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Abstract. We here consider optimal control problems governed by nonlinear stochastic
equations on a Hilbert space H with nonconvex payoff, which is rewritten as a deter-
ministic optimal control problem governed by a Kolmogorov equation in H. We prove
the existence and first-order necessary condition of closed loop optimal controls for the
above control problem. The strategy is based on solving a deterministic bilinear opti-
mal control problem for the corresponding Kolmogorov equation on the space L2(H, ν),
where ν is the related infinitesimally invariant measure for the Kolmogorov operator.

1. Introduction

We are concerned with optimal control problems connected with the informal stochastic
differential equation on a Hilbert space H (with norm | · |H , inner product 〈·, ·〉) of type

dX(t) = A(X(t))dt+Q
1
2Bu(X(t))dt+Q

1
2dW (t), t ∈ (0, T ),(1.1)

X(0) = x ∈ H.

Here, the operator A is defined by

A : D(F ) 7→ (D(Ã))∗, 〈A(x), h〉 := 〈x, Ãh〉+ 〈F (x), h〉(1.2)

for any x ∈ D(F ) and any h ∈ D(Ã), where Ã is a self-adjoint m-dissipative linear
operator in H to be made precise later on, and F is a (possibly nonlinear) operator from
D(F ) ⊆ H to H.

The operator B is linear and bounded on L∞(H;H, ν), where ν is an infinitesimally
invariant measure for the corresponding Kolmogorov operator when u ≡ 0 (see Hypothesis
(H1) (ii) below), which actually serves as a substitute for Lebesque measure on H that
does not exist on infinite dimensional spaces. The operator Q is a positive definite
bounded self-adjoint linear operator on H, satisfying that Qei = qiei, qi > 0 for all but

finitely many i ≥ 1 and for some orthonormal basis {ei}i≥1 ⊆ D(Ã) of H, and W is a
cylindrical Wiener process on H defined on a probability space (Ω,F ,P) with normal
filtration (Ft), t ≥ 0.

The term u is an input controller applied to the stochastic system and is taken in the
admissible set

Uad = {u : H → H; u is ν −measurable, |u(x)|H ≤ ρ, ∀x ∈ H},

where ρ ∈ (0,∞) is fixed.
Equation (1.1) is mainly motivated by a number of stochastic partial differential equa-

tions, including singular stochastic equations ([16, 15]), gradient systems, stochastic
reaction-diffusion equations ([10, 14]) and stochastic porous media equations ([3], see
also [4]).
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In the present work, we are interested in the optimal feedback control problem for
(1.1), i.e., find a controller u∗ ∈ Uad such that

(P0)

Min

{
E
∫ T

0

∫
H

g(Xu(t, x))ν(dx)dt; u ∈ Uad, Xu solves (1.1)

}
,

where g is a given function in L2(H, ν), is attained at u∗.
It should be mentioned that the main difficulty for the existence theory for the optimal

control problem (P0) is that the cost functional Φ(u) = E
∫ T

0

∫
H
g(Xu(t, x))ν(dx)dt, u ∈

Uad, is not weakly lower-semicontinuous on L2(H;H, ν), if A is nonlinear and g is not
convex.

Another delicate problem in infinite dimensional spaces is that, even if (1.1) has a
unique strong solution (in the probabilistic sense) in the uncontrolled case where u ≡ 0,
it is in general not clear whether it still has strong solutions under bounded perturbations.
See, e.g., [11]-[13] for the relevant work.

Here, the key idea is to rewrite the original Problem (P0) as a deterministic bilinear
optimal control problem governed by the Kolmogorov equation corresponding to (1.1).

More precisely, we consider the Kolmogorov equation corresponding to (1.1), i.e.,

dϕ

dt
= N2ϕ+ 〈Q

1
2Bu,Dϕ〉, t > 0,(1.3)

ϕ(0, x) = g(x), x ∈ H,

where u ∈ Uad, N2 is the Kolmogorov operator related to (1.1) (see (2.2) and Remark 2.1
below), and equation (1.3) is taken in the space L2(H, ν).

Heuristically, via Itô’s formula, one has that the solution ϕu for (1.3) is given by

ϕu(t, x) = Eg(Xu(t, x)), for dt× ν − a.e. (t, x) ∈ [0, T ]×H.
This entails that the original optimal control problem can be reformulated as follows:
find u∗ ∈ Uad such that

(P ∗)

Min

{∫ T

0

∫
H

ϕu(t, x)ν(dx)dt; u ∈ Uad, and ϕu is the solution to (1.3)

}
is attained at u∗.

This idea was recently applied in [1] by the first author to the stochastic reflection
problem in finite dimensions. The main advantage of Problem (P ∗) is that it is a deter-
ministic bilinear optimal control problem. This feature makes it possible to give a unified
treatment of optimal control problems for various stochastic equations on Hilbert spaces
through the corresponding Kolomogorov operators, under unusually weak conditions of
the nonlinearity and the objective functionals. Actually, the usual continuity or convexity
conditions are not assumed here, which can be viewed as a regularization effect of noise
on control problems through the corresponding Kolmogorov operators.

As a matter of fact, the optimal feedback controllers for Problem (P ) can be formally
determined by solving an infinite dimensional second order Hamilton-Jacobi equation
(see, e.g., [8, 17]). However, such an equation under quite restrictive conditions has only
a viscosity solution which is not sufficiently regular to provide an explicit representa-
tion for the optimal controller. We would also like to refer to [18] for the solvability of
nonlinear Kolmogorov equations, including Hamilton-Jacobi-Bellman equations, and the
applications to optimal feedback controls.
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Here, for any objective functions g in D(N2), where D(N2) is the domain of the closure
in L2(H, ν) of the Kolmogorov operator (N0, D(N0)) defined in (2.2) below, we prove the
existence of a closed-loop optimal control for Problem (P ∗) under mild conditions on F
and g.

Moreover, in the symmetric case (i.e., N∗2 = N2 on L2(H, ν), where N∗2 denotes the dual
operator ofN2), for more general objective functions g ∈ L2(H, ν), we obtain the existence
as well as first-order necessary condition of optimal feedback controllers of Problem (P ∗).

Regarding the original control problem of the stochastic equation (1.1), it turns out
that the martingale problem serves as an appropriate concept of solutions to stochastic
equations on Hilbert spaces. More precisely, we consider the problem

(P )

Min

{∫ T

0

∫
H

EPxg(Xu(t))ν(dx)dt; u ∈ Uad, Px ◦ (Xu)−1 solves

the martingale problem of (1.1) for ν − a.e. x ∈ H
}
.

(See Definition 2.9 below for the definition of the martingale problem corresponding to
(1.1).)

We prove that the optimal controllers to Problem (P ∗) obtained above actually coincide
with those to the Problem (P ), as long as the related martingale problems are well posed.
In this sense, the optimal controllers for Problem (P ∗) of Kolmogorov equations can be
viewed as generalized optimal controllers for the Problem (P ) of stochastic equations on
Hilbert spaces.

Actually, the solutions to the martingale problem for (1.1) suffice to define the objective
functional in Problem (P ). More importantly, well-posedness for this type of martingale
problem holds in a quite general setting (e.g. in the framework of (generalized) Dirichlet
forms), and it is also stable under bounded perturbations and thus enables us to treat
optimal control problems of stochastic differential equations on Hilbert spaces, of which
the nonlinearity may be not continuous or the operator Q

1
2 is not necessarily Hilbert-

Schmidt (see, e.g., [15]). For such equations, it is known that strong solutions (in the
probabilistic sense) do not exist in general.

As we shall see below, the martingale problem is well posed for various stochastic
equations on Hilbert spaces, including singular dissipative stochastic equations, stochas-
tic reaction-diffusion equations as well as stochastic porous media equations. Moreover,
we also prove that the well-posedness of martingale problems are implied by the m-
dissipativity of the corresponding Kolmogorov operators in certain situations, by using
the theory of (generalized) Dirichlet forms (see Theorems 4.1 and 4.5 below). The in-
terplay between optimal control problems and (generalized) Dirichlet forms would be of
independent interest.

We would also like to mention that, by the argument above, the end point optimal
control problem

Min{
∫
H

EPxg(Xu(T ))ν(dx) : u ∈ Uad, Px ◦ (Xu)−1 solves

the martingale problem of (1.1) for ν − a.e. x ∈ H.}

can be also written as

Min{
∫
H

ϕu(T, x)ν(dx) : u ∈ Uad, ϕu solves (1.3)}.
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Notation For k ∈ N, by FCk
b (H) we denote the set of Ck

b -cylindrical functions ϕ(x) =
φ(〈x, e1〉 , · · · , 〈x, en〉) for some n ∈ N and φ ∈ Ck

b (Rn), where {ek : k ∈ N} is the
eigenbasis ofQ introduced above. LetBb(H) and Cb(H) denote, respectively, the bounded
Borel-measurable and bounded continuous functions from H to R, and let L(H) be the
set of all bounded operators on H. The symbols D and D2 denote the first and second
Fréchet derivatives, respectively. We also use the notation Id for the identity operator
on H.

For any Borel probability measure ν onH, supp(ν) denotes the topological support of ν,
and L2(H, ν) consists of ν-measurable functions ϕ on H such that

∫
H
|ϕ(x)|2ν(dx) <∞.

We use the notation ( , ) for the inner product in L2(H, ν). Similarly, L2(H;H, ν) denotes
the space of H-valued L2(ν)-integrable maps.

2. Formulation of the main results

To begin with, let us first introduce the Kolmogorov operator related to (1.1), which
is formally given by,

Nu
0 ϕ(x) :=

1

2
Tr[QD2ϕ](x) + 〈A(x), Dϕ(x)〉+ 〈Bu(x), Q

1
2Dϕ(x)〉,(2.1)

for any ϕ ∈ FC2
b (H). In particular, when u ≡ 0, we set

N0ϕ(x) :=
1

2
Tr[QD2ϕ](x) + 〈A(x), Dϕ(x)〉 , ϕ ∈ D(N0) := FC2

b (H).(2.2)

Consider the following assumptions.

(H1) There exists a Borel probability measure ν such that F : D(F ) ⊆ H → H is
ν-measurable and the following properties hold:
(i) ν(D(A)) = 1 and

∫
H

(|F (x)|2H + |x|2H)ν(dx) <∞.
(ii) ν is the infinitesimally invariant measure for (N0, D(N0)), i.e.,∫

H

N0ϕdν = 0, ∀ϕ ∈ FC2
b (H).

(iii) (N0,FC2
b (H)) is essentially m-dissipative on L2(H, ν), i.e., (1−N0)(FC2

b (H))
is dense in L2(H, ν).

(H2) The operator Q
1
2B with domain D(Q

1
2B) := Uad and defined by (Q

1
2B) (u)(x) :=

Q
1
2 (Bu(x)), x ∈ H, is compact as an operator from L∞(H;H, ν) to L2(H;H, ν),

i.e., if un, u ∈ D(Q
1
2B), n ∈ N, such that un → u weakly-star in L∞(H;H, ν) as

n→∞, then Q
1
2Bun → Q

1
2Bu in L2(H;H, ν).

(H3) The operator Q
1
2D with domain FC1

b (H) is closable from L2(H, ν) to L2(H;H, ν),
and the embedding W 1,2(H, ν) into L2(H, ν) is compact.

Here W 1,2(H, ν) is the Sobolev space defined as the completion of FC2
b (H) under the

norm ‖ϕ‖W 1,2(H,ν) = (
∫
H

(|ϕ|2 + |Q 1
2Dϕ|2H)dν)

1
2 . Note that W 1,2(H, ν) is a subspace

of L2(H, ν) if and only if (Q
1
2D,FC1

b (H)) is closable, as an operator from L2(H, ν) to

L2(H;H, ν). In this case we denote its closure again by Q
1
2D and by construction its

domain is W 1,2(H, ν).

Remark 2.1. As is well-known (H1) (ii) implies that (N0, D(N0)) is dissipative on
L2(H, ν), so by (H1) (iii) and the Lumer-Phillips Theorem its closure (N2, D(N2)) gener-
ates a C0-semigroup P ν

t = etN2, t > 0, of contractions on L2(H, ν). Furthermore, D(N0)
is dense in D(N2) with respect to the graph norm given by N2.
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Remark 2.2. The compactness of the embedding of W 1,2(H, ν) into L2(H, ν) is equivalent
to the compactness of the semigroup P ν

t for some (equivalently, all) t > 0. See, e.g., [19,
Theorem 1.2], [24, Theorems 1.1 and 3.1] and [25, p.3250]. The above compact embedding
can be also deduced from the Logarithmic-Sobolev inequality, see, e.g., [10]. In particular,
Hypothesis (H3) holds for the Gaussian invariant measures of the Ornstein-Uhlenbeck
process (see [7]).

Below we give one specific example satisfying Hypothesis (H2).

Example Let Q = Id, and let fj ∈ L1(H;H, ν), gj ∈ L∞(H;H, ν), j ≥ 1, be such that

B(u) =
∞∑
j=1

∫
H

〈u, fj〉dνgj, ∀u ∈ Uad,(2.3)

and

CB :=
∞∑
j=1

‖fj‖L1(H;H,ν)‖gj‖L∞(H;H,ν) <∞.(2.4)

Then, B satisfies (H2).
In fact, let un, u ∈ D(B), n ∈ N, be such that un → u weakly-star in L∞(H;H, ν) as

n→∞. Then, for every N ∈ N,

N∑
j=1

∫
H

〈u− un, fj〉 dνgj → 0, in L∞(H;H, ν).

So, let ε > 0. Then, by (2.4) there exists N ∈ N such that

∞∑
j=N+1

‖fj‖L1(H;H,ν)‖gj‖L∞(H;H,ν) < ε.

Hence for ε > 0,

lim sup
n→∞

‖Bu−Bun‖L∞(H;H,ν) ≤ lim sup
n→∞

‖
N∑
j=1

∫
H

〈u− un, fj〉 dνgj‖L∞(H;H,ν)

+ 2ρ
∞∑

j=N+1

‖fj‖L1(H;H,ν)‖gj‖L∞(H;H,ν)

≤2ρε.

So, we even have Bun → Bu in L∞(H;H, ν) as n→∞.

Remark 2.3. A specific example is where B(Uad) is in a finite dimensional subspace of
L∞(H;H, ν).

Actually, in this case, there exists linear independent g1, · · · , gj ∈ L∞(H;H, ν) such
that ‖gi‖L2(H;H,ν) = 1, 1 ≤ i ≤ j and {B(Uad)} ⊆ span{g1, · · · , gn}, and so, for any u ∈
Uad, B(u) =

∑n
j=1 cjgj for some cj ∈ R, 1 ≤ j ≤ n. Then, we take {g̃j}nj=1 ⊆ L2(H;H, ν)

such that 〈g̃j, gk〉L2(H;H,ν) = δjk, 1 ≤ j, k ≤ n. This yields that cj = 〈B(u), g̃j〉L2(H;H,ν) =

〈u,B∗g̃j〉L2(H;H,ν), where B∗ is the dual operator of B in L2(H;H, ν). This implies (2.3)

with fj = B∗g̃j.
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Under Hypothesis (H1), let (N2, D(N2)) be the closure of (N0, FC2
b (H)) in L2(H, ν).

Then, ν is an invariant measure for P ν
t = etN2 , t > 0, i.e.,∫

H

P ν
t f(x)ν(dx) =

∫
H

f(x)ν(dx), ∀t ≥ 0, ∀f ∈ Bb(H).(2.5)

(See, e.g., the proof of [15, Corollary 5.3].)
The essential m-dissipativity of (Nu

0 ,FC2
b (H)) can be inherited from the uncontrolled

case where u ≡ 0, more precisely, from (H1) (iii). This is the content of the following
theorem to be proved in Section 3 below.

Theorem 2.4. Assume Hypothesis (H1) to hold. Then, we have the integration by parts
formula ∫

H

ϕN2ϕdν = −1

2

∫
H

|Q 1
2Dϕ|2Hdν, ∀ϕ ∈ D(N2),(2.6)

where Q
1
2D is the continuous extension of the operator

D(N0) 3 ϕ 7→ Q
1
2Dϕ ∈ L2(H;H, ν)

with respect to the N2-graph norm on D(N0).
Moreover, for each u ∈ Uad, the operator

Nu
2 : D(N2) 7→ L2(H, ν), Nu

2 ϕ(x) := N2ϕ(x) + 〈Bu(x), Q
1
2Dϕ(x)〉

has FC2
b (H) as a core and generates a C0-semigroup etN

u
2 on L2(H, ν). Furthermore, for

some positive constant C(T, ρ) > 0,

sup
u∈Uad

(‖etNu
2 g‖C([0,T ];L2(H,ν)) + (

∫ T

0

∫
H

|Q 1
2DetN

u
2 g|2Hdνdt)

1
2 ) ≤ C(T, ρ)‖g‖L2(H,ν).(2.7)

The first result of this paper is concerned with the existence of optimal controllers for
Problem (P ∗). It will be proved in Section 3 below.

Theorem 2.5. (Optimal control of Kolmogorov equations: general case)
Assume that Hypothesis (H1) holds and, in addition, that either (H2) or (H3) holds.

Then, for any g ∈ D(N2), there exists at least one optimal control to Problem (P ∗).
In particular, in the case where (H1) and (H3) hold, one may take B = Id.

Remark 2.6. We would like to mention that, no continuity or convexity of A and g are
assumed in Theorem 2.5 which, however, are the usual conditions for optimal feedback
controls even in the finite dimensional case.

Next, we are concerned with the symmetric case (i.e., N∗2 = N2 on L2(H, ν)) which
arises, in particular, in various applications to gradient systems (see, e.g., [13, 14] and
the end of Subsection 5.1 below).

In this case, we are able to obtain optimal controllers for more general objective func-
tions g ∈ H := L2(H, ν). Moreover, we also obtain the first-order necessary condition of
the optimal feedback controllers, in terms of the solutions to Kolmogorov equations and
adjoint backward equations.

One nice feature here is that the corresponding Kolmogorov operators are defined in
the variational form from V := W 1,2(H, ν) to V ′, where V ′ is the dual space of V in the
pairing (·, ·) with the pivot space H := L2(H, ν). (Note that, V ⊂ H ⊂ V ′ with dense
and continuous embeddings.) This fact enables us to analyze the Kolmogorov equations
and the adjoint backward equations in the variational setting.
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The following result generalizes Theorem 2.5 in the symmetric case for g ∈ L2(H, ν)
and is proved in Section 3.

Theorem 2.7. (Optimal control of Kolmogorov equations: symmetric case)

Consider the symmetric case N∗2 = N2 on L2(H, ν). Assume (H1) and that (Q
1
2D,FC1

b (H))
is closable from L2(H, ν) to L2(H;H, ν). In addition, assume that either (H2) or (H3)
holds.

Then, for any objective function g ∈ L2(H, ν), there exists an optimal control for
Problem (P ∗) where ϕu solves the equation in the space V ′.

In particular, in the case where (H3) holds, we can take B = Id.

In order to identify the optimal feedback controllers, we (in the symmetric case) intro-
duce the adjoint-backward equation corresponding to the Kolmogorov equation (1.3)

dp

dt
= −N2p−Gup− 1,(2.8)

p(T, x) = 0.

Here, Gu is a bounded operator from H to V ′, defined by

V(ϕ,Guψ)V ′ :=

∫
H

〈Bu(x), Q
1
2Dϕ(x)〉ψ(x)ν(dx), ϕ ∈ V , ψ ∈ H.

Note that ‖Guψ‖V ′ ≤ ‖u‖L∞(H;H,ν)‖B‖‖ψ‖H, where ‖B‖ denotes the operator norm.
The backward equation (2.8) is understood in the variational sense, and its global

well-posedness is part of Theorem 3.3 of Subsection 3.2 below.
Now, we are ready to state the first-order necessary condition for the optimal feedback

controllers in the symmetric case (see Subsection 3.2).

Theorem 2.8. (Necessary condition of optimality: the symmetric case)
Assume that the conditions of Theorem 2.7 hold and let u∗ be an optimal controller for

Problem (P ∗). Then, we have∫
H

〈B(u− u∗),
∫ T

0

Q
1
2Dϕ∗p∗dt〉dν ≥ 0, ∀u ∈ Uad,(2.9)

where ϕ∗ and p∗ are the solutions to (1.3) and (2.8), respectively, with u∗ replacing u.

Below we consider the optimal control problem of the original stochastic differential
equation (1.1).

As mentioned in the Introduction, the concept of martingale problem is robust under
bounded perturbations which, in particular, fits the optimal control problems considered
here. Moreover, the martingale problem is well posed in a quite general setting (e.g.,

the nonlinearity F may be not continuous or the operator Q
1
2 is not necessary Hilbert-

Schmidt) in which case probabilistic strong solutions may not exist.
Following [3, 15], the martingale problem for (1.1) is defined in Definition 2.9, where

we use the notion of “ν-martingale problem” to express its dependence on the probability
measure ν on H. Later, however, we shall fix ν as in Hypothesis (H1) for the remaining
part of the paper, and for simplicity we shall drop the pre-fix ν again.

Definition 2.9. Let ν be a Borel probability measure on H. A solution to the ν-
martingale problem for (Nu

0 ,FC2
b (H)) is a conservative Markov process Mu = (Ω,F ,

(Ft)t≥0, (Xu(t))t≥0, (Px)x∈H0) on H0 := supp(ν) with continuous sample paths t 7→
〈Xu(t), ei〉, i ≥ 1, such that Xu(0) = x, Px-a.s., and the following properties hold:
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(i) There exist M, ε ∈ (0,∞) such that∫
H0

(P u
t f)2dν ≤M

∫
H0

f 2dν, ∀f ∈ Cb(H), t ∈ (0, ε),(2.10)

where P u
t , t ≥ 0, is the transition semigroup of Mu.

(ii) For ν-a.e. x ∈ H, Px-a.s.,∫ t

0

| 〈A(Xu(s)), ei〉 |ds <∞, for every t > 0,(2.11)

and for all test functions ϕ ∈ FC2
b (H)

ϕ(Xu(t))−
∫ t

0

(Nu
0 ϕ(Xu(s))ds, t ≥ 0,(2.12)

is an (Ft)-martingale under Px.

For simplicity, we also say that Xu solves the ν-martingale problem for (1.1).
Uniqueness holds if any two Markov processes which are solutions to the ν-martingale

problem for (1.1) have the same finite dimensional distributions for ν-a.e. starting points
x ∈ H.

The ν-martingale problem for (1.1) is said to be well posed if existence and uniqueness
of solutions hold.

Remark 2.10. (i) We note that (2.11) holds under Hypothesis (H1), by the integrability
properties of |x|H and F in Hypothesis (H1) (i) and (2.10).

(ii) The uniqueness of solutions to the martingale problem can be derived from the
existence of martingale solutions and the m-dissipativity of Kolmogorov operators in Hy-
pothesis (H1). See the arguments in the proof of the uniqueness part of Theorem 2.12.

In order to consider the optimal control problem of the stochastic equation (1.1), we
assume that

(H1)’ The ν-martingale problem for (1.1) is well posed in the case u ≡ 0.

Remark 2.11. (i) Hypothesis (H1)′ can be obtained from (H1) if the associated general-
ized Dirichlet form is quasi-regular and has the local property. Actually, under (H1), it is
known that (see [22, p.6]) the closure (N2, D(N2)) of (N0,FC2

b (H)) induces a generalized
Dirichlet form on L2(H, ν) as follows

E(ϕ, ψ) :=

{
−(N2ϕ, ψ), ϕ ∈ D(N2), ψ ∈ L2(H, ν);
−(N∗2ψ, ϕ), ϕ ∈ L2(H, ν), ψ ∈ D(N∗2 ),

where ( , ) denotes the inner product in L2(H, ν), and N∗2 is the dual operator of N2.
We see that the condition D3 in [22, p.78] is satisfied with Y = FC2

b (H) and F =
D(N2). Hence, provided E is quasi-regular, [22, Theorem IV. 2.2] yields that there exists
a sufficiently regular Markov process M (namely, a ν-tight special standard process) with
transition semigroup Pt, t > 0, given by P ν

t , t > 0, hence satisfying (i) of Definition 2.9
with M = 1 for all t ∈ (0,∞). In addition, by [23, Theorem 3.3], the sample paths of M
are continuous P-a.s. for ν-a.e. x ∈ H0 if E is local. Moreover, Remark 2.10 (i) and [5,
Proposition 1.4] yield that M satisfies the property (ii) of Definition 2.9. Thus, M solves
the martingale problem for (1.1) for u ≡ 0. The uniqueness can be proved as in Section
4 below.

As specific examples, we show in Theorems 4.1 and 4.5 that Hypothesis (H1)′ can be
implied by the m-dissipativity of Kolmogorov operators in certain situations, based on the
theory of (generalized) Dirichlet forms.
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(ii) It follows by (2.12) and (H1) that for all ϕ ∈ FC2
b (H) and for all t > 0

H0 3 x 7→ P u
t ϕ(x) := EPx [ϕ(Xu(t))]

is a ν-version of etN
u
2 ϕ ∈ L2(H, ν). Below we shall briefly describe this by saying that

“P u
t is given by etN

u
2 ”.

Similarly to Theorem 2.4, the well-posedness of the martingale problem for controlled
equations can be inherited from that for the uncontrolled equation.

Theorem 2.12. Assume that Hypotheses (H1) and (H1)′ hold. Then, for each u ∈ Uad,
the martingale problem for (1.1) is well posed.

The main result for optimal control problems of the stochastic equation (1.1) is formu-
lated below.

Theorem 2.13. (Optimal control for stochastic equations on Hilbert spaces)
(i) (General case) Assume (H1) and (H1)′. Assume in addition that either (H2) or

(H3) holds. Then, for any objective function g ∈ D(N2), there exists an optimal control
to Problem (P ).

(ii) (Symmetric case) Consider the symmetric case. Assume (H1) and that (Q
1
2D,

FC1
b (H)) is closable from L2(H, ν) to L2(H;H, ν). Assume additionally (H2) or (H3).

Then, for any objective function g ∈ L2(H, ν), there exists an optimal control to Problem
(P ) and the first-order necessary condition (2.9) holds.

In both cases, when (H3) holds, one can take B = Id.

The remainder of this paper is organized as follows. Section 3 is mainly devoted to
the optimal control problem of Kolmogorov equations. We first prove Theorem 2.5 in the
general case in Subsection 3.1, while Theorems 2.7 and 2.8 are proved later in Subsection
3.2. Then, in Section 4 we study the optimal control problem of stochastic equations on
Hilbert spaces. Finally, Section 5 mainly contains the applications to various stochastic
partial differential equations, including stochastic equations in H with singular drifts,
stochastic reaction-diffusion equations and stochastic porous media equations.

3. Optimal control of Kolmogorov equations

3.1. General case. This subsection is mainly devoted to the proof of Theorem 2.5. To
begin with, we first prove Theorem 2.4 for the realted Kolmogorov operators.

Proof of Theorem 2.4. For simplicity, we set H := L2(H, ν). Let us first prove the
identity (2.6). Actually, by straightforward computations,

N0(ϕ2) = 2ϕN0ϕ+ |Q
1
2Dϕ|2H , ∀ϕ ∈ FC2

b (H),

which along with (H1) (ii) implies that∫
H

ϕN0ϕdν = −1

2

∫
H

|Q
1
2Dϕ|2Hdν, ∀ϕ ∈ FC2

b (H).(3.1)

To extend (3.1) to all ϕ ∈ D(N2) we observe that the map

Q
1
2D : FC2

b (H)→ L2(H;H, ν)

is linear and by (3.1) continuous with respect to the graph norm of N2 on FC2
b (H).

Since FC2
b (H) is dense in D(N2) with respect to the graph norm of N2, this map extends

uniquely by continuity to D(N2) and then (2.6) follows by continuity.
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We also note that

D(N2) 3 ϕ 7→ 〈Bu,Q 1
2Dϕ〉 ∈ H(3.2)

is a well-defined bounded linear operator. Actually, for any ϕ ∈ D(N2), we take {ϕn} ⊆
FC2

b (H) such that ϕn → ϕ in the N2-graph norm in H. Then, since supx∈H |u(x)|H ≤ ρ,
by (3.1),∫

|〈Bu,Q 1
2D(ϕn − ϕm)〉|2dν ≤ρ2‖B‖2

∫
|Q 1

2D(ϕn − ϕm)|2dν(3.3)

=− 2ρ2‖B‖2

∫
(ϕn − ϕm)N0(ϕn − ϕm)dν → 0,

as n,m→∞. This implies that {〈Bu,Q 1
2Dϕn〉} is a Cauchy sequence in H and so yields

the claim above.
In order to prove that FC2

b (H) is a core of (Nu
2 , D(N2)), it suffices to prove that the

graph norms of N2 and Nu
2 are equivalent, i.e., there exists C > 0 such that for any

ϕ ∈ FC2
b (H),

C−1(‖N2ϕ‖2
H + ‖ϕ‖2

H) ≤ (‖Nu
2 ϕ‖2

H + ‖ϕ‖2
H) ≤ C(‖N2ϕ‖2

H + ‖ϕ‖2
H).(3.4)

For this purpose, we note that for any λ > 0, similarly to (3.3),

‖〈Bu,Q 1
2Dϕ〉‖2

H ≤ −2ρ2‖B‖2

∫
H

ϕN2ϕdν ≤ 2ρ2‖B‖2(
1

λ
‖N2ϕ‖2

H + λ‖ϕ‖2
H),(3.5)

which immediately yields the second inequality of (3.4). Moreover, taking λ large enough
such that 2ρ2‖B‖2/λ ≤ 1/4 we also obtain the first inequality of (3.4).

The fact that (Nu
2 , D(N2)) generates a C0-semigroup etN

u
2 follows from the essential

m-dissipativity of (Nu
0 ,FC2

b (H)) on H. To this end, we note that for λ large enough, for
any f ∈ H, the equation

λϕ−N2ϕ− 〈Bu,Q
1
2Dϕ〉 = f

has the unique solution

ϕ = Rλ((I − Tλ)−1f),

where Rλ is the resolvent of N2, i.e., Rλ = (λ−N2)−1, and the operator Tλ : L2(H, ν)→
L2(H, ν) is defined by Tλψ = 〈Bu,Q 1

2DRλψ〉. (Note that, ‖Tλψ‖H ≤ 1
2
‖ψ‖H when

λ is large enough, hence (I − Tλ)
−1 is well-defined and (I − Tλ)

−1 ∈ L(H).) By the
essential m-dissipativity of (N0,FC2

b (H)), there exists a sequence (ϕn) ⊆ FC2
b (H) such

that (λ−N2)ϕn → (I − Tλ)−1f , as n→∞. This yields

(λ−N2)ϕn − 〈Bu(x), Q
1
2Dϕn〉 =(λ−N2)ϕn − Tλ(λ−N2)ϕn

→(I − Tλ)−1f − Tλ(I − Tλ)−1f = f,

as n→∞, which implies that the image of λ−Nu
0 is dense in H. Thus, (Nu

0 ,FC2
b (H))

is essentially m-dissipative on H and so generates a semigroup etN
u
2 on H, t ≥ 0.
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Regarding (2.7), by (2.6) and Cauchy’s inequality, for ϕ := etN
u
2 g,

1

2
∂t‖ϕ‖2

H =(N2ϕ, ϕ) + (〈Bu,Q 1
2Dϕ〉, ϕ)

≤− 1

2

∫
H

|Q 1
2Dϕ|2Hdν + ρ‖B‖

∫
H

|Q 1
2Dϕ|H |ϕ|dν

≤− 1

4

∫
H

|Q 1
2Dϕ|2Hdν + 4ρ2‖B‖2‖ϕ‖2

H,

which along with Gronwall’s inequality implies (2.7).
Therefore, the proof of Theorem 2.4 is complete. �

Proof of Theorem 2.5. We set H := L2(H, ν) and

Φ(u) :=

∫ T

0

∫
H

ψu(t, x)ν(dx)dt,

where ψu is the solution to (1.3) corresponding to u ∈ Uad.
Let I∗ := inf{Φ(u) : u ∈ Uad} and take a sequence {un} ⊆ Uad, such that I∗ ≤ Φ(un) ≤

I∗ + 1
n
, n ≥ 1.

Let ϕn := e−(4ρ2‖B‖2+1)tψun , n ≥ 1. Then, we have

Φ(un) =

∫ T

0

∫
H

e(4ρ2‖B‖2+1)tϕndνdt,(3.6)

and by (1.3) ϕn solves

dϕn
dt

= N unϕn, t ∈ (0, T ),(3.7)

ϕn(0) = g,

where the operator N un : D(N2)→ H is defined by

N unψ := N2ψ + 〈Bun, Q
1
2Dψ〉 − (4ρ2‖B‖2 + 1)ψ, ψ ∈ D(N2).(3.8)

By Theorem 2.4, we see that also (N un , D(N2)) generates a C0-semigroup etN
un

on H,

namely etN
un

= e−(4ρ2‖B‖2+1)tetN
un
2 , where etN

un
2 is given by Theorem 2.4, and

sup
n≥1
‖ϕn‖2

C([0,T ];H) + sup
n≥1

∫ T

0

∫
|Q 1

2Dϕn(s)|2Hdνds ≤ C‖g‖2
H.(3.9)

Similarly, by (3.4) and (3.9),

sup
n≥1
‖N unϕn‖C[0,T ;H] = sup

n≥1
‖etNunN ung‖C[0,T ;H] ≤ C(T, ρ)(‖N2g‖H + ‖g‖H).(3.10)

Hence, along a subsequence, again denoted {n}, we have

un → u∗, weakly − star in L∞(H;H, ν),(3.11)

ϕn → ϕ∗, weakly in L
2(0, T ;H),(3.12)

N unϕn → η, weakly in L2(0, T ;H).(3.13)

Note that, since t 7→ e(4ρ2‖B‖2+1)t ∈ L2(0, T ;H), we apply (3.12) to pass to the limit in
(3.6) to obtain

I∗ = lim
n→∞

Φ(un) =

∫ T

0

∫
H

e4ρ2‖B‖2tϕ∗dνdt.(3.14)
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Moreover, by (3.7), (3.12) and (3.13), ϕ∗ satisfies the equation

ϕ∗(t) = g +

∫ t

0

η(s)ds, for dt− a.e. t ∈ [0, T ].(3.15)

Now it remains to prove that

η(t) = N u∗ϕ∗(t), for a.e. t ∈ (0, T ).(3.16)

Note that, by (2.6),

(N unv, v)H ≤ 0, ∀v ∈ D(N2),(3.17)

For simplicity, we set Ht := L2(0, t;H) with the inner produce (·, ·)Ht below. Then, (3.17)
yields that, for any positive function h ∈ L∞(0, T ) and any ψ ∈ M, where M denotes
the space of all linear combinations of functions of the form fv, where f ∈ L∞(0, T ) and
v ∈ FC2

b (H),

0 ≥
∫ T

0

h(t)(N un(ϕn − ψ), ϕn − ψ)Htdt

=

∫ T

0

h(t)(N unϕn, ϕn)Htdt−
∫ T

0

h(t)(N unϕn, ψ)Htdt

−
∫ T

0

h(t)(N unψ, ϕn)Htdt+

∫ T

0

h(t)(N unψ, ψ)Htdt

=:K1,n −K2,n −K3,n +K4,n.(3.18)

Below we treat Ki,n separately, 1 ≤ i ≤ 4.
For K1,n, by equation (3.7),

1

2
‖ϕn(t)‖2

H = (N unϕn, ϕn)Ht +
1

2
‖g‖2

H, 0 < t < T.

Then, multiplying both sides by h(t) and integrating over [0, T ] we get

1

2

∫ T

0

h(t)‖ϕn(t)‖2
Hdt =

∫ T

0

h(t)(N unϕn, ϕn)Htdt+
1

2
‖g‖2

H

∫ T

0

h(t)dt.(3.19)

Similarly, we infer from the equation (3.15) that

1

2

∫ T

0

h(t)‖ϕ∗(t)‖2
Hdt =

∫ T

0

h(t)(η, ϕ∗)Htdt+
1

2
‖g‖2

H

∫ T

0

h(t)dt.(3.20)

Moreover, by (3.12),

ϕnh
1
2 → ϕ∗h

1
2 , weakly in L2(0, T ;H),(3.21)

which implies that

lim inf
n→∞

∫ T

0

h(t)‖ϕn(t)‖2
Hdt ≥

∫ T

0

h(t)‖ϕ∗(t)‖2
Hdt.(3.22)

Thus, we obtain from (3.19)-(3.22) that

lim inf
n→∞

K1,n ≥
∫ T

0

h(t)(η, ϕ∗)Htdt.(3.23)

Moreover, in order to pass to the limit in K2,n, we note that, by (3.13),

(N unϕn, ψ)Ht → (η, ψ)Ht , ∀t ∈ (0, T ].
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Taking into account (3.10), we have for any t ∈ (0, T ],

|(N unϕn, ψ)Ht | ≤‖N unϕn‖L2(0,T ;H)‖ψ‖L2(0,T ;H)

≤C(T, ρ)(‖N2g‖H + ‖g‖H)‖ψ‖L2(0,T ;H) <∞.

Then, the dominated convergence theorem yields

lim
n→∞

K2,n =

∫ T

0

h(t)(η, ψ)Htdt.(3.24)

Now, we treat the term K3,n. We expand

(N unψ, ϕn)Ht = (N2ψ, ϕn)Ht + (〈Bun, Q
1
2Dψ〉, ϕn)Ht − 4ρ2‖B‖2(ψ, ϕn)Ht .(3.25)

By (3.12),

lim
n→∞

(N2ψ, ϕn)Ht = (N2ψ, ϕ∗)Ht , lim
n→∞

(ψ, ϕn)Ht = (ψ, ϕ∗)Ht .(3.26)

Concerning the second term on the right-hand side of (3.25), we claim that

(〈Bun, Q
1
2Dψ〉, ϕn)Ht → (〈Bu∗, Q

1
2Dψ〉, ϕ∗)Ht .(3.27)

In order to prove (3.27), we note that

(〈Bun, Q
1
2Dψ〉, ϕn)Ht − (〈Bu∗, Q

1
2Dψ〉, ϕ∗)Ht(3.28)

=(〈Bun −Bu∗, Q
1
2Dψ〉, ϕ∗)Ht +

∫ t

0

∫
H

〈Bun, (ϕn(s)− ϕ∗(s))Q
1
2Dψ(s)〉dνds.

For the first term on the right-hand side of (3.28), Fubini’s theorem yields

(〈Bun −Bu∗, Q
1
2Dψ〉, ϕ∗)Ht =

∫ t

0

∫
H

〈Bun −Bu∗, ϕ∗(s)Q
1
2Dψ(s)〉dνds

=

∫
H

〈Bun −Bu∗,
∫ t

0

ϕ∗(s)Q
1
2Dψ(s)ds〉dν.

But the latter term converges to zero, since B ∈ L(L∞(H;H, ν)) and thus Bun → Bu∗
as n→∞ weakly-star in L∞(H;H, ν) and since for all t ∈ [0, T ],∫ t

0

ϕ∗(s)Q
1
2Dψ(s)ds ∈ L1(H;H, ν).

Now, let us treat the second term on the right-hand side of (3.28). If (H2) holds, then
it follows that Bun → Bu∗ in L2(H;H, ν) as n → ∞, hence the second term in (3.28)
obviously converges to zero as n→∞.

Now assume that (H3) holds and set V := W 1,2(H, ν). We claim that

ϕn → ϕ∗, strongly in L2(0, T ;H).(3.29)

Actually, from equation (1.3) it follows that dϕn
dt

is bounded in L2(0, T ;H), and by (3.9),
{ϕn} is also bounded in L2(0, T ;V). Since by Hypothesis (H3), V is compactly embedded
in H, by virtue of the Aubin-Lions compactness theorem (see e.g. [2, Theorem 1.2]) we
obtain (3.29), as claimed.

Hence, the second term on the right-hand side of (3.28) also converges if (H3) holds.
Thus, we obtain (3.27), as claimed. (Note that, Hypothesis (H2) or (H3) are only used

here. When (H3) holds one may take B = Id.)
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This along with (3.25) and (3.26) yields

lim
n→∞

(N unψ, ϕn)Ht =(N2ψ, ϕ∗)Ht + (〈Bu∗, Q
1
2Dψ〉, ϕ∗)Ht − 4ρ2‖B‖2(ψ, ϕ∗)Ht

=(N u∗ψ, ϕ∗)Ht .(3.30)

Taking into account that

sup
t∈[0,T ]

|(N unψ, ϕn)Ht | ≤ C sup
j≥1
‖ϕn‖L2(0,T ;H) <∞,

we may apply the dominated convergence theorem to obtain

lim
n→∞

K3,n =

∫ T

0

h(t)(N u∗ψ, ϕ∗)Htdt.(3.31)

Finally, arguing as in the proof of (3.31) we have

lim
n→∞

K4,n =

∫ T

0

h(t)(N u∗ψ, ψ)Htdt.(3.32)

Thus, combing together (3.18), (3.23), (3.24), (3.31) and (3.32) we conclude that for
any positive functions h ∈ L∞(0, T ) and any ψ ∈M,

0 ≥
∫ T

0

h(t)(η −N u∗ψ, ϕ∗ − ψ)Htdt.(3.33)

Now, consider the Hilbert space L2(0, T ;D(N2)), where D(N2) is equipped with the
graph norm given by N u∗ . Then, if ψ ∈ L2(0, T ;D(N2)) such that∫ T

0

〈ψ, fv〉D(N2) dt = 0, ∀f ∈ L∞(0, T ), v ∈ FC2
b (H),

since FC2
b (H) is dense in D(N2), it follows that ψ = 0, i.e.,M is dense in L2(0, T ;D(N2)).

Hence, for every ψ ∈ L2(0, T ;D(N2)), there exist ψn ∈ M, such that ψn → ψ in
L2(0, T ;D(N2)) as n→∞. Then, we have

(η −N u∗ψ, ϕ∗ − ψ)Ht = lim
n→∞

(η −N u∗ψn, ϕ∗ − ψn)Ht

and for all t ∈ [0, T ],

|(η −N u∗ψn, ϕ∗ − ψn)Ht| ≤‖η‖L2(0,T ;H)(‖ϕ∗‖L2(0,T ;H) + sup
n≥1
‖ψn‖L2(0,T ;H))

+ sup
n≥1
‖N u∗ψn‖L2(0,T ;H)(‖ϕ∗‖L2(0,T ;H) + sup

n≥1
‖ψn‖L2(0,T ;H))

Hence, (3.33) extends to all ψ ∈ L2(0, T ;D(N2)) and, if ϕ∗ ∈ L2(0, T ;D(N2)), we may
particularly take ψ := ϕ∗(t) − εf(t)v, where ε ∈ (0, 1), f ∈ L∞(0, T ) and v ∈ FC2

b (H).
Dividing by ε and then letting ε to 0, we arrive at

0 ≥
∫ T

0

h(t)(η −N u∗ϕ∗, fv)Htdt.(3.34)

Therefore, since h, f ∈ L∞(0, T ) and v ∈ FC2
b (H) are arbitrary, we obtain (3.16), if

ϕ∗ ∈ L2(0, T ;D(N2)).
To show that ϕ∗ ∈ L2(0, T ;D(N2)), we first note that because of (3.12) we only have

to prove that

sup
n≥1
‖N u∗ϕn‖L2(0,T ;H) <∞.(3.35)
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Indeed, then there exists a subsequence of ϕn, n ∈ N, along which N u∗ϕn, n ∈ N,
converges weakly in L2(0, T ;H). Hence, taking into account (3.12) we can select a sub-
sequence ϕnl , l ∈ N, such that the following two Cesaro-mean convergence strongly in
L2(0, T ;H) (by the Banach-Saks Theorem),

1

N

N∑
l=1

ϕnl → ϕ∗, in L2(0, T ;H), as N →∞,(3.36)

and

N u∗(
1

N

N∑
l=1

ϕnl), N ∈ N, converges in L2(0, T ;H),(3.37)

so ϕ∗ ∈ L2(0, T ;D(N2)) by completeness.
But we have by (3.8), (3.9), (3.13) and since supn≥1 ‖un‖L∞(H;H,ν) ≤ ρ, that

sup
n≥1
‖N2ϕn‖L2(0,T,H) <∞.

Hence, it follows by (3.9) and (3.8) again that (3.35) holds.
Therefore, the proof of Theorem 2.5 is complete. �

3.2. Symmetric case. Throughout this subsection, we assume the self-adjointness of
the Kolmogorov operator N2 and the closability of the operator Q

1
2D. Precisely, we

assume that N∗2 = N2 on H := L2(H, ν), and the operator Q
1
2D with domain FC1

b (H) is
closable from L2(H, ν) to L2(H;H, ν).

A nice feature in the symmetric case is that the Kolmogorov operators are variational
from V to V ′. This enables us to analyze the Kolmogorov equation (1.3) and the backward
equation (2.8) in the variational setting.

We first extend the integration by parts formula (2.6) in the symmetric case.

Lemma 3.1. Consider the symmetric case. Assume (H1) and that (Q
1
2D,FC1

b (H)) is
closable from L2(H, ν) to L2(H;H, ν). Then,∫

H

ψN2ϕdν = −1

2

∫
H

〈Q
1
2Dϕ,Q

1
2Dψ〉dν, ϕ, ψ ∈ V := W 1,2(H, ν),(3.38)

where N2 is the continuous extension of the operator

FC2
b (H) 3 ϕ 7→ N2ϕ ∈ V ′(3.39)

with respect to the V-norm on FC2
b (H).

Proof. Since N∗2 = N2, using (3.1) and polarization we see that (3.38) is valid for
all ϕ, ψ ∈ FC2

b (H). Note that, by (3.38), the map (3.39) is linear and continuous with
respect to the V-norm on FC2

b (H). Hence, since FC2
b (H) is dense in V , the map (3.39)

can be extended uniquely by continuity to V and (3.38) follows by continuity. �

Below we still denote N2 by N2 in the symmetric case for simplicity.
In order to obtain the global well-posedness for the Kolmogorov equation (1.3), we use

ϕ̃ := e−(4ρ2‖B‖2+1)tϕ to rewrite (1.3) as follows

dϕ̃

dt
= N uϕ̃,(3.40)

ϕ̃(0) = g,

where N u is as in (3.8), i.e., N u = Nu
2 − (4ρ2‖B‖2 + 1).
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Similarly, for p̃(t) := e−(4ρ2‖B‖2+1)tp(T − t), we have from (2.8) that

dp̃

dt
= Ñ up̃+ e−(4ρ2‖B‖2+1)t,(3.41)

p̃(0) = 0,

where Ñ u := N2 +Gu − (4ρ2‖B‖2 + 1) with Gu as in (2.8).

The properties of operators N u and Ñ u are collected in the result below.

Proposition 3.2. Under the conditions of Lemma 3.1, we have

sup
u∈Uad

(‖N uϕ‖V ′ + ‖Ñ uϕ‖V ′) ≤ C(T, ρ)‖ϕ‖V , ∀ϕ ∈ V ,(3.42)

for some C(T, ρ) > 0, and for any ϕ ∈ V,

V(ϕ,N uϕ)V ′ +V (ϕ, Ñ uϕ)V ′ ≤ −
1

2
‖ϕ‖2

V .(3.43)

Proof. Let us first consider the operator N u. By (3.38), for any ϕ, ψ ∈ V ,

V 〈ψ,N uϕ〉V ′ =− 1

2

∫
H

〈Q
1
2Dϕ,Q

1
2Dψ〉dν +

∫
H

〈Bu,Q
1
2Dϕ〉ψdν

− 4ρ2‖B‖2

∫
ϕψdν,(3.44)

which along with Hölder’s inequality implies immediately that for some C > 0

‖N uϕ‖V ′ ≤ C‖ϕ‖V .(3.45)

Moreover, by Cauchy’s inequality and ab ≤ a2 + b2, we have

|
∫
H

〈Bu,Q
1
2Dϕ〉ϕdν| ≤ ρ‖B‖

∫
H

|Q
1
2Dϕ|H |ϕ|dν ≤

1

4
‖ϕ‖2

V + 4ρ2‖B‖2‖ϕ‖2
H.

Plugging this into (3.44) with ϕ replacing ψ we obtain

V(ϕ,N uϕ)V ′ ≤ −
1

4
‖ϕ‖2

V .(3.46)

Concerning the operator Ñ u, we first see that

sup
u∈Uad

‖Guψ‖V ′ ≤ ‖u‖L∞(H;H,ν)‖B‖‖ψ‖H.(3.47)

Actually, by Hölder’s inequality,

|V(ϕ,Guψ)V ′| =
∣∣∣∣ ∫

H

〈Bu,Q
1
2Dϕ〉ψdν

∣∣∣∣ ≤(

∫
H

|〈Bu,Q
1
2Dϕ〉|2dν)

1
2 (

∫
H

|ψ|2dν)
1
2

≤‖u‖L∞(H;H,ν)‖B‖‖ϕ‖V‖ψ‖H,

which yields (3.47), as claimed.
Then, arguing as above and using (2.6) and (3.47) we have that, for some C > 0, for

any ϕ ∈ V ,

‖Ñ uϕ‖V ′ ≤ C‖ϕ‖V ,(3.48)

and

V(ϕ, Ñ uϕ)V ′ ≤−
1

4
‖ϕ‖2

V .(3.49)

Thus, putting together the estimates above we obtain (3.42) and (3.43). �
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As a consequence of Proposition 3.2 and a classical result due to J.L. Lions (see [20]
or [2, Theorem 4.10]), we obtain that there exist unique solutions ϕ̃ and p̃ to (3.40) and
(3.41), respectively, and so do the equations (1.3) and (2.8).

Theorem 3.3. Under the condition of Lemma 3.1. Let u ∈ Uad. Then, we have
(i) For any objective function g ∈ L2(H, ν), there exists a unique solution ϕu to the

Kolmogorov equation (1.3) such that ϕu ∈ C([0, T ];H)∩L2(0, T ;V), d
dt
ϕu ∈ L2(0, T ;V ′),

and
dϕu

dt
(t) = N2ϕ

u(t) + 〈Q
1
2Bu,Dϕu〉(t), a.e. t ∈ (0, T ), ϕu(0) = g,(3.50)

where d
dt

is taken in the strong topology of V ′, or equivalently in D ′(0, T ;V ′).
(ii) There exists a unique solution pu to the backward equation (2.8) such that pu ∈

C([0, T ];H) ∩ L2(0, T ;V), d
dt
pu ∈ L2(0, T ;V ′), and

dpu

dt
(t) = −N2p

u(t)−Gupu(t)− 1, a.e. t ∈ (0, T ), pu(T ) = 0.(3.51)

The following result contains the uniform estimates and the continuity dependence on
controllers of the solutions to Kolmogorov equations.

Theorem 3.4. Consider the situations as in Lemma 3.1. We have
(i) For any two solutions ϕ1, ϕ2 to (1.3) corresponding to the initial data g1 and g2,

respectively, we have

‖ϕ1 − ϕ2‖C([0,T ];H) + ‖ϕ1 − ϕ2‖L2(0,T ;V) ≤ C(ρ, T )‖g1 − g2‖H,(3.52)

where C(ρ, T ) is independent of u ∈ Uad. In particular, one has

sup
u∈Uad

‖ϕu‖2
C([0,T ];H) + sup

u∈Uad

∫ T

0

∫
H

|Q
1
2Dϕu|2Hdνdt ≤ C(ρ, T ) <∞.(3.53)

(ii) For any u, ũ ∈ Uad and λ ∈ [0, 1], set v := ũ− u. Then, as λ→ 0,

‖ϕu+λv − ϕu‖C([0,T ];H) +

∫ T

0

∫
H

|Q
1
2D(ϕu+λv − ϕu)|2Hdνdt→ 0.(3.54)

Proof. (i) The estimate (3.52) follows from (1.3) and similar arguments as in the
proof of (2.7).

(ii) We replace ϕ by ϕλ := e−(4ρ2‖B‖2+1)t(ϕu+λv − ϕu) in (1.3) to obtain

d

dt
ϕλ = N uϕλ + λe−(4ρ2‖B‖2+1)t〈Bv,Q

1
2Dϕu+λv〉,

with ϕλ(0) = 0. This, via (3.43), yields that

1

2

d

dt
‖ϕλ‖2

H ≤−
1

4
‖ϕλ‖2

V + λe−(4ρ2‖B‖2+1)t

∫
H

〈Bv,Q
1
2Dϕu+λv〉ϕλdν

≤− 1

4
‖ϕλ‖2

V + 2λρ‖B‖‖ϕλ‖H(

∫
H

|Q
1
2Dϕu+λv|2Hdν)

1
2 .

Thus, in view of the uniform boundedness (3.53), we obtain for some positive constant
C ′(T, ρ) independent of λ,

‖ϕλ‖2
C([0,T ];H) +

∫ T

0

∫
H

|Q
1
2Dϕλ|2Hdνdt ≤ C ′(T, ρ)λ2 → 0, as λ→ 0,

which implies (3.54), thereby finishing the proof. �
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Proof of Theorem 2.7. Let un, u∗, ϕn, ϕ∗ and η be as in the proof of Theorem 2.5.
Using (3.42) and (3.53) we obtain that along a subsequence {n},

un → u∗, weak − star in L∞(H; ν),

ϕn → ϕ∗, weak − star in L∞(0, T ;H),

weakly in L2(0, T ;V),

N unϕn → η, weakly in L2(0, T ;V ′).
Then, using similar arguments as in the proof of Theorem 2.7 we can pass to the limits
in the dual pair Vt(·, ·)V ′t instead of the inner product (·, ·)Ht , where Vt := L2(0, t;V) and
V ′t is the dual space of Vt.

Hence, similarly to (3.33), we have that

0 ≥
∫ T

0

h(t)V ′t(η −N
u∗ψ, ϕ∗ − ψ)Vtdt(3.55)

for any positive functions h ∈ L∞(0, T ) and any ψ ∈ M, where M is defined as in the
proof of Theorem 2.5. Then, since M is dense in L2(0, T ;V) we can extend (3.55) to all
ψ ∈ L2(0, T ;V).

Hence, taking ψ = ϕ∗− εfv, f ∈ L∞(0, T ), v ∈ FC2
b (H), similarly to (3.34) we obtain

0 ≥
∫ T

0

h(t)V ′t(η −N
u∗ϕ∗, fv)Vtdt(3.56)

for any f ∈ L∞(0, T ) and any v ∈ FC2
b (H), which suffices to yield that η = N u∗ϕ∗,

dt×ν-a.e., thereby yielding that u∗ is an optimal controller for Problem (P ∗). Therefore,
the proof is complete. �

Proof of Theorem 2.8. For any u ∈ Uad, let v := u− u∗ and ϕu∗+λv be the solution
to (1.3) related to u∗ + λv, λ ∈ (0, 1).

We infer from (1.3) and (2.8) that

d

dt
(ϕu∗+λv − ϕ∗, p∗) = λ(〈Bv,Q

1
2Dϕu∗+λv〉, p∗)−

∫
H

(ϕu∗+λv − ϕ∗)dν,

where (·, ·) denotes the inner product in H. This yields that for any λ ∈ (0, 1),∫ T

0

∫
H

〈B(u− u∗), Q
1
2Dϕu∗+λv〉p∗dνdt =

1

λ

∫ T

0

∫
H

(ϕu∗+λv − ϕ∗)dνdt ≥ 0,

where the last inequality is due to the optimality of u∗.
Therefore, taking λ→ 0 and using (3.54), Fubini’s theorem we obtain that∫

H

〈B(u− u∗),
∫ T

0

Q
1
2Dϕ∗p∗dt〉dν ≥ 0, ∀u ∈ Uad,

which yields (2.9), thereby finishing the proof. �

4. Optimal control of stochastic equations

4.1. General case. In this subsection, we first prove Theorem 2.12 under Hypothesis
(H1)′. Then, we prove the first assertion (i) of Theorem 2.13. At last, we show that
Hypothesis (H1)′ can be implied by the m-dissipativity of Kolmogorov operators, i.e.,
Hypothesis (H1)-(iii), by applying the theory of generalized Dirichlet forms.
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Proof of Theorem 2.12. (Existence) By Hypothesis (H1)′, there exists a conser-
vative Markov process M = (Ω,F , (Ft)t≥0, (X(t))t≥0, (Px)x∈H0) such that X(0) = x,
P-a.s., the sample paths t 7→ 〈X(t), ei〉 are continuous for every i ≥ 1, and for ν-a.e.
x ∈ H,

ϕ(X(t))−
∫ t

0

N2ϕ(X(s))ds(4.1)

is an (Ft)-martingale under Px for all ϕ ∈ FC2
b (H). Its transition semigroup Pt, t > 0, is

given by etN2 , t > 0 (see Remark 2.1 (iii)), where N2 denotes the corresponding generator.

Let {ei} ⊆ D(Ã) be the orthonormal basis of H such that Qei = qiei with qi = 0 for
i ∈ J and qi > 0 for i /∈ J , where J is a set of finitely many indices. Set Xi(t) := 〈X(t), ei〉,
bi(X(t)) := 〈A(X(t)), ei〉 and (Bu)i = 〈Bu, ei〉, i ≥ 1.

For every i /∈ J , we set

βi(t) := q
− 1

2
i (Xi(t)−

∫ t

0

bi(X(s))ds), t ≥ 0.(4.2)

By Definition 2.9, the sample paths t 7→ βi(t) are continuous for every i ≥ 1 under Px for
ν-a.e. x ∈ H.

Now, using standard regularization arguments we infer from (4.1) that

Xi(t) = xi +

∫ t

0

bi(X(s))ds, t ∈ [0, T ], i ∈ J,(4.3)

while βi, i /∈ J , are independent (Ft)-Brownian motions with βi(0) = q
− 1

2
i xi under Px,

x ∈ H. (See, e.g., the proof of [16, Corollary 1.10]. Note that, unlike in [16], the definition
of βi in (4.2) above is independent of x.) Then, set

Mu(t) := exp(
∑
i/∈J

∫ t

0

(Bu)i(X(s))dβi(s)−
1

2

∑
i/∈J

∫ t

0

|(Bu)i(X(s))|2ds),

where t ∈ [0, T ]. Since supx∈H |Bu(x)|H ≤ ρ‖B‖, {Mu(t)} is an (Ft)-martingale under
Px satisfying EMu(T ) = 1. Hence, we have a new probability measure

Qu
x := Mu(T ) · Px.

Then, Girsanov’s theorem yields that

β̃i(t) := βi(t)−
∫ t

0

(Bu)i(X(s))ds, t ∈ [0, T ], i /∈ J,

are independent (Ft)-Brownian motions with β̃i(0) = q
− 1

2
i xi under Qu

x. Taking into
account (4.2) we obtain that

Xi(t) =

∫ t

0

bi(X(s)) + q
1
2
i (Bu)i(X(s))ds+ q

1
2
i β̃i(t), t ∈ [0, T ], i /∈ J.(4.4)

This together with (4.3) yields that X(0) = x, Qu
x-a.s.. It also implies, via Itô’s formula,

that under Qu
x, for any ϕ ∈ FC2

b (H),

ϕ(X(t))−
∫ t

0

N0ϕ(X(s)) + 〈Bu(X(s)), Q
1
2Dϕ(X(s))〉ds(4.5)

is an (Ft)-martingale.
Hence, Mu = (Ω,F , (Ft)t≥0, (X(t))t≥0, (Qu

x)x∈H0) satisfies the property (ii) of Defini-
tion 2.9.
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It is also clear that Mu satisfies the property (i) of Definition 2.9, since P u
t is bounded

on L2(H, ν).
Moreover, we also have the Markov property for (X(t)) under Qu

x, i.e., for any 0 <
s, t <∞,

EQx(f(X(t+ s))|Fs) = EQX(s)
(f(X(t))), ∀f ∈ Bb(H).(4.6)

To this end, we first see that for any F ∈ Bb(H),

EQx(F |Fs) =
EPx(FM

u(T )|Fs)

EPx(M
u(T )|Fs)

, 0 ≤ s ≤ T.

Then, since (Mu(t)) is an (Ft)-martingale under Px, we have

EQx(f(X(t+ s))|Fs) = (Mu(s))−1EPx(f(X(t+ s))Mu(t+ s)|Fs)

=EPx(f(X(t+ s)) exp(
∑
i/∈J

∫ t+s

s

(Bu)i(X(r))dβi(r)−
1

2

∑
i/∈J

∫ t+s

s

|(Bu)i(X(r))|2dr)|Fs),

which along with the Markov property of (X(t)) under Px yields that

EQx(f(X(t+ s))|Fs) = EPX(s)
(f(X(t))Mu(t)) = EQX(s)

(f(X(t))),

where the last step is due to the martingale property of (Mu(t)) under EPX(s)
. Thus, we

obtain (4.6), as claimed.
Therefore, we conclude that Mu is a solution to the martingale problem for (1.1) in the

sense of Definition 2.9.
(Uniqueness) We adapt the arguments as in the proof of [15, Theorem 8.3]. Let

M′ = (Ω′,F ′, (F ′
t )t≥0, (X

′(t))t≥0, (P′x)x∈H0) be another solution to the martingale prob-
lem of (1.1), with (P u

t )′ and (Nu
2 )′ being the corresponding semigroup and generator,

respectively. Similarly, let (P u
t ) and Nu

2 be the semigroup and generator corresponding
to Mu.

We shall prove that for ν-a.e. x ∈ H,

(P u
t )′f(x) = P u

t f(x), t > 0, ∀f ∈ Cb(H).(4.7)

For this purpose, we note that the property (ii) in Definition 2.9 implies that under

Pν :=
∫
H0

Pxν(dx), ϕ(X ′(t))−
∫ t

0
Nu

0 ϕ(X ′(s))ds is a martingale for any ϕ ∈ FC2
b (H). It

follows that, for any g ∈ L2(H, ν),∫
H0

g(x)((P u
t )′ϕ(x)− ϕ(x)−

∫ t

0

(P u
s )′Nu

0 ϕ(x)ds)ν(dx)

=Ev(g(X ′(0))(ϕ(X ′(t))− ϕ(X ′(0))−
∫ t

0

Nu
0 ϕ(X ′(s))ds)) = 0,

which implies that for any ϕ ∈ FC2
b (H),

(P u
t )′ϕ− ϕ−

∫ t

0

(P u
s )′Nu

0 ϕds = 0, in L2(H, ν).

Hence, ϕ ∈ D((Nu
2 )′) and (Nu

2 )′ϕ = Nu
0 ϕ.

Taking into account FC2
b (H) is a core of Nu

2 , we obtain that D(Nu
2 ) ⊆ D((Nu

2 )′) and
(Nu

2 )′ = Nu
2 on D(N2). But, by Theorem 2.4, Nu

2 is m-dissipative on L2(H, ν). Thus, we
obtain (Nu

2 )′ = Nu
2 , which implies (4.7) and finishes the proof. �
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Proof of Theorem 2.13 (i). For any u ∈ Uad, let Xu solve the martingale problem
for (1.1) and P u

t be the corresponding transition semigroup, i.e., P u
t f(x) = EPxf(Xu(t)),

f ∈ L2(H, ν).
Then, for any g ∈ D(N2), since FC2

b (H) is dense in L2(H, ν), we infer from Remark
2.11 (ii) that for any t > 0, P u

t g = etN
u
2 g, ν-a.e. x ∈ H. This yields that∫ T

0

∫
H

EPxg(Xu(t))ν(dx)dt =

∫ T

0

∫
H

P u
t gdνdt =

∫ T

0

∫
H

etN
u
2 gdνdt.(4.8)

Thus, taking into account {etNu
2 g} solves equation (1.3) in the space L2(H, ν), we infer

that the optimal controllers to Problem (P ∗) are also optimal to Problem (P ).
Actually, let u∗ be an optimal controller to Problem (P ∗). Suppose that u∗ is not an

optimal controller to Problem (P ), then there exists ũ ∈ Uad such that∫ T

0

∫
H

EPxg(X ũ(t))ν(dx)dt <

∫ T

0

∫
H

EPxg(Xu∗(t))ν(dx)dt,

which along with (4.8) yields that, if I∗ denotes the minimum of objective functionals in
Problem (P ∗),

I∗ ≤
∫ T

0

∫
H

etN
ũ
2 gdνdt <

∫ T

0

∫
H

etN
u∗
2 gdνdt = I∗,

thereby yielding a contradiction.
Therefore, the proof is complete. �

To end this subsection, we show that the well-posedness of martingale problems can
be implied by the m-dissipativity of Kolmogorov operators in certain situations.

Theorem 4.1. Assume (H1). Assume additionally that TrQ <∞ and
∫
H
|A(x)|2Hν(dx) <

∞. Then, (H1)′ holds, namely, the martingale problem is well posed for (1.1) when u ≡ 0.

In order to prove Theorem 4.1, we construct a nice Markov process using the framework
of [5], which extends the generalized Dirichlet form in [22] to Lp spaces, p ≥ 1.

We first see that, by (H1) (iii), since L2(H, ν) ⊆ L1(H, ν), (N0,FC2
b (H)) is also

essentially m-dissipative in L1(H, ν).

Then, we denote by (N1, D(N1)) and G
(1)
λ := (λ−N1)−1 the closure of (N0,FC2

b (H))
in L1(H, ν) and the corresponding resolvent, respectively, λ > 0. We say that f is a

1-excessive function if f ≥ 0 and λG
(1)
1+λf ≤ f for all λ > 0.

Lemma 4.2. Consider the situations as in Theorem 4.1. Then,
(i) For any x ∈ H,

|x|2H ≤ G
(1)
1 (|x|2H + TrQ+ 2|A(x)|H |x|H) =: g(x).(4.9)

(ii) The function g
1
2 is 1-excessive.

Proof. (i) Define the projection operator Pn by Pnx :=
∑n

i=1 〈x, ei〉ei, x ∈ H. Using
similar regularization procedure as in the proof of [3, Lemma 5.5], we see that |Pnx|2H ∈
D(N1), and

(1−N1)|Pnx|2H = |Pnx|2H −
n∑
i=1

qi − 2 〈A(x), Pnx〉 .

Since TrQ <∞ and
∫
H
|A(x)|2H + |x|2Hν(dx) <∞, we obtain

|Pnx|2H ≤ G
(1)
1 (|Pnx|2H + TrQ+ 2|A(x)|H |Pnx|H) ∈ L1(H, ν),

21



which implies (4.9) by passing to the limit.

(ii) By the resolvent equation we have λG
(1)
1+λg ≤ g. Then, using Jensen’s inequality

we obtain

λG
(1)
1+λg

1
2 ≤ λ

λ+ 1
((λ+ 1)G

(1)
1+λg)

1
2 =

λ
1
2

(λ+ 1)
1
2

(λG
(1)
1+λg)

1
2 ≤ g

1
2 ,

which finishes the proof. �

Proof of Theorem 4.1. The proof is based on [5, Theorem 1.1]. We first see that
the condition (II) of [5, Theorem 1.1] is satisfied with A = FC2

b (H).
Moreover, Fn := {x ∈ H, |x|H ≤ n} is weakly compact in H, n ≥ 1, and

R1(IF cn) ≤ 1

n

∫
H

g
1
2dν → 0, as n→∞,

where R1 is defined as in [5], IF cn denotes the characteristic function of the complement
set of Fn, and g is the 1-excessive function as in Lemma 4.2. Then, using [5, Remark 2.2]

(with f0 = 1, Vβ = G
(1)
1 , β = 1) we have that {Fn}n≥1 is a ν-nest of weakly compact sets,

and so the condition (I) of [5, Theorem 1.1] is also satisfied.
Thus, by virtue of [5, Theorem 1.1], we obtain a ν-standard right process M =

(Ω,F , (Ft)t≥0, (X(t))t≥0, (Px)x∈H) in the state space H with càdlàg sample path in the
weak topology of H. (Note that, the life time of (X(t)) is infinite since N11 = 0.)

To show that in our case the paths t 7→ 〈X(t), ei〉, i ≥ 1, are continuous we adapt a
method developed in [15, Section 6]. So, let {ϕn, n ∈ N} be a countable subset of FC2

b (H)
separating the points of H. Then, by exactly the same arguments as in the proof of [15,
Theorem 6.3] one obtains that for all n ∈ N, s < t,∫

Ω

|ϕn(X(t))− ϕn(X(s))|4dν ≤ Cn(t− s)
3
2 ,

where Cn ∈ (0,∞). Since we already know that X(t), t ≥ 0, is weakly càdlàg Px-a.s. for
ν-a.e. x ∈ H, this together with the proof of Kolmogorov’s continuity criterion implies
that

Pν(Λ0) = 1,(4.10)

and so

Px(Λ0) = 1, for ν − a.e. x,(4.11)

where Λ0 :=
⋂
k,l∈NA

(l)
k with

A
(l)
k :=

{
w ∈ Ω : ∃n0 ∈ N,∀n ≥ n0,∀s, t ∈ Dn ∩ [0, l], |s− t| ≤ 2−n0 :

|ϕn(X(t))− ϕn(X(s))| ≤ 2−k
}
,

Dn :={k2−n, k ∈ N ∪ {0}}, D :=
⋃
n∈N

Dn.

This yields that for ν − a.e. x, under Px the paths t 7→ ϕn(X(t)) are continuous for all
n ≥ 1, and so are the paths t 7→ 〈X(t), ei〉 by density, i ≥ 1.

Therefore, we conclude that M solves the martingale problem of (1.1) in the sense of
Definition 2.9.

The uniqueness can be proved by using similar arguments as in the proof of Theorem
2.12. The proof is complete. �

22



4.2. Symmetric case. In this case, the nice feature is that the associated Dirichlet forms
are coercive closed forms. This enables us to apply the general framework of Dirichlet
forms as in [21] to obtain that, the corresponding semigroup is even holomorphic and
Hypothesis (H1)′ also holds, i.e., the martingale problem is well posed for (1.1) when
u ≡ 0.

Below we fix λ > 4ρ2‖B‖2. For any u ∈ Uad, we define the bilinear map Euλ : FC2
b (H)×

FC2
b (H)→ R as follows

Euλ (ϕ, ψ) :=
1

2

∫
H

〈Q
1
2Dϕ,Q

1
2Dψ〉dν − (〈Bu,Q

1
2Dϕ〉, ψ) + λ(ϕ, ψ)

for any ϕ, ψ ∈ FC2
b (H), where (·, ·) is the inner product in H := L2(H, ν). Under the

closability assumption of (Q
1
2D,FC1

b (H)), we can extend (Euλ ,FC2
b (H)) to the closed

form (Euλ ,V), where V := W 1,2(H, ν).

Lemma 4.3. Assume (H1). Assume that N2 is symmetric and (Q
1
2D,FC1

b (H)) is clos-
able from L2(H, ν) to L2(H;H, ν). Then, (Euλ ,V) is a coercive closed form.

Proof. We need only to check that (Euλ ,V) satisfies the weak sector condition, namely,
for some K > 0,

Eu1+λ(ϕ, ψ) ≤ KEu1+λ(ϕ, ϕ)
1
2Eu1+λ(ψ, ψ)

1
2 , ∀ϕ, ψ ∈ V .(4.12)

For this purpose, it suffices to prove that for some c > 0

Euλ (ϕ, ϕ) ≥ c‖ϕ‖2
V , ∀ϕ ∈ V .(4.13)

In order to prove (4.13), since λ > 4ρ2‖B‖2, using Cauchy’s inequality we get

|(〈Bu,Q
1
2Dϕ〉, ϕ)| ≤ρ‖B‖‖Q

1
2Dϕ‖L2(H;H,ν)‖ϕ‖H

≤1

4
‖Q

1
2Dϕ‖2

L2(H;H,ν) + 4ρ2‖B‖2‖ϕ‖2
H,

which implies that

Euλ (ϕ, ϕ) ≥ 1

4
‖Q

1
2Dϕ‖2

L2(H;H,ν) + (λ− 4ρ2‖B‖2)‖ϕ‖2
H,

thereby yielding (4.13) with c = min{1
4
, (λ− 2ρ2‖B‖2)} > 0, as claimed. �

Now, by virtue of [21, I. Proposition 2.16], we have the one-to-one correspondence
between (Euλ ,V) and the generator (Luλ, D(Luλ)), where Luλ is the unique element in H
such that (−Luλϕ, ψ) = Euλ (ϕ, ψ) for all ψ ∈ V and ϕ ∈ D(Luλ) := {ϕ ∈ V , ψ →
Euλ (ϕ, ψ) is continuous w.r.t. (·, ·) 1

2 on V}. Since Luλ and Nu
2 − λ coincides on FC2

b (H),
it follows that Luλ = Nu

2 − λ and D(Luλ) = D(N2).
The following result states that the corresponding semigroup is holomorphic, which

enables one to solve equation (1.1) in the space H and also the optimal control problems
even for the objective functions in the space H.

Corollary 4.4. Consider the situations as in Lemma 4.3. Let (etN
u
2 ) be the semigroup

corresponding to (Nu
2 , D(N2)). Then, for all t > 0 and for any g ∈ H, we have etN

u
2 g ∈

D(N2). In particular, etN
u
2 g is the unique solution to (1.3).

Proof. By virtue of I. Corollary 2.21 and I. Theorem 2.20 of [21], we have that Luλ
generates a holomorphic semigroup (etL

u
λ) on some sector in C such that for all t > 0 and

g ∈ H, etL
u
λg ∈ D(Luλ) and so etN

u
2 g ∈ D(N2), due to etL

u
λ = etN

u
2 e−λt and D(Luλ) = D(N2).

This yields that etN
u
2 g solves (1.1) in the space H. Moreover, the uniqueness of solutions

to (1.3) follows from the monotonicity of Nu
2 . Therefore, the proof is complete. �

Below we show that (H1)′ can be implied from (H1) in the symmetric case.
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Theorem 4.5. Consider the situations as in Lemma 4.3. Then, (H1)′ holds, namely,
the martingale problem is well posed for (1.1) when u ≡ 0.

Proof. We construct the Markov process by using the framework of Dirichlet forms
in [21]. First we see that, when u ≡ 0, λ = 0,

E(ϕ, ψ)(:= E0
0 (ϕ, ψ)) =

1

2

∞∑
k=1

qk

∫
H

∂kϕ∂kψdν, ϕ, ψ ∈ FC2
b (H).

Since Q is bounded on H, supi≥1 qi < ∞. Then, taking into account FC2
b (H) ⊆ V is

dense and separates points of H, and using similar arguments as in the proof of [21, IV.
Proposition 4.2] we have the quasi-regularity of (E ,V).

Hence, by virtue of [21, IV. Theorem 3.5], we obtain a ν-tight special standard process
M associated with (E ,V) hence also with (N2, D(N2)), and its life time ζ = ∞ since
N21 = 0.

Since the semigroup etN
u
2 , t ≥ 0, is bounded on H, the first property (i) of Definition

2.9 holds.
Moreover, since (E ,V) has the local property (see [21, V. Definition 1.1]), [21, V.

Theorem 1.5] yields that the sample path of M is continuous. In view of [5, Proposition
1.4] and Remark 2.10 (i), we also infer that the property (ii) in Definition 2.9 is satisfied
for M.

Thus, M solves the martingale problem for (1.1) when u ≡ 0.
The uniqueness of solutions to martingale problem can be proved similarly as in The-

orem 2.12. Therefore, the proof is complete. �

Proof of Theorem 2.13 (ii) For any u ∈ Uad, let Xu solve the martingale problem
for (1.1). Similarly to (4.8), for any g ∈ H we have∫ T

0

∫
H

EPxg(Xu(t))dνdt =

∫ T

0

∫
H

etN
u
2 gdνdt.(4.14)

Moreover, since by Corollary 4.4 etN
u
2 g ∈ D(N2), t > 0, we have

d

dt
etN

u
2 g = Nu

2 e
tNu

2 g, t ∈ (0, T ], in H.(4.15)

Let ϕu be the variational solution to (1.1) as in Theorem 3.3. Then, since D(N2) ⊆ V ,
using Lemma 3.1 and arguing as in the proof of (2.7) we get

1

2

d

dt
‖etNu

2 g − ϕu(t)‖2
H =V (etN

u
2 g − ϕu(t), Nu

2 (etN
u
2 g − ϕu(t)))V ′ ≤ C‖etNu

2 g − ϕu(t)‖2
H,

which, via Gronwall’s inequality, yields ‖etNu
2 g − ϕu(t)‖2

H = 0 for any t ∈ [0, T ] and so,

etN
u
2 g = ϕu(t), ν − a.e. x, t ∈ [0, T ].(4.16)

This along with (4.14) yields∫ T

0

∫
H

EPxg(Xu(t))dνdt =

∫ T

0

∫
H

ϕu(t)dνdt.(4.17)

Therefore, the optimal controllers to Problem (P ∗) are also optimal to Problem (P ).
The proof is complete. �
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5. Applications

5.1. Singular dissipative stochastic equations. We consider the singular dissipative
stochastic equation as in [15]

dX(t) = ÃX(t)dt+ F (X(t))dt+Q
1
2Bu(X(t))dt+Q

1
2dW (t), t ∈ (0, T ),

X(0) = x ∈ H.(5.1)

Here, Ã : (D(Ã)) ⊆ H 7→ H is m-dissipative linear operator and F : D(F ) ⊂ H → H is
an m-dissipative singular valued operator, i.e., 〈F (x)− F (y), x− y〉 ≤ 0, ∀x, y ∈ D(F ),
and Range(I − F ) :=

⋃
x∈D(F )(x − F (x)) = H. The operators B and Q are as in (1.1),

with the orthonormal basis {ei} ⊆ D(Ã), defined by Qei = qiei, qi > 0, i ≥ 1.
Let A be defined by (1.2). We have

〈A(x), Dϕ(x)〉 = 〈x, ÃDϕ(x)〉+ 〈F (x), Dϕ(x)〉 , ∀ϕ ∈ FC2
b (H),

and D(A) = D(F ).
Let us recall the functional framework in [15]. Let EÃ(H) be the linear span of all (real

parts of) functions of the form ϕ = ei〈h,·〉, h ∈ D(Ã).
In addition, we shall assume that

(A1) (i) There exists ω > 0 such that

〈Ãx, x〉 ≤ −w|x|2H , ∀x ∈ H.

(ii) Q is bounded, self-adjoint and positive definite, Q−1 ∈ L(H) and TrQ̃ < ∞,
where

Q̃x :=

∫ ∞
0

etÃQetÃxdt, x ∈ H.

(A2) There exists a Borel probability measure ν on H such that
(i)
∫
D(F )

(|x|12
H + |F (x)|2H + |x|4H |F (x)|2H)ν(dx) <∞.

(ii) For all ϕ ∈ EÃ(H) we have N0ϕ ∈ L2(H, ν) and∫
H

N0ϕ(x)ν(dx) = 0.

(iii) ν(D(F )) = 1.

We see that Assumption (A2) implies Hypothesis (H1) (i) and (ii). It also follows from
[15, Theorem 2.3] that, under Assumptions (A1) and (A2), (N0, EÃ(H)) is essentially m-
dissipative in L2(H, ν), and so is (N0,FC2

b (H)). Thus Hypothesis (H1) is satisfied.
Moreover, [15, Theorem 7.4] yields that the martingale problem is well posed for (1.1)

in the case u ≡ 0, which yields (H1)′.
Thus, both Hypotheses (H1) and (H1)′ are fulfilled.
As regards the closability of D we have

Proposition 5.1. Assume (A1) and (A2). Then, D is closable from L2(H, ν) to L2(H;H, ν).

Proof. Let {ẽk}k≥1 be an orthonorm basis of H such that Q̃ẽk = q̃kẽk, q̃k > 0, k ≥ 1,
and set xk := 〈x, ẽk〉, Dkϕ := 〈Dϕ, ẽk〉, x ∈ H.

Let µ be the Gaussian measure with mean zero and covariance operator Q̃. We have
the integration by parts formula,∫

H

Dkϕψdµ = −
∫
H

ϕDkψdµ+
1

q̃k

∫
H

xkϕψdµ, ∀ϕ, ψ ∈ FC2
b (H).(5.2)
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Moreover, for the infinitesimal invariant measure ν, it is known that ν = ρ ·µ with ρ
1
2 ∈

W 1,2(H,µ) (see [15, page 292]). Note that ρ ∈ FC2
b (H)

W 1,1(H,µ)
, Dk(ρϕ) = Dkρϕ+ρDkϕ

for any ϕ ∈ FC2
b (H), Dρ = 2ρ

1
2D(ρ

1
2 ) in L1(H;H, ν), and so Dkρ/ρ ∈ L2(H, ν).

Now, we take any (ϕn) ⊆ FC2
b (H) such that

ϕn → 0, in L2(H, ν), Dkϕn → g, in L2(H, ν).(5.3)

We shall prove that

g(x) = 0, ν − a.e. x.(5.4)

For this purpose, for any ψ ∈ FC2
b (H) we set ψε,k := (1 + ε|xk|2)−1ψ, ε > 0. Note

that, by (5.3),∫
H

ψε,kgρdµ = lim
n→∞

∫
H

ψε,kDkϕnρdµ(5.5)

= lim
n→∞

∫
H

Dk(ψε,kϕnρ)dµ− lim
n→∞

∫
H

ϕn(Dkψε,kρ+ ψε,kDkρ)dµ

Since ψε,k ∈ FC2
b (H) and Dkρ/ρ ∈ L2(H, ν), using (5.3) we see that the last limit on the

right hand side above equals to zero. Regarding the remaining limit, we take a sequence
ρm ∈ FC2

b (H), m ≥ 1, such that ρm → ρ in W 1,1(H,µ). Then, using the integration by
parts formula (5.2) we have∫

H

Dk(ψε,kϕnρ)dµ = lim
m→∞

∫
H

Dk(ψε,kϕnρm)dµ

=− 1

q̃k
lim
m→∞

∫
H

xkψε,kϕnρmdµ

=− 1

q̃k

∫
H

xkψε,kϕnρdµ, as m→∞,

where in the last step we used the fact that supx∈H |xkψε,k(x)| ≤ Cε <∞. Hence, using
again (5.3) and the boundedness of supx∈H |xkψε,k(x)| we get

lim
n→∞

∫
H

Dk(ψε,kϕnρ)dµ = − 1

q̃k
lim
n→∞

∫
H

xkψε,kϕnρdµ = 0.

Thus, combing back to (5.5) we obtain∫
H

ψε,kgρdµ = 0.

Taking the limit ε→ 0 yields that, for any ψ ∈ FC2
b (H),∫

H

ψgρdµ = 0,

which yields (5.4) and finishes the proof. �
The compact embedding of W 1,2(H, ν) to L2(H, ν) also holds in certain situations.

Following [16] we assume additionally that

(A3) (i)
∫∞

0
(1 + t−α)‖etÃ

√
Q‖2

HSdt <∞ for some α > 0, where ‖ · ‖HS denotes the

norm on the space of all Hilbert-Schmidt operators on H, and Q−
1
2 ∈ L(H).

(ii) (1 +w− Ã,D(Ã)) satisfies the weak sector condition, i.e., for some K > 0,

for any x, y ∈ D(Ã),

〈(1 + w − Ã)x, y〉 ≤ K〈(1 + w − Ã)x, x〉
1
2 〈(1 + w − Ã)y, y〉

1
2 .
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(iii) There exists a sequence of Ã-invariant finite dimensional subspace Hn ⊆
D(Ã) such that ∪∞n=1Hn is dense in H.

It follows from [16, Theorem 1.6] that the Harnack inequality holds for the ν-version tran-
sition semigroup pνt corresponding to (5.1) when u ≡ 0. In particular, by [16, Corollary
1.9], pνt has a density with respect to ν and is even hyperbounded, i.e., ‖pνt ‖L2(H,ν)→L4(H,ν) <
∞ for some t > 0.

Thus, by virtue of [19, Theorem 1.2], we obtain the compactness of pνt and also the
compact embedding of W 1,2(H, ν) into L2(H, ν). Hence, Hypothesis (H3) is satisfied.

Now, we conclude from Theorem 2.13 in Section 2 that

Theorem 5.2. Consider the controlled stochastic singular differential equation (5.1).
Assume Hypotheses (A1) and (A2). Assume additionally (H2) or (A3). Then, for any
g ∈ D(N2), there exists an optimal control u∗ for the optimal control problem below

Min

{∫ T

0

∫
H

EPxg(Xu(t))ν(dx)dt; u ∈ Uad, Px ◦ (Xu)−1 solves

the martingale problem for (5.1) for ν − a.e. x ∈ H
}
.

In particular, under Hypotheses (A1), (A2) and (A3), we can take B = Id.

As a specific example of (5.1), we consider the controlled gradient system

dX = ÃXdt+ ∂U(X)dt+Bu(X) + dW (t),(5.6)

X(0) = x ∈ H.

Here, we take Q = Id, Ã, B are the operators as in (5.1) satisfying additionally that Ã−1

is of trace class. and ∂U denotes the subdifferential of a convex and lower semicontinuous
function U : H → (−∞,∞], satisfying that {U <∞} is open, µ({U <∞}) > 0 and

ρ := Z−1e−2U(x) ∈ L1(H,µ),

where µ is the Gaussian measure of mean zero and covariance operator −1
2
Ã−1 and

Z :=
∫
H
e−2U(x)µ(dx).

We know from [15, Section 9.1] that Assumptions (A1) and (A2) are fulfilled and, in
particular, the Kolmogorov operator N2 is symmetric.

Therefore, by virtue of Theorem 2.13, for more general objective functions g ∈ L2(H, ν)
we have the existence as well as first-order necessary condition (2.9) of the feedback control
problem (P ) for the gradient system (5.6).

5.2. Stochastic reaction-diffusion equation. Consider the controlled stochastic reaction-
diffusion equation below as in [9]

dX =∆Xdt− p(X)dt+ C
1
2Bu(X)dt+ C

1
2dW,(5.7)

X(0) =x ∈ H,

where H = L2(O), O = [0, 1], ∆ is the realization of the Laplace operator with Dirichlet
boundary condition, i.e., D(∆) = H2(O) ∩H1

0 (O), B is a bounded operator on H, and
W is a cylindrical Wiener process on H, W (t) =

∑∞
k=1 ekβk(t) is a cylindrical Wiener

process on a stochastic basis (Ω,F , (Ft)t≥0,P), where ek are the eigenbasis of −∆, such
that −∆ek = λkek, λk ≥ 0, k ≥ 1.

Concerning p and C we assume that
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(B) (i) p is a polynomial of degree d > 1, its derivative p′(ξ) ≥ 0, ∀ξ ∈ R.
(ii) C = (−∆)−γ, γ > −1

2
.

In this case, we have A(x) = ∆x− p(x) and D(A) = {x ∈ L2d(O)}.
When u ≡ 0, it is known (see Theorem 4.8 of [9]) that, for each x ∈ H, there exists a

unique generalized solution X(·, x) to (5.7).
Moreover, by [9, Theorem 4.16]), the transition semigroup Pt : Bb(H)→ Bb(H) defined

by (Ptϕ)(x) = Eϕ(X(t, x)), x ∈ H, ϕ ∈ Cb(H), has a unique invariant measure ν
satisfying that

lim
t→∞

Ptϕ(x) =

∫
H

ϕ(y)ν(dy)(5.8)

and (see [9, Proposition 4.20]) ∫
H

|x|2dL2d(O)ν(dx) <∞.(5.9)

Furthermore, from [9, Section 4.6] we have that Pt can be uniquely extended to a C0-
semigroup of contractions on L2(H; ν). By Theorem 4.23 of [9], the infinitesimal generator
N2 of Pt is the closure in L2(H, ν) of the operator

(N0ϕ)(x) :=
1

2
Tr[(−∆)−γD2ϕ](x) + 〈x,∆Dϕ〉 − 〈p(x), Dϕ〉 ,(5.10)

where x ∈ H, ϕ ∈ E∆(H) with E∆(H) defined similarly as EÃ(H) in the previous subsec-
tion.

Now, let us check the Hypothesis (H1). We first infer from (5.9) that Hypothesis (H1)
(i) is satisfied. Since for any ϕ ∈ FC2

b (H), t ≥ 0, x ∈ H,∫
H

Ptϕ(y)ν(dy) = lim
s→∞

Ps(Ptϕ)(x) = lim
s→∞

Ps+tϕ(x) =

∫
H

ϕ(y)ν(dy),

we have ∫
H

N0ϕ(y)ν(dy) =
d

dt
(

∫
H

Ptϕ(y)ν(dy))|t=0 = 0, ∀ϕ ∈ FC2
b (H),(5.11)

which implies (H1) (ii). Moreover, the results of [9, Section 4.6] presented above show
that (N0, E∆(H)) is essentially m-dissipative, and so is (N0ϕ,FC2

b (H)), thereby yielding
(H1) (iii). Hence, Hypothesis (H1) is fulfilled.

Concerning Hypothesis (H1)′ we have

Proposition 5.3. Assume (B). Then, Hypothesis (H1)′ is satisfied, i.e., the martingale
problem for (5.7) is well posed in the case u ≡ 0.

Proof. Set H := L2d(O). We have ν(H) = 1. For each x ∈ H, by Theorem 4.8 of [9],
there exists a unique (Ft)-adapted process X(·, x), such that X(t, x) ∈ H for all t ≥ 0,
X ∈ C([0, T ];L2(Ω;H)), E‖X(t, x)‖2d

L2d(O)
≤ Cm,p,T (1 + ‖x‖2d

L2d) for any m ≥ 1, and X

solves (5.7) in the mild sense, i.e., for each t ∈ [0, T ],

X(t, x) = et∆x+

∫ t

0

e(t−s)∆F (X(s, x))ds+W∆(t), P− a.s.,(5.12)

where F (X(s, x)) = −p(X(s, x)),

W∆(t) =

∫ t

0

e(t−s)∆(−∆)−
γ
2 dW (s) =

∞∑
k=1

∫ t

0

e(t−s)∆(−∆)−
γ
2 ekdβk(s), t ≥ 0,
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and {ek} is the eigenbasis of −∆, i.e., −∆ek = λkek, k ≥ 1. Moreover, X is a Feller
process (see [9, Proposition 4.9]).

Note that, by the integrabilities of X above, we have that P-a.s. F (X(t, x)) ∈ H and

t 7→
∫ t

0
F (X(s, x))ds is continuous in H. Taking into account the continuity of W∆ in H

implied by [9, Proposition 4.3], we can take a P-version of the process X (still denoted
by X), such that X ∈ C([0, T ];H), P-a.s., and X satisfies (5.12) for all t ∈ [0, T ] outside
a common P-null set. Below we consider this P-version process X.

Next, let xk := 〈x, ek〉, x ∈ H, k ≥ 1. We claim that P-a.s. for each k ≥ 1 and for all
t ∈ [0, T ],

Xk(t, x) = e−λktxk +

∫ t

0

e−λk(t−s)(F (X(s, x)))kds+

∫ t

0

e−λk(t−s)λ
− γ

2
k dβk(s).(5.13)

For this purpose, we first infer from (5.12) that P-a.s. for each k ≥ 1

Xk(t, x) = e−λktxk + 〈
∫ t

0

e(t−s)∆F (X(s, x))ds, ek〉+ 〈W∆(t), ek〉, t ∈ [0, T ].(5.14)

Since e(t−·)∆F (X(·, x)) is Bochner integrable on H and y 7→ 〈y, ek〉 is a linear bounded
operator on H, we get

〈
∫ t

0

e(t−s)∆F (X(s, x))ds, ek〉 =

∫ t

0

〈e(t−s)∆F (X(s, x)), ek〉ds

=

∫ t

0

e−λk(t−s)(F (X(s, x)))kds(5.15)

Moreover, since

E
∞∑
j=1

|〈
∫ t

0

e(t−s)∆(−∆)−
γ
2 ejdβj(s), ek〉|2 <∞,(5.16)

using Fubini’s theorem to exchange the integration with sum we get

〈
∞∑
j=1

∫ t

0

e(t−s)∆(−∆)−
γ
2 ejdβj(s), ek〉 =

∞∑
j=1

〈
∫ t

0

e(t−s)∆(−∆)−
γ
2 ejdβj(s), ek〉

=

∫ t

0

e−λk(t−s)λ
− γ

2
k dβk(s).(5.17)

Thus, plugging (5.15) and (5.17) into (5.14) we obtain (5.13), as claimed.
Hence, we infer from (5.13) that P-a.s.

dXk(t, x) = −λkXk(t, x)dt+ (F (X(t, x)))kdt+ λ
− γ

2
k dβk(t)(5.18)

with Xk(0, x) = xk. Since for each ϕ ∈ FC2
b (H), there exists φ ∈ C2

b (Rn) such that
ϕ(x) = φ(〈x, e1〉 , · · · , 〈x, en〉) for some n ∈ N, using Itô’s formula we obtain that, if
Xn := (X1, · · · , Xn),

dϕ(X(t, x)) =
n∑
k=1

(−λkXk + (F (X(t, x)))k)∂kφ(Xn(t, x))dt

+
1

2

n∑
k=1

λ−γk ∂kkφ(Xn(t, x))dt+
n∑
k=1

λ
− γ

2
k ∂kφ(Xn(t, x))dβk(t)

=N0ϕ(X(t, x))dt+
n∑
k=1

λ
− γ

2
k ∂kφ(Xn(t, x))dβk(t),

29



This yields that ϕ(X(t, x)) −
∫ t

0
N0ϕ(X(s, x))ds is an (Ft)-martingale under P, so the

property (ii) in Definition 2.9 is fulfilled.

Therefore, let Ω̃ := C([0, T ];H), F̃ := σ(FX(·,x), x ∈ H) and F̃t := σ(FX(·,x)
t , x ∈ H),

0 ≤ t ≤ T , where FX(·,x) and FX(·,x)
t denote the image σ-algebras under X(·, x) of F

and Ft, respectively. Set πt(ω) := ω(t) and P̃x := P ◦ X(·, x)−1, ω ∈ Ω̃, 0 ≤ t ≤ T ,

x ∈ H. Then, (Ω̃, F̃ , (F̃t)t≥0, (πt)t≥0, (P̃x)x∈H) solves the martingale problem for (5.7).
Taking into account Remark 2.10 (ii) we finish the proof of Proposition 5.3. �

In the case where γ = 0, Hypothesis (H3) holds in certain situations. Actually, [9,
Theorem 4.26] yields that D is closable from L2(H, ν) to L2(H;H, ν), and it also follows
from [9, Theorem 4.34] that the invariant measure ν has the density ρ = dν

dµ
with respect to

the Gaussian measure µ with mean zero and covariance operator −1
2
A−1. If, in addition,

for some ε ∈ (0, 1), ∫
H

|D log ρ|2+ε
H dν <∞,(5.19)

then, by [9, Theorem 4.35], W 1,2(H, ν) is compactly embedded into L2(H, ν), and so
Hypothesis (H3) is satisfied.

In conclusion, we have from Theorem 2.13 that

Theorem 5.4. Consider the controlled stochastic reaction-diffusion equation (5.7). As-
sume (B). Assume also (H2) or (H3). Then, for any g ∈ D(N2), there exists an optimal
control u∗ for the optimal control problem below

Min

{∫ T

0

∫
H

EPxg(Xu(t))ν(dx)dt; u ∈ Uad, Px ◦ (Xu)−1 solves

the martingale problem for (5.7) for ν − a.e. x ∈ H
}
.

In particular, in the case where γ = 0 and that Assumption (B) and (5.19) hold, we can
take B = Id.

5.3. Stochastic porous media equations. In this subsection, we are concerned with
the optimal control problems for stochastic porous media equations. Precisely, we con-
sider the controlled stochastic low diffusion equation as in [3]

dX(t) = ∆(Ψ(X(t)))dt+Q
1
2Bu(X(t))dt+Q

1
2dW (t),(5.20)

X(0) = x ∈ H.

Here H = H−1(O), which is the dual space of H1
0 (O) equipped with the inner product

〈x, y〉 :=
∫
O((−∆)−1x)(ξ)y(ξ)dξ, O ⊆ Rd is a bounded open set with Dirichlet boundary

conditions for the Laplacian ∆, B and Q are as in (1.1), and Ψ is a dissipative nonlinearity.
In this case, A(x) = ∆(Ψ(x)) and D(A) = {x ∈ L2(O),Ψ(x) ∈ H1

0 (O)}.
Following [3], we assume

(C1) There exist qk ∈ [0,∞), k ∈ N, such that for the eigenbasis {ek} of ∆ in H,
Qek = qkek, k ∈ N.

(C2)
∑∞

k=1 supξ∈D |ek(ξ)|2qk <∞.
(C3) Ψ ∈ C1(R), Ψ(0) = 0, and there exist r ∈ (1,∞) and κ0, κ1, C1 > 0 such that

κ0|s|r−1 ≤ Ψ′(s) ≤ κ1|s|r−1 + C1, ∀s ∈ R.

It is known ([3, Proposition 3.1]) that, under Assumption (C3), A is m-dissipative on
H.
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The corresponding Kolmogorov operator is formally given by

N0ϕ(x) :=
1

2

∞∑
k=1

qk∂kkϕ(ek, ek) + 〈∆Ψ(x), Dϕ(x)〉 , x ∈ H, ϕ ∈ FC2
b (H).

As in [3], letM be the set of infinitesimally excessive measures ν, which are infinitesimally
invariant measures for N0 satisfying (H1) (ii),∫

H

∫
D

|∇(Ψ(x))(ξ)|2dξν(dx) <∞,(5.21)

and for some λν ∈ (0,∞)∫
H

N0ϕ(x)ν(dx) ≤ λν

∫
H

ϕν(dx), ∀ϕ ∈ FC2
b (H) with ϕ ≥ 0, ν − a.e..(5.22)

We see that (H1) (i) is satisfied for each ν ∈ M. Actually, by Poincaré’s inequality
and (5.21), ∫

H

‖Ψ(x)‖2
L2(O)ν(dx) ≤ C

∫
H

‖∇Ψ(x)‖2
L2(O)ν(dx) <∞,

which along with Assumption (C3) above yields that∫
H

|x|2rH ν(dx) ≤
∫
H

‖x‖2r
L2(O)ν(dx) ≤ C(1 +

∫
H

‖Ψ(x)‖2
L2(O)ν(dx)) <∞.(5.23)

Moreover, by (5.21),∫
H

|∆Ψ(x)|2Hν(dx) =

∫
H

‖∇Ψ(x)‖2
L2(O)ν(dx) <∞.(5.24)

Hence, Hypothesis (H1) (i) follows.
Moreover, under Assumptions (C1)-(C3), it follows from [3, Theorem 4.1] that (N0, C

2
b (H))

is essentially m-dissipative on L2(H, ν) for each ν ∈M, which implies (H1) (iii), and so
Hypothesis (H1) holds.

Furthermore, if in addition r ≥ 2, [3, Theorems 5.1] yields that the martingale problem
for (5.20) has a solution in the case u ≡ 0. Then, taking into account Remark 2.10 (ii)
on uniqueness we infer that Hypothesis (H1)′ holds.

Therefore, in view of Theorems 2.5 and 2.13, we obtain

Theorem 5.5. Consider the controlled stochastic low diffusion equation (5.20). Assume
Hypotheses (C1), (C2) and (C3). Assume additionally (H2). Then, for any g ∈ D(N2),
there exists an optimal control u∗ for the optimal control problem (P ∗).

Moreover, if in addition r ≥ 2, we have the optimal controllers for the problem below

Min

{∫ T

0

∫
H

EPxg(Xu(t))ν(dx)dt; u ∈ Uad, Px ◦ (Xu)−1 solves

the martingale problem for (5.20) for ν − a.e. x ∈ H
}
.
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[13] G. Da Prato, F. Flandoli, M. Röckner, A.Yu Veretennikov, Strong uniqueness for SDEs in Hilbert
spaces with nonregular drift. Ann. Probab. 44 (2016), no. 3, 1985–2023.

[14] G. Da Prato, A. Lunardi, Sobolev regularity for a class of second order elliptic PDE’s in infinite
dimension. Ann. Probab. 42 (2014), no. 5, 2113–2160.
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[21] Z.M. Ma, M. Röckner, Introduction to the theory of (nonsymmetric) Dirichlet forms. Universitext.
Springer-Verlag, Berlin, 1992. vi+209 pp.

[22] W. Stannat, The theory of generalized Dirichlet forms and its applications in analysis and stochas-
tics. Mem. Amer. Math. Soc. 142 (1999), no. 678, viii+101 pp.

[23] G. Trutnau, On a class of non-symmetric diffusions containing fully nonsymmetric distorted Brow-
nian motions. Forum Math. 15 (2003), no. 3, 409–437.

[24] F.Y. Wang, Functional inequalities, semigroup properties and spectrum estimates. Infin. Dimens.
Anal. Quantum Probab. Relat. Top. 3 (2000), no. 2, 263–295.

[25] F.Y. Wang, Integrability conditions for SDEs and semilinear SPDEs. Ann. Probab. 45 (2017), no.
5, 3223–3265.

32



(V. Barbu) Octav Mayer Institute of Mathematics (Romanian Academy) and Al.I. Cuza
University, 700506, Iaşi, Romania.
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