ki

2
d′ , i ∈ N

holds for some constants k, k′ > 0. If α′ := d′

2
− 1 ∈ [0, 1] and B ∈ Bα ∩ Bα′ for some

α ∈ [0, α′] ∩ (α′ − 1, α′], then there exist constants c, t0 > 0 such that

(2.23) inf
ν∈P

Eν [W2(µ
B
t , µ)2] ≥ ct−1 log(1 + t), t ≥ t0.

Finally, we consider the lower bound estimate on W1.

Theorem 2.6. Let B ∈ B. Then the following assertions hold.

(1) Assume (2.5), (2.7) and that the completion M̄ of M is a Polish space. Then there exist
constants c, t0 > 0 such that

(2.24) inf
ν∈P

Eν [W1(µ
B
t , µ)] ≥ ct−

1
2 , t ≥ t0.

(2) Assume that (2.8) holds for p = 1, and there exist constants k, d′′ > 0 such that

(2.25) sup
x∈M

µ(B(x, r)) ≤ krd
′′
, r ≥ 0,

where B(x, r) := {y ∈M : ρ(x, y) ≤ r}. If B ∈ Bα for some α ∈ [0, 1] with d′′ > 2(1+α),
then there exist constants c, t0 > 0 such that

(2.26) inf
ν∈P

Eν [W1(µ
B
t , µ)] ≥ ct−

1
d′′−2α , t ≥ t0.

3 Proofs of Theorems 2.1-2.3

For a density function f with respect to µ, let (fµ)(A) :=
∫
A
fdµ for a measurable set A ⊂M .

Recall that for any probability density functions f, f1, f2 ∈ L2(µ), we have

(3.1) W2(fµ, µ)2 ≤
∫
M

|∇L̂−1(f − 1)|2

M (f)
dµ, M (f) := 1{f>0}

f − 1

log f
,
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(3.2) Wp(f1µ, f2µ)p ≤ pp
∫
M

|∇L̂−1(f1 − f2)|p

fp−12

dµ.

These estimates have been presented in [2] and [21] respectively by using the Kantorovich dual
formula and Hamilton-Jacobi equations, which are available when (M,ρ) is a length space as
we assumed, see [28].

Since the empirical measure µBt is singular with respect to µ, to apply these estimates we
make the following regularization of µBt :

(3.3) µBt,r := fBt,rµ, fBt,r := 1 +
1√
t

∞∑
i=1

e−λirψBi (t)φi, t, r > 0,

where ψBi (t) := 1√
t

∫ t
0
φi(X

B
s )ds. Letting νP̂r being the distribution of X̂r with initial distribu-

tion ν, by (2.9) and the spectral representation

p̂r(x, y) = 1 +
∞∑
i=1

e−λirφi(x)φi(y)

for the heat kernel p̂r of P̂r with respect to µ, we have

(3.4) µBt,r = µBt P̂r, t, r > 0.

So, (3.1) implies

(3.5) W2(µ
B
t,r, µ)2 ≤

∫
M

|∇L̂−1(fBt,r − 1)|2

M (fBt,r)
dµ, t, r > 0.

According to (2.5), we have limt→∞ f
B
t,r → 1 so that limt→∞M (fBt,r) = 1. When the convergence

is fast enough, (2.9) and (3.3) would imply that for large enough t, tW2(µ
B
t,r, µ)2 is bounded

above by

(3.6) ΞB
r (t) := tµ(|∇L̂−1(fBt,r − 1)|2) =

∞∑
i=1

e−2λir

λi
ψBi (t)2, t, r > 0.

On the other hand, by (3.2) we have

(3.7) Wp(µ
B
t,r, µ)p ≤ ppµ

(
|∇L̂−1(fBt,r − 1)|p

)
, t, r > 0, p ∈ [1,∞).

With the above observations, and noting that Wp(µ
B
t , µ) ≤ Wp(µ

B
t,r, µ) + Wp(µ

B
t , µ

B
t,r), to es-

timate Wp(µ
B
t , µ) we present some lemmas on ΞB

r (t), µ
(
|∇L̂−1(fBt,r − 1)|p

)
and Wp(µ

B
t,r, µ

B
t )

respectively.

12



3.1 Some lemmas

To apply (3.7), we need estimate ‖∇L̂−1(fBt,r − 1)‖p, see (3.12) below. To this end, and also for
later use, we first estimate ‖PB

t − µ‖p→q and ‖PtZ‖2p for q ≥ p ≥ 1, where PB
t is the Markov

semigroup for the subordinated diffusion process XB
t given by

(3.8) PB
t f(x) := Ex[f(XB

t )] = E[PSBt f(x)], t ≥ 0, x ∈M, f ∈ Bb(M).

Lemma 3.1. Assume (2.5). Then there exists a possibly different constant λ ∈ (0, λ1] such
that the following assertions hold.

(1) Let B ∈ Bα for some α ∈ (0, 1]. Then there exists a constant k > 0 such that

(3.9) ‖PB
t − µ‖p→q ≤ kt−

d(q−p)
2pqα e−λt, t > 0, q ≥ p ∈ [1,∞].

(2) Let (2.7) hold. Then for any p ∈ [1,∞) there exists a constant c(p) > 0 such that

(3.10) ‖∇Ptf‖p ≤ c(p)t−
1
2 e−λt‖f‖p, t > 0, f ∈ Cb,L(M),

(3.11) ‖Pt(Zf)‖2p ≤ c(p)‖Z‖∞t−
1
2 e−λt‖f‖2p, f ∈ D(Ê ) ∩ L2p(µ), t > 0.

Moreover, for any κ ∈ (0, 1
2
) there exists a constant c(p, κ) > 0 such that

(3.12) ‖∇L̂−1f‖2p ≤ c(p, κ)‖(−L̂)
d(p−1)

4p
−κf‖2, µ(f) = 0.

Proof. (a) We will use some known results on functional inequalities which can be found in e.g.
[30]. Firstly, since λ1 > 0, we have the Poincaré inequality

(3.13) µ(f 2) ≤ 1

λ1
Ê (f, f), f ∈ D(Ê ), µ(f) = 0.

By (2.2) we have E (f, f) = Ê (f, f). So, (3.13) implies

(3.14) ‖Pt − µ‖2 ≤ e−λ1t, t ≥ 0.

Next, according to [30, Theorem 3.3.14 and 3.3.15], (2.5) implies the super Poincaré inequality

(3.15) µ(f 2) ≤ rÊ (f, f) + c1(1 + r−
d
2 )µ(|f |)2, r > 0, f ∈ D(Ê )

for some constant c1 > 0, which further yields

(3.16) ‖Pt‖1→∞ ≤ c2(1 ∧ t)−
d
2 , t > 0

for some constant c2 > 0. Noting that B ∈ Bα implies

(3.17) B(r) ≥ k1{r≥λ1}r
α, r ≥ 0

13



for some constant k > 0, by (2.4) we find a constant c3 > 0 such that

E[(SBt )−d] =
E
∫∞
0
rd−1e−rS

B
t dr∫∞

0
rd−1e−rdr

≤ c3(1 ∧ t)−
d
α , t > 0.

Combining this with (2.4), (3.8), (3.14) and (3.16), we find constants c4, c5 ≥ 1 such that

‖PB
t − µ‖1→∞ ≤ E[‖PSBt − µ‖1→∞] ≤ c4E

[{
1 + (SBt )−

d
2

}
e−λ1S

B
t

]
≤ 2c4

(
E[1 + (SBt )−d]

) 1
2
(
E[e−2λ1S

B
t ]
) 1

2 ≤ c5(1 ∧ t)−
d
2α e−B(2λ1)t/2, t > 0.

By the interpolation theorem, this and ‖PB
t − µ‖p ≤ 2 for p ∈ [1,∞] imply (3.9) for some

constants c, λ > 0. In particular, for B(r) = r and Z = 0 or Z 6= 0, (3.9) implies to

(3.18) ‖P̂t − µ‖p→q ∨ ‖Pt − µ‖p→q ≤ kt−
d(q−p)
2pq e−λt, t > 0, q ≥ p ≥ 1.

(b) To prove (3.10), we first prove that for some decreasing c : (1,∞)→ (0,∞),

(3.19) |∇P̂tf | ≤
c(p)√
t

(P̂t|f |p)
1
p , t ∈ (0, 1], f ∈ Cb,L(M).

By Hölder’s inequality and f = f+−f−, it suffices to prove for p ∈ (1, 2] and f ≥ 0. Moreover,
by first using f + ε replacing f for ε > 0 then letting ε ↓ 0, we may and do assume that
inf f > 0.

By (2.7) we have P̂t−sf ∈ D(L̂) ∩ Cb,L(M) for s ∈ [0, t). By the chain rule, we obtain

d

ds
P̂s(P̂t−sf)p = P̂sL̂(P̂t−sf)p − P̂s

{
p(P̂t−sf)p−1L̂P̂t−sf

}
= p(p− 1)P̂s

{
(P̂t−sf)p−2|∇P̂t−sf |2

}
, s ∈ [0, t).

So, for p ∈ (1, 2], we have

I := P̂tf
p − (P̂tf)p =

∫ t

0

d

ds
P̂s(P̂t−sf)pds

= p(p− 1)

∫ t

0

P̂s
{

(P̂t−sf)p−2|∇P̂t−sf |2
}

ds.

(3.20)

By the Hölder/Jensen inequalities, we obtain[
P̂s|∇P̂t−sf |p

] 2
p ≤

[
P̂s{(Pt−sf)p−2|∇P̂t−sf |2}

]{
P̂s(P̂t−sf)p

} 2−p
p

≤
[
P̂s{(Pt−sf)p−2|∇P̂t−sf |2}

](
P̂tf

p
) 2−p

p .

Combining this with (3.20) and (2.7) where we may assume that k(p) is decreasing in p due to
Jensen’s inequality, we find increasing C : (1,∞)→ (0,∞) such that

I ≥ p(p− 1)

∫ t

0

(
P̂s|∇P̂t−sf |p

) 2
p (P̂tf

p)
p−2
p ds
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≥ C(p)

∫ t

0

|∇P̂tf |2(P̂tfp)
p−2
p ds = C(p)t|∇P̂tf |2(P̂tfp)

p−2
p .

This implies (3.19) for some decreasing c : (1,∞)→ (0,∞).
Next, we intend to prove that for some constant c > 0,

(3.21) ‖∇Ptf‖∞ ≤ c‖f‖∞t−
1
2 , t ∈ (0, 1], f ∈ Bb(M).

For any x 6= y ∈M , let

ht(x, y) := sup
‖g‖∞≤1

|Ptg(x)− Ptg(y)|
ρ(x, y)

, t ≥ 0.

By (2.3) and (3.19), we find a constant c1 > 0 such that

ht(x, y) ≤ c1t
− 1

2 +

∫ t

0

c1(t− s)−
1
2hs(x, y)ds, t ∈ (0, 1].

By the generalized Gronwall inequality, see [41], this implies (3.21).
Moreover, by (3.19), the Lp-contraction of Pt and P̂t, and the Duhamel’s formula

Ptf = P̂tf +

∫ t

0

P̂s(ZPt−sf)ds,

we obtain

‖∇Ptf‖p ≤ ‖∇P̂tf‖p +

∫ t

0

‖∇P̂s(ZPt−sf)‖pds

≤ c(p)t−
1
2‖f‖p +

∫ t

0

c(p)‖Z||∞s−
1
2‖∇Pt−sf‖pds, t > 0.

When f ∈ Bb(M), by (3.21) and the generalized Gronwall inequality, this imply (3.10) for
t ∈ (0, 1].

Finally, by (3.18) for p = q such that

‖Pt − µ‖p ≤ ke−λt.

Combining this with the semigroup property and (3.10) for t ∈ (0, 1], for any t > 1 we have

‖∇Ptf‖p = ‖∇P1(Pt−1f − 1)‖p ≤ c(p)‖Pt−1(f − 1)‖p ≤ c(p)ke−λ(t−1)‖f‖p.

So, (3.10) also holds for t > 1 and some constant λ > 0.
(c) Let P ∗t be the L2(µ)-adjoint operator of Pt. By (2.2), P ∗t is the diffusion semigroup

generated by L∗ := L̂− Z, and satisfies

(3.22) P ∗t g = P̂tg −
∫ t

0

P̂s(ZP
∗
t−sg)ds, t > 0, g ∈ L2(µ).
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Let g ∈ D(Ê ) with ‖g‖ 2p
2p−1
≤ 1. We have

‖∇P ∗t g‖2 2p
2p−1

≤ ‖∇P ∗t g‖22 = Ê (P ∗t g, P
∗
t g) ≤ Ê (g, g) <∞, t ≥ 0,

so that (2.2), (3.10) and (3.22) yield that for some constant c1 > 0,

‖∇P ∗t g‖ 2p
2p−1
≤ c1t

− 1
2 + c1

∫ t

0

s−
1
2‖∇P ∗t−sg‖ 2p

2p−1
ds <∞, t ∈ (0, 1].

By the generalized Gronwall inequality, see [41], we find a constant c2 > 0 such that

sup
g∈D(Ê ),‖g‖ 2p

2p−1
≤1
‖∇P ∗t g‖ 2p

2p−1
≤ c2t

− 1
2 , t ∈ (0, 1].

Combining this with the semigroup property and (3.18), we find a constant c3 > 0 such that

sup
g∈D(Ê ),‖g‖ 2p

2p−1
≤1
‖∇P ∗t g‖ 2p

2p−1
≤ c3t

− 1
2 e−λt, t > 0.

Thus, by (2.2), for any f ∈ D(Ê ) ∩ L2p(µ) we have

‖Pt(Zf)‖2p = sup
g∈D(Ê ),‖g‖ 2p

2p−1
≤1

∣∣µ((P ∗t g)(Zf))
∣∣

= sup
g∈D(Ê ),‖g‖ 2p

2p−1
≤1

∣∣µ(f(ZP ∗t g))
∣∣ ≤ c3‖Z‖∞t−

1
2 e−λt‖f‖2p, t > 0.

Therefore, (3.11) holds for some constants c(p), λ > 0.
(d) Noting that

(−L̂)−(1+
d(p−1)

4p
−κ) =

1

Γ(1 + d(p−1)
4p
− κ)

∫ ∞
0

s
d(p−1)

4p
−κP̂sds,

by (3.10) and (3.18), we find constants c1, c2, c3 > 0 such that

‖∇L̂−1f‖2p = ‖∇(−L̂)−(1+
d(p−1)

4p
−κ)(−L̂)

d(p−1)
4p
−κf‖2p

≤ 1

Γ(1 + d(p−1)
4p
− κ)

∫ ∞
0

s
d(p−1)

4p
−κ‖∇P̂s/2{P̂s/2(−L̂)

d(p−1)
4p
−κf}‖2pds

≤ c1

∫ ∞
0

s
d(p−1)

4p
−κ− 1

2 e−λs/2‖P̂s/2(−L̂)
d(p−1)

4p
−κf‖2pds

≤ c2

∫ ∞
0

s−(κ+
1
2
)e−λs‖(−L̂)

d(p−1)
4p
−κf‖2ds ≤ c3‖(−L̂)

d(p−1)
4p
−κf‖2,

where the last step is due to 1
2

+ κ < 1. Thus, (3.12) holds.
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Next, we present some consequence of (A1) and (A2).

Lemma 3.2. We have the following assertions.

(1) If (2.5) holds, then (M,ρ) is bounded, i.e.

(3.23) D := sup
x,y∈M

ρ(x, y) <∞.

(2) If (2.8) holds, then for any p, q ∈ [1,∞), there exists a constant c > 0 such that

(3.24)
(
Eµ[W2p(µ

B
t , µ

B
t,r)

2q]
) 1
q ≤ cr, r ∈ (0, 1].

(3) If (2.7) and (2.20) hold, then there exist constants κ0, κ1 > 0 such that

|∇Ptef |2 ≤ (Pte
f )Pt(|∇f |2ef ) + κ1t

θ‖∇f‖2∞(Pte
f )2,

for t ∈ [0, 1], f ∈ Cb,L(M) with t‖∇f‖2∞ ≤ κ0.
(3.25)

Proof. (1) According to [30, Theorem 3.3.15(2)], (2.5) implies the super Poincaré inequality

µ(f 2) ≤ rÊ (f, f) + (1 + r−
d
2 )µ(|f |)2, r > 0, f ∈ D(Ê ),

which further implies (3.23) due to [30, Theorem 3.3.20].
(2) By Jensen’s inequality, we only need to prove (3.24) for q ≥ p ≥ 1. Recall that δXB

s
P̂r is

the distribution of X̂r with initial value XB
s , we have

πt :=
1

t

∫ t

0

{
δXB

s
× (δXB

s
P̂r)
}

ds ∈ C (µBt , µ
B
t,r),

so that

W2p(µ
B
t , µ

B
t,r)

2p ≤
∫
M×M

ρ(x, y)2pπt(dx, dy) =
1

t

∫ t

0

Ex[ρ(x, X̂r)
2p]
∣∣
x=XB

s
ds.

Noting that Eµ =
∫
M
Exµ(dx) and X̂t is stationary with initial distribution µ, by combining

this with Jensen’s inequality and (2.8), we obtain

Eµ[W2p(µ
B
t , µ

B
t,r)

2q] ≤ Eµ
[

1

t

∫ t

0

Ex[ρ(x, X̂r)
2q]
∣∣
x=XB

s
ds

]
=

1

t

∫ t

0

Eµ[ρ(X̂0, X̂r)
2q]ds ≤ c(2q)rq, t > 0, r ∈ (0, 1].

So, (3.24) holds.
(3) Let f ∈ Cb,L(M). By (3.21), we have (Pt−se

f )2m ∈ D(L)∩Cb,L(M) for s ∈ [0, t), so that
the chain rule implies

d

ds
Ps(Pt−se

f )2m = PsL(Pt−se
f )2m − Ps

{
2m(Pt−se

f )2m−1LPt−se
f
}
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= 2m(2m− 1)Ps
{

(Pt−se
f )2m−2|∇Pt−sef |2

}
, s ∈ [0, t).

By combining this with (2.7) for p = 2 and Jensen’s inequality, we find a constant c1 > 0 such
that

Pte
2mf − (Pte

f )2m =

∫ t

0

d

ds
Ps(Pt−se

f )2mds

=

∫ t

0

Ps
{

2m(2m− 1)(Pt−se
f )2m−2|∇Pt−sef |2

}
ds

≤ c1‖∇f‖2∞
∫ t

0

Ps
{

(Pt−se
f )2m−2Pt−se

2f
}

ds ≤ c1t‖∇f‖2∞Pte2mf .

Taking κ0 = 1
2c1

such that t‖∇f‖2∞ ≤ κ0 implies c1t‖∇f‖2∞ ≤ 1
2
, we derive

(3.26) Pte
2mf ≤ 2(Pte

f )2m.

Combining this with (2.20), we obtain (3.25) for some constant κ1 > 0.

Noting that (2.9) and (3.3) imply

(3.27) ‖(−L̂)β(fBt,r − 1)‖22 =
1

t

∞∑
i=1

λ2βi e−2λirψBi (t)2, r, t > 0, β ∈ R,

to bound Eν [Wp(µ
B
t,r, µ)2q] from above using (3.7) and (3.12), we estimate Eν [|ψBi |2q] as follows.

Lemma 3.3. Assume (2.5) and let B ∈ Bα for some α ∈ [0, 1]. Then:

(1) For any q ∈ [1,∞), there exists a constant c(q) > 0 such that

(3.28) sup
t>0

Eν [|ψBi (t)|2q] ≤ c(q)‖h‖∞λ
d(q−1)

2
−qα

i , i ∈ N, ν = hµ.

(2) For any q ∈ [1,∞) and k ∈ ( d
2αi(q)

,∞] ∩ [1,∞], there exists a constant c(q, k) > 0 such
that

(3.29) Eν [|ψBi (t)|2q] ≤ c(q, k)‖h‖k(1 ∧ t)−
d

2αkλ
d(q−1)

2
−qα

i , i ∈ N, ν = hµ, t > 0.

Moreover, if i(q) > d
2α

, then there exists a constant c(q) > 0 such that

(3.30) sup
ν∈P

Eν [|ψBi (t)|2q] ≤ c(q)(1 ∧ t)−
d
2αλ

d(q−1)
2
−qα

i , i ∈ N, t > 0.

Proof. (1) Let hi,α(t) := min
{

(1
2
∧ t)− 1

2α , λ
1
2
i

}
. When α > 0, for any k > 0 there exist constants

a1, a2 > 0 such that∫ ∞
0

hi,α(t)e−ktdt ≤
∫ λ−αi

0

λ
1
2
i dt+

∫ ∞
λ−αi

(
t−

1
2α + 2

1
2α

)
e−ktdt

≤ λ
1
2
−α

i + a1λ
( 1
2
−α)+

i

[
1 + 1{α= 1

2
} log(1 + λi)

]
≤ a2λ

( 1
2
−α)+

i

[
1 + 1{α= 1

2
} log(1 + λi)

]
, i ∈ N.

(3.31)
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When α = 0 we have hi,α(t) = λ
1
2
i so that this estimate holds as well.

We first prove the following estimate for some constants k1, k2 > 0:

(3.32) ‖PB
t φi − e−B(λi)tφi‖2q ≤ k1‖Z‖∞λ

d(q−1)
4q
−1

i hi,α(t)e−k2t, t > 0, i ∈ N, q ∈ [1,∞].

By (2.9) and (3.18), we find constants c1, c2 > 0 such that

(3.33) ‖φi‖2q = inf
s>0
‖P̂sφi‖2qeλis ≤ c1 inf

s∈(0,1]
s−

d(q−1)
4q eλis ≤ c2λ

d(q−1)
4q

i , i ∈ N, q ∈ [1,∞].

By (2.3), (3.8) and (2.9), we obtain

(3.34) PB
t φi = E

[
e−λiS

B
t φi +

∫ SBt

0

e−λi(S
B
t −s)Ps(Zφi) ds

]
, t > 0.

Combining this with (2.4), (3.11) and (3.33), we derive

(3.35) ‖PB
t φi − e−B(λi)tφi‖2q ≤ c2c(q)‖Z‖∞λ

d(q−1)
4q

i E
∫ SBt

0

e−λi(S
B
t −s)s−

1
2 e−λsds.

Noting that λi ≥ λ1 ≥ λ implies

−λi(SBt − s)− λs ≤ −
λi
2

(SBt − s)−
λ

2
(SBt − s)− λs = −λi

2
(SBt − s)−

λ

2
SBt −

λ

2
s,

by the FKG inequality, we find a constant c3 > 0 such that∫ SBt

0

e−λi(S
B
t −s)s−

1
2 e−λsds ≤ e−λS

B
t /2

∫ SBt

0

e−λi(S
B
t −s)/2s−

1
2 e−λs/2ds

≤ e−λS
B
t /2

(∫ SBt

0

e−λi(S
B
t −s)/2ds

)
1

SBt

∫ SBt

0

s−
1
2 e−λsds ≤ c3

λi
e−λS

B
t /2(SBt )−

1
2 .

(3.36)

Moreover, by (2.4) and (3.17), we find constants c4, c5, c6 > 0 such that

E
[
(SBt )−

1
2 e−λS

B
t /2
]

= E
[

e−λS
B
t /2

Γ(1/2)

∫ ∞
0

u−
1
2 e−uS

B
t du

]
=

1

Γ(1/2)

∫ ∞
0

u−
1
2 e−B(u+λ/2)tdu ≤ 1

Γ(1/2)

∫ ∞
0

u−
1
2 e−B(u)t/2−B(λ/2)t/2du

≤ c4e
−B(λ/2)t/2

[ ∫ λ1

0

u−
1
2 du+

∫ ∞
λ1

u−
1
2 e−ku

αtdu

]
≤ c5

(1

2
∧ t
)− 1

2α
e−c6t.

(3.37)

Combining this with (3.35) and (3.36), we find constants k1, k2 > 0 such that

(3.38)
∥∥PB

t φi − e−B(λi)tφi
∥∥
2q
≤ k1‖Z‖∞λ

d(q−1)
4q
−1

i

(1

2
∧ t
)− 1

2α
e−k2t.
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On the other hand, by (3.10) and (3.33), we find constants c′1, c
′
2 > 0 such that

(3.39) ‖∇φi‖2q = inf
s>0
‖∇P̂sφi‖2qeλis ≤ inf

s>0
c′1s
− 1

2 eλis‖φi‖2q ≤ c′2λ
d(q−1)

4q
+ 1

2

i .

So, instead of (3.35), this and (3.18) imply

(3.40)
∥∥PB

t φi − e−B(λi)tφi
∥∥
2q
≤ ‖Z‖∞‖∇φ‖2qE

∫ SBt

0

e−λi(S
B
t −s)−λsds.

By λi ≥ λ and (2.4), we obtain

E
∫ SBt

0

e−λi(S
B
t −s)−λsds ≤ E

[
e−λS

B
t /2

∫ SBt

0

e−λi(S
B
t −s)/2ds

]
≤ 2

λi
e−B(λ/2)t.

Combining this with (3.39) and (3.40), we find constants k1, k2 > 0 such that∥∥PB
t φi − e−B(λi)tφi

∥∥
2q

] ≤ k1‖Z‖∞λ
d(q−1)

4q
− 1

2

i e−k2t.

This together with (3.38) implies (3.32).
Next, we prove (3.28) for q ∈ N. By [37, (2.14)] for f = φi, we find a constant k0 > 0 such

that

(3.41) Eν
[
|ψBi (t)|2q

]
≤ k0

(
1

t

∫ t

0

ds1

∫ s1

0

{
Eν [|φiPB

s1−sφi|
q](XB

s )
} 1
qds

)q
.

By ν = hµ and the Markov property, we obtain

Eν
[
|φiPB

s1−sφi|
q(XB

s )
]

= µ
(
hPB

s |φiPB
s1−sφi|

q
)
≤ ‖h‖k

∥∥PB
s |φiPB

s1−sφi|
q
∥∥

k
k−1

≤ ‖h‖k‖PB
s ‖1→ k

k−1
‖φiPB

s1−sφi‖
q
q ≤ ‖h‖k‖PB

s ‖1→ k
k−1
‖φi‖q2q‖PB

s1−sφi‖
q
2q, k ∈ [1,∞].

(3.42)

Taking k =∞ and combining with (3.32), (3.33) and (3.41), we find constants k1, k2 > 0 such
that

Eν
[
|ψBi (t)|2q

]
≤ k1‖h‖∞λ

d(q−1)
2

i

(
1

t

∫ t

0

ds1

∫ s1

0

(
e−B(λi)(s1−s) + λ−1i hi,α(s1 − s)e−k2(s1−s)

)
ds

)q
.

Combining this with (3.17), which together with (3.31) implies

(3.43)

∫ ∞
0

[
e−B(λi)t + λ−1i hi,α(t)e−k2t

]
dt ≤ cλ−αi , i ∈ N

for some constant c > 0, we derive (3.28) for q ∈ N.
Finally, for any q ∈ (1,∞), let i(q) be the integer part of q. By (3.28) for i(q) and 1 + i(q)

replacing q which have just been proved, and using Hölder’s inequality, we find a constant
c(q) > 0 such that

Eν
[
|ψBi (t)|2q

]
≤
(
Eν
[
|ψBi (t)|2i(q)

])i(q)+1−q(Eν[|ψBi (t)|2+2i(q)
])q−i(q)

≤ c(q)‖h‖∞λ
1
2
{d(i(q)−1)(i(q)+1−q)+di(q)(q−i(q))}−α{i(q)(i(q)+1−q)+(1+i(q))(q−i(q))}

i

= c(q)‖h‖∞λ
d(q−1)

2
−qα

i , t > 0, i ∈ N.

(3.44)
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Then (3.28) is proved.
(2) By the same reason leading to (3.44), we only need to prove (3.29) and (3.30) for q ∈ N

so that i(q) = q. Let k ∈ ( d
2αq
,∞] ∩ [1,∞]. By (3.32), (3.41) and (3.42), we find a constant

c1 > 0 such that

Eν
[
|ψBi (t)|2q

]
≤ c1‖h‖kλ

d(q−1)
2

i

×
(

1

t

∫ t

0

ds1

∫ s1

0

(1 ∧ s)−
d

2kqα

[
e−B(λi)(s1−s) +

hi,α(s1 − s)
λiek2(s1−s)

]
ds

)q
.

(3.45)

By the FKG inequality and (3.43), we find a constant c2 > 0 such that∫ s1

0

(1 ∧ s)−
d

2kqα
(
e−B(λi)(s1−s) + λ−1i hi,α(s1 − s)e−k2(s1−s)

)
ds

≤
(

1

s1

∫ s1

0

(1 ∧ s)−
d

2kqαds

)∫ s1

0

(
e−B(λi)(s1−s) + λ−1i hi,αe−k2(s1−s)

)
ds

≤ c2(1 ∧ s1)−
d

2kqαλ−αi , t > 0, i ∈ N.

(3.46)

This together with (3.45) yields

Eν
[
|ψBi (t)|2q

]
≤ c‖h‖k(1 ∧ t)−

d
2αkλ

d(q−1)
2
−qα

i , s1 > 0, i ∈ N

for some constant c > 0. Therefore, (3.29) holds for q ∈ N.
It remains to prove (3.30) for d

2α
< q ∈ N. By (3.9), (3.32) and (3.33), we find constants

c1 > 0 such that

sup
ν∈P

(
Eν
[
|φiPB

s1−sφi|
q(XB

s )
]) 1

q = sup
ν∈P

{
ν
(
PB
s |φiPB

s1−sφi|
q
)} 1

q

≤ ‖PB
s ‖

1
q

1→∞‖φiPB
s1−sφi‖q ≤ c1(1 ∧ s)−

d
2qα‖φi‖2q‖PB

s1−sφi‖2q

≤ c1(1 ∧ s)−
d

2qαλ
d(q−1)

2q

i

(
e−B(λi)(s1−s) + λ−1i hi,α(s1 − s)e−k2(s1−s)

)
.

Combining this with (3.41) and (3.46) for k = 1, we get (3.30) for d
2α
< q ∈ N.

Lemma 3.4. Assume (A1), (A2). Let a0 ∈ [0,∞), q ∈ [1,∞), β ∈ R.

(1) For any k ∈ ( d
2αi(q)

,∞] ∩ [1,∞] where k = ∞ if α = 0, and for any R ∈ [1,∞), there
exists a constant c > 0 such that

sup
t≥1,ν∈Pk,R

tqEν
[∥∥(a0 − L̂)

1
2 (−L̂)β−

1
2 (fBt,r − 1)

∥∥2q
2

]
≤ c
[
r−(2β+

d′
2
+
d(q−1)

2q
−α)+ + 1{α=2β+ d′

2
+
d(q−1)

2q
} log(1 + r−1)

]q
, r ∈ (0, 1].

(3.47)

(2) If i(q) > d
2α

, then there exists a constant c > 0 such that

sup
t≥1,ν∈P

tqEν
[∥∥(a0 − L̂)

1
2 (−L̂)β−

1
2 (fBt,r − 1)

∥∥2q
2

]
≤ c
[
r−(2β+

d′
2
+
d(q−1)

2q
−α)+ + 1{α=2β+ d′

2
+
d(q−1)

2q
} log(1 + r−1)

]q
, r ∈ (0, 1].

(3.48)
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Proof. By (3.17), (3.27), Hölder’s inequality and (3.29), we find a constant c1 > 0 such that

I := sup
t≥1,ν∈Pk,R

tqEν
[∥∥(a0 − L̂)

1
2 (−L̂)β−

1
2 (fBt,r − 1)

∥∥2q
2

]
= sup

t≥1,ν∈Pk,R

Eν
[∣∣∣∣ ∞∑

i=1

(λi + a0
λi

)
λ2βi e−2λirψBi (t)2

∣∣∣∣q]
≤
(λ1 + a0

λ1

)q
sup

t≥1,ν∈Pk,R

( ∞∑
i=1

λθi e
−2λir

)q−1 ∞∑
i=1

λ
2qβ−θ(q−1)
i e−2λirEν [|ψBi (t)|2q]

≤ c1

( ∞∑
i=1

λθi e
−2λir

)q−1 ∞∑
i=1

λ
2qβ−θ(q−1)+ d(q−1)

2
−qα

i e−2λir, θ ∈ R.

Taking

(3.49) θ := 2β +
d(q − 1)

2q
− α,

so that θ = 2qβ − θ(q − 1) + d(q−1)
2
− qα, and noting that

λθ
+

i e−λir ≤ sup
s>0

sθ
+

e−sr ≤ cr−θ
+

, r ∈ (0, 1]

holds for some constant c > 0 depending on θ+, we find a constant c2 > 0 such that

I ≤ c1

( ∞∑
i=1

λθi e
−2λir

)q
≤ c2r

−qθ+
( ∞∑
i=1

λ−θ
−

i e−λir
)q
.

On the other hand, by (2.6) and the integral transform t = rs
2
d′ , we find constants c3, c4, c5 > 0

such that

∞∑
i=1

λ−θ
−

i e−λir ≤ c3

∫ ∞
1

s−
2θ−
d′ e−c3rs

2
d′ ds =

c3d
′

2

∫ ∞
r

rθ
−− d

′
2 t

d′
2
−θ−−1e−c3tdt

≤ c5

{
r−(

d′
2
−θ−)+ + 1{ d′

2
=θ−} log(1 + r−1)

}
, r ∈ (0, 1].

(3.50)

Thus, we find a constant c6 > 0 such that

I ≤ c6r
−qθ+[r−( d′2 −θ−)+ + 1{ d′

2
=θ−} log(1 + r−1)

]q
= c6

[
r−(

d′
2
+θ)+ + 1{ d′

2
+θ=0} log(1 + r−1)

]q
, r ∈ (0, 1].

This together with (3.49) implies (3.47).
When i(q) > d

2α
, (3.48) can be proved in the same way by using (3.30) replacing (3.29).
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We are now ready to show that as t→∞, E[ΞB
r (t)] converges to

(3.51) ηBZ,r :=
∞∑
i=1

2e−2λir

λi
VB(φi), r > 0.

Lemma 3.5. Assume (A1), and let R ∈ [1,∞).

(1) There exists a constant c > 0 such that

(3.52) ηBZ,r ≤ c
∞∑
i=1

λ−1−αi e−2rλi , r > 0.

Consequently, ηBZ <∞ provided
∑∞

i=1 λ
−1−α
i <∞.

(2) There exists a constant c > 0 such that

(3.53) sup
ν∈P∞,R

∣∣Eν [ΞB
r (t)]− ηBZ,r

∣∣ ≤ c

t

∞∑
i=1

λ−1−αi e−2λir, t, r > 0.

Consequently, when
∑∞

i=1 λ
−1−α
i <∞, there exists a constant c′ > 0 such that

(3.54) sup
ν∈P∞,R

Eν [ΞB(t)] ≤ ηBZ +
c′

t
<∞, t > 0.

(3) For any k > d
2α

, there exists a constant c > 0 such that

(3.55) sup
t≥1,ν∈Pk,R

Eν [ΞB
r (t)] ≤ c2

{
r−(

d′
2
−1−α)+ + 1{d′=2(1+α)} log(1 + r−1)

}
, r ∈ (0, 1].

Proof. (1) By (3.32) for q = 1 and (3.43), we find constants c1, c2 > 0 such that

VB(φi) :=

∫ ∞
0

µ(φiP
B
t φi)dt ≤ c1

∫ ∞
0

(e−B(λi)t + λ−1i hi,α(t)e−k2t)dt ≤ c2λ
−α
i , i ≥ 1.

This together with (3.51) implies (3.52). By the dominated convergence theorem with r → 0,
the claimed consequence follows from (3.52).

(2) By (3.3) and the Markov property, we obtain

Eν [ψBi (t)2] =
2

t

∫ t

0

ds1

∫ s1

0

Eν [φi(XB
s1

)φi(X
B
s )]ds

=
2

t

∫ t

0

ds1

∫ s1

0

ν
(
PB
s {φiPB

s1−sφi}
)
ds.

(3.56)

Since ν ∈P∞,R implies ν = hµ with ‖h− 1‖∞ ≤ R+ 1, by (3.9) and (3.32), we find constants
c1, c2 > 0 such that

sup
ν∈P∞,R

∣∣ν(PB
s {φiPB

s1−sφi}
)
− µ(φiP

B
s1−sφi)

∣∣ = sup
ν∈P∞,R

∣∣µ({(PB
s )∗h− 1}φiPB

s1−sφi)
∣∣
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≤ c1e
−c2s‖φiPB

s1−sφi‖1 ≤ c1e
−c2s‖PB

s1−sφi‖2 ≤ c1e
−c2s
(
e−B(λi)(s1−s) + λ−1i hi,α(s1 − s)e−c2(s1−s)

)
.

Combining this with (3.56) and (3.43) for k2 = 1
2
c2, and noting that c2s+ c2(s2 − s) ≥ 1

2
c2s1 +

1
2
c2(s1 − s), we find a constant c3 > 0 such that

sup
ν∈P∞,R

∣∣∣∣tEν [ΞB
r (t)]−

∞∑
i=1

2e−2λir

λit

∫ t

0

ds1

∫ s1

0

µ(φiP
B
s1−sφi)ds

∣∣∣∣
≤

∞∑
i=1

2e−2λir

λit

∫ t

0

ds1

∫ s1

0

c1e
−c2s
(
e−B(λi)(s1−s) + λ−1i hi,α(s1 − s)e−c2(s1−s)

)
ds

≤ c3
t

∞∑
i=1

λ−1−αi e−2λir, t, r > 0.

(3.57)

Similarly, by (3.32) for q = 1 and (3.43), we find constants c4, c5, c6 > 0 such that∣∣∣∣ ∫ s1

0

µ
(
φiP

B
s1−sφi

)
ds−VB(φi)

∣∣∣∣ ≤ ∫ ∞
s1

∣∣µ(φiPB
s φi

)∣∣ ≤ ∫ ∞
s1

‖PB
s φi‖2ds

≤ c4

∫ ∞
s1

(
e−B(λi)s + λ−1i hi,α(s1 − s)e−k2s

)
ds ≤ c6λ

−α
i e−c5s1 , s1 > 0, i ∈ N.

This together with (3.57) implies (3.53) for some constant c > 0.
(3) Let k > d

2α
. By (3.29) for q = 1, and (3.50) for θ− = 1 + α, we find constants c1, c2 > 0

such that

sup
t≥1,ν∈Pk,R

Eν [ΞB
r (t)] = sup

t≥1,ν∈Pk,R

∞∑
i=1

e−2λir

λi
Eν [ψBi (t)2]

≤ c1

∞∑
i=1

e−2λir

λ1+αi

≤ c2
{
r−(

d′
2
−1−α)+ + 1{d′=2(1+α)} log(1 + r−1)

}
, r ∈ (0, 1].

Then the proof is finished.

Finally, to get rid of the term M (fBt,r) from (3.5), we present one more lemma.

Lemma 3.6. Assume (A1) and (A2) with d′ < 2(1 + α). Then the following assertions hold.

(1) There exists a constant c > 0 and σ ∈ (0, 1) such that

(3.58) Eµ[µ(|fBt,r − 1|2)] ≤ ct−1r−σ, t ≥ 1, r ∈ (0, 1].

(2) There exists a constant γ > 1 such that

(3.59) lim
t→∞

Eµ
[
µ
(
|M (fBt,t−γ )

−1 − 1|q
)]

= 0, q ∈ [1,∞).

(3) We have qα > 1 and

(3.60) sup
t,r>0

tqEµ
[
µ
(
|∇L̂−1(fBt,r − 1)|2q

)]
<∞, q ∈ [1, qα).
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Proof. (1) By (3.3), (3.28) and (3.17), we find constants c1, c2 > 0 such that

tEµ[µ(|fBt,r − 1|2)] ≤ c1

∞∑
i=1

e−2λirEµ[ψBi (t)2] ≤ c2

∞∑
i=1

e−2λirλ−αi , t, r > 0.

Since d′ < 2(1 + α) implies d′

2
− α < 1, combining this with (3.50) we derive (3.58) for any

σ ∈ (d
′

2
− α, 1).

(2) Let σ ∈ (0, 1) be in (3.58) and take θ ∈ (0, q−1(1 − σ)) for fixed q ∈ [1,∞). According

to [37, Lemma 3.2], for any η ∈ (0, 1) and δ(η) := |(1− η)−
1
2 − 2

η+2
|, we have

Eµ
[
|M (fBt,r(y))−1 − 1|q

]
≤ δ(η) + (1 + θ−1r−

θ
2 )qEµ[1{|fBt,r(y)−1|>η}], t ≥ 1, r ∈ (0, 1], y ∈M.

Next, by (3.58) and Chebyshev’s inequality, we obtain∫
M

Eµ[1{|fBt,r(y)−1|>η}]µ(dy) ≤ η−2Eµ[µ(|fBt,r − 1|2)] ≤ cη−2t−1r−σ.

Putting these two estimates together, we find a function C : (0, 1)→ (0,∞) such that

Eµ
[
µ
(
|M (fBt,r)

−1 − 1|q
)]
≤ δ(η) + C(η)t−1r−(σ+

θq
2
), t ≥ 1, r, η ∈ (0, 1).

Noting that σ ∈ (0, 1) and θ ∈ (0, q−1(1− σ)) imply θ′ := σ + θq
2
∈ (0, 1), by taking r = t−γ for

γ ∈ (1, 1
θ′

), and letting first t→∞ then η → 0, we derive (3.59).
(3) By (2.11), d′ < 2(1 + α) implies qα > 1. For any q ∈ [1, qα), we have

d(q − 1)

2q
− 1 < α− d′

2
− d(q − 1)

2q
.

So, there exists κ ∈ (0, 1
2
) such that β := d(q−1)

4q
− κ satisfies

(3.61) 2β < α− d′

2
− d(q − 1)

2q
.

By (3.12), (3.3), (3.17) and (3.47), we find constants c1, c2 > 0 such that

tqEµ
[
µ
(
|∇L̂−1(fBt,r − 1)|2q

)]
≤ c1t

qEµ
[
‖(−L̂)

d(q−1)
4q
−κ(fBt,r − 1)‖2q2

]
≤ c2r

−(2β+ d′
2
+
d(q−1)

2q
−α)+ = c2,

where the last step follows from (3.61). Then (3.60) holds.
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3.2 Proof of Theorem 2.1

We first consider the stationary case where the initial distribution is the invariant measure µ,
then extend to more general setting by using an approximation argument. To this end, we need
the following further modification of the empirical measure:

(3.62) dµ̃Bt,r = f̃Bt,rdµ, f̃Bt,r := (1− r)fBt,r + r, r ∈ (0, 1], t > 0.

By (3.2), we have

(3.63) W2(µ
B
t,r, µ̃

B
t,r)

2 ≤ 4rΞB
r (t), t > 0, r ∈ (0, 1].

Proposition 3.7. Assume (A1) and (A2) with d′ < 2(1 + α). Then

(3.64) lim
t→∞

Eµ
[∣∣{tW2(µ

B
t , µ)2 − ΞB(t)}+

∣∣q] = 0, q ∈ [1, qα).

Proof. Let t ≥ 1 and take rt = t−γ for γ > 1 in (3.59). By (3.6) and (3.62), we have

tµ(|∇L̂−1(f̃Bt,rt − 1)|2) = (1− rt)2ΞB
rt(t),

so that (3.5), (3.60) and (3.59) yield

lim
t→∞

Eµ
[∣∣{tW2(µ̃

B
t,rt , µ)2 − (1− rt)2ΞB

rt(t)}
+
∣∣q]

= lim
t→∞

Eµ
[∣∣{tW2(µ̃

B
t,rt , µ)2 − tµ(|∇L̂−1(f̃Bt,rt − 1)|2)}+

∣∣q]
≤ lim

t→∞
tqEµ

[{
µ
(
|∇L̂−1(f̃Bt,rt − 1)|2|M (f̃Bt,rt)

−1 − 1|
)}q]

≤ lim
t→∞

tqEµ
[
µ
(
|∇L̂−1(f̃Bt,rt − 1)|2q|M (f̃Bt,rt)

−1 − 1|q
)]

≤ lim
t→∞

(
tq
′Eµ
[
µ
(
|∇L̂−1(f̃Bt,rt − 1)|2q′

)]) q
q′
(
Eµ
[
µ
(
|M (f̃Bt,rt)

−1 − 1|
qq′
q′−q
)]) q′−qq′

= 0, q′ ∈ (q, qα).

Noting that (2.10) and (3.6) imply

ΞB(t) ≥ ΞB
rt(t) ≥ (1− rt)2ΞB

rt(t),

we derive

(3.65) lim
t→∞

Eµ
[∣∣{tW2(µ̃

B
t,rt , µ)2 − ΞB(t)}+

∣∣q] = 0, q ∈ [1, qα).

On the other hand, noting that q ∈ [1, d
(d+d′−2−2α)+ ) implies 1 + α − d′

2
− d(q−1)

2q
> 0, by (3.6),

(3.7) and (3.47) with a0 = 0 and β = −1
2
, we obtain

sup
r>0,t≥1

4−qtqEµ[W2(µ
B
t,r, µ)2q] ≤ sup

r>0,t≥1
tqEµ

[
‖(−L̂)−

1
2 (fBt,r − 1)‖2q2

]
= sup

r>0,t≥1
Eµ
[
ΞB
r (t)q

]
<∞, 1 ≤ q <

d

(d+ d′ − 2− 2α)+
.

(3.66)
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Since q ∈ [1, qα) implies d′ < 2(1 + α) and q ∈ [1, d
(d+d′−2−2α)+ ), by combining this with (3.24),

(3.63), the triangle inequality and rt = t−γ with γ > 1, we find a constant c > 0 such that

lim
t→∞

tqEµ[W2(µ
B
t , µ̃

B
t,rt)

2q]

≤ 2q lim
t→∞

tqEµ[W2(µ
B
t,rt , µ̃

B
t,rt)

2q + W2(µ
B
t,rt , µ

B
t )2q]

≤ c lim
t→∞

(rtt)
q
(
1 + Eµ[ΞB

rt(t)
q]
)

= 0.

(3.67)

This together with (3.65) and (3.66) implies (3.64).

Next, we consider arbitrary initial distribution ν ∈P. Let

νε := νPB
ε , ε ∈ (0, 1).

By (2.5), there exists a constant c > 0 such that

(3.68) νε ≤ cε−
d
2αµ, Eνε ≤ cε−

d
2αEµ, ε ∈ (0, 1).

Let

(3.69) µB,εt :=
1

t

∫ t+ε

ε

δXB
s

ds, t, ε > 0.

By the Markov property, µB,εt is the empirical measure with initial distribution νε, so that for
any nonnegative measurable function F on P,

(3.70) Eν [F (µB,εt )] = Eνε [F (µBt )], t, ε > 0.

To estimate W2(µ
B,ε
t , µ), we take

(3.71) ΞB,ε(t) :=
∞∑
i=1

1

λi
ψB,εi (t)2, ψB,εi (t) :=

1√
t

∫ t+ε

ε

φi(X
B
s )ds.

Proposition 3.8. Assume (A1) and (A2).

(1) If α > 0 such that d+ d′ < 2 + 4α, then for any q ∈ [1, d
(d+d′−2−2α)+ ),

(3.72) lim
ε↓0

sup
t≥1,ν∈P

Eν
[
|tW2(µ

B
t , µ)2 − tW2(µ

B,ε
t , µ)2|2q

]
= 0.

(2) If α > 0 and d+ d′ ≥ 2 + 4α, then for any k > d+d′−2−2α
2α

and q ∈ [1, d
(d+d′−2−2α)+ ),

(3.73) lim
ε↓0

sup
t≥1,ν∈Pk,R

Eν
[
|tW2(µ

B
t , µ)2 − tW2(µ

B,ε
t , µ)2|2q

]
= 0, R ∈ [1,∞).
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(3) For any q ∈ [1,∞), k =∞ or k ∈ ( d
2αi(q)

,∞] ∩ [1,∞], there exists a constant c > 0 such
that

(3.74) sup
ν∈Pk,R

Eν
[
|ψB,εi (t)2 − ψBi (t)2|q

]
≤ cRε

q
2 t−

q
2λ

d(q−1)
2
−qα

i , i ∈ N, t ≥ 1, ε ∈ (0, 1).

Moreover, if i(q) > d
2α

, then there exists a constant c > 0 such that

(3.75) sup
ν∈P

Eν
[
|ψB,εi (t)2 − ψBi (t)2|q

]
≤ cε

q
2 t−

q
2λ

d(q−1)
2
−qα

i , i ∈ N, t ≥ 1, ε ∈ (0, 1).

Proof. (1) By d + d′ < 2 + 4α, we have d
2α
< d

(d+d′−2−2α)+ . So, it suffices to prove for 1 ≤ q ∈
( d
2α
, d
(d+d′−2−2α)+ ). It is easy to see that

πt,ε :=
1

t

∫ t

ε

δ(XB
s ,X

B
s )ds+

1

t

∫ ε

0

δ(XB
s ,X

B
t+s)

ds ∈ C (µBt , µ
B,ε
t ), t > ε ≥ 0.

So, (3.23) implies that for any t > ε ≥ 0 and p ∈ [1,∞),

(3.76) Wp(µ
B
t , µ

B,ε
t )p ≤

∫
Rd×Rd

|x− y|pπt,ε(dx, dy) =
1

t

∫ ε

0

ρ(XB
s , X

B
s+t)

pds ≤ εDp

t
.

On the other hand, by (3.2), (3.66), (3.68) and (3.70), we find a map

c :
[
1,

d

(d+ d′ − 2− 2α)+

)
→ (0,∞)

such that

sup
t≥1,ν∈P

tqEν [W2(µ
B,ε
t , µ)2q] = sup

t≥1,r∈(0,1],ν∈P

tqEνε [W2(µ
B
t,r, µ)2q]

≤ 4q sup
t≥1,r∈(0,1],ν∈P

Eνε [ΞB
r (t)q] ≤ c(q)ε−

d
2α , ε ∈ (0, 1), q ∈

[
1,

d

(d+ d′ − 2− 2α)+

)
.

(3.77)

Combining this with (3.76), (3.68) and q > d
2α

, we find constants c1, c2 > 0 such that

lim
ε↓0

sup
t≥1,ν∈P

Eν
[
|tW2(µ

B
t , µ)2 − tW2(µ

B,ε
t , µ)2|2q

]
≤ lim

ε↓0
sup

t≥1,ν∈P
Eν
[
|tW2(µ

B
t , µ

B,ε
t )2 + 2tW2(µ

B
t , µ

B,ε
t )W2(µ

B,ε
t , µ)|2q

]
≤ lim

ε↓0
sup

t≥1,ν∈P
c1

(
ε2q + εq sup

ν∈P
Eνε [W2(µ

B
t , µ)2q]

)
≤ lim

ε↓0
c2ε

q− d
2α = 0.

So, (3.72) holds.
(2) Let α > 0, d + d′ ≥ 2 + 4α and k > d+d′−2−2α

2α
. It suffices to prove (3.73) for 1 ≤ q ∈

( d
2αk

, d
(d+d′−2−2α)+ ). By the same reason leading to (3.68), we find a constant c > 0 such that

sup
ν∈Pk,R

Eνε ≤ cε−
d

2αkEµ, ε ∈ (0, 1).
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Hence, as shown above that q > d
2αk

implies

lim
ε↓0

sup
t≥1,ν∈Pk,R

Eν
[
|tW2(µ

B
t , µ)2 − tW2(µ

B,ε
t , µ)2|2q

]
≤ lim

ε↓0
c2ε

q− d
2αk = 0.

(3) Let ψBi and ψB,εi be in (2.10) and (3.71). We have∣∣ψBi (t)2 − ψB,εi (t)2
∣∣

=
1

t

∣∣∣∣ ∫ ε

0

{
φi(X

B
t+s)− φi(XB

s )
}

ds

∣∣∣∣ · ∣∣∣∣ ∫ t

0

{
φi(X

B
s+ε) + φi(X

B
s )
}

ds

∣∣∣∣
≤
√
ε√
t

(
|ψB,ti (ε)|+ |ψBi (ε)|

)(
|ψB,εi (t)|+ |ψBi (t)|

)
.

(3.78)

Since (3.70) implies {νt : ν ∈P, t ≥ 1} ⊂P∞,R for some R > 0, by (3.28) and (3.70) we find
a constant c1 > 0 such that

(3.79) sup
ε>0,t≥1,ν∈P

Eν [ψB,ti (ε)2q] = sup
ε>0,t≥1,ν∈P

Eνt [ψBi (ε)2q] ≤ c1λ
d(q−1)

2
−qα

i .

Moreover, by (3.28) for k =∞, (3.29) for α > 0 and k ∈ ( d
2αi(q)

,∞] ∩ [1,∞], and the fact that

ν ∈Pk,R implies νε ∈Pk,R for ε > 0, we find a constant c2 > 0 such that

(3.80) sup
ε>0,t≥1,ν∈Pk,R

Eν [ψB,εi (t)2q + ψBi (ε)2q] ≤ c2λ
d(q−1)

2
−qα

i , i ≥ 1.

Combining these estimates we derive (3.74).
Finally, when i(q) > d

2α
, (3.75) can be proved in the same way by using (3.30) in place of

(3.29).

We are now ready to prove Theorem 2.1.

Proof of Theorem 2.1. (1) It suffices to prove for q ∈ ( d
2α
, qα). By α > α(d, d′), we have

d

2α
<

2(1 + α)− d′

(d+ d′ − 2− 2α)+
.

So, either i(q) > d
2α

or i(q) < 2+2α−d′
(d+d′−2−2α)+ . Below we consider these two situations respectively.

(1a) Let i(q) > d
2α
. By (3.70), (3.68) and (3.65), we obtain

lim
t→∞

sup
ν∈P

Eν
[∣∣∣{tW2(µ

B,ε
t , µ)2 − ΞB,ε(t)

}+∣∣∣q]
= lim

t→∞
sup
ν∈P

Eνε
[∣∣∣{tW2(µ

B
t , µ)2 − ΞB(t)

}+∣∣∣q]
≤ lim

t→∞
cε−

d
2αEµ

[∣∣∣{tW2(µ
B
t , µ)2 − ΞB(t)

}+∣∣∣q] = 0, ε ∈ (0, 1).

(3.81)
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Next, by (2.10) and (3.71),

|ΞB(t)− ΞB,ε(t)| ≤
∞∑
i=1

1

λi
|ψB,εi (t)2 − ψBi (t)2|.

Combining this with (3.75), when i(q) > d
2α

we find a constant k1 > 0 such that

sup
t≥1,ν∈P

t
q
2Eν
[
|ΞB(t)− ΞB,ε(t)|q

]
≤
( ∞∑
i=1

λ−θi

)q−1 ∞∑
i=1

λ
θ(q−1)−q
i sup

t≥1,ν∈P
t
q
2Eν
[
|ψB,εi (t)2 − ψBi (t)2|q

]
≤ k1ε

q
2

( ∞∑
i=1

λ−θi

)q−1 ∞∑
i=1

λ
θ(q−1)+ d(q−1)

2
−q−αq

i , θ ∈ R, ε ∈ (0, 1).

Taking

(3.82) θ = 1 + α− d(q − 1)

2q

such that −θ = θ(q − 1) + d(q−1)
2
− q − αq, we arrived at

(3.83) sup
t≥1,ε∈(0,1),ν∈P

ε−
q
2 t

q
2Eν
[
|ΞB(t)− ΞB,ε(t)|q

]
≤ k1

( ∞∑
i=1

λ−θi

)q
.

Noting that (2.11), (3.82) and q < qα imply 2θ
d′
> 1, by (2.6) we find a constant k2 > 0 such

that
∞∑
i=1

λ−θi ≤ k2

∞∑
i=1

i−
2θ
d′ <∞.

Thus,

(3.84) sup
t≥1,ε∈(0,1),ν∈P

ε−
q
2 t

q
2Eν
[
|ΞB(t)− ΞB,ε(t)|q

]
<∞.

Consequently,
lim
t→∞

sup
ε∈(0,1),ν∈P

Eν
[
|ΞB(t)− ΞB,ε(t)|q

]
= 0.

Combining this with (3.72) and (3.81), we derive (2.12).
(1b) Let i(q) < 2+2α−d′

(d+d′−2−2α)+ . Since q > d
2α

implies i(q) + 1 > d
2α

, by (3.30) and Hölder’s
inequality, we find a constant c1 > 0 such that

sup
t≥1,ν∈P

Eν
[
|ψBi (t)|2q

]
≤ sup

t≥1,ν∈P

(
Eν
[
|ψBi (t)|2{i(q)+1}]) q

i(q)+1 ≤ c1λ
dqi(q)

2(i(q)+1)
−qα

i , i ∈ N.

By the calculations leading to (3.83), we derive the same estimate for

θ := 1 + α− di(q)

2(i(q) + 1)
.
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We have θ > d′

2
due to i(q) < 2+2α−d′

(d+d′−2−2α)+ . Hence, (3.84) holds, which together with (3.72) and

(3.81) imply (2.12).
(2) Let α ∈ (0, 1], q ∈ [1, qα) and k ∈ ( d

2αi(q)
,∞] ∩ [1,∞]. By using (3.74) in place of (3.75),

the proof of (3.84) implies

sup
t≥1,ε∈(0,1),ν∈Pk,R

ε−
q
2 t

q
2Eν
[
|ΞB(t)− ΞB,ε(t)|q

]
<∞, R ∈ [1,∞),

so that
lim
t→∞

sup
ε∈(0,1),ν∈Pk,R

Eν
[
|ΞB(t)− ΞB,ε(t)|q

]
= 0, R ∈ [1,∞).

This together with (3.72) and (3.81) implies (2.13).
When k =∞, (2.13) follows from (3.64) and that Eν ≤ ‖h‖∞Eµ for ν = hµ.

3.3 Proof of Theorem 2.2

(1) Let d′ < 2(1 + α). By Lemma 3.5, (3.54) holds with ηBZ < ∞. Combining this with (3.64)
and Eν ≤ ‖h‖∞Eµ for ν = hµ, we obtain

(3.85) lim sup
t→∞

sup
ν∈P∞,R

tEν
[
W2(µ

B
t , µ)2

]
≤ lim sup

t→∞
sup

ν∈P∞,R

Eν
[
ΞB(t)

]
≤ ηBZ , R ∈ [1,∞).

On the other hand, by (3.68), for any ε ∈ (0, 1) there exists R ∈ [1,∞) such that νε ∈ P∞,R
holds for all ν ∈P. So, (3.85) together with (3.70) implies

(3.86) lim sup
t→∞

sup
ν∈P

tEν
[
W2(µ

B,ε
t , µ)2

]
= lim sup

t→∞
sup
ν∈P

tEνε
[
W2(µ

B
t , µ)2

]
≤ ηBZ , ε ∈ (0, 1).

Combining this with (3.76) for p = 2 and using the triangle inequality, we find a constant c > 0
such that

lim sup
t→∞

sup
ν∈P

tEν
[
W2(µ

B
t , µ)2

]
≤ lim sup

t→∞
sup
ν∈P

tEν
[
(1 + ε

1
2 )W2(µ

B,ε
t , µ)2 + (1 + ε−

1
2 )W2(µ

B,ε
t , µBt )2

]
≤ (1 + ε

1
2 )ηBZ + c(ε+ ε

1
2 ), ε ∈ (0, 1).

Letting ε ↓ 0 we obtain (2.14).
(2) Let d′ ≥ 2(1 + α). By (3.6), (3.7) and (3.47) with a0 = 0, q = 1 and β = −1

2
, we find a

constant c1 > 0 such that

Eµ[W2(µ
B
t,r, µ)2] ≤ 4Eµ[µ(|∇L̂−1(fBt,r − 1)|2)] = 4Eµ[µ(|(−L̂)−

1
2 (fBt,r − 1)|2)]

≤ c1
t

(
r1+α−

d′
2 + 1{d′=2+2α} log(1 + r−1)

)
, t ≥ 1, r ∈ (0, 1].

(3.87)

Combining this with (3.24) and the triangle inequality, we find a constant c2 > 0 such that

Eµ[W2(µ
B
t , µ)2] ≤ 2Eµ[W2(µ

B
t,r, µ)2] + 2Eµ[W2(µ

B
t,r, µ

B
t )2]
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≤ c1
t

{
r1+α−

d′
2 + 1{d′=2+2α} log(1 + r−1)

}
+ c2r, t ≥ 1, r ∈ (0, 1].

Taking r = t−
2

d′−2α when d′ > 2 + 2α, and r = t−1 when d′ = 2 + 2α, we find a constant c3 > 0
such that

Eµ[W2(µ
B
t , µ)2] ≤

{
c3t
−1 log(1 + t), if d′ = 2(1 + α),

c3t
− 2
d′−2α , if d′ > 2(1 + α).

By combining this with (3.68) and (3.70), we find a constant c4 > 0 such that

sup
ν∈P

Eν [W2(µ
B,1
t , µ)2] = sup

ν∈P
Eν1 [W2(µ

B
t , µ)2] ≤ c4Eµ[W2(µ

B
t , µ)2]

≤ c3c4

{
1{d′=2(1+α)}t

−1 log(1 + t) + t−
2

d′−2α

}
, t ≥ 1.

(3.88)

Noting that the triangle inequality implies

Eν [W2(µ
B
t , µ)2] ≤ 2W2(µ

B,1
t , µ)2 + 2W2(µ

B,1
t , µBt )2,

we deduce (2.15) from (3.76) and (3.88).

3.4 Proof of Theorem 2.3

By approximating µBt using µB,1t as in (3.76) and (3.88), we only need to prove for ν = µ.
By (3.7), (3.12) and (3.47), for any κ ∈ (0, 1

2
) we find constants c1, c2 > 0 such that for any

t ≥ 1 and r ∈ (0, 1],(
Eµ[W2p(µ

B
t,r, µ)2q]

) 1
q ≤ c1

(
Eµ[‖(−L̂)

d(p−1)
4p
−κ(fBt,r − 1)‖2q2

) 1
q

≤ c2
t

{
r−
(
d(p−1)

2p
−2κ+ d′

2
+
d(q−1)

2q
−α
)+

+ 1{ d(p−1)
2p
−2κ+ d′

2
+
d(q−1)

2q
−α=0

} log(1 + r−1)
}
.

(3.89)

Below we prove assertions (1)-(3) in Theorem 2.3 respectively.
(1) Let γα,p,q < 0. We may take κ ∈ (0, 1

2
) such that

d(p− 1)

2p
− 2κ+

d′

2
+
d(q − 1)

2q
− α < 0,

so that (3.89) implies (
Eµ[W2p(µ

B
t,r, µ)2q]

) 1
q ≤ c2

t
, r ∈ (0, 1], t ≥ 1.

By Fatou’s lemma for r → 0, we obtain (2.17) for ν = µ.
(2) Let γα,p,q ≥ 0. For any γ > γα,p,q, we find κ ∈ (0, 1

2
) such that

d(p− 1)

2p
− 2κ+

d′

2
+
d(q − 1)

2q
− α ≤ γ,
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so that (3.89), (3.24) and the triangle inequality imply(
Eµ[W2p(µ

B
t , µ)2q]

) 1
q ≤ c1

{
t−1r−γ + r

}
, r ∈ (0, 1], t ≥ 1

for some constant c1 > 0. Taking r = t−
1

1+γ we obtain (2.19) for ν = µ.
(3) Let (2.16) hold and γα,p,q ≥ 0. By (3.7) we find constants c1, c2 > 0 such that

W2p(µ
B
t,r, µ)2p ≤ c1‖∇(−L̂)−1(fBt,r − 1)‖2p2p ≤ c2‖(a0 − L̂)

1
2 (−L̂)−1(fBt,r − 1)‖2p2p.(3.90)

On the other hand, by the Sobolev embedding theorem, (2.5) implies that for any constants
k2 ≥ k1 > −∞ and q1 ≥ q2 ≥ 1 with

(3.91)
1

q1
=

1

q2
+
k1 − k2
d

,

there exists a constant C > 0 such that

‖(−L̂)
k1
2 f‖q1 ≤ C‖(−L̂)

k2
2 f‖q2 , µ(f) = 0.

Taking

k1 = −2, k2 =
d(p− 1)

2p
− 2, q1 = 2p, q2 = 2

such that (3.91) holds, we find a constant c2 > 0 such that

‖(a0 − L̂)
1
2 (−L̂)−1(fBt,r − 1)‖2p ≤ c2‖(a0 − L̂)

1
2 (−L̂)

d(p−1)
4p
−1(fBt,r − 1)‖2.

Combining this with (3.47) and (3.90), we find a constant c3 > 0 such that(
Eµ[W2p(µ

B
t,r, µ)2q]

) 1
q ≤ c3

t

{
r−γα,p,q + 1{γα,p,q=0} log(1 + r−1)

}
, t ≥ 1, r ∈ (0, 1].

By this together with (3.24) and the triangle inequality, we find a constant c4 > 0 such that(
Eµ[W2p(µ

B
t , µ)2q]

) 1
q ≤ c4

{
t−1r−γα,p,q + t−11{γα,p,q=0} log(1 + r−1) + r

}
, t ≥ 1, r ∈ (0, 1].

Taking r = t
− 1

1+γα,p,q , we obtain (2.19).

4 Proofs of Theorems 2.4 and 2.5

We will follow the line of [38] to estimate the lower bound of W2(µ
B
t , µ) by using an idea of [1].

For any f ∈ D(L) with ‖f‖∞ + ‖∇f‖∞ + ‖Lf‖∞ <∞, let

T σt f := −σ log P̂σt
2

eσ
−1f , σ > 0, t ∈ [0, 1].
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Lemma 4.1. Assume that (M,ρ) is a geodesic space. If (2.7) and (2.20) hold, then there exist
constants k1, k2 > 0 such that ‖∇f‖2∞ ≤ k1σ implies

T σ1 f(y)− f(x) ≤ 1

2
ρ(x, y)2 + σ‖L̂f‖2∞ + k2σ

θ‖∇f‖2∞,

µ(f − T σ1 f) ≤ 1

2
µ(|∇f |2) + k2σ

−1‖∇f‖4∞.
(4.1)

Proof. Let k1 = 2κ0, then ‖∇f‖2∞ ≤ k1σ implies

tσ

2
‖∇σ−1f‖2∞ ≤

1

2
σ−1‖∇f‖2∞ ≤ κ0, t ∈ [0, 1],

so that (3.26) holds for m = 1 and (σt
2
, σ−1f) replacing (t, f), which together with (2.7) yields

|∇T σt f |2 =
σ2|∇P̂ tσ

2
eσ
−1f |2

(P̂ tσ
2

eσ−1f )2
≤

(1 + k(2))σ2P̂ tσ
2

(|∇σ−1f |2e2σ−1f )

(P̂ tσ
2

eσ−1f )2

≤
(1 + k(2))‖∇f‖2∞P̂ tσ

2
(e2σ

−1f )

(P̂ tσ
2

eσ−1f )2
≤ 2(1 + k(2))‖∇f‖2∞ =: c1‖∇f‖2∞.

(4.2)

Next, by (3.25), we find a constant c2 > 0 such that

L̂T σt f = −
σL̂P̂ tσ

2
eσ
−1f

P̂ tσ
2

eσ−1f
+
σ|∇P̂ tσ

2
eσ
−1f |2

(P̂ tσ
2

eσ−1f )2

=
−P̂ tσ

2
{eσ−1f L̂f}

P̂ tσ
2

eσ−1f
+
σ|∇P̂ tσ

2
eσ
−1f |2 − σ(P̂ tσ

2
eσ
−1f )P̂ tσ

2
(|∇σ−1f |2eσ−1f )

(P̂ tσ
2

eσ−1f )2

≤ ‖L̂f‖∞ + c2σ
θ−1‖∇f‖2∞, σ, t ∈ (0, 1], ‖∇f‖2∞ ≤ k1σ.

(4.3)

Moreover, for any two points x, y ∈M , let γ : [0, 1]→M be the minimal geodesic from x to y
with

|γ̇t| := lim sup
s→t

ρ(γt, γs)

|t− s|
= ρ(x, y), a.e. t ∈ [0, 1].

So,

(4.4) lim sup
s→t

|f(γt)− f(γs)|
|t− s|

≤ |∇f(γt)|ρ(x, y), t ∈ [0, 1].

By the backward Kolmogorov equation and the chain rule, we have

(4.5) ∂tT
σ
t f = −

σ2L̂P̂ tσ
2

eσ
−1f

2P̂ tσ
2

eeσ
−1f

=
σ

2
L̂T σt f −

1

2
|∇T σt f |2.

This together with (4.3) and (4.4) yields

d

dt
T σt f(γt) = (∂tT

σ
t f)(γt) +

d

dt
T σs f(γt)

∣∣∣
s=t
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≤ σ

2
L̂T σt f(γt)−

1

2
|∇T σt f(γt)|2 + |∇T σt f(γt)|ρ(x, y)

≤ 1

2

[
ρ(x, y)2 + σ‖L̂f‖∞ + c2σ

θ‖∇f‖2∞
]
, t ∈ [0, 1], ‖∇f‖2∞ ≤ k1σ.

Integrating over t ∈ [0, 1] and noting that T σ0 f = f , we derive the first inequality in (4.1).
On the other hand, by (4.5), T σ0 f = f and µ(L̂T σt f) = 0, we obtain

µ(f − T σ1 f) = −
∫
M

dµ

∫ 1

0

(∂tT
σ
t f)dt

=

∫ 1

0

dt

∫
M

{1

2
|∇T σt f |2 −

σ

2
L̂T σt f

}
dµ =

1

2

∫ 1

0

µ(|∇T σt f |2)dt.
(4.6)

Moreover, by (4.5) and the integration by parts formula, we obtain

d

ds
µ(|∇T σs f |2) = − d

ds

∫
M

(T σs f)L̂T σs fdµ

= −
∫
M

(L̂T σs f)∂sT
σ
s fdµ−

∫
M

(T σs f)L̂(∂sT
σ
s f)dµ

= −2

∫
M

(L̂T σs f)∂sT
σ
s f dµ = −2

∫
M

(L̂T σs f)
(σ

2
L̂T σs f −

1

2
|∇T σs f |2

)
dµ

≤ 1

4σ
‖∇T σs f‖4∞, s ∈ (0, 1], t ∈ [0, 1].

This together with (4.2) implies

µ(|∇T σt f |2)− µ(|∇f |2) ≤ c21
4σ
‖∇f‖4∞, t ∈ [0, 1], σ ∈ (0, 1], ‖∇f‖2∞ ≤ k1σ(4.7)

Substituting this into (4.6), we derive the second estimate in (4.1).

Proof of Theorem 2.4. Similarly to the proof of Theorem 2.1 using Proposition 3.7 and the
approximation argument with Proposition 3.8, the assertions Theorem 2.4(1) and (2) follow
from

(4.8) lim
t→∞

Eµ
[∣∣{th(0)W2(µ

B
t , µ)2 − ΞB(t)}−

∣∣q] = 0, q ∈ [1, qα).

Moreover, according to the proof of Theorem 2.2(1), Theorem 2.4(3) is implied by Theorem
2.4(1) and (2). So, it remains to verify (4.8). The main idea for the proof of (4.8) goes
back to [1, 38], but we have to make suitable modifications for the present situation. Let
f̂t,r = (−L̂)−1(1− fBt,r).

Firstly, by (3.18), we find a constant c1 > 0 such that

(4.9) ‖f̂t,r‖∞ ≤
∫ ∞
0

‖P̂s(fBt,r − 1)‖∞ds ≤ c1‖fBt,r − 1‖∞
∫ ∞
0

e−λ1sds =
c1
λ1
‖fBt,r − 1‖∞.
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By (3.10) and (3.9), we find a constant c2 > 0 such that

‖∇P̂sg‖∞ ≤ c2(s ∧ 1)−
1
2 e−λ1s‖g‖∞, s > 0, g ∈ Bb(M).

Noting that f̂t,r := (−L̂)−1(fBt,r − 1) =
∫∞
0
P̂s(f

B
t,r − 1)ds, we obtain

‖∇f̂t,r‖∞ ≤
∫ ∞
0

‖∇P̂s(fBt,r − 1)‖∞ds ≤ c2‖fBt,r − 1‖∞
∫ ∞
0

(1 ∧ s)−
1
2 e−λ1sds.

Combining this with (4.9) and |L̂f̂t,r| = |fBt,r − 1|, we find a constant c > 0 such that

(4.10) ‖L̂f̂t,r‖∞ + ‖f̂t,r‖∞ + ‖∇f̂t,r‖∞ ≤ c‖fBt,r − 1‖∞, t, r > 0.

Next, let

C1(f̂t,r, σ) := σ‖L̂f̂t,r‖2∞ + k2σ
θ‖∇f̂t,r‖2∞,

C2(f̂t,r, σ) := k2σ
−1‖∇f̂t,r‖4∞,

Bt,r(σ) := {‖fBt,r − 1‖2∞ ≤ k1c
−1σ1+θ}, σ ∈ (0, 1], t, r > 0.

(4.11)

By (4.1), the integration by parts formula, and the Kantorovich dual formula, we obtain

C1(f̂t,r, σ) +
1

2
W2(µ

B
t,r, µ)2 ≥ µ(T σ1 f̂t,r)− µBt,r(f̂t,r)

= µ
(
(fBt,r − 1)(−L̂)−1(fBt,r − 1)

)
− µ(f̂t,r) + µ(T σ1 f̂t,r)

≥ µ(|∇f̂t,r|2)−
1

2
µ(|∇f̂t,r|2)− C2(f̂t,r, σ) =

1

2t
ΞB
r (t)− C2(f̂t,r, σ), σ ∈ (0, 1], t, r > 0.

This together with (4.10) and (4.11) yields

(4.12) 1Bt,r(σ)
{
tW2(µ

B
t,r, µ)2 − ΞB

r (t)
}
≥ −c3tσ1+2θ, σ ∈ (0, 1], t, r > 0

for some constant c3 > 0. On the other hand, by (2.5) we find a constant c4 > 0 such that

‖fBt,r − 1‖2∞ = ‖P̂ r
2
(fBt, r

2
− 1)‖2∞ ≤ c4r

− d
2‖fBt, r

2
− 1‖22, r ∈ (0, 1],

so that by (3.58) with 1 replacing σ ∈ (0, 1), there exists a constant c5 > 0 such that

Eµ[‖fBt,r − 1‖2∞] ≤ c4r
− d

2 t−1
∞∑
i=1

e−λirEµ[ψBi (t)2] ≤ c5r
− d

2
−1t−1, t ≥ 1, r ∈ (0, 1].

Hence, we find a constant c6 > 0 such that

(4.13) Pµ(Bt,r(σ)c) = Pµ(‖fBt,r − 1‖2∞ > k1c
−1σ1+θ) ≤ c6r

− d
2
−1t−1σ−(1+θ), t ≥ 1, σ, r ∈ (0, 1].

Taking σ = σt := t−
1

1+3θ/2 in (4.12) and (4.13), we arrive at

lim sup
t→∞

Pµ
(
{tW2(µ

B
t,r, µ)2 − ΞB

r (t)}− ≥ ε
)
≤ lim sup

t→∞
Pµ(Bt,r(σt)

c) = 0, ε > 0, r ∈ (0, 1].
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On the other hand, by (2.10), (3.6), (3.28) and
∑∞

i=1 λ
−1−α
i <∞ due to (2.6) and d′ < 2(1+α),

we obtain

lim
r→0

sup
t≥1

Eµ
[
|ΞB

r (t)− ΞB(t)|
]
≤ lim

r→0

∞∑
i=1

1− e−2λir

λi
sup
t≥1

Eµ[ψBi (t)2]

≤ c(1) lim
r→0

∞∑
i=1

(
1− e−2λir

)
λ−1−αi = 0.

Moreover, (2.21) and (3.66) imply

lim
r→0

sup
t≥1

Eµ[{th(0)W2(µ
B
t , µ)2 − tW2(µ

B
t,r, µ)2}−] = 0.

Therefore, for any ε > 0,

lim sup
t→∞

Pµ
(
{th(0)W2(µ

B
t , µ)2 − ΞB(t)}− ≥ 3ε

)
≤ lim

r→0
lim sup
t→∞

Pµ
(
{tW2(µ

B
t,r, µ)2 − ΞB

r (t)}− ≥ ε
)

+ lim
r→0

sup
t≥1

[
Pµ
(
|ΞB(t)− ΞB

r (t)| ≥ ε
)

+ Pµ
(
{th(0)W2(µ

B
t , µ)2 − tW2(µ

B
t,r, µ)2}− ≥ ε

)]
= 0.

Combining this with (3.66) and applying the dominated convergence theorem, we prove (4.8).

To prove Theorem 2.5, we need the following lemma.

Lemma 4.2. Assume (2.5).

(1) Let V = VB for B(λ) = λ. We have

(4.14) V(φi) = λ−1i − λ−2i V(Zφi), i ≥ 1.

(2) If (2.7) holds and B ∈ Bα∩Bα′ for some α, α′ ∈ [0, 1], then there exist constants c1, c2 > 0
such that

(4.15) VB(φi) ≥ c1λ
−α′
i − c2λ

−1−( 1
2
∧α)

i

[
1 + 1{α= 1

2
} log(1 + λi)

]
, i ≥ 1.

Proof. (1) By L̂φi = −λiφi and using the Kolmogorov equation, we obtain

(4.16) Psφi = − 1

λi
PsL̂φi = − 1

λi

d

ds
Psφi +

1

λi
Ps(Zφi).

This together with (2.2) and µ(φ2
i ) = 1 implies∫ t

0

µ(φiPsφi)ds = − 1

λi

∫ t

0

( d

ds
µ(φiPsφi)− µ

(
φi(ZPsφi)

)}
ds

=
1

λi

(
1− µ(φiPtφi)

)
− 1

λi

∫ t

0

µ
(
{Zφi}Psφi

)
ds

=
1

λi

(
1− µ(φiPtφi)

)
+

1

λ2i

∫ t

0

{ d

ds
µ
(
{Zφi}Psφi

)
− µ

(
{Zφi}Ps{Zφi}

)}
ds

=
1

λi

(
1− µ(φiPtφi)

)
+

1

λ2i
µ({Zφi}Ptφi)−

1

λ2i

∫ t

0

µ
(
{Zφi}Ps{Zφi}

)
ds.

(4.17)
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By (1.2) and ‖Pt − µ‖2 ≤ e−λ1t, we may let t→∞ to derive

V(φi) =
1

λi
− 1

λ2i
V(Zφi), i ≥ 1.

(2) Let (3.10) hold. By (2.9), (2.4) and (3.34) we obtain

(4.18) VB(φi) :=

∫ ∞
0

µ(φiP
B
t φi)dt =

1

B(λi)
+

∫ ∞
0

{
E
∫ SBt

0

e−λi(S
B
t −s)µ

(
φiPs(Zφi)

)
ds

}
dt.

By (2.9) and (2.3) for (P ∗t ,−Z) replacing (Pt, Z), we derive

P ∗s φi = P̂sφi −
∫ s

0

P ∗r {ZP̂s−rφi}dr = e−λisφi −
∫ s

0

e−λi(s−r)P ∗r (Zφi)dr.

This together with (2.2) implies

µ(φiPs(Zφi)) = µ((P ∗s φi)Zφi) = −
∫ s

0

e−λi(s−r)µ((Zφi)Pr(Zφi))dr.

Combining this with (3.11) and noting that (2.9) yields

‖Zφi‖22 ≤ ‖Z‖∞‖∇φi‖22 = ‖Z‖2∞λi,

we derive

µ(φiPs(Zφi)) ≤ c(1)λ
1
2
i

∫ s

0

e−λi(s−r)r−
1
2 e−λrdr, s ≥ 0, i ∈ N.(4.19)

By (3.36) for s replacing SBt , we find a constant a1 > 0 such that∫ s

0

e−λi(s−r)−λrr−
1
2 dr ≤ a1λ

−1
i s−

1
2 e−λs/2, s > 0.

Combining this with (4.19), (3.36) and (3.37), we find constants a2, a3, a4 > 0 such that

Ii(t) := E
∫ SBt

0

e−λi(S
B
t −s)µ(φiPs(Zφi))ds ≤

a1√
λi
E
∫ SBt

0

e−λi(S
B
t −s)s−

1
2 e−λs/2ds

≤ a2λ
− 3

2
i E

[
(SBt )−

1
2 e−λS

B
t /4
]
≤ a3λ

− 3
2

i

(1

2
∧ t
)− 1

2α
e−a4t, t > 0, i ≥ 1.

(4.20)

On the other hand, noting that∣∣µ((Zφi)Pr(Zφi))∣∣ ≤ ‖Z‖2∞‖∇φi‖22e−λ1r = λi‖Z‖2∞e−λ1r,

by (4.19) and (2.4), we find constants a5, a6 > 0 such that

Ii(t) ≤ λi‖Z‖2∞E
∫ SBt

0

e−λi(S
B
t −s)ds

∫ s

0

e−λi(s−r)−λ1rdr
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≤ a5E
∫ SBt

0

e−λi(S
B
t −s)−λ1s/2ds ≤ a5λ

−1
i e−a6t.

Combining this with (4.20) and (3.31), we find a constant a7 > 0 such that∫ ∞
0

Ii(t)dt ≤ (a3 ∨ a5)λ
− 3

2
i

∫ ∞
0

hi,α(t)e−(a4∧a6)tdt

≤ a7λ
−1−( 1

2
∧α)

i

[
1 + 1{α= 1

2
} log(1 + λi)

]
.

This together with (4.18) and B ∈ Bα′ implies (4.15).

Proof of Theorem 2.5. Since α′ ∈ [0, 1] and α ∈ [0, α′] ∩ (α′ − 1, α′] imply 2 + (1
2
∧ α) > 1 + α′,

by (4.15) we find constants a0 > 1 and a1, a2 ≥ 0 such that

VB(φi)

λi
≥ a1λ

−1−α′
i − a2λ−a0(1+α

′)
i , i ∈ N.

Combining this with (2.22) and d′ = 2(1 + α), we find constants a′1, a
′
2, a3, a4 > 0 such that

ηBZ,r =
∞∑
i=1

e−2λir
VB(φi)

λi
≥

∞∑
i=1

e−2λir
(
a1λ

−1−α′
i − a2λ−a0(1+α

′)
i

)
≥

∞∑
i=1

e−2rc2i
1

1+α′
(
a′1i
−1 − a′2i−a0

)
≥ a3 log(1 + r−1)− a4, r ∈ (0, 1].

(4.21)

Next, by (4.12), we obtain

Eµ[W2(µ
B
t,r, µ)2] ≥ Eµ[1BσW2(µ

B
t,r, µ)2] ≥ t−1Eµ[1Bt,r(σ)Ξ

B
r (t)]− c3σ1+2θ

≥ t−1Eµ[ΞB
r (t)]− t−1Eµ[1Bt,r(σ)cΞ

B
r (t)]− c3σ1+2θ, t ≥ 1, r, σ ∈ (0, 1].

(4.22)

By (3.53), (2.22) and d′ = 2(1 + α′), we find constants k1, k2 > 0 such that

Eµ[ΞB
r (t)] =

∞∑
i=1

e−2λir

λi
Eµ[ψBi (t)2] ≥ ηBZ,r − k1t−1

∞∑
i=1

e−2rλiλ
−(1+α)
i

≥ ηBZ,r − k1t−1
∞∑
i=1

e−2rc2i
1

1+α′
c−1−α2 i−

1+α
1+α′ ≥ ηBZ,r − k2t−1r−k2 , t ≥ 0, r ∈ (0, 1].

Combining this with (4.21) and (4.22), we derive

Eµ[W2(µ
B
t,r, µ)2] ≥ a3t

−1 log(1 + r−1)− a4t−1 − k2t−2r−k2

− t−1Eµ[1Bt,r(σ)cΞ
B
r (t)]− c3σ1+2θ, t ≥ 1, r, σ ∈ (0, 1].

(4.23)

On the other hand, by (3.47) and (4.13), we find constants k3, k4 > 0 such that

Eµ[ΞB
r (t)2] = Eµ[‖(−L̂)−

1
2 (fBt,r − 1)‖42] ≤ k3r

−k4 ,
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Pµ(Bt,r(σ)c) ≤ k3r
−k4t−1σ−(1+θ) t ≥ 1, r ∈ (0, 1], σ ∈ (0, 1],

where θ > 0 is a constant. Thus,

Eµ[1Bt,r(σ)cΞ
B
r (t)] ≤

√
Pµ(Bt,r(σ)c)Eµ[ΞB

r (t)2]] ≤ k3r
−k4t−

1
2σ−

1+θ
2 , t ≥ 1, r, σ ∈ (0, 1].

Combining this with (4.23), we arrive at

Eµ[W2(µ
B
t,r, µ)2] ≥ a3t

−1 log(1 + r−1)− a4t−1 − k2t−2r−k2

− k3r−k4t−
3
2σ−

1+θ
2 − c3σ1+2θ, t ≥ 1, r, σ ∈ (0, 1].

Taking σ = t−
1

1+2θ and r = t
− 1
k2
∧ θ

2k4(1+2θ) , obtain

Eµ[W2(µ
B
t,r, µ)2] ≥ a3

1 + 2θ
t−1 log t− (k2 + k3 + c3)t

−1, t ≥ 1.

Therefore, (2.23) holds for some constants c, t0 > 0.

Finally, to prove Theorem 2.6, we present one more lemma.

Lemma 4.3. Let (E, ρ) be a Polish space. Let Xt be a continuous time Markov process on E
such that the associated semigroup Pt satisfies

(4.24) ‖Pt − µ‖2 ≤ c1e
−λ1t, t ≥ 0

for some constants c1, λ1 > 0 and a probability measure µ on E. If there exists φ ∈ Cb,L(E)
such that µ(φ) = 0 and

V(φ) :=

∫ ∞
0

µ(φPtφ)dt > 0,

then there exist constants c, t0 > 0 such that µt := 1
t

∫ t
0
δXsds satisfies

(4.25) Eµ[W1(µt, µ)] ≥ ct−
1
2 , t ≥ t0.

If M ⊂ E such that µ(M) = 1 and ‖Pt‖1→2 < ∞ for t > 0, then (4.25) holds for infν∈P Eν
replacing Eµ, where P is the set of all probability measures on M .

Proof. By [39, Theorem 2.1(c)], we have

(4.26) lim
t→∞

√
tEµ[|µt(φ)|] =

(
2πV(φ)

)− 1
2

∫ ∞
−∞
|r|e−

r2

2V(φ) dr.

So, by the Kantorovich dual formula, there exist constants c, t0 > 0 such that
√
tEµ[W1(µt, µ)] ≥

√
tEµ[|µt(φ)− µ(φ)|] ≥ c, t ≥ t0.

Next, let M ⊂ E such that µ(M) = 1 and ‖Pt‖1→2 <∞ for t > 0. Then

{νP1 : ν ∈P} ⊂
{
ν ∈P : ν = hµ, ‖h‖2 ≤ ‖P1‖1→2

}
,
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so that [39, Theorem 2.1(c)], µ̂t := 1
t

∫ t+1

1
δXsds satisfies

lim
t→∞

inf
ν∈P

√
tEν [|µ̂t(φ)|] > 0.

Noting that
|µ̂t(φ)− µt(φ)| ≤ ‖φ‖∞t−1, t > 1,

we obtain
lim
t→∞

inf
ν∈P

√
tEν [|µt(φ)|] > 0.

By Kantorovich’s dual formula and µ(φ) = 0, this implies (4.25) for infν∈P Eν replacing Eµ.

Proof of Theorem 2.6. (1) By (2.5) and (2.7), for any i ≥ 1 we have ‖φi‖∞ < ∞ and there
exist constants c1, c2 > 0 such that

‖∇φi‖∞ = eλi‖∇P̂1φi‖∞ ≤ c1e
λi
∥∥(P1|∇φi|2)

1
2

∥∥
∞

≤ c2e
λi‖∇φi‖2 = c2e

λi
√
λi <∞.

So, φi ∈ Cb,L(M), and hence is uniquely extended to φi ∈ Cb,L(E) for E := M̄ . On the other
hand, by (4.15) we have VB(φi) > 0 for large enough i. Moreover, (3.9) implies ‖PB

t ‖1→2 <∞
for t > 0. So, the first assertion follows from Lemma 4.3 with E = M̄.

(2) Let B ∈ Bα for some α ∈ [0, 1] with d′′ > 2(1+α). By (2.8) for p = 1 we find a constant
c1 > 0 such that

Eµ[ρ(X̂t, X̂0)] ≤ c1t
1
2 , t ≥ 0.

Combining this with (2.3) and (2.7), we find a constant c2 > 0 such that

Eµ[ρ(Xt, X0)] =

∫
M

Ptρ(x, ·)(x)µ(dx)

= Eµ[ρ(X̂t, X̂0)] +

∫
M

µ(dx)

∫ t

0

Ps{ZP̂t−sρ(x, ·)}(x)ds

≤ c1t
1
2 + c2

∫ t

0

(t− s)−
1
2 ds ≤ c3t

1
2 , t ≥ 0.

According to the proof of [37, Theorem 1.1(2)], this and (2.25) imply

(4.27) Eµ[W1(µ
B
t , µ)] ≥ c4t

− 1
d′′−2α , t ≥ t1

for some constants c4, t1 > 0.
Finally, by (3.9), we find a constant t2 > 0 such that ‖Pt2 − µ‖1→∞ ≤ 1

2
, so that

νt2 := νPB
t2
≥ 1

2
µ, ν ∈P.

Let µB,t2t be in (3.69) for ε = t2. Then the Markov property and (4.27) yield

inf
ν∈P

Eν [W1(µ
B,t2
t , µ)] = inf

ν∈P
Eνt2 [W1(µ

B
t , µ)] ≥ 1

2
c4t
− 1
d′′−2α , t ≥ t1.
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Combining this with (3.76), the triangle inequality and d′′−2α > 2, we find constants c5, c, t0 >
t1 such that

inf
ν∈P

Eν [W1(µ
B
t , µ)] ≥ 1

2
c4t
− 1
d′′−2α − c5t−1 ≥ ct−

1
d′′−2α , t ≥ t0.

5 Some concrete models

In this part, we apply our general results to some typical models including: 1) the (reflecting)
subordinated diffusion process on a compact manifold; 2) the subordinated conditional diffusion
process on a bounded open domain; 3) the subordinated Wright-Fisher diffusion process; 4) the
subordinated subelliptic diffusion process on SU(2). It is also possible to consider more general
hypoelliptic diffusion processes studied in [6, 7] under the generalized curvature-dimension
conditions. For simplicity, throughout this section, we take

B ∈ Bα ∩Bα for some α ∈ (0, 1].

5.1 Subordinated (Reflecting) diffusion process

In this part, we consider the model stated in Introduction, for which all conditions in Theorems
2.1-2.6 are satisfied for d = d′ = d′′ = n.

Indeed, (2.5) and (2.22) are well known (see [9, 11]), (2.7) follows from [31, Lemma 2.1],
and (2.21) with h(r) = κeKr is implied by [38, (3.36), (3.37)], where κ ≥ 1 and K ≥ 0 are
constants with κ = 1 when ∂M is empty or convex. Moreover, the following lemma confirms
other conditions.

Lemma 5.1. (2.20), (A2) and (2.16) hold.

Proof. (1) Let lt be the local time of X̂t on ∂M if ∂M exists, and let lt = 0 otherwise. By [31,
(2.1)] and the proof of [31, Lemma 2.1], there exist constants c1, K, δ > 0 such that

(5.1) |∇P̂tf(x)| ≤ Ex[|∇f(X̂t)|eKt+δlt ], t ≥ 0, x ∈M, f ∈ C1
b (M),

(5.2) sup
x∈M

Ex[l2t ] ≤ c1t, sup
x∈M

Ex[eλlt ] <∞, λ, t ≥ 0.

By the Schwarz inequality, (5.1) implies

|∇P̂tef (x)| ≤ P̂t|∇ef |(x) + Ex
[
|∇ef (X̂t)|(eKt+δlt − 1)

]
≤
{
P̂te

f (x)
} 1

2
{
P̂t(|∇f |2ef )(x)

} 1
2 + ‖∇f‖∞(P̂te

2f )
1
2

(
Ex[e2Kt+2δlt − 1]

) 1
2 .

On the other hand, by (5.2) we find a constant c2 > 0 such that

Ex[e2Kt+2δlt − 1] ≤ Ex[(2K + 2δlt)e
2Kt+2δlt ]

≤
(
Ex[(2K + 2δlt)

2]
) 1

2
(
Ex[e4Kt+4δlt ]

) 1
2 ≤ c2t

1
2 , t ∈ [0, 1].
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Therefore, (2.20) holds for θ = 1
2

and m = 1.
(2) When ∂M is empty or convex, we have

〈∇ρ(X̂0, ·),N〉(X̂t)dlt ≤ 0,

where N is the inward unit normal vector on ∂M . On the other hand, by the Laplacian
comparison theorem, there exists a constant c0 > 0 such that

L̂ρ(X̂0, ·)2 ≤ c0.

So, by Itô’s formula, we find a constant c1 > 0 such that

dρ(X̂0, X̂t)
2 ≤ c1dt+ 2

√
2ρ(X̂0, X̂t)dBt, t ≥ 0,

where Bt is the one-dimensional Brownian motion. Thus, for any p ≥ 1, there exists a constant
c(p) > 0 such that

dρ(X̂0, X̂t)
2p ≤ c(p)ρ(X̂0, X̂t)

2(p−1)dt+ dMt

holds for some martingale Mt, so that

E[ρ(X̂0, X̂t)
2p] ≤ c(p)

∫ t

0

E[ρ(X̂0, X̂s)
2(p−1)]ds, t ≥ 0.

Consequently, for p = 1 we get
Ex[ρ(X̂0, X̂t)

2] ≤ c(1)t,

and by inducting in p ∈ N, we derive (2.8) for p ∈ 2N. Therefore, (2.8) holds for all p ≥ 1 due
to Jensen’s inequality.

When ∂M is non-convex, as explained in the proof of [32, Proposition 3.2.7], there exists a
function 1 ≤ φ ∈ C∞b (M) such that ∂M is convex under the metric

〈·, ·〉′ := φ−1〈·, ·〉,

and L̂ = φ−2∆′+Z ′, where ∆′ is the Laplacian induced by the new metric and Z ′ is a C1
b vector

field. Let ρ′ be the Riemannian distance induced by the new metric, we have ρ ≤ ‖φ‖∞ρ′, so
that the above argument for convex ∂M leads to

E[ρ(X̂0, X̂t)
2p] ≤ ‖φ‖2p∞E[ρ′(X̂0, X̂t)

2p] ≤ k(p)tp, t ∈ [0, 1].

(3) To verify (2.16), we follow the line of [3]. As explained in the end of page 12 in [3],
see also the proof of [3, Theorem 1.5], under (3.10), it remains to verify the volume doubling
condition and scaled Poincaré inequalities on balls. More precisely, we only need to find a
distance ρ̃ and constants c1, c2, c3 > 0 such that

c1ρ̃ ≤ ρ ≤ c2ρ̃,

and the balls B̃(x, r) := {y ∈M : ρ̃(x, y) ≤ r} for all x ∈M and r > 0 satisfy

(5.3) µ(B̃(x, 2r)) ≤ c3µ(B̃(x, r)),
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(5.4) µ(1B̃(x,r)f
2) ≤ c3r

2µ(1B̃(x,r)|∇f |
2), f ∈ C1

b (M), µ(1B̃(x,r)f) = 0.

Since for the present model we have D̃ := ‖ρ̃‖∞ < ∞ and krd ≤ µ(B̃(x, r)) ≤ Krd for some
constants K > k > 0 and all r ∈ [0, D̃], (5.3) holds true. To verify (5.4), by the conformal
change of metric used in step (2), we may and do assume that ∂M is either empty or convex.
In this case, there exists a constant r0 > 0 such that B(x, r) := {y ∈M : ρ(x, y) ≤ r} is convex
for all x ∈ M and r ∈ (0, r0]. Then we take ρ̃ := ρ ∧ r0, so that B̃(x, r) is convex for all r > 0,
since B̃(x, r) = B(x, r) for r < r0 and B̃(x, r) = M for r ≥ r0. Thus, (5.4) follows from [29,
Theorem 1.4].

According to the above observations, we conclude that all assertions in Theorems 2.1-2.6
hold for d = d′ = d′′ = n, i.e.

qα =
2n

(3n− 2− 2α)+
, α(d, d′) = α(n) :=

1

2

√
1 + 2n(n− 1)− 1

2
,

γα,p,q =
n

2
(3− p−1 − q−1)− 1− α, p, q ∈ [1,∞).

(5.5)

In this case, α > α(n) implies n < 2(1 + α) and qα >
n
2α
, so that in Theorem 2.1(1) we only

need α > α(n). Below we summarize these results, which in particular imply Theorems 1.1 and
1.2 stated in Introduction, according to B(λ) = λ(α = 1), (4.14) and

V(Zφi) := µ((Zφi)(−L)−1(Zφi)) = µ(|∇L−1(Zφi)|2).

Theorem 5.2. Let qα, α(n), γα,p,q for p, q ∈ [1,∞) be in (5.5). Then the following assertions
hold for some constant κ ∈ [1,∞), where κ = 1 when ∂M is either empty or convex.

(1) If α > α(n), then

lim
t→∞

sup
ν∈P

Eν
[∣∣{tW2(µ

B
t , µ)2 − ΞB(t)}+ + {tκW2(µ

B
t , µ)2 − ΞB(t)}−

∣∣q] = 0, q ∈ [1, qα).

(2) If n < 2(1 + α), then for any q ∈ [1, qα) and k ∈ ( n
2αi(q)

,∞] ∩ [1,∞],

lim
t→∞

sup
ν∈Pk,R

Eν
[∣∣∣{tW2(µ

B
t , µ)2 − ΞB(t)}+ + {tκW2(µ

B
t , µ)2 − ΞB(t)}−

∣∣∣q] = 0, R ∈ (0,∞).

(3) If n < 2(1 + α), then

κ−1ηBZ ≤ lim inf
t→∞

inf
ν∈P

tEν [W2(µ
B
t , µ)2] ≤ lim sup

t→∞
sup
ν∈P

tEν [W2(µ
B
t , µ)2] ≤ ηBZ <∞.

(4) If n = 2(1 + α), i.e. (n, α) ∈ {(3, 1
2
), (4, 1)}, then there exist constants c, t0 > 1 such that

c−1t−1 log t ≤ Eν [W2(µ
B
t , µ)2] ≤ ct−1 log t, t ≥ t0, ν ∈P.
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(5) If n > 2(1 + α), then there exist constants c, t0 > 1 such that

c−1t−
2

n−2α ≤
(
Eν [W1(µ

B
t , µ)]

)2 ≤ Eν [W2(µ
B
t , µ)2] ≤ ct−

2
n−2α , t ≥ t0, ν ∈P.

(6) If p, q ∈ [1,∞) with n(3− p−1− q−1) < 2(1 + α), then there exist constants c, t0 > 1 such
that

c−1t−1 ≤
(
Eν [W1(µ

B
t , µ)]

)2 ≤ (Eν [W2p(µ
B
t , µ)2q]

) 1
q ≤ ct−1, t ≥ t0, ν ∈P.

(7) If p, q ∈ [1,∞) such that n(3− p−1 − q−1) ≥ 2(1 + α), then there exists a constant c > 0
such that for any t ≥ 1,

sup
ν∈P

(
Eν [W2p(µ

B
t , µ)2q]

) 1
q ≤

{
ct−1 log(1 + t), if n(3− p−1 − q−1) = 2(1 + α),

ct
− 1

1+γα,p,q , if n(3− p−1 − q−1) > 2(1 + α).

5.2 Subordinated conditional diffusion process

Let M be a bounded connected C2 open domain in an n-dimensional complete Riemannian
manifold, and let V ∈ C2

b (M) be such that µ0(dx) := eV (x)dx is a probability measure on M .
Consider the Dirichlet eigenproblem for L̂0 := ∆ +∇V in M :

L̂0hi = −θihi, hi|∂M = 0, i ≥ 0,

where {θi}i≥0 are listed in the increasing order counting multiplicities, and {hi}i≥0 are the
associated unitary eigenfunctions in L2(µ0) with h0 > 0. Let

L̂ := L̂0 + 2∇ log h0 = ∆ +∇(V + 2 log h0), µ(dx) := h0(x)2µ0(dx).

Then the diffusion process X̂t generated by L̂ is non-explosive inM , whose distribution coincides
with the conditional distribution of the L̂0-diffusion process X̂0

t under the condition that

τ := inf{t ≥ 0 : X̂0
t ∈ ∂M} =∞,

in the sense that for any T > 0 and any F ∈ Cb((C[0, T ];M)),

E[F (X̂[0,T ])] = lim
m→∞

E[F (X̂0
[0,T ])|τ > m].

Let Z be a C1
b -vector field on M satisfying (2.2).

It is well known that {λi := θi−θ0}i≥0 are all eigenvalues of −L̂ with unitary eigenfunctions
{φi := hih

−1
0 }i≥0, and that (2.5), (2.22) and (2.25) hold for

d = n+ 2, d′ = d′′ = n,

see for instance [9, 25]. Next, by [36, Lemma 4.6], (2.21) holds with h(r) = κeKr for some
constants κ ≥ 1 and K ≥ 0, where κ = 1 when ∂M is convex. The following lemma confirms
other conditions in Theorems 2.1-2.6, except (2.16) which is not yet verified.
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Lemma 5.3. For the present model, (2.7) and (A2) hold. When ∂M is convex or n ≤ 3, (2.20)
is satisfied.

Proof. According to the proof of [36, Lemma 4.6], if ∂M is convex then the Bakry-Emery
curvature L̂ is bounded from below by a constant −K, so that

|∇Ptf | ≤ eKtPt|∇f |,

which implies (2.7) for k(p) = eK as well as (2.20) for θ = 1. So, in the following we only prove
these conditions for non-convex ∂M , and verify (A2).

(1) When ∂M is non-convex, let ρ′ be the Riemannian distance induced by 〈·, ·〉′ introduced
in the proof of (5.1). According to the proof of [36, Lemma 4.6], for any x, y ∈M , there exists
a coupling (X̂t, Ŷt) of the diffusion process generated by L̂ starting from (x, y), such that for
some constant c1 > 0 we have

dρ′(X̂t, Ŷt) ≤ c1ρ
′(X̂t, Ŷt)dt+ dMt,

where Mt is a martingale with d〈M〉t ≤ c1ρ
′(X̂t, Ŷt)dt. Thus, for any q ∈ (1,∞), there exists a

constant K(q) > 0 such that(
E[ρ′(X̂t, Ŷt)

q]
) 1
q ≤ K(q)ρ′(x, y), t ∈ [0, 1].

Therefore, by ρ′ ≤ ρ ≤ ‖φ‖∞ρ′,

|∇P̂tf(x)| := lim sup
y→x

|P̂tf(x)− P̂tf(y)|
ρ(x, y)

≤ lim sup
y→x

E
[ |f(X̂t)− f(Ŷt)|

ρ′(X̂t, Ŷt)
· ρ
′(X̂t, Ŷt)

ρ(x, y)

]
≤ lim sup

y→x

(
E
[ |f(X̂t)− f(Ŷt)|p

ρ′(X̂t, Ŷt)p

]) 1
p (E[ρ′(X̂t, Ŷt)

p
p−1 ])

p−1
p

ρ(x, y)
≤ K

( p

p− 1

)
‖φ‖∞(Pt|∇f |p)

1
p .

So, (2.7) holds.
(2) Let ∂M be non-convex and n ≤ 3. Since ∇V ∈ C1

b (M) and

−Hesslog h0 = −Hessh0
h0

+
(∇h0)⊗ (∇h0)

h20
≥ −‖∇

2h0‖∞
h0

,

there exists a constant c1 > 0 such that the Bakry-Emery curvature of L̂ is bounded below by
− c1

2h0
, i.e.

Γ2(g) :=
1

2
L̂|∇g|2 − 〈∇g,∇L̂g〉 ≥ −c1

2
h−10 |∇g|2, g ∈ C(M).

So, by (3.18) for d = n + 2, and applying Jensen’s inequality, we find a constant c2 > 0 such
that

|∇P̂tef |2 − P̂t|∇ef |2 = −
∫ t

0

d

ds
P̂s|∇P̂t−sef |2ds

≤ c1

∫ t

0

P̂s
{
h−10 |∇P̂t−sef |2

}
ds ≤ c1

∫ t

0

(P̂sh
− m
m−1

0 )
m−1
m (P̂s|∇P̂t−sef |2m)

1
mds
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≤ c2

∫ t

0

s−
(n+2)(m−1)

2m µ(h
− m
m−1

0 )
m−1
m (P̂s|∇P̂t−sef |2m)

1
mds

≤ c2‖∇f‖2∞(P̂te
2mf )

1
m

∫ t

0

s−
(n+2)(m−1)

2m µ(h
− m
m−1

0 )
m−1
m ds.

Noting that n+ 2 ≤ 5 and µ(h−r0 ) = µ0(h
2−r
0 ) <∞ for r < 3, for any m ∈ (3

2
, 5
3
), we have

θ1 := 1− (n+ 2)(m− 1)

2m
∈ (0, 1), µ

(
h
− m
m−1

0

)
<∞,

so that for some constant c3 > 0 we have

(5.6) |∇P̂tef |2 − P̂t|∇ef |2 ≤ c3t
θ1‖∇f‖2∞(P̂te

2m)
1
m .

Similarly, by (2.7) and its consequence

|∇P̂tg| ≤
c√
t
(P̂t|∇g|2)

1
2 ,

we find a constant c4 > 0 such that

P̂t|∇ef |2 − (P̂te
f )P̂t(|∇f |2ef ) =

∫ t

0

d

ds
P̂t−s

{
(P̂se

f )P̂s(|∇f |2ef )
}

ds

= −
∫ t

0

P̂t−s〈∇P̂sef ,∇P̂s(|∇f |2ef )〉ds

≤ c4‖∇f‖2∞
∫ t

0

s−
1
2 P̂t−s(P̂se

2f )ds = 2c4t
1
2‖∇f‖2∞P̂te2f .

This together with (5.6) implies (2.20) for θ = θ1 ∧ 1
2
.

(3) It remains to verify (2.8). By the conformal change of metric as in the end of the proof
of Lemma 5.1, we only consider the case where ∂M is convex, so that

〈N,∇ρ(x, ·)〉|∂M ≤ 0, x ∈M,

where N is the inward unit normal vector field of ∂M . Let ρ∂ be the distance to ∂M . It
is well known (see for instance [25]) that ∇h0 is inward normal on the boundary and c1 :=
‖h−10 ρ∂‖∞ <∞. So,

(5.7) ρ∂ ≤ c1h0, 〈∇h0,∇ρ(x, ·)〉|∂M ≤ 0, x ∈M.

Moreover, by the Hessian comparison theorem, there exists a constant c2 > 0 such that

(5.8) Hessρ(x,·)2(v, v) ≤ c2|v|2, x ∈M, v ∈ TM.

We intend to show that these two estimates imply

(5.9) sup
x,y∈M

〈∇ log h0,∇ρ(x, ·)2〉(y) ≤ c
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for some constant c > 0. To see this, for any x, y ∈ M , let z ∈ ∂M such that ρ(y, z) = ρ∂(y).
Let

γ : [0, 1]→M, γ0 = z, γ1 = y, |γ̇| = ρ∂(y)

be the minimal geodesic from z to y. Let vs = ∇h0(γs). We have

v0 = a0γ̇0, ‖0→s v0 = a0γ̇s, s ∈ [0, 1],

where a0 := 〈N,∇h0〉(z) and ‖0,s is the parallel displacement along the geodesic γs. Since
h0 ∈ C2

b (M), we find a constant c3 > 0 such that

|v1 − a0γ̇1| = |v1− ‖0→1 v0| ≤ c3ρ∂(y).

Combining this with (5.7) and (5.8), and noting that |∇ρ2| ≤ 2‖ρ‖∞ <∞, we find a constant
c4 > 0 such that

〈∇h0,∇ρ(x, ·)2〉(y) = 〈v1,∇ρ(x, ·)2(γ1)〉 ≤ a0〈γ̇1,∇ρ(x, ·)2(γ1)〉+ c3ρ∂(y)

= a0〈γ̇0,∇ρ(x, ·)2(γ0)〉+ a0

∫ 1

0

d

ds
〈γ̇s,∇ρ(x, ·)2(γs)〉ds+ c3ρ∂(y)

≤ a0

∫ 1

0

Hessρ(x,·)2(γ̇s, γ̇s)ds+ c3ρ∂(y) ≤ a0c2ρ∂(y)2 + c3ρ∂(y) ≤ c4h0(y).

Therefore, (5.9) holds for c = c4.
By (5.9) and Itô’s formula, we obtain

dρ(X̂0, ·)2(X̂t) ≤ cdt+ 2
√

2ρ(X̂0, X̂t)dBt,

where Bt is the one-dimensional Brownian motion. This implies (A2) as explained in the proof
of Lemma 5.1(2).

We now conclude that all assertions in Theorems 2.1-Theorem 2.5 hold, except Theorem
2.2(4) where the condition (2.16) is to be verified for this model, for d = n+ 2, d′ = d′′ = n and

qα :=
2n+ 4

3n+ 2− 2α
≤ 2, α(d, d′) = α̃(n) :=

1

2

√
4 + 2n(n+ 2)− 1,

γα,p,q :=
n

2
+
n+ 2

2
(2− p−1 − q−1)− α− 1.

(5.10)

Noting that when n = 1 the condition α > α̃(n) becomes α > 1
2

√
10 − 1, which implies

1 = n < 2(1 +α) and 6
5−2α = qα >

n
2α

= 1
2α
, while qα ≤ 2 yields i(q) = 1 for q ∈ [1, qα), we have

the following result according to Theorems 2.1-Theorem 2.5.

Theorem 5.4. Let L̂ := L0 + 2∇ log h0, and L = L̂+ Z for some C1
b -vector field Z satisfying

(2.2). The following assertions hold for qα, ã(n) and, γα,p,q in (5.10), and a constant κ ≥ 1 with
κ = 1 when ∂M is convex.

(1) When n = 1 and α ∈ (1
2

√
10− 1, 1],

lim
t→∞

sup
ν∈P

Eν
[∣∣{tW2(µ

B
t , µ)2−ΞB(t)}++{tκW2(µ

B
t , µ)2−ΞB(t)}−

∣∣q] = 0, q ∈
[
1,

6

5− 2α

)
.

48



(2) If n < 2(1 + α), then for any q ∈ [1, qα) and k ∈ (n+2
2α
,∞] ∩ [1,∞],

lim
t→∞

sup
ν∈Pk,R

Eν
[∣∣∣{tW2(µ

B
t , µ)2 − ΞB(t)}+ + {tκW2(µ

B
t , µ)2 − ΞB(t)}−

∣∣∣q] = 0, R ∈ (0,∞).

(3) If n < 2(1 + α), then

κ−1ηBZ ≤ lim inf
t→∞

inf
ν∈P

tEν [W2(µ
B
t , µ)2] ≤ lim sup

t→∞
sup
ν∈P

tEν [W2(µ
B
t , µ)2] ≤ ηBZ <∞.

(4) Let n = 2(1 + α), i.e. (n, α) ∈ {(3, 1
2
), (4, 1)}. Then there exist constants c, t0 > 0 such

that
sup
ν∈P

Eν [W2(µ
B
t , µ)2] ≤ ct−1 log t, t ≥ t0.

If ∂M is convex or (n, α) = (3, 1
2
), then there exists a constant c′ > 0 such that

inf
ν∈P

Eν [W2(µ
B
t , µ)2] ≥ c′t−1 log t, t ≥ t0.

(5) If n > 2(1 + α), then there exist constants c, t0 > 1 such that

c−1t−
2

n−2α ≤
(
Eν [W1(µ

B
t , µ)]

)2 ≤ Eν [W2(µ
B
t , µ)2] ≤ ct−

2
n−2α , t ≥ t0, ν ∈P.

(6) If p, q ∈ [1,∞) with γα,p,q < 0, then there exist constants c, t0 > 1 such that

c−1t−1 ≤
(
Eν [W1(µ

B
t , µ)]

)2 ≤ (Eν [W2p(µ
B
t , µ)2q]

) 1
q ≤ ct−1, t ≥ t0, ν ∈P.

(7) Let p, q ∈ [1,∞) with γα,p,q ≥ 0. Then for any γ > γα,p,q, there exists a constant c > 0
such that

sup
ν∈P

(
Eν [W2p(µ

B
t , µ)2q]

) 1
q ≤ ct−

1
1+γ , t ≥ 1.

If (2.16) holds, then there exists a constant c > 0 such that

sup
ν∈P

(
Eν [W2p(µ

B
t , µ)2q]

) 1
q ≤ ct

− 1
1+γα,p,q + ct−1 log(1 + t)1{γα,p,q=0}.

5.3 Subordinated Wright-Fisher diffusion process

Let a, b > 1
4

be two constants, and let

µ := 1[0,1](x)
Γ(2a+ 2b)

Γ(2a)Γ(2b)
x2a−1(1− x)2b−1dx

be the Beta distribution on M = [0, 1]. The Fisher-Wright diffusion process X̂t is generated by

L̂ :=
1

2
x(1− x)

d2

dx2
+ {a− (a+ b)x} d

dx
.
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Under the Riemannian metric 〈∂x, ∂x〉 = 2{x(1− x)}−1, we have

Γ(f, g) = 〈∇f,∇g〉 :=
1

2
x(1− x)f ′(x)g′(x), x ∈M,

ρ(x, y) =
√

2

∫ y

x

{s(1− s)}−
1
2 ds, 0 < x ≤ y < 1.

Since divµZ = 0 implies Z = 0, we have L = L̂.

Lemma 5.5. For the present model with L = L̂, (A1) with d = 4(a ∨ b) and (A2) hold, (2.22)
holds for d′ = 2, (B) holds with h(r) = eKr for some constant K > 0, and (2.16) holds.

Proof. Firstly, the condition (2.5) with d = 4(a ∨ b) is implied by [15, Corollary 2.3]. By [27,
(2.4)], the Bakry-Emery curvature of L̂ is bounded below by −K < 0 for some constant K ≥ 0,
so that

|∇Ptf | ≤ eKtPt|∇f |,

(2.7) and (B) hold for θ = m = 1, k(p) = eK and h(r) = erK .
Next, for any p ≥ 1 there exists a constant c1 > 0 such that

L̂ρ(X0, ·)2p(Xt) = 2pρ(X0, Xt)
2(p−1)Lρ(X0, ·)(Xt)

2 + p(p− 1)ρ(X0, Xt)
2(p−1)

≤ c1ρ(X0, Xt)
2(p−1),

so that

(5.11) Eµ[ρ(X0, Xt)
2p] ≤ c1

∫ t

0

Eµ[ρ(X0, Xs)
2(p−1)]ds.

In particular, for p = 1 we obtain (2.8), and for general p ∈ N it follows from (5.11) by the
induction argument.

Moreover, we have λi = (a + b)i so that (2.22) holds for d′ = 2. Indeed, according to the
proof of [14, Theorem 1.1], all eigenfunctions are polynomials. The trivial eigenvalue is λ0 = 0
with φ0 = 1. For any i ∈ N, let

φi(x) :=
i∑

j=0

αjx
j

with αi > 0 be the unitary eigenfunction for λi. We have

−λiφi(x) = L̂φi(x).

Since the coefficients of xi in left hand and right hand sides are −λiαi and −i(a+ b)αi respec-
tively, these two constants have to be equal each other, so that λi = i(a+ b).

Finally, as explained in step (3) in the proof of Lemma 5.1, for (2.16) it suffices to verify
(5.3) and (5.4). Since the curvature is bounded from below as indicated in the beginning of
the proof, and since a one-dimensional ball is convex, (5.4) follows from [29, Theorem 1.4].
So, it remains to (5.3). With the transform x → 1 − x, we only need to prove this condition
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for x ∈ [0, 1
2
]. Let x ∈ [0, 1

2
] and B(x, r) := {y ∈ [0, 1] : ρ(x, y) ≤ r}. Take, for instance,

r0 = 1
8
ρ(1

2
, 1) such that

x0 := supB(1/2, 2r0) ∈ (1/2, 1).

We have
c0 := inf

x∈[0, 1
2
]
µ(B(x, r0)) > 0,

so that
µ(B(x, 2r)) ≤ 1 ≤ c−10 µ(B(x, r)), r ≥ r0.

Hence, we only need to consider r ∈ (0, r0). On the other hand, we find constants c2 > c1 > 0
such that

c−11

∣∣√x−√y∣∣ ≥ ρ(x, y) ≥ c−12

∣∣√x−√y∣∣, x ∈ [0, 1/2], r ∈ (0, 2r0),

so that for some constants c3, c4 > 0,[{
(
√
x−c1r)+

}2
,
{√

x+c1r}2∧x0
]
⊂ B(x, r) ⊂

[{
(
√
x−c2r)+

}2
,
{√

x+c2r}2∧x0
]
, r ∈ (0, 2r0).

Noting that 0 < 1− x0 ≤ 1− s ≤ 1 for s ∈ B(x, 2r0), we find constants c4 > c3 > 0 such that

c3
{

(x+ c3r)
2a − x2a

}
≤ µ(B(x, r))

≤ µ(B(x, 2r)) ≤ c4
{

(x+ c4r)
2a − [(x− c4r)+]2a

}
, x ∈ [0, 1/2], r ∈ (0, r0).

since (x+c4r)2a−{(x−c4r)+}2a
(x+c3r)2a−x2a is a continuous function of (x, r) ∈ [0, 1

2
] × [0, r0], where when r = 0

the function is understood as the limit c4
c3

as r → 0, we obtain

sup
x∈[0,1/2],r∈(0,r0)

µ(B(x, 2r))

µ(B(x, r))
≤ sup

x∈[0, 1
2
],r∈[0,r0]

(x+ c4r)
2a − {(x− c4r)+}2a

(x+ c3r)2a − x2a
<∞.

Therefore, (5.3) holds.

In conclusion, all assertions in Theorems 2.1-2.6(1) hold for d = 4(a∨ b) and d′ = 2 so that

qα :=
4(a ∨ b)

4(a ∨ b)− α
, α(d, d′) = α̃ := (a ∨ b)

(√
5− 1

)
,

γα,p,q := 2(a ∨ b)(2− p−1 − q−1)− α.
(5.12)

Noting that α > 4
3
(a∨ b) implies qα >

4(a∨b)
2α

, 2(1 +α) > d′ = 2 and α > α̃, Theorems 2.1-2.6(1)
imply the following result.

Theorem 5.6. For the above L = L̂ and ηB = ηBZ for Z = 0, the following assertions hold for
qα, ã and, γα,p,q in (5.12).

(1) If α > 4
3
(a ∨ b), then

lim
t→∞

sup
ν∈P

Eν
[∣∣tW2(µ

B
t , µ)2 − ΞB(t)

∣∣q] = 0, q ∈ [1, qα).
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(2) For any q ∈ [1, qα) and k ∈ ( d
2αi(q)

,∞] ∩ [1,∞], where we set ( d
2αi(q)

,∞] = {∞} if α = 0,

lim
t→∞

sup
ν∈Pk,R

Eν
[∣∣∣tW2(µ

B
t , µ)2 − ΞB(t)

∣∣∣q] = 0, R ∈ (0,∞).

(3) ηB <∞ and lim supt→∞ supν∈P

∣∣tEν [W2(µ
B
t , µ)2]− ηB

∣∣ = 0.

(4) Let p, q ∈ [1,∞) with γα,p,q < 0. There exist constants c, t0 > 1 such that

c−1t−1 ≤
(
Eν [W1(µ

B
t , µ)]

)2 ≤ (Eν [W2p(µ
B
t , µ)2q]

) 1
q ≤ ct−1, t ≥ t0, ν ∈P.

(5) Let p, q ∈ [1,∞) with γα,p,q ≥ 0. Then there exists a constant c > 0 such that

sup
ν∈P

(
Eν [W2p(µ

B
t , µ)2q]

) 1
q ≤ ct

− 1
1+γα,p,q + c1{γα,p,q=0}t

−1 log(1 + t), t ≥ 1.

5.4 Subordinated subelliptic diffusions on SU(2)

Let M = SU(2) be the space of 2× 2, complex, unitary matrices with determinant 1, which is
a 3-dimensional compact Lie group, with Lie algebra su(2) and Riemannian metric 〈·, ·〉 given
by

su(2) := span{U1, U2, U3}, 〈Ui, Uj〉 = 1{i=j}, 1 ≤ i, j ≤ 3,

where for i =
√
−1,

U1 :=

(
0 1
−1 0

)
, U2 :=

(
0 i
i 0

)
, U3 :=

(
i 0
0 −i

)
.

For each 1 ≤ i ≤ 3, Ui is understood as a left-invariant vector field defined as

Uif(x) := lim
ε↓0

f(eεUix)− f(x)

ε
, f ∈ C1(SU(2)).

Then [U1, U2] = 2U3, so that
L̂ := U2

1 + U2
2

satisfies Hörmader’s condition. Moreover, L̂ is symmetric in L2(µ) where µ is the normalized
Haar measure on SU(2), and the intrinsic distance ρ induced by

Γ(f, g) := (U1f)(U1g) + (U2f)(U2g)

is the Carnot-Carathéodory distance. By Chow’s theorem, (M,ρ) is a compact geodesic space.
To formulate the diffusion process X̂t generated by L̂, we use the cylindrical coordinates

introduced in [10]:[
0,
π

2

)
× [0, 2π]× [−π, π] 3 (r, θ, z) 7→ er(cos θ)U1+r(cos θ)U2ezU3 ∈M := SU(2).
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Under these coordinates, the diffusion process X̂t := (rt, θt, zt) is constructed by solving the
SDEs

drt = 2 cot(2rt)dt+ dBt,

d(θt, zt) =
( 2

sin θt
, tan rt

)
dB̃t,

(5.13)

where (Bt, B̃t) is a two-dimensional Brownian motion, see [5, Remark 2.2]. The following lemma
shows that conditions (A1), (A2), (2.16) and (2.22) hold. However, due to the degeneracy of the
diffusion, assumption (B) may be invalid.

Lemma 5.7. Conditions (A1), (A2), (2.16) and (2.22) hold for d = 4 and d′ = 3.

Proof. By [5, Theorem 4.10], for any p > 1 there exists a constant c(p) > 0 such that

|∇P̂tf | ≤ c(p)e−2t(Pt|∇f |p)
1
p , t ≥ 0.

So, (2.7) holds.
According to [7], the generalized curvature-dimension condition CD(ρ1,

1
2
, 1, 2) holds, so

that (2.16) is implied by [6, Theorem 1.2].
Let p̂t be the heat kernel of P̂t with respect to µ. By [5, Proposition 3.1] and the spectral

representation of heat kernel, see also [8], all eigenvalues with multiplicities of −L̂ are given by

{λi}i≥0 =
{

4k(k + |n|+ 1) + 2|n| : n ∈ Z, k ∈ Z+

}
.

In particular, λ1 = 2. It is easy to see that for large i ∈ N,

#
{

4k(k + |n|+ 1) + 2|n| ≤ i : n ∈ Z, k ∈ Z+

}
has order i

3
2 , so that (2.22) holds for d′ = 3.

To verify (2.5), we use the cylindrical coordinates (r, θ, z), for which the identity matrix
becomes 0 := (0, 0, 0). Let p̂t be the heat kernel of P̂t with respect to µ. By [5, Proposition
3.9], there exists a constant c > 0 such that

p̂t(0,0) ≤ ct−2, t ∈ (0, 1].

By the left invariant of the heat kernel which follows from the same property of the generator
L̂, we obtain

‖P̂t‖1→∞ = sup
x∈M

p̂t(x, x) ≤ ct−2, t ∈ (0, 1].

This together with λ1 = 2 implies (2.5) for λ = 2.
It remains to verify (A2). For any (r, z) ∈ [0, π

2
)× [−π, π], let θ(r, z) ∈ [−π, π] be the unique

solution to the equation

θ(r, z)− z =
(cos r)(sin θ(r, z)) arccos[(cos θ(r, z)) cos r]√

1− (cos2 r) cos2 θ(r, z)
.
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By [5, Remark 3.12], the distance of x := (r, θ, z) to 0 depends only on (r, z), and there exists
a constant c1 > 0 such that

(5.14) ρ(0, x)2 =
(θ(r, z)− z)2 tan2 r

sin2 θ(r, z)
≤ c1 sin2 r ≤ c1r

2.

On the other hand, letting X̂0 = 0, by (5.13) and Itô’s formula, for any p ≥ 1 we find a constant
c1(p) > 0 such that

dr2pt ≤ c(p)r
2(p−1)
t dt+ dMt

for some martingale Mt. So, we find a constant c2(p) > 0 such that

E[r2pt ] ≤ k(p)tp, t ≥ 0.

Combining this with (5.14) and using the left invariance of the heat kernel, we obtain (A2).

By the above lemma and that M = SU(2) is a Polish space, we conclude that all assertions
in Theorems 2.1-Theorem 2.3 and Theorem 2.6(1) hold for d = 4, d′ = 3 and

qα :=
8

9− 2α
, γα,p,q :=

1

2
− α + 2(2− p−1 − q−1).(5.15)

Noting that 1 < qα < 2 for α ∈ (1
2
, 1], so that i(q) = 1 for q ∈ [1, qα), we have the following

result.

Theorem 5.8. Let L̂ := U2
1 + U2

2 , and L = L̂+ Z for some C1
b -vector field Z satisfying (2.2).

The following assertions hold for qα and γα,p,q in (5.15).

(1) If α ∈ (1
2
, 1], then for any q ∈ [1, qα) and k ∈ ( 2

α
,∞] ∩ [1,∞],

lim
t→∞

sup
ν∈Pk,R

Eν
[∣∣∣{tW2(µ

B
t , µ)2 − ΞB(t)}+

∣∣∣q] = 0, R ∈ (0,∞).

(2) If α ∈ (1
2
, 1], then

lim sup
t→∞

sup
ν∈P

tEν [W2(µ
B
t , µ)2] ≤ ηBZ <∞.

(3) If α ∈ (0, 1
2
], then there exist constants c, t0 > 0 such that

sup
ν∈P

Eν [W2(µ
B
t , µ)2] ≤ ct−

2
3−2α + c1{α= 1

2
}t
−1 log t, t ≥ t0.

(4) If p, q ∈ [1,∞) with γα,p,q < 0, then there exist constants c, t0 > 1 such that

c−1t−1 ≤
(
Eν [W1(µ

B
t , µ)]

)2 ≤ (Eν [W2p(µ
B
t , µ)2q]

) 1
q ≤ ct−1, t ≥ t0, ν ∈P.

(5) Let p, q ∈ [1,∞) with γα,p,q ≥ 0. Then for any γ > γα,p,q, there exists a constant c > 0
such that for any t ≥ 1,

sup
ν∈P

(
Eν [W2p(µ

B
t , µ)2q]

) 1
q ≤ ct

− 1
1+γα,p,q + c1{γα,p,q=0}t

−1 log(1 + t).
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