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Abstract. The paper gives a survey of several directions of research connected with the works
of A.N. Kolmogorov on parabolic and elliptic Fokker–Planck–Kolmogorov equations for transition
and stationary probabilities of diffusion processes. We present the fundamental results on existence
of solutions, their uniqueness, and the properties of solution densities. Open questions in this area
are mentioned.
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1. Introduction. In the papers of A.N. Kolmogorov [45], [46], [47], and [48] pub-
lished in the early 1930s, diffusion processes in Rd and finite-dimensional Riemannian
manifolds were considered, and for stationary and transition probabilities of diffu-
sions the equations were derived, which are now called Fokker–Planck–Kolmogorov
equations. These equations had appeared earlier in the works of Fokker [39] and
Planck [58] in physics, about which Kolmogorov learned soon after publication of his
first paper [45] (in [48] the term “Fokker–Planck equation” was already in use, and the
corresponding remark was made in the Russian translation of [45] published in 1938).
Similar equations were also considered by Smoluchowski [63] and Chapman [32] prior
to Kolmogorov. However, it is unlikely that a timely acquaintance with the works of
predecessors would influence his first paper on this subject, since completely different
problems were posed and solved in this paper. This is also seen from Kolmogorov’s
subsequent papers [46], [47], where Fokker, Planck, and Smoluchowski are cited.

The stationary or elliptic Fokker–Planck–Kolmogorov equation with respect to
a measure µ on Rd has the form

(1.1)
∑
i,j

∂xi
∂xj

(aijµ)−
∑
i

∂xi
(biµ) = 0

with some functions aij and bi. Below, we give a precise definition of a solution, but,
in the first papers of classical authors, the coefficients and solutions were assumed to
be sufficiently smooth, so that the equation was understood in the usual sense.

The parabolic equation with the same coefficients has the form

(1.2) ∂tµt =
∑
i,j

∂xi
∂xj

(aijµt)−
∑
i

∂xi
(biµt),
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and the Cauchy problem for this equation is complemented by initial distribution µ0.
For nice coefficients and solutions, this can be also understood in the usual sense, but
the general definition is given below.

In the theory of equations with partial derivatives, elliptic equations of the indi-
cated form are often called “double divergence form equations” in order to distinguish
them from divergence form equations∑

i,j

∂xi
(aij∂xj

µ)−
∑
i

∂xi
(biµ) = 0,

which, in turn, differ from direct equations∑
i,j

aij∂xi
∂xj

µ+
∑
i

bi∂xi
µ = 0.

Parabolic equations are fulfilled for transition probabilities of diffusion processes, and
elliptic equations are fulfilled for stationary distributions.

In section 15 “Setting of the problem about uniqueness and existence of solu-
tions to the second differential equation” of [45], one-dimensional equations are dis-
cussed, and the question about existence of a unique probability solution is posed,
while multidimensional equations are considered in the second paper [46]. Note that
the term “Fokker–Planck–Kolmogorov equation” is now used for the “second differ-
ential equation” according to Kolmogorov’s terminology. Kolmogorov was mostly
speaking of parabolic equations, but, in section 18, stationary equations were briefly
discussed also. Note also that Kolmogorov denoted the drift coefficient by A, and
the diffusion coefficient was denoted by B2. The original problem (which was the
Kolmogorov–Chapman equation rather than the parabolic equation) was posed in
section 11 for densities of transition probabilities in the following way: a nonneg-
ative function f(t1, x, t2, y) is measurable in the sense of Borel with respect to the
arguments x, y and satisfies the equations∫ +∞

−∞
f(t1, x, t2, y) dy = 1,(85)

f(t1, x, t3, z) =

∫ +∞

−∞
f(t1, x, t2, y)f(t2, y, t3, z) dy(86)

(for convenience of references, we keep the numeration of formulas from [45]). Further,
in section 15, Kolmogorov writes the following:

The main question concerning uniqueness of solutions is the follow-
ing: under what conditions can one assert that, for given s and x, only
one nonnegative function f(s, x, t, y) of variables t, y can exist, defined
for all values y and t > s and satisfying equation (133) together with
conditions (142), (143)? For some important special cases this question
can be given a positive answer; this applies for example to all the cases
considered in the next two sections.

Suppose now that the functions A(t, y) and B2(t, y) are given in
advance; one can pose the question whether there exists a nonnegative
function f(s, x, t, y), which, on the one hand, satisfies equations (85)
and (86) (as was shown in section 11, these requirements are necessary
in order that f(s, x, t, y) define a stochastic system), and, on the other
hand, after passing to the limits by formulae (122) and (124) would
yield these given functions A(t, y) and B2(t, y).
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For solving such a problem, one can, for example, first determine
some nonnegative solution of our second differential equation (133),
satisfying conditions (142), (143), and next investigate whether this
is indeed a solution to our problem. Consequently, the following two
general questions arise:

(1) Under what conditions does there exist such a solution to equa-
tion (133)?

(2) Under what conditions can one assert that this solution satisfies
additionally equations (85) and (86)?

There are good grounds to believe that these conditions have a suf-
ficiently general character.

Equation (133) is exactly the parabolic equation (1.2) we are interested in, which
in Kolmogorov’s notation had the form

∂

∂t
f(s, x, t, y) = − ∂

∂y
[A(t, y, s, x)f(s, x, t, y)] +

∂2

∂y2
[B2(t, y, s, x)f(s, x, t, y)],

condition (142) coincides with (85), and condition (143) is the relationship

(143)

∫ +∞

−∞
(y − x)2f(s, x, t, y) dy → 0, t→ s,

which expresses some convergence of the transition probability to the Dirac delta-measure
at the point x. Finally, conditions (122) and (124) relate the coefficients A and B
with the transition densities: the first one is the equality

(1.3) B2(s, x) = lim
∆→0

1

2∆

∫ +∞

−∞
(y − x)2f(s, x, s+∆, y) dy,

and the second one is the equality

(1.4) A(s, x) = lim
∆→0

1

∆

∫ +∞

−∞
(y − x)f(s, x, s+∆, y) dy.

Actually, this is a limit relationship for the variances and means of the transition
probabilities. These two conditions are meaningful only under the additional assump-
tion of existence of the second moment of the transition densities. It is shown in
section 5 that, under broad conditions, these relationships are automatically ful-
filled when the main equation holds. So, below, we do not consider them (they
become important in the case of the Kolmogorov–Chapman equations rather than
the Fokker–Planck–Kolmogorov equations).

Theorems on existence and uniqueness of a probability solution to the Cauchy
problem for the parabolic Fokker–Planck–Kolmogorov equation and also of a prob-
ability solution to the stationary equation (1.1) were proved by Kolmogorov in his
paper [47] in the case of a compact Riemannian manifold (Kolmogorov called such
manifolds “closed”) under the assumption of the existence of continuous first and sec-
ond derivatives of the coefficients. As far as the properties of solutions are concerned,
Kolmogorov established positivity of their densities. These results led to questions
about analogous theorems for the space Rd and noncompact manifolds. Naturally,
questions arose about the properties of solutions in more general situations. Below,
we discuss the principal achievements in these directions, complementing the content
of surveys [15], [14], and [6].
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In section 2, we present the fundamental results on existence of solutions to sta-
tionary equations and the properties of these solutions. The uniqueness problems in
the stationary case are considered in section 3. In section 4, we begin a transition to
evolution equations: we discuss the operator semigroups that are connected to solu-
tions to stationary equations and, in some sense, are generated by elliptic operators.
The existence of solutions to the Cauchy problem for Fokker–Planck–Kolmogorov
equations and the properties of their densities is the subject of section 5. Uniqueness
problems in the parabolic case are considered in section 6. Finally, in section 7, some
remarks are made about estimates of distances between solutions to linear equations
and their applications to nonlinear Fokker–Planck–Kolmogorov equations, an actively
developing modern direction of study. In all sections, open problems are mentioned.

2. Stationary equations: Existence of solutions and their properties.
Let us proceed with precise formulations of the Kolmogorov problems, their modern
settings, and a survey of achievements in studying problems and some remaining
open questions. We deal below with equations on the whole space Rd, and just
briefly comment on the case of domains or manifolds. Thus, suppose that on Rd we
are given an operator (matrix) mapping x 7→ A(x) = (aij(x))i,j⩽d, the matrices A(x)
are nonnegatively definite, and their elements aij(x) are Borel measurable. Then
A(x) is called the diffusion coefficient. In addition, suppose that we are given a Borel
vector field b = (bi)i⩽d; it is called the drift coefficient. These mappings generate
a second-order elliptic differential operator

LA,bf(x) =
∑
i,j

aij(x)∂xi
∂xj

f(x) +
∑
i

bi(x)∂xi
f(x)

= trace(A(x)D2f(x)) + ⟨b(x),∇f(x)⟩,

also written in shorthand as

LA,bf = aij∂xi
∂xj

f + bi∂xi
f

with the standard rule of summation over repeated indices. So far, this expression
has a merely formal character, and for f we can take, say, functions with two (usual
or Sobolev) derivatives.

For a Borel measure µ (possibly, signed) that is bounded on Rd or on compact
sets, the stationary Fokker–Planck–Kolmogorov equation has the form

L∗
A,bµ = 0

and is understood in the following sense: the functions aij and bi must be integrable
on compact sets with respect to the measure µ (in the case of a signed measure with
respect to its total variation |µ|), and the identity∫

LA,bf(x)µ(dx) = 0 ∀ f ∈ C∞
0 (Rd)

must hold, where C∞
0 (Rd) denotes the class of all infinitely differentiable functions

with compact support. Thus, the equation is considered only for measures with
respect to which the coefficients are locally integrable. Of course, if the coefficients
are locally bounded, then the equation is meaningful for all locally bounded measures.
As for any differential equation, questions arise about existence of solutions, their
uniqueness, and various properties. Kolmogorov discussed these questions in the
class of probability solutions, but other settings are possible; in particular, we also
consider solutions in the class of measures of bounded variation.
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It is important to note at once that a solution to the stationary equation is not
always an invariant measure of the diffusion semigroup connected with the operator
LA,b (however, under the conditions assumed by Kolmogorov these are equivalent
properties). Semigroups and their invariant measures are discussed in section 4, and
for now we consider only solutions to the elliptic equation.

Not every reasonable equation has nonzero solutions. For example, for the Laplace
operator LA,b = ∆ (i.e., A = I, b = 0), a solution to our equation is a measure with
a density harmonic in the sense of distributions, but then also in the usual sense.
Hence in the class of measures of bounded variation, there are no nonzero solutions
(the situation changes in the case of manifolds). The question about uniqueness
also requires some precision, because the set of all solutions admits multiplication by
constants. In this section, we state two main results about existence of solutions and
their properties.

The following existence theorem (see [18] and [15]), which develops and generalizes
results of Khasminskii [43], [44], uses the concept of a Lyapunov function. Recall that
a real function V on a topological space is called compact if all sets {V ⩽ c} are
compact. A function V is called quasi-compact if the space can be represented as the
union of increasing sets {V ⩽ ck} with some numbers ck. A continuous function V
on Rd is compact precisely when V (x) → +∞ as |x| → +∞. By a Lyapunov function
for the operator LA,b, one usually means a compact or quasi-compact function V with
some estimates for LA,bV .

Let p ⩾ 1, k ∈ N. Let W p,k(Ω) denote the Sobolev space of functions on
a domain Ω belonging to Lp(Ω) along with their Sobolev derivatives up to order k.
By ∥f∥p,k we denote the Sobolev norm, which is the sum of the Lp-norms of the
function and its derivatives up to order k. The class of functions on Rd the restric-
tions of which to every ball Ω belong to W p,k(Ω) is denoted by W p,k

loc (R
d). The class

W d+,k
loc (Rd) consists of all functions f such that, for every ball Ω, there exists a num-

ber p = p(Ω) > d for which f ∈ W p,k(Ω). The symbols Lp
loc(R

d), Ld+
loc(R

d), Lp
loc(µ),

and Ld+
loc(µ) are defined similarly.

A function f ∈ L1
loc(R

d) belongs to the class VMO if there is a modulus of
continuity ω (i.e., ω is an increasing continuous function on [0,+∞) and ω(0) = 0)
such that

sup
z∈Rd, 0<r<t

r−2d

∫
|x−z|⩽r, |y−z|⩽r

|f(x)− f(y)| dx dy ⩽ ω(t).

A function belongs to VMO on balls if from every ball it extends to a function of
class VMO. A continuous function belongs to VMO on balls.

We say that a function f satisfies the Dini condition if, for every ball B ⊂ Rd,
there is a modulus of continuity ωB such that

|f(x)− f(y)| ⩽ ωB(|x− y|) ∀x, y ∈ B,

∫ 1

0

ωB(t)

t
dt <∞.

A weaker condition is the Dini mean oscillation condition employed in [34], [33]: for
every ball B, there exists a modulus of continuity ωB such that the function ωB(t)/t
is integrable on [0, 1], and, for all r ∈ (0, 1], the inequality

sup
x∈B

1

|B(x, r)|

∫
B(x,r)

|f(y)− fB(x,r)| dy ⩽ ωB(r)

holds, where fB denotes the normalized mean of the function f over the ball B, i.e.,
the integral of f/|B| over B, and |B| is the volume of B.



KOLMOGOROV PROBLEMS 347

Theorem 2.1. Suppose that, for the operator LA,b, one can find a quasi-compact

function V ∈W d,2
loc (R

d) and numbers C,R > 0 such that

(2.1) LA,bV (x) ⩽ −C if |x| > R.

Either of the following conditions is sufficient for the existence of a Borel probability
measure µ on Rd satisfying the equation L∗

A,bµ = 0:
(i) The coefficients A and b are continuous, and the second derivatives of V are

locally bounded.
(ii) The coefficients A and b are locally bounded, the operators A(x) are invertible,

and the function 1/ detA is locally bounded.
(iii) The matrices A and A−1 are locally bounded, A belongs to VMO on balls

(e.g., is continuous), and bi ∈ Ld+
loc(R

d).

Assertion of the theorem in cases (i) and (ii) can be found in [15, Chap. 2]. In
papers [24] and [25], the assertion in case (iii) is proved for a compact Lyapunov
function, but it remains valid for a quasi-compact function, because the proof gives
a positive locally finite measure, which, as it follows from the results in [15, section 2.3],
is finite in the case of a quasi-compact Lyapunov function.

The listed conditions are not necessary, and a probability solution can exist even
if they all fail. Some other sufficient conditions can be found in the book [15], but
the conditions with Lyapunov functions have proved the most useful for applications.
Moreover, as the next result shows (see [15, Proposition 5.3.9]), under additional
constraints on the coefficients, the existence of a Lyapunov function follows from the
existence of a probability solution.

Theorem 2.2. If A−1 is locally bounded, aij ∈ W d+,1
loc (Rd), bi ∈ Ld+

loc(R
d), and

there exists a probability solution µ to the equation L∗
A,bµ = 0 such that

traceA(x)

1 + |x|2
,
|b(x)|
1 + |x|

∈ L1(µ),

then there exists a function V ∈W d+,2
loc (Rd) such that V (x)→+∞ and LA,bV (x)→−∞

as |x| → +∞.

The hypotheses of the theorem are fulfilled if, for example, |aij(x)| ⩽ C + C|x|2
and |bi(x)| ⩽ C + C|x|.

The following question remains open.

Question 1. Suppose that there exists a nonzero bounded signed measure µ sat-
isfying L∗

A,bµ = 0. Does there exist a probability solution to this equation?

For d > 1, this question is open even in the case where A = I and b is infinitely
differentiable.

The properties of solutions in the cases listed in Theorem 2.1 can differ sub-
stantially. In many problems, the following properties are of interest: existence of
densities with respect to Lebesgue measure, their local boundedness and separate-
ness from zero, their continuity and differentiability, and upper and lower bounds.
In the case of smooth coefficients and a nondegenerate matrix A, the classical ellip-
tic regularity results give existence of a smooth density. However, the regularity of
the solution cannot be better in the general case than that of the diffusion matrix,
which differs from the case of direct or divergence form equations. For example, the
equation (Aµ)′′ = 0 on the real line has a solution with density 1/A, and hence every
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probability measure with positive density serves as a solution to an equation with
a positive diffusion coefficient. It was shown in [61] that, for a Hölder continuous non-
degenerate diffusion matrix and a locally bounded drift, the solution densities are also
Hölder continuous. Let us state some principal results with the simplest formulations.
Unlike the existence theorem, we are now also speaking of signed solutions.

Theorem 2.3. Suppose that detA > 0 everywhere and µ is a bounded measure
satisfying the equation L∗

A,bµ = 0.

(i) If µ ⩾ 0, then µ has a density.

(ii) If A and b are infinitely differentiable, then µ has an infinitely differentiable
density.

(iii) If A is continuous, aij ∈ W d+,1
loc (Rd), bi ∈ Ld+

loc(R
d), or bi ∈ Ld+

loc(µ), then µ

has a locally Hölder continuous density of class W d+,1
loc (Rd). If, in addition, µ ⩾ 0 is

a nonzero measure and bi ∈ Ld+
loc(R

d), then this density has no zeros.

(iv) If A is locally Hölder continuous of order α and bi ∈ Ld+
loc(R

d), then the
density of the measure µ is locally Hölder continuous of the same order.

(v) If A satisfies the mean oscillation Dini condition (e.g., the usual Dini con-
dition), and bi ∈ Ld+

loc(R
d), then the density of the measure µ is continuous. If, in

addition, the measure µ is nonnegative and nonzero, then the continuous version of
the density has no zeros.

(vi) If A and A−1 are locally bounded, the functions aij belong to the class VMO
on balls, and bi ∈ Ld+

loc(R
d), then the density of the measure µ is locally integrable to

any power.

For proofs of (i)–(iv) and (vi), see [12], [15, Chap. 1], [29], and [25]; the conti-
nuity in (v) is proved in [34], [33]; and the assertion about positivity of densities is
established in [25] with the aid of a new version of the Harnack inequality (for the
zero drift shown also in [34] and [33]).

By using examples constructed by Bauman [4] (see [15, section 1.6]), one can
give examples of probability solutions to the stationary equation on the plane with
continuous coefficients and a nondegenerate diffusion matrix such that their densities
have no versions bounded on a ball. Thus, the condition for the continuity of a density
is located between the continuity of A and the Dini mean oscillation condition. The
latter condition so far is also the most general one for the Harnack inequality for
positive solutions. The following question remains open.

Question 2. Is assertion (i) of the previous theorem valid for signed solutions?

In addition, it is not clear whether the assertion in [29] about the local exponential
integrability of densities in the case of locally bounded coefficients is true: justification
of Corollary 2.3 in [29] contains a gap. A result in this direction is obtained in [25],
where a condition on the modulus of continuity of A is imposed.

In the previous theorem, local properties of solutions are considered, but there
are also results on global properties, such as inclusions in Sobolev classes on the whole
space and global estimates. Let us give the principal results (see [15], [13], and [56]).
We start with estimates on the logarithmic gradient and a condition for existence of
the Fisher information. Such estimates were first obtained in paper [17].

For aij ∈ L1
loc(R

d), we set

a := (a1, . . . , ad), aj :=

d∑
i=1

∂ia
ij .
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Theorem 2.4. Suppose that the mapping A is uniformly bounded and uniformly
Lipschitz, and there exists α > 0 such that A(x) ⩾ α · I. Suppose also that a Borel
probability measure µ on Rd satisfies L∗

A,bµ = 0, where |b| ∈ L2(µ). Then

(i) µ = ϱ dx, where ϱ = φ2 and φ ∈ W 2,1(Rd), which gives the inclusion
ϱ ∈W 1,1(Rd) and also ϱ ∈ Ld/(d−2)(Rd) if d > 2;

(ii)

∫
Rd

∣∣∣∣∇ϱϱ
∣∣∣∣2ϱ dx = 4

∫
Rd

|∇φ|2 dx ⩽
1

α2

∫
Rd

|b− a|2 dµ;

(iii) the mapping ∇ϱ/ϱ coincides µ-a.e. with the orthogonal projection of the vector
field A−1(b − a) onto the closure of the set of mappings {∇u|u ∈ C∞

0 (Rd)} in the
space L2(µ,Rd) with the inner product

⟨F,G⟩2 :=

∫
Rd

⟨AF,G⟩ dµ,

and thus ∫
Rd

∣∣∣∣
√
A∇ϱ
ϱ

∣∣∣∣2ϱ dx ⩽
∫
Rd

|A−1/2(b− a)|2 dµ.

If A = I, then assertions (ii) and (iii) are true with α = 1 and a = 0.

Let us give a condition for the global Sobolev differentiability.

Theorem 2.5. Suppose that a Borel probability measure µ on Rd satisfies the
equation L∗

A,bµ = 0, where A and A−1 are uniformly bounded, A is Lipschitz and
|b| ∈ Lp(µ) with some p > d. Then the continuous version ϱ of the density of the
measure µ is uniformly bounded and ϱ ∈W p,1(Rd).

It had been open for a long time whether ϱ ∈ W 1,1(Rd) when |b| ∈ L1(µ) until
it was shown in the paper [16] that, for d > 1, there is a probability solution µ to
the equation L∗

I,bµ = 0 for which |b| ∈ L1(µ), but the density ϱ does not belong

to W 1,1(Rd), i.e., |∇ϱ| does not belong to L1(Rd). This can be done even with
a smooth drift b, but in the general case there is an example in which the function
|∇ϱ| is integrable on no ball. On the other hand, it is proved in the same paper
that ϱ belongs to the fractional Sobolev class Hr,α(Rd) whenever 1 < r < d/(d− 1),
α < 1− d(r − 1)/r.

Finally, let us mention upper and lower bounds on densities. For simplification
of formulations we consider the case of the unit diffusion matrix.

Theorem 2.6. Suppose that a Borel probability measure µ = ϱ dx on Rd satisfies
the equation L∗

I,bµ = 0, where |b| ∈ Lp(µ) with some p > d. Suppose also that Φ is

a positive function of class W 1,1
loc (R

d) such that Φ ∈ L1(µ) and |∇Φ| ∈ Lp(µ). Then
there exists a number C > 0 such that

ϱ(x) ⩽
C

Φ(x)
.

For example, if |b| ∈ Lp(µ) with p > d and µ has all moments, then, for every
k > 0, there is a number Ck > 0 such that ϱ(x) ⩽ Ck(1 + |x|)−k.

If it is known that exp{α|x|β}∈L1(µ) with some α, β>0 and |b(x)|⩽C exp{δ|x|β}
with some δ < α/d, then, for every r < β/d, there is a number Cr > 0 such that
ϱ(x) ⩽ Cr exp{−r|x|β}.

It is surprising that such estimates, fulfilled under broad assumptions, are often
rather sharp, which is seen from the following lower bounds.
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Theorem 2.7. Let ϱ be a continuous density of a probability solution to the equa-
tion L∗

I,bµ = 0 such that |b(x)| ⩽ V (|x|/θ), where θ > 1 and V > 0 is a continuous
increasing function on [0,+∞). Then there exists a number K > 0 such that

ϱ(x) ⩾ ϱ(0) exp{−K(1 + V (|x|)|x|)}.

For example, if |b(x)| ⩽ c1|x|β + c2, then

ϱ(x) ⩾ ϱ(0) exp{−K(1 + |x|β+1)}.

If also lim sup|x|→∞ |x|−β−1⟨b(x), x⟩ < 0, then one has the two-sided estimate

exp{−K1(1 + |x|β+1)} ⩽ ϱ(x) ⩽ exp{−K2(1 + |x|β+1)}.

Papers [5], [28], and [9] contain information about equations with the unit dif-
fusion matrix and drifts of the following form: b(x) = −x + v(x). If v(x) = 0, then
we obtain the classical Ornstein–Uhlenbeck operator, for which a unique invariant
probability measure is the standard Gaussian measure γ on Rd. For a nonzero field v,
usually there are no explicit solutions, but it is useful to describe the properties of solu-
tions through their densities with respect to the measure γ rather than with respect
to Lebesgue measure. In particular, it is shown in [28] that if |v| ∈ L1(µ), then the
density f = dµ/dγ for any α < 1/4 satisfies the estimate∫

Rd

f [ln(f + 1)]α dγ ⩽ C(α)
[
1 + ∥v∥L1(µ)

(
ln(1 + ∥v∥L1(µ))

)α]
with constant C(α) independent of d. It is proved in [9] that if |v| ∈ Lp(µ) with
some p > 2, then f [ln(1 + f)]α ∈ L1(γ) whenever α < min(2, (p + 2)/4). If v is
bounded, then exp{ε| lnmax(f, 1)|2} ∈ L1(γ) for all ε < (2π∥ |v| ∥∞)−2. In addition,
|∇f | ∈ Lp(γ) for all p > 1. Moreover, the latter is true under a weaker condition than
the boundedness of v; namely, inclusion of |v| to some Orlicz class is sufficient.

Solutions of unbounded variation to stationary equations on the whole space are
considered in [15], [53], [54], and [55].

Finally, we note that the results about local properties of solutions remain also
valid for equations on domains and manifolds, but the situation is different for global
properties. For example, there exist connected manifolds with nonconstant posi-
tive integrable harmonic functions, which gives probability solutions to the equation
∆µ = 0 with the zero drift. Some global properties are transferred to manifolds under
additional geometric assumptions like restrictions on curvature; see [27] and [15] on
this topic.

3. Stationary equations: Uniqueness of solutions. In the one-dimensional
case, the stationary equation has the form (Aµ)′′ = (bµ)′, hence (Aµ)′ = bµ+c, where
c is a constant. If A = 1, then µ′ = bµ + c. In the case where the coefficient b is
locally Lebesgue integrable, this equation is solved explicitly, and the density of the
measure µ has the form

ϱ(x) = c1 exp{B(x)}+ c exp{B(x)}
∫ x

0

exp{−B(y)} dy,

B(x) =

∫ x

0

b(y) dy.
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A simple analysis shows (see [15, section 4.1]) that, in this case, at most one probability
solution can exist. However, in the case of a locally Lebesgue nonintegrable coefficient
b many linearly independent probability solutions can exist. For example, the mea-
sures with densities ϱ1(x) = 2(2π)−1/2x2 exp{−x2/2}I(−∞,0](x) and ϱ2(x) = ϱ1(−x)
satisfy the equation with A = 1 and b(x) = −x+2/x. In this example, b even belongs
to L2(µ) for all solutions.

It was shown in [26] (see also [15, Example 4.2.1]) that, for d > 1, even the infinite
differentiability of b does not guarantee the uniqueness of a probability solution to
the equation L∗

I,bµ = 0. An example for R2 is as follows:

b1(x, y) = −x− 2ye(x
2−y2)/2, b2(x, y) = −y − 2ye(y

2−x2)/2.

Here, one solution is the standard Gaussian measure, and another is given with respect
to it by the smooth bounded density

c

∫ x

−∞
e−s2/2 ds+ c

∫ y

−∞
e−s2/2 ds.

Moreover, effectively verified conditions are obtained in [60] on the coefficients to
ensure the existence of infinitely many linearly independent probability solutions.
In particular, this holds in the indicated explicit example. In [10], conditions are
obtained for existence of two solutions to imply the existence of infinitely many lin-
early independent probability solutions. In [50], a method of constructing examples of
nonuniqueness was suggested based on change of coordinates and passing to a degen-
erate boundary value problem.

Question 3. Let A = I and let b be infinitely differentiable. Suppose that a prob-
ability solution to the equation L∗

A,b = µ is not unique. Can the simplex of all
probability solutions be finite-dimensional?

There are various sufficient conditions for uniqueness of probability solutions. The
next result is proved in the paper [31].

Theorem 3.1. Suppose that A satisfies the Dini condition, A−1 is locally bounded,
and bi ∈ Ld+

loc(R
d). Then a probability solution µ to the equation L∗

A,bµ = 0 is unique
if either of the following conditions is fulfilled :

(i) (1 + |x|)−2|aij(x)|, (1 + |x|)−1|bi(x)| ∈ L1(µ);
(ii) there exists a function V ∈ C2(Rd) with lim|x|→∞ V (x) = +∞ and

LA,bV ⩽ C1 + C2V .

If aij ∈W d+,1
loc (Rd), then a sufficient condition for the uniqueness of a probability

solution µ = ϱ dx is the µ-integrability of the functions aij , bi−
∑

j(∂xj
aij+aij∂xj

ϱ/ϱ).

Question 4. Let A and A−1 be bounded on Rd and b(x) = −x. Can several
probability solutions exist?

A unique probability solution to the equation L∗
A,bµ = 0 does not exclude the exis-

tence of nonzero signed solutions even on the real line (see [15, Example 4.1.3]). A suf-
ficient condition for the absence of such solutions under the hypotheses of assertion (iii)
in Theorem 2.3 is the existence of a function V ∈ C2(Rd) for which V (x) → +∞ as
|x| → +∞ and LA,bV (x) ⩾ −C, |

√
A(x)∇V (x)| ⩽ CV (x) with some number C > 0;

see [15, Theorem 4.1.9]. Here, the inequality for LA,bV is opposite to the one which
guarantees the existence of a probability solution, so it is assumed that there is a prob-
ability solution. However, if b is locally bounded, then [15, Corollary 4.3.7] gives the
absence of nonzero signed solutions without this assumption.
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4. Generated semigroups. Here, we discuss semigroups connected with solu-
tions to stationary Fokker–Planck–Kolmogorov equations and also invariant measures
of these semigroups.

Recall that a family of continuous linear operators Tt, t ⩾ 0, acting on a Banach
space E, is called an operator semigroup if T0 = I and Tt+s = TtTs for all t, s ⩾ 0.
Such a semigroup is called strongly continuous (or a C0-semigroup) if limt→0 Ttx = x
for every x ∈ E. It can be easily derived from the Banach–Steinhaus theorem that the
mapping t 7→ Ttx is continuous on the whole half-line [0,+∞). It is known that, for
a strongly continuous semigroup {Tt}t⩾0, the linear subspace D(L) of vectors h ∈ E
such that there exists a limit Lh = limt→0 t

−1(Tth−h) with respect to the norm in E
is everywhere dense. The operator L on the domain of definition D(L) is called the
generator of the semigroup. If φ ∈ D(L), then one has the equality

Ttφ = φ+

∫ t

0

TsLφds.

Typical generators of semigroups are elliptic operators, but usually the whole
subspace D(L) is not known in advance even for an operator generating a semigroup.
The operators LA,b we consider are initially defined on the set C∞

0 (Rd), so that there
is no Banach space. If there is a probability measure µ on Rd satisfying L∗

A,bµ = 0,

then such natural Banach spaces appear: one can take E = L1(µ) or E = L2(µ).
Why do we need a measure, and why not take for E the space of bounded continuous
functions or the space of bounded Borel functions with the sup-norm? The point is
that, in the case of unbounded coefficients A, b (or just b), the operator semigroups,
which should be regarded as generated by our operators LA,b, are usually not strongly
continuous on such spaces. For example, this happens for the Ornstein–Uhlenbeck
semigroup given by the explicit formula

Ttf(x) =

∫
Rd

f
(
e−tx−

√
1− e−2t y

)
γd(dy),

where γd is the standard Gaussian measure (it is invariant with respect to this semi-
group). Formal calculations show that the generator of this semigroup must be the
Ornstein–Uhlenbeck operator

Lf(x) = ∆f(x)− ⟨x,∇f(x)⟩,

and this is true indeed if for E we take L1(γd) or L2(γd) rather than the spaces of
bounded functions indicated above.

It turns out that, in the general case, one can also associate with the operator LA,b

some canonical strongly continuous semigroup on L1(µ).
Recall that a bounded linear operator T on the space Lp(µ), where 1 ⩽ p ⩽ ∞,

is called sub-Markov if 0 ⩽ Tf ⩽ 1 whenever 0 ⩽ f ⩽ 1, f ∈ L∞(µ). If in addition
T1 = 1, then T is called Markov.

The measure µ is called invariant with respect to an operator T on L∞(µ) (or on
the space of bounded Borel functions in the case of a Borel measure on a topological
space) if ∫

Tf dµ =

∫
f dµ ∀ f ∈ L∞(µ).

For a Borel probability measure on Rd and an operator T continuous with respect to
the norm of L1(µ), it suffices to have this equality for all functions f in C∞

0 (Rd).
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If, in place of this identity, the inequality∫
Tf dµ ⩽

∫
f dµ

holds for all nonnegative functions f in L∞(µ), then µ is called a subinvariant measure
for T .

Suppose now that a Borel probability measure µ on Rd satisfies the station-
ary equation L∗

A,bµ = 0, where A is continuous, detA > 0, aij ∈ W d+,1
loc (Rd),

and bi ∈ Ld+
loc(R

d). As we know, the measure µ has a continuous positive density

ϱ ∈W d+,1
loc (Rd), and hence we can define the mappings

βµ =
∇ϱ
ϱ
, βµ,A = (βi

µ,A)
d
i=1, βi

µ,A = ∂xj
aij + aij

∂xjϱ

ϱ
.

The vector field
b̂ = 2βµ,A − b

is called the dual drift. It is straightforward to verify the identity∫
ψLA,bφdµ =

∫
φLA,̂bψ dµ ∀φ,ψ ∈ C∞

0 (Rd).

In addition,
L∗
A,̂b
µ = 0.

Let Bn be the ball of radius n centered at the origin in Rd.

Theorem 4.1. (i) Under the stated assumptions, there exist closed exten-
sions

(
Lµ
A,b, D(Lµ

A,b)
)

and
(
Lµ

A,̂b
, D(Lµ

A,̂b
)
)

of the operators
(
LA,b, C

∞
0 (Rd)

)
and

(
LA,̂b, C

∞
0 (Rd)

)
, respectively, that are the generators of sub-Markov contracting

C0-semigroups {Tµ
t }t⩾0 and {T̂µ

t }t⩾0 on L1(µ) with the following properties:
(a) For every bounded measurable function f on Rd with compact support, the

function (I − Lµ
A,b)

−1f is the limit in L1(µ) of the functions un that are solutions to
the Dirichlet problems (I−LA,b)un = f on Bn with zero boundary conditions, and the
analogous assertion is true for the operator (I − Lµ

A,̂b
)−1. In addition, the measure µ

is subinvariant for both semigroups {Tµ
t }t⩾0 and {T̂µ

t }t⩾0;
(b) the indicated semigroups are adjoint, i.e.,

(4.1)

∫
Ω

g Tµ
t f dµ =

∫
Ω

f T̂µ
t g dµ, f, g ∈ L∞(µ).

The same equality is also true for the corresponding families of resolvents {Rµ
α}α>0

and {R̂µ
α}α>0, where R

µ
α = (α · I − LA,b)

−1.
(ii) The semigroup {Tµ

t }t⩾0 has the following property : for every function
ψ ∈ C∞

0 (Rd) and every t ⩾ 0, the function Tµ
t ψ possesses a continuous modification

such that as t→ 0 these modifications converge to ψ uniformly on compact sets.

The described semigroup {Tµ
t }t⩾0 is called canonical.

If the matrix A is locally Lipschitz, then, as shown in [11, Lemma 2.2], the canon-
ical semigroup is the limit of the semigroups {T k

t }t⩾0 corresponding to the operator
LA,b on the balls Bk of radius k ∈ N with zero boundary conditions and defined on
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the spaces L1(µ|Bk
). In particular, if f ∈ L1(µ), T > 0 and uk = T k

t f is the solution
of the boundary value problem

∂tuk = LA,buk, uk|∂Bk×[0,T ] = 0, uk(x, 0) = f(x) if x ∈ Bk,

then Tµ
t f(x) = limk→∞ uk(x, t) in L

1(µ) as t ∈ [0, T ].

In addition, under the same additional assumption of local Lipschitzness of A, it
is shown in [11, Theorem 2.3] that the canonical semigroup {Tµ

t }t⩾0 defines a minimal
solution to the Cauchy problem

(4.2) ∂tu = LA,bu, u(x, 0) = f(x)

in the following sense: for every t > 0 the function Tµ
t f belongs to the Sobolev

class W p,2
loc (R

d), for every ball U the function ∥Tµ
t f∥

p
Wp,2(U) is integrable over each

compact interval [τ, T0] in (0, T ), in U × (τ, T0) there exists the Sobolev derivative
∂tu ∈ Lp(U×(τ, T0)), equality (4.2) for Sobolev derivatives is true almost everywhere,
and the initial condition is fulfilled also in the sense of convergence in L1(µ). The
minimality is understood as follows: if f is a µ-integrable nonnegative continuous
function and v(x, t) is some nonnegative solution to this Cauchy problem with initial
condition f in the weak sense, i.e., for all t > 0, the function v( · , t) belongs to the
Sobolev class W 2,1(U) on every ball U , the function ∥v( · , t)∥L2(U) is bounded on all
intervals [0, T0] ⊂ [0, T ), the function ∥∂xv( · , t)∥2L2(U) is integrable on [0, T0], and for

every function ψ ∈ C∞
0 (Rd) the equality∫

v(x, t)ψ(x) dx−
∫
f(x)ψ(x) dx

= −
∫ t

0

∫ [
aij(x)∂xjψ(x)∂xiv(x, s)− bi(x)∂xiv(x, s)ψ(x)

+ ∂xj
aij(x)∂xi

v(x, s)ψ(x)
]
dx ds

is true, then Tµ
t f(x, t) ⩽ v(x, t). The analogous assertion is true for the dual drift b̂

and the corresponding semigroup {T̂µ
t }t⩾0.

It is important to note that the generator of the canonical semigroup is an exten-
sion of the closure of the operator LA,b on C∞

0 (Rd) in L1(µ), but it can be a strict
extension. The following fact is true (see [15, Proposition 5.2.5 and Theorem 5.3.1]).

Theorem 4.2. Under the assumptions about A and b stated before Theorem 4.1
the following conditions are equivalent.

(i) The indicated closure of LA,b is the generator of a strongly continuous operator
semigroup on L1(µ).

(ii) The set (LA,b − I)(C∞
0 (Rd)) is everywhere dense in L1(µ).

(iii) There exists a unique strongly continuous operator semigroup on L1(µ) whose
generator is an extension of LA,b on C∞

0 (Rd).

(iv) The measure µ is invariant with respect to {Tµ
t }t⩾0.

(v) The equality Tµ
t 1 = 1 holds, i.e., {Tµ

t }t⩾0 is a Markov semigroup.

Under either of these conditions the canonical semigroups {Tµ
t }t⩾0 and {T̂µ

t }t⩾0

are Markov, and the measure µ is invariant for both. In addition, the measure µ is
a unique probability solution to the equation L∗

A,bµ = 0.
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Canonical semigroups are not always unique strongly continuous semigroups
on L1(µ) whose generators extend LA,b and LA,̂b: see examples in [15]. In addition,
the measure µ is not always invariant for these semigroups.

Question 5. Can it happen that there is a strongly continuous sub-Markov semi-
group on L1(µ) that differs from the canonical one and whose generator extends LA,b

if A = I and b is smooth?

Sufficient conditions for invariance of µ are given in [15, Chap. 5]. Note that
invariance of µ for one of the two semigroups is equivalent to invariance with respect
to the other (see [15, Remark 5.2.4]).

Theorem 4.3. Conditions (i)–(v) are fulfilled if there is a compact function
V ∈ C2(Rd) and numbers α > 0 and R > 0 for which

LA,bV (x) ⩽ αV (x) for a.e. x with |x| ⩾ R.

For example, it suffices to have the following estimate outside a ball:

− 2

1 + |x|2
⟨A(x)x, x⟩+ traceA(x) + ⟨b(x), x⟩ ⩽ C|x|2 ln |x|.

For A = I, a sufficient condition is the estimate |b(x)| ⩽ C + C|x| ln |x|. However,
here ln |x| cannot be replaced by | ln |x||r with r > 1.

There are sufficient conditions without Lyapunov functions. For example, in the
case A = I the integrability of |b(x)|/(1 + |x|) with respect to µ is sufficient. Yet
another sufficient condition for invariance of the measure µ in terms of µ itself is this:
|b − ∇ϱ/ϱ| ∈ L1(µ). In the case of a nonconstant A, invariance of µ for {Tµ

t }t⩾0 is
ensured by the inclusions aij , |b − βA,µ| ∈ L1(µ), which follows from justification of
Example 5.5.3 and Theorem 5.3.1 in [15]. In particular, if b = βA,µ and aij ∈ L1(µ),
then invariance holds.

Let us observe that if we divide the coefficients of the operator LA,b by the
function θ = |LA,bV | + 1, taking some smooth compact function V , then the new
operator LA/θ,b/θ = θ−1LA,b will satisfy the estimate from Theorem 4.3. However,
the original measure µ need not satisfy the equation with this operator. The equa-
tion (θ−1LA,b)

∗ν = 0 is obviously satisfied by the measure ν = θ · µ. Suppose that
LA,bV ∈ L1(µ). Then we can assume that ν is a probability measure. Nevertheless,
we still cannot apply Theorem 4.3, because it contains some local conditions on the
coefficients. Major problems are connected with the new diffusion coefficient A/θ,

since LA,bV includes the term ⟨b,∇V ⟩. If the functions bi belong to W d+,1
loc (Rd), then

the required local conditions are fulfilled. In particular, all hypotheses of Theorem 4.3
are fulfilled for the new operator if b and V are smooth. But what conclusion does
this theorem enable us to derive? It says that the measure θ ·µ is a unique probability
solution to the equation with θ−1LA,b and is a unique invariant probability measure
for the corresponding canonical semigroup. However, for the original equation it only
guarantees uniqueness among probability solutions with respect to which the function
LA,bV is integrable.

With the aid of the canonical semigroup one can construct a solution to the
Cauchy problem for the parabolic Fokker–Planck–Kolmogorov equation discussed in
the subsequent sections. Next, we mention some properties of this semigroup impor-
tant for this procedure, while the assertion about parabolic equations is postponed
until section 5.
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Theorem 4.4. Let µ be a probability measure on Rd and let L∗
A,bµ = 0, where

aij ∈ C(Rd) ∩W p,1
loc (R

d), detA > 0, bi ∈ Lp
loc(R

d), and p > d+ 2. Then there exists
a locally Hölder continuous positive function pA,b(t, x, y) on (0,+∞)×Rd ×Rd such
that the measures

Kt(x, dy) = pA,b(t, x, y) dy

are subprobabilities, and, for every function f ∈ L1(µ), the function

x 7→ Ktf(x) :=

∫
Ω

f(y) pA,b(t, x, y) dy

serves as a µ-version of Tµ
t f such that the function (t, x) 7→ Ktf(x) is continuous on

the product (0,+∞)×Rd.
In addition, if there is a bounded Borel measure ν invariant for {Kt}t⩾0, i.e.,

ν = K∗
t ν(dy) :=

∫
Rd

Kt(x, dy) ν(dx) ∀ t ⩾ 0,

then ν = cµ for some constant c. In particular, if ν ̸= 0, then the measure µ itself
is also invariant. Hence {Kt}t⩾0 cannot have invariant probability measures different
from µ.

Question 6. It is not known whether this theorem is true under our usual assump-
tion p > d in place of p > d+ 2.

Uniqueness of a probability invariant measure for the diffusion semigroup gener-
ated by the operator LI,b with a smooth drift was proved by Varadhan [66, section 31],
who also raised a question about generalization of this result to more general coeffi-
cients. Such generalizations were obtained in [1], [12], and [15]; the previous theorem
gives a typical result.

Question 7. What are optimal conditions on A and b for uniqueness of invariant
probability measures for semigroups whose generators extend LA,b?

Remark 4.1. It is asserted in [43, Lemma 5.4] that the existence of an invariant
probability measure for the diffusion process (with three times differentiable coeffi-
cients) is equivalent to the existence of a positive solution LA,bu = −1 on the comple-
ment to a compact set. Let us show that this is true under our local assumptions about
the coefficients if, in addition, we have the following estimates (as in the paper [42]):

|aij(x)| ⩽ C + C|x|2, |bi(x)| ⩽ C + C|x|.

Indeed, in this case the existence of a probability solution µ to the equation L∗
A,bµ = 0

by Theorem 2.2 yields a nonnegative Lyapunov function V ∈ W d+,2
loc (Rd) such that

V (x) → +∞ and LA,bV (x) → −∞ as |x| → +∞. Let us take a closed ball U
centered at the origin outside of which LA,bV (x) ⩽ −1. For any ball Un of radius n
large enough we take the solution un to the Dirichlet problem LA,bun = −1 on the
ring Un \K with zero boundary condition. These solutions are nonnegative (positive
on the interiors of the rings). By the maximum principle un ⩽ un+1 on Un \K, since
LA,b(un+1−un) = 0 on Un\U , un+1−un = 0 on ∂U and un+1−un ⩾ 0 on ∂Un because
un = 0 on ∂Un and un+1 ⩾ 0. In addition, un ⩽ V on Un \U , since LA,b(V −un) ⩽ 0
on Un \U and V − un ⩾ 0 on the boundary of Un \U . Therefore, there exists a finite
positive limit u(x) = limn→∞ un(x) outside U . It is readily verified that, under our
conditions on A and b, the restrictions of the functions un to every ball Ω outside U
are bounded with respect to the Sobolev norm in W p,2(Ω) with some p = p(Ω) > d.

Hence the function u belongs to W d+,2
loc (Rd) and satisfies LA,bu = −1 outside U .
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Conversely, if a positive function u ∈ W d+,2
loc (Rd) satisfies LA,bu = −1 outside

a ball U , then the function V (x) = u(x) + ε ln(|x|2 + 1) for small ε > 0 satisfies

the inequality LA,bV (x) ⩽ −1/2 outside U . It belongs to W d+,2
loc (Rd), and we have

V (x) → +∞ as |x| → +∞.
However, without the indicated restriction on the growth of A and b, no invariant

probability measures for the canonical semigroup {Tµ
t }t⩾0 can exist even in the case

of a unique probability solution to the equation L∗
A,bµ = 0. Let us consider such an

example on the real line. Let

b(x) = −2x+ 6ex
2

, A(x) = 1, Lu = u′′ + bu′.

The unique probability solution µ to the stationary equation has density π−1/2e−x2

.
The function

w(x) =

∫ x

−∞
e−s2 ds

satisfies the condition L1,bw(x) = −4e−x2

+ 6 ⩾ w(x). Hence there are no invariant
probability measures for the canonical semigroup (see Exercise 5.6.49 in [15], according
to which the measure µ is not invariant, but by [15, Theorem 5.4.5] there are no other
invariant probability measures). However, there is a positive solution to the equation
L1,bu = −1 on the whole real line. Indeed, we set

B(x) =

∫ x

0

b(s) ds = −x2 + 6

∫ x

0

es
2

ds.

Solving the equation
u′′ + bu′ = −1,

we obtain

u(x) = C2 −
∫ x

0

(
C1 +

∫ t

0

eB(s) ds

)
e−B(t) dt.

Since B(s) ⩽ −s2 if s ⩽ 0, the integral of eB(s) over (−∞, 0] is less than
√
π < 2. Let

C1 = 2. Then, for all t,

2 +

∫ t

0

eB(s) ds ⩾ 0,

and, for x ⩽ 0, we have

−
∫ x

0

(
2 +

∫ t

0

eB(s) ds

)
e−B(t) dt ⩾ 0.

Observe that

lim
t→+∞

et
2−B(t)

∫ t

0

eB(s) ds = lim
t→+∞

eB(t)

(−2t+ et2)eB(t)−t2
= 1.

Therefore, letting t→ +∞, we obtain

e−B(t)

∫ t

0

eB(s) ds ∼ e−t2 ,

∫ +∞

0

(
2 +

∫ t

0

eB(s) ds

)
e−B(t) dt <∞.

Taking a sufficiently large constant C2, we conclude that u > 0. Thus, there exists
a positive solution to the equation Lu = −1 on the whole real line, but there is no
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invariant measure for the minimal semigroup. It is now easy to construct an example
of a smooth field b on the plane for which there is a positive solution to the equation
LI,bu = −1, but there are no probability solutions to the stationary equation, and
hence no invariant measures for the semigroup. To this end, we set b1(x, y) = b(x),
b2(x, y) = 0, where b is given as above. If a probability solution to the stationary
equation exists, then its projection on the axis of ordinates is a probability solution
with zero drift, which is impossible. Apparently, the other implication in Lemma 5.4
of [43] is also false without additional restrictions on the growth of coefficients.

Note that in this survey we discuss only analytic aspects of the theory of Fokker–
Planck–Kolmogorov equations but do not touch upon questions about existence and
properties of diffusion processes connected with these equations. On such questions, in
the case of irregular coefficients of the equation, see [51], [52], [53], [54], [55], and [64].

5. Evolution equations: Existence of solutions and their properties. Let
us proceed to parabolic equations. Suppose we are given Borel functions aij , bi on
Rd

T := Rd × (0, T ), T > 0, and the matrix A(x, t) = (aij(x, t))i,j⩽d is nonnegative
definite. The parabolic Fokker–Planck–Kolmogorov equation

(5.1) ∂tµ = ∂xi
∂xj

(aijµ)− ∂xi
(biµ)

for a Borel measure µ on Rd
T (possibly, signed) is understood similarly to the elliptic

case: the coefficients aij , bi are integrable with respect to |µ| on compact sets in Rd
T ,

and, for every function φ ∈ C∞
0 (Rd

T ),∫
Rd

T

[∂tφ+ LA,bφ] dµ = 0.

Let us introduce the Cauchy problem for (5.1) with an initial condition. We do
this in the special case where the measure µ is represented as

µ(dx dt) = µt(dx) dt

by means of a family of locally finite measures µt on Rd such that, for every Borel
set B with compact closure, the function t 7→ µt(B) is Lebesgue measurable and the
function t 7→ |µt|(B) is integrable on compact intervals in (0, T ). Then, for every
bounded Borel function f with compact support, its integral against µt is Lebesgue
measurable in t and the previous equality by definition means that∫

Rd
T

f dµ =

∫ T

0

∫
Rd

f(x, t)µt(dx) dt.

Such measures µt exist under broad assumptions, in particular, if µ is absolutely
continuous. We write µ = (µt)t∈(0,T ) or µ = µt dt.

We call a locally finite Borel measure ν on Rd the initial condition for µ =
(µt)t∈(0,T ) and write µ|t=0 = ν or µ0 = ν if, for every function f ∈ C∞

0 (Rd), there
exists a full measure set Jf ⊂ (0, T ) such that

(5.2)

∫
Rd

f(x) ν(dx) = lim
t→0, t∈Jf

∫
Rd

f(x)µt(dx).

This condition is weaker than weak convergence of the measures µt to the measure
ν as t → 0. If the integral of f against µt is continuous on (0, T ), then Jf = (0, T ).
This will be the case under the conditions on the coefficients imposed below.
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The Cauchy problem in this sense will be written in the form

(5.3) ∂tµ = L∗
A,bµ, µ|t=0 = ν.

If A and b are bounded on all sets of the form U × [0, T ], where U is a ball in Rd,
then (5.3) is equivalent to the identity

(5.4)

∫
φdµt −

∫
φdν =

∫ t

0

∫
LA,bφdµs ds

for every function φ ∈ C∞
0 (Rd) and almost all t (with the corresponding measure zero

set depending on φ).
For a given probability measure ν, by Mν we denote the set of all nonnegative

solutions µ = µt dt to problem (5.3) for which µt(R
d) ⩽ 1 for almost all points t, i.e.,

almost all measures µt are subprobabilities.
For parabolic equations, there are also a priori estimates with Lyapunov functions

(see [15, section 7.1]), and we give a typical result with a simple formulation.

Theorem 5.1. Let µ = (µt)0<t<T be a solution to the Cauchy problem with initial
condition ν that is a subprobability measure on Rd such that all µt are also subprob-
ability measures. Suppose that there is a positive function W ∈ C2(Rd) such that
lim|x|→+∞W (x) = +∞ and, for some number C > 0 and all (x, t) ∈ Rd

T ,

LA,bW (x, t) ⩽ C + CW (x).

Then, for almost all t ∈ (0, T ),∫
Rd

W (x)µt(dx) ⩽ exp{Ct}+ exp{Ct}
∫
Rd

W (x) ν(dx).

For example, if we have the estimates

(5.5) |aij(x, t)| ⩽ C(1 + |x|2), |bi(x, t)| ⩽ C(1 + |x|),

and the measure ν has finite moment of order r, then∫
Rd

|x|r µt(dx) ⩽ ec1t − 1 + ec2t
∫
Rd

|x|r ν(dx).

Conditions for existence of solutions to the parabolic equation are considerably
broader than for the elliptic one.

Theorem 5.2. Let ν be a probability measure on Rd.
(i) The set Mν is nonempty if A, A−1, and b are bounded on sets of the form

U × [0, T ], where U is a ball.
(ii) The local boundedness of b in (i) can be replaced by the condition |b| ∈ Lp(U×

[0, T ]) with some p > d+2 if aij( · , t)∈W p,1
loc (R

d) and supt∈(0,T ) ∥aij( · , t)∥Wp,1(U)<∞
for every ball U .

(iii) Finally, if there exist a function V ∈ C2(Rd) and a number C ⩾ 0 such that

lim
|x|→+∞

V (x) = +∞, LA,bV (x, t) ⩽ C + CV (x),

then, for every solution, almost all measures µt are probabilities.
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Note that in case (ii) in this theorem one can find a version ϱ(x, t) of the solution
density continuous on Rd× (0, T ) (see below) and for this version all measures µt will
be probabilities if V ∈ L1(ν). Indeed, by Theorem 5.1 there exists a number M such
that, for almost all t ∈ (0, T ), the integral of V (x)ϱ(x, t) over Rd does not exceed M .
Due to the continuity of ϱ(x, t) in t this is true for all t. Since V (x) → +∞ as
|x| → +∞, the measures ϱ( · , t) dx are uniformly tight, whence it follows that they
are all probabilities.

In the general case, this is false even for d = 1, A(x) = 1, and a smooth drift. Let
us give an example of a smooth solution ϱ(x, t) to the equation

∂tϱ = ∂2xϱ− ∂x(bϱ),

where b ∈ C∞(R2), such that the function x 7→ ϱ(t, x) for all t ̸= 1 is a probability
density, but for t = 1 it is not. Let σ be a smooth positive probability density on the
real line, for example, the standard Gaussian density. We set

ϱ(x, t) =
1

2
[(1− t)2σ((1− t)2x) + σ(x)],

b(x, t) =
1

ϱ(x, t)

∫ x

0

[∂2yϱ(y, t)− ∂tϱ(y, t)] dy.

Both functions are smooth, ϱ > 0, and for t ̸= 1 the function x 7→ ϱ(x, t) is the
half-sum of two probability densities, so it is also a probability density, but for t = 1
we have ϱ(x, 1) = σ(x)/2. Here, the equality ∂x(bϱ) = ∂2xϱ− ∂tϱ holds.

Let us consider the special case where A and b do not depend on t and there exists
a probability solution µ to the stationary equation L∗

A,bµ = 0. In this case, a solution
to the Cauchy problem (5.3) can be obtained explicitly with the aid of the canonical
semigroup in the situation of Theorem 4.4. If a bounded measure ν is given on Rd

and

K∗
t ν(dy) :=

∫
Rd

Kt(x, dy) ν(dx) =

∫
Rd

pA,b(t, x, y) ν(dx) dy,

then the measure σ = K∗
t ν(dy) dt satisfies ∂tσ = L∗

A,bσ for all T > 0. In addition,
it gives a solution to the Cauchy problem (5.3). Note that, for absolutely continuous
measures ν, these properties follow at once from the properties of canonical semi-
groups. Indeed, for ν = g · µ we can take νt = T̂µ

t g · µ. Then, for every function
φ ∈ C∞

0 (Rd), ∫
Rd

Tµ
t φg dµ =

∫
Rd

φg dµ+

∫ t

0

∫
Rd

Tµ
s LA,bφg dµ ds,

which can be written as∫
Rd

φdνt =

∫
Rd

φg dν +

∫ t

0

∫
Rd

LA,bφg dνs ds.

The following is known about densities of solutions to parabolic equations.
We first recall that a function f on Rd× (0,+∞) belongs to the class VMOx with

respect to the variable x if there exists a modulus of continuity ω0 such that

sup
(x0,t)∈Rd×(0,+∞)

0<r⩽R

r−2d−2

∫ t+r2

t

∫
|x−x0|<r
|y−x0|<r

|f(x, s)− f(y, s)| dx dy ds ⩽ ω0(R).
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Theorem 5.3. Suppose that a measure µ on Rd × (0, T ) satisfies (5.1).
(i) If µ ⩾ 0 and detA > 0, then µ has a density ϱ.
(ii) If A on compact sets is Hölder continuous in x uniformly in t and detA > 0,

then µ has a density ϱ also for signed solutions.
(iii) If A and A−1 are locally bounded, aij ∈ VMOx, b

i ∈ Lq
loc(R

d × (0,+∞)),
where q > d+ 2, then µ has a density in all Lp

loc(R
d × (0,+∞)).

(iv) If in (iii) the matrix A satisfies the Dini condition, then there exists a con-
tinuous version of the density of the measure µ.

(v) If in (iv) A and A−1 are globally bounded and |b| ∈ Lp(|µ|), where p > d+ 2,
then the solution density is bounded on every set Rd × [r1, r2], r1, r2 > 0.

(vi) If A and A−1 are locally bounded, for some p > d+2 for every ball U we have
supt ∥aij( · , t)∥Wp,1(U) < ∞, and bi ∈ Lp

loc(R
d × (0,+∞)), then µ has a continuous

density ϱ, and for every ball U and every r1, r2 > 0,∫ r2

r1

∥ϱ( · , t)∥pWp,1(U) dt <∞.

The proofs of these assertions can be found in [15] and [30].
As in the elliptic case, it remains open whether (i) holds for signed solutions.
In the parabolic case, there are also results about global properties of densities,

such as membership in Sobolev classes, and upper and lower bounds, which are anal-
ogous to the results presented above in the elliptic case (see [57] and [15, Chaps. 7
and 8]).

Let us return to the Kolmogorov conditions (1.3) and (1.4) and show that they
are fulfilled for continuous coefficients with estimates (5.5). In our notation, in the
multidimensional case, these conditions are the relationships

aij(s, x) = lim
δ→0

1

2δ

∫
Rd

(yi − xi)(yj − xj)µs+δ(dy),(5.6)

bi(s, x) = lim
δ→0

1

δ

∫
Rd

(yi − xi)µs+δ(dy),(5.7)

where (µt) is a solution to the Cauchy problem with initial condition ν = δx at time s.

Theorem 5.4. Let the coefficients A and b be continuous and satisfy estima-
tes (5.5). Then equalities (5.6) and (5.7) hold.

Proof. Suppose for notational simplicity that the coefficients do not depend on
time and s = 0, x = 0. Under our assumptions the measures µt have all moments,
and the moment of order r is uniformly bounded in t from every compact interval
(see [15, section 7.1]). Hence the defining identity (5.4) is fulfilled also for the functions
φ(y) = yiyj rather than just for functions with compact support. For the former
functions, the integral form of the Cauchy problem with the initial condition at t = 0
equal to the Dirac measure at zero is written as∫

Rd

yiyj µδ(dy) =

∫ δ

0

∫
Rd

[2aij(y) + yib
j(y) + yjb

i(y)]µt(dy) dt.

We have to verify that the integral of δ−1[2aij(y) + yib
j(y) + yjb

i(y)] against the
measure µt(dy) dt over Rd × [0, δ] tends to 2aij(0) as δ → 0. To this end, it suf-
fices to establish the following: if a function g on Rd is continuous, g(0) = 0,
and |g(y)| ⩽ C + C|y|2, then the integral of δ−1g(y) against the measure µt(dy) dt
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over Rd × [0, δ] tends to zero as δ → 0. If the function g vanishes outside a ball cen-
tered at the origin, then this is true due to the aforementioned uniform boundedness
of moments of the measures µt. Hence our assertion reduces to the case of a function
g with support in a ball U . Moreover, with the aid of uniform approximations, we
can assume that this function belongs to C∞

0 (Rd). In this case,

δ−1

∫
Rd

g dµδ = δ−1

∫ δ

0

∫
Rd

LA,bg dµs ds,

since the integral of g against the Dirac measure at zero is zero. The absolute value
of the right-hand side is estimated by M := supU |LA,bg|. Hence the absolute value
of the integral of the function δ−1g against the measure µt dt over R

d× [0, δ] does not
exceed Mδ.

If we take φ(y) = yi, then similarly we find that the integral of yi against µt equals
the integral of bi against the measure µt dt over R

d × [0, δ], which after dividing by δ
tends to bi(0) as δ → 0 by the same reasoning. The same justification works in the
case of coefficients depending on time. Theorem 5.4 is proved.

Let us also mention the so-called Ambrosio–Figalli–Trevisan superposition prin-
ciple (see [2], [38], and [65]) connecting solutions to the Cauchy problem for the
Fokker–Planck–Kolmogorov equation with solutions to martingale problems. Accord-
ing to this principle, under suitable conditions on A and b, for every probability
solution (µt) to the Cauchy problem (5.3), such that the mapping t 7→ µt is con-
tinuous in the weak topology, there exists a probability measure Pν on the space of
continuous trajectories Ω = C([0, T ],Rd) such that ν is the distribution of ω(0), µt

with t > 0 is the distribution of ω(t), and for every function f ∈ C∞
0 (Rd) the process

ξ(ω, t) = f(ω(t))− f(ω(0))−
∫ t

0

LA,bf(ω(s), s) ds

is a martingale with respect to the measure Pν and the filtration Ft = σ(ω(s) : s ⩽ t),
t ⩾ 0. The most general sufficient condition on A and b known so far to ensure such
a representation is obtained in paper [23]:∫ T

0

∫
Rd

∥A(x, t)∥+ |⟨b(x, t), x⟩|
1 + |x|2

µt(dx) dt <∞.

In terms of the coefficients without reference to the solution, the following estimate
is sufficient:

∥A(x, t)∥+ |⟨b(x, t), x⟩| ⩽ C(1 + |x|2).

The following question remains open.

Question 8. Does the superposition principle follow from the existence of a Lya-
punov function V ∈ C2(Rd) such that V (x) → +∞ as |x| → +∞ and LA,bV (x, t) ⩽
CV (x)?

6. Evolution equations: Uniqueness of solutions. Some sufficient condi-
tions for uniqueness of probability solutions to the Cauchy problem for the Fokker–
Planck–Kolmogorov equation follow from general results of the older papers [40], [3],
and [62]. For example, for smooth coefficients and a nondegenerate diffusion matrix,
these results are applicable in the case of the estimates ∥A(x, t)∥ ⩽ C(1 + |x|2),
|b(x, t)| ⩽ C(1 + |x|). A close problem of uniqueness of semigroups was studied by
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such classical authors as Feller [35], [36], [37], Yosida [67], and Hille [41]. In the case of
coefficients independent of time, a complete answer to the question about uniqueness
of the solution to the Cauchy problem for the Fokker–Planck–Kolmogorov equations
is given in [11], where it was shown that, in any dimension greater than 1, there is no
uniqueness even for the unit diffusion matrix and a smooth drift, while in dimension 1
uniqueness holds; more precisely, the following theorem is true.

Theorem 6.1. Let (µt) be a solution to the Cauchy problem ∂tµt=∂
2
xµt−∂x(bµt),

µ0 = ν, where all measures µt are probabilities. If the coefficient b is locally bounded
and depends only on x, then such a solution is unique.

Question 9. Is Theorem 6.1 true if b depends on both variables?

In Example 4.5 in [11], besides a unique probability solution, there is another pos-
itive solution with finite measures µt, so it is important that we deal with probability
measures µt. For a nonconstant diffusion coefficient, the following result is obtained
in the cited paper.

Theorem 6.2. Let a be a positive locally Lipschitz function on R, and let b be
a locally bounded Borel function on R. Suppose that∫ 0

−∞

1√
a(x)

dx =

∫ +∞

0

1√
a(x)

dx = +∞.

If a probability solution to the Cauchy problem

∂tµt = ∂2x(aµt)− ∂x(bµt), µ0 = ν,

exists, then it is unique. If at least one of these integrals converges, then there exists
a locally bounded coefficient drift b (continuous if a has a continuous derivative and
smooth if so is a) and an initial distribution given by a locally Lipschitz density (smooth
if so is a) for which the simplex of probability solutions to the Cauchy problem is
infinite-dimensional.

In the multidimensional case, there are the following sufficient conditions for
uniqueness. Suppose that, for every ball U in Rd, the operators A(x, t) are Lipschitz
uniformly in t ∈ (0, T ) in x ∈ U , and A−1(x, t) is bounded in x ∈ U , and also
bi ∈ Lp

loc(R
d × (0, T )) for some p > d.

Theorem 6.3. Let µ be a probability solution to problem (5.3), and let either of
the following conditions be fulfilled :

(i) aij/(1 + |x|2), bi/(1 + |x|) ∈ L1(µ);
(ii) there exists a positive function V ∈ C2(Rd) along with a number C such that

V (x) → +∞ as |x| → +∞ and

LA,bV (x, t) ⩽ C + CV (x).

Then µ is a unique probability solution to problem (5.3).

It is now appropriate to comment on (86) in section 11 of Kolmogorov’s paper,
which is usually called the Kolmogorov–Chapman equation and has the form (in our
notation)

µs,x,u =

∫
µt,y,u µs,x,t(dy)

for the solution µs,x,t to the Cauchy problem with the coefficients A(x) and b(x),
independent of t, and Dirac’s measure at the point x as the initial distribution at
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time s with s ⩽ t ⩽ u. We consider locally bounded coefficients A and b. Suppose
that a probability solution to the Cauchy problem exists and is unique for every
initial probability measure. Then µs,x,t depends on the difference t−s, so it suffices to
consider the measures µ(x, t) = µ0,x,t. For these measures, the Kolmogorov–Chapman
equation is written in the form

(6.1) µ(s+ t, x) =

∫
µ(s, y)µ(t, x)(dy).

Under our assumption about uniqueness, this equation is a corollary of the Fokker–
Planck–Kolmogorov equation. Indeed, the measure µ(s + t, x) dt for any fixed x is
a solution to the Cauchy problem with initial condition µ(s, x) at t=0. The right-hand
side of (6.1) at t = 0 is the same measure µ(s, x), since µ(0, x) = δx. In addi-
tion, the right-hand side multiplied by the measure dt also satisfies the Fokker–
Planck–Kolmogorov equation. Indeed, it equals

η(t, s, x) =

∫
µ(t, y)µ(s, x)(dy).

Hence, for every function φ ∈ C∞
0 (Rd×(0,∞)), the integral of ∂tφ+LA,bφ against the

measure η(t, s, x) dt is zero, since the integral of ∂tφ+LA,bφ against the measure µ(t, y)
also is zero.

Under our assumption of uniqueness the solution also possesses the semigroup
property in the following sense: denoting by µ(t, ν) the value of the solution with
initial condition ν at time t, we obtain

(6.2) µ(t+ s, ν) = µ(t, µ(s, ν)).

According to [59], in the case of bounded continuous coefficients and without
assumptions about uniqueness of solutions to the Cauchy problem, one can select
a family of probability solutions µ(t, ν) for all probability measures ν in such a way
that the semigroup identity (6.2) is fulfilled.

Question 10. What are the broadest conditions under which a selection of a solu-
tion with the property (6.2) is possible?

Note that if probability solutions are given only for Dirac initial conditions, and
the solution µ(t, x) is Borel measurable in (t, x), then solutions for all initial distribu-
tions ν can be defined by the formula

µ(t, ν) =

∫
µ(t, x) ν(dx).

This is verified directly by definition, taking into account the local boundedness of
coefficients.

7. Distances between solutions and nonlinear equations. In [8], [19],
[20], [21], and [22], some estimates are obtained for distances between solutions to
stationary and evolution Fokker–Planck–Kolmogorov equations in terms of some dis-
tances between the coefficients. These estimates are applied to the study of nonlinear
equations, where coefficients can depend on solutions. Let us give the main result of
paper [8]. Let ∥ · ∥TV denote the total variation norm, and let W1(µ, σ) denote the
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Kantorovich distance between probability measures µ and σ, with finite first moments
defined by the formula

W1(µ, σ) = sup

{∫
f d(µ− σ) : f ∈ Lip1

}
,

where Lip1 is the class of all Lipschitz functions, with the Lipschitz constant equal
to 1.

Suppose that probability measures µ = ϱµ dx and σ = ϱσ dx on Rd are solutions
to the stationary equation with the coefficients Aµ, bµ and Aσ, bσ, respectively, and
there are numbers Λ > 0 and α > 0 such that

|aijµ (x)− aijµ (y)| ⩽ Λ|x− y|, |aijσ (x)− aijσ (y)| ⩽ Λ|x− y| ∀x, y ∈ Rd,

Aµ ⩾ α · I, Aσ ⩾ α · I,

and also biµ, b
i
σ ∈ Lp

loc(R
d) with some p > d.

We set

hiµ = biµ − ∂xja
ij
µ , hiσ = biσ − ∂xja

ij
σ ,

Φ =
(Aµ −Aσ)∇ϱσ

ϱσ
− (hµ − hσ).

If Aµ = Aσ, then Φ = bσ − bµ.

Theorem 7.1. Under the stated assumptions, let bµ ∈ L1(µ+σ), Φ ∈ L1(σ), and
|x| ∈ L1(σ), and let there exist a number κ > d2Λ2/(4α) such that, for all x, y ∈ Rd,

⟨bµ(x)− bµ(y), x− y⟩ ⩽ −κ|x− y|2.

Then µ has finite first moment and

W1(µ, σ) ⩽
1

m

∫
Rd

|Φ| dσ, m = κ− d2Λ2

4α
.

In addition, there exists a number C > 0, depending only on d, α, Λ, and κ, such that

∥µ− σ∥TV ⩽ C

∫
Rd

|Φ| dσ.

Corollary 7.1. If, under the assumptions of the theorem, Aµ = Aσ, then, for
the solutions µ and σ, the obtained estimates have the following form:

W1(µ, σ) ⩽
1

m

∫
Rd

|bµ − bσ| dσ, ∥µ− σ∥TV ⩽ C

∫
Rd

|bµ − bσ| dσ.

Estimates of this kind can be useful for diverse versions of the Kantorovich prob-
lem of optimal transportation of measures (see the recent survey [7]).

The nonlinear stationary Fokker–Planck–Kolmogorov equation is also determined
by the diffusion matrix A and the drift coefficient b, which can now depend on the
solution: A and b are defined on Rd×Π, where Π is a subset of the space of measures
on Rd. The equation has the form

L∗
A(µ),b(µ)µ = 0.
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Thus, the solution µ satisfies the usual equation with the coefficients aij(x, µ) and
bi(x, µ). Substantial differences with linear equations already arise in the case A = I.
A typical example of a drift is

b(x, µ) =

∫
b(x, y)µ(dy).

If b(x, y) = b0(x− y), then a nonlinear Vlasov-type equation arises (see [49] and [15]).
Nonlinear parabolic Fokker–Planck–Kolmogorov equations are introduced similarly.
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[12] V. I. Bogachev, N. V. Krylov, and M. Röckner, On regularity of transition probabilities and
invariant measures of singular diffusions under minimal conditions, Comm. Partial Differential
Equations, 26 (2001), pp. 2037–2080, https://doi.org/10.1081/PDE-100107815.
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[61] P. Sjögren, Harmonic spaces associated with adjoints of linear elliptic operators, Ann. Inst.
Fourier (Grenoble), 25 (1975), pp. 509–518, https://doi.org/10.5802/aif.595.

[62] G. N. Smirnova, Cauchy problems for parabolic equations degenerating at infinity, in Fifteen
Papers on Analysis, Amer. Math. Soc. Transl. Ser. 2 72, Amer. Math. Soc., Providence, RI,
1968, pp. 119–134, https://doi.org/10.1090/trans2/072/09.
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