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open domain G in the state space, on which the generator has the local property expressed
in a suitable way on a class C of test functions that is sufficiently rich, then the Markov
process has continuous paths when it passes through G. The result holds for any Markov
process which is associated with the generator merely on C. This points out that the path
continuity of the process is an a priori property encrypted by the generator acting on enough
test functions, and this property can be easily checked in many situations. The approach
uses potential theoretic tools and covers Markov processes associated with (possibly time-
dependent) second order integro-differential operators (e.g., through the martingale problem)
defined on domains in Hilbert spaces or on spaces of measures.

Keywords: Diffusion; Local operator; Right process; Fine topology; Markov semigroup;
Dirichlet form; Branching process.

Mathematics Subject Classification (2010): 60J45, 60J35, 60J40, 60J57, 31C25, 47D07,
60J25, 60J60.

Contents

1 Introduction 2

2 The framework and preliminary results 4

3 The main results 9

4 Applications 14
4.1 Jump-Diffusions on domains in Hilbert spaces . . . . . . . . . . . . . . . . . 14
4.2 Measure-valued branching processes . . . . . . . . . . . . . . . . . . . . . . . 16
4.3 Diffusions associated with generalized Dirichlet forms . . . . . . . . . . . . . 19

1Simion Stoilow Institute of Mathematics of the Romanian Academy, Research unit No. 2, P.O. Box
1-764, RO-014700 Bucharest, Romania, and University of Bucharest, Faculty of Mathematics and Computer
Science (e-mail: lucian.beznea@imar.ro)

2University of Bucharest, Faculty of Mathematics and Computer Science, and Simion Stoilow Institute
of Mathematics of the Romanian Academy, Research unit No. 2, P.O. Box 1-764, RO-014700 Bucharest
Romania (e-mail: iulian.cimpean@unibuc.ro; iulian.cimpean@imar.ro)

3Fakultät für Mathematik, Universität Bielefeld, Postfach 100 131, D-33501 Bielefeld, Germany,
and Academy for Mathematics and Systems Science, CAS, Beijing (e-mail: roeckner@mathematik.uni-
bielefeld.de)

1



4.4 Diffusions associated with Lp-semigroups . . . . . . . . . . . . . . . . . . . . 20

5 Proofs 22
5.1 Proofs for Section 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.2 Proofs for Section 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.3 Proofs for Section 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6 Appendix: Basics on right processes with càdlàg trajectories 31

1 Introduction

Since Fick and Einstein, diffusion has been for more than a century and a half a key
concept in many fields, from physics to biology or finance. It is used to describe the transition
of anything like atoms, molecules, particles etc, from a region of higher concentration to a
region of lower concentration, in a continuous way; see the “celebration” paper [31]. Formally,
in this paper, by a diffusion process we understand a Markov process with almost surely
continuous trajectories.

In general, diffusion Markov processes correspond to second order elliptic differential
operators (see [23] or the monograph [2]). However, starting from a given differential operator
or a semigroup of Markov operators, it is a highly non-trivial task to rigorously show that one
can construct an associated Markov process with continuous paths. A seminal contribution
to this subject was given by D. Ray in [32], proving a conjecture of W. Feller stated in [23]
which asserts that on the real line, if (Pt)t≥0 is a Feller transition semigroup of a (cádlág)
strong Markov process, then the Lindeberg-type condition Pt(x,R \ (x − ε, x + ε)) = o(t)
uniformly in x on compact sets for each ε > 0 ensures the a.s. continuity of the trajectories
(see also [26]). This result has also been extended to locally compact spaces, as e.g. in [17,
Proposition 9.10]; see also Proposition 3.8 below for the precise statement. A characterisation
of the Lindeberg-type condition in terms of the associated ”superharmonic function” (the
local truncation property) was given in [16], Proposition 8.2, in the frame of the balayage
spaces. Anyway, there are many situations where such a result can not be applied, e.g.
when the underlying space in not locally compact or the semigroup is not Feller. Another
typical and general situation where more sophisticated tools have to be used in order to
construct an associated Markov process with continuous paths occurs when we start from
the Kolmogorov operator defined merely on a class of test functions, e.g. when the latter
is associated with a stochastic (partial) differential equations with singular coefficients (e.g.
like those considered in [18] or [11]). When a convenient duality measure exits, the theory
of Dirichlet form offers powerful tools in this respect. More precisely, it is well known that
in the case of (non-symmetric) Dirichlet forms, the associated Markov process is a diffusion
if and only if the form is local, i.e. the relative energy of any two elements from the energy
space with disjoint compact supports is zero, see e.g. the monographs [25] or [30]. This result
was further extended to generalized (non-sectorial) Dirichlet forms in [34, Proposition 1.10],
[37, Theorem 3.3], and [27, Proposition 3.6] under suitable conditions. At the core of the
Dirichlet forms approach stand the orthogonal decomposition of elements from the domain of
the form using the hitting distribution (the balayage operator, in potential theoretic terms),
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as well as the strong duality theory existing in such energetic spaces.
Having in mind the above mentioned results, it seems somehow frustrating that, on the

one hand, just by looking at a second order operator defined on a class of test functions
one can easily guess if an associated càdlàg process should have continuous paths, and on
the other hand, the above established results in this direction require a lot of structure and
regularity for the semigroup or the generator to ensure what at an intuitive level might
seem obvious. As a matter of fact, following another approach, namely the one developed
by D. Bakry and M. Émery in [1], it is indeed possible to analyse the path continuity of a
Markov process in a more direct way, as soon as it corresponds to an operator (through the
martingale problem) defined on a class of test functions whose square field operator satisfies
the so called derivation property. However, the existence of the square field operator requires
a specific algebraic structure. In particular, the class of test functions needs to be an algebra
which is invariant under the action of the operator, and this usually leads to restrictions on
the coefficients.

The previous discussion raises the following fundamental problem which we address in
this paper. Suppose that we are given a second order operator L defined merely on a class of
test functions D0, which is associated to a càdlàg Markov process X, on a general topological
space, with transition function (Pt)t>0 e.g., through the corresponding martingale problem.
Further, suppose that (L,D0) exhibits locally a local character in the informal sense that Lu
vanishes where u vanishes for u ∈ D0, but merely on a fixed open set G ⊂ E, hence L could
also be an integro-differential operator whose non-local part acts only outside G. Given
(L,D0, X,G) as above, can we decide that X has continuous paths when it lies in G? Note
that in the above context it is not assumed that D0 is a core or that L is associated to a nice
Dirichlet space. Also, L is allowed to have irregular coefficients, so that D0 is not necessarily
invariant under the action of L. In a nutshell, we show that if D0 is rich enough (yet not
necessarily a core) and (Pt)t>0 has some minimal regularity so that X is at least strong
Markov, then the answer is affirmative. To this end, we first adopt a general Lp-approach
(see the main result Theorem 3.6 below), and then we show that, in fact, this approach leads
to a similar result Corollary 3.12 which does not require an Lp-context, but only the process,
its transition function, and a choice of the underlying topology. We show that the obtained
theoretical results are applicable to large classes of examples that cover Markov processes
associated (e.g. through the martingale problem) to (possibly time-dependent) second order
integro-differential operators defined on domains in Hilbert spaces or on spaces of measures.

The structure of the paper is the following: In Section 2 we introduce the context and
present some preliminary results, most of them being of self interest. More precisely, we
discuss the problem of existence of a regular copy of a given simple càdlàg Markov process,
the concept of diffusion and related potential theoretic tools, and some considerations on in-
finitesimal generators for resolvents on Lp-spaces. Section 3 is devoted to the main theoretical
results, namely Theorem 3.6, Corollary 3.12, Corollary 3.13, and Corollary 3.15. Then, in
Section 4 we apply the theoretical results to a large class of examples: Jump-Diffusions on
domains in Hilbert spaces, measure-valued branching processes, diffusions associated with
generalized Dirichlet forms, and even diffusions associated with not necessarily quasi-regular
semigroups. Finally, we also included an Appendix aimed to rapidly introduce the reader
to the main potential theoretical notions and results that are employed in the main body of
this paper.
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We would like to end the introduction by pointing out a subtle aspect: In contrast to
the framework of Dirichlet forms which are first order objects and cover operators in both
divergence and non-divergence form, the present analysis is designed mainly for operators L
in non-divergence form. In favour of the large class of herein considered applications, this is a
small price we accepted to pay. Nevertheless, our results definitely apply also to generalized
Dirichlet forms rendering simple conditions to check the path continuity of the associated
process, as done in Corollary 4.9

2 The framework and preliminary results

To achieve our main results from Section 3, we need several results of general nature,
which in our opinion are of self-interest. More precisely, let us address in the sequel three
preliminary topics: 1) the problem of existence of a regular copy of a given simple càdlàg
Markov process; 2) the concept of diffusion and related potential theoretic tools; 3) resol-
vents of kernels and some considerations on their infinitesimal generators on Lp-spaces.

From Markov processes with càdlàg paths to right processes. Let (E, τ) be a
Lusin topological spaces whose Borel σ-algebra is denoted by B := B(E). For each x ∈ E,
let (Xx

t )t≥0 be a càdlàg temporally homogeneous Markov process defined on (Ω,F ,Ft,Px),
with transition function (Pt)t≥0 and initial distribution δx; just for the sake of generality,
here Ω,F or Ft may as well depend on x. We denote by U = (Uα)α>0 the corresponding
resolvent family of Markov kernels, namely

Uαf(x) =

∫ ∞
0

e−αtPtf(x) dt for all f ∈ bB, x ∈ E and α > 0.

As announced, the main goal of this paper is to study when X := ((Xx
t )t≥0, x ∈ E) has

continuous paths. However, a preliminary question we wish to address here is whether one
can construct (and hence work with) a more regular copy of X, namely a right process
sharing the same finite dimensional distributions, or equivalently, having resolvent U . If this
can be done, the probabilistic potential theory would then be in force. In particular, the
measurability properties of hitting times, excessive functions, and hitting distributions (or
balayage operators) would be guaranteed, as well as the strong Markov property. To do so,
we consider the following hypothesis, which is quite natural to impose in order to guarantee
the strong Markov property, especially if one reads it as generalized Feller property; in fact,
it is essentially the one from [12], page 846.

(H0) There exists a vector lattice C ⊂ Cb(E) such that

(i) 1 ∈ C and there exists a countable subset in C which separates the points of E.

(ii) We have Uβf ∈ C for all f ∈ C and β > 0.

Proposition 2.1. If X and U are as above and (H0) is satisfied then there exists a right
process on X ′ on E which is càdlàg with respect to τ , sharing the same resolvent U . In
particular, X and X ′ have the same law on the Skorokhod space of all càdlàg paths from
[0,∞) to E.
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Proof in Section 5.1.

Remark 2.2. (i) If U is (Lipschitz) Feller, i.e. for some (hence all) α > 0 it holds that
Uα maps bounded (Lipschitz) continuous functions to (Lipschitz) continuous functions
on E, then (H0) is clearly satisfied.

(ii) If (H0) is fulfilled, a major benefit of Proposition 2.1 is that the path continuity proper-
ties for a simple càdlàg Markov process can be in fact studied for a more regular version
of it, for which potential theoretical tools are available.

(iii) It is possible to ensure directly the existence of a cádlág right process given a transition
function, by means of potential theoretic tools. For the reader convenience we included
one such result in Appendix, Theorem 6.16.

Right processes and diffusions. From now on, throughout this section, we assume that
X = (Ω,F ,Ft, Xt, θt,Px) is a right Markov process on a Lusin topological space (E, τ) with
Borel σ-algebra B, which is càdlàg w.r.t. τ ; in particular, τ is a natural topology on E. The
lifetime and cemetry point of the process are denoted by ζ and ∆, respectively; we extend
any function u : E → R to E ∪ {∆} by setting u(∆) = 0. The resolvent of X is denoted by
U = (Uα)α>0; if β > 0, we set Uβ := (Uα+β)α>0. The first hitting time of a set A ∈ B by the
process X is defined by

TA := inf{t > 0 : Xt ∈ A}.

Recall that m is called a reference measure if m(A) = 0 implies that A is U -negligible,
i.e. U1(1A) ≡ 0. It is easy to check that if U is strong Feller (i.e. Uα(bB) ⊂ Cb(E) for one
(hence all) α > 0) and supp(m) = E, then m is a reference measure.

The following result is a main tool to show that if a process has continuous paths except
some m-negligible set, then it has automatically continuous paths except some m-innesential
set.

Proposition 2.3. The following assertions hold.

(i) The function v(x) := Px({ω : [0, ζ(ω)) 3 t 7−→ Xt(ω) is not continuous}), x ∈ E, is
U-excessive.

(ii) If Px({ω : [0, ζ(ω)) 3 t 7→ Xt(ω) is continuous}) = 1 U-a.e., then the equality holds
for all x ∈ E.

In particular, if m is a reference measure and the above equality holds m-a.e., then it
holds for all x ∈ E.

(iii) If m is a σ-finite measure on E and

Px({ω : [0, ζ(ω)) 3 t 7−→ Xt(ω) is continuous}) = 1 m-a.e.,

then the equality holds m-q.e.

Proof in Section 5.1.
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Definition 2.4. Let G ⊂ E be an open set. For a sequence Gn ⊂ G, n ≥ 1 of open subsets
such that Gn ⊂ Gn+1, n ≥ 1, consider the following sequence of (pairs of) stopping times
(Skn, T

k
n )k≥1:

S1
n := TGn , the first hitting time of Gn,

T 1
n := S1

n + TE\G ◦ θS1
n
, the first exit time from G after S1

n,

Skn := T k−1
n + TGn ◦ θTk−1

n
, the first hitting time of Gn afer T k−1

n ,

T kn := Skn + TE\G ◦ θSkn the first exit time from G after Skn.

We define

InG := (S1
n, T

1
n) ∪ (S2

n, T
2
n) ∪ · · · ∪ (Skn, T

k
n ) ∪ · · ·

IG := ∪
n
InG.

One can easily check that the definition of IG does not depend on the choice of the covering
Gn, n ≥ 1.

Remark 2.5. (i) Note that InG ⊂ In+1
G , n ≥ 1 and that for each ω ∈ Ω, IG(ω) is an open

set in [0,∞) representing the union of all intervals of time on which the trajectory
X·(ω) lies in G.

(ii) Clearly, if G = E then IG = (0,∞).

(iii) The reason of approximating G from inside by Gn, n ≥ 1 is the following: Suppose for
simplicity that G is a ball in Rd and X is a Rd-valued Brownian motion. Then ∂G is
made up of points which are regular for both G and Rd \ G, so that TRd\G ◦ θTG = 0
and the interval (TG, TG + TRd\G ◦ θTG) would be empty. However, this degeneracy can
be avoided by counting the time spent in G after the process (re)enters G, strictly, as
when considering the above approximation of G by Gn, n ≥ 1.

Further, by Gr we be denote the set of all regular points of G, i.e. x ∈ Gr if Px(TG =
0) = 1.

The following definition settles the notion of diffusion which we shall use for the rest of
the paper.

Definition 2.6. Let G ⊂ E be open.

(i) For x ∈ E, we say that X is a diffusion in G under Px if

(2.1) Px({ω : ∅ 6= IG(ω) ∩ [0, ζ(ω)) 3 t 7−→ Xt(ω) is continuous}) = 1.

(ii) If (2.1) holds for all x ∈ E (U-a.e., m-a.e, resp. m-q.e.) then we say that X is a
diffusion in G (U-a.e., m-a.e, resp. m-q.e.).

(iii) When G = E then in (i) and (ii) we simply say “diffusion” instead of “diffusion in
E”.
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If G ⊂ E is (finely) open, let XG := ((XG
t )t≥0,Px, x ∈ G) denote the right process on G

obtained by killing X upon leaving the set G, given by

XG
t :=

®
Xt, if t < TE\G ∧ ζ
∆, otherwise

.

We remark that if we set
G′ := Gr \ (E \G)r,

then G′ is the largest finely open set such that G ⊂ G′ densely (w.r.t. the fine topology), in
particular G ⊂ G′ ⊂ Gr and TE\G = TE\G′ , hence XG′ can be regarded as the completion
(or saturation, in potential theoretic terms) of XG in E by fine density.

We denote the resolvent of the killed process XG on G by UG := (UG
α )α>0, hence for all

f ∈ bB

(2.2) UG
α f(x) = Ex

®∫ TE\G

0

f(Xt) dt

´
, x ∈ G.

Remark 2.7. The right-hand side of (2.2) makes sense for all x ∈ E, hence we extend UG
α

to E accordingly. In fact, UG
α f extends from G to G′ by fine continuity, whilst on E \G′ it

vanishes. Moreover, the following relation holds for all f ∈ bB and α > 0:

(2.3) UG
α f = Uαf −Bα

E\GUαf on E.

The following result is a key tool that one allows to reduce the study the diffusion property
of X in G, to the study of the diffusion property for the killed process XG.

Proposition 2.8. Let G ⊂ E be open. The following assertions are equivalent:

(i) The process X is a diffusion in G (m-q.e. on E w.r.t. U).

(ii) The killed process XG is a diffusion (m-q.e. on G w.r.t. UG).

(iii) The killed process XG′ is a diffusion (m-q.e. on G′ w.r.t. UG′).

Proof in Section 5.1.

Let us conclude this paragraph with the following useful result. It follows by combining
Proposition 2.8 with Proposition 2.3, (iii), so we skip its formal proof.

Corollary 2.9. Let G ⊂ E be open. The following assertions are equivalent:

(i) The process X is a diffusion in G m-q.e. w.r.t. U .

(ii) The killed process XG is a diffusion (on G) m-a.e.

Remark 2.10. Let us emphasize that the proof of Corollary 2.9 required more effort in
comparison to that of Proposition 6.13 mainly because in contrast to Proposition 2.3, (i), the
function

E 3 x 7→ Px({ω : ∅ 6= IG(ω) ∩ [0, ζ(ω)) 3 t 7−→ Xt(ω) is continuous}) ∈ [0, 1]

is not necessarily excessive.
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Resolvents, generators, and martingale problems. In this paragraph we discuss sev-
eral useful connections between resolvents of Markov kernels, generators, and corresponding
martingale problems.

Let us first give the following general definition which is going to be used throughout the
entire paper:

Definition 2.11. Let L be a linear operator acting on a class D0 of real-valued B(E)-
measurable test functions such that for each f ∈ D0

E 3 x 7→ Lf(x) ∈ R is B(E)-measurable.

We say that a Markov process (Ω,Ft, Xt,Px, x ∈ E) with lifetime ζ on E solves the martingale
problem associated (m-a.e., if m is a given σ-finite measure on E) to (L,D0) if for each
f ∈ D0

(2.4) f(Xt∧ζ)−
∫ t∧ζ

0

Lf(Xr) dr, t ≥ 0

is a Ft-martingale w.r.t. Px, (m-a.e.) x ∈ E.

Now, let (Uα)α>0 be a resolvent of Markov kernels on E. Let α0 > 0 such that the kernels
Uα, α > α0 can be extended to bounded linear operators on Lp(m) for some 1 ≤ p < ∞; in
particular, it is necessary that m(A) = 0 implies Uα(1A) = 0 m-a.e., α ≥ 0. In this situation,
we say that the resolvent of kernels Uα0 can be extended to a resolvent on Lp(m).

If there exists α0 > 0 such that Uα0 can be extended to a resolvent on Lp(E,m) for some
p ≥ 1, we denote by (Lmp , D(Lmp )) the corresponding generator on Lp(E,m) given by

D(Lmp ) := {Uαf : f ∈ Lp(E,m)}(2.5)

Lmp Uαf := αUαf − f for al f ∈ Lp(E,m), α > α0;

recall that by the resolvent equation, the above definition does not depend on α.
Concerning the existence of a measure m such that U can be extended to a resolvent on

Lp(m), we can always rely on potential measures (i.e. measures of the type µ◦Uα), employing
the following known result (see e.g. [36] and [10]).

Proposition 2.12. For any σ-finite measure µ on E and α0 > 0, Uα0 extends to a strongly
continuous resolvent on Lp(E, µ ◦ Uα0) for each 1 ≤ p < ∞; in fact, if (Pt)t≥0 denotes the
corresponding semigroup regarded on L1(E, µ ◦Uα0), then ‖e−α0tPt‖L1 ≤ 1, t ≥ 0. Moreover,
if τ is a topology on E which generates B and lim

α→∞
αUαf = f point-wise on E for all

f ∈ bC(E), then choosing (xn)n≥1 to be a dense subset in E and setting µ :=
∑

1≤n<∞

1
2n
δxn,

we additionally have that µ ◦ Uα0 has full topological support.

Describing the domain of the generator on Lp(µ ◦ Uα) in the sense of (2.5) is not always
an easy task. A situation when we can easily get such information is when one starts from
the martingale problem:
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Proposition 2.13. Suppose that X is a Markov process with resolvent U such that Uα0

can be extended to a strongly continuous resolvent of bounded operators on Lp(E,m), with
generator (Lmp , D(Lmp )) given by (2.5). If X solves the martingale problem associated m-a.e.
to (L0,D0) in the sense of Definition 2.11 and D0 ∪ L0(D0) ⊂ Lp(E,m), then

D0 ⊂ D(Lmp )

Lmp f = L0f for all f ∈ D0,

i.e. (Lmp , D(Lmp )) is a (closed) extension of (L0,D0) on Lp(E,m).

Proof in Section 5.1.

A change-of-measure lemma. For technical reasons regarding the proof of Corol-
lary 4.10 below, it will be useful to be able to replace m with some equivalent finite measure,
without loosing information about the domain D(Lmp ) of the generator Lmp on Lp(m). For-
tunately, this is always possible due to the following simple yet general result, which will be
employed several times later on.

Lemma 2.14. Let 0 < ρ ∈ L1(m) ∩ L∞(m), α > α0, and consider the measure mρ
α :=

(ρ ·m) ◦ Uα.
If Uα0 extends to a strongly continuous resolvent on Lp(m) for some 1 ≤ p < ∞, then

mρ
α is equivalent to m and

D(Lmp ) ⊂ D(Lm
ρ
α

1 ),

Lm
ρ
α

1 f = Lmp f for all f ∈ D(Lmp ).

Proof in Section 5.1.

3 The main results

Having in mind Proposition 2.1, throughout this section we assume that X = (Ω,F ,Ft,
Xt, θt,Px) is a right Markov process on a Lusin topological space (E, τ), with lifetime ζ,
which is càdlàg with respect to τ ; in particular, τ is a natural topology. Further, let m be
a σ-finite measure on E such that the resolvent U of X is strongly continuous on Lp(m) for
some 1 ≤ p <∞. Also, we keep all the notations introduced in Section 2.

Let us first introduce some notions which are slight modifications of the usual ones.

Definition 3.1. (i) An increasing sequence (Fn)n≥1 of closed (respectively open) subsets
of E is called an m-nest of closed (respectively open) sets if

Px{sup
n
TE\Fn ≥ ζ} = 1 m-a.e.

(ii) A function u : E → R is called m-quasi-continuous (on short, m-q.c.) if there exists
an m-nest of closed (or open) sets (Fn)n≥1 such that u|Fn is continuous for each n ≥ 1.
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Note that if (Fn)n≥1 is an m-nest of open sets, then (Fn)n≥1 becomes a m-nest of closed
sets. Also, let us give here two general lemmas that are going to be employed in the proof
of the main result, namely Theorem 3.6.

Lemma 3.2. Suppose that (Fn)n≥1 is an m-nest of closed (or open) sets and G is a B-
measurable subset in E. If Gn := Fn ∩G, then

Px
ß

sup
n
TE\Gn ≥ TE\G ∧ ζ

™
= 1, m-a.e. x ∈ E.

Proof in Section 5.2.

Lemma 3.3. Suppose that (Fn)n≥1 is an m-nest of closed (or open) sets, and in either
situation set

(3.1) v := inf
n
B1
E\Fn on E.

Then the set [v > 0] is m-innesential.

Proof in Section 5.2.

The following definition settles the condition which is at the core of our main result.

Definition 3.4 (Locm(G)). For an open set G ⊂ E we say that condition Locm(G) holds
if there exist a sequence of functions (fn)n ⊂ bpB which are m-q.c. with some common
m-nest of open (respectively closed) sets (Fn)n≥1, and (ϕn)n ⊂ C(R,R+) with the following
properties:

(i) (fn)n separates the points of
⋃
n≥1

Fn∩G in the sense that for every G 3 y 6= x ∈
⋃
n≥1

Fn∩G

there exists n such that fn(x) < fn(y).

(ii) 0 ≤ ϕk(x)↗
k
x1[x>0] =: x+ for all x ∈ R and

(3.2) C := {ϕk(fn − ε) : n, k ≥ 1, ε ∈ R+} ⊂ D(Lmp ).

(iii) For all u ∈ C we have Lmp u = 0 m-a.e. on

◦

[̇u = 0]∩G ∩ Fn (respectively on [u =
0] ∩G ∩ Fn) for all n ≥ 1.

Remark 3.5. (i) If the functions fn, n ≥ 1 from Definition 3.4 are continuous, the m-
nest can simply be taken Fn := E, n ≥ 1. Also, we emphasize that the elements of the
m-nest are not required to be compact, because the compactness is actually related to the
fact that the process is càdlàg (which we already assumed), and not with the continuity
of the trajectories.
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(ii) As already observed right after Definition 3.4, an m-nest of open sets generates an m-
nest of closed sets if we take the closure of its elements. So working directly with m-nests
of closed sets sounds more convenient. However, condition (iii) from Definition 3.4 is
sensitive to the two cases, being more relaxed in the case of an m-nest of open sets; in
fact, in the case of an m-nest of closed sets, condition (iii) could pose difficulties if the
topological boundary of [u = 0] ∩ G ∩ Fn is not negligible with respect to m. However,
in our opinion this possible inconvenience is mostly theoretical; in fact, in practice we
can frequently choose the functions fn, n ≥ 1, to be continuous on E, as detailed in the
following two points.

(iii) Suppose we are in the case E = Rd and G is an open subset of E. For a function
f ∈ C∞c (Rd) such that f(0) > 0, and a sequence (xn)n≥1 ⊂ G which is dense in G, set

fn,k(x) := f(n(x− xk)), n, k ≥ 1, x ∈ Rd.

It is easy to see that for each k ≥ 1 there exists 1 ≤ n(k) <∞ such that fn,k ∈ C∞c (G)

for all n ≥ n(k), and if (fn)n≥1 is a renumbering of (fn,k)
n≥n(k)
k≥1 , then (fn)n≥1 satisfies

Locm(G), (i), for any m-nest.

(iv) If E is a separable Banach space and M ⊂ E is the state space of the Markov process
under consideration, we can mimic the construction from (i) as follows: Let (ln)n≥1 ⊂
E ′ be total, i.e., if x ∈ E, ln(x) = 0 for all n ≥ 1 implies x = 0, and (xk)k≥1 be a dense
subset in M . For each n ≥ 1, let fn ∈ C∞c (Rn) such that fn(0) > 0, and set

fn,k,N(x) := fn(N(l1(x− xk), · · · , ln(x− xk))), n, k ≥ 1, x ∈M.

Renumbering (fn,k,N)n,k,N≥1 as (fn)n≥1, we have that for every x 6= y from M , there
exists n ≥ 1 such that fn(x) < fn(y).

The central result of this paper is the following.

Theorem 3.6. Let G be an open subset of E. The following assertions hold.

(i) If condition Locm(G) is satisfied then X is a diffusion in G m-q.e.

(ii) Conversely, if X killed upon leaving G is a diffusion on G m-a.e., then for all m-q.c.
functions u ∈ D(Lmp )

Lmp u = 0 m-a.e. on

◦

[̇u = 0]∩G.

Proof in Section 5.2.

Remark 3.7. (i) Theorem 3.6, (i) remains true even if we drop the assumption that the
resolvent U extends on Lp(E,m), and we replace the generator (L,D(L)) as follows:
Assume that U respects the m-classes and let V ⊂ L0(E,m) s.t. for some α > 0 we
have Uα|f | < ∞ m-a.e. for all f ∈ V . Consider (L,Dα(L;V )) given by Dα(L;V ) :=
{Uαf : f ∈ V }, LUαf = αUαf − f for all f ∈ V .
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(ii) Theorem 3.6, (i) remains true if we drop the assumption that the process X is càdlàg
w.r.t. a Lusin topology on E, and assume instead that the topology is Lusin merely
relative to each element Fn of the m-nest that is worked with. This remark is in
particular useful in infinite dimensional Banach spaces, in the case when the process
X is càdlàg merely with respect to the weak topology which is not Lusin because it is
not metrizable; nevertheless it becomes Lusin relatively to any ball in the space. If a
norm-like function is α-excessive for some α ≥ 0, then one can deduce that the balls of
radius n ≥ 1 form a nest, hence taking into account the above remark our result could
still be applied to deduce the diffusion property in the weak topology.

The measure-free counterpart of Theorem 3.6. Before proceeding to the main result
of this paragraph, for the sake of comparison let us recall that following well known result.

Proposition 3.8 (cf. [17], Proposition 9.10). Suppose that E is a second countable locally
compact space and X is a standard process with Feller transition function, i.e. Pt(C0(E)) ⊂
C0(E) and lim

t→0
Ptf = f uniformly on E. If for any compact K ⊂ E and any open neigh-

bourhood D of K it holds that

(3.3) lim
t↘0

Pt(E \G, x)

t
= 0 uniformly on K,

then X is a diffusion.

Remark 3.9. If u ∈ pC0(E) and if we set G :=

◦

[̇u = 0] then uniformly on each compact
subset of G, in particular pointwise on G, we have

(3.4) lim
t↘0

Ptu(x)− u(x)

t
= lim

t↘0

Ptu(x)

t
≤ |u|∞Pt(E \G, x)

t
= 0.

Hence if Lu(x) := lim
t↘0

Ptu(x)−u(x)
t

, x ∈ E whenever the limit exists, then Lu = 0 on

◦

[̇u = 0];

this makes perfect match with the key property iii) of Locm(G) in Definition 3.4.

Our next aim is to show that Theorem 3.6 can be easily employed to extend Proposi-
tion 3.8 in much more general settings. To this end, assume that the process X is a càdlàg
right process on a Lusin topological space E, with resolvent U and transition function (Pt)t≥0.
However, this time we are not given a measure m on (E,B) for which we can directly employ
Theorem 3.6. Instead, for α > 0 consider the generator (L,Dα(L)) given by:

Dα(L) :=
{
u ∈ B : lim

t↘0

Ptu− u
t

exists U -a.e. on E and there exists Vu ∈ pB(E) such that

UαVu <∞ and

∣∣∣∣Ptu− ut

∣∣∣∣ ≤ Vu U -a.e. on E
}
,(3.5)

whilst

(3.6) Lu(x) := lim
t↘0

Ptu(x)− u(x)

t
, u ∈ Dα(L), x ∈ E U -a.e.
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Remark 3.10. If in the definition of the operator (L,Dα(L)) we assume that Vu is bounded,
then (L,Dα(L)) is similar to (yet still weaker than) the generator introduced by E. B. Dynkin,
[22], page 54; cf. also [24].

We introduce the following pointwise version of property Locm(G):

Definition 3.11 (Loc(G)). For an open set G ⊂ E we say that condition Loc(G) holds if
there exists (fn)n ⊂ C+

b (E), (ϕn)n ⊂ C(R,R+) and α0 > 0 with the following properties:

(i) (fn)n separates the points of G in the sense that for every G 3 x 6= y ∈ G there exists
n s.t. fn(x) < fn(y).

(ii) 0 ≤ ϕk(x)↗
k
x1[x>0] =: x+ for all x ∈ R and

C := {ϕk(fn − ε) : n, k ≥ 1, ε ∈ R+} ⊂ Dα0(L)

(iii) Lu = 0 on

◦

[̇u = 0]∩G for all u ∈ C.

The main result of this paragraph is the following.

Corollary 3.12. (i) If G is an open subset of E for which condition Loc(G) is satisfied,
then the Markov process X is a diffusion in G.

(ii) Conversely, if the killed process XG upon leaving G is a diffusion on G, then Lu = 0

on

◦

[̇u = 0]∩G U-a.e. for every u ∈ Dα(L) ∩ Cb(E), and everywhere if Lu is in addition a
finely (lower or upper) semi-continuous function.

Proof in Section 5.2.

The non-homogeneous case. Let us show that Corollary 3.12 can be easily extended
to non-homogeneous transition functions and their associated Markov processes. So, let us
assume that (Ps,s+t)s,t≥0 is the transition function of a non-homogeneous càdlàg Markov
process (Xt)t≥0 on a Lusin space E. Then

Qtf(s, x) := Ps,s+tf(s+ t, ·)(x) for all x ∈ E, s, t ≥ 0

is the transition function of the process Z := ((Xut , ut))t≥0 on the product space E× [0,∞),
where (ut)t≥0 is the uniform motion to the right. Suppose that Z has a version which is
a right process, denoted also by Z; for example, one can show that this is always true if
Ps,t is Feller, applying Proposition 2.1 to (Qt)t≥0. Let U := (Uα)α>0 denote the resolvent
associated to (Qt)t≥0 on E × [0,∞) and consider the parabolic generator (Λ, Dα(Λ)) on E
associated to (Ps,s+t)s,t≥0, α > 0 and s ≥ 0:

Dα(Λ) :=
{
F ∈ bB(E × [0,∞)) :

∣∣∣∣dFdt (·, ·)
∣∣∣∣
∞
<∞, lim

t↘0

Ps,s+tF (s, ·)− F (s, ·)
t

exists U -a.e,

and there exists VF such that Uα(VF ) <∞ such that∣∣∣∣QtF − F
t

∣∣∣∣ ≤ VF U -a.e on E × [0,∞)
}

ΛF (x, t) :=

Å
d

dt
+ Lt

ã
F (x, t) =

dF (x, ·)
dt

(t) + LtF (·, t)(x), F ∈ Dα(Λ), (x, t) ∈ E × [0,∞)
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where

LsF (·, s)(x) := lim
t↘0

Ps,t+sF (·, s)(x)− F (x, s)

t
, F ∈ Dα(Λ), (x, t) ∈ E × [0,∞).

Corollary 3.13. Assume that Loc(G) given in Definition 3.11 holds for G with (L,Dα(L))
replaced by (Ls, Dα(Λ)) for every s ≥ 0. Then the homogeneous process Z is a diffusion on‹G := G× [0,∞).

Proof in Section 5.2.

Domination hypothesis and diffusions in other natural topologies. Throughout
this paragraph we consider a slightly different framework than in the beginning of this
section, namely we still assume that X = (Ω,F ,Ft, Xt, θt,Px) is a right Markov process on a
Lusin measurable space (E,B), with lifetime ζ, but we do not fix a certain topology τ on E
with respect to which X is càdlàg. Instead, we would like to address the following question:
under which conditions it is true that if X is a diffusion in G m-q.e. with respect to one
natural topology, then it automatically enjoys the same property with respect to all natural
topologies? In other words, we are interested in understanding when the diffusion property
is stable under changing the (natural) topology.

Proposition 3.14. Suppose that condition (Dm) from Appendix holds and let τ and τ ′ be
two natural topologies. Then there exists a common nest of compact sets (Fn)n≥1 such that
τ |Fn = τ ′|Fn for all n ≥ 1. In particular, if G is open (with respect to τ or τ ′), then:

(i) X is a diffusion in G (m-q.e.) with respect to τ if and only if it is a diffusion in G
(m-q.e.) with respect to τ ′.

(ii) Condition Locm(G) holds with respect to τ if and only if it holds with respect to τ ′.

Proof in Section 5.2.

As an immediate consequence of Proposition 3.14 and Theorem 3.6, we conclude this
paragraph as follows:

Corollary 3.15. Assume that condition (Dm) is satisfied and let G ⊂ E be open with respect
to some natural topology. If Locm(G) holds, then X is a diffusion in G m-q.e. with respect
to all natural topologies.

4 Applications

4.1 Jump-Diffusions on domains in Hilbert spaces

Let (H, 〈·, ·〉) be a separable real Hilbert space endowed with the norm topology, and let

- σ : [0,∞) × H → Ls(H) be measurable, where Ls(H) denotes the space of bounded
and symmetric linear operators on H,

14



- (A(t))t≥0 be a family of densely defined linear operators on H such that the domains
D(A∗(t)) of the adjoint operators A∗(t), t ≥ 0 have the property that there exists a
countable subset (en)n≥1 ⊂ ∩

t≥0
D(A∗(t)) which is total in H, and [0,∞) 3 t→ A∗(t)x ∈

H is measurable for any x ∈ ∩
t≥0

D(A∗(t)),

- b : [0,∞)×D(b)→ H be measurable, where D(b) ∈ B(H),

- n(t, x; dy) be a Levy measure on H for each (t, x) ∈ [0,∞)×H such that

[0,∞)×H 3 (t, x)→
∫
B

1 ∧ |y|2 n(t, x; dy) ∈ [0,∞)

is measurable for all B ∈ B(H).

Further, we set

FC∞0 (H)

:=

®
{f : H → R, f(·) = ϕ(〈·, e1〉, . . . , 〈·, en〉) : ϕ ∈ C∞c (Rn), n ≥ 1} , if dim(H) =∞
C∞c (Rd), if H = Rd.

and consider the time-dependent integro-differential operator given by

Ltf(x) :=
1

2
Tr[σ(t, x)2D2f(x)] + 〈x,A∗(t)Df(x)〉+ 〈b(t, x), Df(x)〉

+

∫
H

[
f(x+ y)− f(x)− 〈y,Df(x)〉

1 + |y|2
]
n(t, x; dy)

for all t ≥ 0, x ∈ D(b), f ∈ FC∞0 (H).
Having in mind situations where one can solve the martingale problem associated to Lt

only for some allowed starting points from D(b), let I ⊂ [0,∞) be an interval and M ⊂ D(b)
be a B(H)-measurable set.

On the class of test functions

D := {f : I ×H → R : f(t, x) = ϕ(t, 〈x, e1〉, . . . , 〈x, en〉), ϕ ∈ C∞c (I × Rn), n ≥ 1}

let us consider the parabolic operator associated to Lt given by

Lf =

Å
∂

∂t
+ Lt

ã
f for all f ∈ D.

Set:

F := {(t, x) ∈ [0,∞)× Rd : n(t, x; ·) = 0} and

G :=
◦
F ∩ (I ×M) , i.e. the interior of F ∩ (I ×M) relative to the trace topology on I ×M.

Corollary 4.1. Let X be any càdlàg right Markov process on I ×M with resolvent U , and
m a σ-finite measure on I ×M such that:
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(i) For some α0 the resolvent Uα0 can be extended to a strongly continuous resolvent on
Lp(I ×M,m) for some 1 ≤ p <∞,

(ii) D ∪ L(D) ⊂ Lp(I ×M,m),

(iii) X solves the martingale problem associated m-a.e. to (L,D) in the sense of Defini-
tion 2.11.

Then X is a diffusion in G m-q.e.

Proof in Section 5.3.

Corollary 4.2. Let X be a càdlàg right Markov process on I ×M with resolvent U , which
is a solution to the martingale problem associated to (L,D). Suppose that the coefficients of
L are such that Uα0(|Lf |) < ∞ for all f ∈ D; this is always fulfilled if the coefficients are
uniformly bounded in (t, x). Then X is diffusion in G.

Proof in Section 5.3.

4.2 Measure-valued branching processes

Let E be a Lusin topological space and denote by M(E) the space of all finite (positive)
measures on E, endowed with the weak topology and corresponding Borel σ-algebra denoted
by M(E). Let ϕ be a branching mechanism, i.e.

ϕ(x, λ) = −b(x)λ− c(x)λ2 +

∫ ∞
0

(1− e−λu − λu)n(x, du), x ∈ E, λ ≥ 0,

where

- 0 ≤ c and b are bounded B(E)-measurable functions,

- n is a (positive) kernel on E such that x 7→
∫∞

0
u ∨ u2 n(x, du) is bounded.

Further, let ξ(t)t≥0 be a standard (hence càdlàg) Markov process on E with transition func-
tion (Pt)t≥0, and consider the nonlinear semigroup (Vt)t≥0 on pbB(E) given by

(4.1) Vtf(x) := v(t, x), x ∈ E, t ∈ [0,∞), f ∈ pbB(E),

where v is the unique solution to the non-linear evolution equation in mild form

(4.2) v(t, x) = Ptf(x) +

∫ t

0

Ps(ϕ(·, v(t− s, ·)))(x) ds, t ≥ 0, x ∈ E.

Informally, if A is the generator of (Pt)t≥0, then v(t, x) solves

(4.3)


dv

dt
(t, x) = Av(t, x) + ϕ(x, v(t, x))

u(0, x) = f(x)
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A key feature of the nonlinear operators f 7→ Vtf is that they are negative definite, so they
induce a linear semigroup of sub-Markovian kernels (Qt)t≥0 on M(E) uniquely characterized
by

(4.4) Qt(ef )(µ) = eVtf (µ), µ ∈M(E), t ≥ 0, f ∈ pbB(E),

where ef : M(E)→ [0, 1] is given by

ef (µ) = e−
∫
E f(x) µ(dx), for each f ∈ pbB(E).

Let X := (Xt)t>0 be a càdlàg right process on M(E) with transition function (Qt)t≥0;
such a process always exists, see e.g. [24], [28], [3] and the references therein. Recall that
X := (Xt)t>0 is called superprocess and ξ(t)t>0 is the spatial motion of X.

As in [24], let us consider the following generator of X:

D(A) = {Uα(f) : f ∈ bB(E) is finely continuous , α > 0}
AUαf := αUαf − f, for each Uαf ∈ D(A).

Now we are in the position give a description of the generator of X. Set:

D00(L) := {M(E) 3 µ 7→ ψ(µ(f1), · · · , µ(fn)) ∈ R : n ≥ 1, (fi)1≤i≤n ⊂ D(A), ψ ∈ C∞0 (Rn)}

LF (µ) =

∫
E

c(x)F ′′(µ;x)µ(dx) +

∫
E

[AF ′(µ; ·)(x)− b(x)F ′(µ;x)]µ(dx)

+

∫
E

∫ ∞
0

[F (µ+ uδx)− F (µ)− uF ′(µ;x)]n(x, du)µ(dx), F ∈ D00(L), µ ∈M(E),

where

(4.5) F ′(µ;x) = lim
h→0

F (µ+ hδx)− F (µ)

h
, µ ∈M(E), x ∈ E.

Then, the following result was obtained in [24]:

Theorem 4.3 (cf. Theorem 4.1 from [24]). If F ∈ D0(L) then

(4.6) lim
t↘0

QtF (µ)− F (µ)

t
= LF (µ), µ ∈M(E).

In particular, F (Xt) − F (X0) −
∫ t

0
LF (Xs)ds, t ≥ 0 is an a.s. locally bounded càdlàg mar-

tingale.

In addition, the following estimate on LF can be easily deduced:

Lemma 4.4. If F ∈ D00(L) then

(4.7) |LF (µ)| ≤ cµ(E) = cµ(1), µ ∈M(E),

where c is some constant that does not depend on µ. In particular, there exists a generic
constant c > 0 such that

(4.8) |(QtF (µ)− F (µ))/t| ≤ cµ(1), µ ∈M(E),

so that (L,D00(L)) ⊂ (L,Dα(L)) for some big enough α > 0, where the former generator is
the one given by (3.5)-(3.6) with Vu(µ) := cµ(1), µ ∈M(E).

Proof in Section 5.3.
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Corollary 4.5. Let N := {x ∈ E : n(x, ·) = 0} and U be the resolvent of the base process ξ.
The following assertion are equivalent:

(i) There exists an open set G ⊂ M(E) such that X is a diffusion in G in the sense of
Definition 2.6.

(ii) n(x, ·) ≡ 0 for every x ∈ E.

(iii) The branching process X is a diffusion (on M(E)).

Proof in Section 5.3.

According to [15], X := (Xt)t>0 is called pure branching superprocess provided that it
has no spatial motion, that is, each point of E is a trap for ξ(t)t>0 (i.e., Px(ξt = x) = 1 for
all t> 0 and x ∈ E).

As an immediate consequence of Corollary 4.5 we get the following:

Corollary 4.6. Assume that X := (Xt)t>0 is a pure branching superprocess. Then X is a
diffusion on M(E) if and only if n ≡ 0.

Branching processes with interactions. Now we consider a generalization of (L,D00(L))
that allow the branching particles to interact, more precisely their base movement and
branching mechanism are allowed to depend on the current state of the population. One
general and direct way to do this is to simply let the coefficients of (L,D00(L)) depend on
µ ∈ M(E). Proving existence and (especially) uniqueness of such measure-valued processes
with interactions is highly non-trivial. However, recall that our purpose here is another one:
Assuming that such a process exists (be it non-unique), that it is a (right) Markov process
and has càdlàg paths, can we decide whether it has continuous paths or not, e.g. merely by
looking at its generator through the martingale problem? Therefore, in contrast with the
beginning of this section, in this paragraph we start with the generator in an abstract form,
while the well-posedeness of the martingale problem shall be an assumption.

We consider that M(E) is endowed with a Lusin topology τ , e.g. the weak topology. Let‹ϕ be a branching mechanism with interaction, i.e.‹ϕ(x, µ, λ) = −b̃(x, µ)λ− c̃(x, µ)λ2+

∫ ∞
0

(1−e−λu−λu)ñ(x, µ, du), x ∈ E, µ ∈M(E), λ ≥ 0,

where

- 0 ≤ c̃ and b̃ are bounded B(E)-measurable functions,

- ñ is a (positive) kernel on E × M(E) such that (x, µ) 7→
∫∞

0
u ∨ u2 ñ(x, µ, du) is

bounded.

Further, let Ã(µ)µ∈M(E) be a family of linear operators defined on a common class of test

functions ‹D ⊂ {f : E → R : f is B(E)-measurable and bounded},

D 3 f 7→ Ã(µ)f ∈ bB(E).
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Also, we assume that ‹D separates the measures from M(E).‹D00(L̃) :=
¶
M(E) 3 µ 7→ ψ(µ(f1), · · · , µ(fn) ∈ R : n ≥ 1, (fi)1≤i≤n ⊂ ‹D,ψ ∈ C∞0 (Rn)

©
L̃F (µ) =

∫
E

c(x, µ)F ′′(µ;x)µ(dx) +

∫
E

[Ã(µ)F ′(µ; ·)(x)− b(x, µ)F ′(µ;x)]µ(dx)

+

∫
E

∫ ∞
0

[F (µ+ uδx)− F (µ)− uF ′(µ;x)]n(x, µ, du)µ(dx)

for F ∈ ‹D00(L̃), µ ∈M(E).

Corollary 4.7. Assume that there exists a right Markov process X := (Xt)t≥0 on M(E)
with a.s. càdlàg paths with respect to τ , such that

(i) X solves the martingale problem associated to (L̃, ‹D00(L̃)) in the sense of Defini-
tion 2.11.

(ii) There exists α0 > 0 such that

Eµ{Xt(1)} ≤ eα0tµ(1), µ ∈M(E), t ≥ 0.

Then, if G denotes the interior (w.r.t. τ) of the set {µ ∈ M(E) :
∫
E
n(·, µ, ·) = 0}, we have

that X is a diffusion in G.

Proof in Section 5.3.

4.3 Diffusions associated with generalized Dirichlet forms

Following [35], let (E,B,m) be as in Section 2, and consider (A,V) a real valued coercive
closed form on H := L2(E,m), i.e. V) is dense in H and A : V ×V → R is a positive definite
bilinear form s.t.

- V is a Hilbert space with inner product Ã1(u, v) :=
1

2
(A(u, v)+A(v, u))+〈u, v〉H, u, v ∈ V .

- the weak sector condition |A(u, v)| ≤ KÃ1(u, u)
1
2 Ã1(v, v)

1
2 holds for some constant K > 0

and all u, v ∈ V .

In particular, A corresponds uniquely to a strongly continuous resolvent U := (Uα)α>0 of
contractions on H, with generator (L,D(L)) given by

D(L) := {Uαf : f ∈ H}
L(Uαf) := αUαf − f for al f ∈ H.

We are interested in non-sectorial perturbations of L: let (Λ, D(Λ,H)) be a linear operator
on H s.t.:

- (Λ, D(Λ,H)) is the generator of a strongly continuous semigroup of contractions on H,
which can also be restricted to a strongly continuous semigroup on V , with generator
(Λ, D(Λ,V)).
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Throughout we consider the embedding V ↪→ H ≡ H′ ↪→ V ′. Then by [35], Lemma 2.3,
Λ : D(Λ,H) ∩ V → V ′ is closable on V , and the closure is denoted by (Λ,F). In particular,
F is a Hilbert space w.r.t. the graph norm | · |2F := | · |V + |Λ(·)|V ′ . Also, the semigroup
generated by the adjoint (Λ̂, D(Λ̂,H)) of (Λ, D(Λ,H)) on H can be extended to a strongly
continuous semigroup on V ′. The corresponding generator on V ′ denoted by (Λ̂, D(Λ̂,V ′))
is the dual of (Λ, D(Λ,V)). In particular, F̂ := D(Λ̂,V ′) ∩ V is a Hilbert space w.r.t. the
graph norm | · |2F̂ := | · |V + |Λ̂(·)|V ′ . By [35], Lemma 2.7 we have

〈Λu, v〉 = 〈u, Λ̂v〉 for all u ∈ F , v ∈ F̂ ,

so the following bilinear form associated with (A,V) and (Λ, D(Λ,H)) is well defined:

E(u, v) :=

®
A(u, v)− 〈Λu, v〉 if u ∈ F , v ∈ V
A(u, v)− 〈Λ̂v, u〉 if u ∈ V , v ∈ F̂

,

and Eα(u, v) := E(u, v) + α〈u, v〉H for all α > 0. By [35], Proposition 3.4 there exist two
resolvent families of continuous linear bijections Wα : V ′ → F and Ŵα : V ′ → F̂ s.t.

(4.9) Eα(Wαf, v) = 〈f, v〉 = Eα(v, Ŵαf) for all f ∈ V ′, v ∈ V .

Moreover, by [35], Proposition 3.6 the restrictions of Wα (resp. Ŵα) to H, denoted by Gα

(resp. Ĝα) are strongly continuous resolvents of contractions on H, and Ĝα is the adjoint of
Gα. We denote by (LΛ, D(LΛ)) the infinitezimal generator associated to (Gα)α>0 on H.

Lemma 4.8. It holds that D(L0) ∩D(Λ,H) ⊂ D(LΛ) and

LΛu = L0u+ Λu for all u ∈ D(L0) ∩D(Λ,H).

Proof in Section 5.3.

Further, it is assumed that E is a Lusin topological space whose Borel σ-algebra is
precisely B. Also (E ,V) is supposed to be a generalized Dirichlet form, i.e. the resolvent
(Gα)α>0 is sub-Markovian, and also that it has associated a càdlàg right Markov process
X = (Ω,F ,Ft, Xt, θt,Px) on E with lifetime ζ, in the sense that the resolvent of X can be
extended on L2(E,m) and it coincides with (Gα)α>0 there.

Now, as a coroboration of Lemma 4.8 and Theorem 3.6, we can conclude this subsection
with the following:

Corollary 4.9. Let G ⊂ E be open and assume that Locm(G) (see Definition 3.4) holds
with D(Lmp ) from (ii) replaced by D(L0) ∩ D(Λ,H), and Lmp from (iii) replaced by L0 + Λ.
Then X is a diffusion in G m-q.e.

4.4 Diffusions associated with Lp-semigroups

Recall that in the case when (Pt)t≥0 is the transition function of a right process with
state space E and m is a subinvariant measure w.r.t. (Pt)t≥0, i.e.,

∫
E
Ptfdm ≤

∫
E
fdm for
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all f ∈ pB and t ≥ 0, then (Pt)t≥0 induces such a strongly continuous semigroup of sub-
Markovian contractions on Lp(E,m). A converse of this statement was obtained in [7], in
particular, it was given an answer to the following question formulated by G. Mokobodzki in
1991 and addressed in [21]: given a semi-Dirichlet form (E , D(E)) on L2(E,m), can we find
a Lusin topology on E such that B is its Borel σ-algebra and (E , D(E)) is quasi-regular with
respect to this topology, thus ensuring the association of a càdlàg right (in fact standard)
process?

Now we readdress the problem raised by G. Mokobodzki by updating the required path
regularity of the process as follows: Given a strongly continuous semigroup of sub-Markovian
contractions (Pt)t≥0 on Lp(E,m), where (E,B,m) is a σ-finite measure space, under which
conditions is it possible to find a topology on E and a right Markov process with continuous
paths (i.e. a diffusion) which corresponds to (Pt)t≥0? It is important to mention here that
we do not assume that the semigroup is quasi-regular in any sense.

To answer this question, let us fix p ∈ [1,∞) and (Pt)t≥0 a strongly continuous semigroup
of sub-Markovian contractions on Lp(E,m), where (E,B) is a Lusin measurable space and m
is a σ-finite measure on (E,B). Let (Vα)α>0 be the sub-Markovian resolvent of contractions
on Lp(E,m) induced by (Pt)t≥0 on Lp(E,m), Vα =

∫∞
0
e−αtPtdt, α > 0. An element u ∈

Lp+(E,m) is called β-potential provided that αVβ+αu ≤ u for all α > 0. Let Pβ be the set of
all β-potentials. It is known that if u, u′ ∈ Pβ, u ≤ u′, then there exists Rβ(u−u′) ∈ Pβ, i.e.
the réduite of u − u′, defined by Rβ(u − u′) =

∧
{v ∈ Pβ : v ≥ u − u′}; here

∧
denotes the

infimum in Pβ. An element u ∈ Pβ is called regular if for every sequence (un)n ⊂ Pβ with
un ↗ u we have Rβ(u − un) ↘ 0. Recall that by [7], Lemma 3.1, that u ∈ Pβ is regular if
and only if Rβ(u − nVnu)−→

n
0; also, if Vβ = (Vβ+α)α>0 is the resolvent of a right process

and u is a Vβ-excessive function, u < ∞, and u ∈ Lp(E,m), then u is regular if and only if
there exists a continuous additive functional whose potential equals u m-a.e.

Consider the following Lp-version of condition (Dm) from Appendix, for β > 0:

(Dp
m) There exists fo ∈ Lp(E,m) strictly positive such that every β-potential dominated by

Vβfo is regular.

Corollary 4.10. Let p ∈ [1,∞) and (Pt)t≥0 be a strongly continuous semigroup of sub-
Markovian bounded operators on Lp(E,m), where (E,B) is a Lusin measurable space and m
is a σ-finite measure on (E,B). Let (Lmp , D(Lmp )) be the Lp-generator of (Pt)t≥0. Suppose that
condition (Dp

m) as well as the following version of condition Locm(G), G = E are satisfied:fiLocm. There exist a sequence of bounded B-measurable functions (gn)n≥1 from Lp(E,m) and
(ϕn)n≥1 ⊂ C(R,R+) such that:

(i) (gn)n≥1 separates the set of all positive finite measures on E.

(ii) 0 ≤ ϕk(x)↗
k
x1[x>0] =: x+ for all x ∈ R and if for some β > 0 we define fn :=

Vβgn, n ≥ 1, then 0 ≤ fn ∈ L∞(m) and

(4.10) C := {ϕk(±fn + ε) : n, k ≥ 1, ε ∈ R} ⊂ D(Lmp ) ∪ Vα(L∞),

for some (hence all) α > 0, where (Vα)α is the resolvent of (Pt)t≥0, which note that on
L∞ is well defined for all α > 0.
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(iii) Lu = 0 m-a.e. on [u = 0] for all u ∈ C.

Then there exist a Lusin topological space Eo with E ⊂ Eo, E ∈ Bo (the σ-algebra of all
Borel subsets of Eo), B = Bo|E, and a (Borel) right process X with state space Eo, which is
a diffusion mo-q.e., such that the transition function of X regarded as a family of operators
on Lp(Eo,mo), coincides with (Pt)t≥0, where mo is the measure on (Eo,Bo) extending m with
zero on Eo \ E.

Proof in Section 5.3.

Remark 4.11. Note that condition (4.10) is slightly different than condition ii) from Def-
inition 3.4, in the sense that C is richer in (4.10), in particular it could also contain ele-
ments that are lower bounded by a strictly positive constant, thus not belonging to Lp(m) if
m(E) =∞. This is why we are lead to relax the inclusion C ⊂ D(Lmp ) to C ⊂ D(Lmp )∪Vα(L∞).

5 Proofs

In this section we collect the proofs of the results presented above, grouping them ac-
cording to the corresponding sections.

5.1 Proofs for Section 2

Proof of Proposition 2.1. By dominated convergence and the right-continuity of X it
follows that lim

α→∞
αUαf = f point-wise on E for all f ∈ C. Hence we can apply [12,

Proposition 2.1] and Theorem 6.15 from Appendix to construct a right Markov process
X ′ = (Ω′,F ′,F ′t, X ′t, θ′t,P′

x) on a larger Lusin topological space (E ′, τ ′) such that E ⊂ E ′ is
B(E ′)-measurable and τ ′|E ⊂ τ , whose resolvent denoted by U ′ is an extension of U from E
to E ′, that is (U ′αf)|E = Uα(f |E) for all α > 0 and f ∈ bB(E ′). Let D be the countable set
of dyadics in [0,∞), and denote by DE the space of the restrictions to D of all càdlàg paths
from [0,∞) to E (resp. E ′). Also, consider the product E ′D endowed with the canonical
σ-algebra.

Now, by [19], Chapter IV, pages 91-92 we obtain that DE is a measurable subset of E ′D,
so that we can regard the law Px ◦ (Xx)−1 on DE as a probability on E ′D supported on DE.
But now, because any probability on E ′D is determined by its finite dimensional marginals,
we deduce that as laws on E ′D,

Px ◦ (Xx)−1 = P′x ◦ (X ′)−1 for all x ∈ E.

Therefore, P′x ◦ (X ′)−1 is also supported on DE for all x ∈ E, so under P′x, x ∈ E, the paths
of X ′ are restrictions to D of càdlàg paths in E w.r.t τ . Since τ ′|E ⊂ τ , we deduce that
the entire paths of X ′ lie in E and are càdlàg with respect to τ . This means that the right
process X ′ can be restricted to E and has càdlàg paths there.

Proof of Proposition 2.3. (i). The proof follows by similar arguments as in [12], Propo-
sition 5.1, (i); see also [20].

(iii). Under the hypothesis we have that the finely open set [v > 0] is U -negligible, hence
empty (cf. Remark 6.12, (i)), where v is the U -excessive function from (i).
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The second part of the statement follows by the first one since, under the assumption,
m([v > 0]) implies that [v > 0] is U -negligible.

(iii). It follows similarly to the proof of (ii), but this time employing Remark 6.12, (ii).

Proof of Proposition 2.8. Let us prove first the equivalence of the “pointwise” versions
of the assertions. Let Gn, n ≥ 1 be a sequence as in Definition 2.4.

(i) ⇒ (ii). If x ∈ G then one can easily verify that Px-a.s. we have inf
n
S1
n = 0 and

T 1
n = TE\G, n ≥ 1, hence (0, ζ ∧ TE\G) ⊂ IG ∩ [0, ζ).

(ii) ⇒ (i). Let d be a metric on E which generates the topology. By the strong Markov
property, we get for each k, n ≥ 1

0 ≤ Ex
 ∑
Skn<s<T

k
n

d(Xs, Xs−)

 = Ex
 ∑
Skn<s<T

k
n

d(Xs, Xs−);Skn <∞


= Ex

EXSkn

 ∑
0<s<TE\G

d(Xs, Xs−)

 ;Skn <∞


= 0,

where the last equality follows from assumption (ii) and the fact that due to the right
continuity of X, XSkn

∈ Gn ⊂ G on Skn < ∞ Px-a.s. for all x ∈ E. In other words, we
obtained for each k ≥ 1

Px
{
ω : Xt−(ω) 6= Xt(ω) for some t ∈ (Skn(ω), T kn (ω)) ∩ [0, ζ(ω) 6= ∅

}
= 0,

so assertion (i) follows by the fact that IG =
⋃
n

⋃
k

(
Skn(ω), T kn (ω)

)
.

(ii) ⇒ (iii). To this end, assume that (ii) holds and recall that the process XG′ killed
upon leaving G′ := E \ (E \G)r, is a right Markov process on G′, so by Proposition 2.3, (i),
the function

vG′(x) := Px({ω : [0, ζ ∧ TE\G(ω)) 3 t 7−→ Xt(ω) is not continuous}), x ∈ G′,

is excessive w.r.t. XG′ , hence finely continuous on G′. Since G is finely dense in G′ and
because vG′ = vG = 0 on G, it follows that vG′ = 0 on G′.

Since TE\G = TE\G′ Px-a.s. for all x ∈ G, the implication (iii) ⇒ (ii) is clear.
Let us now deal with the m-q.e. version of the equivalences:
(i) ⇒ (ii). Suppose that N ⊂ E is an m-inessential set (w.r.t. U) such that (2.1) holds

for all x ∈ E \N . Then it follows immediately that N ∩G is m-inessential w.r.t. UG on G,
hence this implication is proved.

(ii)⇒ (i). The converse of the above implication is not as trivial as the direct one because
in general it is not true that an m-inessential set w.r.t. UG is also an m-inessential set w.r.t.
U . Nevertheless, by Proposition 2.3, the function

G 3 x 7→ vG(x) := Px({ω : [0, ζG(ω)) 3 t 7−→ Xt(ω) is not continuous})

is UG-excessive. Now, if (ii) holds then clearly m([vG < 1]) = 0. Also, since vG is UG-
excessive, the set [vG > 0] is finely open w.r.t. UG. But a subset of G which is finely
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open w.r.t. UG is also finely open w.r.t. to U , hence [vG > 0] is finely open w.r.t. U and
m-negligible. Consequently, by remark 6.12 we have that [vG > 0] is m-polar, hence by the
same remark 6.12 it is contained in an m-inessential set (w.r.t. U).

(ii) ⇔ (iii). The implication (iii) ⇒ (ii) follows immediately since [VG > 0] ⊂ [vG′ > 0].
The converse follows by applying (i)⇒ (ii) with E replaced by G′, noticing that in this case
we have IG ∩ [0, ζG) = (0, ζG′).

Proof of Proposition 2.13. Since Uα0 is strongly continuous on Lp(m), so is (Pt)t≥0, and
the generator given by (2.5) can also be described by

D(Lmp ) :=

ß
f ∈ Lp(E,m) : lim

t→0

Ptf − f
t

exists in Lp(E,m)

™
Lmp (f) := lim

t→0

Ptf − f
t

for al f ∈ D(Lmp ).

So, if f ∈ D0, by taking expectations in (2.4) we have

Ptf(x)− f(x) = Ex
®∫ t∧ζ

0

L0f(Xs) ds

´
=

∫ t

0

PsL0f(x) ds m-a.e.,

hence

Lmp f = lim
t→0

Ptf − f
t

= lim
t→0

1

t

∫ t

0

PsL0f ds = L0f in Lp(E,m).

Proof of Lemma 2.14. First of all, note that mρ
α << m and Lp(m) ⊂ L1(mρ

α), since∫
E

|f | dmρ
α =

∫
E

ρUα|f | dm ≤ |ρ|Lp∗ (m)|Uα|f ||Lp(m) <∞,

where 1
p

+ 1
p∗ = 1.

To show that m << mρ
α, if mρ

α(A) = 0 then Uα1A = 0 m-a.e. for all α > 0. Therefore,
lim
α→∞

αUα1A = 1A in Lp(m) and m(A) = 0.

Now, if f ∈ D(Lmp ), there exists g ∈ Lp(m) s.t. f = Uαg in Lp(m), hence by the above
inclusion, the equality holds also in L1(mρ

α). The statement now follows from definition (2.5)
and Proposition 2.12

5.2 Proofs for Section 3

Proof of Lemma 3.2. Clearly, TE\Gn ≤ TE\G hence sup
n
TE\Gn ≤ TE\G a.s. If sup

n
TE\Gn(ω) <

TE\G(ω) it means that ζ(ω) ≤ sup
n
TE\Fn(ω) < TE\G(ω), hence the result follows.

Proof of Lemma 3.3. Clearly, since (Fn)n≥1 is an m-nest, we get that m([v > 0]) = 0,
so it remains to prove that Px(T[v>0] = ∞) = 1 for all x ∈ [v = 0], or equivalently, that
B1

[v>0] = 0 on [v = 0]. But the last equality is clearly satisfied if R1
[v>0] = 0 on [v = 0], so

let us prove that this latter property holds. In fact, because [v > 0] = ∪
k
[v > 1/k] hence
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lim
k
R1

[v>1/k] = R1
[v>0], it is sufficient to prove that R1

[v>1/k] = 0 on [v = 0] for all k ≥ 1. To

this end, note that vn := B1
E\Fn

is 1-excessive for every n ≥ 1, hence

R1
[v>1/k] = inf{w : w is 1-excessive and w ≥ 1 on [v > 1/k]}

≤ inf
n
kvn = 0 on [v = 0],

which completes the proof.

Proof of Theorem 3.6. (i). Recall that we set ζG := ζ ∧ TE\G. By Corollary 2.9, it is
sufficient (also necessary) to prove that the killed process XG is a diffusion m-a.e., that is

Px({ω : [0, ζG(ω)) 3 t 7−→ Xt(ω) is continuous}) = 1 m-a.e. on G

We show this in five steps.

Step I. Let (Fi)i≥1 be a common m-nest of open (respectively closed sets) for (fn)n≥1 and
set Gi := Fi ∩ G, i ≥ 1. By Lemma 3.2 and the remark just above it, we have m-a.e. on G
that

Px {ω : Xt−(ω) 6= Xt(ω) for some t ∈ (0, ζG(ω))}

= Px
{⋃
i≥1

{ω : Xt−(ω) 6= Xt(ω) for some t ∈ (0, TE\Gi(ω))}

}

≤ Px
⋃
i≥1

⋃
n≥1

⋃
s∈Q+

⋃
ε∈Q+

Ωi,n,s,ε

 ,

where

Ωi,n,s,ε := {fn(Xs) < ε, fn(Xs+T[fn≥ε]◦θs) > ε, Xs ∈ Gi, T[fn≥ε] ◦ θs < (TE\Gi ◦ θs}.

Indeed, the equality is clear, and if Fi 3 Xt−(ω) 6= Xt(ω) ∈ Gi for some i, then by condition
Locm(G), (i), there exists n ≥ 1 and ε ∈ Q s.t. fn(Xt−(ω)) < ε < fn(Xt(ω)). Since fn is
continuous on each Fi, there exists s ∈ Q+ s.t. fn(Xs(ω)) < ε and t is the first time when
X·(ω) hits [fn ≥ ε] (but also [fn > ε]) after time s, i.e. t = s+ T[fn≥ε] ◦ θs(ω), which proves
the assertion.

Step II. By Step I, it is sufficient to prove that for each n ≥ 1, s > 0 and ε ∈ R+ we have
m-a.e. on G

(5.1) Px
Ä¶
fn(Xs) < ε, fn(Xs+T[fn≥ε]◦θs) > ε, Xs ∈ Gi, T[fn≥ε] ◦ θs < TE\Gi ◦ θs

©ä
= 0.

But by the strong Markov property

Px
({
fn(Xs) < ε, fn

Ä
Xs+T[fn≥ε]◦θs

ä
> ε, Xs ∈ Gi, T[fn≥ε] ◦ θs < TE\Gi ◦ θs

})
= Ex

¶
1[fn<ε]∩Gi(Xs) EXs

¶
1[fn>ε](XT[fn≥ε]

) ; T[fn≥ε] < TE\Gi
©©

,

hence (5.1) holds if Ex
¶

1[fn>ε](XT[fn≥ε]
) ; T[fn≥ε] < TE\Gi

©
= 0 m-a.e. on [fn < ε]∩Gi, which

is in turn true if

(5.2) B1
[fn≥ε]∪(E\Gi)(fn − ε)

+ = 0 m-a.e. on [fn < ε] ∩Gi.
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Step III. Since (fn − ε)+ = sup
k
ϕk(fn − ε) we get

B1
[fn≥ε]∪(E\Gi)(fn − ε)

+ = lim
k
B1

[fn≥ε]∪(E\Gi)ϕk(fn − ε) m-a.e.,

hence relation (5.2) is true if for each k ≥ 1

(5.3) B1
[fn≥ε]∪(E\Gi)ϕk(fn − ε) = 0 on [fn < ε] ∩Gi m-a.e.

Step IV. Now we show that (5.3) holds, which completes the proof. Let u := ϕk(fn−ε) ∈ C
and f ∈ Lp(E,m) such that u = U1f m-a.e. By condition Locm(G), (iii), we have

f = Lu− u = 0 m-a.e. on

◦

[̇u = 0]∩Gi (respectively on [u = 0] ∩Gi).

Now, the trick is to choose f ∗ : E → R a measurable version of f such that

f ∗ = 0 pointwise on

◦

[̇u = 0]∩Gi (respectively on [u = 0] ∩Gi).

Note that U1f
∗ is defined merely m-a.e. and U1f

∗ = u m-a.e., but in order to rigorously be
able to replace u with U1f

∗ in (5.3), as we plan to do in the sequel, we need the previous
equality to hold m-q.e. To show that this is indeed the case, let v be the function defined
in Lemma 3.3 and consider the sets [U1|f ∗| =∞] and [v > 0] which are both m-innesential.
Then set

E0 := [U1|f ∗| <∞] ∩ [v = 0],

so that E \ E0 is also m-inessential. In particular, E0 is finely open and

- Px{TE\E0 =∞} = 1 for all x ∈ E0,

- Px{sup
n
TE0\Fn ≥ ζ} = 1, x ∈ E0,

- u|E0 and U1f
∗|E0 are finely continuous on E0,

where the second property follows by Lemma 3.3. Therefore, by taking the restriction of X
and U to E0 and since m([|u|E0− (U1f

∗)|E0| > 0]) = 0, we can apply Remark 6.12, (ii) on E0

to deduce that that u|E0 = (U1f
∗)|E0 m-q.e. on E0, and finally, since E \E0 is m-innesential,

that
u = U1f

∗ m-q.e. on E

Let us generically set A := [fn ≥ ε] ∪ (E \ Gi). Using first Remark 6.12, (iv) and then the
strong Markov property, we get that for m-a.e. x ∈ E0 ∩G

B1
Au(x) = B1

A(U1f
∗)(x) = Ex{e−TAU1f

∗(XTA)}

= Ex
ß
e−TAEXTA

ß ∫ ∞
0

e−tf ∗(Xt) dt

™™
= Ex

ß
e−TA

∫ ∞
0

e−tf ∗(Xt+TA) dt

™
= Ex

ß∫ ∞
0

e−(t+TA)f ∗(Xt+TA) dt

™
= Ex

ß ∫ ∞
TA

e−tf ∗(Xt) dt

™
= U1f

∗(x)− Ex
ß ∫ TA

0

e−tf ∗(Xt) dt

™
= 0 on [fn < ε] ∩Gi,
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because f ∗ = 0 pointiwse on

◦

[̇u = 0]∩Gi ⊃ [fn < ε] ∩ Gi (respectively on [u = 0] ∩ Gi ⊃
[fn < ε] ∩Gi). Note that all the above expressions involving f ∗ make sense on E0.

The second part of assertion (i) follows by Proposition 2.3, (iii).

(ii). Assume now that the killed process XG is a diffusion on G m-a.e. Let u ∈ D(L) be
m-q.c. and f : E → R B-measurable s.t. f ∈ Lp(E,m) and u = U1f m-a.e. Clearly,

Lu = 0 m-a.e. on

◦

[̇u = 0]∩G := D if and only if f = 0 m-a.e. on D.

Let UD denote the resolvent of the killed process upon leaving D, given by (2.2). Now,
as in Step IV, if we set E0 := [U1|f | <∞]∩ [v = 0] where v is given by Lemma 3.2 for some
m-nest (Fn)n≥1 attached to u, then u = U1f m-q.e. on E. Moreover, one can easily observe
that (0, ζG) 3 t 7→ u(Xt) ∈ R is continuous Px-a.s. m-a.e. x ∈ G, and consequently that
B1
E\Du = 0 m-a.e. on G. Therefore,

UD
1 f(x) = u(x)−B1

E\Du(x) = 0 m-a.e. on D ∩ E0.

Since m(E \E0) = 0 the above equality holds m-a.e. on D, and by the resolvent equation it
leads to

UD
α f = 0 m-a.e. on D for each α > 0.

On the other hand, we have that lim
α→∞

αUD
α g = g pointwise on D for every g bounded and

continuous on G. Also, it is easy to see that |UD
α |Lp(m|D) ≤ |Uα|Lp(m) for every α > 0, and by

a density argument it follows that (UD
α )α>0 is strongly continuous on Lp(m|D).

The result now follows since f = lim
α→∞

αUD
α f = 0, the convergence being in Lp(m|D).

Proof of Corollary 3.12. (i) Let x ∈ E and set νx := δx ◦ Uα0 .
By Proposition 2.12, we have that for any α > α0, Uα extends to strongly continuous

resolvent on L1(E, ν), whose generator is denoted by (Lνx1 , D(Lνx1 )), as in (2.5). By dominated
convergence, we have that lim

t→0

Ptu−u
t

= Lu in L1(E, νx) for all u ∈ C, hence C ⊂ D(Lνx1 )).

Then property (Loc(G)) holds for G with respect to νx. This is true for each x ∈ E, hence we
can apply Theorem 3.6 to deduce that X is a diffusion in G U -a.e. Then by Proposition 2.3
(ii) applied for XG we deduce that XG is a diffusion on G, so the result follows by applying
Proposition 2.8.

To prove (ii), let u ∈ Dα(L)∩Cb(E) and notice that by Theorem 3.6, (ii), applied for νx
and each x ∈ E, we get that

Lu = 0 on

◦

[̇u = 0] U -a.e.

If |Lu| is finely lower semi-continuous so that [|Lu| > 0]∩
◦

[̇u = 0] is finely open, hence empty
according to Remark 6.12, (i).

Proof of Corollary 3.13. Let x ∈ E × [0,∞) and set νx := δx ◦ Uα0 . By Proposi-
tion 2.12 we have that Uα0 extends to strongly continuous resolvent on L1(E × [0,∞), νx),
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whose generator is denoted by (Lνx1 , D(Lνx1 )), as in (2.5). Now one can easily show that
(Λ, Dα0(Λ)) ⊂ (Lνx1 , D(Lνx1 )), and from now on the proof continues as for Corollary 3.12,
(i).

Proof of Proposition 3.14. Since the second part of the proposition can be easily de-
duced from the first part, let us prove only the first statement which regards the existence of
the common nest. To this end, we use again Lemma 6.6 from Appendix to assert that there
exists a Ray topology T which is finer than both τ and τ ′, and furthermore, by Theorem 1.5
from [6], there exists an m-nest of T -compact sets (Kn)n. In particular, (Fn)n is an m-nest of
closed sets with respect to both τ and τ ′. Also, since Fn is T -compact, τ |Fn = T |Fn = τ ′|Fn
for all n ≥ 1.

5.3 Proofs for Section 4

Proof of Corollary 4.1. First of all, note that by Proposition 2.13 we have that (Lmp , D(Lmp ))
introduced by (2.5) from Section 2 is a closed extension of (L,D).

Let us show that Locm(G) holds for G: Because (en)n≥1 is total in H, following Remark
3.5, (iv) we can construct (fn)n≥1 ⊂ D such that fn ≥ 0, n ≥ 1 and for each (s, x) 6=
(t, y) ∈ I ×M , there exists n ≥ 1 with fn(s, x) < fn(t, y); in particular, condition (i) from
Definition 3.4 is satisfied with Fn = I ×M,n ≥ 1.

Let (ϕk)k≥1 ⊂ C∞c (R) such that 0 ≤ ϕk(x)↗
k
x+, x ∈ R. Then ϕk(fn − ε) ∈ D for all

n, k ≥ 1, ε ∈ R+, hence condition (ii) from Definition 3.4 is also verified.

Finally, since Lf = 0 on

◦

[̇f = 0]∩G for all f ∈ D, condition (iii) from Definition 3.4 is
satisfied, hence Locm(G) holds for G and the statement follows by Theorem 3.6.

Proof of Corollary 4.2. Let x ∈ I × M , and recall that by Proposition 2.12, Uα0 is
strongly continuous on L1(δx ◦ Uα0). Since by hypothesis D ∪ L(D) ⊂ L1(δx ◦ Uα0), we
can apply Corollary 4.1 for m = δx ◦ Uα0 and p = 1 to deduce that X is a diffusion in G
δx ◦ Uα0-a.e., hence U -a.e. because x was arbitrarily chosen. Then by Proposition 2.3, (ii)
it follows that the killed process XG is a diffusion on G, and by Proposition 2.8 we deduce
that X is a diffusion in G.

Proof of Lemma 4.4. If F ∈ D0(L) so that F (µ) = ψ(µ(f1), · · · , µ(fn)), µ ∈M(E), and
if we set f(x) := (f1(x), · · · , fn(x)), x ∈ E, then one can easily get from (4.5) that

F ′(µ;x) =
〈
Dψ(µ(f1), · · · , µ(fn)), f(x)

〉
,

F ′′(µ;x) =
〈
D2ψ(µ(f1), · · · , µ(fn))f(x), f(x)

〉
.

Now, (4.7) follows by employing the definition of LF (µ) and the fact that b, c and the kernel
n are bounded, whilst (4.8) follows from (4.7) and [24, Proposition 2.5].

Proof of Corollary 4.5. i) =⇒ ii). Let z ∈ E, µ ∈ G and ε > 0 such that µ + εδz ∈ G;
note that such ε > 0 exists because G is open and lim

ε→0
µ+ εδz = µ weakly in M(E).
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Further, let 0 ≤ ψ ∈ C∞c (R) such that [0, ε] ⊂ R \ supp(ψ) and consider

ψµ(x) := ψ(x− µ(1)), x ∈ R,
Fµ(ν) := ψµ(ν(1)), ν ∈M(E).

Notice that Fµ ∈ D00(L) and µ+ εδz ∈
◦¸�[Fµ = 0]∩G.

Now, on the one hand, since X is a diffusion in G, by Lemma 4.4 and Corollary 3.12,
(ii) we get that LFµ(µ + εδz) = 0. On the other hand, since F ′µ(µ + εδz;x) = ψ′(ε) = 0 =
ψ′′(ε) = F ′′µ (µ+ εδz;x) for all x ∈ E, one can easily see that

0 = LFµ(µ+ εδz) =

∫
E

∫ ∞
0

Fµ(µ+ εδz + uδx)n(x, du)(µ+ εδz)(dx)

≥ ε

∫ ∞
0

ψ(ε+ u)n(z, du).

Now, varying ε and ψ, by a monotone class argument we deduce that n(z, ·) ≡ 0, and since
z ∈ E was chosen arbitrarily, the implication is proved.

ii) =⇒ iii). Taking into account Lemma 4.4, this implication is easily deduced from Corol-
lary 3.12, (i).

The implication ii) =⇒ iii) is trivial, so the result is completely proved.

Proof of Corollary 4.7. If (‹Qt)t≥0 denotes the transition function of X, then similarly to

the proof of Lemma 4.4, we get that (L̃, ‹D00(L̃)) ⊂ (L̃,Dα(L̃)) for α > α0, where the former
generator is the one given by (3.5)-(3.6) with Vu(µ) := cµ(1), µ ∈ M(E), where c > 0 is a
generic constant.

Next, it is easy to see that condition Loc(M(E)) given in Definition 3.11 is satisfied by

choosing (fn)n ⊂ ‹D00(L̃) with the required separation property, so Corollary 3.12 can be
immediately employed to get the result.

Proof of Lemma 4.8. Let D(L0) 3 u := Uαf ∈ D(Λ,H) for some f ∈ H. The statement
follows if we show that

(5.4) Gαf = Uαf +GαΛUαf.

Indeed, if (5.4) holds then u = Gα(f − ΛUαf) ∈ D(LΛ) and

LΛu = αGα(f − ΛUαf)− (f − ΛUαf) = αUαf − f + Λu = L0u+ Λu.

To prove (5.4), note that by (4.9), the rhs of the equality belongs to F , and for all v ∈ V

Eα(Uαf +GαΛUαf, v) = E0
α(Uαf, v)− 〈ΛUαf, v〉+ Eα(GαΛUαf, v)

= 〈f, v〉 − 〈ΛUαf, v〉+ 〈ΛUαf, v〉
= 〈f, v〉.

The claim follows by the uniqueness of Wα(= Gα on H) satisfying (4.9).
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Proof of Corollary 4.10. First of all, notice that by Lemma 2.14 and Proposition 2.12
we may assume without loss of generality that p = 1, m is finite and (Pt)t>0 is a semigroup
of (quasi-)contractions. In particular, C ⊂ D(Lm1 ).

Using that the resolvent (Vα)α>0 is strongly continuous on L1, as in the proof of Theorem
2.2 from [7] (see also Lemma 2.1), we can construct a set F ∈ B and a resolvent of sub-
Markovian kernels W = (Wα)α>0 on F such that

- m(E \ F ) = 0

- Wα = Vα, α > 0, as operators on Lp(E,m)

- The set of E(Wβ) all Wβ-excessive functions is min-stable, contains the positive con-
stant functions and generates B|F , and for each n ≥ 1, we have fn|F = Wβg

+
n |F −

Wβg
−
n |F .

Let R be a Ray cone associated with Wβ such that k ∧ Wβg
+
n |F ∈ R for all k, n ≥ 1,

and consider the saturation F1 of F with respect to Wβ (see Appendix for details) and
the resolvent of kernels W1 = (W 1

α)α>0 on (F1,B1), whose restriction to F is W|F and

W 1
α(1F1\F ) = 0. We endow F1 with the (Ray) topology T induced by ‹R := {ṽ : v ∈ R},

where ṽ is the unique W1
β-excessive extension of v ∈ R from F to F1. It is a Lusin topology

on F1 such that B1 is the σ-algebra of all Borel sets on E1 and W1 is the resolvent of a right
process X1 with state space F1, we have W 1

α = Vα for all α > 0, regarded as an equality of
operators on Lp(F1,m1), where m1 is the measure on (F1,B1) extending m|F with zero on
F1 \ F .

Because condition (Dp
m) is in force, it follows by Theorem 3.3 from [7] and Proposition

5.1 from [12] that X has càdlàg trajectories, possibly after a trivial modification on an
m1-innesential set.

Now we show that process X1 is a diffusion on F1 m1-q.e., by applying Theorem 3.6.
To this end, let ‹fn := W 1

βg
+
n −W 1

βg
−
n be the extension of fn|F , n,≥ 1, from F to F1 by T -

continuity. We claim that condition Locm(F1) is satisfied on F1, with the augmented sequence

{‹fn, |‹fn|∞ − ‹fn}n≥1 instead of (fn)n≥1. To this end, we first claim that {‹fn, |‹fn|∞ − ‹fn}n≥1

separates the points of F1 in the sense of Definition 3.4, (i): Let ζ, η ∈ E1 and assume that‹fn(ζ) = ‹fn(η) for all n ≥ 1. From the above considerations we have ζ(gn) = Lβ(ζ,Wβgn) =‹fn(ζ) = ‹fn(η) = η(gn) for all n ≥ 1 and we conclude that ζ = η, since we assumed that the

sequence (gn)n≥1 separates the finite measures on E. Therefore, (‹fn)n separates the points

of F1. But if ‹fn(ζ) < ‹fn(η), then (|‹fn|∞ − ‹fn)(ζ) > (|‹fn|∞ − ‹fn)(η), so the claim is proved.

Next, condition Definition 3.4, (ii) is a consequence of (4.10) from assumption fiLocm and
the initial remark that C ⊂ D(Lm1 ), whilst Definition 3.4, (iii) is clearly fulfilled. Conse-
quently, X1 is a diffusion on F1 m1-q.e.

Let Eo be the disjoint union of F1 and E \ F , endow E \ F with any Lusin topology
having as Borel σ-algebra B|E\F , and consider the trivial extension X of X1 from F1 to Eo;
for details see, e.g., Subsection 3.2 from [12]. Then clearly X has continuous paths mo-q.e.
and the transition function of X, regarded as a family of operators on Lp(Eo,mo), coincide
with (Pt)t≥0, where mo is the measure on (Eo,Bo) extending m with zero on Eo \E = F1 \F .
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6 Appendix: Basics on right processes with càdlàg tra-

jectories

Excessive functions, natural topologies and right processes. Here we follow mainly
the terminology of [5], and we refer to the classical works [17], [33] and the references therein.

Let (E,B) be a Lusin measurable space. We denote by (b)pB the set of all numerical,
(bounded) positive B-measurable functions on E. Throughout, by U = (Uα)α>0 we denote
a resolvent family of (sub-)Markovian kernels on (E,B). If q > 0, we set Uq := (Uq+α)α>0.

Definition 6.1. A B-measurable function v : E → R+ is called excessive (w.r.t. U) if
αUαv ≤ v for all α > 0 and sup

α
αUαv = v point-wise; by E(U) we denote the convex cone of

all excessive functions w.r.t. U .

Assume that U is the resolvent of a right Markov process X = (X(t),Ft,Px) with state
space E, a Lusin topological space. Then a non-negative real valued B-measurable function
v is excessive (w.r.t. U) if and only if (v(X(t)))t>0 is a right continuous Ft -supermartingale
w.r.t. Px for all x ∈ E; see e.g. Proposition 1 from [9].

If a B-measurable function w : E → R+ is merely Uq-supermedian (i.e. αUq+αw ≤ w for
all α > 0), then its Uq-excessive regularization “w ∈ E(U) is defined as “w := sup

α
αUq+αw.

(H) Throughout this paragraph we assume that E(Uq) is min-stable, contains the constant
functions, and generates B for one (hence all) q > 0.

Recall that (H) is necessary (yet not sufficient) for U to be associated to a right process,
as defined below; a practical way to check this condition for a given resolvent of kernels is
given in e.g. [12], page 846, and it is similar to (H0) from the beginning of Section 2.

Definition 6.2. (i) The fine topology on E (associated with U) is the coarsest topology
on E such that every Uq-excessive function is continuous for some (hence all) q > 0.

(ii) A topology τ on E is called natural if it is a Lusin topology (i.e. (E, τ) is homeomorphic
to a Borel subset of a compact metrizable space) which is coarser than the fine topology,
and whose Borel σ-algebra is B.

Remark 6.3. The necessity of considering natural topologies comes from the fact that, in
general, the fine topology is neither metrizable, nor countably generated.

There is a convenient class of natural topologies to work with (as we do in Section 2),
especially when the aim is to construct a right process associated to U (see Definition 6.7).
These topologies are called Ray topologies, and are defined as follows.

Definition 6.4. (i) If q > 0 then a Ray cone associated with Uq is a cone R of bounded
Uq-excessive functions which is separable in the supremum norm, min-stable, contains
the constant function 1, generates B, and such that Uα((R−R)+) ⊂ R for all α > 0.

(ii) A Ray topology on E is a topology generated by a Ray cone.

Remark 6.5. (i) Clearly, any Ray topology is a natural topology.
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(ii) By e.g. [12], Proposition 2.2, a Ray cone always exists (its existence is in fact equivalent
with the validity of (H)) and may be constructed as follows: start with a countable
subset A0 ⊂ pB which separates the points of E, and define inductively

R0 := Uq(A0) ∪Q+

Rn+1 := Q+ · Rn ∪ (
∑
f

Rn) ∪ (
∧
f

Rn) ∪ (
⋃
α∈Q+

Uα(Rn)) ∪ Uq((Rn −Rn)+),

where by
∑
f

Rn resp.
∧
f

Rn we denote the space of all finite sums (resp. infima) of

elements from Rn. Then, a Ray cone R is obtained by taking the closure of
⋃
n

Rn w.r.t.

the supremum norm.

The set of all natural topologies has the following remarkable structure:

Lemma 6.6. For any two natural topologies τ and τ ′ there exists a Ray (hence natural)
topology which is finer than both τ and τ ′.

Proof. By Proposition 2.1 from [6] if a natural topology is given then there exists a Ray
topology which is finer than it. Therefore, we may assume that τ and τ ′ are Ray topologies
induced by the Ray cones R and R′ respectively and we may construct a Ray cone such that
its closure in the supremum norm includes both R and R′.

Let now X = (Ω,F ,Ft, X(t), θ(t),Px) be a normal Markov process with state space E,
shift operators θ(t) : Ω→ Ω, t ≥ 0, and lifetime ζ. Let U be the resolvent of X, i.e. for all
f ∈ bB and α > 0

Uαf(x) = Ex
{∫ ∞

0

e−αtf(X(t))dt
}
, x ∈ E.

To each probability measure µ on (E,B) we associate the probability

Pµ(A) :=

∫
Px(A) µ(dx)

for all A ∈ F , and we consider the following enlarged filtration

F̃t :=
⋂
µ

Fµt , F̃ :=
⋂
µ

Fµ,

where Fµ is the completion of F under Pµ, and Fµt is the completion of Ft in Fµ w.r.t. Pµ;
in particular, (x,A) 7→ Px(A) is assumed to be a kernel from (E,Bu) to (Ω,F), where Bu
denotes the σ-algebra of all universally measurable subsets of E.

Definition 6.7. The Markov process X is called right (Markov) process if the following
additional hypotheses are satisfied:

(i) The filtration (Ft)t≥0 is right continuous and Ft = F̃t, t ≥ 0.

(ii) For one (hence all) q > 0 and for each f ∈ E(Uq) the process f(X) has right continuous
paths Px-a.s. for all x ∈ E.
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(iii) There exists a natural topology on E with respect to which the paths of X are Px-a.s.
right continuous for all x ∈ E.

We would like to make the following convention: Whenever the space E is given along with
a Lusin topology τ and there is no risk of confusion, by saying that X is a right process we
implicitly assume that X has Px-a.s. τ -right continuous paths for all x ∈ E.

According to [17], Chapter II, Theorem 4.8, or [33], Proposition 10.8 and Exercise 10.18,
Definition 6.7 leads to a key probabilistic understanding of the fine topology, namely:

Theorem 6.8. If X is a right process, then an universally B-measurable function f is finely
continuous if and only if (f(X(t)))t≥0 has Px-a.s. right continuous paths for all x ∈ E. In
particular, X has a.s. right continuous paths w.r.t. any natural topology on E

Definition 6.9. If u ∈ E(Uq) and A ∈ B, then the q-order reduced function of u on A is
given by

RA
q u = inf{v ∈ E(Uq) : v > u on A}.

RA
q u is merely supermedian w.r.t. Uq, and we denote by BA

q u = ‘RA
q u its excessive regular-

ization, called the balayage of u on A.

The following fundamental identification due to G.A. Hunt holds (see e.g. [19]):

Theorem 6.10. If X is a right process and q > 0, then for all u ∈ E(Uq) and A ∈ B

BA
q u = Ex{e−qTAu(X(TA))},

where TA := inf{t > 0 : X(t) ∈ A}.

It is well known that TA is a stopping time and that BA
q u is universally measurable for

all A ∈ B and u ∈ bB; see [17] or [33].

Notions of ”small” sets.

Definition 6.11. Let m be a σ-finite measure on E.

(i) A set A ∈ B is called

- “ U-negligible” if Uq(1A) ≡ 0 for one (hence all) q > 0.

- “ polar” if Px(TA <∞) = 0 for x ∈ E.

- “ m-polar” if Px(TA <∞) = 0 for all x ∈ E m-a.e.

- “ m-inessential” provided that it is m-negligible and Px(TA < ∞) = 0 for all
x ∈ E \ A.

(ii) A property is said to hold m-quasi-everywhere (resp. U-a.e.), if there exists an m-
inessential (resp. a U-negligible) set N s.t. the property holds for all x ∈ E \ N ; on
short, we write m-q.e. instead of m-quasi-everywhere.

Remark 6.12. For the reader convenience, let us recall several potential theoretic facts.
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(i) If A ∈ B is finely open and U-negligible, then A = ∅.

(ii) If m is a σ-finite measure on E s.t. m(A) = 0 implies U1(1A) = 0 m-a.e. for all
A ∈ B, then any finely open and m-negligible set A ∈ B is m-polar.

(iii) Any m-inessential set is m-polar; conversely, it is known that any set which is m-polar
and m-negligible is the subset of an m-inessential set.

(iv) If u ∈ bB and v is B-measurable s.t. v = u q.e., then BA
1 v is well defined and equal to

BA
1 u m-a.e.

Càdlàg paths in different topologies. As far as we know, the stability of the right
continuity of the paths under the change of the (natural) topology ensured by Theorem 6.8
can not be simply extended for left limits, without further conditions. To present such a
condition, we adopt an Lp-framework, so let m be a σ-finite measure on E such that the
resolvent U of X is strongly continuous on Lp(m) for some 1 ≤ p <∞.

Let us recall that an q-excessive function s is called regular if for every sequence of q-
excessive functions un↗

n
u it holds that Rq(u− un)↘

n
0, where Rq is the reduction operator

of level q ≥ 0. A q-excessive function s is called m-regular if it has an m-version which is
regular; see [4] and [6] for more details.

Consider the following domination hypothesis:

(Dm). There exists 0 < f0 ∈ bB(E) such that for some q > 0 every q-excessive function v
dominated by Uqf0 is m-regular.

The role of condition (Dm) is expressed by the following fact which is a consequence of
the results from [6].

Proposition 6.13. If X is a right process and (Dm) holds then X has Px-a.s. càdlàg
trajectories in E on [0, ζ) for all x ∈ E m-q.e., with respect to all natural topologies.

Proof. Let τ be an arbitrary natural topology on E. By Lemma 6.6 from Appendix, we may
replace τ with a finer Ray topology on E. Now, with condition (Dm) in force, Theorems
1.5 and 1.3 from [6] entail that X has càdlàg trajectories in E on [0, ζ) with respect to τ ,
Pm-a.e. Now, by the proof of Proposition 5.1 from [12] we have that the function

E 3 x 7→ Px(ω ∈ Ω : t 7→ Xt(ω) is not càdlàg with respect to τ)

is excessive, hence [v > 0] is finely open. Also, the above discussion leads to m([v > 0]) = 0,
hence by Remark 6.12 we get that [v > 0] is contained in an m-inessential set. In other
words, X has càdlàg trajectories with respect to τ , Px-a.s. for all x ∈ E m-q.e.

Existence of a right process with a given resolvent U . Without further conditions,
the assumption (H) from the beginning of this section, although necessary, is not sufficient
to ensure the existence of a right process associated with U , but there is always a larger
space on which such a process exists, and let us briefly recall its construction.

We denote by Exc(Uq) the set of all Uq-excessive measures: ξ ∈ Exc(Uq) if and only if ξ
is a σ-finite measure on E and ξ ◦ αUq+α ≤ ξ for all α > 0.
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Definition 6.14. Let q > 0.

(i) The energy functional associated with Uq is Lq : Exc(Uq)× E(Uq)→ R+ given by

Lq(ξ, v) := sup{µ(v) : µ is a σ- finite measure, µ ◦ Uq ≤ ξ}

(ii) The saturation of E (with respect to Uq) is the set E1 of all extreme points of the set
{ξ ∈ Exc(Uq) : Lq(ξ, 1) = 1}.

The map E 3 x 7→ δx◦Uq ∈ Exc(Uq) is an embedding of E into E1 and every Uq-excessive
function v has an extension ṽ to E1, defined as ṽ(ξ) := Lq(ξ, v). The set E1 is endowed with
the σ-algebra B1 generated by the family {ṽ : v ∈ E(Uq)}. In addition, as in [7], sections
1.1 and 1.2, there exists a unique resolvent of kernels U1 = (U1

α)α>0 on (E1,B1) which is an
extension of U in the sense that U1

α(1E1\E) ≡ 0 and (U1
αf)|E = Uα(f |E) for all f ∈ bB1, α > 0,

and it satisfies the assumption (H) from the beginning of this section; more precisely, it is
given by

(6.1) U1
αf(ξ) = Lq(ξ, Uα(f |E)) for all f ∈ bpB1, ξ ∈ E1, α > 0.

Notice that (E1,B1) is a Lusin measurable space, the map x 7→ δx ◦ Uq identifies E with a
subset of E1, E ∈ B1 and B = B1|E.

We end this section with the following key result, according to (2.3) from [12], sections
1.7 and 1.8 in [5], Theorem 1.3 from [7], and section 3 in [8]:

Theorem 6.15. Suppose that assumption (H) from the beginning of this section is satisfied.
Then there exists a right process on the saturation (E1,B1), associated with U1. Moreover,
the following assertions are equivalent:

(i) There exists a right process on E associated with U .

(ii) The set E1 \ E is polar (w.r.t. U1).

Existence of a right process with càdlàg trajectories associated with the resolvent
U . We end this section by recalling a general result that guarantees the existence of a right
process with càdlàg trajectories associated to a given sub-Markovian resolvent of kernels
U = (Uα)α>0 on a general Lusin measurable space (E,B).

(Hypothesis). Assume that C ⊂ bB such that

(H1) C is a vector lattice, 1 ∈ C.

(H2) There exists a countable subset of C+ which separates the points of E.

(H3) Uα(C) ⊂ C for all α > 0.

(H4) lim
α→∞

αUαf = f pointwise on E.

(H5) There exists a B-measurable function v ∈ E(Uq) for some q > 0 such that v < ∞
and [v 6 n], n > 1, is τ(C)-compact, n > 1, is τ(C)-compact; here τ(C) denotes the
topology on E generated by C.
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Theorem 6.16. If (H1)-(H5) hold, then there exists a càdlàg right process X on E, endowed
with the topology τ(C), with resolvent U .

Proof. By Proposition 2.2 from [12] there exists a Ray cone R such that the Ray topology
generated by R is smaller than τ(C). Let Kn = [v 6 n], n > 1. It is an increasing sequence
of τ(C)-compact and by Theorem 6.10 if follows that limn Tn = +∞ Px-a.s. for every x ∈ E,
where Tn := inf{t > 0 : X(t) ∈ E \Kn}. Notice that the Ray topology and τ(C) coincide on
each compact set Kn. Applying Lemma 3.5 from [8] and Theorem 6.15 it follows that there
exists a right process X with state space E and U as associated resolvent. By Theorem 1.3
from [6] we conclude now that X has càdlàg trajectories in the topology τ(C).

Remark 6.17. Results related to the domination hypothesis (Dm) and to hypothesis (H5)
may be found in [14] and [13], in terms of the tightness property for the associated capacities;
see also [29].
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