STRONG CONVERGENCE ORDER FOR SLOW-FAST
MCKEAN-VLASOV STOCHASTIC DIFFERENTIAL EQUATIONS

MICHAEL ROCKNER, XIAOBIN SUN, AND YINGCHAO XIE

ABSTRACT. In this paper, we consider the averaging principle for a class of McKean-Vlasov
stochastic differential equations with slow and fast time-scales. Under some proper assump-
tions on the coefficients, we first prove that the slow component strongly converges to the
solution of the corresponding averaged equation with convergence order 1/3 using the ap-
proach of time discretization. Furthermore, under stronger regularity conditions on the
coefficients, we use the technique of Poisson equation to improve the order to 1/2, which is
the optimal order of strong convergence in general.

1. INTRODUCTION

Let {W!}20 and {W?};>0 be mutually independent d; and dy dimensional standard Brow-
nian motions on a complete probability space (2,.%#,P) and {%;,t > 0} be the natural
filtration generated by W, and W2. Let the following maps b = b(t, x, i, y), 0 = o(t, z, ),

f=f{t,x,u,y) and g = g(t, x, 1, y) be given:
b:]0,00) X R" x &y x R™ — R";
o :[0,00) x R" x Py — R,
f:]0,00) x R" x P9 x R™ — R™;
g:[0,00) x R" x &y x R™ — R™*®%

such that b, o, f and g are continuous in (¢, z, i, y) € [0,00) X R" x Py x R™, where &, is
defined by

Pri={ue P ipll- )= [ laPulds) < oo,
where & is the set of all probability measure on (R", Z(R"™)). Then &, is a polish space
under the L?-Wasserstein distance, i.e.,

1/2
Wo(pa, pi2) == inf /R . v — QIQW(dI,d?J)} M1, e € P,
n>< n

TEGC U s

where €,

1,142
In this paper, we consider the following slow-fast McKean-Vlasov stochastic differential

equations (SDEs):
dX; = b(t, X{, Lxe, YO)dt + o(t, X{, Lx:)dW],  X§ =z €R",
Ay, = Lf(t, X5, Lxe, YO)dt + Jog(t, Xy, Lxg, YO)AWE, Y5 =y € R™,

is the set of all couplings for p; and ps.

(1.1)

Date: September 27, 2019.
2000 Mathematics Subject Classification. Primary 34D08, 34D25; Secondary 60H20.
Key words and phrases. Averaging principle; McKean-Vlasov stochastic differential equations; Slow-fast;
Poisson equation; Strong convergence rate.
1



2 MICHAEL ROCKNER, XIAOBIN SUN, AND YINGCHAO XIE

where Zx. is the law of X, € is a small and positive parameter describing the ratio of the
time scale between the slow component X; € R" and fast component Y, € R™.

The averaging principle has a long and rich history in multiscale models, which have
wide applications in material sciences, chemistry, fluid dynamics, biology, ecology, climate
dynamics etc., see e.g., [1, 7, 8, 12, 17, 24] and references therein. The averaging principle is
essential to describe the asymptotic behavior of the slow component as e — 0, i.e., the slow
component will convergence to the so-called averaged equation. Bogoliubov and Mitropolsky
2] first studied the averaging principle for deterministic systems. The averaging principle
for SDEs was first studied by Khasminskii in [13], see e.g., [9, 10, 11, 14, 16, 25| for further
developments.

The McKean-Valsov SDEs (also called distribution dependent SDEs) describe stochastic
systems whose evolution is determined by both the microcosmic location and the macrocos-
mic distribution of the particle. The time marginal laws of the solution of such SDEs satisfies
a nonlinear Fokker-Planck-Kolmogorov equation. The existence and uniqueness of weak and
strong solutions have been studied intensively (see [18, 23] and references therein). Further
properties, such as the Harnack inequality or the Bismut formula for the Lions Derivative
have been investigated in [23] and [21] respectively. However, to the authors’ knowledge, this
paper is the first in which the averaging principle for two-time scale distribution dependent
SDEs is considered.

For numerical purposes, however, only studying the strong convergence of the slow com-
ponent to the corresponding averaged equation is not enough, since in addition one needs to
know the rate of convergence. Hence, the main purpose of our paper is to study the strong
convergence rate for two-time scale distribution dependent SDEs. More precisely, one tries
to find the largest possible a > 0 such that

sup E[Xf — X2 < Ce, (1.2)
te€[0,7
where C' is a constant depending on T, |z|, |y|, and X is the solution of the corresponding
averaged equation (see Eq. (2.18) below).

In the distribution-independent case, the strong convergence rate for two-time scale sto-
chastic system has been studied in a number of papers (see e.g., [9, 10, 14, 22] for the finite
dimensional case, and [3, 4] for the infinite dimensional case). The approach based on Khas-
minskii’s technique of time discretization is often used to study the strong convergence rate
(see [9, 10, 14, 3]). Recently, the technique of Poisson equation has been used to study the
strong convergence rate in [4, 22], and the optimal convergence order was obtained in gen-
eral. Motivated by this, in this paper we will use the techniques of time discretization and
Poisson equation to study the strong convergence rate for two-time scale distribution depen-
dent SDEs separately. More precisely, under some proper assumptions on the coefficients,
we use the technique of time discretization to obtain the convergence order 1/3, which is
however usually not the optimal order. It turns out that under some stronger assumptions
on the coefficients, the optimal convergence order 1/2 can indeed be obtained by the method
of Poisson equation.

If applying the technique of Poisson equation (see [19, 20, 22]) to prove our main result, the
main difficulty is to analyse the regularity of the solution ®(¢, z, u,y) of the corresponding
Poisson equation with respect to (w.r.t.) the parameter p. Indeed, this method highly
depends on the regularity of ® w.r.t. parameters. However, due to the coefficients dependence
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on the distribution, ® will also depend on the distribution p. Unlike as for classical SDEs,
we have to apply [td’s formula to ® composed with the process (t, X7, Zx, Y;€) by, which,
in particular, means that we have to differentiate in the measure u. As a consequence, some
additional terms involving the Lions derivative of ®, so we have to estimate the regularity
of ® w.r.t. the parameter p carefully.

The paper is organized as follows. In the next section, we introduce some notation and
assumptions that we use throughout the paper and give out the main results. Sections 3
and 4 are devoted to proving the strong convergence rate by using the techniques of time
discretization and Poisson equation respectively. We give an example in Section 5. In the
Appendix, we give the detailed proof of the existence and uniqueness of solutions for our
system and prove some important estimates.

We note that throughout this paper C' and C'r denote positive constants which may change
from line to line, where the subscript T is used to emphasize that the constant depends on
T.

2. NOTATIONS AND MAIN RESULTS

Now, we first remind the reader of the definition of differentiability on the Wasserstein
space. Following the idea in [6, Section 6], for u : &, — R we denote by U its "extension'
to L?(Q,P; R") defined by

UX):=u(Zx), X elL*QPR").

Then we say that u is differentiable at u € 2, if there exists X € L?(Q2,P;R") such that
Zx = p and U is Fréchet differentiable at X. By Riesz’ theorem, the Fréchet derivative
DU(X), viewed as an element of L?(Q,P;R"), can be represented as

DU(X) = uu(Zx)(X),

where J,u(Zx) : R — R", which is called Lions derivative of v at y = £x. Moreover,
duu(p) € L*(w; R™), for pp € P Furthermore, if d,u(p)(z) : R* — R™ is differentiable at
z € R", we denote its derivative by 0,0,u(p)(z) : R* — R™ x R™.

Let | - | be the Euclidean vector norm, (-,-) be the Euclidean inner product and || - ||
be the matrix norm or the operator norm if there is no confusion possible. We call a
vector-valued, or matrix-valued function u(u) = (u;;(p)) differentiable at p € 2, if its all
its components are differentiable at ju, and set d,u(p) = (9,w;;(1)) and ||8Mu(u)||%2(u) =
>ij Jrn 10uuij (1) (2)|*p(dz). Furthermore, we call d,u(u)(z) differentiable at z € R", if all its
components are differentiable at 2, and set 9,0, u(u)(2) = (9uuij (1) (2)) and [|0.0,u(p) |72,y =
>ij Jan [10:0,u:5 (1) (2)||*1(dz). For convenience, we write u € CH' (P, R™), if the R"-valued
map 4 — u(p) is differentiable at any p € &5, and d,u(p)(z) : R® — R™ is differentiable at
any z € R".

For a vector-valued or matrix-valued function F(t,z,y) defined on [0,00) x R™ x R™.
For any u,v € {t,z,y}, we use 9,F to denote the first order partial derivative of F' w.r.t.
component u and 9%, F to denote its second order partial derivatives of F' w.r.t. components
w and v. For convenience, we say an R"-valued F' belongs to C'*2([0,00) x R™ x R™ R"™),
if 0,F(t,x,y), 02, F(t,x,y) and 95, F(t,x,y) exist for any (t,z,y) € [0,00) x R* x R™.
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We suppose that for any 7' > 0, there exist constants Cr, 3 € (0,00) and 1,7 € (0, 1]
such that the following conditions hold for all ¢,t1,t, € [0,T],z, 21,22 € R™, p, i1, 2 €
gZZﬂyuyl’yQ € R™.

A1l. (Conditions on b, o, f and g )

|b(t17mluﬂlay1) - b(t27x2>ﬂ27y2)| + Ho-(tlvxlnul) - U(t27x2>ﬂ2>”
< Op [ty = to| + |21 — 22| + |y1 — y2| + Wa(p, p2)] (2.1)

’f(tl,xl,/ihyl) - f(t27x27,u27y2>’ + Hg(tbwlmulayl) - g(tg,fljg,ﬂg,yg)”
< Crllts — to] + |21 — 22| + |11 — yo| + Walp, p2)] ; (2.2)

and

2<f(t,.’E,pJ, '3/1) - f(t7x7u>y2)vy1 - y2>+3||g(t,x,,u,y1) - g(t,x,p,y2)||2< _5|y1 - y2|2'(2'3)

A2. (Conditions on first-order partial derivatives) The first-order partial derivatives 0yb(t, z, p,y),
O0:b(t, x, 1, y), 0,b(t, x, 1, y) and O,b(t, z, p,y) exist for any (t,z,y, pn) € [0,00) x R" x R™ x
Py. Moreover,

sup 10:0(t, @, 1, y1) — Ob(t, @, p1, y2)| < Crlyr — ya| ™ (2.4)
te[0,T],2€R™, ue P

sup 10:0(t, 2, 1, y1) — 0:b(t, x, p, y2)|| < Crlyr — yo|™; (2.5)
te[0,T],x€ER™,ue P

sup Haub<t7$auayl) - aub(ta'f?“?y?)”Lz(u) < C’T|yl - 92’%; (26)
tel0,T],xeR™,ue P,

sup ||ayb(t7'r7,uay1) - 8yb(t7x7,u7y2)‘| < CT‘yl —Z/2|71- (27)
te[0,T],x€R™,ue Ps

Furthermore, if b is replaced by f and g, the properties (2.4)-(2.7) also hold.

A3. (Conditions on second-order partial derivatives)

The second-order partial derivatives 07,b(t, x, p,y), 02,b(t, x, 1, y) and 95 b(t, x, ju,y) exist
(t,z,y, 1) € [0,00) XR"XR™x Py, and b(t, z,-,y) € OV (P, R™). Moreover, 02,b(t, x, 11,y),
8§yb(t, x, 1, y) are uniformly bounded and

sup 102,b(t, 2, p, y1) — 2,0(t, z, 1, y0) || < Crlyr — ya|™?; (2.8)
te[0,T],x€R™,ue Po

sup Ha:%yb(t?mhuayl) - 8§yb(t,x,,u,y2)H g OT‘yl - y2|72; (29)
te[0,T],x€R™,ue Py

sup Hazyb(t?maluayl) - asyb(tal‘?ﬂa y2)” < C’T|y1 - 3/2’72; (210)
tel0,T],zeR™,ue P,

sup 1020,b(t, T, 1, y1) — 0:0,0(t, 7, p1, y2) || L2y < Crlyr — ya|™. (2.11)
te[0,T],2€R™,ue P
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Furthermore, if b is replaced by f and g, the properties (2.8)-(2.11) also hold, and
sup amax {102, (. . I 102, b1 ) 18, £ 2., 1 )1
te[0,T],xER™,ue Py, ycR™

102,9(t, @, . )|, 07,9, x, . )|, 102,9(t, . 1, )],
||aza#f(t7x7lj“7y)||[z2(u)7 ||828#g<t7x7,u/7y>”lz2(,u)} < Cr.

Remark 2.1. We here give some comments on the conditions above.

e Conditions (2.1) and (2.2) imply that for any 7" > 0, there exists Cp > 0 such that
for any z € R",y e R™, u € Py, t € [0, T,

ot 1, 9)| + ot )| < Cr {1+ Jo] + Iyl + ] - PY2) (2.12)
and

£tz 9) + gt 2, y)l| < Cr {1+ J] + y| + [w(] - )]} (2.13)

e Conditions (2.2) and (2.3) imply that for any 7" > 0, there exists C'r > 0 such that
for any z € R",y e R™, u € Py, t € [0, T,

20f(t,z, 1), y) + 3llg(t 2, 1, ) | < ‘f\yr? +Cr {1+ o]+ [w(| - P2} (214)

e Condition (2.3) is used to guarantee the existence and uniqueness of an invariant
measure for the frozen equation (see Eq. (2.19) below) and the solution of system
(1.1) has finite fourth moment.

e Using the time discretization approach, to prove the strong convergence order we need
assumptions A1 and A2. However, if using the technique of Poisson equation to prove
the strong convergence order, we needs the assumption A3 is needed additionally.

The following theorem is the existence and uniqueness of strong solutions for system (1.1),
which can be obtained by using the result due to Wang in [23] and whose detailed proof will
be presented in the appendix.

Theorem 2.2. Suppose that conditions (2.1) and (2.2) hold. For any ¢ > 0, any given
initial value x € R™, y € R™, there exists a unique solution {(Xf,Y),t > 0} to system (1.1)
and for oll T >0, (X, Y*) € C([0, T];R™) x C([0,T];R™),P — a.s. and

X; —x+/ s, X5, Lxe, Y, ds+/ s, X§ D"L”Xe)dVV1
(2.15)
Ye=y+- / F(s, X, Zxe Y, )ds+—/ 5, X6, Lye, YEIW?,

Now we formulate our first main result.

Theorem 2.3. Suppose that assumptions A1 and A2 hold. Then for any x € R",y € R™
and T > 0, we have

sup E|Xf — X2 < Ce¥3, (2.16)
t€[0,T]
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where C' is a constant depending on T, |x|, |y|. Furthermore, if there is no noise in the slow
equation (i.e., 0 =0), we have

sup E|Xf — X,|> < Ce. (2.17)
te[0,7]

Here X is the solution of the following averaged equation,

{ AX, = B(t, Koo L3)dt + o(t, X, L5,)dW

% (2.18)

where b(t,x, 1) = Jom b(t, x, p, y)v">(dy) and V5" denotes the unique invariant measure
for the transition semigroup of the following frozen equation:

{ dY:s = f(t,iL‘,[,L,YS>d8 + g<t7mnuaY;)dV~Vs27

2.19
YE) =Y, ( )

where {Wf}s>0 s a dy-dimensional Brownian motion on another complete probability space
(Q,.7,P).

Remark 2.4. The estimates (2.16) and (2.17) imply that the slow component X§ strongly
converges to the solution X, of the corresponding averaged equation with convergence order
€'/3 and €'/? respectively. Usually, the convergence order €'/2 should be optimal. Hence,
under more regularity conditions on the coefficients, we will use the technique of Poisson
equation to obtain the optimal convergence order in the general case (i.e., o # 0), which is
stated in the following theorem.

Theorem 2.5. Suppose that assumptions A1- A3 hold. Then for any v € R", y € R™ and
T > 0, we have
sup E|Xf — X;|> < Ce, (2.20)
te[0,T
where C' is a constant depending on T, |z|,|y|, and X is the solution of the corresponding
averaged equation (2.18).

3. PROOF OF THEOREM 2.3

In this section, we intend to use the approach of time discretization to get the strong
convergence order. The proof consists of four parts, each of which is presented in the respec-
tive subsection below. In the Subsection 3.1, we give some a-priori estimates of the solution
(X£,Yy). In the Subsection 3.2, we introduce an auxiliary process (Xf,Y;), and obtain the
convergence rate of the difference process X; — Xf . We study the frozen equation, and prove
the exponential ergodicity of the corresponding semigroup in Subsection 3.3. In the final
subsection, we prove a crucial estimate for sup;cp E|X¢ — X;| which relies on somewhat
delicate arguments. Note that we always assume conditions A1l and A2 to hold, and the
initial values z € R",y € R™ are fixed in this section.

3.1. Some a-priori estimates for (X;,Y,). Firstly, we prove some uniform bounds w.r.t.
€ € (0,1) for the 4th moment of the solution (X7, Y}) to system (1.1).

Lemma 3.1. For any T > 0, there exists a constant Cp > 0 such that

sup sup E[X{|' < Cr(1+ |z|* + [y]")
e€(0,1) t€[0,7)
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and

sup sup E|Y|* < Cr(1+ |z* + |y[*).
e€(0,1) t€[0,T

Proof. By Itd’s formula and estimate (2.12), we obtain for any ¢ € [0, 77,
t t

X = faf 4 [ IXEPOXE s, X0, e, YD s +4 [ IXEP(XE (s, X, )W)
0 0

2ds

t
4 [ 10X (s, X5 L 12 [ XS lo(s, X0, Zx)
0 ’ 0 ’

t t
<ol +Cr [ X+ YA+ [ (1 P)ds +4 [ XX o(s, X5 Zic)ain).

Note that Zx«(

- |2) = E|X¢|2. Hence, we have

T T
sup E|X* < Cr(lzf* + 1)+CT/0 Eyy;|4dt+cT/o E|X¢[4dt. (3.1)

t€[0,T]

Using It6 formula again and taking expectation, we get
B[ = It - [ BV X5 2, ¥, Y] ds
2 [P lgs, X0, L YO ds - [ RIVE gl X5 g, YO s
By (2.14), there exists 5 > 0 such that for any ¢ € [0, 77,
gyt < 2B [V X S, Y0, Y + 61V Pl X5 L, Y]
dt €
< —prfﬂ”‘ + C;T (ElXF[* +1).
The comparison theorem implies
BV < lytte ¥ + T [ e 5 (RN 1) ds

< |yl*+Cr ( sup E|X¢|* + 1) : (3.2)
s€[0,t]
This and (3.1) yield
T
sup BIX;|" < Cr(fe]' + |yl* +1) + Cr [ sup BJX¢|'d.
t€[0,T] 0 sefo,t]

Then by Grownall’s inequality, we finally obtain

. EIX:[* < Cr(lz|* + Jy[* + 1),
te(0

which also gives

sup E[Vi[* < Op(jaf* + [y[* +1).
te[0,7

The proof is complete. U
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Lemma 3.2. Forany T > 0,0 <t <t+h < T ande € (0,1), there exists a constant
Cr > 0 such that

E[Xf,, — XiI? < Cr(L+ |2 + |y[*)h.
Proof. Tt is easy to see that
t+h t+h
Xiyn — X :/ b(s, X5, Lxe,Y. d8+/ (s, X5, Lxe)dW,.
" ‘

Then by estimate (2.12) and Lemma 3.1, we obtain
2

t+h 2 +h
E\X;rh—Xﬂ?gCE/t b(s, X¢, Lre, YE)ds +CIE/t o (s, X5, Ly )dW!

t+h

< CE b(s, X5, Lxe, Y )|ds

2 t+h
+ c/ Ello(s, X5, Lxo)|?
t

t+h t+h
< ORhE [ (1+ [XSP + YV + EIXiP)ds+Cr [ E(L+ | X2 +E|XE)ds
t t

< Cr(L+ |z + [y[*)h.
The proof is complete. l

3.2. Estimates for the auxiliary process (Xf, }A/'f) Following the idea of Khasminskii in
[13], we introduce an auxiliary process (X¢,Yy) € R™ x R™ and divide [0, 7] into intervals
of size §, where 0 is a fixed positive number depending on €, which will be chosen later. We
construct a process Y, with initial value Y = Y = y such that for ¢ € [kd, min((k+1)d, T)],

Y / (RS, X, Zce 8)ds+—/ (K6, X55, Lre , VE)AW?,

ks’ S
ie.,
N N t N
Y;fe =Y+ - f(5(5)7 X;(SﬁgXe s YE)dS + 7/ g(s<5)7 )(se(é)ﬂ'i/ﬂX6 7}/;6)dws27
€ Jo s 0 s(9)
where s(8) = [s/6]8, and [s/0] is the integer part of s/5. Also, we define the process Xf by
. t . t
X =2+ /O b(s(8). Xg). L, Vi )ds + /0 o(s, X, Ly )WL,
By the construction of f/f and by similar argument as in the proof of Lemma 3.1, it is
easy to obtain the following estimates we omit whose proof here.

Lemma 3.3. For any T > 0, there exists a constant Cp > 0 such that

sup sup E[Ve[1 < Op(1 + || + y|Y).
€€(0,1) t€[0,T]

Now, we intend to estimate the difference process Y,* — f/f and furthermore the difference
process X; — X;.
Lemma 3.4. For any T > 0, there exists a constant Cp > 0 such that

sup sup E|Yy — Y2 < Cr(1+ [z + [y[*)0.
€€(0,1) t€[0,T]



STRONG CONVERGENCE ORDER FOR MVSDE

Proof. Note that
N 1 rt ~

Vo=V = o[£ X5 B, YE) = F(5(0), Xy, L )] s
1 t € € € (e 2
e ) Lo X0 YD) = g(500), X 2 V) WV

By Itd’s formula, we have for any ¢ € [0, 77,
E|Y - Ve

1t T N N

_ f/ E|2(f(s, X5, ZLe, Y0) = F(5(0), Xi(gy L, V), VS~ Y;)}ds

o [ Ellglo, X5, 2 ¥0)  9(00), X L, VP

< - / E 2<f(57X§>$X§7Y:)_f(stzng?}}se)?Y:_Y:>

+3||g<87 X§7$X§7 3/36) - g(‘S? X§7$X§7 Y/se)”2

2 gt - N N
2 [ [ X0 L 1) = F((60), Xegpy Lo 1), Vi = Y0 s
1 A N
+§E||9(5a Xo, Zxe,YS) — 9(5(5)>X§(5)>$X;(5)> Yo)|[Pds.
Then using the following estimate
W2($X§7$X§(5))2 <E[X; - X§(5)|2

and the conditions (2.2), (2.3), there exists 8 > 0 such that for any ¢ € [0, T,

(2.
d € € 2 5 € e |2 CT 2 € € 2 2
ZEYV VP < By -V P+ R [0+ X5 — X5 |” + Wa( Ly, L, )]
5 € e CT € € OT62
< ——E[Yf =Y |2+?E‘Xt _Xt(6)|2+T'
Finally, the comparison theorem and Lemma 3.2 yield
A C t—s C (5 t t—s
E|Yye — Yf)? < l/ - )E\XE X65)| ds + —- / e ds
e Jo 0

< Op(L+ |=* + [y[*)o.

The proof is complete.

Lemma 3.5. For any T > 0, there exists a constant Cr > 0 such that

sup E[X; — X;* < Cr(1+ [ + [y[*)s.
te[0,7)

Proof. Recall that
X =g+ /Otb(s,X;,fxg,Y;)ds + /()tJ(S,XSE,fX;)dWsl
and that
Xe=u+ /Otb(s(é),X;w),,?fx;m,?:)ds + /Ota(s,Xg,,?X;)dWSl.
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Then we have

. t
X;—X;:/O [bs, X5, Le, Y1) = b(s(0), Xi(g), Lice,, . V)| ds.
By Lemmas 3.2 and 3.4, we obtain
. T . 2
sup E’Xte - ‘X't€|2 < E / ‘b(sa Xgangv Y:) - b<5<5)7 X;(é)agXew)aYt:) dS]
te(0,7) 0 s
T .
< OrE [(8° 4+ |XE = Xip |+ Wa(Ls, Ly, ) + V2 = Vi)
< Cr(L+ [z + Jy[*)d.
The proof is complete. 0

3.3. The frozen equation. We first introduce the frozen equation associated to the fast
motion for fixed t > 0,z € R" and u € s,

dY, = f(t,z, p, Ys)dt + g(t, x, pu, Yo)dW?2,
Yo =y ’ (3.3)
0o— Y

where {W }s>0 is a do-dimensional Brownian motion on another complete probability space
(Q,.%,P) and {.%,,t > 0} is the natural filtration generated by W2

Under the conditions (2.2) and (2.3), it is easy to prove for any initial data y € R™ that
Eq.(3.3) has a unique strong solution {Y*#¥} ., which is a homogeneous Markov process.
Moreover, for any ¢ € [0, T), sup,-q E[Y2®#9[2 < Op [1+ |z]? + |y|? + p(] - )]

Let {P:*#},-0 be the transition semigroup of Y*#*¥ i.e., for any bounded measurable
function ¢ : R™ — R,

Proto(y) = Ep(YE""Y), yeR™ s >0,

where E is the expectation on (Q,.%#,P). Then e.g. by [15, Theorem 4.3.9], under the
assumption A1, it is easy to see that P>™* has a unique invariant measure v“** satisfying

Ll dy) < Cr {1+ Jo]+ (] - )2}

Lemma 3.6. For anyT >0, s >0,t,€[0,T], z; € R", u; € P9 and y; € R, i = 1,2, we
have

E|yfommsn —y ez ey — ol 4 Cp {|t1 — tof* + |w1 — w2l + Wa(pu, M2)2] :
Proof. Note that

s
t7x7 9 t7x7 b —_— t "r7 b t7$7 b}
Ysl 1M1y1_YS2 2u2y2_y1_y2+/0 f(tlyxh,ulyifrl 1H1y1)_f<t27x27u27}/r2 2u2y2)d7,

S ~
+/0 g(tr, @y, i, YY) — gty g, pig, Y272 H292) W2,

By It6’s formula we have

E|Yt17l"17#1,y1 _ Yl2:w2:m2,92 |2
S S
S .
— /0 E{Q(f(tl, T, i1, )/;tl@hlll:yl) _ f(t% To, o, Y;t27$27u2,y2)7 Y'Ttlﬂrhul,yl _ Y’Tt279€27u2,y2>

Hllg(ty, 21, p, YT — gLy, @, pa, K«h’m’m’yz)nﬂdr
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Then by Young’s inequality and conditions (2.2) and (2.3), there exists 5 > 0 such that

£E|Yt1,11“u1,y1 _ Yt27$27l12,y2|2
dS S S

— ]E[2<f(t17 T, [, Y5t175017lt17y1) _ f<t27 T, o, Ystz,xz,umyz)’ }/;tlaxlyl/«hyl _ Y;tz,xz,u27y2>
+||g(751, T1, [, Y;tl,ml,,ul,yl) _ g(tz, T, [lo, Y;tz,l“z,#myz)H?}
< ]E[Q <f(t1, Ty, 1, Y;h,xl,m,yl) _ f(tl, Ty, 1, Y;b@zw&yz)) }/;tlﬂ»’lvﬂlvyl _ Y;t2,1’271127y2>
t1,21,01,91 t2,x2,12,Y2 2
+3Hg(t17$17:u173/5 e )_g(thxlnuhy;; e ) }
—HE [2 <f(t1, Ty, [, Ystz,xz,uz,yz) _ f(tz, To, o, }{9@@2#2@2)7 Ysthl‘hm,’yl _ Y;t27$27uz,y2>}

1= 2
+§E Hg(tl’ Ty, 1, YI2TH292) — gty 3o, g, Y2 T2H2Y2)

- 2
< -8R ‘}/jl,mla#hyl — Ylrahzy|T 4 O [|t1 — o)+ |o — 3 + W2(M17M2)2} '

Hence, the comparison theorem yields for any s > 0,
E|Y[rorn — ylzrehe |2 emBly, —yol* + Cp [|751 — bl + |1 — w2f* + Wa(pu, /~62)2] :
The proof is complete. U
Proposition 3.7. For any T > 0,t € [0,T],z € R", p € &5, s >0 and y € R™,

[Bb(t, 7, YY) = bt )| < Cre™ % {L Jal + | + [0 - PP}, (34)
where b(t, z, 1) = fam b(t, T, 1, 2) 55 (dz).
Proof. By the definition of an invariant measure and Lemma 3.6, for any s > 0 we have

’fEb(t, x, I, Yst,x,my) _ B(t, z, M)’ _

Bb(t, 1, Y0 = [ b, )0 (d2)
Rm

< | L Bt i) — B, i) o d2)
Rm

< CT /m IE ’}/;tvxvl"ﬂy _ }/St7x7u‘72 Vtvx7u(dz)

[ ly = 2lptedz)
Rm
_Bs
< Cre™ 7 {1+ [a + |yl + [u(] - )]/}
The proof is complete. U

_Bs
< CTG 2

3.4. The averaged equation. We can introduce the averaged equation as follows,
dX, = b(t, Xy, L, )dt + o(t, X, Lx,)dW},
X[) =x c Rn’

with

b(t,x,pn) = /Rm b(t, x, p, )" (dz),

where v5%# is the unique invariant measure for Eq.(3.3).
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The following lemma gives the existence, uniqueness and uniformly estimates for the so-
lution of Eq. (3.5), whose proof will be presented in the Appendix.

Lemma 3.8. For any x € R", Eq.(3.5) has a unique solution X,. Moreover, for any T > 0,
there exists a constant Cr > 0 such that

sup E|X,|? < Cp(1+ |z[%). (3.6)

t€[0,T7]

Now, we estimate the error between the auxiliary process X'f and the solution X, of the
averaged equation .

Lemma 3.9. For any T > 0, there exists a constant Cr > 0 such that

- 2
sup E|XF — X, < Op(1 + |z + |y]?) (51/2 +e+ — 5 + 5)
te[0,7

Proof. We will divide the proof into three steps.
Step 1. Recall that

~ _ t N _ _
Xe_X, = / [B(s(0). XS5, Zce, V) = b(s. X, Zx,)] ds

+/ (5, X5, Zxs) — (s, X, L5)] dW!

= [ [Ms0), X V) = Bl (0), X e, )] s
/:b<s<5> L)) — B(s,X;,zxg] ds

+/ b(s, X5, L) = bls, X, Zx,)] ds

+/ —O-<S>X§7$X§> o O-<S>XS7$XS>} dWsl'
0 L

Then it is esay to see that for any t € [0, 7], we have
2

~ _ t ~ —
E|Xf— X,|* < CE ’ /O [b(s(a),xg(é),zxz(é),xq) - b(s((s),X;(é),gX;(&))] ds

2
ds

t . _ _

RN /0 B(5(8). X5y, Lxe,, ) — bls, X5 L)
t _

+C1E [ [b(s, X5 Zx) = bls, X 2| ds

t _
—I—CE/ ”a(s,Xg,fxg) —o(s, Xs, Z%,) st
0

4
= Z Ii(t). (3.7)
For I,(t) we have by the Lipschitz property of b(-, -, -) (see (6.2) below) that
T
sup Ir(t) < Crd? +E /0 [X¢(5) — XC[2ds

te[0,T
< Cr(1+ |z)* + Jyl*)é. (3.8)
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For I;(t), i = 3,4, Lemma 3.5 implies

T _
sup Ly(t) < Cr [ E|X; — X, dt

te[0,T]

T N T N _
< CT/ E|X —Xf]th+CT/ E|X¢ — X,|%dt
0 0

T ~ _
< Cr(1+ |22 + |y2)5 + CT/O E|Xf — X,[2dt.
Similarly, by condition (2.1),

T N _
sup I4(t) < Cr(1+ |2* + |y|[*)d + CT/O E|Xf — X,|%dt.
te[0,7]

Therefore, (3.7)-(3.10) yield

sup E|XE — X,> < sup L(t) + Cp(1+ |z* + |y|*)d
te[0,7] t€[0,7)

T . _
+CT/ E|X¢ — X, |dt.
0
Then combining this with the following estimate of I;(¢),

2
€ €
sup I1(t) < Cr(1+ |z|* + |y\3)(—6l/2 tet <+ ),
te[0,7

which will be proved in Step 2, we obtain

§1/2 o

te€[0,T]

Hence, the Grownall’s inequality yields

~ _ € €2
sup E|X] — Xil* < Cr(1+ [« + |yP) (5/ et 5) ,
te[0,T7]

which completes the proof.

13

(3.9)

(3.10)

(3.11)

(3.12)

R _ 2 T . _
sup E|XE — X2 < Cr(1+ |2 + |y*) (6 fe+ S+ 5) +/0 E|X¢ — X,|%dt.
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Step 2. In this step, we intend to prove estimate (3.12). Note that
2

t ~ _
/0 [B(s(6). XSy, L, V) = b(s(6). X, L )] ds

[t/6]-1 (k+1)8 2
<2 ) /6 [b(/f5 Xklsafxeé,y;,) — b(kS, Xisr Lxe )} ds
k=0 "k
t . - 2
+2 /t . [B(£8), Xy, L, V) = B(E(8), Xy, L, )] ds
L3111 (k1) o 2
7 I;) /kd [b<k5’ X;‘S’XXE(;’ 1/86) o b(ké? X]:(;?ngc&)} ds

(i+1)8 B
+4 Z </7, |:b(267 z6a ,%X 57 s ) b('l(s, 2%7 gxfé)} dS

o<i<j<[t/s]—1 \’%

(j+1)8
/j [b(36, X35, Lxe, V) = b4, 35,$X;5)}ds>

s 1 [H000) X 25,20 ~ B9, X i, )]
= 23:]11‘(15). (3.13)

For I13(t), by estimate (6.3) below, Lemmas 3.1 and 3.3, it is easy to prove that

t A
sup El3(t) < CrdE /t(é) [1 + | ;(5)‘2 + E|X;(6)|2 + ‘YSIZ} ds

te[0,7
< Cp(1 + |z* + |y[*)6% (3.14)
For the term I;;(t), we have
[t/5]—1 k+1)6 . _ 2
El () =2 3 E /k T [bke, Xy, 2, V) = B(kS, Xy, 2] ds
k=0
t/s)-1 | .5 2
—2 Z E [ b(kS, X5, L, Virrs) — bk, Xis, Zxc,)| ds
[t/é] 1

Z / / Uy(s,r)dsdr,

where for any 0 <r < s < é,
\I}k(sv 7”) =E [<b(k67 Xiss gX,ﬁp }A/;eJrké) - B(kéa Xiess "%X;(;L
b(kd, Xis, Lz, Vierns) — bk, Xis, Zx;,))] -
For any s > 0, 4 € &5 and random variables z,y € %, we consider the following equation

S};e,s,az,,u,y =Y + */ f(S,J?, 1, Y/;,G’S’I’u’y)dT' + 7/ S, T, W, Yesmuy)dWQ t 2 S.
€ Js
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Then by the construction of f/;f, for any k € N,, we have

~ - 6k8, X Pyre YE
Yo=Y, MR pe [k, (k4 1)d),

which implies

~ekaxkézxe Y
Uy(s,r) = E | (b(kd, Xisr Lxcsr Yoers ) — b(ks, XisrLxs,);
~6/€5Xkéfxe Vs
b(k6 Xké?"ZXE » L retkd ) - b(k6 Xk&?"gXe )> .

Note that since for any fixed x € R", y € R™, Y;i‘;(f“ ¥ is independent of Fys, and X§5 , Vs
are .Zs-measurable, we have

~ek6X Lxe Y6
U, (s,r) = IE{ l(b(kd Xigo e, Yaerns MY (ks Xis. Lxz,),

bko, X L TN s e o g
( ko0 Lxe s YVoerks ) —b( ks ZLxe ) [ Frs | (W)

. - €,k6, X 5(w),fxié,?£6(w) _ .
= ESE | (b(kd, Xi5(w), Lz, Vaeyrs ) = b(kd, Xi5(w), Zx:,),

~ €,kd, X s(w ),zxz(sy,;é(w)

b(k57 Xk&( ) "%X%? re+kd )_B<k57 Xz6(w)7$X25)>‘| }

By the definition of the process {Y,"*"#*¥},-, it is easy to see that

ekd,x,uy setko €,kd,x, 1,y setho e,ké,z,pu,y 2
Yy = y+ f(kS, 2, 1, Y, dr+ — g(kd,z, 1, Y, )dW;

ks
=y+ */ f(ké,a:,u,ﬁefk‘sf"y)dr—l— 7/ (ko x M,Kj&x“y)de’k‘s
e Jo

-~ / F(kS, @, o, VERRTH0) g / (K8, @, 11, VT g 200 (3.15)
0 0

where {W2* .= W2, — W2},=o and {WH* = \%Wi’k‘;}gg. Recall the solution of the
frozen equation satisfies

yRommy — g +/ F k6, x, pu, YROm19) +/ g(kS, 2, o, YOOmY) 1372, (3.16)
0 0

The uniqueness of the solutions of Eq. (3.15) and Eq. (3.16) implies that the distribution of
{Ysi_]ﬁf“ “}o<s<sse coincides with the distribution of {Y*#¥}, . s/. Then by Proposition
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3.7, we have

. . k6, Xfs(w),Lxe Yisw) - .
Vs, r) = E{E<b(/{;5, Xk(;(w),fxzs,ys ko ) — b(ko, Xka(w)agxgé)a
k8, XE (w), PLxe Y (w _
b(ké, Xjs(w), Lxe,, Yo o) T )) — b(ko, X,i(;(w),fx,gé)ﬂ

~ )~ k6, X € (w),Lyxe Vi (w) ~ -
= E{E<E{b(k6, Xis(w), L, Yo TR TZ] (@) = bk, X (w), L),
k(s,X;&(w)szé,Y&(w)

BID, Xip(w), L, Ve (@)) = Blid. Xiw). Zx;,)

~ ko, X ¢ (w),f € ’Ye (w) ~ _(s=m)B
< O7E {]E [1+ Xgs(w)+ [y TR @) 4 Ly (] !2)] e 2 }
€ |2 Ore |2 e 2 —=nd
< OrE (1 + [ X5 "+ [Vis|” + ELXG] ) e

(s=7)B
< Cr(l+ |z +|yP)e 2,

where the last inequality is consequence of Lemmas 3.1 and 3.3. Hence we have

2 8 5
sup EL(t) < Cr(1+ |z + |y|2)%/0€ / e~ dsdr
2

te[0,T]
= Cr(1 + |z|* + |y|2)€5<ﬁ5€ — 512 —- ;2666)
< Orll+ ol + e+ ) 3.7
For the term [5(t), in Step 3 we will prove the following estimate:
sup El5(t) < Op(1+ |z|* + |y|3)(L +¢€). (3.18)

t€[0,T] §1/2
As a consequence, estimates (3.13), (3.14), (3.17) and (3.18) imply (3.12).

Step 3. In this step, we intend to prove estimate (3.18). For convenience, for any i € N,
~ €16, X 5, Lxe VS

setting Z7, := Y, # " with 4§ < ¢, we obtain that

€ 1 . € € 1 - € €
dZf, = - fi0, X55, Lxe, Z5,)dt + ﬁg(zé, X5, Lxe Zi,t)de,
Ziis = Y.

0

(3.19)

By the definition above, it is easy to see that
Ziy =Y, te[kd, (k+1)d]
and continuity implies that

le,(k-i—l)é = le+1,(k+1)6 = Y(Z;H)a-
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Let E; be the conditional expectation w.r.t. %;,s > 0. Then for any 0 < i < j < [t/d] — 1,

(i+1)6 _
E< /5 [b(i6, X5, Lxe,, V) — b(i6, X, Zic, )] ds,

(3+1)é
/j5 {b(j(s jéagXem s ) b(j§ J5’$XJ€'5)} d5>

(i+1)  p(j+1)s _
= [ E (b, X, L, V) = B0, X, L),
J
b(j0, X55, Lxce,, Vi) = b(j6, X5, Lxcs,) ) dselt
(i+1)0 p(j+1)0 . _
< [ 7R {bis X, 2, V) - 000, X, )
0 76
-‘E(i-i-l {b(]é ]5,3)(6_?;) b(]é j(;,gx;é)”}dsdt
(i4+1)6 r(Jj 1)5 ~e
<o [ / 0+ 1XG] + VD) B (508, X5g, L, Vi) — B8, Xip, Zic,))
= (B(G + D)8, Xy L,y Zivna) = 0+ D)8, X, L)) |} dsdt
(i+1)6  p(3+1)6
+Cr | / E{(1+]X5] + 7))

(B [+ 10 Xfiags Ly, Zivne) = B+ 10, Xy L, |} st

On one hand, by a similar argument for Iy, (), we obtain
(+1)8  (j+1)8 . (41
Bo<Cr [ [ B[ IXG] TN+ Xl + [Fpnal)] e 2 st

(i+1)6  r(G+1)8 —B[t (41
< Cr(1+ |z + [y?) / / = dsdt

—B(G—=9)6 =83

< Cr(1+ |z + |y[Pede™ 2 (1 —e2e). (3.21)
On the other hand,
(i+1)8 ((j+1) )
=of ) {0+ X5+ 190) [Eq s [ (K + 1), Xy D, 0 i)

k= z+1

—b((k + 1), X(,C+1 5,$X(k+ D) = (b, X5, Lxy, Zi ) — bk, Xis, L) )| |} dsdt

(i4+1)6 ,p(j+1)6 e . .
/ / 1 + 1 X5| + 1Y) ‘Ekzé [( ((k +1)0, Xo 150 Zxe, 50 Dhsne)
k= +1

—b((k + 1)8, X1 5,$X(k+m>) — (b(kd, Xg5, Lxe,, Z1) — bk, Xis, Zx;,))] |} dsdt.
Thanks to the Markov property, we get
Exs [b((k + 1)6, X{oprys L, o Ziera) — 0k + 18, X0y, L
= Bs [B((k + 1)8, Xynys0 Ly, 0 Viernss [E = (k+1)3]/)]

(k+1)5)}
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and
Eys |b(kd, X5, L, Z;» — b(kd, X5, Ly, )]
= Eis [D(kS, X, Ly Viwnys: [t = (b + 1)d/€)]

where b(t, z, 1, y, s) = Eb(t, z, i, Ystxfy) —b(t,x, p).
Recall the following properties of b (see the detailed proof in Section 5.3):
e For any t1,t, € [0,7],5s 20,z € R", y € R™ and p € P,

bty 2, 11,y 5) = blt2, 2, 11, , 5)|

< Cyrlty — tale ™ {1+ o™ + [y + [u(| - P)]"/2} 5 (3.22)

e Forany t € [0,T],s >0, x1,22 € R", y € R™ and p € Py,

[b(t, @1, 11,1y, 5) = b(t, @2, 11, 5)|

< COrlzy — apfe™ {1 + o™ A+ w2 4 [y (] - |2)]71/2}§ (3.23)

e Forany t € [0,7],s >0, x € R", y € R™ and py, s € s,

b(t, 2, 11y, 5) = b(t, @, pi2, y, 5))|
< CrWa(p, pa)e™ {1+ [ + [yl + [ (|- P2 + o - 2], (3:24)
where 7 is a positive constant. Then by estimates (3.22)-(3.24) and Lemma 3.1, we have

(i+1)8 ]+15J 1 .
<o) E{(1+ XG50+ 1¥:1)

k= z+1
B((k + 1)6, X5 Lty Viernas [t — (k +1)3]/€)
= b(kd, Xis, Ly Vs [t = (k+1)3]/e)| } dsdt

(i+1)8 r(j+1)s J=1 . . . .
o ] 3 B X+ D X+ X sl [Fesns™)
k=i+1

€ € € 7(k+1)5
(5 + [ Xrr1ys — Xkl + [E|X(k+1 — X5l ]1/2)] dsdt

(i41)8 r(j+1)s I=1
Cr(1+ |2 + [yP) 51/2/ / Z e s

k=i+1
‘ . —~5(t-45)
(i+1)5 ((j+1)6
< Cp(1+ |z + Iy!3)51/2/ / & dsdt
0 j(; 1 — € 4e
< Op(1 4 |z + |y*) 6% 2. (3.25)
Together with estimates (3.20), (3.21) and (3.25), we obtain
sup Elo(t) < Cr(1+ |z* + |y|°) > [53/26 +ede 4 (1 — 6_465)
t€[0,T 0<i<j<[T/8]—

< Cr(1+ [z + |y|3)(m +e),

which is the estimate (3.18). The proof is complete. O
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Now we are in a position to complete our first result.
Proof of Theorem 2.3: Taking § = ¢2/3, Lemmas 3.5 and 3.9 imply that for any 7 > 0,
initial values z € R™ and y € R™, there exists Cr > 0 such that

sup E|XF — X, > < Cp(1 4 |z]* + |y|3)62/3.
t€[0,T

which proves the first part of Theorem 2.3, i.e., (2.16) holds.

Furthermore, if there is no noise in the slow equation (i.e., o = 0), we can improve the
Holder continuity in time in Lemma 3.2, i.e., for any 7' > 0, 0 <t <t + h < T, there exists
a positive constant C7 such that

S?p)E|Xt€+h — X;|? < Cr(1+ |z + [y[*)Rn°.
e€(0,1

Then, following almost the same procedure as above, it is easy to see that
_ 2
sup E|XF — X, > < Cr(1+ 2> + |y*) (6 +—+6%).
t€[0,T 0

Hence, taking § = € yields (2.17). The proof is complete.

4. PROOF OF THEOREM 2.5

In this section, we will use the technique of Poisson equation to prove the strong conver-
gence order, which is quite different from the method used in Section 3. Because we will
study the regularity of second-order derivatives of the solution for the corresponding Poisson
equation, more conditions (see assumption A3) are needed. This section is divided into two
subsections. In Subsection 4.1, we study the regularity of the solution for the corresponding
Poisson equation. In Subsection 4.2, we prove Theorem 2.5 by using the technique of Poisson
equation. Note that we always assume conditions A1-A3 hold.

4.1. Poisson equation. Consider the following Poisson equation:

- XQ(t,.T,,U,)CD(t,J?,/L,y) - b<t7xvuay) - b(t,;z:,u), (41)

where
@(t%, , y) = ((I)l(t,l', /%y), R (I)n<t7 z, W, Z/));
gZ(t7xv :u)q)(tv T, W, y) = (XQ(tv l’,ﬂ)q)l(t, z,H, y)? B v"%(t7$a M)(I)n<t7$a 2 y))
and for any k =1,... n.
32(ta$,ﬂ)@k(t,x>ﬂay) = <f(t7$7,u7y)aayq)k(taxnuay»
1 *
+5Telgg" (¢ 2, )05, @u(t, 2, p y)).

The smoothness of the solution of the Poisson equation with respect to parameters have
been studied in many references, see [19, 20, 22] for example. Note that here the solution
for the Poisson equation (4.1) depends on the parameter p, so here we have to check the
regularity w.r.t. . The main result of this subsection is the following:

Proposition 4.1. Assume the assumptions A1-A3 hold. Define

O(t,x, p,y) = /OOO E[b(t, , g, Y{H9)] = b(t, a, 1) ds. (4.2)
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Then ®(t,z,u,y) is the unique solution of Eq. (4.1) and it satisfies that (-,
C122([0,00) x R™ x R™ R"), ®(t,z,-,y) € CH (P, R"™). Moreover, for any t € |0,

max{|P(t, x, u, y)|, 10,2(t, z, i, )|, 10:D(t, @, 1, y)|, [|0P(t, @, 1, )|, 1100 P(E, 2, 1, y) || 200
< Op{1+ ||+ |yl + (] - )]V} (4.3)

and

5y ) <
]

max{”@gm@(t, xz, W, y) ||7 ||828M(I)(t7 X, [, y)() ||L2(M)}
< Cr{l+ x|+ |yl + [u(] - )]} (4.4)

Proof. We will divide the proof into three steps.

Step 1. Noting that % (t,z,n) is the infinitesimal generator of the frozen process
{YE®=#r} we easily check that (4.2) is the unique solution of the Poisson equation (4.1)
under the assumptions A1-A3. Moreover, by a straightforward computation, we also have
that ®(-, -, u, ) € C132([0,00) x R x R™ R"), ®(t,z,-,y) € CLH( Py, R").

By Proposition 3.7, we get

Oty < [ BB @ Y] = b, o)l ds
< Cr{L+lal + [yl + (] - P2} [~ e Fas
< Cr{l+[a] + ly| + [u (I -]V
By Lemma 3.6, we have E||0,Y *#¥||> < Cre~?, which implies
18, (t, 2, p, y)|| < C

Furthermore, the remaining estimates in (4.3) can be obtained easily by (3.22)-(3.24). There-
fore, it is sufficient to estimate (4.4) below.
We first recall that (see Subsection 6.3 in the Appendix)

630(t7 T, 1Y, S) = Z;<t7 T, 1Y, S) - Z;(ta T, Y, S+ 80)7
where b(t, z, ju,y, s) = Bb(t, z, i, YE=#v). Note that

lim by, (t, 2, 1y, s) = E[b(t, x, pu, YEORY)] — b(t, z, ).

S0—0C

So, in order to prove (4.4), it suffices to show there exists n > 0 such that for any sq > 0,
te[0,7T],s 20,z e R" y € R™ and p € P,

1025 (2, 11,9, 9) || < Cre™™ {1+ || + [y | + (| - 1)]/?} (4.5)
and
10:0,2(t, 2, 11, y) ()l z20) < Cre™™ {1+ [ + [y] + [u(] - )]/}, (4.6)
which will be proved in the following two steps.

Step 2. In this step, we intend to prove estimate (4.5). We recall that in (6.5) below

ESO (t7 I? /’L7 y7 S) = 8(t7 x? /’L’ y? S) - El;(t, x? M? }/'si;z’p”y? S)‘
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Then the chain rule yields
&cl;so (t, 2, p,y,8) = é?xl;(t,x, W, Y,S) — ]E@l;(t,x, 1, ys%:c,my’ s)
R [0,b(t, @, 1, YL, 5) - 0,V 5]

and furthermore,
o,y s) — EO2b(t, x L, YERIY )
b(t, @, p, Y1 5) - 0 thy}

8595580(75’%#7?/7 ) (

E 9%,

]E{ A t T myt,w,u,y 3) + 32 A(t x :usttéw%y’ 3) . axY;%w’”’y] ,awysto,:c,p,y}
4
=2 Ji

=1

.

(i) For the term .J;, note that

DU, ,) = B [0l 1, V599 4 0, Y0 - 0,110

which implies

=h

[a bt @, Yst,m,u,y)} +E [@iyb(t, z, p, YEoY . axyst,a:,u,y]
+E o [ b(t, x, 1, Yst,x,u,y) . az}/;t,x7u7y:|

[ t T, L, Yt,z,,m?!) . (ary*st,x,u,y7 am}/st’x”u’yﬂ
+E [8 b(t,x, p, YE0HY) - agxyswau,y} '

8%3:?)(157 €, Y, S) -

Then for any y1,y, € R™,

102,0(t, 2, 1,1, 5) = O, b(t @, 1,3, )|
< HE [azccb(tv T, i, Y;t,x,,u,yl) - 82 b(t T, |, Y?%N:w)} H
+ ]E [8§yb(t, T, i, }/st,:v,u YY1 Yta:uy1 aiyb(ta T, L, )/st,x,,u,m) . a:c}/st,:v,p,,yg}

) O
[@;xb(?ﬁ, T, i, Yst,x,u yl) a thuyl 82 b(t T, Yst,x,u,yz) . axyst,x,u,yg]
) -

+|E

+||IE [a;yb(t, T, p, YEORL) (9, Y B0y gy Bo)
—O2 bt @, p, YUY (Y2, ax}/;t,x,u,yz)}

. [ayb(t, @, 1, YIrmn) L g2 yhom _ 0,b(t, z, j1, Yo aixyst’x’“’w}

+||E

5
i=1
By condition (2.8) and Lemma 3.6, there exists > 0 such that
Jip < CE|ytwuy1 Yst,z,u,yzpz < Ce ™y, — yo|™. (4.8)
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By the boundedness of H(?ﬁybH and condition (2.9), we have
Jio < E ‘ O2,b(t, @, pu, Y THU) - QY B0 — 92 b(t, @, pu, Y OHV2) - 9, Y B0
+E 8§yb(t7 T, [, Yst,x,u,yz) . axYSt,x,u,yl _ 8gyb(t, z, U, Ysm,u,w) ) axyst,x%w
<E [Hﬁiyb(t, , p, Yorruny aiyb(t, z, , YEORU2) ||| 9, Yo M

A G2, b(t . YR [0,V — 0,y |
1/2

" 1/2 1~
< CT [E’Y'St,x,u,yl _ Y;t,m,m?Jz’Q’Yz} / [EHazY:,x,u,yl Hﬂ
+CTEH8xY:’I7M7y1 _ axy;t,a:,,u,yQH’
where 0,Y}/"#¥2 satisfies

daaty;tx“u’y - [a:vf(t7 I? /1’7 }/Z,%M?J) + ayf(ta l’, /~L7 }/;tw’u’y)am}/st’x’#’y]ds ~
+ [0pg(t, @, pu, YI5HY) 4+ 0y g(t, , p, YY) O, Y 1] AW,
0, Yy ™M =0
x40 .

Under the assumptions A1, it is easy to prove that

n t,x,u,y||4
sup Elo,ym|t < Oy,
t€[0,T],s=0,zER" yeER™ € Po

and by Lemma 3.6 and the boundedness of 0, f, 0y f, 0.y and 9,,g, we have

sup  B[0,YEmu — 9,y EmR |12 < Cre T [y — yol.
te[0,T],2€R”, ue P

Then Lemma 3.6, (4.10) and (4.11) imply that there exists n > 0 such that
Ji2 < Cre” ™ (Jyr — 4o + 1)
By condition (2.9) and a similar arguments as in estimating Jj», we also have
Jis < Ce”(Jyr — yo| +1).

By condition (2.10) and a straightforward computation,
J14 < E Ha;yb@, T, i, Y:St,z,u,zn) . (835}/:’%’“"1/1,ax}/;t’x’“’yl)
—8§yb<t, T, U, Y'St,m,,u,yz) . (azyvst,z,u,yl axyst,z,,u,yl)

—I—E H@Zyb(t x, |, Yst,:c%yz) . (ax}/;t,a:,u,y1’ 8xYSt,x,u,y1)
_a?zyb(t7 T, i, Yst,x,u,yz) . (amyst,:p,u,yg’ astt,x,y,yQ)
B [08, ., Y0 ) = G2 bt g, Y 0,

(4.10)

(4.11)

(4.12)

(4.13)

FE [102,b(t, @, 1, YE2) [[|0,Y 70 — 0¥ 10 |[([| 9, Y| 4 ([0, YEm2]) |

1/2

= 1/2 r~
< CT [E‘Kt,x,u,yl _ Yst,z,u,yQ‘?/z} / {Eugxnt,x,p,yl Hﬂ

1/2

~ 1/2 r~
+0r [Bla,yemen - ayemen 2] R (loxemem 2+ o,y )] 7.
Then by Lemma 3.6, (4.10) and (4.11), we get
Jia < Cre” P (|yr — yo| +1).

(4.14)
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Under the assumptions A1-A3, it is easy to prove that
sup B2, Y72 < Cr (4.15)

tel0,T],s=0,2€R™ yeR™  ue Py

and

n 2 £, 1,y 2 t,z, 0,2 || 2 —2ns 2
sup E’Haa:ary; o — aa::cy;‘ a 2” < CTe K |y1 - y2| %
te[0,T],x€R™,ue P>

Then, we get
J15 < C’Te_"5|y1 — y2|72. (416)
Hence, by (4.7), (4.8), (4.12), (4.13), (4.14) and (4.16) we obtain

Ty < Ce(Bly — YE] 1 1) < Cre {1+ [a] + ] + [u(] - P))2).
(ii) For the term Jo, note that
8§yl;(t, T, 11,y,8) = O,E [&b(t, T, [, Yst’z’“’y)} +0,F [8yb(t, x, p, YY) &EY;@’“’Z’]
=" {0§yb(t, x, [, Kt’%“y)ayy;,w,u,y} +E [8Zyb(t, z, 1, YEOHY) (9, Y Loy 5yyst,x,u,y)}
+E {@,b(t, T, [, Kt’z’“’y)ﬁiyﬂt’x’“’y} .
Lemma 3.6 and (4.11) imply

sup (Blla, Y =P + B0z, Yy w|
te[0,T],z€R" ,u€ Py ,ycR™

_Bs
2) gCTe 2.

Hence we have

~ _Bs
sup 102,b(t, x, j1,y, 5)|| < Cre™ 7.
te[0,T],z€R™, p€ Py ,ycR™
Hence, it is easy to see that
J2 < CTe_%IEH&EYS%“’“’yH < CTe_fs.
(iii) For the term J5, by a similar argument as in (ii), we have
- _Bs
sup 185,6(t, , 1,y 5)|| < Cre™ 1
te[0,T],x€R™, ue Py, yeR™
and A ,
sup 102,b(t, z, p,y, s)|| < Cre™ 7.

t€[0,T],zER™,u€ Py, yeR™
Hence, it is easy to see that

J3 < CTe%m.

(iv) For the term Jy, by estimates (4.15) and (6.7), we easily get
Jy < CTe%m.
Hence, combining (i)-(iv), we prove estimate (4.5).

Step 3. In this step, we intend to prove estimate (4.6). Recall that

(%BSO (t,z, 1y, s)(z) = (‘Lf)(t,x, Wy, s)(z) — ]E@uls(t, x, 1, th’“’y, s)(z)
—E [(9,b(t, @, 1, Y2, 5), 0, YLV (2))]
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So we have

82(9#530 (t,x, p,y,s)(2) = az(?/f)(t,x, Wy, s)(z) — Eazaﬂé(t, T, p, YOIV 8 (2)

S0

~E [<8yl;(t, T, 1, YO s), 828@2%“3’“’?’(2))} ,

S

where 0,0, Y™V (z) satisfies

d0,0, Y MY (2) = 0,0, f (t, x, p, YI"MY)(2)ds + O, f (t, x, u, YE5H)D,0, Y5 (2)ds
+[0:0u9(t, @, p1, YOOHY) (2) + Oyg(t, @, p, YOHY) 0,0, Y S5 (2)] dwz,
0,0, Y"1 (z) = 0.
(4.17)
Under the assumptions A1-A3, it is easy to prove that for any 7" > 0, we have

sup BJ0.0, V"2, < Cr (4.18)

t€l0,T],s=0,2€R™ ,y€R™, uc P,
and there exists 1 > 0 such that

sup B[ 0.0, Y — 0.0,V 3y 0 < Cre Py, — 2. (4.19)
te[0,T],z€R™,u€ P

Then we have
”826/L8(t7 T, Y1, S) - aza,u,l;(t, Ty Ly Y2, S) ”LQ(H)
= 0.0, Eb(t, &, p, Y7H0) — 0.9, Bb(t, &, p, Y4 12,
< B (0.0,b(t, x, 1, YEH¥1) — 8,0,b(t, , n, YEH2)

L2 ()
+E ayb(t7 x? IU/7 }/:Stx’u’yl)azaﬂnt’x’u’yl (Z) - ayb<t7 z? ILL’ Y:vxr“y?)azau}/:vxv“ry?

L2(w)
< E H@zaub(t, x, i, Y;t,a:,u,m) _ azaub(t’ z, U, }/;t,x,u,yz)

L2(p)
—HE @,b(t, , 1, th,z,u,yl)ﬁzaunt,z,u,w _ @,b(t, T, Yst,x,u,yz)azauyst,x,u,yl

L2(p)

+E 8yb(t, TR }/;t’m’“’yQ)aZ@ﬁ/;t’x’”’yl _ 8yb(t, T, 4, Y;’x’“’yz)azapyst’m’“’yz

= ZKZ

=1

For the terms K; and K, it follows from condition (2.11) that
K, < CTE|}/:7$"LL’ZJ1 — YEERY2 2 L Cpe |y — 1|02 (4.20)

L2(p)

and by (4.18)
K2 < CrE|(Y1200 — Y102)0,0, Y10 | a0
< Op[veen —yimsn ] [B0.0,0054 iy,
Y1 — Yal. (4.21)
For the term Kj, by (4.19), it is easy to see that

Ky < CrE|0.0,Y1" "0 — 0.0,Y15% | 2,
CTe_"S|y1 — y2|72. (422)

/2

—Bs
< CTB 2

<
<
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Therefore, estimates (4.20) to (4.22) imply
10:0,b(t, ., 11, y1, 8) — 0:0,b(t, x, 11, y2, 8) | 20y < Cre™™ (Jyr — ya| + 1).
Hence, we finally have

||azaﬁl;50(t7x7u>y7 S)HLQ(#) ||a @ B(t LY, $s )( )_ Ea aul;(t7xaM)}/st(;x’#’y78)(2)||[z2(#)
+E [10,b(t, @, 1, Y52, 5)|[10:0,Y 57| 124

~ ~ 1/2
< Cre ™ (Bly — Y5™Y| +1) + Cre ™ [E0.0,Y5™Y |32 ] /
< Cre™™ {1+ [z + [y| + [u(] - 1)]'2),

which completes the proof of estimate (4.6). O

4.2. The Proof of Theorem 2.5.

Proof. Note that

Xi =X = /Ot[ (5, X¢, Ly, V) = b(s, X, Zx,)| ds
+/0t {J(S’X;iﬂxg) - U(S,Xs,fxs)} AW}
- /Ot (b, XS, L, Vi) = bls, X5, L) | ds
+/t[ (5, X¢, Lx) — bls, X, Ly,)| ds
+/ (s, X, Zx) —a(s,)‘(s,g)-{s)} A2,

Then it is easy to see that for any t € [0, T], we have

2
sup E|Xf — X, < C sup
te[0,T) t€[0,7]

IE/ b(s, X, Lxe, YE) = b(s, X, Lxe)ds
0

T _
+CT]E/ IXE — X, |t
0

Then Grownall’s inequality implies that

B _ 2
sup E|X¢ — X2 < Cp sup E / b(s, X6, Lxe, YE) — b(s, X, Lye)ds| . (4.23)
0

t€[0,7) t€[0,7]

By Proposition 4.1, there exists ®(¢, x, 1, y) such that

— Lyt 2, WO (t, 2, 1, y) = blt, @, p,y) — b(t, z, ).
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Then by It6’s formula for a function which depends on measures (see [5, Theorem 7.1]), we
have

B(t, Xf, Lye, Vi) = B0, 2,0, y) + /Ot 0,D(s, XE, Lre, YE)ds
[ B b5, X0, L, Y2005, 210 ) (XD oo
+ /Ot ;ETr [UJ*(S,XSE,,%X;)@Z@”@(S,Q:, I, y)(XE)} |m:X§7“:$X§,y:y; ds
S EACE R RLE R BT
+1 /Ot Lo, X, L) 0(5, XE, Le, YE)ds + M +

where Z(t, 1, y)P(t, z, p,y) := (Lt 1, )1 (t, 2, 1, y), . ., Lo(t, 1, y) P (t, x, 1y y)) with
Dgl(t7 22 y)q)k<t7 z,H, Z/) = <b(t7 T, K, y)7 axq)<t7 z, W, y)>
1
+§Tr[aa*(t, z, )02 Dtz y)], k=1,...,n,
and Mt ME? are two martingales, which are defined by

t
Mt :z/ 0, ®(s, X5, Lxc) - (s, X5, Lxe) AW,
0

t
*]\4756’2 = / ayq)(saX;gX;) ’ g(stgng?Y:)dWsZ'
0

Then we have
2

sup E (s X& Lxe, YE) = b(s, X¢, Lxe)ds
t€[0,T]
2
= sup E (8, X5, Lxe)P(s, Xs, Lxe, Y )ds
t€[0,T]
¢
<& sup B|O( X7, 2y V) = @(0,2,60,9) — [ 08(s, X, Ly, Yo)ds
t€(0,T] 0

_/ S X§7$X§7}/se)a#(b(87x7pﬁ y)<X§)} |90=X§7H=$X§77J:Y; ds

—/0 IETI‘ UU*(S,XSE,D%X;)@Z@#(I)(S,J:,,u,y)(X;)} |z:X§7#:gX§,y:y; ds
2

t
—/ L5, Lo, YOD(5, X7, Lye, YEVds

+ € sup ]E‘M62
t€[0,T]

+€ sup ‘Mf !
t€[0,T]

By Itd’s isometry and estimates (4.3) and (4.4), we finally get
2

sup E
t€[0,T]

t _
/ b(s, XS, Lxe,YS) — b(s, X, Lxe)ds| < Cre [ sup E|X{|* + Sup ElYV*'+1
0 tefo,T

te[0,T

< Cr(1+ f2]* + [y|)e.
This and (4.23) imply the assertion.



STRONG CONVERGENCE ORDER FOR MVSDE 27

5. EXAMPLE
Here we give a simple example as an application of our results.

Example 5.1. Let by : R® x R™ — R", fy : R” x R™ — R™ and satisfying the following
conditions:

(1) The first-order partial derivatives 0,bo(x,v), 0ybo(x,vy), Ox fo(z,y), Oy fo(z,y) exist for
any z € R", y € R™. Moreover, all these first-order partial derivatives are bounded uniformly
in (z,y) and Lipschitz continuous w.r.t. y uniformly in .

(2) There exists 5 > 0 such that for any z € R™ and y;,y2 € R™,

(folw,y1) — folz, y2),pn — y2) < —Blyr — yol;

(3) The second-order partial derivatives 02,bo(,y), 02,bo(2, y), 02, fo(z,y) and 92, fo(z, y)
exist for any x € R,y € R™. Moreover, all these second-order partial derivatives are
bounded uniformly in (z,y) and Lipschitz continuous w.r.t. y uniformly in .

Now, let us consider the following slow-fast distribution dependent stochastic differential
equations,

dXi = b(X{, Lxe, Y )dt + dw}, X{=xz€cR"
dy, = 1f(Xf,$Xte,Yf)dt + 1€th2, Yy =y e R",

N

where {W}}i>0 and {W2};>0 are mutually independent n— and m— dimensional standard
Brownian motions and

baapy) = [ bole+ 2 9)n(dz), Flapny) = [ fole + 2)udz).
Then we have

A,b(x, 11, y)(1) = Opbo(x + -, y),  0.0,b(x, 1, y)(2) = 02,bo(x + 2, y)

(5.1)

and

Ouf (@, 1,y) () = ufolx + - y)  0:0uf(x, 1, y)(2) = Oy, folo + 2, y).
If the conditions (1) and (2) hold, it is easy to check that the coefficients above satisfy
assumptions A1-A2. Hence, by Theorem 2.3, we have

sup E|X; — X,|° < Ce¥?,
t€[0,T7]

where X solves the corresponding averaged equation.
If the conditions (1)-(3) hold, it is easy to check that the coefficients above satisfy assump-
tions A1-A3. Hence, by Theorem 2.5, we have

sup E|XF — X,;|* < Ck,
te[0,7]

where X solves the corresponding averaged equation.

6. APPENDIX

In this section, by using the result due to Wang in [23], we prove the existence and
uniqueness of solutions to system (1.1) and the corresponding averaged equation.
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6.1. Proof of Theorem 2.2.
Proof. We set

c_ (X ; o, . i
7 ::<Y:E)’ b°(t, z, y, 1) 1:<1f<(t,x,uu,y?3)>

e (O 0 ("
5 (t, x,y, i) = ( 0 Jeg(t,z, 1 y) ) W= ( we )

where t > 0, x € R", y € R™, i € P(R"™™) with its marginal distribution x on R™. Then
system (1.1) can be rewritten as the following equation:

and

dZ; = b(t, Z5, Lye)dt + 6°(t, Z;, Ly ) AWy, Z5 = ( "; ) : (6.1)

Under the assumption A1, we intend to prove that the coefficients in equation (6.1) satisfy
Lipschitz and linear growth conditions, uniformly w.r.t. t € [0, T].

In fact, for T > 0, and any z; = (z;,y;) € R"™, 1, € Po(R"™) with its marginal
distributions p; on R, i = 1,2, ¢t € [0, T

b°(t, 21, fin) — b (¢, 22, fia)| + |5°(t, 21, fin) — G°(¢, 22, fi2) |
< |b(t>$17,u17y1) - b(ta$2>ﬂ2,y2)| + ||O-(t7x1nu1) - C’(ta$2aﬂ2)||

1 1
+E|f(t7ajlyﬂlvyl) - f(tvaaM27y2)| + EHg(t’th’l)yl) - g(t7'x27/~’627y2)||
1
< Cr <1 + e) [|$1 — T2 + [y1 — y2 +W2(M1,M2)}

< Cr <1 + 1) [|Z1 — 2| +W2(ﬁ1,ﬂ2)]-
Furthermore,
Bt 2, )+ 5 21, ) |
< 1b{ts 1, o, )|+ ot v, )|+ 217, s 0) gt ) |

< Cr (14 3) [1 ol + ol + gl )]
< Cr (1 + 1) 1+ |za] + (] - 7))

Hence by [23, Theorem 4.1], there exists a unique solution {(Xy,Y;),t > 0} to system (1.1).
The proof is complete. O

6.2. Proof of Lemma 3.8.

Proof. We first check that the coefficients of Eq. (3.5) satisfy the following condition:
For any T > 0, there exists Cp > 0 such that for any ¢; € [0, 7], z; € R", u; € Ps, 1 = 1,2,

’B(tbfﬂl,m) — B(t2,9€2>/ﬁ2)’ + |o(t, o1, 1) — o (ta, 22, p2) ||
< Crl(lty = tof + 21 — o] + Wa(p, p2)] - (6.2)
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Indeed, by Proposition 3.7 and Lemma 3.6, for any s > 0, we have

|l_)(t1,$1,u1) — 5@2@27#2)\ + [lo(t1, 1, 1) — o(tse, 2, po)||
< ‘B(tl)m]_? Ml) - Eb(tl; -1'17 ,LL]J }/:sthxlnuho)‘ + ‘Eb(t27 :U27 ,LL27 }/;t27x27,U«2,0) - 5(752,3:2, ,u’27)

+]E ’b<t171‘17u17}/;t1’x1’y‘170) - b<t27x27/~’627}/;;t2’x27#270)‘ + ||O-(t17'rl7,u1) - U(t27x27/1/2>’|
_Bs
< Ore™ 7 (1 |aa] + o] + [ (|- )2 + (2] - [)]Y?)
+Cr {|ts — ta] + |21 — maf + BJY[0m0000 — YI2m2020) L Wy (g, 1) }

_Bs
< Cre™ {1+ || + Joof + [ (|- P2 + (2] - 1P)]2}
+Cr ([t — to| + |21 — 22| + Wa (1, o))
Then (6.2) follows by letting s — oo. Moreover, the estimate (6.2) implies
k1,2, )] + oty ey, ) | < Cr {1+ Ll + (1 P12} (6.3)

Hence by [23, Theorem 4.1], there exists a unique solution {X;,¢ > 0} to Eq. (3.5) and
(3.6) can be easily obtained by following the same arguments as in the proof of Lemma 3.1.
The proof is complete. O

6.3. Proof of (3.22)-(3.24).

Proof. We here only prove (3.24). (3.22) and (3.23) can be proved by the same procedure.
For any sy > 0, we define

be, (L, 2, 11,7, 5) i= B(t, T, 1, Y, S) — IA)(t, T, 1, Y, S+ So),
where b(t, x, j1,y, s) := Eb(t, z, p, YY), The Proposition 3.7 implies that
8%1_1}1100 be, (2, 11,7y, 5) = b(t, x, 11,7, 5).
As a result, in order to prove (3.24), it suffices to show there exists 7 > 0 such that for any
So0>0,t€[0,T],s 20,z € R", y € R™ and puq, pg € P,
[bo (£, 11,y 8) = bio (t, 2, 12, Y, 5)|
< CrWs (s pa)e™ {1+ [ + g™ + [ (|- )72 + [pal] - ]2
which can be obtained by

s 0B 0,2, 9) sy < Cre™ {1 o™ + o + P2} (6.4)
te

Indeed, by the Markov property,
by (t, 2, 1, y, 8) = (t, 2, 11,7y, s) — Eb(t, z, 1, Y5
— b(t, 7, 1y, ) — BAE[b(E, @, 1, YL P
= b(t, x, p,y, s) — Eb(t, x, 1, Yoty s). (6.5)
Then we obtain
augso(t,x,,u,y,s) =0 ZA)(t z, .y, s) — KO lA)(t T, p, Y0 s)
—E [(9,b(t, 2, p, YT, 5), 0, Lmw) | (6.6)

Next, we intend to prove the following two statements.
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e Forany t € [0,7],s >0, x € R", y € R™ and p € Py,

~ _Bs
10,0(t, , i, y, s)|| < Cre™ 2. (6.7)
e Forany t € [0,7],s >0, x € R", y1,y» € R™ and p € Py,
Ha,u[;(tu T, I, Y1, 8) - a,ug@u T, Iy Y2, S)”LQ(/L) < CTeins’yl - yQ‘ (68)

For the first statement, by Lemma 3.6,
(bt 2, 1 y1,8) = b(t, @, o, y2, 8)| = [Bb(t @, 1, Y040 — Eb(E, @, p, Y72)|
< C’TIE|Y;’$’“’3“ _ nt,r,u,y2|
_Bs
< Cre™ 2 |y1 — 2,
which implies (6.7).

For the second statement, the assumptions A1 and A2 imply Y/*#¥ that is differentiable
w.r.t p and its derivative 9, Y "#¥(z) satisfies

dOY "1 (2) = 0, f(t, o, p, YEOMY)(2)ds + O, f (¢, z, , Yst’“c’“’y)au}gt"”’“’y(z)c{s
+ [Oug(t, 1, YY) (2) + Oyg(t , p, VPO Y01 ()] dWE, - (6.9)
auy;tvw,uyy(z) =0.

Moreover, it is easy to see that for any T > 0, there exists C'r such that

M 2,0,y || 2
sup B0, Y™ L2 < Cr.
te[0,T],5>0,z€R™ yeR™ u€ Py

Then we have
||8M8(t’ Ty s Y15 S) - 8/18(1:7 T, Y2, S)||L2(M)
= Ha/J«Eb<t7 ‘IJ /"LJ }{St’m#hyl) - a‘u,Eb(t, x, /"L7 Yst’x’/’l‘ay2> HLQ(“)
< E H@;Lb(t, T, M, }/st,ﬂl,,u,yl) _ 6Mb(t, T, [, }/st,x,p,,yg)

L2(p)
FE 0,000, 2,1, VI,V — Dy, Vim0 v |
< E aﬂb(tﬂ T, [, Y;t,x,u,yl) - a,ub(tﬂ T, [, Y;t,x,,u,yz) L2(n)
+E ayb(t, T, i, }/;t7x,u,y1)au}gt,x,u,y1 _ 0yb(t, T, i, Ygt,l’,u,yz)aunt@,u,yl L
(0,0t 2, p, Y)Y = 0yb(t, v, 1, V)G VI

3
i=1
For the terms Sy and Sy, it follows from conditions (2.6), (2.7) and Lemma 3.6 that there
exists 7 > 0 such that
S < CTI~E|YZ7%M7y1 _ }/;t7mvﬂvy2|71 < C’Te_"5|y1 _ y2|71 (6.10)
and
1/2

~ 1/2 r~
Sy < Cr [E|Yst,x,u,y1 _ }/St,as,u7y2|271} / [EHa,U»YStJ’H’ylH%Q(,u)}
< Cre ™|y — yo| . (6.11)
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For the term S5, by a straightforward computer, we obtain that
EHauY:’z’u’yl - auYst’x’“’yQH%?(u) < OT€7%|Z/1 — 21,
which implies
Sy < CrE||9, Yo — 9,y o 200 < Cre™® [yy — o™, (6.12)

Therefore, estimates (6.10) to (6.12) imply (6.8).
Finally, by estimates (6.6), (6.7) and (6.8), there exists n > 0 such that

< Ce*”SIAE\y _ Yst(;w,u,y’m 4+ Ce
< Cre™ {1 fa ™ + [y + (|- P2

which proves (6.4). The proof is complete.

HaMBSO (tv T, 1Y, 8) HLQ(M)
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