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Ionuţ Munteanu

Alexandru Ioan Cuza University of Iaşi, Department of Mathematics
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Abstract

The aim of this work is to prove an existence and uniqueness result of Kato-Fujita type for

the Navier-Stokes equations, in vorticity form, in 2 − D and 3 − D, perturbed by a gradient type

multiplicative Gaussian noise (for sufficiently small initial vorticity). These equations are considered

in order to model hydrodynamic turbulence. The approach was motivated by a recent result by V.

Barbu and the second named author in [2], that treats the stochastic 3D-Navier-Stokes equations,

in vorticity form, perturbed by linear multiplicative Gaussian noise. More precisely, the equation is

transformed to a random nonlinear parabolic equation, as in [2], but the transformation is different

and adapted to our gradient type noise. Then global unique existence results are proved for the

transformed equation, while for the original stochastic Navier-Stokes equations, existence of a solution

adapted to the Brownian filtration is obtained up to some stopping time.

Keywords: stochastic Navier-Stokes equation, turbulence, vorticity, Biot-Savart operator, gradient-type

noise.
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1 Introduction

One of the main important features concerning the Navier-Stokes equation is its relation to the phe-

nomenon of hydrodynamic turbulence, that is often assumed to be caused by random background move-

ments. That is why a randomly forced Navier-Stokes equation may be considered to model this. In this

direction, we recall the pioneering work of Bensoussan and Temam [4] concerning the analytical study of

a Navier-Stokes equation driven by a white noise type random force; followed later by numerous develop-

ments and extensions by many authors (see [7, 10, 13, 8] and the references therein). We emphasize the

approach in [13, 14] that involves gradient dependent noise in order to model turbulence. In this light,
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we consider the following Navier-Stokes equation in dimension d = 2, 3, perturbed by gradient dependent

noise 
dX −∆Xdt+ (X · ∇)Xdt =

N∑
i=1

Ai(X)dβi(t) +∇πdt on (0,∞)× Rd,

∇ ·X = 0 on (0,∞)× Rd,
X(0) = x in

(
Lp(Rd

)d
,

(1.1)

where x : Ω → Rd is a random variable; π denotes the pressure; {βi}Ni=1 is a system of independent

Brownian motions on a probability space (Ω,F ,P) with normal filtration (Ft)t≥0, x is F0−adapted, and

Ai are certain operators, linear in the gradient of the solution, specified below.

Our aim in this paper is to study (1.1) by writing it in vorticity form (i.e., apply the curl operator to

it) and by transforming it into the following random partial differential equation

dy

dt
=∆y(t) + Γ−1(t)[K(Γ(t)y(t)) · ∇](Γ(t)y(t)), t > 0; y(0) = U0 = curl x. (1.2)

where Γ(t) solves (3.5) below and K is the Biot-Savart operator. We analyze (1.2) with {βi(ω)}Ni=1 for

a.e. fixed ω. In particular, we are going to prove a Kato-Fujita type result (see [12]), i.e., we prove that

for small enough initial condition there exists a globally in time unique solution of (1.2). The smallness

of the initial conditions depends however on ω (see (3.11) below). To this end, naturally we need some

particular assumptions on the noise coefficients. However, there is an overlap with the assumptions in

[13, 14]. But, there are cases where our assumptions hold, and those in [13, 14] do not hold, and vice

versa.

Our approach through a corresponding random partial differential equation has the advantage that

we can do a ”path by path” analysis and, thus, obtain a better understanding of the dependence of the

solution on the Brownian path, since it is obtained by a fixed point argument, i.e., by iteration.

Now let us state the assumptions precisely. In the two-dimensional case, that is d = 2, we take Ai of

the form

AiX :=

(
a1i∂1X1 + a2i∂2X1 + a3i∂1X2 + a4i∂2X2

a5i∂1X1 + a6i∂2X1 + a7i∂1X2 + a8i∂2X2

)
, i = 1, 2, ..., N. (1.3)

The coefficients aji, j = 1, 2, ..., 8, i = 1, .., N, are given in the precise form below:

a1i = σi, a2i = σi, a3i = µiξ1 − θiξ2, a4i = θiξ1 + µiξ2,

a5i = −µiξ1 + θiξ2, a6i = −θiξ1 − µiξ2, a7i = σi, a8i = σi.
(1.4)

Here, (ξ1, ξ2) ∈ R2 is the space variable. σi : R+ × Ω → R, σi = σi(t, ω), i = 1, 2, ..., N, are continuous

functions, that are Ft−addapted, with
∫∞

0
σ2
i (s)ds < ∞, for each ω. µi = µi(t, ω), i = 1, ..., N are

random functions. Finally, θi, i = 1, 2, ..., N are positive constants.

For the three-dimensional case, i.e., d = 3, we take Ai of the form

AiX := σi13 · ∇X + θiX, i = 1, 2, ..., N, (1.5)

where 13 is the vector in R3 with all its elements equal to one, and θi and σi are as above.

Remark 1.1. We notice that, in 2−D, for N = 2, the special case:

a1i ≡ a2i ≡ a7i ≡ a8i ≡ σi, i = 1, 2,

a4i = a5i = 0, i = 1, 2,
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and

−∂1a6i = −∂2a3i = θi > 0,

corresponds to the model for turbulence considered in [13]. The same holds for the 3-D case we consider

here.

In this work, we let Lp(Rd), 0 < p < ∞ denote the space of power p−Lebesgue integrable func-

tions with the norm | · |p; by W l,p(Rd) the corresponding Sobolev space; H1(Rd) = W 1,2(Rd); and by

Cb([0,∞);Lp(Rd)) the space of all bounded and continuous Lp−valued functions, defined on [0,∞), with

the sup norm. Sometimes we will omit to express the dependence on the space Rd, in the notations, if

this will not create any confusion. We also set ∂i = ∂
∂ξi
, i = 1, ..., d; and 1d the vector in Rd with all its

elements equal to one.

As indicated above, our aim here is to show that equation (1.2) has a global strong solution, for a.e.

fixed ω and small enough initial data, in the mild sense. To this end, we shall further develop the ideas in

[2], that treat the stochastic 3−D Navier-Stokes equation with diffusion coefficient linear in the solution,

while we analyze the case with diffusion coefficient linear in the gradient of the solution. Besides proving

existence and uniqueness of solutions to (1.2), globally in time, for P−a.e. fixed ω ∈ Ω, provided that the

initial condition is small enough, we also prove their continuity in time, in the following sense: we shall

prove that the solution is weakly−∗ continuous with respect to the time variable. For the two-dimensional

case in the dual of L
1
γ (R2) ∩ L

2p
3p−4 (R2), for some 4

3 < p < 2 and 0 < γ < 1; while for the three-

dimensional case, we shall show that it is weakly−∗ continuous in the dual of
(
L3(R3) ∩ L

3p
4p−6 (R3)

)3

for some 3
2 < p < 3, see Theorem 3.1 and 4.1 below, respectively. Then, we deduce the existence of

a solution of the 2 − D Navier-Stokes equation in vorticity form, which is adapted to the Brownian

filtration, up to some stopping time; and a similar result concerning the 3−D Navier-Stokes equations,

in Section 4.1 below. We emphasize that, when studing turbulence, the vorticity is a tool of central

importance. Therefore, treating the Navier-Stokes equation in the vorticity form and obtaining existence

and uniqueness results for the model is of high interest for understanding turbulence.

The structure of the paper is as follows: In Section 2 we derive the transformed equation, which is no

longer a stochastic PDE, but a deterministic PDE with a random parameter. In Section 3, we concentrate

on the 2D-case and in Section 4 on the 3D-case. In Section 5, we prove the existence of a solution to the

original equation (1.1), which is adapted to the filtration, but exists only up to some stopping time. This

is done both in the 2D- and 3D-case.

2 The transformed equation

Consider the vorticity function (the vorticity field, for the three-dimensional case)

U := ∇×X = curl X;

and apply the curl operator to equation (1.1).

In the two-dimensional case, taking advantage of the form of a1i, ..., a8i, i = 1, 2, ..., N , in (1.4), we

obtain  dU = ∆Udt+ (X · ∇)Udt+

N∑
i=1

(Bi(t) + θiI)Udβi in (0,∞)× R2,

U(0, ξ) = U0(ξ) = (curl x)(ξ), ξ ∈ R2,

(2.1)

where, for all t ≥ 0, Bi(t) : H1(R2)→ L2(R2) is defined as

Bi(t)f := σi(t)12 · ∇f, i = 1, 2, ..., N. (2.2)
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While, in the three-dimensional case, we get by the special form of Ai in (1.5), dU = ∆Udt+ (X · ∇)Udt− (U · ∇)Xdt+

N∑
i=1

(Bi(t) + θiI)Udβi in (0,∞)× R3,

U(0, ξ) = U0(ξ) = (curl x)(ξ), ξ ∈ R3,

(2.3)

where, for all t ≥ 0, Bi(t) : (H1(R3))3 → (L2(R3))3 is defined as

Bi(t)U := σi(t)13 · ∇U, i = 1, 2, ..., N. (2.4)

We begin with some useful observations concerning the operators introduced above, and state them

in the following lemmas. First of all, since the functions σi do not depend on the space variable ξ, we

immediately see that Bi commutes with Bj , for all i, j = 1, 2, ..., N , also it commutes with the laplacean

∆.

Lemma 2.1. Let d = 2, 3. For all i = 1, 2, ..., N, the operators Bi(t), t ≥ 0, are skew-adjoint; and they

generate C0-groups, denoted by esBi(t), s ∈ R, t ≥ 0, i = 1, 2, ..., N. Moreover, for all 1 < q < ∞, we

have

|esBi(t)f |q = |f |q, ∀f ∈ Lq(Rd), s ∈ R, t ≥ 0, i = 1, 2, ..., N ; (2.5)

and

|∇(esBi(t)f)|q = |∇f |q, ∀f ∈W 1,q(Rd), s ∈ R, t ≥ 0, i = 1, 2, ..., N. (2.6)

Proof. We shall argue likewise in [15, (B2) and (B3)], since the operators Bi are of the same type as those

in [15]. Thus, one may show that the operators Bi(t) satisfy B∗i (t) = −Bi(t), where B∗i (t) stands for the

adjoint operator of Bi(t) in L2(Rd); and they generate C0−groups in L2(R2) for each t ≥ 0, i = 1, 2, ..., N.

Besides this, as in [15, (B3)] one may compute that

esBi(t)f(ξ) = f(zi(s, t, ξ)), s ∈ R, t ≥ 0, ξ ∈ Rd, (2.7)

where

zi(s, t, ξ) = σi(t)s1d + ξ, (2.8)

for i = 1, 2, ..., N , s ∈ R, t ≥ 0, ξ ∈ Rd.
We go on noticing that the Jacobian of the transformation zi, i = 1, 2, ..., N, is equal to one. This

implies that, for each f ∈ Lq(Rd), 0 < q <∞, we have

|esBif |q =

(∫
Rd
|f(zi(s, t, ξ)|qdξ

) 1
q

= |f |q, i = 1, 2, ..., N, (2.9)

so (2.5) is proved. In order to conclude with the proof, we notice that ∇ commutes with Bi(t), and so,

via the above equality, for each f ∈W 1,q(Rd), one may easily deduce (2.6) as-well.

We may get a similar result concerning the operators e
∫ t
0
Bi(s)dβi , i = 1, 2, ..., N and eθi

∫ t
0
Bi(s)ds, i =

1, 2, ..., N. More precisely,

Corollary 2.1. Let d = 2, 3. For all i = 1, 2, ..., N, one may well-define the exponential e
∫ t
0
Bi(s)dβi and

eθi
∫ t
0
Bi(s)ds. Moreover, for all 1 < q <∞, we have

|e
∫ t
0
Bi(s)dβif |q = |eθi

∫ t
0
Bi(s)dsf |q = |f |q, ∀f ∈ Lq(Rd), s ∈ R, t ≥ 0, i = 1, 2, ..., N ; (2.10)

and

|∇e
∫ t
0
Bi(s)dβif |q = |∇eθi

∫ t
0
Bi(s)dsf |q = |∇f |q, ∀f ∈W 1,q(Rd), s ∈ R, t ≥ 0, i = 1, 2, ..., N. (2.11)
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Proof. Note that

e
∫ t
0
Bi(s)dβif = eβi(t)Bi(t)−

∫ t
0
βi(s)Bi(s)dsf,

and that∫ t

0

βi(s)Bi(s)fds =

∫ t

0

βi(s)σi(s)ds1d · ∇f and θi

∫ t

0

Bi(s)fds =

∫ t

0

θiσi(s)ds1d · ∇f.

This means that, in fact, both
∫ t

0
βi(s)Bi(s) · ds and θi

∫ t
0
Bi(s) · ds are of similar form with Bi, with σi

replaced by
∫ t

0
βi(s)σi(s)ds and by

∫ t
0
θiσi(s)ds, respectively. Therefore, arguing similarly as in the proof

of Lemma 2.1, one may show that indeed the exponential e
∫ t
0
Bi(s)dβi and eθi

∫ t
0
Bi(s)ds are well-defined

and (2.10) and (2.11) hold true.

Finally, let us show that we may well-define the exponential e±
∫ t
0
B2
i (s)ds, t ≥ 0, i = 1, 2, ..., N, where

Bi are given by (2.2) or (2.4).

Lemma 2.2. Let d = 2, 3 and 1 < q < ∞. Then, it is possible to define the operator e
1
2

∫ t
0
B2
i (s)ds, t ≥

0, i = 1, 2, ..., N, that is a contraction on Lq(Rd), i.e.∣∣∣e 1
2

∫ t
0
B2
i (s)dsf

∣∣∣
q
≤ |f |q, ∀f ∈ Lq(Rd), t ≥ 0, i = 1, 2, ..., N. (2.12)

Also, we have ∣∣∣∇(e 1
2

∫ t
0
B2
i (s)dsf

)∣∣∣
q
≤ |∇f |q, ∀f ∈W 1,q(Rd), t ≥ 0, i = 1, 2, ..., N. (2.13)

Besides this, for each t ≥ 0 and i = 1, 2, ..., N , the operator e
1
2

∫ t
0
B2
i (s)ds is one-to-one on Lq(Rd).

Therefore, e
1
2

∫ t
0
B2
i (s)ds admits a left inverse, denoted by e−

1
2

∫ t
0
B2
i (s)ds, for which there exists some positive

constant B such that∣∣∣e− 1
2

∫ t
0
B2
i (s)dsf

∣∣∣
q
≤ B|f |q, ∀f ∈ e

∫ t
0
B2
i (s)ds[Lq(Rd)], t ≥ 0, i = 1, 2, ..., N, (2.14)

and ∣∣∣∇(e− 1
2

∫ t
0
B2
i (s)dsf

)∣∣∣
q
≤ B|∇f |q, ∀f ∈ e

∫ t
0
B2
i (s)ds[W 1,q(Rd)], t ≥ 0, i = 1, 2, ..., N. (2.15)

Proof. Let any 1 < q <∞ and d = 2, 3. Set O : H1(Rd)→ L2(Rd) as

Of :=

d∑
i=1

∂if.

Notice that we have the equality ∫ t

0

B2
i (s)ds =

∫ t

0

σ2
i (s)ds O2. (2.16)

In the next lines we want to show that O2 generates a C0−semigroup in Lq. To this end we shall apply

the Hille-Yosida’s theorem. So, let any f ∈ Lq and λ > 0. We search for some g such that

λg −O2g = f, (2.17)

or, equivalently,

g − 1

λ
O2g =

1

λ
f. (2.18)
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To this purpose, arguing as in [15, (B3)], we get that the solution h to

h+
1√
λ
Oh =

1

λ
f, (2.19)

is given by the formula

h(ξ) =
1

λ

∫ ∞
0

e−sf

(
− 1√

λ
s1d + ξ

)
ds, ξ ∈ Rd. (2.20)

Likewise, the solution g to

g − 1√
λ
Og = h, (2.21)

is given as

g =
1

λ

∫ ∞
0

e−σ
[∫ ∞

0

e−sf

(
1√
λ

(σ − s)1d + ξ

)
ds

]
dσ (2.22)

Now, by (2.19) and (2.21) we see that g satisfies (2.18), or, equivalently, (2.17). Thus,

|(λI −O2)−1f |qq = |g|qq

=
1

λq

∫
R2

∣∣∣∣∫ ∞
0

∫ ∞
0

e−se−σf

(
1√
λ

(σ − s)1d + ξ

)
dsdσ

∣∣∣∣q dξ
=

1

λq

∫
R2

∣∣∣∣∫ 1

0

∫ 1

0

f

(
1√
λ

(ln s− lnσ)1d + ξ

)
dsdσ

∣∣∣∣q dξ
(recalling that q > 1, it follows by Jensen’s inequality that)

≤ 1

λq

∫
R2

∫ 1

0

∫ 1

0

∣∣∣∣f ( 1√
λ

(ln s− lnσ)1d + ξ

)∣∣∣∣q dsdσdξ
=

1

λq

∫ 1

0

∫ 1

0

[∫
R2

∣∣∣∣f ( 1√
λ

(ln s− lnσ)1d + ξ

)∣∣∣∣q dξ] dsdσ
(noticing that the Jacobian of the transformation is equal to one)

=
1

λq

∫ 1

0

∫ 1

0

[∫
R2

|f (ξ)|q dξ
]
dsdσ =

1

λq
|f |qq.

(2.23)

Hence,

|(λI −O2)−1f |q ≤
1

λ
|f |q, ∀λ > 0, f ∈ Lq.

Therefore, O2 generates a C0− analytic semigroup on Lq, denoted by esO
2

, s ≥ 0, of contractions, i.e.,

|esO2

f |q ≤ |f |q, f ∈ Lq, s ≥ 0. By [11], esO
2

, s ≥ 0, is analytic. Hence, recalling (2.16), we conclude

that we may well-define the exponential e
1
2

∫ t
0
B2
i (s)ds, i = 1, 2, ..., N, and we have∣∣∣e 1

2

∫ t
0
B2
i (s)dsf

∣∣∣
q
≤ |f |q, ∀f ∈ Lq, t ≥ 0, i = 1, 2, ..., N. (2.24)

Also, noticing that ∇ commutes with Bi(t), we have the first part of the lemma proved.

Regarding the last part of the lemma, we show that the semigroup generated by O2 is one-to-one in

Lq. To this aim, let us assume that for some t > 0 and f ∈ Lq(Rd) we have

etO
2

f = 0.

Define

t0 := inf
{
s > 0 : esO

2

f = 0
}

that is less or equal to t. Then by right strong continuity we have

et0O
2

f = 0.
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We know that esO
2

f is, in fact, the solution w(s) to the equation

∂tw = O2w in (0,∞)× Rd; w(0) = f in Rd.

We have that w(t0) = 0, so, consequently, ∂tw(t0) = 0. But, then, since ∂2
tw = O2∂tw, we get that

∂2
tw(t0) = 0, as-well. Continuing with this argument, it yields that all the time-derivatives of w in t0 are

equal to zero. Recalling the analyticity of the semigroup, we deduce that there exists t′ < t0 such that

et
′O2

f = 0. Therefore, t0 = 0 and so, f = e0O2

f = 0.

To conclude the proof of the lemma, remember that

e
1
2

∫ t
0
B2
i (s)ds = e

1
2

∫ t
0
σ2
i (s)ds O2

.

Hence one can define the inverse e−
1
2

∫ t
0
B2
i (s)ds, then, by the inverse mapping theorem, the fact that∫∞

0
σ2
i (s)ds is finite , and the fact that ∇ commutes with Bi(t), t ≥ 0, i = 1, 2, ..., N, we immediately

obtain (2.14) and (2.15)

3 The existence results in the 2−D case

Now, we place ourselves in the two dimensional case. Recall that X may be expressed in terms of the

vorticity U as X = K(U), where the operator K is the Biot-Savart integral operator

K(f)(ξ) =
1

2π

∫
R2

(ξ − ξ̄)⊥

|ξ − ξ̄|2
f(ξ̄)dξ̄, ξ ∈ R2. (3.1)

Hence, equation (2.1) may be equivalently written as dU = ∆Udt+ (K(U) · ∇)Udt+

N∑
i=1

(Bi(t) + θi)Udβi in (0,∞)× R2,

U(0, ξ) = U0(ξ), ξ ∈ R2.

(3.2)

In order to reduce the SPDE (3.2) to a random PDE, we consider the rescale

U := e
∑N
i=1[

∫ t
0
Bi(s)dβi+θiβi− 1

2

∫ t
0
B2
i (s)ds− 1

2 θ
2
i t−θi

∫ t
0
Bi(s)ds]y. (3.3)

By Lemmas 2.1, 2.2 and Corollary 2.1, we have that the operator

Γ(t) := e
∑N
i=1[

∫ t
0
Bi(s)dβi+θiβi− 1

2

∫ t
0
B2
i (s)ds− 1

2 θ
2
i t−θi

∫ t
0
Bi(s)ds] (3.4)

is well-defined on Lq(R2), 1 < q <∞, and it is left invertible. We set Γ−1 for its inverse.

Since for all φ ∈ Lp we have

e
∑N
i=1[

∫ t
0
Bi(s)dβi− 1

2

∫ t
0
B2
i (s)ds]φ = φ+

∫ t

0

e
∑N
i=1[

∫ s
0
Bi(τ)dβi− 1

2

∫ s
0
B2
i (τ)dτ ]

(
N∑
i=1

Bi(t)φdβi

)
,

simple computations show that

dΓ(t)φ = Γ(t)

[
N∑
i=1

(Bi(t) + θi)φdβi(t)

]
. (3.5)

Then, similarly as in [15, Proposition 3.23 (iii)], one may deduce that y satisfies

dy

dt
=∆y(t) + Γ−1(t)[K(Γ(t)y(t)) · ∇](Γ(t)y(t)), t > 0; y(0) = U0. (3.6)
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We write equation (3.6) in the mild formulation as

y(t) = G(y(t)) := et∆U0 + F (y)(t), t ≥ 0, (3.7)

where

F (f)(t) : =

∫ t

0

e(t−s)∆Γ−1(s)[K(Γ(s)f(s)) · ∇](Γ(s)f(s))ds, t ≥ 0. (3.8)

Here,

(et∆g)(ξ) :=
1

4πt

∫
R2

e−
|ξ−ξ|2

4t g(ξ)dξ, t ≥ 0, ξ ∈ R2.

For latter purpose, one can easily show that for 1 < α ≤ β <∞, we have, for some c > 0, the estimates

|et∆g|β ≤ ct
1
β−

1
α |g|α, g ∈ Lα(R2), (3.9)

and

|∂jet∆g|β ≤ ct
1
β−

1
α−

1
2 |g|α, u ∈ Lα(R2), j = 1, 2. (3.10)

The following theorem is the main result of this work concerning the 2-D case.

Theorem 3.1. Let 4
3 < p < 2 and 0 < 3

2 −
2
p < γ < 1 − 1

p <
3
2 −

1
p < 1. Let Ω0 := {η∞ <∞} and

consider (3.7) for fixed ω ∈ Ω0. Then, P(Ω0) = 1 and there is a positive constant C independent of

ω ∈ Ω0 such that, if U0 ∈ L
1

1−γ (R2) is such as

η∞|U0| 1
1−γ
≤ C, (3.11)

then the random equation (3.7) has a unique solution y ∈ Zp which satisfies

[K(Γy) · ∇](Γy) ∈ L1(0,∞;L
2p

4−p (R2)).

Here

η∞ := esup0≤s<∞
∑N
i=1[βi(s)θi− s4 θ

2
i ],

and Zp is defined by

Zp :=
{
f = f(t, ξ) : t1−

1
p−γf ∈ Cb([0,∞);Lp(R2)), t

3
2−

1
p−γ∂jf ∈ Cb([0,∞);Lp(R2)), j = 1, 2

}
.

(3.12)

Moreover, for each φ ∈ L
1
γ (R2) ∩ L

2p
3p−4 (R2), the function

t→
∫
R2

y(t, ξ)φ(ξ)dξ

is continuous on [0,∞). The map U0 → y is Lipschitz from L
1

1−γ (R2) to Zp .

In particular, the vorticity equation (3.2) has a unique solution U such that Γ−1U ∈ Zp.

We notice that, likewise in [2, Remark 1.2] one can show that the condition (3.11) is not void. The

proof of Theorem 3.1 will be given in Section 3.1 below.

To prove our theorem, we shall rely on the following two immediate results concerning the operators

K and Γ introduced by (3.1) and (3.4), respectively.

Lemma 3.1. For each 1 < q <∞ we have

|Γ(t)f |q ≤ Be
∑N
i=1[βi(t)θi− t2 θ

2
i ] |f |q and |Γ−1(t)f |q ≤ e

∑N
i=1[−βi(t)θi+ t

2 θ
2
i ] |f |q (3.13)

for all t ≥ 0, f ∈ Lq(R2); and

|∇(Γ(t)f)|q ≤ Be
∑N
i=1[βi(t)θi− t2 θ

2
i ] |∇f |q , and |∇(Γ−1(t)f)|q ≤ e

∑N
i=1[−βi(t)θi+ t

2 θ
2
i ] |∇f |q (3.14)

for all t ≥ 0, f ∈W 1,q(R2).
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Proof. Recalling the definition of Γ(t) given by (3.4), it is easy to see that the inequality in (3.13) yields

from (2.5), (2.10) (2.14) and (2.12), while (3.14) follows from (2.6), (2.11), (2.15) and (2.13).

Lemma 3.2. Let r = 2p
2−p ,

4
3 < p < 2, q = 2r

4+r > 1. Then we have∣∣Γ−1(t)[K(Γ(t)f) · ∇](Γ(t)f)
∣∣
q
≤ B2e

∑N
i=1[βi(t)θi− t2 θ

2
i ]|f |p|∇f |p, ∀f ∈W 1,p(R2). (3.15)

Proof. Notice that we have 1
q = 1

r + 1
p . By (3.13) and Hölder’s inequality, we obtain∣∣Γ−1(t)[K(Γ(t)f) · ∇](Γ(t)f)

∣∣
q
≤ e

∑N
i=1[−βi(t)θi+ t

2 θ
2
i ]|K(Γ(t)f)|r|∇(Γ(t)f)|p

( recalling the classical estimate for the Riesz potentials (see [16, p. 119]) )

≤ e
∑N
i=1[−βi(t)θi+ t

2 θ
2
i ]|Γ(t)f | 2r

2+r
|∇(Γ(t)f)|p(

noticing that
2r

2 + r
= p and taking advantage of relations (3.13) and (3.14)

)
≤ B2e

∑N
i=1[βi(t)θi− t2 θ

2
i ]|f |p|∇f |p,

(3.16)

thereby completing the proof.

3.1 Proof of Theorem 3.1

From now on, we fix p, q, r as in Lemma 3.2, i.e.,

4

3
< p < 2, r =

2p

2− p
, q =

2p

4− p
> 1. (3.17)

In the following we shall estimate the quantities |F (f(t))|p and |∇F (f(t))|p, where F is defined by (3.8).

To this end, since p > q > 1, we may take in (3.9) α = q and β = p, to obtain that

|F (f)(t)|p ≤∣∣∣∣∫ t

0

e(t−s)∆Γ−1(s)[K(Γ(s)f(s)) · ∇](Γ(s)f(s))ds

∣∣∣∣
p

≤ c
∫ t

0

(t− s)
1
p−

1
q |Γ−1(s)[K(Γ(s)f(s)) · ∇](Γ(s)f(s))|qds

( invoke (3.15))

≤ cB2

∫ t

0

(t− s)
1
2−

1
p e

∑N
i=1[βi(s)θi− s2 θ

2
i ]|f(s)|p|∇f(s)|pds

= cB2

∫ t

0

(t− s)
1
2−

1
p e

∑N
i=1[βi(s)θi− s4 θ

2
i ]e−

s
4 θ

2
i |f(s)|p|∇f(s)|pds

≤ cB2ηt max

{
1,

4

θ2
i

, i = 1, 2, ..., N

}∫ t

0

(t− s)
1
2−

1
p s−γ |f(s)|p|∇f(s)|pds,

(3.18)

where

ηt := esup0≤s≤t
∑N
i=1[βi(s)θi− s4 θ

2
i ], (3.19)

and γ > 0 was chosen such that

1 > γ >
3

2
− 2

p
> 0. (3.20)

In the same manner one may obtain also that

|∇F (f)(t)|p ≤cB2ηt max

{
1,

4

θ2
i

, i = 1, 2, ..., N

}∫ t

0

(t− s)−
1
p s−γ |f(s)|p|∇f(s)|pds. (3.21)
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Next, we consider the Banach space Zp defined by

Zp :=
{
f : t1−

1
p−γf ∈ Cb([0,∞);Lp), t

3
2−

1
p−γ∂jf ∈ Cb([0,∞);Lp), j = 1, 2

}
,

endowed with the norm

‖f‖ := sup
t>0

{
t1−

1
p−γ |f(t)|p + t

3
2−

1
p−γ |∇f(t)|p

}
.

Easily seen, we have that

|f(t)|p|∇f(t)|p ≤ t
2
p−

5
2 +2γ‖f‖2, ∀f ∈ Zp, t > 0. (3.22)

It yields from (3.18) that for f ∈ Zp, we have

|F (f)(t)|p ≤ cB2ηt max

{
1,

4

θ2
i

, i = 1, 2, ..., N

}
‖f‖2

∫ t

0

(t− s)
1
2−

1
p s

2
p−

5
2 +γds

= cB2ηt max

{
1,

4

θ2
i

, i = 1, 2, ..., N

}
‖f‖2t

1
p−1+γ

∫ 1

0

(1− s)
1
2−

1
p s

2
p−

5
2 +γds

= t
1
p−1+γcB2ηt max

{
1,

4

θ2
i

, i = 1, 2, ..., N

}
B

(
2

p
− 3

2
+ γ,

3

2
− 1

p

)
‖f‖2,

(3.23)

where B(x, y) is the classical beta function. Note that B
(

2
p −

3
2 + γ, 3

2 −
1
p

)
is finite by virtue of (3.17)

and (3.20).

Similarly, by (3.21), we have

|∇F (f)(t)|p ≤ t
1
p−

3
2 +γcB2ηt max

{
1,

4

θ2
i

, i = 1, 2, ..., N

}
B

(
2

p
− 3

2
+ γ, 1− 1

p

)
‖f‖2. (3.24)

Hence, (3.23) and (3.24) give

‖F (f)‖ ≤ Cη∞‖f‖2, (3.25)

where η∞ := supt≥0 ηt, and

C := cB2 max

{
1,

4

θ2
i

, i = 1, 2, ..., N

}
max

{
B

(
2

p
− 3

2
+ γ,

3

2
− 1

p

)
, B

(
2

p
− 3

2
+ γ, 1− 1

p

)}
.

By (3.9)-(3.10), we have

|et∆U0|p ≤ ct
1
p−1+γ |U0| 1

1−γ
, t > 0

and

|∇et∆U0|p ≤ ct
1
p−

3
2 +γ |U0| 1

1−γ
, t > 0,

where we recall that by (3.20) γ was chosen such that 0 < γ < 1. Therefore,

‖et∆U0‖ ≤ c|U0| 1
1−γ

. (3.26)

We deduce that, (3.25) together with (3.26) imply that

‖G(f)‖ ≤ c|U0| 1
1−γ

+ Cη∞‖f‖2, ∀f ∈ Zp. (3.27)

Let 0 < ρ = ρ(ω) such that

ρ <
1

4cC
1

η∞
. (3.28)

Then set

Σ := {f ∈ Zp : ‖f‖ ≤ R∗} ,
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where

R∗(= R∗(ω)) = 2cρ. (3.29)

Assuming that

|U0| 1
1−γ
≤ ρ, (3.30)

we see, via (3.27), that G(Σ) ⊂ Σ.

Now, let f, f̄ ∈ Σ. We want to estimate the difference ‖G(f) − G(f̄)‖. We have, as in [2, Eqs.

(2.32)-(2.33)] and (3.18), that

‖G(f)−G(f̄)‖

=

∥∥∥∥∫ ·
0

e(·−s)∆ (Γ−1(s)[K(Γ(s)f(s) · ∇](Γ(s)f(s))− Γ−1(s)[K(Γ(s)f̄(s) · ∇](Γ(s)f̄(s))
)
ds

∥∥∥∥
≤ C1η∞R∗‖f − f̄‖,

(3.31)

for some positive C1 > 0. In addition, if ρ satisfies

ρ <
1

2cC1
1

η∞
,

then we see by (3.31) that G is a contraction on Σ.

Hence, if ρ > 0 is such that

ρ < min

{
1

4cC
1

η∞
;

1

2cC1
1

η∞

}
(3.32)

and |U0| 1
1−γ

< ρ, then there is a unique solution y ∈ Σ to (3.7). So, C in (3.11) is a nonrandom constant

such as

C < min

{
1

4cC
;

1

2cC1

}
.

The proof of the last part of the Theorem 3.1 goes similarly as the corresponding part of the proof of

[2, Theorem 1.1]. That is why, we only sketch it.

By (3.7), for all φ ∈ C∞0 (R2), we have that∫
R2

y(t, ξ)φ(ξ)dξ =

∫
R2

et∆U0(ξ)φ(ξ)dξ

+

∫ t

0

∫
R2

Γ−1(s)[K(Γ(s)y(s)) · ∇](Γ(s)y(s))e(t−s)∆φ(ξ)dξds.

Since |et∆φ|p̃ ≤ |φ|p̃, for all φ ∈ Lp̃(R2), 1 ≤ p̃ < ∞, t ≥ 0, it follows by relations (3.30), and (3.15)

(3.22) and (3.19), that

|
∫
R2

et∆U0(ξ)φ(ξ)dξ| ≤ ρ |φ| 1
γ
, (3.33)

and

|
∫ t

0

∫
R2

Γ−1(s)[K(Γ(s)y(s)) · ∇](Γ(s)y(s))e(t−s)∆φ(ξ)dξds| ≤ B2η∞t
2
p−

3
2 +2γ‖y‖2|φ| 2p

3p−4
, ∀t > 0. (3.34)

Hence, via (3.33) and (3.34), we arrive at

|
∫
R2

y(t, ξ)φ(ξ)dξ| ≤ CT
2
p−

3
2 +2γ(|φ| 1

γ
+ |φ| 2p

3p−4
), ∀φ ∈ L

1
γ ∩ L

2p
3p−4 , t ∈ [0, T ].

Besides this, since t → et∆U0 is continuous on L
1

1−γ , taking into account the above, we deduce that

t→ y(t) is L
1
γ ∩ L

2p
3p−4 weakly continuous on [0,∞).
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Now, let U0, U0 satisfying (3.30). Denote by y(t, U0), y(t, U0) ∈ Zp the corresponding solutions of

(3.7) with initial data U0 and U0, respectively. With similar arguments as in (3.18)-(3.25) and (3.31), we

may show that

‖y(·, U0)− y(·, U0)‖ ≤ C|U0 − U0| 1
1−γ

+ η∞C1R
∗‖y(·, U0)− y(·, U0)‖.

Since R∗C1η∞ was chosen to be strictly less than 1, we conclude that

‖y(·, U0)− y(·, U0)‖ ≤ C

1−R∗C1η∞
|U0 − U0| 1

1−γ
.

With other words, the map U0 → y(·, U0) is Lipschitz from L
1

1−γ to Zp. 2

3.2 Global in time behavior of the solution

Let us recall that, in virtue of (3.7), we have that the solution y to (3.6) satisfies

y(t) = et∆U0 +

∫ t

0

e(t−s)∆M(y(s))ds,

where M(y(s)) := Γ−1(s)(K(Γ(s)y(s)) · ∇)Γ(s)y(s)). It follows that

|y(t)| 1
1−γ
≤ C|et∆U0| 1

1−γ
+

∫ t

0

|e(t−s)∆M(y(s))| 1
1−γ

ds, (3.35)

where we use (3.9), to obtain

|y(t)| 1
1−γ
≤ C

[
|U0| 1

1−γ
+

∫ t

0

(t− s)1−γ− 1
α |M(y(s))|αds

]
. (3.36)

We take α = 2p
4−p , and use relation (3.15) and similar ideas as in (3.18), to deduce that∫ t

0

(t− s)1−γ− 1
α |M(y(s))|αds ≤ Cη∞

∫ t

0

(t− s)1−γ− 4−p
2p s−γ |y(s)|p|∇y(s)|pds,

where involving (3.22), it yields∫ t

0

(t− s)1−γ− 1
α |M(y(s))|αds ≤ Cη∞

∫ t

0

(t− s)1−γ− 4−p
2p · s

2
p−

5
2 +2γ−γds ‖y‖2

= Cη∞B

(
2

p
− 5

2
+ γ + 1, 1− γ − 4− p

2p
+ 1

)
‖y‖2, ∀t ≥ 0.

(3.37)

By the choice of p and γ in Theorem 3.1, we see that the beta function B
(

2
p −

5
2 + γ + 1, 1− γ − 4−p

2p + 1
)

is finite.

Hence, (3.36) and (3.37) imply that

|y(t)| 1
1−γ
≤ C

[
ρ+ ρ2

]
, ∀t ≥ 0, (3.38)

where ρ is introduced by (3.32).

3.3 A random version of the 2 −D Navier-Stokes equation and existence of

its solution, for small initial data

We keep on following the ideas in [2, Section 3]. We fix in (1.1) the initial random variable x by the

formula

x = K(U0),
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where U0 satisfies condition (3.16) for all ω ∈ Ω0. Then we define the process X by the formula

X(t) = K(U(t)) = K(Γ(t)y(t)), t ≥ 0,

where y is the solution to (3.7) who’s existence and uniqueness is guaranteed by Theorem 3.1. Since

U ∈ Zp (defined in Theorem 3.1), recalling the arguments in (3.16) (i.e., via the Riesz potentials estimates

we showed that |K(f)|r ≤ |f | 2r
2+r

), we deduce that

|X(t)| 2p
2−p
≤ C|U(t)|p, t ≥ 0,

and so

t1−
1
p−γX ∈ Cb([0,∞);L

2p
2−p ). (3.39)

Furthermore, by the Carlderon-Zygmund inequality (see [9, Theorem 1]), we know that

|∇K(f)|p ≤ C|f |p, ∀f ∈ Lp.

Thus taking once f = U(t) then f = ∂jU(t) in the above inequality, and making use of the fact that

Γ−1U ∈ Zp, we get that

t1−
1
p−γ∂iX ∈ Cb([0,∞);Lp), (3.40)

and

t
3
2−

1
p−γ∂i∂jX ∈ Cb([0,∞);Lp), (3.41)

for i, j = 1, 2.

By (3.11) and (3.30) and the Fernique theorem, we see that both |U0| 1
1−γ

and R∗ belong to ∩r≥1L
r(Ω).

Thus, since y ∈ Σ, we get via (3.39)-(3.41) that

t1−
1
p−γX ∈ Cb([0,∞); Lr(Ω;L

2p
2−p )),

t1−
1
p−γ∂iX ∈ Cb([0,∞); Lr(Ω;Lp)),

t
3
2−

1
p−γ∂i∂jX ∈ Cb([0,∞); Lr(Ω;Lp)), ∀r ≥ 1, i, j = 1, 2.

Finally, if in equation (3.7) one applies the operator K(Γ·), we get for X the equation

X(t) = K(et∆Γ(t) curlx) +

∫ t

0

K
(
e(t−s)∆Γ(t)Γ−1(s)[K( curlX(s)) · ∇]( curlX(s))

)
ds, t ≥ 0.

The above equation may be viewed as the random version of the Navier-Stokes equation (1.1). However,

since U0 is not F0−measurable, the process t → U(t) is not Ft−adapted, and so X is not Ft−adapted,

too. By Theorem 3.1 we know that the above equation has a unique solution.

4 The existence results for the 3−D case

Now, we place ourselves in the whole R3 space. In this case, the Biot-Savart integral operator is given as

K(u)(ξ) := − 1

4π

∫
R3

ξ − ξ
|ξ − ξ|3

× u(ξ)dξ, ξ ∈ R3.

Hence, by (2.3), we get the following equation for the vorticity field U : dU = ∆Udt+ [K(U) · ∇]Udt− (U · ∇)K(U)dt+

N∑
i=1

(Bi(t) + θiI)Udβi in (0,∞)× R3,

U(0, ξ) = U0(ξ) = (curl x)(ξ), ξ ∈ R3.

(4.1)
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Consider again the transformation

U(t) := e
∑N
i=1[

∫ t
0
Bi(s)dβi+βiθi− 1

2

∫ t
0
B2
i (s)ds− 1

2 θ
2
i t−θi

∫ t
0
Bi(s)ds]y(t). (4.2)

By Lemmas 2.1, 2.2 and Corollary 2.1, we have that the operator

Γ(t) := e
∑N
i=1[

∫ t
0
Bi(s)dβi+βiθi− 1

2

∫ t
0
B2
i (s)ds− 1

2 θ
2
i t−θi

∫ t
0
Bi(s)ds] (4.3)

is well-defined on Lq(R3), 1 < q <∞, and it is invertible. Again, set Γ−1 for its inverse.

Then, likewise in [1], one may show that y satisfies

dy

dt
=∆y(t) + Γ−1(t)[K(Γ(t)y(t)) · ∇](Γ(t)y(t))− Γ−1(t)(Γy(t) · ∇)(K(Γy(t)); y(0) = U0. (4.4)

We write equation (4.4) in the mild formulation as

y(t) = G(y(t)) := et∆U0 + F (y)(t), t ≥ 0, (4.5)

where

F (f)(t) :=

∫ t

0

e(t−s)∆Γ−1(s)[K(Γ(s)f(s)) · ∇](Γ(s)f(s))ds−
∫ t

0

e(t−s)∆Γ−1(s)(Γy(s) · ∇)(K(Γy(s))ds, t ≥ 0.

(4.6)

Here,

(et∆g)(ξ) :=
1

(4πt)
3
2

∫
R3

e−
|ξ−ξ|2

4t g(ξ)dξ, t ≥ 0, ξ ∈ R3.

One can easily show that for 1 < α ≤ β <∞, we have, for some c > 0, the estimates

|et∆g|β ≤ ct
3
2 ( 1

β−
1
α )|g|α, g ∈ Lα(R3), (4.7)

and

|∂jet∆g|β ≤ ct
3
2 ( 1

β−
1
α )− 1

2 |g|α, u ∈ Lα(R3), j = 1, 2, 3. (4.8)

The following theorem is the counterpart, for the 3−D case, of the Theorem 3.1.

Theorem 4.1. Let 3
2 < p < 2, and Ω0 := {η∞ <∞} and consider (4.5) for fixed ω ∈ Ω0. Then,

P(Ω0) = 1 and there is a positive constant C independent of ω ∈ Ω0 such that, if U0 ∈ L
3
2 (R3) is such as

η∞|U0| 3
2
≤ C, (4.9)

then the random equation (4.5) has a unique solution y ∈ Zp which satisfies

[K(Γy) · ∇](Γy)− (Γy · ∇)(K(Γy)) ∈ L1(0,∞;L
3p

6−p (R3)).

Here

η∞ := esup0≤s<∞
∑N
i=1[βi(s)θi− s4 θ

2
i ]

and Zp is defined by

Zp :=
{
f : t1−

3
2p f ∈ Cb([0,∞);Lp(R3)), t

3
2 (1− 1

p )∂jf ∈ Cb([0,∞);Lp(R3)), j = 1, 2, 3
}
. (4.10)

Moreover, for each φ ∈ L3(R3) ∩ L
3p

4p−6 (R3), the function

t→
∫
R3

y(t, ξ)φ(ξ)dξ

is continuous on [0,∞). The map U0 → y is Lipschitz from L
3
2 (R3) to Zp .

In particular, the vorticity equation (4.1) has a unique solution U such that Γ−1U ∈ Zp.
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We notice that, likewise in [2, Remark 1.2] one can show that the condition (4.9) is not void.

Proof. The proof follows by identical arguments as those in the proof of Theorem 3.1, but, this time, with

the Sobolev embeddings, Riesz potential estimates, and Calderon-Zygmund inequality corresponding to

the 3 − D case, that can be found in the proof of Theorem 1 in [2]. Therefore, no further details are

given.

4.1 A random version of the 3−D Navier-Stokes equation

We go one obtaining the counterparts of the results in the 2−D case, for the 3−D case as-well. Concerning

the random version of the 3−D Navier-Stokes equation, we fix in (1.1) the initial random variable x by

the formula

x = K(U0),

where U0 satisfies condition (4.9) for all Ω0. Then we define the process X by the formula

X(t) = K(U(t)) = K(Γ(t)y(t)), t ≥ 0,

where y is the solution to (4.5) who’s existence and uniqueness is guaranteed by Theorem 4.1. Since

U ∈ Zp (defined in Theorem 4.1), via the Riesz potentials estimates we may show that |X(t)| 3p
3−p
≤

|U(t)|p, t ≥ 0, (see [2, Eq. (3.3)]), and so

t1−
3
2pX ∈ Cb([0,∞);L

3p
3−p ). (4.11)

Furthermore, by the Carlderon-Zygmund inequality (see [9, Theorem 1]), we know that

|∇K(f)|p ≤ C|f |p, ∀f ∈ Lp.

Thus taking once f = U(t) then f = ∂jU(t) in the above inequality, and making use of the fact that

Γ−1U ∈ Zp, we get that

t
3
2 (1− 1

p )∂iX ∈ Cb([0,∞);Lp), (4.12)

and

t
3
2 (1− 1

p )∂i∂jX ∈ Cb([0,∞);Lp), (4.13)

for i, j = 1, 2, 3.

Then, similarly as in [2, Eqs. (3.4)-(3.10)], one may deduce as-well that

t1−
3
2pX ∈ Cb([0,∞); Lr(Ω;L

3p
3−p )), r ≥ 1,

t
3
2 (1− 1

p )∂iX ∈ Cb([0,∞); Lr(Ω;Lp)),

t
3
2 (1− 1

p )∂i∂jX ∈ Cb([0,∞); Lr(Ω;Lp)), ∀r ≥ 1, i, j = 1, 2, 3.

Finally, if in equation (4.1) one applies the operator K, we get for X the equation

X(t) = K(et∆Γ(t) curlx) +

∫ t

0

K
(
e(t−s)∆Γ(t)Γ−1(s)[K( curlX(s)) · ∇]( curlX(s))

)
ds

−
∫ t

0

K
(
e(t−s)∆Γ(t)(Γ−1(s)( curlX(s)) · ∇)( K(curlX(s)))

)
ds.

The above equation may be viewed as the random version of the Navier-Stokes equation (1.1), the 3−D
case. However, since U0 is not F0−measurable, the process t→ U(t) is not Ft−adapted, and so X is not

Ft−adapted, too. By Theorem 4.1 we know that the above equation has a unique solution.
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5 Existence of solutions to a stochastic Navier-Stokes equations,

up to a stopping time, adapted to the Brownian motion

Recall the notations and the results from Theorem 3.1. For each r > 0 we define the stopping time

τr := inf {t ≥ 0; ηt ≥ r} .

Then, τr goes to infinity for r →∞. If U0(ω) ∈ L
1

1−γ is such that

sup
0≤s≤τr(ω)

ηs(ω)|U0(ω)| 1
1−γ

< C,

then equation (4.5) has a unique solution y = y(t, ω), t ∈ [0, τr(ω)], y(ω, 0) = U0(ω). Once we fix

r > 0, noticing that ηs ≤ r if s ≤ τr, we deduce that in the case that U0 ∈ L
1

1−γ is deterministic and

|U0| 1
1−γ
≤ 1

rC, we have

sup
0≤s≤τr(ω)

ηs(ω)|U0| 1
1−γ
≤ C, P− a.e. ω ∈ Ω.

Now, define

yτr (t) :=

{
y(t), t ∈ [0, τr],

y(τr), t ≥ τr.

Since U0 is deterministic, it follows that yτr is (Ft)t≥0−adapted and so is Uτr (t) = Γ(t)yτr (t), t ≥ 0. By

the stochastic calculus, we conclude that Uτr solves the stochastic vorticity equation (3.2) on [0, τr], while

Xτr (t) = K(Uτr (t)) solves the stochastic Navier-Stokes equation on [0, τr]. These lead to the following

corollary of Theorem 3.1

Corollary 5.1. For each r and deterministic U0 ∈ L
1

1−γ satisfying the condition

|U0| 1
1−γ
≤ C

r
,

there is a unique solution U = U(t, ω) to the vorticity equation (3.2) up to an explosion time τr adapted

to the Brownian motion.

A similar corollary holds true for the 3-D case in Theorem 4.1. As mentioned in [2, Remark 4.2]

this local existence and uniqueness result for the stochastic Navier-Stokes equation is new due to the

fact of low regular initial condition requirements. Moreover, one can solve the Navier-Stokes equation

in vorticity form on a nonempty time interval [0, τr) for deterministic U0 ∈ L
1

1−γ ( U0 ∈ L
3
2 in the 3-D

case).
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