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Abstract

By using the spectrum of the underlying symmetric diffusion operator, the convergence
in LP-Wasserstein distance W, (p > 1) is characterized for the empirical measure ; of non-
symmetric subordinated diffusion processes in an abstract framework. The main results
are applied to the subordinations of several typical models, which include the (reflecting)
diffusion processes on compact manifolds, the conditional diffusion processes, the Wright-
Fisher diffusion process, and hypoelliptic diffusion processes on SU(2). In particular,
for the (reflecting) diffusion processes on a compact Riemannian manifold with invariant
probability measure u:

(1) the sharp limit of tWa(u, p)? is derived in LI(PP) for concrete ¢ > 1, which pro-
vides a precise characterization on the physical observation that a divergence-free
perturbation accelerates the convergence in Wo;

1
(2) the sharp convergence rates are presented for (E[Wap, (1, 11)4])7(p,q > 1), where a
critical phenomenon appears with the critical rate ¢t~ logt as t — oo.

AMS subject Classification: 60B05, 60B10.
Keywords: Empirical measure, Wasserstein distance, non-symmetric diffusion process, subor-
dination.

1 Introduction

A. Background of the study. In statistical physics, the empirical measure is a fundamental
object to simulate the stationary distribution (Gibbs measure). Since the ground breaking
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series work [12] (1975-1983) where Donsker and Varadhan developed their celebrated larger
deviation principle, the long time behavior of empirical measures has become a key research
topic in the study of Markov processes, see [39, 40] for criteria on the central limit theorem and
large deviations for hyperbounded Markov processes.

On the other hand, the Wasserstein distance is intrinsic in the theory of optimal transport
and calculus on Wasserstein space, see [1, 28] and references therein. So, it is crucial and
interesting to study the convergence in Wasserstein distance for the empirical measure of Markov
processes.

Moreover, it was observed in [16] that a divergence-free perturbation to symmetric stochastic
systems may accelerate the algorithm of Gibbs measures. This has been confirmed in several
papers for the convergence of Markov semigroups to stationary distributions, see [17, 19, 20]
and references therein. It is interesting to provide a sharp characterization on the acceleration
for the convergence of empirical measures in Wasserstein distance.

In recent years, the sharp convergence rate in the second moment of the L2-Wasserstein
distance has been derived in [33, 36, 34, 35, 38] for empirical measures of symmetric diffusion
processes. In particular, in lower dimensions the precise limit is explicitly formulated by using
eigenvalues and eigenfunctions of the generator. These results have been extended to subordi-
nated processes in [37, 22, 23, 24] and the fractional Brownian motion on torus in [18], see also
[13] for the study of McKean-Vlasov SDEs.

B. Purpose of the present work. Based on the above background, this paper investigates
the convergence of empirical measures for non-symmetric subordinated diffusion processes in
an abstract framework, describes the acceleration of the convergence for divergence-free pertur-
bations to symmetric systems, and illustrates the main results by typical examples.

To figure out a clear picture of our general results (see Section 2 for details), in the follow-
ing we only consider non-symmetric diffusion processes on a compact manifold. See Section
5 for applications of the general results to three more examples including the subordinated
conditional diffusion process, the subordinated Wright-Fisher process, and the subordinated
subelliptic diffusion process on SU(2).

C. A picture for non-symmetric diffusion processes on compact manifolds. Let M
be an n-dimensional compact connected Riemannian manifold possibly with a boundary oM.
Let & be the space of all probability measures on M, let p be the Riemannian distance, and
for any p > 1, let W, be the LP-Wasserstein distance induced by p, cf. (2.1) below.

Let p(dz) := eV®@dz € &, where V € C?(M) and du is the volume measure on M, and let
Z be a C'-vector field with div,Z = 0, i.e.

WZh) = [ ZVnau=o. fecin.

Then the spectrum of L = A+ VV (with Neumann boundary if M exists) is discrete, and
all eigenvalues {\;};>0 of —L listed in the increasing order counting multiplicities satisfy

iz < N < 9z, i>0



for some constants ¢y, co > 0, see for instance [9]. Let {¢;};>0 with ¢y = 1 being the corre-
sponding unitary eigenfunctions in L?(u).
Let X; be the diffusion process on M generated by

L=A+VV+7Z

with reflecting boundary if OM exists. We consider the empirical measure

1 t
t = —/ 5ng57 t> 0,
t Jo ‘

where dx, is the Dirac measure at X,. By the central limit theorem (see [39]), for any

feLy(p) = {feL*u): ulf)=0},

we have
(1.1) hm Vip(f) = hm —/ f(X N(0,V(f)) in law,

where N (0, V(f)) is the centered normal distribution on R with variance

(1.2) Vuv:ié u(fPuf)ds = p( VL FP).
For any k, R > 1, let
(1.3) Pyri={veP: dv=nhdy ||, < R},

where || - || is the norm in L*(u). For any v € £, let E” be the expectation for the diffusion
process X; with initial distribution v.

We first consider the long time behavior of Wy (i, ). The following result shows that when
n < 3 and OM is either empty or convex, for long time tWy(u, 1) behaves as

o0

= o 1 2 o 1 '
=0 = o OF, ) = — [ ox)as

i=1
so that uniformly in v € 2, tEY[Wy (s, 1)?] converges to

o0

PSS 2 i)

where the second equality follows from Lemma 4.2 below.

Theorem 1.1. There exists a constant k > 1 with kK = 1 when OM s either empty or convex,
such that the following assertions hold.



(1) When n <2, for any q € [1, —(3n ) ),
= B +19] _
(15)  Jim sup B [[{tWa(pe, ) = S0} -+ {20) — wtWa(u, 0} '] =0,

so that when OM is either empty or conver,

(1.6) lim sup E” UtWQ fhey 1) — E(t)|q] = 0.

t—00 e p
(2) Whenn =3, for any R € [1,00), k € (3,00] and q € [1,2),

(1.7) lim sup E”[\{th Lo, 1) — E(t)}Jr + {2(t) — stWa (s, p } E ]

t—o0 ve @k R

so that when OM s either empty or conver,

(1.8) lim sup E¥ [|tW2(,ut,,u)2 — E(t)|q} = 0.

t—o00 I/Eﬂk R
(3) Forn <3, we have nz € (0,00) and

(1L9) i sup ({#B"(Walpe, w)?] — 0z} + {nz — 6B Wl %]} ) = 0.

=00 e
In particular, when OM is either empty or convex,

(1.10) lim sup

t—o00 vEDP

tEY [Wa (e, p1)7] — TIZ‘ = 0.

(4) Forn =4, there exist constants cy,co,tg > 0 such that

(1.11) %log(l +1) < iQ;]E”[Wg(uhu)Z] < suBE”[Wg(ut,u)Q] < flog(l +1), t>tp.
v VGO

(5) Formn > 5, there exist constants ¢y, ca,to > 0 such that

(1.12) ct” 2 < inf (E”[Wl(,ut,,u)])Q < sup EY[Wo (py, )] < cgfﬁ7 t>1.

ves veEP

Remark 1.1. (1) By (1.4) we have nz < 1y for Z # 0, so (1.9) and (1.10) provide a precise
characterization on the acceleration of a divergence-free perturbation Z for the convergence of
empirical measures in Ws.

(2) When Z = 0 (i.e. the symmetric case), (1.9), (1.10), (1.12) and the upper bound in
(1.11) have been presented in [38], which are covered by Theorem 1.1. The L%convergence
(1.5)-(1.8) appear here for the first time, which together with the lower bound in (1.11) are
new also in the symmetric case.



(3) It is proved in [38] that for M being the 4-dimensional torus and L = A, there exists a
constant ¢ > 0 such that

inf (BY W (jur, 1)])* > et log(1+ 1), t> 1.

ve

We hope that this estimate also holds for general non-symmetric diffusions on 4-dimensional
compact manifolds, such that the lower bound estimate in (1.11) is strengthened with W,
replacing Ws.

1
In the next result, we estimate (E[Wa, (g, 11)?1]) ¢ for all p,q € [1,00). Besides the critical
phenomenon in Theorem 1.1 with the critical convergence rate t~*logt for dimension n = 4,
the critical rate also appears to dimensions n = 2,3 with different (p, q).

Theorem 1.2. There exist c,ty € (0,00) and k : [1,00) X [1,00) — (0,00), such that the
following assertions hold.

(1) When n =1, for any (p,q) € [1,00) x [1,00),

c . v v 1 K s
(1.13) = < inf (BY[Wy (g, 1)])? < sup {BY [Way (s, )]} < 222 ¢ > ¢,
13 ve? veP 13

(2) Letn = 2.p Then (1.13) holds for any p € [1,00) and q € [1, Z%). Next, for anyp € (1, 00)
and ¢ = =
p—1’

(1.14) sup {E" [Wa, (11, p1)* } ¢ < % log(1+1t), t>t.
veS

Finally, for any p € (1,00) and q € (p%l, 00),

2
Sy — e
< Rpglt "Gp a2 > 1.

Q=

(1.15) sup {E"[Way (e, 1)*] }

veP

(3) Letn = 3. Then (1.13) holds for anyp € [1,2) and q € [1, 5;’—f3); (1.14) holds forp € [1,3)

72

and q = 55’—53; and (1.15) holds for any p € [1,00) and q € (5;’—33, o0) N [1,00).

(4) Let n = 4. Then (1.14) holds for p = ¢ = 1, and (1.15) holds for any (p,q) € [1,00) X
[1,00) \ {(L, 1)}

(5) When n > 5, (1.15) holds for any (p,q) € [1,00) x [1, 00).

D. Structure of the paper. In Section 2, we state our main results for non-symmetric
subordinated diffusion processes in an abstract framework. In Sections 3 and 4, we prove the
main results on upper and lower bound estimates respectively. In Section 5, we apply the main
results to some concrete models, where the result for the first model covers Theorems 1.1 and
1.2 as direct consequences with B(A) = A (hence, a = 1).



2 Main results in an abstract framework

We first introduce the framework of the study, then state the main results on the Wasserstein
distance of the empirical measures for non-symmetric subordinated diffusion processes.

2.1 The framework

A. State space. Let (M, p) be a length space, let &2 be the set of all probability measures on
M, let %,(M) be the class of bounded measurable functions on M, and let Cj, (M) be the set
of all bounded Lipschitz continuous functions on M. For any p € [1,00), the LP-Wasserstein
distance is defined as

(2.1) W, (v1,15) ;= inf (/ p(az,y)pw(dx,dy))p, v, € P,
MxM

TEE (vyy)

where €' (v1, 1) is the set of all couplings for vy and vs.

B. Symmetric diffusion process. Let X, be a reversible Markov process on M with the
unique invariant probability measure u € &2 having full support. For any ¢ > p € [1, 0], let
| 1|, be the norm in LP(y1), and let || - ||,—, the operator norm from LP(u) to L(x). Throughout
the paper, we simply denote u(f) = [,, fdu for f € L'(n).

The Markov semigroup P, is formulated as

Pof(x) =E*[f(X))], t>0,2€ M, feB(M),

where and in the sequel, E* stands for the expectation for the underlying Markov process
starting at point x. In general, for any v € &, E” is the expectation for the underlying Markov
process with initial distribution v.

Let (£, 2(&)) and (L, 2(L)) be, respectively, the associated symmetric Dirichlet form and
self-adjoint generator in L?(x). We assume that Cj (M) is a dense subset of 2(&) under the

Gvorm ||, = \/n(F2) + E(f. £), and

g(f?.g) :/Mr(ﬁg)d% fag € Cb,L(M)

holds for a symmetric local square field (champ de carré)
I': Cb’L<M) X Cb’L<M> — %b(M),
such that for any f, g, h € Cy (M) and ¢ € C}(R), we have

) = f@)] c M

Y

P D) = IV (@)l = limsup =275

L(fg,h) = fT(g,h) + gU(f,h), T((f),h) = ¢'(/)L(f D).



We also assume that L satisfies the chain rule

LO(f) = @' (f)Lf + "()|IVFI>, fe 2(L)NCh(M),® e C*R).

C. Non-symmetric perturbation. Let
Z Cb7L(M) — %b(M)
be a bounded vector field with div,Z = 0, i.e. it satisfies

Z(f9) = fZg+gZf, Z(o(f) =& (f)Zf, f.g€Cor(M), ¢ € C'(R),
1Z]loe = inf {K >0 |Zf] < K|Vf], f € Cyn(M)} < oo,

WZf) = [ (Zau=0. feCium.

Consequently, Z uniquely extends to a bounded linear operator from .@(éAa ) to L?(u) with
(2:2) w2f) =0, feé)

and
E(f,9) :=E(f.9)+u(fZg), f.g€ D(E)=2(8)

is a (non-symmetric) conservative Dirichlet form with generator
L:=L+2 2()=2(),
which satisfies the chain rule
LO(f) = ¥ (L + " (AIVP, | D(L)NCy(M), @ € C*(R).

Assume that L generates a unique diffusion process X; on M, such that the associated Markov
semigroup is given by

Pof(z) =E*[f(X,)], ©€ M,t>0,fc B (M).

By Duhamel’s formula,
t
(2.3) Rf=PBf+ / PAZB_f}ds, f€D(&).t>0.
0

C. Subordination. Let B be the set of Bernstein functions B satisfying B(0) = 0 and
B(r) > 0 for r > 0. For each B € B, there exists a unique stable increasing process SP on
[0, 00) with Laplace transform

(2.4) Ele 5] = e B ¢ r > 0.
Let SP be independent of X;. We consider the subordinated diffusion process

X = Xgp, 120,

7



and study the convergence to p in W, (p > 1) for the empirical measure

1 t
,uf = —/ 5de3, t > 0.
t Jo s

We will mainly consider a-stable type time change for « € [0, 1], i.e. the Bernstein function
B is in the classes

B%:{BeB;mmﬁBwyﬂ>0} R,:{BeB:hmmpmmfa<m}

r—00 =00

2.2 Upper bound estimates

We make the following assumption, where (2.5) implies that the spectrum of —L is discrete
and all eigenvalues {\;};>0 listed in the increasing order counting multiplicities satisfy

2
AN >cid, i €Ly

for some constant ¢ > 0, where \; > A, see for instance [11]. In general, \; may increase faster
than i%, see for instance Subsection 5.2 where d =n + 2 but \; ~ i%, we make the additional
assumption (2.6).

(A1) Let B € B* for some a € [0,1]. There exist constants ¢, A > 0,d > d" > 1 and a map
k:(1,00) = (0,00) such that

(2.5) 15, = pilliosee < et 2™, >0,
(2.6) \ > civ, i€ L.,
~ ~ 1
(27) |vptf| S k(p)<‘Pt|vf|p)p7 le [07 1]7p € (]_,OO),f € Ob,L(M>'

We will also need the following condition on the continuity of X,.

(A2) For any p € [1,00) there exists a constant ¢(p) > 0 such that

(2.8) EF[p(Xo, Xo)?] < c(p)tt, te0,1].

Let {¢;}i>0 with ¢9 = 1 be the unitary eigenfunctions for {\;};>o, i.e.

(2.9) Loy = =Ny, Pogy = e Mgy, w(pid;) = ly=jy, 4,J € Z4,t > 0.
Let

— — VE(t)? B 1 /t B ,
2.10 =B(t) .= : , C(t) = — (X )ds, t>0,9€N.
2.10) =3 v = [

8



Let & g be in (1.3), let

2d

2.11 o = )
(2.11) T "= Qd+d—2-2a)*

and denote the integer parts of ¢ € [1,00) by

i(q) := sup {Z eN:i< q}.
The first main result of the paper is the following.
Theorem 2.1. Assume (Ay) and (Az) with d' < 2(1 + «).

(1) If go > % and

1
a> a(d,d) ::Z<\/(2+d—d’)2+4d(d+d’—2)+d’—d—2>,
then

(2.12) lim sup E”H{twg(uf,MV - EB(t)}Jr‘q] =0, q€[l,q).

t—o00 veP

(2) Foranyq € [l,q,) and k € (QQ?(q), oo] N [1, 00|, where we set (QQf(q),oo] ={o0} ifa =0,

{tWao(uf )2 —28(1)}"

(2.13) lim sup E”[

t—o0 Vee@k,R

q] —0, Re(0,00).

To estimate E[W,(uZ, 1)?], we let
— 2V (¢ >
0= Y O V) = [ ueirPoas
i=1 E 0
Theorem 2.2. Assume (A;) and (Ay). Let q € [1,00).
(1) Ifd <2(1+«), then nf < oo and

(2.14) lim sup sup tE [Wy(u, 1)?] < n5.

t—oco veP

(2) Let d > 2(1+ «). Then there exists a constant ¢ > 0 such that for any t > 1,

(2.15) sup B [Wy (i, 1)?] <

ctog(1+1t), ifd =2(1+ ),
veP

ot T, ifd > 2(1+a).



To estimate W, (12, 1), we will use the LP-boundedness of the Riesz transform V(ao— L)z
for some ap > 0. According to [3], together with the non-degeneracy condition, the volume
doubling condition and the scaled Poincaré inequality, (2.7) implies

(2.16) IV (ao — f/)_%]\p < oo for some ag € [0,00) and all p € (2,00).

Under assumption (4;), let

d d -~ B
’Ya,p,q2:§+§(2—p 1_(] 1)_05_17 p,qE[l,OO),OJE{O,l].

Theorem 2.3. Assume (A;) and (As).

(1) If Yapq < 0, then there exists a constant ¢ > 0 such that

(2.17) sup (EY[Wa, (p, p)*) e <ct™', t>1.
ve?

(2) If Yapq > 0, then for any v > Yo pq, there exists a constant ¢ > 0 such that

(2.18) sup (EY[Way, (1, 1)*]) ¢ < ctfﬁ, t>1.
ved

(3) Let (2.16) hold. If Yapq > 0, then there exists a constant ¢ > 0 such that for any t > 1,

{Ct—1 log(1+1), i Yapq =0,
1

1
519 sup (EY W Ba 291} ¢ _
( ) P ( [ ZP(:U’t M> ]) ct THrepa if Yapq > 0.

veP

IN

2.3 Lower bound estimate
To derive sharp lower bound for E[Wy(u?, 11)?], we make the following assumption.

(B) (M, p) is a geodesic space, there exist constants ¢, K > 0 and m > 1 such that
(220) |VBe!|> < (Pef) BV f2e!) + K|V f|2 (Be®™ ), t € [0,1), f € Cy (M),
and there exists a function h € C([0, 1];[1, 00)) such that

(2.21) Wo(vP,, 1) < h(r)Wsy(v, )%, ve P,relol]

When M is a Riemannian manifold without boundary or with convex boundary, if the
Bakry-Emery curvature of L is bounded below by a constant —K, then (B) holds for m = 1
and h(r) = e*(7 see for instance [32, Theorem 2.3.3(2")(9)] or [26].

Theorem 2.4. Assume (A;) and (B) with d' < 2(1 + «).
(1) If a > a(d,d) and g, > £, then

2a7

lim sup JE”[ {th(O)Wa(u, w)? —Z5(t)}

t—o00 veP

q
} =0, ¢g€(l,q.).

10



(2) Foranyq€[l,q,) and k € (204?(11)’ oo] N [1, 00), where we set (ZQ?(q),oo] ={oo} if a =0,

lim sup E”[

t—o0 Vena},k,R

_ 19
{thOWa(uf 1 =220} ] =0, g€ 1), R e 1,00)
(3) lim inf sup (B [Wa(u?, 1)?] > h(0) ",
t—=0o e

The next result manages the critical case where the convergence rate of E[Wy (2, 1)?] is at
most ¢! logt, correspondingly to (2.15) on the upper bound estimate.

Theorem 2.5. Assume (2.5),(2.7), (A2), (B) and that

.2
7

(2.22) Kiv <\ <ki#, i€N

holds for some constants k,k' > 0. If o/ = %, —1 € [0,1] and B € B* N B, for some
a € [0,d]N (o —1,d], then there exist constants c,ty > 0 such that

(2.23) in;E”[Wg(uf,u)Q] > ct tlog(l+1), t>to.
VE!

Finally, we consider the lower bound estimate on Wj.
Theorem 2.6. Let B € B. Then the following assertions hold.

(1) Assume (2.5), (2.7) and that the completion M of M is a Polish space. Then there exist
constants c,ty > 0 such that

(2.24) in; Y [Wy (i, )] > o7z, L > 1.
vES

2) Assume that (2.8) holds for p = 1, and there exist constants k. d"” > 0 such that
( ) p J b)

(2.25) sup p(Blx, 1) < k", 1> 0,

zeM

where B(x,r) :={y € M : p(z,y) <r}. If B € B, for some a € [0, 1] with d’ > 2(1+«),
then there exist constants c,ty > 0 such that

(2.26) inf E*[W1(uf’, )] > ot TE > 4,

3 Proofs of Theorems 2.1-2.3

For a density function f with respect to y, let (fu)(A) := [, fdu for a measurable set A C M.
Recall that for any probability density functions f, fi, fo € L?(u), we have

VL (f—1)? -1
| (f )| dp, //(f) = 1{f>0}J1CO?,

3. W < [ SR

11



(3.2) W (fin, fzup<Pp/ vi? 7 e )l dge.

These estimates have been presented in [2] and [21] respectively by using the Kantorovich dual
formula and Hamilton-Jacobi equations, which are available when (M, p) is a length space as
we assumed, see [28].

Since the empirical measure p is singular with respect to p, to apply these estimates we
make the following regularization of uZ:

(33) :uf’r = ftﬁ“ﬂ’ ft,r =1 + _Z N TwB )¢17 t r> O

where 5 (t) =7 fo ¢:(XB)ds. Letting vP, being the distribution of X, with initial distribu-
tion v, by (2 9) and the spectral representation

xy—l_’_z ”ﬂgbz z )

for the heat kernel p, of P, with respect to p, we have
(3.4) [, = pubp., tr>o0.

So, (3.1) implies

Vi1 —
(35) :utr? / ’ f}r )‘ d,LL, tar > O
tr

According to (2.5), we have lim;_, ft]i — 1 so that limy_, o . ( fﬁ) = 1. When the convergence
is fast enough, (2.9) and (3.3) would imply that for large enough ¢, tWy (., 11)? is bounded
above by

o0 e—2)\ r
3.6 ZB(t) = tu(|[VL (B~ t,r > 0.
( ) r ( ) :u(| ft'r ; )\z T >
On the other hand, by (3.2) we have
(3.7) W, (uf, )P < pP (VLT (FE = 1DPP), t,r>0,p € [1,00).

With the above observations, and noting that W, (uf, 1) < W, (u2., 1) + Wy (uf, ), to es-
timate W,(u?, ) we present some lemmas on ZZ(¢), u(|V[A71(f£ — 1)IP) and W, (2., )
respectively.

12



3.1 Some lemmas

To apply (3.7), we need estimate ||V[A71(f£ —1)|[,, see (3.12) below. To this end, and also for
later use, we first estimate ||PP — pl|,—, and ||P,Z]|2, for ¢ > p > 1, where PP is the Markov
semigroup for the subordinated diffusion process X2 given by

(3.8) PPf(x) =E[f(X])] =E[Pspf(x)], t>0,2€M,f€B(M).

Lemma 3.1. Assume (2.5). Then there ezists a possibly different constant X\ € (0, A\1] such
that the following assertions hold.

(1) Let B € B* for some o € (0,1]. Then there exists a constant k > 0 such that
q-p)
(3.9) 1PE — pillymg < kt™ v e, > 0,¢g>pe [1,00].
(2) Let (2.7) hold. Then for any p € [1,00) there exists a constant c(p) > 0 such that

(3.10) IVESllp < ep)t™2e I f [l >0, f € Chu(M),

(3.11) IPAZ)lap < D Zlloct™2e | fllaps | € D(E) NI ()t > 0.

Moreover, for any k € (0,3) there exists a constant c(p, k) > 0 such that

~ d(p—1)

(3.12) IVL™ fllep < elp, ) (=L) "% " flla, p(f) =0.

Proof. (a) We will use some known results on functional inequalities which can be found in e.g.
[30]. Firstly, since A\; > 0, we have the Poincaré inequality

(3.13) w(f) < —E&(f. ), fe2(E),uf)=0.

L
A1
By (2.2) we have &(f, f) = &(f, f). So, (3.13) implies

(3.14) P — plls < e, t>0.

Next, according to [30, Theorem 3.3.14 and 3.3.15], (2.5) implies the super Poincaré inequality
(3.15) u(f?) < rE )+ e+ Du(fl), r>0.f € 2(&)

for some constant ¢; > 0, which further yields

(3.16) IP[1s00 < c2(LAE)72, >0

for some constant ¢y > 0. Noting that B € B® implies

(317) B(T) Z k’l{TZ)\l}raa r Z 0

13



for some constant k > 0, by (2.4) we find a constant ¢z > 0 such that

Efo ~Lle=rSP qp

C} 9 U .

E[(S7)™] =
Combining this with (2.4), (3.8), (3.14) and (3.16), we find constants ¢4, ¢5 > 1 such that
1P = e < EllIPsp = plli] < caB[{1+ (SF) % }e 57
< 2¢4(E[1 + (Sf‘)_d])%(E[e_L\le ])% <es(1A t)_%e_B@’\l)t/Q, t>0.

By the interpolation theorem, this and ||PF — pull, < 2 for p € [1,00] imply (3.9) for some
constants ¢, A > 0. In particular, for B(r) =r and Z =0 or Z # 0, (3.9) implies to

~ _d(g=p)
(3.18) 1B = pillp—q V1P = pillpsg < K200 e Mot>0g>2p>1

(b) To prove (3.10), we first prove that for some decreasing ¢ : (1,00) — (0, c0),
(3.19) Vs < BRI, te 0115 € i),

By Holder’s inequality and f = f™ — f~, it suffices to prove for p € (1,2] and f > 0. Moreover,
by first using f + ¢ replacing f for ¢ > 0 then letting ¢ | 0, we may and do assume that
inf f > 0.

By (2.7) we have P,_,f € (L) N Cy (M) for s € [0,t). By the chain rule, we obtain

S PP = PP Y~ PAD(P Y ER T
=p(p — VP (P /)2 IV P fI?}, s €0,1).

So, for p € (1, 2], we have

L= By = [ B

(3.20) . 0

ol =1) [ PRy PP

By the Holder/Jensen inequalities, we obtain
. . 2 . . R 2-p
[PS‘VRFSHP] P < [Ps{(Pthf>p72’vpthf‘Q}} {PS(Pthf>p} ?

< [PA(Pf )N E I (Bf7) 7

Combining this with (3.20) and (2.7) where we may assume that k(p) is decreasing in p due to
Jensen’s inequality, we find increasing C' : (1,00) — (0, 00) such that

hSAIN]

12 0= 1) [ (BIVRIP) (g as
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> Co) [ IVASFE) s = CoUVRIE(RT.

This implies (3.19) for some decreasing ¢ : (1, 00) — (0, 00).
Next, we intend to prove that for some constant ¢ > 0,

(3.21) IVP flloo < cllflloct ™2, t€ (0,1, f € By(M).
For any x #y € M, let

P P
ht(a?,y) = Sup ’ tg(a:) tg(y)‘
lglloo<1 p(r,y)

. t>0.

By (2.3) and (3.19), we find a constant ¢; > 0 such that

t
h(z,y) < clt_% —|—/ cr(t — s)_%hs(x,y)ds, t € (0,1].
0

By the generalized Gronwall inequality, see [41], this implies (3.21).
Moreover, by (3.19), the LP-contraction of P, and P,, and the Duhamel’s formula

t
Pf = Bf+ / P(ZP,f)ds,
0

we obtain

t
IV Al < INEf, + / IVEAZP ), ds
0

t
< cit 21, +/ P Zlloes 2 IV P fllpds, t>0.
0

When f € %,(M), by (3.21) and the generalized Gronwall inequality, this imply (3.10) for
t € (0,1].
Finally, by (3.18) for p = ¢ such that

1P = ply < ke ™.
Combining this with the semigroup property and (3.10) for ¢ € (0, 1], for any ¢ > 1 we have
IVEflly = IV PP = Dlp < e@)IPii(f = Dlly < e(p)he D] £l

So, (3.10) also holds for £ > 1 and some constant A > 0.
(c) Let P/ be the L?(u)-adjoint operator of F. By (2.2), P is the diffusion semigroup
generated by L* := L — Z, and satisfies

t
(3.22) Prg= Pyg— / P, (ZP; ,9)ds, t>0, ge& L*u).
0

15



Let g € 2(&) with Hg||22751 < 1. We have
VP9I < VP glls = &(Pfg,Ffg) < E(g,9) < oo, t=0,
so that (2.2), (3.10) and (3.22) yield that for some constant ¢; > 0,
1 t 1
IVP gl . < cxt™ —1—01/ sHIVPL gl 2 ds < 00, te€ (0,1,
p—1 0 p—1

By the generalized Gronwall inequality, see [41], we find a constant ¢ > 0 such that

_sup IVPg|| 2 < ot ™2, te(0,1].
9€9(5‘7):||9H2§_3I§1 v

Combining this with the semigroup property and (3.18), we find a constant c¢3 > 0 such that

1
sup VP gl 2o < ecst™2e™, t>0.
A 2p—1
9€2(E)lgll_2p <1 !
22t

Thus, by (2.2), for any f € 2(&) N L (1) we have

1PAZ f)2p = sup [u(Prg)(Z]))]

9€2(8)llgll 2p <1
-1

* S
= sup u(f(ZP}9))| < esl|Z]loct™2e™ | fll2p, t> 0.
9e7E) gl 2 <1

Therefore, (3.11) holds for some constants ¢(p), A > 0.
(d) Noting that

(1)) ! T ds
P d(pil) S ?
(1+ e %) Jo

by (3.10) and (3.18), we find constants ¢y, 2, c3 > 0 such that

VL fllap = [V(—L) “><—L> T F

1 /OO d(p—1) _ d(p—1)
S 4p VPS Ps L wo ds
F(l—i— (P 1) ,‘i) 0 H /2{ /2< ) f}”?p

(e 9]
<o St Ly
0

+(p)

ds

= —(k+3) ;—As A=) A dp=1) o
<o | s (L) T fllads S es|[(=L) T e
0

where the last step is due to 3 + x < 1. Thus, (3.12) holds.
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Next, we present some consequence of (A;) and (As).

Lemma 3.2. We have the following assertions.
(1) If (2.5) holds, then (M, p) is bounded, i.e.

(3.23) D := sup p(z,y) < oo.
z,yeM

(2) If (2.8) holds, then for any p,q € [1,00), there exists a constant ¢ > 0 such that
(3.24) (B# [Wap (42, u8,))) 1 < cr, 7€ (0,1,

(3) If (2.7) and (2.20) hold, then there exist constants kg, k1 > 0 such that

VP! ! < (Pl )PV FPe!) + itV f5 (P )?,

3.25
(3.25) fort € [0,1], f € Cyr(M) with t|Vf|% < ro.

Proof. (1) According to [30, Theorem 3.3.15(2)], (2.5) implies the super Poincaré inequality

u(f2) <ré(f, 1)+ QA+ Du(f)% r>0,f € 2(&),

which further implies (3.23) due to [30, Theorem 3.3.20]. R
(2) By Jensen’s inequality, we only need to prove (3.24) for ¢ > p > 1. Recall that x5 P, is

the distribution of X, with initial value X?, we have

1 [t 5
Ty = Z/ {oxe x (oxs ) bds € € (i),
0

so that
L[t ;
Wap (g, i) < / pla,y)¥m(de, dy) = < / E*[p(z, X,)*]|,_nds.
M x M 0 s

Noting that E# = [ y Efp(dr) and X, is stationary with initial distribution g, by combining
this with Jensen’s inequality and (2.8), we obtain

I ;
B 2] < B2 |1 [ Bt X))

1 [ oG
= E/ EX[p(Xo, X,)*]ds < ¢(2¢)r9, t>0,r € (0,1].
0
So, (3.24) holds.
(3) Let f € Cy(M). By (3.21), we have (P,_se/)*™ € 2(L)NCy (M) for s € [0,t), so that
the chain rule implies
d

d—PS(Pt_Sef)Qm = P,L(P,_se!)*™ — P{2m(Pr_se!)*" ' LP,_se' }
S
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=2m(2m — 1) P,{(P—se/)*" |V P_se! ?}, s €[0,2).

By combining this with (2.7) for p = 2 and Jensen’s inequality, we find a constant ¢; > 0 such
that

t
d
Pe?™ — (Pel)?m :/ — P, (P,_,ef)*™ds
o ds

t
- / P,{2m(2m — 1)(P,_ye’ )" 2|V P,_sef [P} ds
0

t
<allVIIZ% / P{(P—ge! )™ 2P, 0¥ }ds < eit||V f||% Pe®™.
0

Taking ko = 5. such that ||V f[|%, < kg implies c1t[|[V |2, < 5, we derive
(3.26) Pe*™ < 2(Pef)*™.
Combining this with (2.20), we obtain (3.25) for some constant x«; > 0. O

Noting that (2.9) and (3.3) imply
. 1 —
(3.27) =LY (5 = DI = £ D ATl (), it > 0,8 €R,
i=1

to bound E*[W,, (1%, )] from above using (3.7) and (3.12), we estimate E*[|1)’|*] as follows.
Lemma 3.3. Assume (2.5) and let B € B* for some o € [0,1]. Then:
(1) For any q € [1,00), there ezists a constant c¢(q) > 0 such that

da=1) ., .
(3.28) sup BV [y (1)) < (@) |Ihlloer; >, i €N,w=hp
>0
(2) For any q € [1,00) and k € (QQ?(q),oo] N [1,00], there exists a constant c(q, k) > 0 such
that
da=1) _ .., )
(3.29) E* (|2 (6)[%] < clq, k)||hlls(1 A ) 28N, 2 i eN,v=hu,t> 0.

Moreover, if i(q) > %, then there ezists a constant c¢(q) > 0 such that

da=1) _ ..,
(3.30) sup BV [[uP ()] < clg) (1 At) 22, 2 ieN,t>0.

7
vey

1
Proof. (1) Let h; (t) := min { (3 At)"2a, A2 }. When a > 0, for any k > 0 there exist constants
ai,as > 0 such that

0 A 1 oo
/ hio(t)e dt < / AZdt + / (t—i +2i>e—’ffdt
0 0 P

(3.31) )+

«

(-a
+ al)\f

(3o

1_
<N [1+ 1oy log(1+ Ay)]

< agh [1+1a_1ylog(1+A)], i€N.

18



1
When a = 0 we have h; ,(t) = A7 so that this estimate holds as well.
We first prove the following estimate for some constants kq, ko > 0:

d(g—1)

(3.32) 1PF ¢ — e B0, lag < kal| Z]|ocA; ™

1hiﬁa(zf)e_"“?t, t>0,i€N,qe[l, o0
By (2.9) and (3.18), we find constants ¢y, co > 0 such that

d(g—1) d(g—1)

(3.33) 164129 = inf | Potpi|2ge™® < & en(%fu s7 A M <)\ ) ieN ge[l, ol
By (2.3), (3.8) and (2.9), we obtain

SP
(3.34) PPy = E[eAiStB b; + / e NT P (26 ds], t>0.

0

Combining this with (2.4), (3.11) and (3.33), we derive

d(g—1) StB
) i —e Vil < eoclq D Vi e N(SF=9) =30 A5 (s,
3 35 -PtB B(\)t " Z )\Z 4 ]E Ai(S
0
Noting that A\; > Ay > X implies
—Ni(SP —s5) = As < _E<StB —5) — 5(55 —5)—As = _E(StB —5) — 55’? — 35

by the FKG inequality, we find a constant c3 > 0 such that

SE ) SE )
/ e—)\i(StB—s)S—ae—Asds < e—/\StB/Z / e—)\i(StB—s)/QS—Ee—)\s/QdS
0 0
(3.36) B B

S S
<ot [T eneEargs ) Lo [T i dededs < SN (shy,
0 St Jo Ai t

t 7

Moreover, by (2.4) and (3.17), we find constants cq, ¢5, g > 0 such that

E [(553)7%67,\553/2} ) {eASth /oo uéeusfdu]
I'(1/2) Jo

1 Y —B(u+A/2)t
. = u du <
(3:37) m/z)/o ve = T(1/2)

A1 o) _ 1
< cpo BO/DL2 {/ w2du + / u%ek“atdu] < cs (% A t) gt
0 A1

/°° U e B@t/2=BO2)t/2 3,
0

Combining this with (3.35) and (3.36), we find constants ki, k2 > 0 such that

d(@*l)_l 1 —%
< ki) Z]|oo; (-m) * ghat

(3.38) |PPg; — e Bt 5

HQq
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On the other hand, by (3.10) and (3.33), we find constants ¢/, ¢, > 0 such that

d(g—1) ;1
(3.39) IV6ill2g = inf IV Pyillage™™ < inf chs™5eX7| i)z, < b, 2
So, instead of (3.35), this and (3.18) imply
sP
(3.40) 1PP6s = P06, < 1211 Vll2gE / e NETI A,
0

By A; > X and (2.4), we obtain

B

sP 5 . S¢
E/ e—)\i(St —s)—)\sds <E |:e—)\St /2/ o
0 0

Combining this with (3.39) and (3.40), we find constants ki, ks > 0 such that

wf—s)/zds} < 2 -BO2L
=3

|PE6, — B0, | < bl Zllch; & e,

This together with (3.38) implies (3.32).
Next, we prove (3.28) for ¢ € N. By [37, (2.14)] for f = ¢;, we find a constant kg > 0 such
that

sy ERPOP) k(7 [ [ EleR s es)

By v = hp and the Markov property, we obtain

B [l6: P57 o0il (X)) = n(hPP |6 Pl il") < IBlli[| P2 1oi Pl il o

< Al P2 a0 Py otilly < IRNRIPE o o 0615 1P o@illSg, & € [1, 00].

Taking k& = oo and combining with (3.32), (3.33) and (3.41), we find constants k;, ko > 0 such
that

(3.42)

q

E” (|7 (1)) < /ﬁHhHoo ( / d81/ V6178 L A"hy o (51 — s)e” ’”(Sl_s))ds) .
Combining this with (3.17), which together with (3.31) implies
(3.43) / N [e’B(Ai)t + A;lhi,a(t)e*’ﬂ dt <eX7®, ieN
0
for some constant ¢ > 0, we derive (3.28) for ¢ € N.
Finally, for any ¢ € (1,00), let i(q) be the integer part of ¢. By (3.28) for i(q) and 1+ i(q)

replacing ¢ which have just been proved, and using Holder’s inequality, we find a constant
c(q) > 0 such that

EV[WZ'B@)’QQ} < (Ey[lwf(mm(q)])i(q)Hiq(EV[W?(t)’zﬂi(q)])qfi(q)
(3:44) < o(q) ||l o2 O DEDH -+ (g0}~ (@) (@ +1-0) +H1+(@) ()}

d(qfl)fqa )
= c(@)||hllw); © *, t>0,i€eN.
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Then (3.28) is proved.

(2) By the same reason leading to (3.44), we only need to prove (3.29) and (3.30) for ¢ € N
so that i(q) = ¢q. Let k € (5%, 00] N [1,00]. By (3.32), (3.41) and (3.42), we find a constant
c; > 0 such that

d(g=1)
E ([P (1)) < eillhlleh;
(3.45) 1 /[t 51 d hio(s1 — q
— ~%hga | o~ BAi)(s1—9) M]
X (t/o dsl/o (LAs) 2 [e + W ds ) .

By the FKG inequality and (3.43), we find a constant ¢y > 0 such that

2aq”

S1
/ (1A )" (e POIG1=9) 1 XMy o (s1 — s)e ™2(179))ds
0

S1 S1
(3.46) < (l / (1 /\S)gkf‘qads) / (e BOIE1=3) 4 \=Lp, e~he(1-9)) 4
0 0

51
<eo(LAs) F@A®, ¢>0,i€N.
This together with (3.45) yields

d(g—=1) o
B ([P ()] < cl[hp(1At)"mrN, T ™% s >0,i €N

for some constant ¢ > 0. Therefore, (3.29) holds for ¢ € N.
It remains to prove (3.30) for &£ < ¢ € N. By (3.9), (3.32) and (3.33), we find constants
c1 > 0 such that

sup (B (|65 _,0"(XD)]) " = sup {v(PP|6.P_orf )}

veP

< |IPP(L llé: PP 5 illa < e (1A )77 | @illagl | PZ_ 12

< (1A 5)_2(1%/\?27"1) (e_B(Ai)(Sl_S) + A (81— s)e_kQ(sl_s)).
Combining this with (3.41) and (3.46) for k = 1, we get (3.30) for £ < g € N. O
Lemma 3.4. Assume (A1), (A2). Let ag € [0,00),q € [1,00), 5 € R.

(1) For any k € (2a1(q) oo] N [1,00] where k = oo if a = 0, and for any R € [1,00), there
exists a constant ¢ > 0 such that

v A1
e 1l - DALy - D]
(3.47) =WET kR
_ d da=1) 3
< c[r 26+5+ qzq )t 1{a:2ﬁ+%+d(q;1)}log(1+7” 1)}(17 re (0’ 1].
q

. d .
(2) Ifi(q) > 55, then there exists a constant ¢ > 0 such that

sup #1B || (ao — L)} (=L 3 (/5 ~ D3]
(3.48) Ea

-1 _
SC[ -(28+% | pdla=1) T )+ l{a 2ﬂ+dl+d(q 1)}10g(1+r )}47 ’I“G(O,l].
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Proof. By (3.17), (3.27), Holder’s inequality and (3.29), we find a constant ¢; > 0 such that

1
Ii= sup  tE[|[(a0 — D)} (=L)" (B — 1)[]
tZl,l/EykR
tZl,lIEth i=1 >\’L ‘ ‘

)\ q © q—1 o0 _ _
S < 1 )_:- a[)) Sup ( Z )\’?e—QAiT> Z )\ZQQB 9(q 1)6—2>\1TEV[|1/]’LB (t) |2q]
i=1 i=1

t>1,veEPL R
oo oo
o\ 47! 2q8—6(q—1 +M—qa _9)\,
Sq( E Me ”‘") g A (e=D+75 e heR.
i=1 i=1

Taking

d(qg—1)

(3.49) 0 =20+ =

_a7

so that 0 =2q8 —0(q— 1) + d(q Y _ ga, and noting that

N < sups? e <er ", re(0,1]
s>0

holds for some constant ¢ > 0 depending on 61, we find a constant ¢y > 0 such that

[o¢] o0

q _ q

1< cl( E Afe’””) < cgr’q(ﬁ( E )\;9 e’A”) )
i=1 i=1

On the other hand, by (2.6) and the integral transform ¢ = rs%, we find constants cs, ¢4, c5 > 0
such that

> o 20~ ng/ o d’

—H0— —)\. 20 d - a_ 1 —
E :)\7, 0 e AT S 03/ s e s g = / 0 tQ 0- 1 63tdt
i=1 1 2 s

,  re(0,1].

(3.50)

< 05{7"’(%*97)+ - 1{%/ log(1+7r71)

——

=0}

Thus, we find a constant ¢g > 0 such that

- log(1 + ril)}q

= cq [r_(%+0)+ + L g gy log(1+7r"h]% re(0,1].

I<cer " [r’(%fe_ﬁ + 1{1_
-

This together with (3.49) implies (3.47).
When i(g) > 2, (3.48) can be proved in the same way by using (3.30) replacing (3.29).
O]
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We are now ready to show that as ¢t — oo, E[ZZ(t)] converges to

5 o0 2672)\#
(3.51) NG, = V@), >0
i=1 t

Lemma 3.5. Assume (A;), and let R € [1,00).

(1) There exists a constant ¢ > 0 such that
3.52 Gr<ced NN >0,
( 77Z,7“ ) )
i=1

1a
i Ap < 0.

Consequently, n5 < oo provided > :°

(2) There exists a constant ¢ > 0 such that

o0

(3.53) sup |E'[E7()] —n,| < - Z/\jlfaed’\”, t,r > 0.

VE@OOR i=1

2N T < oo, there exists a constant ¢ > 0 such that

Consequently, when > -

/
(3.54) sup E'[ZP(t)] <nf + % < oo, t>0.

Veyoo,R
(3) For any k > 2L, there exists a constant ¢ > 0 such that

(3.55) sup BY[EP(H)] < eo{r T 4 lpgssiay log(1+ 7)), e (0,1).

tzl,z/e@kﬁ

Proof. (1) By (3.32) for ¢ = 1 and (3.43), we find constants ¢;, ¢y > 0 such that

V() := / (i PEo)dE < ¢ / (e7BOI L AT R, (e k2 dE < e\, i > 1.
0 0

This together with (3.51) implies (3.52). By the dominated convergence theorem with r — 0,
the claimed consequence follows from (3.52).
(2) By (3.3) and the Markov property, we obtain

/ s, / B [6:( X B )gu( X )]s
/ s, / (PE{o:PE_6:})ds

Since v € P g implies v = hy with [|h — 1|l < R+ 1, by (3.9) and (3.32), we find constants
c1, co > 0 such that

sup ‘ (PB{¢1 s1—8 }) ((bl s1— s¢l)| = Sup |N({( ) _1}¢z 51—8 )|

VEL@OO,R VE'@OQR

(3.56)
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< e 0 PE_ il < erem [ PE_gulla < erem (eI 4\ (s — s)e 7).

Combining this with (3.56) and (3.43) for ky = %02, and noting that cos + ca(sg — s) > 50281 +

%CQ(Sl — s), we find a constant ¢z > 0 such that

o0

sup |tEY[ZB( d51

VEQZOO R

e 72)\ i
(357) S Z / dsl/ ‘325 B(Xi)(s1—3) + A;lhi,a(sl . S)eft:g(slfs))ds
i=1

¢Z sls

C3 - —1l—a —2X\;7
S 7 ; )\1 (§] s t, r > 0.
Similarly, by (3.32) for ¢ = 1 and (3.43), we find constants ¢y, ¢5, cg > 0 such that

< / (PP < / | P2 |ads

S1 51

’ / (6:P7_6)ds — Vi(d))| <

< C4/ (e S+ A hia(s) — s)e’kr"s)ds < g\ e % 51> 0,1 € N.
S1

This together vvith (3.57) implies (3.53) for some constant ¢ > 0.
(3) Let k > 5-. By (3.29) for ¢ = 1, and (3.50) for 6~ = 1 + a, we find constants c;,cp > 0
such that

& 672)\1'1"

ap BEPD] = s SR
tZl,llec@kyR tZl,l/Ec@kyR i=1 %
0 e —2M\;7 4ot B
S C1 Z )\1+a < CQ{T' 2 1 ) -+ 1{d’:2(1+a)} 10g<1 +7r 1)}, r e (O, 1]
i=1 7
Then the proof is finished. O]

Finally, to get rid of the term .2 (f/.) from (3.5), we present one more lemma.
Lemma 3.6. Assume (A1) and (A2) with d" < 2(1 + «). Then the following assertions hold.

(1) There exists a constant ¢ > 0 and o € (0,1) such that
(3.58) Eflu(|fE —1P) <t ', t>1,r € (0,1].
(2) There exists a constant v > 1 such that

(3.59) lim B [ (| (fi}) " = 1")] =0, g€ [L 00).

(3) We have ¢, > 1 and

(3.60) sup t7EH [u(|VI:_1(f£, — 1P| < o0, g€ l,qa)

t,r>0
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Proof. (1) By (3.3), (3.28) and (3.17), we find constants ¢y, co > 0 such that

B (£ = 1P < e Yy e BP0 S 0 ) e PN, e > 0.

i=1 i=1

Since ,d/ < 2(1 + @) implies £ — @ < 1, combining this with (3.50) we derive (3.58) for any
o€ (L —al).

(2) Let 0 € (0,1) be in (3.58) and take 6 € (0,

(1 —0)) for fixed ¢ € [1,00). According
to [37, Lemma 3.2], for any n € (0,1) and §(n) : —

qi —
(1—n)"2 — 23|, we have

B[ (f5.(y) "1 =117
<60 + (140712 B Lo )-apsm)s ¢ > 1,7 € (0, 1],y € M.

Next, by (3.58) and Chebyshev’s inequality, we obtain

/ME”[1{|ffT(y)1>n}]M(dy) < B u(f5 = 17)] < el
Putting these two estimates together, we find a function C': (0,1) — (0, 00) such that
B[l (FE) ™ = 117)] < 8(p) + Cln)t =), > 17 € (0,1),

Noting that o € (0,1) and 6 € (0,47 (1 — 0)) imply 0 := o + % € (0,1), by taking r = ¢~ for
v € (1, 5), and letting first ¢ — oo then n — 0, we derive (3.59).
(3) By (2.11), d’' < 2(1 + «) implies g, > 1. For any ¢ € [1, q,), we have
d(g—1) d_dg—1)

<L R4
2% T 2

So, there exists x € (0, %) such that g := d(i—;l) — Kk satisfies

d d(g-1)
(3.61) 2 <~ - TR

By (3.12), (3.3), (3.17) and (3.47), we find constants ¢;, co > 0 such that

d(g—1)

PR (VLTSS = DP)] < et B [[[(=L) 7 (F5 = D]

/ —
< Czrf(zm%#“‘;—q”faﬁ

—= 627

where the last step follows from (3.61). Then (3.60) holds.
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3.2 Proof of Theorem 2.1

We first consider the stationary case where the initial distribution is the invariant measure p,
then extend to more general setting by using an approximation argument. To this end, we need
the following further modification of the empirical measure:

(3.62) dil. = fEdp, fE =0 -r)fE+r, re(0,1,t>0.

By (3.2), we have

(3.63) Wa(ui, fig,)? < 4rEP(t), t>0,r € (0,1].

Proposition 3.7. Assume (A;) and (As) with d' < 2(1 + «). Then

(3.64) lim B | [{tWa (P ) = 25O} =0, g €[1q0),

Proof. Let t > 1 and take r; =¢77 for v > 1 in (3.59). By (3.6) and (3.62), we have
tu(|[ VLTS, = DIP) = (=)’ =5 (),

so that (3.5), (3.60) and (3.59) yield

lim B | [{tWa(f,,, 0)? — (1 = )2 (0} [7]

t—o0

= Jim B[ [{tWa (5. 0)* — tu(IVL™ (£, — D))
< lim th“[{u(IVﬁ‘l(ﬁﬁt — VP2 (f5) " - 1|)}q}
< lim ¢ (VL (FE, = D (5,7 = 1) |

/
9 —q

)

< lim (0B (VLA = 0P |) " (B (e (G5 =1
=0, ¢ €(¢,)
Noting that (2.10) and (3.6) imply

20(t) > En(t) = (1 —re)*25 (1),

we derive
(3.65) lim B [}{tWQ(,:Lg?”, ) — EB(t)}ﬂQ] —0, g€l q).
On the other hand, noting that ¢ € [1, m) implies 1 + o — %’ — d(qQ_;l) > 0, by (3.6),

(3.7) and (3.47) with ap = 0 and 8 = —3, we obtain

sup 4 UIEF[Wy(ul 1)) < sup 9P| (—L) 3 (fE - 1)])2]

r>0,t>1 r>0,t>1
(3.66) d
= sup E*[EB(1)7] <0, 1<¢q< .
r>0})21 =] =14 (d+d —2—2a)t
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Since q € [1, q,) implies d' < 2(1 4+ «) and ¢q € [1, m), by combining this with (3.24),
(3.63), the triangle inequality and r, = ¢~ with v > 1, we find a constant ¢ > 0 such that

Lim BM (W (1, i), )]
(3.67) < 27 Yim #UBM (W (41, fiy,)* + Wty 7))
< ctlggo(rtt)qu +EHEZ (1)) = 0.
This together with (3.65) and (3.66) implies (3.64). O
Next, we consider arbitrary initial distribution v € &2. Let
v. :=vPP £€(0,1).

By (2.5), there exists a constant ¢ > 0 such that

(3.68) v, <cedap, B <cem:EF, e (0,1).
Let

1 t+e
(3.69) ple = ;/ dxpds, t,e>0.

By the Markov property, uf  is the empirical measure with initial distribution v, so that for
any nonnegative measurable function F' on &,

(3.70) BY[F(u9)] = B [F(uP)], 1,2 > 0.
To estimate Wa (0%, 1), we take

00 t+e
(3.71) =Pe(0) = 30 P () = % | o

Proposition 3.8. Assume (A;) and (As).

(1) If @ > 0 such that d+ d' < 2+ 4, then for any q € [1, m%
(3.72) lim sup E”Uth(uf, p)?* — tWQ(Mf’57M)2|2‘1] = 0.
0 1>1ve

(2) Ifa>0and d+d > 2+ 4o, thenforanyk>d+d/2’# and q € U’W)’

(3.73) lim  sup  E"[[tWa(p, pn)* — tWa(p ", p)?P"] =0, R € [1,00).

0 t>10e P 1
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(3) For any q € [1,00), k =00 ork € (QQ?(q),oo] N [1,00], there ezists a constant ¢ > 0 such
that
d(g—1)

(3.74)  sup E'[|0°(t)* —oP(t)%|7] < cReft™3), 2 ', ieNjt>1,e€(0,1).

% )
V€=@k,R

Moreover, if i(q) > %, then there exists a constant ¢ > 0 such that

d(g—1)

(3.75) sup E” [|[7° ()2 — P (1)%|7] < eeit 3N, 2 ™, ieNjt>1,e€(0,1).
ves
Proof. (1) By d+d' < 2 + 4«, we have % < m. So, it suffices to prove for 1 < ¢q €
(£, m). It is easy to see that
1 1 [°
Tpe i= ;/ dxp xpyds + ;/0 Oxe xz )ds € C(ul, ule), t>e>0.
3

So, (3.23) implies that for any ¢t > ¢ > 0 and p € [1, 00),

. 1 [c eDP
(3.76) W, (il %) < / & — y[Pmo(de, dy) = —/ p(XP, X0 )ds < —.
Rd x R4 t 0 t
On the other hand, by (3.2), (3.66), (3.68) and (3.70), we find a map
d
: 1 > — (0,
¢ [ dxd—2—0a)) 70
such that
LR [Wa (g, 1)) = LR [(Wa(pap, 1)
sup (W (g% 1)) sup (W (e 1))
t>1ve? t>1,r€(0,1),ve&
377 < 40 E” [28(1)1] < e(q)e 5 0,1) 1 d
< sup = <c(q)e 2=, € (0, ,qe[, >
t>1,r€(0,1],veP (d+d —2—2a)*r

Combining this with (3.76), (3.68) and ¢ > 5, we find constants ¢, 2 > 0 such that

lim sup E”[|tW2(uf,u)2 — tWQ(Hf’av M)g‘Qq]
el0 1>1,vem

<lim sup E"[[tWa(uy, i) + 26Wa (i, € )Wa (%, 1) ]
el ¢>1,0ep

= i Sup A (€2q ™ e sup E™ [WQ(Mfa M)Qq]) < lim 025‘1*% =0.
el0 ¢>1,0e vED <10

So, (3.72) holds.
) Let @ >0,d+d >2+4x and k > —d+d/2_j_2a. It suffices to prove (3.73) for 1 < q €

)+). By the same reason leading to (3.68), we find a constant ¢ > 0 such that

(2
d d
(Mv (d+d'—2—2a

d
sup B < ce7rEF, e € (0,1).
VE{’?]C’R
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Hence, as shown above that ¢ > ﬁ implies

lim  sup  BY[[tWa(ul, 1) — tWa(pP =, 10)22] < lim et~ 208 = 0.
el0 t>1,veEPL R el0

(3) Let ¥ and 9" be in (2.10) and (3.71). We have
[0 (8) = (1)’

(3.78) ‘/ {0/(XiLy) — u(X7) }ds| - ‘/ {6:(XB.) + ¢:(XP))ds
o Ve

< (07 @1+ [P @) (=@ + [P @)])-

Since (3.70) implies {1 : v € P, t > 1} C P g for some R > 0, by (3.28) and (3.70) we find
a constant ¢; > 0 such that

d(g—1)

(3.79) sup B[P = sup  E[WP(e)¥] <N T

e>0,t>1ve? ' e>0,t>1ve?
Moreover, by (3.28) for k = oo, (3.29) for & > 0 and k € (=2 50" ,00] N [1, 00|, and the fact that
v € Py implies v, € Py, g for € > 0, we find a constant ¢, > 0 such that
B dMAJ)_qa
(3.80) sup BV (1) + P (6)%] < o) ,i> 1.

e>0,t>1,veP

Combining these estimates we derive (3.74).
Finally, when i(q) > 2a7 (3.75) can be proved in the same way by using (3.30) in place of
(3.29). O

We are now ready to prove Theorem 2.1.

Proof of Theorem 2.1. (1) It suffices to prove for ¢ € (3, ¢o). By a > a(d, d'), we have

d 21+a)—d
(d+d —2—2a)t
So, either i(q) > 2da ori(q) < %. Below we consider these two situations respectively.
(14) Let i(q) > 5. By (3.70), (3.68) and (3.65), we obtain
v 2 =B + q]

lim SSBE [ {tWy (", 1) — EP=(t)}

— 1 Ve 2 _ —B + qi|
(3.81) = Jim supE [ w?—="(1)}

< lim ce 3 EX H{th(utB,M)z — =5}

t—o00
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Next, by (2.10) and (3.71),
_ B N
=P -2 () <Y yl@bf’ (t)* — o7 (t)?].
i=1 "

Combining this with (3.75), when i(q) > <= we find a constant k; > 0 such that

sup L2EV[|EP(t) — =P(1)|7]

t>1ve?
< ( A;") AU qup BR[| PE (1) — P (1))
> > s B [UP4(0) — w0
4 -0\ R D+ g—ag
Sk’lg?(Z)\i ) SN 2 L BeR, £ € (0,1).
i=1 i=1
Taking
dlg—1
(3.82) 9:1—1—04—L
2q
such that —0 =0(q — 1) + @ — q — aq, we arrived at
q.,4q > q
(3.83) sup e HIEV[|EP(t) — EPE()|1] < /cl(ZA;@) .
t>1,e€(0,1),ve? i—1

Noting that (2.11), (3.82) and ¢ < g, imply 2 > 1, by (2.6) we find a constant k» > 0 such
that

Z)‘Z_Q < kQZZ 7 < 00
i=1 i=1
Thus,
(3.84) sup 5_%75%151”[ 25(t) — EP(1)]7] < o0.
t>1,e€(0,1),veP
Consequently,

lim sup  EY[|2°(t) — EP°(1)])] = 0.
100 o (0,1),ve P
Combining this with (3.72) and (3.81), we derive (2.12).
(1p) Let i(q) < %. Since ¢ > < implies i(g) + 1 > 2, by (3.30) and Holder’s
inequality, we find a constant ¢; > 0 such that

. q dai(a) ..,
sup B [[0f (1)) < sup (BY[|yP () PHOFI]) 0T < e \TOTT G e N,
t>1,veP t>1ve?

By the calculations leading to (3.83), we derive the same estimate for

di(q)
2(i(q) + 1)
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We have 0 > %l due to i(q) < %. Hence, (3.84) holds, which together with (3.72) and
(3.81) imply (2.12).

(2) Let v € (0,1],¢ € [1,4a) and k € (555, 00] N [1, 00]. By using (3.74) in place of (3.75),
the proof of (3.84) implies

sup e SERV[|EP (1) — EPC(1)]7] < 00, R € [1,00),
t>1,e€(0,1),veEP R

so that
lim sup  E[|2P(t) —2P#(t)|] =0, Re[l,00).

t—00 EE(O,].),VG:@)C’R

This together with (3.72) and (3.81) implies (2.13).
When k = oo, (2.13) follows from (3.64) and that E” < ||hl|.E* for v = hp.

3.3 Proof of Theorem 2.2

(1) Let d’ < 2(1 + «). By Lemma 3.5, (3.54) holds with nZ < co. Combining this with (3.64)
and B < ||h||oEH* for v = hu, we obtain

(3.85) limsup sup (E”[Wy(u,p)?] <limsup sup E[EP(t)] <nj, Rel,00).

t—0o0 veEP R t—00 veEP R

On the other hand, by (3.68), for any € € (0, 1) there exists R € [1,00) such that v. € P r
holds for all v € &. So, (3.85) together with (3.70) implies

(3.86) lim sup sup ¢tE” [WQ(/A?’E, 1)?] = limsup sup tE"* [Wy(p, 1)?] < nj, €€ (0,1).

t—oo veP t—oo veP

Combining this with (3.76) for p = 2 and using the triangle inequality, we find a constant ¢ > 0
such that

lim sup sup tE” [Wa (), p1)°]

t—oo veED

< limsup sup (B [(1+ £2)Wa (", ) + (14 2)Ws (1, unf')’]

t—oo veES

<(+ef)nf +e(e+e2), € (0,1).

Letting € | 0 we obtain (2.14).
(2) Let &' > 2(1 + ). By (3.6), (3.7) and (3.47) with aqp =0,¢ = 1 and f = —3, we find a
constant ¢; > 0 such that

X (W (i), 1)?) < 4B [p(IV L (F5 = DIP)) = 4B (| (= L) ~2 (£ = DP)]

3.87 :
(3.87) < %(THQ—% + La—araay log(1+771), t> 1,7 € (0,1].

Combining this with (3.24) and the triangle inequality, we find a constant ¢, > 0 such that

B (W (1, 1)?) < 2BV [Wa(pgy, )] + 2B (W (g, 167)°]
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C !
< %{Tlm_% + Lar=ar2ay log(L+ 771} +eor, t 2 Lr € (0,1).

Taking r = ¢~ 723 when d' > 2 + 20, and 7 = t~! when d’ = 2 + 2a, we find a constant c3 > 0
such that
csttlog(l+1¢), ifd =2(1+a),
EX (W (uP, p)?) < ,L< ) - ( )
c3t” @2 if d >2(1+a).
By combining this with (3.68) and (3.70), we find a constant ¢4 > 0 such that

sup B [Wa (1! 1)%] = sup B [(Wa(f, 1)) < a8 [Wa(pf, 1)?)
(388) vey ved .
< 0304{1{d/:2(1+a)}t_1 10g(1 + t) +t d-2a }, t>1.

Noting that the triangle inequality implies
B/ [Wa (1, 1)°] < 2Wa(p ™ 1)* + 2Wa (it )2,

we deduce (2.15) from (3.76) and (3.88).

3.4 Proof of Theorem 2.3

By approximating 7 using " as in (3.76) and (3.88), we only need to prove for v = .
By (3.7), (3.12) and (3.47), for any « € (0, 3) we find constants c¢1, ¢, > 0 such that for any
t>1andre(0,1],

1 A dle=l) 1
(BH Wap (g, 1)*]) 0 < cx (BHII(=L) "7 "(f5 = DI5%) "
(389) S %{T_(d(gpl)_2H+d2/+d(¢;ql)_a)+ +1

{doh) _gppdpdel) o0} log(1 + r‘l)}'

Below we prove assertions (1)-(3) in Theorem 2.3 respectively.
(1) Let Yapq < 0. We may take & € (0, 1) such that

dip—1) d dlg—1)
9 Zo M )
5 H+2+ % a < 0,

so that (3.89) implies

(B (W (g1, 1)*]) * < % re(0,1],t > 1.
By Fatou’s lemma for » — 0, we obtain (2.17) for v = p.
(2) Let Yap,q = 0. For any v > 74,4, we find s € (0, 3) such that

dip—1) d  d(g—1)
o 2K + 5 + 2

—OéS”}/7
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so that (3.89), (3.24) and the triangle inequality imply
1
(EF[Wop (i, 0)* ) < er{t™'r 7 +r}, re(0,1),t>1

for some constant ¢; > 0. Taking r = £~ T we obtain (2.19) for v = p.
(3) Let (2.16) hold and 74, > 0. By (3.7) we find constants ¢y, c; > 0 such that

A

(3.90) Wap (1, 1) < 1| V(<L) (5 = D3 < esll(a0 = L) (L) (f5 = )35,

On the other hand, by the Sobolev embedding theorem, (2.5) implies that for any constants
ko > ki1 > —o0 and ¢ > ¢ > 1 with

1 1 ki — ko
3.91 — = ’
( ) q1 q2 d

there exists a constant C' > 0 such that

I(=L)% fllgy < CU-L)F fllgss 1) =0.

Taking « )
p p—
2p

such that (3.91) holds, we find a constant ¢, > 0 such that

k1:_27 k2: _2a Q1:2p7 q2:2

d(p—1) -1
(

(a0 = L)2(=L) "' (/5 = Dllzp < ell(ao — L)z (=L)" 5 7' (f5 = Dll2-
Combining this with (3.47) and (3.90), we find a constant ¢z > 0 such that

<G
1

(EH [Wap (11, 1)) {rera 410, o log(L+r71)}, t>1,r€(0,1].

By this together with (3.24) and the triangle inequality, we find a constant ¢4, > 0 such that

Q=

(EF[Wap(py, 1)*]) 0 < c4{t’1r”y‘“’*q + 1t =0y log(L+ 77 + 7}, t>1,r€(0,1].

1
Taking r = ¢ ™ eara, we obtain (2.19).

4 Proofs of Theorems 2.4 and 2.5

We will follow the line of [38] to estimate the lower bound of Wy (u?, 1) by using an idea of [1].
For any f € Z(L) with || f|ls + |V fllec + | Lf]loc < 00, let

T7 f == —olog P%te"_lf, o> 0,tel0,1].
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Lemma 4.1. Assume that (M, p) is a geodesic space. If (2.7) and (2.20) hold, then there exist
constants ky, ko > 0 such that |V f||2, < kio implies

1
P y)” + 0| L% + koo IV f 1%,

PV ) + koo |V f|-

TS 1) ~ f(o) <
Wl —T7) < 5

Proof. Let ky = 2ko, then ||V f||%, < kio implies

(4.1)

t 1
SIVe 1% < 5o IV I < wo. £ (0.1,
so that (3.26) holds for m =1 and (%, o' f) replacing (¢, f), which together with (2.7) yields
PTPger P (14 k()0 P (Vo fe )
= < ~
ks AV oc~1f\2
(Prgeo /) (Prgeo /)
A -1
_ L+ )V Py ()
- (e 1)2

‘VTtUﬂZ =
(4.2)

21+ k@)IV Iz = al VI

Next, by (3.25), we find a constant ¢ > 0 such that
0LPwe” 'l g|VPwe )2
— + 2
Pme"’lf (P%fe"’lf)2
(4.3)  —Pie{er 1fo} a|v15%,ea*f\2 — (Pege” )P (Vo= f%e7 1)
- PuerV (Piger'1)?
<o flle + 20" IV SIE, ot (0,1, IV I < o

LT? f = —

Moreover, for any two points z,y € M, let v : [0, 1] — M be the minimal geodesic from z to y
with

AR lir?jzlp pf:ﬁZ‘S‘) p(z,y), ae. te|0,1].
So,
(4.4 iy L0 =IO 19560 p(e ), v e 0.1

s—t |_|

By the backward Kolmogorov equation and the chain rule, we have

45 ozef— T EPE T 0 Lgpe g

(4.5) ttf——m—g tf_§’ cf
2

This together with (4.3) and (4.4) yields

d

L1 0 = OT7 £) ) + ST 50

s=t
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< TLTY F) ~ SIVTT S0P +9T7 F)lo(e.v)

1 ~
< 3o + oLl + e’ IVAIZ], 1€ 0.1, [V < ho.
Integrating over ¢ € [0, 1] and noting that 7§ f = f, we derive the first inequality in (4.1).
On the other hand, by (4.5), T§ f = f and u(LT7 f) = 0, we obtain
1
u(r=170) = [ au [ @zt
M 0

—/ldt/ {1|VT"f]2—UET"f}d - 1/1 (IVT7 fI?)dt
- 0 M 2 t 2 t ILL— 2 0 /’L t .

Moreover, by (4.5) and the integration by parts formula, we obtain

(4.6)

d o - d o T o
VTR =~ [ @Dty s

:_/ (ﬁTff)@sTsafdu—/ (T2 F)L(ST? f)dp
M

M
=2 [ (LT pogsran = <2 [ (ET70)(GET7 S~ 5197 )

1
< —||VTe f||* 0,1],t € [0, 1].
LIVITfIL s e 1.t e

This together with (4.2) implies

2
(4.7) p(VTYI?) = u(IV ) < i—;llvfllio, t€0,1),0 € (0,1, |VfI5 < ko

Substituting this into (4.6), we derive the second estimate in (4.1).
[

Proof of Theorem 2.4. Similarly to the proof of Theorem 2.1 using Proposition 3.7 and the
approximation argument with Proposition 3.8, the assertions Theorem 2.4(1) and (2) follow
from

(4.8) lim B*[[{th(0)Wa(us, n)* —E2 ()} 7| =0, q€1,qa)

t—o00

Moreover, according to the proof of Theorem 2.2(1), Theorem 2.4(3) is implied by Theorem
2.4(1) and (2). So, it remains to verify (4.8). The main idea for the proof of (4.8) goes
back to [1, 38], but we have to make suitable modifications for the present situation. Let

Jur = (=L) (1 = f5).
Firstly, by (3.18), we find a constant ¢; > 0 such that

N o 00 s c
49) |l < / 1BFE — Dllods < enllf2 — 1 / o Meds = 178 = 1
0 0
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By (3.10) and (3.9), we find a constant ¢, > 0 such that
[V P2glloe < ea(s 1>—%e-Alsugum, 5> 0,9 € H(M).

Noting that f,, := (—=L)"'(fZ — 1) = [° Py(fE — 1)ds, we obtain

[e.o]

Vil < [ IVR0E = Dllads el = U [ (@ ns) e
0

0

Combining this with (4.9) and |Lf,,| = | /5 — 1], we find a constant ¢ > 0 such that

(4.10) ||Lft,r||w + Hft,rHoo + vat,?"Hoo < c||ft],3r — ooy t,7>0.
Next, let
Cr(frrr0) = ol LfurllZ + ka0’ ||V firl,

(4.11) Col frry o) 1= koo Y|V firl|%,
Bii(o) = {|If5 — 1% < ki "o}, 0 € (0,1],¢,7 > 0.

By (4.1), the integration by parts formula, and the Kantorovich dual formula, we obtain

Ci(for o) + %Wz(ufm w)? > (T frr) — il (for)

= u((f5 = V(=L)'(f5 = 1) = ulfer) + p(T7 fr)

> [V forl?) = SV Forl) = Colirs0) = 5 ZP0) = Colfrs0), 0 € (0.1], 7> 0.
This together with (4.10) and (4.11) yields
(4.12) g, (o) {tWa(pr,, p)? 1)} > —csta' ™, € (0,1),t,r >0

for some constant ¢3 > 0. On the other hand, by (2.5) we find a constant ¢4 > 0 such that
A _d
£ = U = 1P (£ = DII% < car™ 21 — 15, 7 € (0,1],

so that by (3.58) with 1 replacing o € (0, 1), there exists a constant ¢5 > 0 such that

oo

BE[| 5 — 2] < car 27 Y e MBI @) S esr i, > 1r e (0,1),

=1

Hence, we find a constant ¢ > 0 such that
(4.13) P*(By, (o)) = PA(|[fE — 1% > kic o) < e300 1> 1,0, € (0, 1].
Taking o = o0y = {7 in (4.12) and (4.13), we arrive at

limsup P* ({tWa (s, p)* — Z2(t)}~ > €) < limsup P*(By,(0,)°) =0, €>0,r € (0,1].

t—o0 t—o0
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On the other hand, by (2.10), (3.6), (3.28) and Y 72, A; '™ < oo due to (2.6) and d’ < 2(1+a),
we obtain

> 1 — 672)\#

lim sup E*||= —=ZB®)]] < lim - supEM*uB(t)?
i [22(0) - 0] <l 3~ B0
< _ e 2Air\yl-a

< c(l)lgrg) 3 (1—e M)\ 0.

Moreover, (2.21) and (3.66) imply
lim sup BX [{th(0)Wa (1, 1)* — tWa (s, 1)} 7] = 0.

r—0 4>

Therefore, for any € > 0,
lim n sup P ({th(0)Wa(p, pn)* — P (1)}~ > 3¢)

< i o sup ({05, 1? — =20} 2 o

t—o00

+ lim sup [P“(| Bty —25(t)] > ) + P*({th(0)Wa(u., p)* — tW?meﬂ)z}_ 2 5)} =0.

r—0 t>1

Combining this with (3.66) and applying the dominated convergence theorem, we prove (4.8).
O

To prove Theorem 2.5, we need the following lemma.
Lemma 4.2. Assume (2.5).
(1) Let V.=Vpg for B(A) = \. We have

(4.14) V(gi) =N = APV (Z¢), i>1
(2) If (2.7) holds and B € B*NB,, for some o, o’ € [0, 1], then there exist constants ¢y, co > 0
such that
’ _1—(% o
(4.15) V(o) > e — o P L 1l log(1+A)], i L.

Proof. (1) By L¢; = —\i¢; and using the Kolmogorov equation, we obtain

1 - 1 d 1
This together with (2.2) and u(¢?) = 1 imphes
/ <¢1 s(bz = __/ ¢z s¢z - H(¢Z(ZPS¢1))}dS

(1 - utorrio) - + / ({26} o) ds

1

1

(4.17) Al
= )\—( (i P > )\—Zg/ { ({Z@}Ps@) ({Z¢i}Ps{Z¢i})}d5

1

i

(1 noPio) + ;M{Z@}Ptcb) : /0 ({26 PAZ6,})ds
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By (1.2) and || P — |2 < e, we may let t — oo to derive

1 1

)

(2) Let (3.10) hold. By (2.9), (2.4) and (3.34) we obtain

(3] 1 00 Sp
(4.18) V() := / (o PP gy)dt = + / {IEJ / e‘*i(StB‘s)p,(qﬁiPs(Z@))ds}dt.

0 B(x)  Jo 0
By (2.9) and (2.3) for (P}, —Z) replacing (P, Z), we derive

Plg; = Pugi — / PH{ZP,_ ¢ }dr = e ¢, — / e M PY(Zey)dr,
0 0
This together with (2.2) implies
p(0iPs(Z¢i)) = p((P{ i) Z i) = —/ e N (260 Pr(Z¢n))dr.
0

Combining this with (3.11) and noting that (2.9) yields

1Zillz < 1 ZllscIVeillz = 1215,

we derive

1

(4.19) (i Ps(Z ;) < c(1)N\? / e ME 3o My 5> 0,4 € N.
0
By (3.36) for s replacing SZ, we find a constant a; > 0 such that
/ e~ Ni(s=n) AT —5 4y < al)\i_ls_%e_AS/Z, s > 0.
0

Combining this with (4.19), (3.36) and (3.37), we find constants as, as, as > 0 such that

k) ::E/ N (4 P(Zi))ds < = [ e NOE) gm0/ 2
(4.20) 0 W_l 0
-3 1 _3 ]_ ~2a
< ag); QE[(StB)_ﬁe_ASfBM] < agh; * (5 /\t) et > 0,i> 1.

On the other hand, noting that
1((Z6)P(200)] < |ZIL IV oile™ = M| 2]

by (4.19) and (2.4), we find constants a;, ag > 0 such that

SE s
Li(t) < N Z|LE / e NP =9) g / o= Nils=r)=Aur .
0 0
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SB

t
< Cl5]E/ e—)\,-(StB—s)—)qs/QdS < Cl5)\l-_1€‘_a6t.
0

Combining this with (4.20) and (3.31), we find a constant a; > 0 such that

CAJ

/ L’(t)dt < (ag V a5))\ 2 / hi@(t)e*((m/\ag)tdt
0 0
< CL7)\ /\a) |:1 + 1{&:%} log(l —+ )\z)] .

This together with (4.18) and B € B, implies (4.15). O

Proof of Theorem 2.5. Since o € [0,1] and a € [0,¢/] N (o — 1,a/) imply 2+ (1 Aa) > 1+ o/,
by (4.15) we find constants ag > 1 and a;,as > 0 such that

V(o)
A

7

> al)\i_l_al o a2)\*‘10(1+a)

) 9

1€ N.

Combining this with (2.22) and d’ = 2(1 + «), we find constants a}, a5, as, as > 0 such that

oo

nZB”“ - Ze_”\ir VB)\(¢ ) 2 ZG_QMT (a1)\;1_a/ - a2/\;a0(1+a’))
(4.21) = P

Z *27’C2ll+a ( Z'fl — a2 > > as 10g<1 +r ) — a4, TE (07 1]

=1

Next, by (4.12), we obtain

EHWa (g, 11)%] = B g, Wl 1)’] 2 ¢ B 1p, () EF (1)) — c30 2

4.22
(4.22) >t BHER()] -t EM L, (0 P ()] — 30, > 1m0 € (0, 1]

By (3.53), (2.22) and d' = 2(1 + ), we find constants ki, ks > 0 such that

2N\
BAEE0] = 30 B (0] 2, — e YA
i=1 i i=1
0 _1
>ng, — kit Y e e T > — kot R, £ 0, € (0, 1],
i=1

Combining this with (4.21) and (4.22), we derive

EX W (117, 11)%] > agt™ log(1+771) — agt™" — kot 277"

4.23
(4.23) — t 'EF[1p, (o) ZR (t)] — c30' T, t > 1,10 € (0,1].

On the other hand, by (3.47) and (4.13), we find constants ks, k4 > 0 such that
BA(EP(1)] = BM(I(=L)72 (£ = D3] < ko™,
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PY( By, (0)°) < kgr 4t 1o~ ¢ > 11 € (0,1],0 € (0, 1],

where 6 > 0 is a constant. Thus,

1+6

E*[Lp,, () E2 ()] < \/PH(Bor(0))EX[ZE (1)) < kyr Mt 720~ 1> 10 € (0,1,
Combining this with (4.23), we arrive at

EX [Wa (7, 1)%] > agt™ log(1+171) — agt™" — kot 277"

1+6

3
—ksr MtT207 2 — ot t>1,r0¢€ (0,1].
. __1 Ll aA__ 0 .
Taking o0 = ¢" 720 and r = ¢ %" ?k0+20)  obtain

EF W (g, 1)?] = t1logt — (kg + ks +e3)t™!, t>1.

2(9

Therefore, (2.23) holds for some constants ¢, ty > 0.

Finally, to prove Theorem 2.6, we present one more lemma.

Lemma 4.3. Let (E,p) be a Polish space. Let X; be a continuous time Markov process on E
such that the associated semigroup P, satisfies

(4.24) |P— plla < cre™, >0

for some constants c1,\y > 0 and a probability measure p on E. If there ezists ¢ € Cp(E)
such that u(¢) =0 and

V(e) = /0 " u(oPo)dt > 0,

then there exist constants c,ty > 0 such that p; := %fot 0x.ds satisfies

(4.25) EF[W (g, 1)) > ct™2, ¢ > t.

If M C E such that (M) =1 and || P;||1—2 < oo for t > 0, then (4.25) holds for inf,c» E”
replacing B, where & is the set of all probability measures on M.

Proof. By [39, Theorem 2.1(c)], we have

[

(4.26) tim VA (@)l = (22V(9)) F [ Irle o

—00

So, by the Kantorovich dual formula, there exist constants ¢, ty > 0 such that
VI W (s, 12)] 2 VIE[[1(0) — ()] 2 ¢, t > to.
Next, let M C E such that u(M) =1 and || P,||;2 < oo for ¢ > 0. Then

{I/Pl Ve y} C {I/ € P v= hu, ||h||2 S ||P1||1_)2},
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so that [39, Theorem 2.1(¢c)|, i := %ffﬂ dx.ds satisfies

lim inf VtE"[|f(4)]] > 0.

t—oove P

Noting that
|i16(8) — pe(D)| < [[lloct ™, ¢ >1,

we obtain

lim inf VEE"[|p(¢)]] > 0.

t—oo ve?

By Kantorovich’s dual formula and p(¢) = 0, this implies (4.25) for inf,c » E” replacing E*.
O

Proof of Theorem 2.6. (1) By (2.5) and (2.7), for any ¢ > 1 we have ||¢;||oc < oo and there
exist constants ¢y, co > 0 such that

IVilloo = || VPLg4]| 00 < cre™

Véi|la = c2et /A < 0.

So, ¢ € Cy (M), and hence is uniquely extended to ¢; € Cy, 1 (E) for E := M. On the other
hand, by (4.15) we have V(¢;) > 0 for large enough i. Moreover, (3.9) implies || PZ||;_2 < 0o
for t > 0. So, the first assertion follows from Lemma 4.3 with £ = M.

(2) Let B € B, for some « € [0, 1] with d” > 2(1+«). By (2.8) for p = 1 we find a constant
¢y > 0 such that

(PV:?)3]|

< cge’\"

B [p(X,, Xo)] < ert2, t>0.
Combining this with (2.3) and (2.7), we find a constant ¢, > 0 such that

E*[p(X,, Xo)] = / Pop(z, ) (x)u(dz)

M

=B Kol + [ (da) [ PAZP gl Ya)as

M

1 K _1 1
< cyt2 +02/(t—s) 2ds < est2, t>0.
0

According to the proof of [37, Theorem 1.1(2)], this and (2.25) imply
(4.27) EX W, (1B, )] > et 722, >t

for some constants ¢y, t; > 0.
Finally, by (3.9), we find a constant ¢, > 0 such that || P, — z1][1-00 < 3, s0 that

Vtg

1
._ ., pB
=vh, > Jh VE L.
Let 12" be in (3.69) for & = t,. Then the Markov property and (4.27) yield
M y y
inf BY[Wy(uP, )] = inf B2 [W, (4P, 1)) > 1c4t_d“i2a t>t.
vED b vEP £ -2 ’ -
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Combining this with (3.76), the triangle inequality and d” — 2« > 2, we find constants cs, ¢, to >
t; such that

1 1 1
inf YWy (i, p)] 2 Seat 75 —est ™t > et T, 4> o,

5 Some concrete models

In this part, we apply our general results to some typical models including: 1) the (reflecting)
subordinated diffusion process on a compact manifold; 2) the subordinated conditional diffusion
process on a bounded open domain; 3) the subordinated Wright-Fisher diffusion process; 4) the
subordinated subelliptic diffusion process on SU(2). It is also possible to consider more general
hypoelliptic diffusion processes studied in [6, 7] under the generalized curvature-dimension
conditions. For simplicity, throughout this section, we take

B € B*N B for some « € (0, 1].

5.1 Subordinated (Reflecting) diffusion process

In this part, we consider the model stated in Introduction, for which all conditions in Theorems
2.1-2.6 are satisfied for d = d' = d”" = n.

Indeed, (2.5) and (2.22) are well known (see [9, 11}), (2.7) follows from [31, Lemma 2.1],
and (2.21) with h(r) = xef" is implied by [38, (3.36), (3.37)], where x > 1 and K > 0 are
constants with kK = 1 when M is empty or convex. Moreover, the following lemma confirms
other conditions.

Lemma 5.1. (2.20), (A3) and (2.16) hold.

Proof. (1) Let I, be the local time of X; on dM if M exists, and let I, = 0 otherwise. By [31,
(2.1)] and the proof of [31, Lemma 2.1], there exist constants ¢, K, > 0 such that

(5.1) VEf(2)| S BTV (X)) ], 20,0 € M, f € Ci(M),
(5.2) sup E*[I2] < ¢it, sup E°[eM] < 00, At >0.
zeM zeM

By the Schwarz inequality, (5.1) implies
VB! ()] < BIVe!|(x) + E[|Ve! (X,)| ("0 — 1)]
< { B! ()} {B(V S ) (@)} + [V lloo (B )3 (B[220 - 1)),
On the other hand, by (5.2) we find a constant ¢ > 0 such that
E* [0 — 1] < E*[(2K + 201,)e*K 2%

[

< (E*[(2K + 201,)?)) (Ex[e‘*m“lt])% < etz teo1].
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Therefore, (2.20) holds for # = § and m = 1.
(2) When OM is empty or convex, we have

(Vp(Xo, ), N)(Xp)dly <0,

where N is the inward unit normal vector on M. On the other hand, by the Laplacian
comparison theorem, there exists a constant ¢y > 0 such that

[:p(Xo, ')2 S Co.
So, by Itd’s formula, we find a constant ¢; > 0 such that
dp(X07Xt>2 < Cldt + 2\/§p(X07Xt)dBt7 t> 07

where B; is the one-dimensional Brownian motion. Thus, for any p > 1, there exists a constant
c¢(p) > 0 such that o o
dp(Xo, X1) < c(p)p(Xo, Xi)*P~Vdt + dM,

holds for some martingale M;, so that
t
E[p(Xo, X1)*] < c(p) / E[p(Xo, X,)*"~V]ds, t>0.
0
Consequently, for p = 1 we get

E”[p(Xo, X1)*] < (1)1,

and by inducting in p € N, we derive (2.8) for p € 2N. Therefore, (2.8) holds for all p > 1 due
to Jensen’s inequality.

When 0M is non-convex, as explained in the proof of [32, Proposition 3.2.7], there exists a
function 1 < ¢ € Cp°(M) such that OM is convex under the metric

<'7 '>/ = ¢_1<'7 '>7

and L = ¢—2A’+ Z’, where A’ is the Laplacian induced by the new metric and Z is a C} vector
field. Let p' be the Riemannian distance induced by the new metric, we have p < ||¢||op’, SO
that the above argument for convex 0M leads to

Elp(Xo, X0)*] < |IZElp (Xo, X0)*] < k(p)t?, t € [0,1].

(3) To verify (2.16), we follow the line of [3]. As explained in the end of page 12 in [3],
see also the proof of [3, Theorem 1.5], under (3.10), it remains to verify the volume doubling
condition and scaled Poincaré inequalities on balls. More precisely, we only need to find a
distance p and constants ¢y, o, c3 > 0 such that

cp < p < eap,
and the balls B(z,r) := {y € M : p(x,y) < r} for all z € M and r > 0 satisfy

(5.3) pu(B(x,2r)) < eap(B(x, 7)),

43



(54) :u’(lé(:r,r)fQ) < C3r2u(1l§(z,r)‘vf|2)7 f € Cljl(M%M(lB(:v,r)f) = 0.

Since for the present model we have D := ||j]|os < 00 and kr? < u(B(z,r)) < Kr? for some
constants K > k > 0 and all » € [0, D], (5.3) holds true. To verify (5.4), by the conformal
change of metric used in step (2), we may and do assume that OM is either empty or convex.
In this case, there exists a constant ro > 0 such that B(z,r) := {y € M : p(z,y) < r} is convex
for all z € M and r € (0,70). Then we take j := p A 7, so that B(z,r) is convex for all r > 0,
since B(z,r) = B(z,r) for r < ro and B(x,r) = M for r > ry. Thus, (5.4) follows from [29,
Theorem 1.4].

[

According to the above observations, we conclude that all assertions in Theorems 2.1-2.6
hold for d =d' = d”" = n, i.e.

2n , 1 1
= - — - /1+2n(n—1)— =
o Brn—2—2a)"" a(d,d") = a(n) 5 n(n—1) 5

n —_ —
Va,p,q:§(3_p l_q 1)—1—Oé, p,qE[l,oo).

(5.5)

n

In this case, @ > a(n) implies n < 2(1 + «) and ¢, > 5=, so that in Theorem 2.1(1) we only
need a > a(n). Below we summarize these results, which in particular imply Theorems 1.1 and
1.2 stated in Introduction, according to B(A) = A« = 1), (4.14) and

V(Z¢:) = u((Zdi) (L) (Z¢x)) = n(IVL™ (Z¢3)[).

Theorem 5.2. Let qn, (n), Vapq for p,q € [1,00) be in (5.5). Then the following assertions
hold for some constant k € [1,00), where kK = 1 when OM s either empty or convex.

(1) If a > a(n), then

lim sup BY [[{tWa(u/’, 1)* = EP ()} + {tsWa(u, 1) —EP (1)} "] =0, g€ [1,q0)-

t—o00 veP

(2) If n <2(1+ ), then for any q € [1,¢a) and k € (g5, 00] N [1, oc],

lim sup E” H{twg(,uf, 1) —ZBYVT + {tkWo(uf, p)? — EB(t)}_‘q] =0, Re€(0,00).

t—o0 1/63”;671{

(3) If n <2(1+ «), then

kinE < litm inf inf tEY[W,(uP, 1)?] < limsup sup tEY[Wy(uZ, 1)?] < n8 < oo.

—oo ve? t—oo veES

(4) Ifn=2(1+a), ie. (n,o) €{(3,3),(4,1)}, then there exist constants c,ty > 1 such that

c Mt ogt < EY[Wo(uP, 1)?] < cttlogt, t>ty,ve 2.
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(5) If n > 2(1 + «), then there exist constants c,ty > 1 such that
¢ < (B W (uf, p)])* < BV Wa(uP p)?) < ot s, t > to,v € P

(6) If p,q € [1,00) withn(3—p ' —q ') <2(1+ ), then there exist constants c,ty > 1 such
that

U< (B W (0P, 1)) < (B [Wop (i, 1)) < ct™), £ > to,0 € P,

(7) If p,q € [1,00) such that n(3 —p~' —q7') > 2(1 + ), then there exists a constant ¢ > 0
such that for anyt > 1,

cttog(l+1), ifn@B-p'-q")=21+a),
1

v B 247\
sup (E"[Wap,(py, p)*1]) @ < {ct_”mvm ifnB3—pt—q ') >2(1+a).

veP

5.2 Subordinated conditional diffusion process

Let M be a bounded connected C? open domain in an n-dimensional complete Riemannian
manifold, and let V' € CZ(M) be such that po(dz) := ¢”("dz is a probability measure on M.
Consider the Dirichlet eigenproblem for Ly := A+ VV in M:

Lohi = —0;hi,  hilosr =0, >0,

where {6;}i>o are listed in the increasing order counting multiplicities, and {h;};>o are the
associated unitary eigenfunctions in L?(jo) with hg > 0. Let

L= Lo+2Vloghy = A+ V(V +2loghg), u(dz) := ho(z)*uo(dz).

Then the diffusion process X, generated by Lis non-explosive in M, whose distribution coincides
with the conditional distribution of the Lo-diffusion process X} under the condition that

Ti=inf{t >0: X" € OIM} = oo,
in the sense that for any 7' > 0 and any F' € C,((C[0,T]; M)),

E[F(Xpom)] = lim E[F(X )| > m].

m—o0

Let Z be a C}l-vector field on M satisfying (2.2). A
It is well known that {); := 6; — 6y };>0 are all eigenvalues of —L with unitary eigenfunctions
{¢; := hihy*}iso0, and that (2.5), (2.22) and (2.25) hold for

d=n+2 d=d" =n,

see for instance [9, 25]. Next, by [36, Lemma 4.6], (2.21) holds with h(r) = ke" for some
constants Kk > 1 and K > 0, where k = 1 when OM is convex. The following lemma confirms
other conditions in Theorems 2.1-2.6, except (2.16) which is not yet verified.
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Lemma 5.3. For the present model, (2.7) and (As) hold. When OM is convex orn < 3, (2.20)
is satisfied.

Proof. According to the proof of [36, Lemma 4.6], if M is convex then the Bakry-Emery
curvature L is bounded from below by a constant — K, so that

VP f| <™ PIVf],

which implies (2.7) for k(p) = e® as well as (2.20) for # = 1. So, in the following we only prove
these conditions for non-convex OM, and verify (A,).

(1) When OM is non-convex, let p’ be the Riemannian distance induced by (-, -)" introduced
in the proof of (5.1). According to the proof of [36, Lemma 4.6}, for any x,y € M, there exists
a coupling (X,,Y;) of the diffusion process generated by L starting from (z,), such that for
some constant ¢; > 0 we have

d,O/(Xt, f/;s) < Clpl(Xt; }A/t)dt + dM,,

where M, is a martingale with d(M), < clp’(X't, }A/t)dt. Thus, for any ¢ € (1,00), there exists a
constant K (¢q) > 0 such that

Q=

(Elp'(Xe, Y1)

Therefore, by p' < p < ||¢]|er,

< K(q)p'(z,y), te(0,1].

V(@) = limsup LD = BIW & gy g A0 = SO0 /(K0 20

Y p(x,y) y—a P(X,,Y,) p(z,y)
. 1F(X0) = P75 (Bl (X0, Yo ) p '
< timsup (B[ 0= o) S < K (Il (RIV A1)

So, (2.7) holds.
(2) Let M be non-convex and n < 3. Since VV € C}(M) and

Hess, (Vhgy) ® (Vhy) 1V2hol| 0o
_Hesslog ho — — ho . + h% > — h[) )
there exists a constant ¢; > 0 such that the Bakry-Emery curvature of L is bounded below by
—;Tlo, ie

1. A Cc1, _
Po(g) = 5 LIVg* = (V9. VLg) > =5 h' Vgl g € C(M).

So, by (3.18) for d = n + 2, and applying Jensen’s inequality, we find a constant ¢, > 0 such
that

t
. . d - A
|VPel|? — P|Ve/ > = —/ —Ps]VPt,Sedes
0

m

t
/P{h YWV EA_.el)? }ds<c1/(15h Y (PV P el [P d
0
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t 7”” — A A
S Co / S_(n+22)£nm I)M(h;m_1> m1 (PS|VPt_Sef|2m)idS
0

_ (n+2)(m—1) —— m—1

t m
<l VAR [, )
0

Noting that n +2 < 5 and u(hy") = po(h§™") < oo for 7 < 3, for any m € (2,3), we have

(n+2)(m—1)
2m

01:21—

€(0,1), pu(hy™") < o0,
so that for some constant c3 > 0 we have

(5.6) VB! 2 — BV 2 < est® ||V f||12 (Be®™) .
Similarly, by (2.7) and its consequence

A C A
IVD,g| < —twvmz)%,

<

we find a constant ¢4 > 0 such that
RVl — (B BAIVATel) = [ S P (P P 1T s
= [ RV TRV s
< ||VSI% /Ots%ﬁts(ﬁseﬂ)ds = 2c,t2 ||V f|| 2 P

This together with (5.6) implies (2.20) for 6 = 6; A 1.
(3) It remains to verify (2.8). By the conformal change of metric as in the end of the proof
of Lemma 5.1, we only consider the case where OM is convex, so that

<N7 VP(xa )>’(9M < 07 T e M7

where N is the inward unit normal vector field of M. Let ps be the distance to oM. It
is well known (see for instance [25]) that Vhg is inward normal on the boundary and ¢; :=
1hg ' palloc < 00. So,

(5.7) po < crhg, (Vho,Vp(z, ) on <0, x € M.

Moreover, by the Hessian comparison theorem, there exists a constant c; > 0 such that
(5.8) Hess,(z,)2(v,v) < c2fv]?, € M, v e TM.

We intend to show that these two estimates imply

(5.9) sup (Vlog ho, Vp(z,-)*)(y) < ¢

x,yeM
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for some constant ¢ > 0. To see this, for any z,y € M, let z € OM such that p(y, z) = pa(y).
Let

70,1 = M, =z m=y, [l =poly)
be the minimal geodesic from z to y. Let vy = Vho(7s). We have
vo = aoYo, llo—s vo = ao¥s, s €[0,1],

where ag := (N, Vhg)(z) and ||os is the parallel displacement along the geodesic v,. Since
ho € C3(M), we find a constant c3 > 0 such that

|v1 — ap¥1| = [v1— |los1 vo| < e3pa(y).

Combining this with (5.7) and (5.8), and noting that |Vp? < 2||p|le < 0o, we find a constant
¢4 > 0 such that

(Vho, Vp(z,)*)(y) = (v1, Vp(z,-)* (1)) < ao(31, Vo(a,-)* (1)) + cspaly)

1

= calios Vpla, 00} + a0 [ -l V(o P s+ capa(o)

1
< ao/ Hess (2,92 (Vs, Js)ds + c3pa(y) < aocapa(y)? + cspa(y) < caho(y).
0

Therefore, (5.9) holds for ¢ = ¢4.
By (5.9) and It6’s formula, we obtain

dp(Xo, )Q(Xt) < cdt + 2\/§P(X0, Xt)dBta

where B, is the one-dimensional Brownian motion. This implies (As) as explained in the proof
of Lemma 5.1(2). O

We now conclude that all assertions in Theorems 2.1-Theorem 2.5 hold, except Theorem
2.2(4) where the condition (2.16) is to be verified for this model, for d = n+2,d" = d’ = n and

2 4 1
foi= s <2, a(d,d) = afn) = 5y/AF 20(n+2) - 1,

n n+2 1 1
7a7p7q::§+ 5 2—-p " —q¢ )—a-1.

Noting that when n = 1 the condition o > @&(n) becomes o > % 10 — 1, which implies
1=n<2(1+a)and =2 = qo > 2= = 5, while ¢4 < 2 yields i(q) = 1 for ¢ € [1,¢a), we have

the following result according to Theorems 2.1-Theorem 2.5.

Theorem 5.4. Let L := Ly + 2V loghg, and L = L + Z for some Cl-vector field Z satisfying
(2.2). The following assertions hold for qn,a(n) and, Vapq i (5.10), and a constant k > 1 with
k =1 when OM is convex.

(1) Whenn =1 and o € (33/10 — 1,1],

lim sup B [[{tWa(u’, p1)* —EP (0} + {tsWs (i, 1)* =EP ()} |"] =0, g€ [1,

t—o00 ve?

5—20z>'
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(2) If n < 2(1+ ), then for any q € [1,q,) and k € (%2, 00] N [1, 00],

lim sup B [[{tWa(u, p)? — Z2(O} + {teWa(ul p)? ~Z2(0)}| '] =0, Re (0,50).

t—o0 l/Gt@k’R

(3) If n <2(1+ «), then

kg < liminf inf (B [W (i, 1)%] < limsup sup (B [Wa (", 1)*] < 07 < oo,

—o0 ved t—oo veP

(4) Let n = 2(1 4 «), ice. (n,a) € {(3,3),(4,1)}. Then there exist constants c,ty > 0 such
that

sup B [Wy (', 1)?] < et Hlogt, t>to.
veP

If OM is convez or (n, ) = (3,3), then there exists a constant ¢ > 0 such that

inf EY[Wy(uP, p)?] > 't logt, t > t.
VE!

(5) If n > 2(1 + «), then there exist constants c,ty > 1 such that
e < (B W (uf, p)])* < BV Wa(uP p)?) < ot s, t > to,v € P
(6) If p,q € [1,00) with Yapq <0, then there exist constants c,ty > 1 such that
U< (B W (68, p)]))? < (B2 [Wap (P, 1)) < ct™', £ > to,v € 2.

(7) Let p,q € [1,00) with Yapqe > 0. Then for any v > Yapg, there exists a constant ¢ > 0
such that

sup (B [W, (1, 1)) < ct ™™, ¢ > 1.
ved
If (2.16) holds, then there ezists a constant ¢ > 0 such that

1 1
s (B [Wop(p, 1)?1) 0 < ct” Tawa 4t~ log(1 + )1y, , =0
VEY

5.3 Subordinated Wright-Fisher diffusion process

Let a,b > }l be two constants, and let

- ['(2a +2b) 5, 4 2b—1
W= 1[0’1](x)F(2a)F(2b)x (1 —2)7 de

be the Beta distribution on M = [0, 1]. The Fisher-Wright diffusion process X, is generated by
.1 d? d
L:= 537(1 — x)@ +{a—(a+ b)x}a

49



Under the Riemannian metric (9,,0,) = 2{x(1 — x)}~!, we have
1 /
L(f.9) = (V. Vg) = ga(l —2) f'(@)g (), =€ M,

y
plz,y) = \/5/ {s(1—s5)}72ds, 0<z<y<l.
Since div,Z = 0 implies Z = 0, we have L = L.

Lemma 5.5. For the present model with L = L, (Ay) with d = 4(a V b) and (A;) hold, (2.22)
holds for d' = 2, (B) holds with h(r) = X" for some constant K > 0, and (2.16) holds.

Proof. Firstly, the condition (2.5) with d = 4(a V b) is implied by [15, Corollary 2.3]. By [27,
(2.4)], the Bakry-Emery curvature of L is bounded below by —K < 0 for some constant K > 0,
so that
IVPf| < PV f],
(2.7) and (B) hold for § = m =1, k(p) = e® and h(r) = e"¥.
Next, for any p > 1 there exists a constant ¢; > 0 such that

f/p(XO, ')2P(Xt) - 2pp(X07 Xt>2(p_1)Lp(X07 ')(Xt)2 + p(p - 1)p(X0, Xt)z(p_l)
< c1p(Xo, Xt)Q(p_l),

so that
¢

(5.11) E[p(Xo, X;)?)] < cl/ ]E”[p(Xo,Xs)Q(p_l)]ds.
0

In particular, for p = 1 we obtain (2.8), and for general p € N it follows from (5.11) by the
induction argument.

Moreover, we have \; = (a + b)i so that (2.22) holds for d’ = 2. Indeed, according to the
proof of [14, Theorem 1.1], all eigenfunctions are polynomials. The trivial eigenvalue is Ay = 0
with ¢g = 1. For any 7 € N, let

¢i(z) == Zajxj
§=0
with a; > 0 be the unitary eigenfunction for \;. We have

—Nigi(z) = Loy(x).

Since the coefficients of 2’ in left hand and right hand sides are —\;o; and —i(a + b)ay; respec-
tively, these two constants have to be equal each other, so that \; = i(a + b).

Finally, as explained in step (3) in the proof of Lemma 5.1, for (2.16) it suffices to verify
(5.3) and (5.4). Since the curvature is bounded from below as indicated in the beginning of
the proof, and since a one-dimensional ball is convex, (5.4) follows from [29, Theorem 1.4].
So, it remains to (5.3). With the transform x — 1 — z, we only need to prove this condition
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for € [0,3]. Let 2 € [0,3] and B(z,r) := {y € [0,1] : p(z,y) < r}. Take, for instance,
ro = £p(3,1) such that
xo :=sup B(1/2,2r9) € (1/2,1).

We have
co = inf w(B(z,19)) >0,

z€[0,3]

so that
u(B(x,2r)) <1< g u(B(x,r)), r>r0

Hence, we only need to consider r € (0,7y). On the other hand, we find constants ¢y > ¢; > 0
such that

IVE = Vil 2 ple) 2 ' [VE - Vil € 0.1/2]r € (0.200)

so that for some constants ¢z, ¢y > 0,

[{(\/E—clr)J“}Q, {Va+ary Az C B(z,r) C [{(\/E—CQT)JF}Q, {Va+cr} Az, r € (0,2r).
Noting that 0 < 1 —xy < 1—s <1 for s € B(x,2rg), we find constants ¢, > ¢3 > 0 such that
ea{ (o + er) — 2} < (B, 1))
< pu(B(z,2r)) < ex{(x + car)® = [(x — car)T]?*}, 2 €[0,1/2],7 € (0,70).

. 2a __ _ +12a | . .
since ($+c4(;)+cgr{)(2ﬁ_§42? ™ is a continuous function of (z,7) € |0,

the function is understood as the limit i—‘; as r — 0, we obtain

1
2

] x [0, 70}, where when r =0

B 2 2a _ +12a
wp MBE) e an
z€[0,1/2],r€(0,r0) M(B(x7 T)) ;EE[O,%LTG[OJ‘O] (LU + C37”) — X
Therefore, (5.3) holds. O

In conclusion, all assertions in Theorems 2.1-2.6(1) hold for d = 4(a Vv b) and d’ = 2 so that
_ 4aVvbd)

o= 4(aVb)—a’

Yapq i =2@V)2—p Tt —q¢ ") —a

(5.12) a(d,d') =a = (aVb) (V5 —1),

Noting that a > 3(aV b) implies g, > %, 2(1+a) >d =2 and a > &, Theorems 2.1-2.6(1)
imply the following result.

Theorem 5.6. For the above L = L and n® = nf for Z =0, the following assertions hold for
Qaad and, Ya,p,q m (512)

(1) If a > 3(aVb), then

lim sup B [[tW (1, 1)* = Z(1)|"] =0, g € [1,4a).

t—o0 veP
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(2) Forany g€ [l,q,) and k € (

Q(j(q), oo] N [1, 00|, where we set <2a1(q oo] = {oo} if a =10,

lim sup E”[twg(ut, p)* —ZB(t)

t—00 vEPy R

1:QR€@@.

Y[Wa(uf, 1) —n?| = 0.

(4) Let p,q € [1,00) with Yapq < 0. There exist constants c,ty > 1 such that

(3) n® < oo and limsup,

1
UL < (B W (P, 0)]) < (B [Wap(uf, )2])7 < ct™, t>to,v € P.
(5) Let p,q € [1,00) with Yapq > 0. Then there exists a constant ¢ > 0 such that

1 1
SHB (EV[WQP(MtB> U)Qq}) @ < ¢f Hepa | Cl{%’p’qzo}t_l log(l + t), t>1.
veY

5.4 Subordinated subelliptic diffusions on SU(2)

Let M = SU(2) be the space of 2 x 2, complex, unitary matrices with determinant 1, which is
a 3-dimensional compact Lie group, with Lie algebra su(2) and Riemannian metric (-,-) given
by

SU(2) = Span{Ula U2a U3}7 <Ula U]> = 1{12]}7 1< Z7.] < 3a

where for i = +/—1,
0 1 0 i i 0
e (0 D) e (00) e (0.

For each 1 < i < 3, U; is understood as a left-invariant vector field defined as

Ui f(z) := lim f(ehr) - f(2)

el0 g

 JeCi(SUE).
Then [Uy, Us] = 2Us, so that R
L:=U}l+U;

satisfies Hormader’s condition. Moreover, L is symmetric in L?(p) where p is the normalized
Haar measure on SU(2), and the intrinsic distance p induced by

L(f,g) = (ULf)(Urg) + (Uaf)(Usg)

is the Carnot-Carathéodory distance. By Chow’s theorem, (M, p) is a compact geodesic space.
To formulate the diffusion process X; generated by L, we use the cylindrical coordinates
introduced in [10]:

[0, g) x [0,2x] X [—7, 7] 5 (r,0,2) — g (cosO)Urtr(cosO)Uz2Us  pf . — SU(2).
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Under these coordinates, the diffusion process X, = (r¢, 04, 2¢) is constructed by solving the
SDEs

d?”t =2 COt(QTt)dt + dBt,
5.13) 2 .
( d(et, Zt) = <—9, tan Tt) dBt,

S1N Oy

where (B, B,) is a two-dimensional Brownian motion, see [5, Remark 2.2]. The following lemma
shows that conditions (A1), (A2), (2.16) and (2.22) hold. However, due to the degeneracy of the
diffusion, assumption (B) may be invalid.

Lemma 5.7. Conditions (A1), (Az), (2.16) and (2.22) hold for d =4 and d' = 3.

Proof. By [5, Theorem 4.10], for any p > 1 there exists a constant ¢(p) > 0 such that
VES| < clp)e > (BIVP)7, t=0.

So, (2.7) holds.

According to [7], the generalized curvature-dimension condition C'D(py, %, 1,2) holds, so
that (2.16) is implied by [6, Theorem 1.2].

Let p; be the heat kernel of P, with respect to pu. By [5, Proposition 3.1] and the spectral
representation of heat kernel, see also [8], all eigenvalues with multiplicities of —L are given by

In particular, A\; = 2. It is easy to see that for large ¢ € N,
#{4k(k+n|+1)+2n|<i: neZkeZ}

has order i2, so that (2.22) holds for d’ = 3.

To verify (2.5), we use the cylindrical coordinates (r,0, z), for which the identity matrix
becomes 0 := (0,0,0). Let ; be the heat kernel of P, with respect to p. By [5, Proposition
3.9], there exists a constant ¢ > 0 such that

p:(0,0) < ct™2, te(0,1].

By the left invariant of the heat kernel which follows from the same property of the generator
L, we obtain R
1Pl1o00 = sup py(z,2) <t ™2, t€(0,1].
xeM
This together with A\; = 2 implies (2.5) for A\ = 2.
It remains to verify (Ay). For any (r,2) € [0, ) X [=m, 7], let O(r, 2) € [—m, 7] be the unique
solution to the equation

(cosr)(sinO(r, z)) arccos|(cos O(r, z)) cos ] ‘
/1 — (cos?r) cos? 0(r, 2)

O(r,z) —z =
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By [5, Remark 3.12], the distance of x := (r,0, z) to 0 depends only on (r, z), and there exists
a constant ¢; > 0 such that

o (0(r,2) — z)? tan?r

= < epsin?r < ¢l
sin® 0(r, z)

(5.14) p(0, )

On the other hand, letting Xy =0, by (5.13) and It6’s formula, for any p > 1 we find a constant
c1(p) > 0 such that
Ar? < c(p)r2®Vat + dM,

for some martingale M;. So, we find a constant co(p) > 0 such that
Elr"] < k(p)t", t>0.

Combining this with (5.14) and using the left invariance of the heat kernel, we obtain (As).
O

By the above lemma and that M = SU(2) is a Polish space, we conclude that all assertions
in Theorems 2.1-Theorem 2.3 and Theorem 2.6(1) hold for d = 4,d’ = 3 and

8 1 _ _
(515) Qa = 9—204’ 7a7p7q :é_a+2(2_p l_q 1).

Noting that 1 < g, < 2 for a € (3,1], so that i(g) = 1 for ¢ € [1,q,), we have the following
result.

Theorem 5.8. Let L := U2+ U2, and L = L+ Z for some C}-vector field Z satisfying (2.2).
The following assertions hold for g, and Va4 i (5.15).

(1) If o € (,1], then for any q € [1,4a) and k € (2, 00] N [1, 00],

lim sup B [|{tWa(uf’, 0)? — 220} =0, R e (0,5).

t—oo Ve@k,R

(2) If o € (3,1], then
lim sup sup (B [W (5, 1)?] < 7§ < oo.

t—oco veP

(3) If v € (0, 1], then there exist constants c,ty > 0 such that

sup BV [Wy(u?, 1)?] < = cl{a:%}t’l logt, t>to.
Ve

(4) If p,q € [1,00) with Yo pqe <0, then there exist constants c,ty > 1 such that
1
C_lt_l < (Ey[wl(ﬂtBaﬂ)])Q < (EV[WQP(MtBJL)zq])q < Ct_lv t >,V € 2.

(5) Let p,q € [1,00) with Yapq > 0. Then for any v > Yapq, there exists a constant ¢ > 0
such that for any t > 1,

1 _ 1
sugz (EY [Wap (', w)*]) e < ot ™ewa +cly,, it log(1+¢).
ve
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