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On averaged expected cost control for 1D ergodic
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Abstract

Ergodic Bellman’s (HJB) equation is proved for a 1D controlled diffusion
with switching with variable diffusion and drift coefficients both depending on
control, and convergence of the iteration improvement algorithm to its (unique)
solution is established.

1 Introduction

The paper is a continuation of the earlier publication about ergodic control for the 1D
diffusion without switching [1] and of its short version [2]. Partly the proofs repeat
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the calculus in [1], but new serious technical difficulties arise due to the switching
component, which do not allow automatic extension to this case and which difficulties
are overcome here.

On a probability space (Ω,F , (Ft), P ) with a one-dimensional (Ft) Wiener process
W = (Wt)t≥0 on it, a one-dimensional SDE with coefficients b, σ with switching and
a stationary Markov control function α is considered,

dXα
t = b(α(Xα

t , Zt), X
α
t , Zt) dt+ σ(α(Xα

t , Zt), X
α
t , Zt) dWt, t ≥ 0,

(1)

Xα
0 = x, Z0 = z,

where Zt is a continuous-time Markov process on a finite state space S = (1, . . . , N)
with (positive) intensities λij, 1 ≤ i, j ≤ N, j 6= i. In the first instant throughout
the paper we assume that these intensities do not depend on the control.

Let a non-empty compact set U ⊂ R be a range of possible control values. Let
b : U × R × S → R, σ : U × R × S → R, α : R × S → U be given Borel functions;
some more regularity assumptions will be presented later on.

Denote by Lα the (extended) generator, which corresponds to the equation (1)
with a fixed function α(·) depending on (x, z):

Lαh(x, z) = b(α(x, z), x, z)
dh

cdx
(x, z) +

1

2
σ2(α(x, z), x, z)

dh

dx2
(x, z) (2)

(3)

+
∑
j∈S\z

λzj (h(x, j)− h(x, z)) , x ∈ R, z ∈ S. (4)

Given a running cost function f : U × R × S → R from a suitable function
class K – which will be defined in the sequel – our goal is to choose an optimal, or
nearly-optimal stationary Markov control strategy α : R × S → U such that the
corresponding solution Xα minimizes the averaged cost function

ρα(x, z) := lim sup
T→∞

1

T

∫ T

0

Ex,zf(α(Xα
t , Zt), X

α
t , Zt) dt. (5)

The class of such strategies with a weak solution of the equation (1) will be denoted
by A; they will be called admissible. In the sequel, assumptions will be assumed such
that any Borel funciton of the variables (x, z) with values in U belongs toA. For every
α ∈ A we define the function fα : R→ R, fα(x, z) = f(α(x, z), x, z), x ∈ R, z ∈ S.
Now, the definition (5) is equivalent to

ρα(x, z) = lim sup
T→∞

1

T

∫ T

0

Ex,zfα(Xα
t , Zt) dt. (6)
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Finally, the cost function is defined as

ρ(x, z) := inf
α∈A

lim sup
T→∞

1

T

∫ T

0

Ex,zfα(Xα
t , Zt) dt. (7)

Suppose that for every α ∈ A the solution Xα of the equation (1) is an ergodic
process, that is, there exists a unique limiting and invariant distribution µα of the
pair (Xα

t , Zt), t→∞, the same for all initial conditions X0 = x ∈ R, Z0 = z ∈ S,

ρα(x, z) ≡ ρα :=

∫
fα(x, z)µα(dxdz) =: 〈fα, µα〉, (8)

and

ρ(x, z) ≡ ρ := inf
α∈A

∫
fα(x, z)µα(dxdz) = inf

α∈K
〈fα, µα〉. (9)

Note that under our assumptions below on the growth bounds of f and on the
ergodicity properties of the process with any strategy, the value of ρ will not depend
on x, z. Let us define auxiliary functions

vα(x, z) :=

∫ ∞
0

Ex,z(f
α(Xα

t , Zt)− ρα) dt, α ∈ A. (10)

Under the assumptions below the integral in (10) will converge.

The first goal of this paper is to prove that the cost ρ – which is a constant in
the ergodic setting – is the component of the pair (V, ρ), which is a unique in the
appropriate class solution of the ergodic HJB or Bellman’s equation,

inf
u∈U

[LuV (x, z) + fu(x, z)− ρ] = 0, x ∈ R, z ∈ S, (11)

where similarly to (2) Lu for u ∈ U is defined by the formula

Luf(x, z) := b(u, x, z)
df

dx
(x, z) +

1

2
σ2(u, x, z)

d2f

dx2
(x, z)

(12)

+
∑
j∈S\z

λzj (f(x, j)− f(x, z)) , x ∈ R, z ∈ S.

Note that (11) may be treated as one equation, or as a system of (nonlinear) differ-
ential equations of the second order linked one to another via the zero order terms.
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The uniqueness of the component V will be shown up to an additive constant, while
ρ will be unique in the standard sense. The meaning of the vector-function V is that
it coincides with vα for the optimal strategy α if the latter exists. The class where
solution (V, ρ) will be studied is the family of all Borel functions V on R × S and
constants ρ ∈ R such that V has two Sobolev derivatives in x for each z which are
all locally integrable in any power, and such that the function V has a no more than
some polynomial growth in x. The equation (11) is to be understood initially almost
everywhere in x; however, eventually it will be shown that this equation is satisfied
for all x ∈ R and z ∈ S.

The second goal is to show convergence of the “reward improvement algorithm”,
or, “RIA”, or, in some papers, “PIA” (for “policy improvement algorithm”) to the
costs, ρ, see the details of this algorithm below.

For ergodicity, we will assume recurrence conditions, which provide a uniform
recurrence for any strategy. However, it is likely that such restrictions may be relaxed
to the “near monotonicity” type conditions as in [3] and other sources.

Remarks and comments about the history of the problem the reader may find in
[1], [3], and in the references therein. In most of the works on the topic, measurability
of the optimal or improved strategy (see below) is assumed. Some account about it
can be found in [1].

The paper consists of three sections: 1 – Introduction, 2 – Assumptions and some
auxiliaries, 3 – Main result and its proof.

2 Assumptions and some auxiliaries

We assume the following.

(A1) The function b is bounded, |b(u, x, z)| ≤ Cb, and

lim
|x|→∞

sup
u∈U,z∈S

x b(u, x, z) = −∞. (13)

(A2) The function σ is bounded, |σ(u, x, z)| ≤ Cσ, uniformly non-degenerate,
|σ(u, x, z)|−1 ≤ Cσ, all intensities are bounded and bounded away from zero:
0 < minij λij ≤ maxij λij <∞.

(A3) The function f belongs to the class K of functions which admit a uniform in
u (and z) polynomial bound: there exist constants C1,m1 > 0 such that for
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any x,
sup

u∈U,z∈S
|fu(x, z)| ≤ C1(1 + |x|m1).

(A4) The functions σ(u, x, z), b(u, x, z), fu(x, z) are continuous in u for every x, z.

(A5) The set U is compact.

(A6) The functions σ(u, x, z), b(u, x, z), fu(x, z) are from the class C1 in x for every
u, z.

Most of the assertions will be stated and proved without (A6), which assump-
tion will only be required for the last claim of the Theorem 1.

We will need the following four lemmata.

Lemma 1. Weak solution (X,Z) for the equation (1) exists for any strategy α, is
unique in distribution and, hence, is Markov and strong Markov.

Proof. This proof is provided for the completeness of this presentation and for its self-
sufficiency; in principle, the result is very simple and should be known, although, the
authors were unable to find a proper reference for this particuar model. We mention
that under the condition of continuity of all coefficients with respect to the variable
x such existence is stated in [13, Section 2.2.1]; for strong solutions (which are not
used in the present paper, but which can be used nevertheless) under some additional
regularity conditions on the coefficients see [10].

1. Under the additional assumption of the positivity of σ existence of solution
follows by a mollification of σ̄(x, z) := σ(α(·, z), ·, z) with respect to · which stands
for x, from tightness of the family of solutions related to different smoothed σ and
from Skorokhod’s techniques of the unique probability space where some subsequence
of solutions converges in probability to some limit, which will be a required solution.
This step is analogous to the proof of a weak solution in [7, Chapter 2, Theorem 2.6.1]
Note that both functions σ̄(x, z) and b̄(x, z) := b(α(x, z), x, z) are automatically
continuous with respect to the discrete component z, which helps to justify the
limiting procedure similarly to [7, Chapter 2] where there is no discrete component.
In the limit, clearly, the second component Z is a Markov process with intensities λij
as for the prelimiting processes Zn, and the first component X solves the equation
(1), which follows by the same lines of arguments as in [7, Chapter 2, Theorem 2.6.1].
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2. Further, for a general σ which possibly may change its sign, we firstly find a
solution to the equation

Xt = x+

∫ t

0

b(α(Xs, Zs), Xs, Zs) ds+

∫ t

0

|σ(α(Xs, Zs), Xs, Zs)| dWs.

Note that the same process is a solution to the equation

Xt = x+

∫ t

0

b(α(Xs, Zs), Xs, Zs) ds+

∫ t

0

σ(α(Xs, Zs), Xs, Zs) dW̃s,

with a new Wiener process

W̃t =

∫ t

0

sign(σ(α(Xs, Zs), Xs, Zs)) dWs,

as required.

3. Weak uniqueness for 1D homogeneous diffusion without switching is known for
one SDE; below we recall one possible way to establish it. Then, weak uniqueness
for the SDE with switching follows from its uniqueness between the jumps of the
component Z (which jumps do not accumulate a.s.) and from the fact that these
moments of jumps are defined independently of the trajectory of X.

One way to show weak uniqueness for the 1D homogeneous SDE without switch-
ing is to change time making the diffusion coefficient a constant and to use uniqueness
(weak and strong) for the resulting SDE in a new time scale and the possibility of the
inverse time change given the non-degeneracy of σ2. This approach will be presented
in details in the proof of the lemma 4; note that, of course, the proof of the present
lemma is independent of the lemma 4.

4. The Markov and strong Markov properties follow both from weak uniqueness
and from the results in [8]. The Lemma 1 is proved.

Lemma 2. Let the assumptions (A1) – (A3) hold true. Then

• For any C1, `1 > 0 there exist C2, `2 > 0 such that for any strategy α ∈ A and
for any function g growing no faster than C1(1 + |x|`1) uniformly with respect
to z,

sup
t
|Ex,zg(Xα

t , Zt)| ≤ C(1 + |x|`2). (14)
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• For any α ∈ A, the invariant measure µα integrates any polynomial and, more-
over,

sup
α∈A

∫
|x|k µα(dxdz) <∞, ∀ k > 0. (15)

• For any strategy α ∈ A the function ρα is a constant, and

sup
α∈A
|ρα| ≤ C <∞; (16)

• Moreover, for any k > 0 and f ∈ K,

sup
α∈A

tk |Ex,zfα(Xα
t , Zt)− ρα| → 0, t→∞, (17)

and

sup
α∈A

∣∣∣∣ 1

T

∫ T

0

Exfα(Xα
t , Zt) dt− ρα

∣∣∣∣→ 0, T →∞. (18)

Proof. Since existence and weak uniqueness for the solution of the SDE (7) is known
from the previous lemma, the proof of the present lemma follows from [15] and [12]
with some minimal adjustments due to the presence of switching. Here we remind
briefly the main arguments. For a compact K = BR ⊂ R define a stopping time

τ = τ(K) = inf(t ≥ 0 : |Xt| ∈ K).

From [15] (as well as from some other sources) it follows via Lyapunov functions like
|x|` and (1 + t)k|x|` that for any k > 0 there exist C > 0 and ` > 0 such that

Exτ
k ≤ C(1 + |x|`), (19)

and in addition that

sup
t≥0

Ex1(t < τ)|Xt|` ≤ C(1 + |x|`). (20)

Along with the irreducibility of the process due to the non-degeneracy of σ, these
are the main tools for establishing all statements of the Lemma.

To prove (14) let us define by induction: τ1 = τ ;

Tn := inf(t > τn : |Xt| ≥ R + 1), τn+1 := inf(t > Tn : |Xt| ≤ R), n = 1, 2, . . .
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Then it follows from the general properties of homogeneous Markov processes that
there exists α > 0 such that

sup
ω

sup
|x|≤R

Ex(exp(α(Tn − τn))|Fτn) <∞. (21)

Also, due to the bound (19) above we have,

Ex(τn+1 − Tn)k|FTn) ≤ C. (22)

Then the bound (14) follows form the representation

Ex|Xt|` = Ex|Xt|`1(t < τ1) +
∑
n≥1

Ex|Xt|`1(τn ≤ t < Tn) +
∑
n≥1

Ex|Xt|`1(Tn ≤ t < τn+1)

and from (21) and (22) in a standard way (cf. [15]).
Further, the estimates (15) and (16) follow from (14), ergodicity and Fatou

lemma; and (17) and (18) are corollaries of (19) similarly to [15] due to the cou-
pling method. The Lemma 2 is proved.

In the next Lemma we use Sobolev spaces W 2
p,loc with any p > 1; recall that this

notation (see [9]) stands for the class of (equivalent) functions g(x, z), x ∈ R, z ∈ S,
which are locally in x integrable in Lp (denoted as Lp,loc) and such that u and its first
and second generalised derivatives ux and uxx with respect to x are approximated in
Lp,loc by smooth (infinitely differentiable) functions.

Lemma 3. Let the assumptions (A1) – (A4) be satisfied. Then the cost function vα

has the following properties:

• vα ∈ W 2
p,loc for any p ≥ 1 and satisfies in the Sobolev sense a Poisson equation

(system) in the whole space,

Lαvα + fα − 〈fα, µα〉 = 0. (23)

In particular, for almost every x ∈ R and every z ∈ S,

Lα(x, z)vα(x, z) + fα(x, z)− 〈fα, µα〉 = 0, (24)

or, equivalently,

inf
u∈U

[
1

σ2(u, x, z)
LuV (x, z) +

fu(x, z)

σ2(u, x, z)
− ρ

σ2(u, x, z)

]
= 0, x ∈ R, z ∈ S.

(25)
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• Solution of the equation (23) is unique up to an additive constant in the class
of Sobolev solutions W 2

p,loc in x for each z with a no more than some (any)
polynomial growth.

• 〈vα, µα〉 =
∑

z

∫
vα(x, z)µα(dx, z) = 0.

• For any strategy α the function vα is continuous as well as (vα)′x, and there
exist C,m > 0 both depending only on the constants in (A1)–(A3) such that

sup
α

(|vα(x, z)|+ |vα(x, z)′x|) ≤ C(1 + |x|`). (26)

• vα ∈ C1,Lip in x (i.e., (vα)′x is locally Lipschitz).

Proof. Denote

L̄u =
1

σ2(u, x, z)
Lu, L̄α =

1

σ2(α(x, z), x, z)
Lα.

1. Due to the Lemma 1 the solution of the SDE (1) exists and is weakly unique.
Hence, in particular, invariant measure µα is unique. Therefore, the value ρα is also
uniquely determined, which was, actually, already used in the previous lemma.

2. The random time change ([11, Chapter 2.5], [4, Theorem 15.5]) allows to
rewrite the definition of vα as follows,

vα(x, z) =

∫ ∞
0

Ex,z(f
α(Xα

t , Zt)− ρα) dt

=

∫ ∞
0

Ex,zf̄
α(X̄α

t , Z̄t) dt, (27)

with

f̄α(x, z) =
fα(x, z)− ρα

σ2(α(x, z), x, z)
,

and where the process X̄α
t satisfies the following SDE

dX̄α
t = b̄(α(X̄t, Z̄t), X̄t, Z̄t) dt+ dW̄t, X̄α

0 = x,

where t′(t) is the inverse function for the mapping t 7→
∫ t

0

σ2(α(Xα
s , Zs), X

α
s , Zs) ds,

with a new Wiener process W̄t =

∫ t′(t)

0

σ(α(Xα
s , Zs), X

α
s , Zs) dWs and with b̄α(x, z) =
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bα(x, z)σ−2(α(x, z), x, z), and where Z̄t is a jump process on the state space S with
intensities

λ̄αZ̄t,j
(X̄t) =

λZ̄t,j

σ2(α(X̄t, Z̄t), X̄t, Z̄t)
.

So, it is reasonable to introduce new intensities at (x, z) by the expression λ̄αz,j(x) =
λz,jσ

−2(α(x, z), x, z). Note that this couple (X̄, Z̄) is well-defined as a unique in
distribution strong Markov process by its SDE and the intensities (as well as the old
pair (X,Z) in a changed time). The process (X̄, Z̄) is unique in distribution, ergodic
with a unique invariant measure µ̄α(dx, dz) and there is a convergence better than
any polynomial to it in total variation. Hence, the only option for the integral in
(27) to converge is that f̄α satisfies a centering condition

〈f̄α, µ̄α〉 = 0.

Now it follows from (27) that the function vα is a solution of the Poisson equation

L̄αvα + f̄α = 0; (28)

recall that here

L̄ug(x, z) := b̄(u, x, z)
dg

dx
(x, z) +

1

2

d2g

dx2
(x, z)

+
∑
j∈S\z

λ̄uzj(x) (g(u, x, j)− g(u, x, z)) , x ∈ R, z ∈ S,

and

L̄αg(x, z) := b(̄α(x, z), x, z)
dg

dx
(x, z) +

1

2

d2g

dx2
(x, z)

+
∑
j∈S\z

λ̄αzj(x) (g(α(x, j), x, j)− g(α(x, z), x, z)) , x ∈ R, z ∈ S,

3. Let us show existence of derivatives vαx and vαxx in a Sobolev sense in the spaces
W 2
p,loc with any p > 1 (see notations in [9]). For this aim let us denote

v(T )(s, x, z) :=

∫ T−s

0

Ex,zf̄
α(X̄α

t , Z̄t) dt, 0 ≤ s ≤ T,
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for any T > 0. Actually, only v(T )(0, x, z) will be analysed in the sequel; however,
it is important for us to define v(T ) as a function of three variables (s, x, z) because
we will use the fact that with respect to this triple v(T ) is a solution of the backward
Kolmogorov system in Sobolev spaces. In fact, it turns out to be a bit easier to prove
a formally stronger claim than just existence of vαx and vαxx, namely, that

(v(T )
x , v(T )

xx )|t=0 →
T→∞

(vαx , v
α
xx) in the Lp,loc sense,

or, a bit more precisely, that the left hand side here converges in Lp,loc, and the limit
turns out to be (vαx , v

α
xx). The functions vT have been introduced for this aim. In

the sequel the following short notations will be used: T̄tf̄
α(x, z) := Ex,z(f̄α(X̄α

t , Z̄t)).
(On the one hand, there is a slight abuse of notations here: T is time and T̄t is a
semigroup; on the other hand, the semigroup is never used without a lower index, so
there is no danger to get one for the other.) We have,

v(T )
x (0, x, z) = ∂x

∫ T

0

T̄tf̄
α(x, z))dt = ∂x

∫ 1

0

T̄tf̄
α(x, z) dt+ ∂x

∫ T

1

T̄tf̄
α(x, z))dt

= ∂x

∫ 1

0

T̄tf̄
α(x, z)dt+ ∂x

∫ T

1

T̄1T̄t−1f̄
α(x, z) dt

= ∂x

∫ 1

0

T̄tf̄
α(x, z)dt+

∫ T

1

∂xT̄1(T̄t−1f̄
α)(x, z)dt.

(29)

The first term here does not change with time (as far as T ≥ 1) and is well-defined

in Lp,loc Sobolev sense along with ∂2
x

∫ 1

0

T̄tf̄
α(x, z))dt, due to [14, Theorem 5.5, 5.7].

The integrand in the second term admits the bound (see again [14, Theorems 5.7
& 5.5] with T1 = ε > 0),

‖∂xT̄·(T̄t−1f̄
α)‖L2

p((ε,1)×BR) ≤ Cε(‖T̄·(T̄t−1f̄
α)‖Lp((ε,1)×BR+1?))

It follows from ergodic bounds of the SDE solutions similar to those in [15] that the
right hand side here decreases to zero faster than any polynomial in time, and, hence,
the second integral in the representation (29) converges as T →∞; this convergence
is locally uniform with respect to the initial value x and, of course, uniform with
respect to z, as the latter variable takes values from a finite set. The same is also
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true for the second derivative ∂2
x

∫ ∞
1

T̄tf̄
α(x, z))dt. Thus, we obtain,

∂x

∫ T

0

T̄tf̄
α(x, z))dt→ v̄1(x, z), ∂2

x

∫ T

0

T̄tf̄
α(x, z))dt→ v̄2(x, z)

as T →∞, both locally uniformly in x and, hence, also in the Lp,loc sense.
In a standard manner by integration over x it follows that v̄1(x, z) and v̄2(x, z)

serve as vαx and vαxx, respectively. Namely, for any x1, x2 and for each z we have by
the first theorem of the calculus,

vT (0, x1, z)− vT (0, x2, z) =

∫ x2

x1

vTx (0, x′, z) dx′

and in the limit as T →∞ we obtain

vα(x1, z)− vα(x2, z) =

∫ x2

x1

v̄1(x′, z) dx′,

which means exactly that v̄1 = vαx . Similarly,

vTx (0, x1, z)− vTx (0, x2, z) =

∫ x2

x1

vTxx(0, x
′, z) dx′

and in the limit as T →∞ we obtain

vαx (x1, z)− vαx (x2, z) =

∫ x2

x1

v̄2(x′, z) dx′,

which means that v̄2 = vαxx, as required. So, indeed, vα ∈ W 2
p,loc (and even a bit

better, with classical derivatives almost everywhere (a.e.), as usual in R1).
4. Now let us show that in the generalised sense the function u from the previous

step satisfies the equation (28) and, hence, also to the equivalent one (23). Indeed,

12



for any smooth test function g(x, z) with a compact support in x we have,

〈L̄αvα, g〉 = 〈vα, L̄∗g〉 = lim
T→∞
〈v(T )|t=0, (L̄

α)∗g〉 = lim
T→∞
〈L̄αv(T )|t=0, g〉

= lim
T→∞
〈
∫ T

0

L̄αEx,zf̄
α(X̄α

t , Z̄t)dt, g〉

= lim
T→∞
〈
∫ T

0

∂tEx,zf̄
α(X̄α

t , Z̄t)dt, g〉

= lim
T→∞
〈Ex,zf̄α(X̄α

T , Z̄T )− f̄α(x, z), g〉

= −〈f̄α, g〉,

which means that u is a generalised solution of (28); the last equality in this calculus
is because of the ergodic properties of the process (X̄α

t , Z̄t) from the Lemma 2 and
due to the cenering property of f̄α. Now, since vα, actually, possesses two Sobolev
derivatives in x, this function is not just a generalised, but a true Sobolev solution
to the equation (23).

5. Now let us show uniquenes of solution of the linear Poisson equation (system)

Lαv(x, z) + fα(x, z)− ρα = 0

in the Sobolev sense up to a constant in the class of functions growing no faster than
some polynomial in x. (Clearly, if v is a solution, then v + C is also a solution for
any constant C.) Suppose there is a solution v and let us add a constant to it so
that to make it centered, i.e.,

〈v, µα〉 = 0.

Let us use Itô – Krylov’s formula, which is applicable between the jumps
of the component Z, and at the moments of jumps the zero order term∫ ∑

j∈S\Zt

λzj (v(Xα
t , j)− v(Xα

t , Zt)) dt arises (see [13, Lemma 2.2.3] for the classi-

cal derivatives; in the case of Sobolev derivatives it follows due to Krylov’s estimates
[7, Chapter 2] in a standard way). We obtain

Ex,zv(Xα
T , ZT )− v(x, z) = Ex,z

∫ T

0

Lαv(Xα
t , Zt)dt.

13



Since Ex,zv(Xα
T , ZT )→ 〈v, µα〉 = 0 as T →∞, then in the limit we get

v(x, z) =

∫ ∞
0

Ex,z(fα(Xα
t , Zt)− ρα) dt. (30)

This shows uniqueness of solution of the Poisson system (23) in the described class
of functions.

6. Now when it has been established that the components of the vector-solution
v of the equation (23) are the components of the vector-function vα from (10), we
can treat the system as a single equation on each component where all other com-
ponents become the parts of the right hand side. Since this right hand side satisfies
polynomial growth restrictions, the property (26) follows from a similar lemma for a
single equation without switching (see [1, Lemma 1]).

We have already seen that the centered version of the solution to (23) is equal to
vα defined in (10); so, vα itself is µα-centered. Equivalently the equality 〈vα, µα〉 = 0
follows from integration of the right hand side in the definition of vα with respect to
µα, due to the centering property of the function f̄α. The Lemma 3 follows.

Denote λ− = mini,j λij, λ+ = maxi,j λij, Λi =
∑

j:j 6=i λij, Λ+ = maxi Λi; the
notations Qα,z(x′, dx) and µα,z(dx) stand for the conditional transition kernel of the
process Xα,z satisfying the equation with a fixed variable z,

dXα,z
t = b(α(Xα

t , z), X
α
t , z) dt+ σ(α(Xα

t , z), X
α
t , z) dWt, t ≥ 0,

Xα,z
0 = x,

and for its unique invariant measure, respectively, both given α(·) and z.

Lemma 4. Let the assumptions (A1) – (A3) hold true. Then for any k > 0, and
any N > 0 there exist C(N), C > 0 such that uniformly in α(·) for any function
g ≥ 0 growing not faster than some polynomial and for every m ∈ N∑

z

∫
g(x, z)1(|x| ≤ N)dx ≤ C(N)λ−1

−

(
exp(+Λ+m)〈g, µα〉+ λ+ exp(Λ+)

C

mk

)
.

(31)

Proof. According to the invariance equation equivalent to Chapman – Kolmogorov
equation in this case, for any n > 0 we have,

µα(dx, z) =
∑
z′

∫
µα(dx′, z′)Qn(x′, z′; dx, z),

14



where the integration is over x′ and where Qt is the transition kernel over t units of
time from the state (x′, z′) to (dx, z); where necessary to highlight the dependence
of the strategy we will use notation Qα

t .
For any function 0 ≤ g(x, z) ∈ K and such that g(x, z) ≡ 0 for |x| > N , and

such that g(x, z) = g(x, z)δz,z0 . The latter restriction will be later dropped; in the
sequel g will be ψ, or ψ2. We estimate using Chapman – Kolmogorov’s equation and
integration over 0 ≤ t ≤ 1,

〈g, µα〉

=

∫ ∫ ∑
z′

µα(dx′, z′)

∫ ∑
z′′

Qα
t (x′, z′; dx′′, z′′)

∫ ∑
z

Qα
m−t(x

′′, z′′; dx, z)g(x, z)

≥
∫ ∫ ∑

z′

µα(dx′, z′)

∫ 1

0

λz′,zdt

∫
Qα,z′

t (x′, dx′′) exp(−Λz′t)

× exp(−Λz0(m− t))Q
α,z0
m−t(x

′′, dx)g(x, z0)

=

∫ ∫ ∑
z′

µα(dx′, z′)

∫ 1

0

λz′,zdt

∫
Qα,z′

t (x′, dx′′) exp(−Λz′t)

× exp(−Λz0(m− t))µα(dx, z0)g(x, z0)

−
∫ ∫ ∑

z′

µα(dx′, z′)

∫ 1

0

λz′,zdt

∫
Qα,z′

t (x′, dx′′) exp(−Λz′t)

× exp(−Λz0(m− t))(µα(dx, z0)−Qα,z0
m−t(x

′′, dx))g(x, z0)
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=

∫ ∫ ∑
z′

µα(dx′, z′)

∫ 1

0

λz′,z0dt

∫
Qα,z′

t (x′, dx′′) exp(−Λz′t)

× exp(−Λz0(m− t))µα(dx, z0)g(x, z0)

−
∫ ∫ ∑

z′

µα(dx′, z′)

∫ 1

0

λz′,z0dt

∫
Qα,z′

t (x′, dx′′) exp(−Λz′t)

× exp(−Λz0(m− t))(µα(dx, z0)−Qα,z0
m−t(x

′′, dx))g(x, z0)

=: Jg1 − J
g
2 .
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For Jg1 we have the following lower bound:

Jg1 =

∫ ∫ ∑
z′

µα(dx′, z′)

∫ 1

0

λz′,zdt

∫
Qα,z′

t (x′, dx′′) exp(−Λz′t)

× exp(−Λz0(m− t))µα,z0(dx)g(x, z0)

≥ λ− exp(−Λ+) exp(−Λz0m)

∫ ∫ ∑
z′

µα(dx′, z′)

×
∫ ∫ 1

0

dtQα,z′

t (x′, dx′′)µα,z0(dx)g(x, z0)

= λ− exp(−Λ+) exp(−Λz0m)

∫ 1

0

dt

×
∫ ∫ ∑

z′

µα(dx′, z′)

∫
Qα,z′

t (x′, dx′′)µα,z0(dx)g(x, z0)

= λ− exp(−Λ+) exp(−Λz0m)

∫
µα,z0(dx)g(x, z0)

≥ c(N)λ− exp(−Λ+) exp(−Λz0m)

∫
g(x, z0)dx.

We used the identity

∫ ∑
z′

µα(dx′, z′)

∫
Qα,z′

t (x′, dx′′) = 1 and the explicit formula

for the invariant measure µα,z given α(·) and z:

pα,z(x) =
µα,z(dx)

dx
= Cα,z

1

σ2(α(x, z), x, z)
exp

(
2

∫ x

0

b(α(y, z), y, z)

σ2(α(y, z), y, z)
dy

)
, (32)

where Cα,z is a normed constant – see, for example, [5, Lemma 4.16, equation (4.70)]
– or, more precisely, its straightforward corollary due to the assumptions on the
coefficients that for any N > 0 there exists a constant c(N) > 0 such that

inf
α,z

inf
|x|≤N

pα,z(x) ≥ c(N).
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For Jg2 we have an upper bound,

0 ≤ Jg2 =

∫ ∫ ∑
z′

µα(dx′, z′)

∫ 1

0

λz′,zdt

∫
Qα,z′

t (x′, dx′′) exp(−Λz′t)

× exp(−Λz0(m− t))(µα,z0(dx)−Qα,z0
m−t(x

′′, dx))g(x, z0)

≤ λ+ exp(−Λz0(m− 1))

∫ ∫ ∑
z′

µα(dx′, z′)

×
∫ ∫ 1

0

dtQα,z′

t (x′, dx′′)|µα,z0(dx)−Qα,z0
m−t(x

′′, dx)|g(x, z0)

= λ+ exp(Λ+) exp(−Λz0m)

∫ ∫ ∑
z′

µα(dx′, z′)

×
∫ 1

0

dtQα,z′

t (x′, dx′′)

∫
|µα,z0(dx)−Qα,z0

m−t(x
′′, dx)|g(x, z0)

≤ λ+ exp(Λ+)

∫ 1

0

dt exp(−Λz0m)

∫ ∫ ∑
z′

µα(dx′, z′)Qα,z′

t (x′, dx′′)

×(

∫
|µα,z0(dx)−Qα,z0

m−t(x
′′, dx)|)1/2(

∫
g(x, z0)2|µα,z0(dx)−Qα,z0

m−t(x
′′, dx)|)1/2

≤ λ+ exp(Λ+)

∫ 1

0

dt exp(−Λz0m)

∫ ∫ ∑
z′

µα(dx′, z′)Qα,z′

t (x′, dx′′)

×(

∫
|µα,z0(dx)−Qα,z0

m−t(x
′′, dx)|)1/2(

∫
g(x, z0)2|µα,z0(dx) +Qα,z0

m−t(x
′′, dx)|)1/2

≤ λ+ exp(Λ+) exp(−Λz0m)

∫ 1

0

dt

∫ ∑
z′

µα(dx′, z′)

∫
Qα,z′

t (x′, dx′′)
C(x′′)1/2

(1 +m− t)k/2
.

Here due to the inequality (14) of the Lemma 2, and since C(x′′) ≤ 1 + |x′′|`1 with
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some `1, ∫
C(x′′)1/2Qα,z′

t (x′, dx′′) ≤ C1(x′),

where C1(x′) = C(1 + |x′|`2) with some `2, C > 0, and because k > 0 may be chosen
arbitrarily large, and due to (15), we continue,

Jg2 ≤ λ+ exp(Λ+) exp(−Λz0m)

∫ 1

0

dt

∫
A

∫ ∑
z′

µα(dx′, z′)
C1(x′)

(1 +m− t)k

≤ λ+ exp(Λ+) exp(−Λz0m)
C

mk
,

with some new C <∞. Combining the bounds on Jg1 and Jg2 , we obtain,

〈g, µα〉 = Jg1 − J
g
2 ≥ c(N)λ− exp(−Λz0m)

∫
g(x, z)dx− λ+ exp(Λ+) exp(−Λz0m)

C

mk
.

It follows that

c(N)λ− exp(−Λz0m)

∫
g(x, z)dx ≤ 〈g, µα〉+ λ+ exp(Λ+) exp(−Λz0m)

C

mk
,

or,∫
g(x, z0)dx ≤ c(N)−1λ−1

− exp(+Λz0m)(〈g, µα〉+ λ+ exp(Λ+) exp(−Λz0m)
C

mk
)

= c(N)−1λ−1
−

(
exp(+Λz0m)〈g, µα〉+ λ+ exp(Λ+)

C

mk

)

≤ c(N)−1λ−1
−

(
exp(+Λ+m)〈g, µα〉+ λ+ exp(Λ+)

C

mk

)
.

So, due to linearity of integration, for any g ≥ 0 equal zero outside |x| > N (not
only for g = g1(z = z0)) we obtain for any m the desired bound (31),∑

z

∫
g(x, z)dx ≤ Cc(N)−1λ−1

−

(
exp(+Λ+m)〈g, µα〉+ λ+ exp(Λ+)

C

mk

)
.

The Lemma 4 is proved.
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NB: In the proof of the Theorem in (44) it will follow that for any ε > 0 there
exists n(ε) such that

sup
n≥n(ε)

∑
z

∫
|x|≤N

ψ2
n(x, z) dx < ε2/2.

Indeed, choose there ψ2
n so that 〈ψ2

n, µ
α〉 ≤ ε2 exp(−Λ+m); then we obtain∑

z

∫
|x|≤N

ψ2
n(x, z)dx ≤ Cc(N)−1λ−1

−

(
exp(+Λ+m)〈ψ2

n, µ
α〉+ λ+ exp(Λ+)

C

mk

)

≤ C(N)(ε2 +m−k).

So, taking m large enough here we get,∑
z

∫
|x|≤N

ψ2
n(x, z)dx ≤ 2C(N)ε2.

It remains to redenote ε by ε/
√

2C(N).

Corollary 1. Lebesgue’s measure Λ(dx) is absolutely continuous with respect to
µα(dx, z) for each α and for every z.

Proof. If g ≥ 0 (for example, g(x) = 1(x ∈ A) for some A ⊂ R) and 〈g, µα〉 = 0,
then by choosing m large enough we can make the right hand side in (31) arbitrarily
small, as required.

This Corollary will be used in the end of the proof of the Theorem.

3 Main results

Recall that the state space dimension is D = 1. We accept in this section that
solution of the SDE with any Markov strategy may be weak; however, we want it to
be unique in distribution, strong Markov and ergodic. All of these follow from [8] and
from the assumptions (A1) and (A2) (see [15] about ergodicity and the Lemma 1).

The exact RIA reads as follows. We start with some homogeneous Markov strat-
egy α0, which uniquely determines ρ0 = ρα0 ≡ 〈fα0 , µα0〉 and v0 = vα0 . Next, for
any couple (v, ρ) : v ∈

⋂
p>1W

2
p,loc, ρ ∈ R, define

F [v, ρ](x, z) := inf
u∈U

[Luv(x, z) + fu(x, z)− ρ] .
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Of course, due to the embedding theorems (see [9, Chapter 2]), we may consider
v and v′ continuous, Hölder continuous, and absolutely continuous; however, this
cannot be applied directly to v′′. Respectively, the function F [v, ρ](·) is defined by
the formula above as a function of the class Lp,loc for any p > 1; in particular, it is
Lebesgue measurable and as such it is defined only a.e. x. Further, we may and will
take a (any) Borel measurable version of this Lebesgue measurable function.

By induction, given αn, ρn and vn, the next “improved” strategy αn+1 is defined
as follows: for a.e. x and any z the function αn+1 is chosen so that

Lαn+1vn(x, z) + fαn+1(x, z)− ρn = F [vn, ρn](x, z) ≡ inf
u∈U

[Luvn(x, z) + fu(x, z)− ρn] ,

(33)
which is equivalent to

Lαn+1vn(x, z) + fαn+1(x, z) = inf
u∈U

[Luvn(x, z) + fu(x, z)] =: G[vn](x, z),

and also to saying that

αn+1(x, z) = arginfu∈U [Luvn(x, z) + fu(x, z)] .

We assume that a Borel measurable version of such strategy may be chosen; see the
reference in [1, Appendix]. The value ρn+1 is then defined as

ρn+1 := 〈fαn+1 , µαn+1〉,

where in turn, µαn+1 is the (unique) invariant measure, which corresponds to the
strategy αn+1. Also, recall that

vn(x, z) =

∫ ∞
0

Ex,z(fαn(Xαn
t , Zt)− ρn) dt,

and

vn+1(x, z) =

∫ ∞
0

Ex,z(fαn+1(X
αn+1

t , Zt)− ρn+1) dt.

Theorem 1. Let the assumptions (A1) – (A5) be satisfied. Then:
1. For any n, ρn+1 ≤ ρn, and there is a limit ρn ↓ ρ̃.
2. The sequence (vn) is pre-compact in C1[−N,N ] in x for each N > 0.
3. If ṽ is any limiting point of the family (vn, n ≥ 1) in C1

loc in the variable x,
then the couple (ṽ, ρ̃) solves the equation (11).

4. This solution (ṽ, ρ̃) is unique in the class of functions growing no faster than
some polynomial and belonging to the class W 2

p,loc in x for any p > 0 and any z.
5. The component ρ̃ in the couple (ṽ, ρ̃) coincides with ρ.
6. In addition, if (A6) is satisfies, then ṽ′′ ∈ Liploc in x for each z.
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Proof. 1. Due to (33) and (23), for almost every (a.e.) x ∈ R,

ρn = ραn = 〈fαn , µαn〉 = Lαnvn(x, z) + fαn(x, z)

≥ inf
u

[Luvn(x, z) + fu(x, z)] = Lαn+1vn(x, z) + fαn+1(x, z)

and also for a.e. x ∈ R and any z,

ρn+1 = Lαn+1vn+1(x, z) + fαn+1(x, z).

So,

ρn − ρn+1

a.e.

≥ (Lαn+1vn + fαn+1)(x, z)− (Lαn+1vn+1 + fαn+1)(x, z)

(34)

= (Lαn+1vn − Lαn+1vn+1)(x, z).

Now let us apply Dynkin’s formula to (vn − vn+1)(X
αn+1

t , Zt) (recall that v ∈ C
due to the embedding theorems): we have for any x ∈ R, z,

Evn(X
αn+1

t , Zt)− Evn+1(X
αn+1

t , Zt)− vn(x, z) + vn+1(x, z)

= E
∫ t

0

(Lαn+1vn − Lαn+1vn+1)(Xαn+1
s , Zs) ds

≤ E
∫ t

0

(ρn − ρn+1) ds = (ρn − ρn+1) t. (35)

It can be justified by Itô–Krylov’s formula (with switching) where the expectation of
the martingale term is zero because of the a priori moment bounds for the solution
(Xt). Here we also used the fact that the distribution of Xαn+1

s for almost all s >
0 is absolutely continuous with respect to the Lebesgue measure due to the non-
degeneracy and by virtue of Krylov’s estimates [7]; due to this reason and because
vn, vn+1 ∈ C, the a.e. inequality (34) implies (35) for every x. Further, since the left
hand side in (35) is bounded for a fixed x, we divide all terms of the latter inequality
by t and let t→∞ to get,

0 ≤ ρn − ρn+1,

as required.
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Hence, ρn ≥ ρn+1, so that ρn ↓ ρ̃ (since ρn is bounded for fα ∈ K, see (16) in the
Lemma 2) with some ρ̃. Thus, the RIA does converge, although, so far we do not
know whether ρ̃ = ρ.

Note that clearly ρ̃ ≥ ρ, since ρ is the inf over all Markov strategies, while ρ̃ is
the inf over some countable subset (a sequence) of them. We shall see later that they
do coincide: ρ̃ = ρ.

Recall that now we want to show that vn → ṽ, so that the couple (ṽ, ρ̃) satisfies
the HJB equation (11), and that ρ̃ – as well as ṽ in some sense – here is unique.

2. Let us show local pre-compactness of the family of functions (vn) in C1. Note
that the equation (11) is equivalent to the following:

v′′(x, z) + inf
u∈U

[
b(u, x, z)

a(u, x, z)
v′(x, z) +

f(u, x, z)

a(u, x, z)
− ρ

a(u, x, z)

]
+

1

a(u, x, z)

∑
j∈S\z

λzj (v(x, j)− v(x, z)) = 0, (36)

while the equation

Lαn+1vn+1(x, z) + fαn+1(x, z)− ρn+1
a.e.
= 0, (37)

is equivalent to

v′′n+1(x, z) +
b(αn+1(x), x, z)

a(αn+1(x), x, z)
v′n+1(x, z) +

f(αn+1(x), x, z)

a(αn+1(x), x, z)
− ρn+1

a(αn+1(x), x, z)

+
1

a(αn+1(x), x, z)

∑
j∈S\z

λzj (v(x, j)− v(x, z)) = 0.

According to the Lemma 3, the functions v′n+1 are uniformly locally bounded. Since
the sequence ρn+1 is bounded and due to the uniform local boundedness of the
functions f(αn+1(x), x) and uniform nondegeneracy of a, it follows that (v′′n) are
locally uniformly bounded and satisfy the uniform in n growth bounds similar to
(26) for the function itself and for its first derivative due to the equation (e.g., due
to (36)). This guarantees the pre-compactness of (vn) in C1 locally.

3. Due to the (local) compactness property showed in the previous step, by the
diagonal procedure from any infinite sub-family of functions vn it is possible to choose
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a converging in C1
loc subsequence. We want to show that up to a constant the limit

is unique. For this aim, first of all we shall see in a minute that if some vnj
(x, z) has

a limit, say, ṽ(x, z) (locally in C) then vnj+1(x, z) +βnj
has the same limit, where βn

is some bounded sequence of real values. (In fact, what will be established is a little
bit more complicated but still enough for our purposes.) We have,

Lαn+1vn+1(x, z) + fαn+1(x, z)− ρn+1
a.e.
= 0,

and

Lαn+1vn(x, z) + fαn+1(x, z)− ρn =: −ψn+1(x, z)
a.e.

≤ 0. (38)

Let us rewrite it as follows,

Lαn+1vn(x, z) + fαn+1(x, z)− ρn + ψn+1(x, z)
a.e.
= 0.

In other words, the function vn solves the Poisson equation with the second order
operator Lαn+1 and the “right hand side” −(fαn+1(x, z) + ψn+1(x, z) − ρn). This is
only possible if the expression fαn+1(x, z) + ψn+1(x, z)− ρn is centered with respect
to the invariant measure µn+1 because Poisson equations in the whole space have no
solutions for non-centered right hand sides (cf., e.g., [12]). This implies that

〈fαn+1 + ψn+1 − ρn, µn+1〉 = 0.

So,
〈ψn+1, µ

n+1〉 = ρn − ρn+1. (39)

Now denote
wn(x, z) := vn(x, z)− vn+1(x, z).

We have,
Lαn+1wn(x, z) + ψn+1(x, z)− (ρn − ρn+1)

a.e.
= 0.

So, there is a constant βn = 〈wn, µn+1〉 such that

wn(x, z)− βn =

∫ ∞
0

Ex(ψn+1(Xn+1
t , Zt)− (ρn − ρn+1)) dt. (40)

Let us show that for any N > 0,∫ N

−N
ψ2
n(x, z) dx→ 0, n→∞. (41)
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First of all, note that all functions ψn and, hence, ψ2
n are uniformly locally bounded

and may only grow polynomially fast,

(0 ≤ ) ψn(x, z) ≤ C(1 + |x|m), (42)

with some C,m the same for all values of n. which follows from the definition (38),
and the properties of derivatives v′n and v′′n, and from the Lemma 4, and due to

〈ψn+1, µ
n+1〉 = ρn − ρn+1 → 0, n→∞.

Now let us rewrite the equation (40) via a stationary version of the pair (X,Z), say,
(X̃n+1

t , Z̃t):

wn(x, z)− βn =

∫ ∞
0

Ex(ψn+1(Xn+1
t , Zt)− Eµn+1(ψn+1(X̃n+1

t , Z̃t)) dt.

(Note that if we knew that wn were centered with respect to the invariant mea-
sure µn+1 then we would have βn = 0; however, the functions vn and vn+1 are both
centered with respect to two different measures, and this is the reason why their
difference is not just small, but small up to some additive constant; this very con-
stant is denoted by βn.) Using the coupling idea (cf., e.g., [15]), let us consider the
independent processes (Xn+1

t , Zn+1
t ) and (X̃n+1

t , Z̃n+1
t ) on the same probability space

(just considering the product space) and denote the moment of the first meeting

τ := inf(t ≥ 0 : Xn+1
t = X̃n+1

t & Zn+1
t = Z̃n+1

t ),

which is a stopping time and is (apparently) finite with probability one. It is known
(see [15] and the proof of the Lemma 3) that under our recurrence assumptions for
any k > 0 there are some constants Ck,m such that uniformly with respect to n,

Ex,µn+1τ k ≤ Ck(1 + |x|m).

Denote

X̂n+1
t := 1(t < τ)Xn+1

t + 1(t ≥ τ)X̃n+1
t , Ẑn+1

t := 1(t < τ)Zn+1
t + 1(t ≥ τ)Z̃n+1

t .

Since τ is a stopping time and because the quadruple (Xn+1
t , Zn+1

t , X̃n+1
t , Z̃n+1

t ) is
strong Markov (see [6]), the couple (X̂n+1

t , Ẑn+1
t ) is also strong Markov equivalent to

(Xn+1
t , Zn+1

t ) in the sense of distributions of trajectories. Therefore, it is possible to
rewrite,

wn(x, z)− βn =

∫ ∞
0

Ex,µ(ψn+1(X̂n+1
t , Ẑn+1

t )− ψn+1(X̃n+1
t , Z̃n+1

t ) dt.

25



Hence, using the fact that after τ the pairs (X̂n+1
t , Ẑn+1

t ) and (X̃n+1
t , Z̃n+1

t ) coincide,
we obtain

wn(x, z)− βn =

∫ ∞
0

Ex,µ1(t < τ)(ψn+1(X̂n+1
t , Ẑn+1

t )− ψn+1(X̃n+1
t , Z̃n+1

t )) dt

=

∫ ∞
0

Ex,µ
∞∑
i=0

1(i ≤ τ < i+ 1)1(t < τ)(ψn+1(X̂n+1
t , Ẑn+1

t )− ψn+1(X̃n+1
t , Z̃n+1

t )) dt

=
∞∑
i=0

Ex,µ
∫ ∞

0

1(i ≤ τ < i+ 1)1(t < τ)(ψn+1(X̂n+1
t , Ẑn+1

t )− ψn+1(X̃n+1
t , Z̃n+1

t )) dt.

Thus, using Cauchy-Buniakovsky-Schwarz inequality and Fubini Theorem, we have,

|wn(x)− βn| ≤
∞∑
i=0

Ex,µ
∫ i+1

0

1(τ > i)|ψn+1(X̂n+1
t , Ẑn+1

t )− ψn+1(X̃n+1
t ), Z̃n+1

t | dt

≤
∞∑
i=0

∫ i+1

0

Ex,µ1(τ > i)(|ψn+1(X̂n+1
t , Ẑn+1

t )|+ |ψn+1(X̃n+1
t , Z̃n+1

t )|) dt

≤
∞∑
i=0

∫ i+1

0

(Ex,µ1(τ > i))1/2(Ex,µ(|ψn+1(X̂n+1
t , Ẑn+1

t )|+ |ψn+1(X̃n+1
t , Z̃n+1

t )|)2)1/2 dt

≤ 2
∞∑
i=0

(Ex,µ1(τ > i))1/2

∫ i+1

0

(Ex,µ|ψn+1(X̂n+1
t , Ẑn+1

t )|2 + Ex,µ|ψn+1(X̃n+1
t , Z̃n+1

t )|2)1/2 dt

≤ 2
∞∑
i=0

(Ex,µ1(τ > i))1/2

∫ i+1

0

[(Ex,µ(ψn+1(X̂n+1
t , Ẑn+1

t ))2)1/2 + (Ex,µ(ψn+1(X̃n+1
t , Z̃n+1

t )2)1/2] dt.
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Now, let us take any ε > 0 and use the inequality
√
a ≤ ε

2
+ a

2ε
. We estimate,∫ i+1

0

[(Ex,µ(ψn+1(X̂n+1
t , Ẑn+1

t ))2)1/2 + (Ex,µ(ψn+1(X̃n+1
t , Z̃n+1

t ))2)1/2] dt

≤ ε(i+ 1) +
1

2ε

∫ i+1

0

[Ex,µψ2
n+1(X̂n+1

t , Ẑn+1
t ) + Ex,µψ2

n+1(X̃n+1
t , Z̃n+1

t )] dt.

Let us first consider the stationary term. We have,

1

2ε

∫ i+1

0

Ex,µψ2
n+1(X̃n+1

t , Z̃n+1
t ) dt+

1

2ε

∫ i+1

0

Ex,µψ2
n+1(X̂n+1

t , Ẑn+1
t ) dt

=
1

2ε

∫ i+1

0

Ex,µψ2
n+11[−N,N ](X̃

n+1
t , Z̃n+1

t ) dt+
1

2ε

∫ i+1

0

Ex,µψ2
n+11R\[−N,N ](X̃

n+1
t , Z̃n+1

t ) dt

+
1

2ε

∫ i+1

0

Ex,µψ2
n+11[−N,N ](X̂

n+1
t , Ẑn+1

t ) dt+
1

2ε

∫ i+1

0

Ex,µψ2
n+11R\[−N,N ](X̂

n+1
t , Ẑn+1

t ) dt.

Given (42) and because any stationary measure integrates uniformly any power func-
tion, let us find such N that uniformly with respect to n,

〈C(1 + |x|2m)1R\[−N,N ], µ
n+1〉 < ε2/2, (43)

which is possible due to the Lemmata 2 and 4, and also such that N > ε−2. Then
choose n(ε) such that

sup
n≥n(ε)

∫
|x|≤N

ψ2
n(x) dx < ε2/2. (44)

This is possible since 〈ψn+1, µ
n+1〉 and hence also 〈ψ2

n+1, µ
n+1〉 is small (since ψn+1

has a limited polynomial growth), and because of the bounds (43) above and of (31)
from the Lemma 4.

Now we evaluate with n ≥ n(ε) due to Krylov’s estimate [7, 8],

1

2ε

∫ i+1

0

Ex,µψ2
n+11[−N,N ](X̃

n+1
t ) dt

=
1

2ε

i∑
k=0

Ex
∫ k+1

k

ψ2
n+11[−N,N ](X̃

n+1
t ) dt ≤ i+ 1

2ε
K‖ψ2

n+11[−N,N ]‖L2 ≤ (i+ 1)Kε

2
.
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This argument works for the non-stationary process as well: due to Krylov’s estimate,

1

2ε

∫ i+1

0

Ex,µψ2
n+11[−N,N ](X̂

n+1
t , Ẑn+1

t ) dt

=
1

2ε

i∑
k=0

E
∫ k+1

k

ψ2
n+11[−N,N ](X̂

n+1
t , Ẑn+1

t ) dt ≤ i+ 1

2ε
K‖ψ2

n+11[−N,N ]‖)L2 ≤ (i+ 1)Kε

2
.

Further,

1

2ε

∫ i+1

0

Ex,µψ2
n+11R\[−N,N ](X̂

n+1
t , Ẑn+1

t ) dt ≤ i+ 1

2ε
× ε2

2
=

(i+ 1)ε

4
.

Finally, using (44), we obtain with some `,

1

2ε

∫ i+1

0

Ex,µψ2
n+11R\[−N,N ](X̂

n+1
t , Ẑn+1

t ) dt =
1

2ε

∫ i+1

0

Ex,µψ2
n+11R\[−N,N ](X

n+1
t , Zn+1

t ) dt

≤ C
i+ 1

2ε

(1 + |x|`)
N

≤ C(i+ 1)(1 + |x|`)ε.

Overall, this shows that with the appropriately chosen (uniformly bounded) βn,

|wn(x)− βn| ≤ C(1 + |x|`)ε
∞∑
i=0

(i+ 1)(Ex,µ1(τ > i))1/2, n ≥ n(ε). (45)

By virtue of the results in [15], for any k > 0 there are C, `(k) > 0 such that

Px,µ1(τ > i) ≤ C
1 + |x|`(k)

1 + ik
.

Therefore, taking k > 1, we have that the series in (45) converges providing us an
estimate

|wn(x)− βn| ≤ C(1 + |x|`)ε, n ≥ n(ε), (46)

with some new `. In other words, the difference wn(x) − βn = vn − vn+1 − βn is
locally uniformly converging to zero as n → ∞. Naturally, it also implies that for
any subsequence nj such that vnj

converges locally uniformly in C1 we have that
v′nj

and v′nj+1 may only converge to the same limit, i.e., derivatives v′nj
− v′nj+1 → 0
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(locally uniformly) as j →∞. Indeed, otherwise we just integrate to show that the
limits of vnj

and vnj+1 + βnj
are different, which contradicts to what was established

earlier.

4. To start with, what we want to do is to pass to the limit of equations as n→∞
in the system

Lαn+1vn+1(x, z) + fαn+1(x, z)− ρn+1
a.e.
= 0,

G[vn](x, z)− ρn = Lαn+1vn(x, z) + fαn+1(x, z)− ρn ≤ 0,

after having showed the pre-compactness of the family of vector-functions (vn) in C1

in x. Denote

G[vn](x, z) := inf
u∈U

(Luvn + fu)(x, z) (= Lαn+1vn(x, z) + fαn+1(x, z)),

and

F1[x, z, v, v′, ρ] := inf
u∈U

[b̂uv′ + f̂u − ρ̂](x, z) +
∑
j∈S\z

λzj (v(x, j)− v(x, z)) ,

where

au(x, z) =
1

2
(σu(x, z))2, b̂u(x, z) = bu(x, z)/au(x, z),

f̂u(x, z) = fu(x, z)/au(x, z), ρ̂u(x, z) = ρ/au(x, z).

Now, the system of equations

Lαn+1vn+1(x, z) + fαn+1(x, z)− ρn+1
a.e.
= 0, (47)

is equivalent to

v′′n+1(x, z) +
b(αn+1(x, z), x, z)

a(αn+1(x, z), x, z)
v′n+1(x, z)− Λz(x)vn+1(x, z)

+
f(αn+1(x, z), (x, z))

a(αn+1(x, z), x, z)
− ρn+1

a(αn+1(x, z), x, z)
+
∑
j:j 6=z

λ̄z,j(x)vn+1(x, j) = 0,
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with Λz(x) =

∑
j∈S\z λzj

a(αn+1(x, z), x, z)
. Now the equation on the function v can be rewrit-

ten as follows,

v′′n+1(x, z) +
b(αn+1(x, z), x, z)

a(αn+1(x, z), x, z)
v′n+1(x, z)− Λz(x)vn+1(x, z)

(48)

+f̄(αn+1(x, z), (x, z)) = 0,

with

f̄(αn+1(x, z), (x, z)) :=
f(αn+1(x, z), (x, z))

a(αn+1(x, z), x, z)
− ρn+1

a(αn+1(x, z), x, z)
+
∑
j:j 6=z

λ̄z,j(x)vn+1(x, j).

According to the Lemma 3, the functions v′n+1 and, hence, also the function f̄ are
all uniformly locally bounded. It follows that (v′′n) are locally uniformly bounded.
This guarantess a precompactness of the family (vn) in C1 locally with respect to x.

5. Further, from

G[vn](x, z)− ρn = Lαn+1vn(x, z) + fαn+1(x, z)− ρn

(= inf
u∈U

[Luvn(x, z) + fu(x, z)− ρn]
a.e.

≤ 0),

by subtracting zero a.e. (47), we obtain a.e.,

G[vn](x, z)− ρn = Lαn+1(vn(x, z)− vn+1(x, z))− (ρn − ρn+1). (49)

Now we want to show for the (any) limiting function v that

ṽ′x(x, z)− ṽ′r(r, z) +

∫ x

r

F1[s, z, ṽ(s), ṽ′(s), ρ̃] ds = 0, (50)

which in turn implies by differentiation the equation equivalent to (11),

ṽ′′(x, z) + F1[x, z, ṽ, ṽ′, ρ̃](x, z) = 0, (51)

for any x, z, with the note that each component of ṽ′ is absolutely continuous in x.
Let us show why (49), indeed, implies (50). Recall that G[vn](x, z) − ρn ≤ 0

(a.e.). Denote ∑
j:j 6=z

cx,jvn+1(x, j) =: χ(x, z).
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Let us divide (49) by an+1 = aαn+1(x, z) and use δ := infu,x,z a
u(x, z) > 0: we get

a.e.,

0 ≥ (G[vn](x, z)− ρn)

an+1(x, z)

= (v′′n(x, z)− v′′n+1(x, z)) + (b̂αn+1(v′n − v′n+1))(x, z)

−(ρn − ρn+1)

an+1

(x, z) +
∑
j 6=z

λ̄zj(x)(vn(x, j)− vn(x, z)− vn+1(x, j) + vn+1(x, z))

≥ (v′′n(x, z)− v′′n+1(x, z))− K

δ
|v′n(x, z)− v′n+1(x, z)|

−1

δ
(ρn − ρn+1)−

∑
j 6=z

|λ̄zj(x)||vn(x, j)− vn(x, z)− vn+1(x, j) + vn+1(x, z)|. (52)

So, we have just shown that a.e.,

0 ≥ (v′′n(x, z)− v′′n+1(x, z))− K

δ
|v′n(x)− v′n+1(x)|

−ρn − ρn+1

δ
− C

∑
j 6=z

|vn(x, j)− vn(x, z)− vn+1(x, j) + vn+1(x, z)|. (53)

The next trick is to note that again due to (52) and ρn ≥ ρn+1, and since δ ≤ a ≤ C,

0
a.e.

≥ G[vn](x, z)− ρn ≥ an+1(v′′n − v′′n+1)(x, z)− C ′|v′n − v′n+1|(x, z)

−C ′′‖vn − vn+1 − βn‖(x)− (ρn − ρn+1),

which implies that

0
a.e.

≥ v′′n + F1[x, z, vn, v
′
n, ρn] ≥ ((v′′n − v′′n+1)(x, z)− C|v′n − v′n+1|)(x, z)

(54)

−C‖vn − vn+1 − βn‖)(x, z)− c(ρn − ρn+1).
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(Recall the notations: G[vn] := infα(Lαvn+fα)(= Lαn+1vn+fαn+1), and F1[x, z, v, v′, ρ] :=

infu[b̂uv′ + f̂u − ρ̂u](x) +
∑

j∈S\z λ̄zj(x) (v(x, j)− v(x, z)) .) Now, since v′n is absolutely
continuous, we can integrate (54) so as to get the following: for any (not a.e.!) x and
r with x > r,

0 ≥ v′nk
(x, z)− v′nk

(r, z) +

∫ x

r

F1[s, z, vnk
(s, z), v′nk

(s, z), ρnk
] ds

≥
∫ x

r

((v′′nk
− v′′nk+1)(s, z)− C|v′nk

− v′nk+1|(s, z)

−C‖vnk
− vnk+1 − βnk

‖(s)− c(ρnk
− ρnk+1)) ds

= v′nk
(x, z)− v′nk

(r, z)− v′nk+1(x, z) + v′nk+1(r, z)− C
∫ x

r

|v′nk
− v′nk+1|(s, z)ds

−C
∫ x

r

‖vnk
− vnk+1 − βnk

‖(s)ds− c(x− r)(ρnk
− ρnk+1). (55)

As we have seen, we may assume that there exists a sub-sequence nk →∞, k →
∞ such that vnk

→ ṽ and v′nk
→ ṽ′ (locally in C) for some ṽ ∈ C1, and that also

vnk+1
→ ṽ and v′nk+1

→ ṽ′ (locally in C), too. Note that ṽ′ is absolutely continuous.
Therefore, it is possible to get to the limit in the inequality (55) as k →∞: for any
x > r,

0 ≥ ṽ′(x, z)− ṽ′(r, z) + lim
k

∫ x

r

F1[s, z, vnk
(s, z), v′nk

(s, z), ρnk
] ds ≥ 0,

since the right hand side in (55) clearly goes to zero.
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Here

F1[s, z, vnk
(s, z), v′nk

(s, z), ρnk
]

= inf
u

[
bu

au
v′nk

(s, z) +
fu

au
(s, z)− ρnk

au
(s, z)

]
+
∑
j∈S\z

λ̄zj(x) (vnk
(x, j)− vnk

(x, z))

→ inf
u∈U

[
bu

au
ṽ′(s, z) +

fu

au
(s, z)− ρ̃

au
(s, z)

]
+
∑
j∈S\z

λ̄zj(x) (ṽ(x, j)− ṽ(x, z))

= F1[s, z, ṽ(s, z), ṽ′(s, z), ρ̃], nk →∞.

So, from (55) we obtain the desired equation (50)

ṽ′(x, z)− ṽ′(r, z) +

∫ x

r

F1[s, z, ṽ(s, z), ṽ′(s, z), ρ̃] ds = 0.

In turn, since F1[s, z, ṽ(s, z), ṽ′(s, z), ρ̃] is continuous and absolutely continuous in s,
it implies ṽ ∈ C2 in s, and by (well-defined) differentiation we get the equation (51)
for every x ∈ R, z ∈ S. Recall that (51) is equivalent to the HJB equation (11).

(6). Local Lipschitz for ṽ′′. (Tut chto-to nepravil’no, nado ispravliat’, no len’, prohe
ubrat’ etot punkt!) Under (A6), from (51) and due to the easily verified Lipschitz
condition on F1[x, ṽ′(x), ρ̃] in the variables (ṽ′, ρ̃) it follows that also

ṽ′′ ∈ Liploc,

as required. Indeed, firstly let us note that F1[x, p, q] is Lipschitz in (p, q) uniformly
in x, z:

|F1[x, z, p, q]− F1[x, z, p′, q′]|

≤ sup
u∈U
|[b̂u(x, z)p+ f̂u − q

au(x, z)
]− [b̂u(x, z)p′ + f̂u − q′

au(x, z)
]|

≤ C(|p− p′|+ |q − q′|).
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Secondly, let us show that v′′ ∈ Liploc. We have from (51) and (26),

|ṽ′′(x, z)| = |F1[x, ṽ′(x, z), ρ̃]| ≤ C(1 + |ṽ′(x, z)|) ≤ C(1 + |x|).

Therefore, it follows from the Cauchy Mean Value Theorem that

|ṽ′(x, z)− ṽ′(x′, z)| ≤ C(1 + |x|+ |x′|)|x− x′|.

So, due to Lipschitz condition on b, a in x and in virtue of the nondegeneracy of a,

|ṽ′′(x, z)− ṽ′′(x′, z)| = |F1[x, z, ṽ′(x), ρ̃]− F1[x′, z, ṽ′(x), ρ̃]|

= | inf
u

[b̂u(x, z)ṽ′(x, z) + f̂u(x, z)− ρ

au(x, z)
]− inf

u
[b̂u(x′, z)ṽ′(x′, z) + f̂u(x′, z)− ρ

au(x′, z)
]|

≤ sup
u
|b̂u(x, z)ṽ′(x, z) + f̂u(x, z)− ρ

au(x, z)
− b̂u(x′, z)ṽ′(x′, z)− f̂u(x′, z) +

ρ

au(x′, z)
|

≤ C(1 + |x|+ |x′|)|x− x′|.

The required local Lipschitz of ṽ′′ has been verified.
NB: the assumption (A6) is used only in this step of the proof.

7. Uniqueness for ρ in (11). Suppose there are two solutions of the (HJB) equa-
tion, v1, ρ1 and v2, ρ2 with a polynomial growth for vi. Earlier it was shown
that both v1 and v2 are classical solutions with locally Lipschitz second deriva-
tives. Denote v(x, z) := v1(x, z) − v2(x, z) and consider two strategies α1(x, z) =
argsupu∈U(Luv(x, z)) and α2(x, z) = arginfu∈U(Luv(x, z)), and let X i

t be a (weak)
solution of the SDE (1) corresponding to each strategy αi; by µi we denote the cor-
responding stationary measures relates to the strategy αi, i = 1, 2. Note that due
to the measurable choice arguments – see, e.g., the Appendix in [1] – such Borel
strategies exist; corresponding weak solutions also exist and are weakly unique given
the strategies.

Let us denote

h1(x, z) := sup
u∈U

(Luv(x, z) + ρ1 − ρ2), h2(x, z) := inf
u∈U

(Luv(x, z) + ρ1 − ρ2).
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Then,

h2(x, z) = infu∈U(Luv1(x, z) + fu(x, z) + ρ1 − (Luv2(x, z) + fu(x, z) + ρ2))

≤ inf
u∈U

(Luv1(x, z) + fu(x, z) + ρ1)− inf
u∈U

(Luv2(x, z) + fu(x, z) + ρ2) = 0,

and similarly,

h1(x, z) = − infu(L
u(−v)(x, z) + ρ2 − ρ1)

= − infu(L
uv2(x) + fu(x, z) + ρ2 − (Luv1(x, z) + fu(x, z) + ρ1))

≥ − [infu(L
uv2(x, z) + fu(x, z) + ρ2)− infu(L

uv1(x, z) + fu(x, z) + ρ1)] = 0.

We have,
Lα2v(x, z) = h2(x, z) + ρ2 − ρ1,

and
Lα1v(x, z) = h1(x, z) + ρ2 − ρ1.

Further, Dynkin’s (Itô–Krylov’s with expectations) formula is applicable. So,

Ex,zv(X1
t , Zt)− v(x, z) = Ex,z

∫ t

0

Lα1v(X1
s , Zs) ds

= Ex,z
∫ t

0

h1(X1
s , Zs) ds+ (ρ2 − ρ1) t

(h1≥0)

≥ (ρ2 − ρ1) t.

Here the left hand side is bounded (x fixed) due to the Lemma 2, so, we obtain,

ρ1 − ρ2 ≥ 0.

Similarly, considering α2 and using h2 ≤ 0 we conclude that

Ex,zv(X2
t , Zt)− v(x, z) = Ex,z

∫ t

0

Lα2v(X2
s , Zs) ds

= Ex,z
∫ t

0

h2(X2
s , Zs) ds+ (ρ2 − ρ1) t.
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From here, due to the boundedness of the left hand side (Lemma 2) we get,

ρ1 − ρ2 = lim inf
t→0

(t−1Ex,z
∫ t

0

h2(X2
s , Zs) ds)

(h2≤0)

≤ 0.

Thus, eventually,
ρ1 = ρ2.

8. Let us show that ρ = ρ̃. We have seen that for any initial strategy α0, the sequence
ρn converges monotonically decreasing to ρ̃, which is a unique component of solution
of the equation (11). Hence, given some (any) ε > 0, let us take any initial strategy
α0 such that

ρ0 = ρα0 < ρ+ ε.

Then, clearly, the corresponding limit ρ̃ will satisfy the same inequality,

ρ̃ = lim
n→∞

ρn < ρ+ ε.

Due to uniqueness of ρ̃ as a component of solution of the equation (11) and since
ε > 0 is arbitrary, we conclude that

ρ̃ ≤ ρ.

But also ρ̃ ≥ ρ since ρ̃ is the infimum of the cost function values over a smaller –
just countable – family of strategies. So,

ρ̃ = ρ.

9. Uniqueness for V up to an additive constant. Let us have another look at the
earlier equations, replacing ρ2 − ρ1 by zero as we know that the second component
in the solution is unique:

Ex,zv(X1
t , Zt)− v(x, z) = Ex

∫ t

0

h1(X1
s , Zs) ds. (56)

Clearly, h1 ≥ 0 with h1 6= 0 – i.e., with Λ(x : h1(x) > 0) > 0 – would imply that
〈h1, µ1〉 > 0, which contradicts to the zero left hand side (after division by t with
t→∞). So, we conclude that

h1(x, z) = 0, µ1 − a.s. for each z
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By virtue of the Corollary 1, Λ(·) << µ1(·, z) for any z. Therefore,

h1(x, z) = 0, Λ− a.s. for each z.

So, by Krylov’s estimate we have between any two subsequent stopping times of
jumps of the component Z, say, T1 < T2 with the value Zs = z̄ between them,

(0 ≤)Ex,z
∫ T2∧t

T1∧t
h1(X1

s , Zs) ds = Ex,z
(
Ex,z

∫ T2∧t

T1∧t
h1(X1

s , z̄) ds|FT1∧t
)
|z̄=ZT1∧t

(57)

≤ NtEx,z‖h1(·, z̄)‖L1|z̄=ZT1∧t
= 0.

So, also

(0 ≤)Ex,z
∫ t

0

h1(X1
s , Zs) ds = 0, (58)

Hence, in fact, the equality (56) may be rewritten as

Ex,zv(X1
t , Zt)− v(x, z) = 0. (59)

Further, (59) and due to the Lemma 2 it follows that

v(x, z) = lim
t→∞

Ex,zv(X1
t , Zt) = 〈v, µ1〉.

Hence, v(x, z) is a constant. Recall that uniqueness of the first component V is
stated up to a constant, and it was just established that

v1(x, z)− v2(x, z) = const.

So, the last claim of the Theorem is proved.
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[8] N.V. Krylov. On Itô’s stochastic integral equations. Theory of Probability & Its
Applications, 14(2), 1969. Addendum: ibid., 17(2), 373–374, 1973.

[9] O.A. Ladyzhenskaja, V.A. Solonnikov, N.N. Ural’ceva, Linear and Quasi-linear
Equations of Parabolic Type, AMS: Providence, R. I., 1968.

[10] X. Mao, C. Yuan, Stochastic differential equations with Markovian switching.
London, Imperial college press, 2006.

[11] H.P. McKean, Stochastic integrals. AMS Chelsea Publishing, 2005.
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