AVERAGING PRINCIPLE FOR SLOW-FAST STOCHASTIC
DIFFERENTIAL EQUATIONS WITH TIME DEPENDENT LOCALLY
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ABSTRACT. This paper is devoted to studying the averaging principle for stochastic dif-
ferential equations with slow and fast time-scales, where the drift coefficients satisfy local
Lipschitz conditions with respect to the slow and fast variables, and the coefficients in the
slow equation depend on time ¢ and w. Making use of the techniques of time discretization
and truncation, we prove that the slow component strongly converges to the solution of the
corresponding averaged equation.

1. INTRODUCTION
In this paper, we consider the following stochastic slow-fast system:

dXE = b(t, X5, Y )dt + o(t, XO)dW!, X&=zeR", -
AY; = LF(t. XY )dt+ Lg(t, X YO)AWE, Yy =y eR™ (1.1)

where ¢ is a small positive parameter describing the ratio of time scales between the slow
component X{ € R" and fast component Y, € R™. Let {W}};~0 and {W?}i~¢ be mutually
independent d; and ds dimensional standard Brownian motions on a complete probability
space (Q, #,P) and {Z;,t > 0} is the natural filtration generated by W, and W2. Let us
consider the following given maps

b:]0,00) x R" x R™ x Q — R";

o :[0,00) x R" x Q — R
f:]0,00) x R" x R™ — R™,;
g:[0,00) x R" x R™ — R™*

such that b, o, f and g are continuous in (z,y) € R" x R™ for each fixed ¢t € [0,00), w € €,
and progressively measurable, i.e., for each ¢, their restrictions to [0, t] x Q are B([0, t]) ® Z;-
measurable for any fixed (z,y) € R™ x R™. In particular, for fixed (z,y) € R" x R™ and
t €10,00), b(t,z,y) and o(t,z) are F;-measurable.

Under some reasonable assumptions, we intend to prove X¢ converges to X in the sense
of LP(Q; C([0,T],R™)), i.e., for some p > 0,

limE < sup | X} — Xt]p> =0, (1.2)

=0 te[0,T]
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where X is the solution of the corresponding averaged equation

dXt = E(t, Xt>dt + O'(t, Xt)thl.

- (1.3)
XO =7,

Here b(t,z) = [gm b(t,z,y)u"*(dy) and p"® denotes the unique invariant measure for the

transition semigroup of the following frozen equation

{ dY, = f(t,x,Y,)ds + g(t,z,Y,)dW?2,

1.4
YE) =Y, ( )

where {2}, is a dy-dimensional standard Brownian motion on another complete prob-
ability space. Notice that for fixed ¢ > 0 and x € R”, the solution of Eq. (1.4) is a
time-homogeneous Markov process, so its transition semigroup has a unique invariant mea-
sure u"* depending on ¢ and z under appropriate conditions. Hence, the definition of the
averaged coefficient b is meaningful.

Another simple understanding about the averaged coefficient is to change the time-dependent
coefficients to time-independent coefficients. If b and o are independent of w, then we define

7¢ = ( )% ) b(z,y) = ( b(zl,y) )

5 0 0 31 W,
0= (5 oy ) = ().

where 2z € R"™! {W,};>0 is another one dimensional standard Brownian motion independent
of W} and W2. By an easy transformation, the system (1.1) is then equivalent to the following
slow-fast system

and

azg = bz, Vo)t + a(z)awy, zg=( ),

dYye = 2 f(Z5,Yy)dt + g(Z5, Y)W, Yy =y,

(1.5)

where Zf € R and Y € R™ are the corresponding slow and fast components for the new
system (1.5) respectively. Notice that the system (1.5) is a time-independent case, and it is
easy to see the corresponding frozen equation should be Eq. (1.4).

Although the coefficients depend on time in our paper, it is different from the non-
autonomous case in [3]. Recently, Cerrai [3] studied the averaging principle for non-autonomous
slow-fast systems of stochastic reaction-diffusion equations, where the coefficients depend on
time and satisfy the almost periodic in time condition. Because the corresponding frozen
equation is a non-homogeneous Markov process and the invariant measure does not exist
any longer, the assumption of almost periodic in time for the coefficients seems natural and
it is used to define the averaged coefficient in a new way.

The theory of averaging principle has a long and rich history in multiscale problems, which
arise from material sciences, chemistry, fluid dynamics, biology, climate dynamics and other
application areas, see, e.g., [1, 5, 6, 10, 13, 16] and references therein. The multiscale model
is very common and involved by slow and fast components in mathematical models. For
instance, dynamics of chemical reaction networks often take place on notably different times
scales, from the order of nanoseconds (1079 s) to the order of several days. Studying the
averaging principle is essential to describe the asymptotic behavior of slow component.
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The averaging principle for stochastic differential equations (SDEs for short) was first
studied by Khasminskii [11], see, e.g. [7, 8, 9, 12, 18] (and the references therein) for further
generalizations. However, most of the known results in the literature mainly considered the
cases of coefficients satisfying Lipschitz continuous or sublinear growth conditions. It seems
that there are few results about the non-Lipschitz case. Veretennikov [15] established the
averaging of systems of It6 stochastic equations, where the drift coefficient b is bounded and
measurable w.r.t. the slow variable and the other coefficients satisfy Lipschitz conditions.
Then convergence in probability was obtained. Xu et al. [17] proved the L? convergence for
two-time-scales with special non-Lipschitz, but linear growth coefficients.

However, in [15, 17] it can not cover the superlinear growth case of drift coefficient b such
as b(z,y) = = + y>. Hence, the motivation of this paper is to weaken the conditions on the
drift coefficients b and f to local Lipschitz conditions w.r.t. both the slow and fast variables,
and to the case where the coefficients in the slow equation can depend on time ¢ and w,
which is inspired from the models in [14, Chapter 3].

Comparing with the known results, the main difficulties here are how to deal with the
local Lispchitz continuity w.r.t. the fast variable and the dependence on w of the coefficients.
In order to overcome these difficulties, we will continue to use the technique of stopping
times very frequently. The main result is e.g. applicable to many slow-fast SDE models
with polynomial drift coefficients. It is worth to mention that the approach based on time
discretization will be used in the proof, so we need the local Lipschitz conditions instead of
the one-sided type conditions in [14, Theorem 3.1.1].

The paper is organized as follows. In the next section, we introduce some notations and
assumptions that we use throughout the paper and formulate the main result. Section 3 is
devoted to proving the strong convergence result. In Section 4, we will give some examples
to illustrate the applicability of our result. The final section is the Appendix, where we
present the detailed proof of existence and uniqueness of solutions for system (1.1) and the
corresponding averaged equation.

Please note that C' and C,, denote some positive constants which may change from line
to line throughout this paper, where p is one or more than one parameter and C), is used
to emphasize that the constant depends on the corresponding parameter. Cp will usually
denote some nondecreasing function w.r.t. T.

2. MAIN RESULTS

Now we impose the following assumptions on the coefficients b, o, f and g. Let | - | be the
Euclidean norm, (-,-) be the Euclidean inner product and || - || be the matrix norm.

(Hy) (i) There exists ; > 0 such that for any ¢, R > 0, z; € R",y € R™ with |z;] < R,
2b(t, 01, y) = b(t, w2, y) |21 — wo| + [lo(t, 21) — o(t,22)|I* < K R)(1 + [yl )1 — 2,

where K;(R) is an R, -valued .#-adapted process satisfying for all R, T, p € [0, c0),

T
ar(R) ::/ Ki(R)dt < oo, on £,

0

Eer M < 0o, sup E|K(1)]* < oco.
t€[0,T]
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Furthermore, there exists Ry > 0, such that for any R > Ry, T > 0,
T
E / [K,(R)]'dt < co.
0

(i) There exist constants 2,63 > 1 and v, € (0, 1] such that for any = € R, y,y1,y2 € R™
and T > 0 with ¢,s € [0, T,
bt 2, 51) — bt 2, 92)| < Crlyn — vl [Jon]® + [l + Ku(1) + |2]*]
and
b(t, 2, y) = bs, z,9)| < Crlt — s [yl + |l + Zz|, on Q,
where Cp > 0 and Zr is some random variable satisfying EZ2 < oo.
(iii) There exist A\; > 0, C' > 0, 04 > 2 and 65,60 > 1 such that for any ¢t > 0,z € R",y €
R™,
2(, b(t, 2, y)) < Ko(1)(1+[f?) + Aafy|™
and
[b(t, 2, y)| < Ki(1) + C(|2]™ + [y|*),  [lo(t,2)[]* < Ki(1) + Claf.
(Hy) (i) There exists 5 > 0 such that for any t > 0, z € R" 3,92 € R™,

2(f(t,z,n) — f(t 2, p2), 91— v2) + lg(t @, m0) — gt 2, m2) [P < —Blyr —wl® (21
(ii) For any 7" > 0, there exist 5 € (0,1], Cr > 0, a; > 1, i = 1,2,3,4 such that for any
t,s €10,T] and x; € R" y; € R™ 1 =1,2,

|f(tz1,y1) — f(s,22,01)] < Cr([t — 87 + |21 — 22 ) (1 + [22|** + [22|*" + |91]*?);
lg(t, 21, 91) — g(s, 22, 92)|| < Cr(|t — 5| + |11 — 22| + [y1 — 42]);
|f(t7x17y1)’ < CT(]' + |‘7“1|a3 + |y1|0¢4);

lg(t, z1, y1)[| < Or(1+ [21] + |p1]).

(Ay) For some fixed k > 2 and any T > 0, there exist Crx, B, > 0 such that for any ¢ € [0, T,
r€R" yeR™,

4
20y, f(t,2,9) + (k= Dllg(t, 2, 9)I> < =Bily* = Xolyl™ + Cr(lz|? + 1), (2.2)
where \y = 0 if \; = 0, and Ay > 0 otherwise.

Remark 2.1. (1) Condition (2.1) is called strict monotonicity condition, which ensures that
exponential ergodicity holds (see Proposition 3.9 below). Condition (2.2) is called strict
coercivity condition, which is used to guarantee the existence of invariant measures for the
frozen equation (see Eq. (2.7) below). Hence the uniqueness of invariant measures for the
frozen equation follows (see Proposition 3.8 below).

(2) The powers 6, and % in (2.2) are used to ensure the existence and uniqueness of
solutions to the system (1.1) and the corresponding averaged equation (see Eq. (3.8) below)
respectively.

(3) If ky > ko > 2, then (Ay,) implies (Ag,).

(4) We will give some examples in Section 4 to show the assumptions above hold for many
drift coefficients of polynomial type.
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The following theorem is the existence and uniqueness result for system (1.1), which can
be obtained using the classical result due to Krylov (cf. [14, Chapter 3]). The detailed proof
will be given in the Appendix.

Theorem 2.2. Suppose that (H;), (Hy) and (Ag)hold. Let ¢ = i—j if M1 >0, and ¢ =1
otherwise. Then for any € € (0,€), any given initial values x € R™, y € R™, there exists a
unique solution {(X§,YS),t = 0} to system (1.1) and for allT > 0, (X, Y*) € C(]0,T]; R™) x
C([0,T);R™),P — a.s. and for all t € [0,T],

Xf—x+/ sX;Y;der/ (5, XE)dW?L,
(2.3)
—y+/ sXse,Y;dst—/ (5, X, YE)dW2.

Now we formulate the main result of this work.

Theorem 2.3. Suppose that (H,) and (Hy) hold.
(i) If \y = 0 in (Hy) and (Ag,) holds for 6, = max{46,,20, + 2,205, 4as}. Then for any
p > 0 we have

limE < sup | X} — Xt]p> = 0. (2.4)
€0 te[0,7)

(ii) If \y > 0 in (Hy) and (Ay) holds for some k > 0y with 6 = max{46;, 26, +2, 205, 4y,
0504,20104}. Then for any 0 < p < % we have

limE ( sup |Xf — Xt|1’> =0. (2.5)

=0 \tefo,1)
Here X is the solution of the following averaged equation

dX; = b(t, X,)dt + o(t, X,)dW},
- (2.6)
X() =,

where b(t,x) = [em b(t, 2, y)ub*(dy) and pb* denotes the unique invariant measure for the

transition semigroup of the corresponding frozen equation
dY, = f(t,x,Y)ds + g(t, 2, Y, )dW?,
s (2.7)

Yo = Y,

where {~V~VS }ss0 18 a da-dimensional Brownian motion on another complete probability space
(Q,.7,P).

3. PROOF OF THE MAIN RESULT

This section is devoted to proving Theorem 2.3. The proof consists of the following steps.
Firstly, we give some a-priori estimates for the solution (X, Y;) to the system (1.1). Sec-
ondly, following the discretization techniques inspired by Khasminskii in [11], we introduce
an auxiliary process (X¢,Yy) for which we derive uniform bounds. Making use of the stop-
ping time techniques inspired by [4], we control the (difference) process X — X¢ before the
stopping time. Thlrdly, based on the ergodic property of the frozen equation, we obtain
appropriate control of X ¢ — X, before the stopping time. Finally, we shall use the a-priori es-
timates of the solution to control the difference after the stopping time. Note that we always
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assume that (H;) and (Hs) hold and from now on we fix some initial values z € R",y € R™
in this section.

3.1. Some a-priori estimates of (X;,Y,). In this subsection, we prove some uniform
bounds w.r.t. € € (0,¢) for the moments of the solution (X, Y,) to system (1.1).

Lemma 3.1. (i) If \y =0 in (Hy) and (Ayg,) holds for some k > %, then for any T,p > 0,
there exist positive constants Cr,,, Cry such that
sup E ( sup |X§|’?> < Crp(1+ [zf?)
e€(0,e0) t€[0,T]

and

sup sup E[YF M < Crp(1+ [z + [y|*).
e€(0,e0) t€[0,T

(i0) If \y > 0 in (Hy) and (Axg,) holds for some k > 1, then for any T > 0, k' < k, there
exists a positive constant Cry, such that
sup E ( sup IX:!W> < Cralla* + [y + 1)
ec(0,e0)  \t€[0,T]

and

sup sup IE|Y[|'€/04 < C’T7k(|x|2k/ + ]y|w4 +1).
e€(0,e0) t€[0,T7

Proof. (i) According to It6’s formula and (H;) with A\; = 0, we have for any p > 2,
OGP
p [t —Lag(1) € ! —Bas(1)| yvelp—2/ ve € Ve
= Jaf+ 5 [ B0 R (] [Xe[Pds +p [ e B OLXEPR (X, (s, X, V) s
0 0

t _9) gt
o5 e B0 (o, X P L [T X ) s
0 0

t p
+p/ e 2 WIXLP2(XS, o (s, Xg)dWS)
0

t p t p
<o+ 5 [ e bW g (] [XefPds + 5 [ e B OIXp R (1)1 + [ Xe?)ds
0 0

—1) st _»
fPED) [ om0 xep=2(1¢, (1) + 015 Plas
0

t p
+P/ e 2 WIXEP2(XS, o (s, Xg)dW,)
0

t t
<o+ 2 [ e bW xepr2K (1)ds + C, [ 50X
0 0
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Then by the Burkholder-Davis-Gundy inequality and Young’s inequality, for any 7" > 0, we
have

E [ sup (e‘gat(1)|Xf|p)]

te[0,T

pQ T o, T P
< |ZL‘|p + EE/ 6_§at(1)|XtE|p_2Kt(1)dt + Cp/ E (e_EOét(l)|Xt€|p) dt
o 0
T 1 ) 2 2
+G [ [ e 2 + ol
) ) T p/2
< |zl + B | sup (e 2W|XfP)| + C,E e~ WK, (1)ds
4 ! P 0

t€[0,T]
+Cp /TE (efgat(l)’thlp) dt + EE [ sup (egat(l)‘Xﬂp)]
0 4 |iep,r
g

T
+C,E l/o e‘at(l)(Kt(1)+C|Xf|2)dt] ,

]

which implies that

b T P
E [ sup (e—aat(1)|Xte|p) < |zl +1) + CT,p/O E (6_§Oét(1)|Xt€|p) dt.

te[0,7

Then Gronwall’s inequality yields that

E [ sup (e’gat(l)]Xﬂp) < Crp(|zP 4+ 1).

te[0,7

Hence, by Holder inequality and since EeP*r(M) < oo for any p > 0 , we obtain for any p > 0

1
2 1
E ( sup |X§|p> < {E [ sup (e—pat(1)|Xte|2p>1} . {EGPQT(I)} 2
t€[0,T] te[0,T]
< OT,p(|x|p + 1)

By Itd’s formula we also have

]{38 ¢ — € € € ke t € 41— € €
Bl P = =2 B (VP2 (s, XY, ¥ ds + 52 [ B[ g(s, X5 Y|P ds
kO,(kB, —2) rt
RO =2 U [yt (v, s, x5 Y0 2] ds.
€ 0
If (Agg,) holds for k > %, then there exist (3, Cr > 0 such that
d € ]{;9 € - € € € € €
FEIVM < SRR [IVR (20F (8 X7 Y0, V) + (ks — Dllg(t, X5, Y1)

_Be
€
Hence, by the comparison theorem we obtain
i C
E‘the’k& < ’y|k94€7T’“t+ T,k/
e Jo
< Org(L+ [2 + [y|*™),

C
< El}/;6|k}04 + % <E|Xte|2k + 1) )

o
e‘i’“<t8><1 + E|X§|2k>ds
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which gives the statement (7).

(77). Notice that since (H;) holds with A\; > 0, for any k£ > 1, [t6’s formula implies that
fkat ‘Xe’2k

= g [ e ) [ (U] X PR 2k [ e X PR s, X Y))ds
+h /Ot e P WX 2o (s, X) | Pds + 2k(k — 1) /Ot e F WX (XS o (s, X0) [ ds
+2k /O ek X2 XE (s, X)WL

< Jaf* + k/t e oW [~ K ()] | X ds + & /t e P WX 2K (1)(1 + | X([*)ds
+I<:)\1/ RO X €22y s 4 k(2 — 1)/ ek X2 (1) + O XS] ds
ok /0 e~kas(D| X €[22 X< (s, X)AWD)

< |2t + 282 /t ekas (| X2 (1)ds + C /t ¢Ras (V) y e[ g

+Ck/ kas(1)|X6’2de+2k/ —kas( 1)’X6|2]€ 2< (s,XE)dW;)-

Then by the Burkholder-Davis-Gundy inequality and Young’s inequality, we have

E l sup (ekat(l)]Xﬂ%)]

te[0,7

T i T
< |$|2k—|—2k‘2/ E[e—iat(1)|Xf|2k—2Kt(1)] dt—l—Ck/ E( —kay (1 |Ye|k04) dt
0 0
T T 1/2
+C [ B (e O a4 GE | [ e O 1) + X
0 0

k
1 T
< |2+ SE [ sup (e"“““”lXﬂ?’“)] + C4E [ / e_o‘s(”Ks(l)ds]
4 t€[0,T 0
T T
+Ck/ E(e—kat(l)n/;elk&;) dt+C’k/ E(e—kat(1)|Xte|2k) dt
0 0
1 T k
HE{S“P (6"“‘“”|Xf|%)]+0’£ V e (K, (1 >+0|X:|2>dt] |
0

4 t€[0,T]

which implies that

T
E [ sup (e—kat(l)’XtE|2k) < CT,k(’33|2k + 1) +Ck/(J E (e—kat(l)’}/;e|k94) dt

te[0,7)

+Cr /0 TIE( e X ) dt. (3.1)
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Using Itd’s formula again we have
E( —ka (1 |Ye|k94)
k6
= [ B[t Ok (Y ds + 2[R [ Oy (s, X2, V), Y1) ds

kO
B [ B ey g (s, X5, Y] ds
0

kO, (kOy —2) ft
fROMIZD) [ et pyeoit vy gls, X2 YOOI ds.

2€
For any t € [0,7], (Ake,) implies that there exists By, Cry > 0 such that
d 7kat(1) €|ké k64 —kas(1) |y €|kbs—2 € Ve € € veN||2
ZE (DY) < SRR [t O (27 (1 X5, Y0, YD + (ks — 1)lg (8 X YOI

Bk —ko (1) |y €| kO OTJC —kou ( €2k
g—?E(e D]y 4)+T[E( ‘OIXg ) +1].
By the comparison theorem there exists 3, > 0

E (e ko ye ) < Jy[He - CZ’“ Oteé’“(i“” (E [eFoeMIX2] + 1) ds

< ‘y’k94 + OTJgE lsup (6kas(1)|X§|2k)] -+ CT,k- (32)

s€[0,t]
Combining this with (3.1) we obtain
T
E [ sup (e"“t(”lXﬂZ’“)} < Crp(fel* + [y + 1)+ Cry [ E lsup (e—’f@s<l>|xg|2k)1 dt
te[0,17) 0 s€[0,t]

Hence Gronwall’s inequality implies that

1%“?@““&%)<%m%ﬂw%+u (3.3)

te[0,T

By (3.2) and (3.3), we also have

sup E (e MVeM) < Crp(la™ + [y +1).
t€[0,T]

Hence, by Hoélder’s inequality and since EeP*r() < oo for any p > 0 , we obtain for any
kK <k,

* , E—k
) e s

te[0,7T] te[0,7

< Or(je + [y +1).
Similarly, we have

sup E|Y<|¥% < Crp(lz* + |y)F% 4 1).
t€[0,T7]

Hence the proof is complete. O
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Lemma 3.2. Assume that either (Hy) with \y = 0 and (Aap,) hold or (Hy) with \y > 0 and
(Ay) with some k > max{20g,0504} hold. Then for any T > 0,0 <t <t+h < T, there
exists Cr g,y > 0 such that

sup E|X;,, — X{|> < Crayh.

e€(0,1)

Proof. We have
t+h t+h
Xt — Xf—/ b(s,X§,Kj)d5+/ o (s, X)dW?
t t

Then by condition (H;) and Lemma 3.1, we get
2

t+h 2 t+h
E|Xf,, — XiI < CE| [ b(s, X5, Yo)ds| +CE| [ a(s, Xe)dW!
t t

t+h 2 t+h
< c| [ s, 3 vlas] [ Blats X0
t t

+h t+h
SChE [ [(K.(1))? + [ XS + [V ds + c/ E(K,(1) + C1X([*)ds
t
<

The proof is complete. O

3.2. Estimates of the auxiliary process (Xf, )A/f) Following the idea inspired by Khas-
minskii in [11], we introduce an auxiliary process (Xf,Y)) € R™ x R™ and divide [0, T
into intervals depending of size §, where ¢ is a fixed positive number depending on ¢, which

will be chosen later. We construct a process Yy with initial value Y = Y§ = y, and for
t € [kd, min((k + 1)6,T)],

N N 1 rt
Vo=V + 7/ F(kS, XE5, VE)ds + 7/ (k6, X55, VEIW?2,
€ Jks
ie.,
1t “
T =yt ). X T0)ds + 2 [ 0(s(6). X5, )V,
where 5(6) = [s/6]6 and [s/d] is the integer part of 5/. Also, we define the process X¢ by
R t
X :x+/ b(s(6), X5, Vs ds+/ o(s, X)dW,.
0

By the construction of )A/f and similar arguments as in Lemma 3.1, it is easy to obtain the
following estimate whose proof we omit here.

Lemma 3.3. (i) If \; =0 in (Hy) and (Agg,) holds with some k > %, then for any T > 0,
there exists a constant Cry > 0 such that
sup sup B[V " < Crp(ja|™ + [y[M +1).
e€(0,e0) t€[0,T
(i7) If Ay > 0 in (Hy) and (Agg,) holds with some k > 1, then for any T > 0, k' < k, there
exists a constant Cry > 0 such that

sup sup E|}A/f|k/94 < C’Tﬁk(|x|2k/ + ]y|w4 +1).
e€(0,€9) t€[0,T7]
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Now, we intend to estimate the difference process Y,* — f/f and furthermore the difference

process X; — Xf.
Lemma 3.4. Assume that either (Hl) with Ay = 0 and (Ag, ) hold or (Hy) with Ay > 0 and

(Ay) with some k > 0y hold, where 0; = max{26g, 4} and Oy = max{26g, 0504, 4oz, 20104 }.
Then for any T > 0, there exists a constant Cr g, > 0 such that

sup sup E|Y) — V2 < Cpa 07/
e€(0,1) t[0,T]

Proof. Note that

€ A€ 1 t € € € AE
Vi -V = 6/U@&%>fw&&wnﬂ@

/ (5, X5, Y7) = g(5(0), X5, V) dWW2.
For any ¢ € [0, 7], by It&’s formula we have

BIY; = Vi = 2 VR[5, 0 Y0 = S(5(0), X ¥, Y0 = ) s

o [ Blgls, X0, ¥) — g5(6), X, TP

S S s S

= 2 TR [2005, X0 ¥) = P X VLYY = V5 + oo, X2 YY) = g, X2 T2 s
-%/E P X5, ¥7) = F5(0), X, V), Vi = Vs
4z / 905, X YE) = g(s, X V), (s, X V) = g(5(8), Xis), V) ds

R s " s

o [ Bllgls, X0, ¥) — g5(6), X, V).
By condition (Hy) , we obtain

d € (e _5 € Ore
%E’Yt -V < ?ED/; - Y

CT € € Cre | ela € |a € %3
+ (X = X |+ 07) (V17 41X o+ X 1™+ 1) - [ = |

CT € e € € CT € € CT(SQ’YZ
+— ]E|Y YE(IXE = Xl +67) + ?E|Xt — Xi* +

Cr Crd®r

< —;GEIYE - YeP + fE|X6 15) |2
OT € € €la €lan € |« € Ore
+E (X7 = X |+ 072) (910 4 X1+ | X |+ 1) - 1Y = Y]
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The comparison theorem implies that
E|Y; — ¥f?
< CE’T /Ot e = E {(|X§ — Xl +67) (|57€|a2 + [ XM+ [ X" + 1) Y- f/;” ds
+C/ B(ZES)E|X€ Xt s +C'T/ B
€ 0

C t s 2
< T/O - _ B )(E|X€ X;(5)|2+6272) /

€

B (191 X0+ X+ 1) B (v = 1)) s

L& / TEUEIXS — XC g Pds + O,

Hence, by Lemma 3.1 and 3.2, we have
E|Y; — Y€|2 52/\72
The proof is complete. O

In order to estimate the difference process X¢ — X¢. We first construct the following
stopping time, for fixed € € (0,¢), R > Ro, M > 0,

¢ t . t
e e inf{t> 05 1X71+ [ Yeds & [T s+ [ K (0] ds > R}
’ 0

/\inf{ 0: /\K tds > }
and inf{0} := oco.

Lemma 3.5. Assume that either (Hy) with Ay = 0 and (Ag ) hold or (Hy) with Ay > 0 and
(Ay) with some k > 0y hold, where 6, = max{26g, 4} and Oy = max{26g, 0504, 4oz, 2104 }.
Then for any T, M > 0 and R > Ry, there exists a constant Cr gy > 0 such that

E( sup |th — XﬂQ) < CT,RJ\/[(;V,

te[0,TATS /]
where v = min{27y;, 72, 1/2}.
Proof. Recall that
X, = $+/0t (s, X5, Y5 cls—|—/Otcf(s,Xg)dVVs1
and
X = :1:—|—/0t b(5(6), X<(g), V) ds+/ (5, X)W,
Then we have

R} )T s

~ t ~
Xt - Xe = /0 [B(s, X2, Y7 — b(s(8), X5, V)] ds.
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By Lemma 3.2 and 3.4 we have

E| sup |X;— X7
tE[O,T/\TIE%JM]

TATE ~
SE| [ b, X5 YE) = b(s(6), X6, V)
0

2
Y, ds]
TATS o 2 TATS o
< CE V Hlos, X5, ¥ = bls, XE, V) ds] +CE V P, X5, YE) = bls, X5, V)
0 0
TNATE 2
w7 J
0
TR, M € Ore |2 ThThm €26 Ore |20 €120: 2
SCE| [ e =TePds [ (I 4 TP 4 X+ (1)) ds

TATS TATE 2/ pare . 1/2
/ R,M |X€ E |2d8 (/ R,M [KS(R)]4dS> (/ R,M (1 + |Yse|401> dS) ]
0 0 0

T/\TIE%’M N
+0*" CO7E / (1X50) | + [VE[*) ds + 8" CrEZ}

dr

b(s, XE((;), Y;) — b(s(9), Xg(a), f/;)

+CE

TATR,m € Ore |2 TATR,m € € |2 2
< OrgE [ Y= TP+ CrE | 1XE = Xip s + Cr o™
0
< CTR Mémln{Z'n Y2, 1/2}.
The proof is complete. O

3.3. The frozen equation. We first introduce the frozen equation associated to the fast
motion for fixed ¢t > 0 and fixed slow component z € R".
dY, = f(t,2,Y)ds + g(t, x, Ys)dW?,
s (3.4)
Yo =y,
where {W }s>0 i a da-dimensional Brownian motion on another complete probability space
(Q,.#,P) and {.Z,,s > 0} is the natural filtration generated by {W2},0. If (H,) and (Ay)
hold, then it is easy to prove for any fixed ¢ > 0, x € R™ and any initial data y € R™, Eq.
(3.4) has a unique strong solution {Y»*¥} -0, Which is a time homogeneous Markov process.
Let {P""},>0 be the transition semigroup of {Y*¥},., i.e. for any bounded measurable
function ¢ : R™ — R,
Piop(y) = Ep(Y ™), yeR™ 520,

where I is the expectation on (Q,.%,P).

Lemma 3.6. Suppose that (Ay) holds for some k > 2. Then there exists B > 0 such that
foranyx e R*" y e R™, s >0 and T > 0 with t € [0,T],

. N . 2k
E[Y 2" < e P2ly|" + Orp(L + |2]™). (3.5)
Proof. Note that

Yhey =y -|-/ f(t,z, YY) dr +/ g(t, z, Y59 dW?2.,
0 0
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By the It6’s formula we have

- s k s~
By o = b [CR[Ys 2 v, v [ de 4 5 R (gt e, i) ) dr
0 0
k(k —2)
=
Then assumption (Ay) yields that there exists 3, > 0 such that for any ¢ € [0, T

d = k= T — T T T
TRV SRV (2 (80, Y)Y 4 (k= Dllg(t 2, V) 1)

Bt e, gt ) ] dr.
0

< —BEY

Y4+ COry (|x|§§ + 1) :
Hence, by the comparison theorem we have
BIYEF < Jyle e 4 Opa(1 4+ o) [ e Ptear
< Jylfe P 4 Crp(1+ || 7).
The proof is complete. O
Lemma 3.7. There exists § > 0 such that for any t,s >0, x € R", y;,y, € R™,
B[V 50— Yo < ey, — gl
Proof. Note that
R W (TR SR (CER O
[ ot vy — gt v o
By It6’s formula we obtain

E|)/st,x,y1 - }/st,x,y2|2 = / E [2<f(t7 T, }/rt’%yl) - f(ta L, Kﬂtw’w)v )/rt’w’yl - }/rtw’wﬂ dr
0

+ [ Bllg(ta, Y1) = glt, 2. ¥ Pdr.
0

Then condition (2.1) in (Hy) yields that there exist 5 > 0 and C' > 0 such that

a4
ds

The comparison theorem implies that

E|Yst@,y1 _ Yst’$’y2|2 < —5I~E|Y;’$’y1 _ Yst,w,y2|2'

B[V o0 — Yo e P ly -yl
The proof is complete. 0

Proposition 3.8. Suppose that (Ag) holds for some k > 2. For any t € [0,T], x € R",
{P5"} o0 has a unique invariant measure u*. Moreover,

el t(d2) < Cr(1 + Ja]) (36)
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Proof. We first check (3.6). If u** is an invariant measure of { P/*} .-, it follows from Lemma
3.6 that for all s >0

L ez = [ EYesate(d)

<J.
Rm

—Bgs k, tx 2k
= e [ et (d2) + Cra(1 + [a] ).

—Brs| 1k %k t,x
e 2| + Crp(1 + |z[%) | 1" (d2)

Taking s large enough such that e < £, we obtain (3.6).

The estimate (3.5) and the classical Bogoliubov-Krylov argument imply the existence of
invariant measures. For the uniqueness, it is sufficient to prove that for any Lipschitz function
o(x) : R™ — R and any invariant measure p** we have

x T . _Bs 2
Pigly) - [ e(ot(do)| < CrLiple)e ¥ 1+ ol + ). s >0,

where Lip(p) = sup,, %.

In fact, by Lemma 3.7 and (3.6), we have

Pioly) ~ [ p(z)u(d2)

m

< [ [Bovier) - Eo(vies)
Rm

pi(dz)
<LWWﬁAmE p (dz)
. _Bs .
< Lip(o) [ e Fly—2lu(d2)

. _Bs 2z
< CrLip(p)e™ > (1 4[] + Jy]).

t,x,y t,x,2
}/szu _Yszu

Hence the proof is complete. 0

Proposition 3.9. Suppose that (Agy,) holds. Then for any T > 0, there exists Cp > 0 such
that any x € R",y e R™, t € [0,T] and s > 0,

Bb(t,, V1)~ [ bt @, )t (d2)

m

< Ore™ % [(K(V)? + 1+ [z + |y**1] . (3.7)

030442 03(02+1) }
04 ) :

where § = max{ 29;:’2,
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Proof. By Lemma 3.6 and 3.7 and Proposition 3.8, for any s > 0 we have

‘fEb(t, 2, YE) = bt 2t (d2)
Rm

‘/EWWJT%—R@%KWMWw)

< CT/ INE Hy;t,a:,y . Y;t,a:,z
Rm™

(Y0P 4 V2] o fal® o+ K(1)] ()
1/2

N 2\11/2 (.
<C i E ()Yst,z,y . Yst,x,z >:| [E (’Y-St,m,y|292 + |Y;t,a:,z 20, + ‘SL‘|293 + [Kt(l)]Q)} ,ut’x(dz)
_Bs 0 o 2 7 tx
< Ce > /R [z =yl 1217+ [yl + [2] 7 + |2 + Ki(1) 4+ 1| 5" (d2)
_Bs
< Cre™ 7 (Kl + lyl + 1) + ol + [y]"+]
_Bs
< Cre% [(K(1)? + 1+ 2l + [y[*],
where 6 = max{ 29512, 93%‘2“, 03(%2;1) }. The proof is complete. O

Lemma 3.10. Suppose that (Asa,) holds. Then for any T > 0, there exists a constant
Cr > 0 such that for all x1,z9 € R*, y € R™, t1,t5 € [0,T] and s > 0,

~ 4o
BRI o — Y < Cr(1 P+ [anf ™ 0002 o fy) (o — ol o [t = 1)

Proof. Note that

S
Ystl,zl,y _ Y’St279027y — /0 f(tla x17}/;t17$1:y) _ f(t27x2’ Y;tzﬁ%y)d,r

s -
+/ g(tlax17}/rtl7xl7y) - g(t27x27}/rt27$27y)dwr2'
0

By It6’s formula we have

E|Yt1,931,y _ Yt2,1?27y|2
= [ B[R0t a0 ¥0) = fltg, g, Yiom2), Yimw -y o)
0

Hllg(tr, 21, Y,07Y) = gk, @, Y2729 |2] dr
N /0 E [2(f(t1, 00, Y,208) = [ty @y, Y2rsy), Yy — yleey)
+ gt @, V) — gl @, W?’”f?’y)]ﬂ dr
b [ B (2000 V/259) = 20, Yiom9) Y1219 — Y] ar
+ [E|lgtn a2 = glta, @, i) ar

+/ E [2 <9(t17$1, Yimy) — g(ty, z1, V27, g(ty, 21, Y,2"2Y) — g(t2, 22, YrtQ’m’y)ﬂ dr.
0
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Then by Young’s inequality and (2.1), there exists 5 > 0 such that
jSIE‘YStl,Il,y _ytay)?
< —BR[ypmy — yRew® 4 Op(lay — 2ol + [t — to]??)
+COrR [|[Yrmy — Y28 (Joy — 2| + [ty — 12]?)]
FOTE (14 Y2502 o far | o [ ) Y000 — Y [

| (1 = 22| + [t = 22?)

~ 2 ~

< _gE Y;n,m,y _ Y;tz,xz,y 1+ CrR (1 + ‘Y;tz,m,y 202 ‘x1’2a1 + ‘x2|2a1) (|:C1 o :C2|2 + |t — t2|272>
~ 2 4o o

S _gE Yy — Y O (1 [y [0 fa [P 002 [y 202) (o — mf? + [ty — 1afP?).

Hence, the comparison theorem yields that

~ 4o

BIYFY — Y722 < Op(1+ o+ g™ 0020 g 202) (| — 2 + [ty — 1222)).
The proof is complete. O

3.4. The averaged equation. Now we introduce the following averaged equation
d:)zt = B(t, Xt)dt + O'(t, Xt)dVth,
XO =z e R"

Here

bit.x) = [ bty (dy),
where p* is the unique invariant measure for Eq.(3.4).

The following lemma gives the existence, uniqueness and uniformly estimates of solutions
for Eq. (3.8). The proof will be presented in the Appendix.

Lemma 3.11. Suppose that (Aj) holds with 6 = max{26,,60,,04,2a5}. Then Eq.(3.8) has a
unique solution. Furthermore, for any x € R™, p > 2 and T > 0,

E ( sup |)‘<t|1’> < Crp(1+ |z), (3.9)

te[0,T

where Cr,, is some positive constant.

3.5. The Proof of the main result. In this part, we intend to give a complete proof for
our main result, i.e. the slow component process X converges strongly to the solution X,
of the averaged equation. We first estimate the error between the auxiliary process )E'f and
the solution X, of the averaged equation before a stopping time.

Lemma 3.12. Assume either (Hy) with A\y = 0 and (Ag,) hold or (Hy) with Ay > 0 and
(Ag) with some k > 0y hold, where 0, = max{6y, 2605 + 2,265, 40} and 0y = max{6y, 205 +

2,20, 0504, 402, 20104 }. Then for any T > 0, R > Ry and M > 0, there exists a constant
Cr.rmazy > 0 such that

O,T/\%E’M} 0

E ( sup |)2t6 - Xt|2> < CT,R,M,x,y <€ + 67) )
te|l
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where T, = inf{t >0 : 1X:| = R} A Thoa and v = min{2vy;,72,1/2}.

Proof. Recall that

Xi—-X, = Eﬁ@m%ﬁ@jﬁ b(s, X,) w+/’ sxw—d&&ﬂmw
= [ [p6(60), X0, T) = B5(6), Xq)] s+ [ [B5(8). Xsi) = B, X s
+fb&X€yw@ﬁﬂm+Kp@gyw@&ﬂ@

+/ (s,X?) (S,XS)} dW}.
Then it is easy to see that

E| sup [X- X[
te[0,TATE /]

[ t . - 2
< CE sSup / b(8(5>7Xse(6)7 56) _6(8(5)7X;(6))d8 ]

te[0,TATE ]

[ rTAFE
R,M
+E/
L 0

b(s(6), X(g)) — bls, X535 ﬂw]

[ pTAFE
—l—E/ RM‘bsXE ) — b(s, X°)

2 TAFE 1y - -
@1+EV)’ [B(s, X9) — b(s, X,)
0 0

2
ds}

::imﬂ. (3.10)

TAFS ar _
+CE [ (s, X0) — o(s, X, 2ds
0

For I,(T), for t1,t € [0,7] and = € R", we have

(b1, 2) = blta, )| = | [ bt @ 2" (d2) = [ blta, @, 2> (d2)

L bt 2t (d2) = Bb(tr, @, Y00)

+Ewmaﬁwﬁ—/’mmL@M”M@
Rm

+[Eb(ty, @, YI0) — Bb(ty, 2, V270)]
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Then Proposition 3.9 and Lemma 3.10 imply that
[B(t1,2) = blta, 0)] < Cre™ % [(Ky (1)) + (K (1)) + [al + 1]

HR [[YI0 = YO (K, (1) + 2] 4 (Y7201 4 [y lm0)f)
+ty — " E (|$|03 + [y ZT)

< Ore™ % (K (1)) + (K (1)) + |2 + 1]
FE V)70 = YO (K, (1) + [ + [V + [v/270)%2)]
ity — tao B (|2 + Y2701 + Zr)

< Ore™ % (K (1) + (K (1) + |2l + 1]
+Oplt — ta] {(1 L2 TR (K, (1) + |x|93V253>}

20,

4 Colty — to]" <|;c|93v 2 ZT) .
Then letting s — oo, there exits § > 0 such that
B(tr, @) — Blt2, )| < Cr [(Kiy (1)) + [al? + Z] [ty — ta 72,

which implies that

~€
T/\TR7M

L(T) < C§*nM2E l /0 ((Ks(l))2 + X5l + ZT) ds] 2
< Cp pd?nM2), (3.11)
For I3(T), note that for any |z;| < R, i = 1,2,
b(t, 21) — b(t, x5)| < Ki(R)|z1 — 297,

where K;(R) = C; g [K(R) + K;(1) + 1] (see (5.2) below for a detailed proof). Then we
have

L(TI) <E

T/\%IE%,]\/I _ TA%]%,]M . .
[ s [ g - st

TAFS
R,M
< CrruE [ /0

s6) — X5

st] . (3.12)
For I,(T), we have
TNATS _ TNATE _
| R [ XS|2ds]
0 0

T/\"N-IE%,M 2
< CrrvE [/0 ds]

< CrruE ( sup | X — Xﬂg) + CT’R’ME/O

te[0,TATE ]

I(T)< E

X¢— X,

~€
T/\TR’M

| X — X,|%dt. (3.13)
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For I5(T), it follows that

TAFS oy - TAF _ 1/2
km<EU"“qumﬂ/Rﬂﬁ—&m%}
0 0

~ 1 N _
< CrruE ( sup  |X — Xf|2> + -E ( sup | X; — Xt|2)

te[O,T/\%f?qM] 2 te[O,T/\fF}%‘M]

~€
T/\TRyM

+CramE / 1Re — X, |dt. (3.14)
0

By (3.10)-(3.14), we get

R,M

e o - xr)
te[0,TATS o /]

A~ 2 T/\%ER,M 2
< CrpmE sup | Xy — X{|7 )| + CrpmE l / ’Xﬁ(a) - X dS]
te[0,TATE /] 0
TR oo 512 2(m1Av2)
+CT,R,ME/0 | X{ — Xi|"dt + Crpvd + L(T). (3.15)

Next, we intend to estimate the term [;(7"). Note that

t R _ 2
| [p(s(6), X550 V) = Bl3(8). X)) s
(/8- (k+1)s ) - . R ) 2
=130 [0 X ¥) — Blks, Xgg) st [ (B0, Xic, V) = Bl6(6), Xi)] s
k=0
E/0-1| (k+1)s ~ _ 2
<20t/6) 3| [ [blh6, Xis, Vi) — b0, X)) d
E—0 ko
¢ . B 2
b2 [ [b(100). X, 75) = B1(0). X)) ds
= I (t) + La(2). (3.16)

For I15(t), by Lemma 3.3, we easily deduce that

E sup  I12(t)| < OE

te0,TATS, /]

t A
sup /t [Kyo) (1)) + 1 X557 + |Ys€|266)d3]

tE[0,TAFE, 5] /(0)

T A
< 0 [ sup E[Kt(l)]Q +R295 +A E|Y;|206d8‘|

t€[0,T]

46,
< Crran(Jz] ™ + [y +1)0. (3.17)
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Now, we estimate the term I3 (t),

E sup Ill(t)}
te[0,TATE /]
(T/6]-1 (k+1)6 R ~ 2
CIT/AE 3 /M [b(kS, X5, V) — Bk, Xi)] ds| Lgnsers, )
CT (k+1)s e Yre 7 € ’
<5t E /k& [b(ks, X5, V) — B(kS, X55)] ds| Linsery )
2 ] ) 2
Tﬁogkgl[%;%]_lE /0 [b(kd Xis» se+k5) b(k&X;za)] ds 1{k6<%§’M}]

ol

T/6] 1

where for any 0 < r < s < 2,

/ Uy (s, r)dsdr,

‘Ijk(‘qﬂT) =K [<b(k5 Xk57 se+k6) b<k57 le:S)v b(k5 Xkéa re+k6) b(k57 X;5)>1{k5§7~'§’M}} .

For any €,s > 0, and .%,-measurable R"- resp. R™-valued maps X and Y, we consider the
following equation

or€,5,X,Y Lt €,5,X,Y 1 t 6,5, X,Y 2
yosX :Y+f/ fls, X, Y00 )dr+\[/g(8,X7Yr” D)AWLt =
€ Js € Js

Then by the construction of Yy, for any k € N, and t € [kd, (k + 1)8] we have

Ve v K6XEs Vs
t )
which implies that
Wy (5,) = B[ (b (8, X V55 — B0k, X,

b (k0. X5, 2505075 ) ko, X1 s,

By approximating by functions of type (x,y) — Hi(x)H(y), one sees that for any measur-
able functions H : R" x R™ — R™*% ¢ : R™ — R", and for any .%#,-measurable R"-valued
map X and Z;-adapted R"-valued process {Z; };>s, we have for any ¢ > s,

E [gﬁ (/t H(X, Zﬁde) |3Zs} () =E [qb (/t H(X(w), ZT)de> I%} (@), P — a.s..(3.18)

Note that for any fixed (z,y) € R" x R™, X&s, V5 , b(kd,x,y) and Liks<re, ) are Fps-

measurable, {Y;Z_’ﬁ%y}go is independent of s, and by statement (3.18), we have
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~ k8, XE Ve

E Kb <k5> Xlida Y:eeJrké . Ak&) - B<k57 Xlzé)’

b </€5, Xis» ﬁ«iﬁg{kéym) — b(ks, X;6)>1{k6<%§’M}|yk§} (w)P(dw)

= [ [E(b (k8 s, 25T ) — ks, s (),
Q

e k0, X 5 (w), Vs (w)

b (k8. Xig(e), Vi ) = B0, X5 () psery ) ()| PU).(3.19)

Uy (s,r) = /

Q

€,5,1,Y

For any given = € R”,y € R™, by the definition of process Y} , it is easy to see

- 1 S€ - 1 S€ -
Yezkazxvy — _ / k(s Y€7k§7x7y d / k5 Yevkévxvy dW27k6
se+kd Y+ ¢ Jo f( y Ly Ly ks ) T+ \/E B g( » Ly g ks ) r

=yt [ SO T+ [ gk, Vil v, (3.20)
0 0

where {W2* .= W2, — W2}, and {W2* = \%Wi’k‘;}gg. Recall the solution of the

frozen equation satisfies
ykooy — y+/ f(ko, x, Yoo )dy —I—/ g(kS, 2, Yo a2, (3.21)
0 0

The uniqueness of solutions of Eq. (3.20) and Eq. (3.21) implies that the distribution of

e ko o : Co
(Yoios ¥ )o<s<s/e coincides with the distribution of (Y ™)< <s/c.

By a similar argument in Proposition 3.9 and condition (ii), we can obtain

[b(kS, ., y) — b(kd, )|
— ‘/ b(kd, x,y) — Eb(]{;& z, Y;ké,z,Z)Mka,m(dz)
Rm

< CT /Rm ]E Hy . Y'ské,:c,z

(Jyl® + [Y2%% 4 |2l + Kip(1))] 1" (d2)

< C IE _Yk5733722 1/2 E Yké,w,y 205 Yk6,m,z 2602 203 K.(1 2 1/2 kS,x d
<o |E(ly-Y [E ([yEseopee 4 [y5e7 2 4 |2 4 [Ky(D]P)] " 1= (d2)
20
<Cr [ (gl + L2+ [2/%) [[21% g1 + [o] 5 + [l + K1) + 1] 97 (d2)
46
< Cr [(Kis(1))2 4 1+ [2] 70 YO0 o [yt (3.22)
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Then by (3.19), (3.22) and Proposition 3.9, we have

ko, X

Wals,r) = [ B0 (10, Xioo) Vi HTE) s, (),

b<k5’ X (o), Y E) M(w)) — B(ko. X,;g(w))>1{k5<%}(w)]P(dw)
56, X € s (@), VEs (@) ~
= [, (& (ké X, Vs “”) — b(kd, X5(w))],

ké,X

b(ké, X&s(w), Yy s (W), ké(w)( )) —b(k;5 Xps(w ))>1{k5<%&M}(OJ)P(CZ(ZJ)P(CZCU)

Kké —|—1—|—‘X ( )|(292+2) (0324+2)V(93(92+1)) |Yk5Xk5(w) k(s(w)(@)leﬁl

<o

1{k6<%16%,M} (w)[@’(d(b)]?(dw)

869 A _(s=m)B
(Kus (1) + 1XE5(@)] 50 4 1F50) P2 1) Lipseny, ) ()] Pldw)e T

(s—7)B
L POy 4 1) S

[Kka L Xy ()] 56O [y T g

< Cr
< Or, (

where the last inequality comes from the definition of stopping time, Lemmas 3.1 and 3.3.
Hence we have

e et o
E sSup Il(t) < CT,R,x,yﬁ/ / € , )
tE[0,TATE )] 0o Jr
€ o 1 1 _ss
€
g CT7R7x7y5 + CT:R,M@JJ(S' (3'23)

According to estimates (3.15) and (3.23), we obtain that

E ( sup \Xf — Xt|2) < Cremay (6 + (57)
tel0,TATE ] 0

R,
T
+Cr rm / E sup
0 s€[0,EATE 1]

where v = min{2v;, v, 1/2}. By Gronwall’s inequality, we get

Xe—- X,

2
) "

E( sup |Xte — Xt|2> < CT,R,M,z,y (6 + (W) .
te| 0

O,T/\f—f%’M}

Hence the proof is complete. 0

Now we can finish the proof of our main result.
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Proof of Theorem 2.3 Taking § = € with ¥ = (14 min{2v;,7v2,1/2})"", Lemmas 3.5 and
3.12 imply that

E ( sup | X} — Xt|) <E ( sup | X} — Xﬂ + sup |XzsE - Xt|)
€l ] ]

0,77, te[0,TATS ] te[0,TATg

< COrrMay (\/ e~ + 53 min{?vwzyl/?})
1-3

g OT,R,M,x7y€T- (324)

By Chebyshev’s inequality, Lemmas 3.3 and 3.11, we have

E < sup | X} Xt|1{T>T }>

t€[0,T)

[N
=

<

E ( sup | X — Xﬁ)] [P(T > #00)]

te[0,T

CTCCZ/ € T €126 T Ore (401 V20 2
< |B( sup X1+ sw |Xt|+/ YEds + [ 9]
te[0,T 0 0

RY/? t€[0,T)
2y | / K, (R)|“d
+ M1/2 [ 0 [ ( )] S]

Cray | CTRay

< hip + E (3.25)
Hence, by (3.24) and (3.25), we obtain that
€ > 1-7 CTmy CT,R,x,y
* (é[%g’] i _Xt|> S Orratay®® + pin +
Now, letting ¢ — 0 firstly, M — oo secondly, and R — oo finally, we obtain that
limE < sup |Xf — Xt]> = 0. (3.26)
e t€[0,T)

On the one hand, if \; = 0 in (H;) and (A, ) holds with 01 = max{46;,20, + 2,205, 4a,},
then by Lemma 3.1 and 3.11 we have

E ( sup |X; — Xt|p> < C,E ( sup |X/|P+ sup ]Xt|p> < oo, Vp>0.
te[0,T] te[0,7)

te[0,T

On the other hand, if Ay > 0 in (H;) and (Aj) with some k > 05 holds, where 6, =
max {461, (202 + 2), 20¢, 4, 0504, 2010, . By Lemmas 3.1 and 3.11, for any &’ < k we have

E ( sup |X; — Xt|2k//94> < CLE ( sup | X¢|2 /0 4 sup X, 2 /94> < 0.
t€[0,7] te[0,T] t€[0,T]

Hence by Holder’s inequality and (3.26), it is easy to prove that (2.4) and (2.5) hold. There-
fore, the proof is complete. 0J
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4. EXAMPLES

In this section, we give several concrete examples to illustrate the applicability of our main
result. We concentrate on cases which are not covered by previous papers in the literature.
For simplicity, we only consider the 1-dimensional case, but one can easily extend to the
multi-dimensional case.

Example 4.1. Let us consider the following slow-fast SDEs,
dX{ = [=(XD)® + X{ + (V)| dt + X;dW}!, X§=wz€R,

1
Ay, =~ [~(XPP(V) = 3y = (Y)°]dt + e (X)) +sin(Y) dWE, Y5 =y R

(4.1)
where {W!};>o and {W?}~¢ are independent 1-dimensional Brownian motions.
Let
b(r,y) = -2 +z+y*, o)==z
and
fla,y) = —a?y® =3y —y°, g(x,y) =sinz +siny.
It is easy to verify that (H;) with 6, = 6, (Hs) and (Aj) with any & > 2 hold.
Hence, by Theorem 2.3 for any p > 0 we have
limE < sup |Xf — )‘(4?) =0,
=0 te[0,7)
where X, is the solution of the corresponding averaged equation.
Example 4.2. Let us consider the following slow-fast SDEs,
dX§ = Lt2Xf — (XD + MY dt + (£ + X)dW!, Xg=z€R,
(4.2)

1

dyy = = (ViX{ — 8Yy) dt + ﬁ(t FXCHYAWE, Yi=yeR,

where A\; > 0, {W/!};>0 and {W?};~¢ are independent 1-dimensional Brownian motion.
Let

€

bt,z,y) =’z — 2°y* + Ny, o(t,x) =t +x
and
ft,z,y) =Vter —8y, glt,z,y)=t+z+y.
It is easy to verify that (H;) holds with §; = 2,0, = 1,03 = 3,0, =2,05 = 6,06 =4, 1 = 1,
Zr =0 and K;(R) = 6R*+2t* 4 2; (H,) holds with o; = 1,i = 1,2,3,4, and 5 = 1/2; (Ay)
holds with any 2 < k < 17.
Hence, by Theorem 2.3, if Ay = 0, for any p > 0 we have

limE < sup | X} — Xt]p> = 0.
=0 te[0,7)
Moreover, if A; > 0, for any 0 < p < 17 we have
limE < sup |Xf — Xt]p> =0,
=0 t€[0,7)

where X, is the solution of the corresponding averaged equation.
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Example 4.3. Let us consider the following slow-fast SDEs,

dXf = L—| sin(WH|(XP)? + Yy | dt + X;dW!, Xg=z€R,

€ € € 1 € €
aYi = L IXG = SYJd YEAWE, Y=y e R

where {W!};>o and {W?}~¢ are independent 1-dimensional Brownian motions.
Assume that

b(t,z,y,w) = —|sin(WHw))|z* +vy, o(z)=2
and
fley) =z =38y, glz,y) =y.
It is easy to verify that (H;) holds with 6; = 0,0, = 1,03 = 3,0, = 2,05 = 3,60 = 1,
7 < 1/2, Ki(R) = 6R?> 4+ 1 and Zr = Supyc,cier WE=Wel with EZ2 < oo by Kolmogorov's

[t—s|71
continuity theorem ; (Hz) holds with o; = 1,i = 1,2,3,4; (Ax) holds with any 2 < k < 17.
Hence, by Theorem 2.3, for any 0 < p < 17 we have

limE < sup |X; — Xt]p> =0,
=0 t€[0,T)

where X, is the solution of corresponding averaged equation.

5. APPENDIX

In this section, using the classical result of Krylov (cf. [14, Theorem 3.1.1]), we prove
the existence and uniqueness of solutions to system (1.1) and the corresponding averaged
equation.

5.1. Proof of Theorem 2.2.

€ __ )(t6 Te o b(t,.’ll',y)
Zt_<Y;e>7 b(t’x’y)_<if(t,x,y)>

~€e _ 0-<t7$) O - th
a(t,x,y)—< 0 \kg(t,x,y)» Wt_<Wt2 |

Then system (1.1) can be rewritten as the following equation

Proof. We denote

and

dZg = b°(t, Z)dt + 6°(t, Z)dW,, 2§ = < ;C ) : (5.1)

Under the assumptions (H;) and (Hs), we intend to prove the coefficients in Eq. (5.1) satisfy
the local weak monotonicity and weak coercivity conditions in [14, Theorem 3.1.1].
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In fact, for any t, R > 0, z; = (z;,y;) € R" x R™ with |z| < R, i = 1,2,

2<Z~?€<t, 21> — Be(t, 22), Z1 — 22> + |’6'6(t,21) — 6’6(t, 22)H2
< 2<b(taxlay1> - b(t7I2>y2)7$1 - 1172> + H‘7<t7$1) - U(t7372)|’2

2 1

+g<f(t,$17yl) - f(t7$27y2>’y1 - ?J2> + g”g(tﬂlayl) - g(ta$2ay2)||2
< 20b(t, 1, y1) = bt w2, 91)| - |21 — o] + |0 (t, 1) — o (£, 22)|?

+2[b(t, w2, y1) — b(t, 12, yo)||21 — 72|

2 1
+E<f(t7$hyl) - f(taxlay2>?yl - y2> + 2”9(757 3717y1) - 9(75733'1,3/2”‘2
1 2
+gHg(t, x1,y2) — g(t, 22, 2)|1* + gHg(t, z1,91) — 9t w1, y2) | lg(t, 21, y2) — g(t, 22, 42) ||

2
+E|f(taxlay2) - f(t7$2>y2>Hyl - y2’

< Ky(R)(1 4 R™)|zy — x9)? + 2(2R” + K,(1) + R™)|y1 — ol - |21 — 22
G
€

C
< Cr |Ky(R) + K, (1) + ?t |21 — 2%

C
+ (1+2R°‘1—|—Ra2)|x1—x2\|y1—y2|+?t|z1—22|2

Furthermore, let ¢y = i—f if Ay > 0, and ¢y = 1 otherwise. Then for any € € (0, ¢)
2(0(t, 1), 21) + [[6°(¢, 20) ||

2 1
g 2<b(t,l’1,y1>,$1> + Ho-(thl)HZ + <f(t737173/1)73/1> + EHg<tux17yl)|l2

c
A b C 4
< K+ )+ Ml + K1) + Claaf 222 4 Gy i

<C [th(l) + Cﬂ (1+ |22,

Let

K&(R) == Cr | K,(R) + K,(1) + (’;t .

Then by the definition of K;(R), it is easy to see that K[ (R) is an R -valued adapted process
and for all R, T, € € (0, ¢),

T
/ KE(R)dt < co.
0

Hence by [14, Theorem 3.1.1], there exists a unique solution {(Xf,Yy),t > 0} to system
(1.1). The proof is complete. O

5.2. Proof of Lemma 3.11.

Proof. 1t is sufficient to check that the coefficients of Eq. (3.8) satisfy the following condi-
tions:
For any ¢t > 0, 21,22 € R", R > 0 with |z;] < R,

2|l_)(t,x1) - l_)(t,:vg)Hxl — x| + ||o(t,x1) — 0(75,:52)”2 < f(t(R)|:1:1 — 2o (5.2)
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and
21, b(t, 1)) + [lo(t, 20) > < K(1)(1 + [a ), (5.3)
where I_(t(R) is an R -valued adapted process and for all R, T>0,

T _
/ Ki(R)dt < oo.
0

Then Eq.(3.8) has a unique solution and (3.9) can be easily obtained by following the same
arguments as in Lemma 3.1(i).
In fact, by Proposition 3.9 and Lemma 3.10 we have

2|5(t,x1) — E(t,x2)||x1 — | + o (t, 21) — o (t, zo) |
<2|[ bt (dz) - [ bt Dt )
Rm Rm

+ ‘Eb(t,xQ,YS‘”’O) —/ b(t, g, 2)p"" (dz)
Rm

w1 — @o| + |0 (t, 21) — o (t,22) |

|SL'1 — T2

<[ [ bt e (dz) - Bbt, 0, V)
Rm

F2E [b(t, 21, Y 0) = b(t, 22, YO |21 = o] + [l (t, 21) — o (8, 22) |

H2IE [b(t, 32, Y] 0) — bt 22, Y"20)

|21 — 29

0364+2 292+2)v(0304+2)}

. 20542
< Ce 7 |:<Kt(1>>2 N i R P R "

+C|zy — 2P K (R)E(1 + |YE=1:0)01)
—|—|:L‘1 o x2|E [(|Yst,z1,0’92 + |Yst,z2,0|€z + |5L’2|93 + Kt(l))|yst,a:1,0 o Yst,m,ou

202+2)v(6364+2):|

9394+2)

s 205+2
< Ce % {(Ktu))? T OOV
+Ct,R|.I’1 — $2|2Kt(R) + C@R(l + Kt(l))lflfl — .T2|2.

+ |.T2|( 04 04

Then letting s — 0o, we obtain
20b(t, 21) — b(t, z2)||71 — 2| + ||o(t, 21) — o(t, 22)||* < Cor [K(R) + Ki(1) + 1] |1 — 29)?.
Moreover, by (3.6) we have
2(b(t, 21), 1) + [lo(t, 1) *
= [ @bt 2, 2),20) + (o, 20)|P] 1 (d2)

-
- /Rm K(1) (14 |02+ A f2|) =1 (d2)
< CK(D)(1 4+ |21 ).
Then (5.2) and (5.3) hold by taking
Ki(R) := Cy g [Ki(R) + Ki(1) +1].

By the definition of K;(R), it is easy to see that K;(R) is an R -valued adapted process and
for all R,T>0,

T _
/ R(R)dt < oc.
0
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Hence by [14, Theorem 3.1], there exists a unique solution {X;,¢ > 0} to Eq. (3.8). The
estimate (3.9) can be proved by the same arguments as in Lemma 3.1. Therefore, the proof
is complete. 0
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