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In the classical theory of second order elliptic and parabolic equations a num-
ber of integral convolution-type representations of solutions are known that involve
under the integral sign suitable fundamental solutions and the represented solu-
tion itself. Such self-representations are useful in many respects, for example, in
deriving various estimates. In case of smooth coefficients such representations are
typically obtained by multiplying the regarded equation with variable coefficients
by the fundamental solution for an equation with constant coefficients (that admits
an explicit expression) and integrating by parts (below we consider an example of
this type). However, in case of coefficients of low regularity, when also solutions
need not be differentiable, such an integration by parts can be illegal, although it
might lead to a meaningful resulting expression. Therefore, some other means of
justification are needed. Here we derive a self-representation of this sort for so-
lutions to parabolic Fokker–Planck–Kolmogorov equations with non-differentiable
coefficients, when solutions need not be Sobolev differentiable. Our result extends
some previously known representations obtained in the elliptic case in [11], [12],
and [5].

Given a mapping A = (aij)i,j on Rd × (0, +∞) with values in the space of pos-
itive definite symmetric d × d-matrices with Borel measurable entries aij, a Borel
measurable function c on Rd × (0, +∞) and a mapping

b = (bi)i≤d : Rd × (0, +∞) → Rd

with Borel components bi, we consider the associated Fokker–Planck–Kolmogorov
equation

∂tµ = ∂xi
∂xj

(aijµ)− ∂xi
(biµ) + cµ (1)
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with respect to locally bounded Borel measures µ on Rd × (0, +∞) with the usual
convention about summation over repeated indices. This equation is understood in
the sense of the identity∫

∂tϕ dµ =

∫
[aij∂xi

∂xj
ϕ + bi∂xi

ϕ + cϕ] dµ ∀ϕ ∈ C∞
0 (Rd × (0, +∞))

under the assumption that aij, bi, c are locally locally integrable with respect to |µ|
(the total variation of µ), which is automatically the case if these functions are
locally bounded. It is convenient to use the shortened expression

∂tµ− L∗A,bc,µ = 0,

where

LA,b,cϕ := aij∂xi
∂xj

ϕ + bi∂xi
ϕ + cϕ.

It is known (see [3], [4]) that under our assumptions (the coefficients are locally
|µ|-integrable and det A > 0) every solution µ possesses a density % with respect to
Lebesgue measure on Rd × (0, +∞). This density satisfies the equation

∂t% = ∂xi
∂xj

(aij%)− ∂xi
(bi%) + c% (2)

interpreted in the same way. One can also consider the Cauchy problem for this
equation complemented with initial data interpreted in the sense of distributions,
but this is not used in this paper.

It follows from (2) that, for every continuous function ϕ on Rd × [0, +∞) with
continuous derivatives ∂tϕ, ∂xi

ϕ, ∂xi
∂xj

ϕ such that ϕ(x, t) = 0 for all x outside a
ball Ω and for all t ≤ t0 for some t0 > 0, one has (see [4, Proposition 6.1.2])∫

Ω

ϕ(x, s)%(x, s) dx =

∫ s

0

∫
Ω

[∂tϕ(x, t) + LA,b,cϕ(x, t)]%(x, t) dx dt (3)

for almost all s > 0. We can take a version of % such that this is true for all s > 0.
Similarly one defines stationary (elliptic) equations. For example, any stationary

solution admits a density % satisfying the so-called double divergence form equation

∂xi
∂xj

(aij%)− ∂xi
(bi%) + c% = 0. (4)

For such equations there is the following self-representation derived in [11], [12].
Let ωd be the area of the unit sphere in Rd. Given d > 2, set

H(x, y) =
1

(d− 2)ωd

(det A(y))−1/2〈A(y)−1(x− y), x− y〉(2−d)/2.

The function H, for each fixed y, serves as a fundamental solution for the equation
with the constant diffusion matrix A(y) and zero b and c, i.e., LA(y),0,0H(·, y) = δy,
or in the integral form∫

Rd

aij(y)∂xi
∂xj

ϕ(x) H(x, y) dx = ϕ(y), ϕ ∈ C∞
0 (Rd). (5)

Let A have a modulus of continuity ω satisfying the Dini condition:∫ 1

0

ω(t)

t
dt < ∞. (6)

This condition holds if ω(t) ≤ ctδ with δ > 0 or even ω(t) ≤ c| ln t|−1−δ for t < 1.
Let us observe that once ω(t) satisfies (6), then ω(

√
t) does also, which is seen from

the change of variable s = t2.
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It is known that in this case any solution to the stationary equation has a con-
tinuous density (see [11], [12], [5]). The proof of the following result from [11], [12]
can be also found in [5].

Proposition 1. Suppose that on every ball A has a modulus of continuity satisfying
the Dini condition. Let det A > 0 and |b|, c ∈ Lq

loc(Rd), where q > d. Let η ∈ C∞
0 (Rd)

be a fixed function equal to 1 in a neighborhood U of a point z ∈ Rd. Then the
continuous version of % satisfying (4) admits the following representation:

− %(z) =

∫
U

%(x)aij(z)H(x, z)∂xi
∂xj

η(x) dx + 2

∫
U

%(x)aij(z)∂xi
H(x, z)ηj(x) dx

+

∫
U

%(x)(aij(x)− aij(z))∂xi
∂xj

(η(x)H(x, z)) dx

+

∫
U

%(x)bi(x)∂xi
(η(x)H(x, z)) dx +

∫
U

%(x)c(x)η(x)H(x, z) dx. (7)

With the aid of this representation the Hölder continuity of densities of solutions
to stationary equations with Hölder continuous A was proved in [11], [12].

Our goal is to obtain a parabolic analog of this representation. First we prove
a result of independent interest: the solution density % is locally integrable to any
power provided that A belongs to the class VMO and is locally uniformly bounded
along with A−1 and b and c are locally integrable to some power larger than d + 2.

Let us recall that a function f on Rn belongs to the class VMO if there is a
modulus of continuity ω0 such that

sup
a
|U(x0, r)|−1

∣∣∣∣∫
U(x0,r)

f(x) dx− |U(x0, r)|−1

∫
U(x0,r)

f(y) dy

∣∣∣∣ ≤ ω0(r),

where U(x0, r) is the open ball of radius r centered at x0. A function on a domain
is said to belong to VMO if it has an extension of class VMO on the whole space.

Theorem 2. Suppose that the matrices A and A−1 are locally bounded, on every
ball the functions aij belong to the class VMO and bi, c ∈ Lq

loc with some q > d + 2.
If % satisfies (2), then % ∈ Lr

loc for all r ∈ [1, +∞).

Proof. It is proved in [4, Theorem 6.3.1] that % ∈ Lr
loc for all r ∈ [1, (d+2)′) provided

that A is locally Hölder continuous in x uniformly in t. It is readily seen from the
proof of the cited theorem that the same reasoning remains in force for A in the
class VMO if we use the results of [8] or [9] to bound gradients of direct equations
considered in the proof. As in the elliptic case in [5], we raise the local integrability
of % by iterations applying the parabolic embedding theorem.

The proof is based on the following known fact (see [8], [9]). Let us fix a ball Ω
in Rd, say, of radius 1, and consider our equation in the cylinder U := Ω × (0, 1).
There are constants λ1, λ2 > 0 such that

λ1I ≤ A(x, t) ≤ λ2I ∀ (x, t) ∈ U.

Set

LA := LA,0,0.

According to [9, Theorem 22], for any function f ∈ C∞
0 (U), there is a function v

with Sobolev derivatives ∂tv, ∂xi
v, ∂xi

∂xj
v ∈ Lp(U) for every p ∈ [1, +∞) such that it



4 REPRESENTATIONS OF SOLUTIONS TO FOKKER–PLANCK–KOLMOGOROV EQUATIONS

vanishes on the parabolic boundary of U (i.e., the union of ∂Ω× [0, 1) and Ω×{0}),
satisfies the equation ∂tv − LAv = f and the inequality

‖∂tv‖Lp(U) + ‖D2
xv‖Lp(U) ≤ C(p, ω0, d, λ1, λ2)‖f‖p,

where ω0 is a fixed modulus of continuity determining membership of A in VMO. It
follows also that (with another constant) we have

‖∂tv‖Lp(U) + ‖Dxv‖Lp(U) + ‖D2
xv‖Lp(U) ≤ C‖f‖p.

In case p < d+2, by the parabolic embedding theorem, see, e.g., [7, Corollary 7.6], [6,
Theorem 7.2] (where the restriction p > 2 was needed only in the case of stochastic
Sobolev spaces), [1, Chapter III], and [10, Theorem 7.1], we have

‖Dxv‖Ls(U) ≤ C‖f‖Lp(U) ∀ s <
p(d + 2)

d + 2− p
,

where the constant C depends also on p and s (in addition to A and the ball), but
is independent of f .

We now describe our iterations. We can take for % some initial order of local
integrability p1 < (d + 2)′ as close to (d + 2)′ as we wish, in particular, we can start
with p1 < (d + 2)′ such that p′1 < q.

Let us take a function ζ ∈ C∞
0 (U) equal to 1 on a closed ball in U such that

0 ≤ ζ ≤ 1. For the function u considered above we have

LA,b,c(ζu) = ζLAu + uLAζ + 2〈ADxζ, Dxu〉+ ζ〈b, Dxu〉+ u〈b, Dxζ〉+ cζu,

where 〈· , ·〉 denotes the inner product in Rd. In addition,

sup
U

[
|LAζ|+ 2|ADxζ|+ |Dxζ|+ |∂tζ|

]
≤ M

with some number M . Hence by the generalized Hölder inequality applied to the
products (|b| + M) |%Dxu|, (|c| + M |b|) |u%|, |∂tζu%| and the exponents q, p1, and s
with

1

s
= 1− 1

q
− 1

p1

(we recall that p′1 < q), we obtain∫ s

0

∫
Ω

[∂tu + LAu] ζ% dx ≤ C‖Dxu‖s + C‖u‖s, s =
p′1q

q − p′1
, (8)

where C does not depend on u, but depends on %.
Therefore, we arrive at the estimates∫

U

f ζ% dx ≤ C‖f‖p ∀ p >
s(d + 2)

s + d + 2
(9)

with constants depending on p. If we could take p equal to s(d+2)/(s+d+2), then
we would obtain ζ% ∈ Lp2(U) with

p2 = p′ =
s(d + 2)

s(d + 2)− s− d− 2
.

Let us express p2 in terms of p1:

p2 = p1
p′1 − 1

p′1(1− (q − d− 2)/(q(d + 2)))− 1
= p1

(
1 + p′1

q − d− 2

q(d + 2)

)
> p1

(
1 +

q − d− 2

q(d + 2)

)
.
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Therefore, although we cannot take for p2 exactly this number, starting with some
p1 sufficiently close to (d+2)′ and repeating this procedure, we increase the order of
integrability pn with factor separated from 1. This works unless s(d+2) > s+d+2,
i.e., s > (d + 2)/(d + 1) = (d + 2)′, or, in terms of p1,

p1 <
q(d + 2)

q − d− 2
.

If we can take s close to (d + 2)′, then we can make p2 as large as we wish in one
step starting from a suitable value of p1. The calculations above show that this is
possible indeed. �

We now turn to our chief goal, the integral representation.
Suppose that A satisfies the condition

|A(x, t)− A(y, s)| ≤ ω(|x− y|) + ω(|t− s|), (10)

where ω is a modulus of continuity satisfying the Dini condition (6).
It follows from our assumptions (including that that A nondegenerate) that A

and A−1 are locally bounded.
Whenever s > t, x, y ∈ Rd, we set

G(x, t, y, s) = (4π(s− t))−d/2(det A(y, s))−1/2 exp
(
−〈A

−1(y, s)(x− y), x− y〉
4(s− t)

)
.

If t < s we have

∂tG(x, t, y, s) + aij(y, s)∂xi
∂xj

G(x, t, y, s) = 0.

For each function ϕ ∈ C∞
0 (Rd × (0, +∞)) we have the equality∫ s

0

∫
Rd

[∂tϕ(x, t)− aij(y, s)∂xi
∂xj

ϕ(x, t)]G(x, t, y, s) dx dt = ϕ(y, s). (11)

Let (z, s) be a fixed point.
Let us fix a function η ∈ C∞

0 (Rd × (0, +∞)) with support in an open ball U
containing (z, s) (one can take the unit ball) that equals 1 on a ball containing
(z, s) and satisfies the bounds 0 ≤ η ≤ 1. To shorten long formulas below, we use
occasionally the notation

ηi = ∂xi
η, ηij = ∂xj

∂xi
η, ηt = ∂tη.

Here is our parabolic representation.

Theorem 3. Let % satisfy (2), where A is nondegenerate and satisfies (10) with ω
satisfying Dini’s condition, bi and c belong to Lq

loc(R×(0, +∞)) with some q > d+2.
Then we have almost everywhere

η(z, s)%(z, s) =

∫ s

0

∫
Rd

[G(x, t, z, s)∂tη(x, t) + G(x, t, z, s)aij(z, s)ηxixj
(x, t)

+ 2aij(z, s)ηi(x, t)∂xi
G(x, t, z, s) + (aij(x, t)− aij(z, s))∂xi

∂xj
(η(x, t)G(x, t, z, s))

+ bi(x, t)∂xi
(η(x, t)G(x, t, z, s)) + c(x, t)η(x, t)G(x, t, z, s)]%(x, t) dx dt. (12)
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In particular,

%(z, s) =

∫ s

0

∫
Rd

[G(x, t, z, s)∂tη(x, t) + G(x, t, z, s)aij(z, s)ηxixj
(x, t)

+ 2aij(z, s)ηi(x, t)∂xi
G(x, t, z, s) + (aij(x, t)− aij(z, s))∂xi

∂xj
(η(x, t)G(x, t, z, s))

+ bi(x, t)∂xi
(η(x, t)G(x, t, z, s)) + c(x, t)η(x, t)G(x, t, z, s)]%(x, t) dx dt. (13)

Proof. To derive the desired formula we multiply (2) by ηG, integrate over the strip
Rd × (0, s) and then formally integrate by parts with respect to x. However, under
our assumptions, the solution % need not be Sobolev differentiable, hence a different
justification is needed.

We first observe that the right-hand side is meaningful. Indeed, we know that %
is locally integrable to any power, the derivatives of G locally admit the bounds

|∂xi
G(x, t, z, s)| ≤ C(s− t)−d/2−1|x− z| exp(−M |x− z|2/(s− t)),

|∂xi
∂xj

G(x, t, z, s)| ≤ C[(s− t)−d/2−1 +(s− t)−d/2−2|x−z|2] exp(−M |x−z|2/(s− t)).

Hence the first derivative is locally integrable to any power less than 1 + 2/d and
by Hölder’s inequality its product with bi is locally integrable to some power larger
than 1. Similarly, the terms with G are integrable. Let us consider the term with
the second derivative of G. We have

|aij(x, t)− aij(z, s)∂xi
∂xj

G(x, t, z, s)|
≤ C(ω(|x−z|)+ω(s−t))[(s−t)−d/2−1+(s−t)−d/2−2|x−z|2] exp(−M |x−z|2/(s−t)).

The function on the right is integrable. Indeed, changing variables

u = (x− z)(s− t)−1/2,

we arrive at the integral of

C(ω((s− t)1/2|u|) + ω(s− t))(s− t)−1[1 + |u|2] exp(−M |u|2).
The integral of ω(s−t)(s−t)−1[1+|u|2] exp(−M |u|2) is finite by Dini’s condition. The
integral of ω((s−t)1/2|u|)(s−t)−1[1+|u|2] exp(−M |u|2) is finite as well, which is seen
from convergence of the integral of ω(

√
t)/t at the origin (noted above). Therefore,

the desired integrability follows by the integrability of the function f1(z − x)f2(x)
for almost every fixed z in case of integrable f1 and f2.

We show that equality (12) holds at every point at which the integral over the
unit ball of the function

(x, t) 7→ |%(x, t)|(ω(|x− z|) + ω(s− t))

× [(s− t)−d/2−1 + (s− t)−d/2−2|x− z|2] exp(−M |x− z|2/(s− t)).

is finite and which, in addition, is a Lebesgue point for the functions % and bi% (see,
e.g., [2, § 5.6]), that is, a point (z, s) for which

lim
r→0

r−d−1

∫
Ur(z,s)

[
|%(z, s)− %(y, t)|+ |bi(z, s)%(z, s)− bi(y, t)%(y, t)|

]
dy dt = 0.

It will be important below that for this point (z, s) the function

(x, t) 7→ %(x, t)(aij(x, t)− aij(z, t))∂xi
∂xj

H(x, z)

is integrable in a neighborhood of (z, s), since

|aij(x, t)− aij(z, s)| ≤ ω(|x− z|) + ω(|s− t|), |∂xi
∂xj

G(x, t, z, s)| ≤ C|s− t|−d/2−1.



REPRESENTATIONS OF SOLUTIONS TO FOKKER–PLANCK–KOLMOGOROV EQUATIONS 7

We can assume that z = 0. For notational simplicity we write

H(x, t) := G(x, t, 0, s).

Let r > 0 be smaller than the radius of Ω divided by 4. Let us take a function
ζ = ζr ∈ C∞(Rd × R) that vanishes in the ball Ur of radius r centered at (0, s),
equals 1 outside the ball U2r belonging with its closure to U and such that

0 ≤ ζ ≤ 1, |Dxζ| ≤ Cr−1, |∂xi
∂xj

ζ| ≤ Cr−2, |∂tζ| ≤ Cr−1,

where C does not depend on r; here and throughout we denote by C generic con-
stants (possibly, different) appearing in our estimates. The index r for ζr will not be
indicated below, but in all limits as r → 0 in the integrals with ζ considered below
it is meant that dependence on r is due to ζr.

It is clear that ζ−1 ∈ C∞
0 (Rd×R). Since ζ vanishes in Ur(0, s), the function ζηH

extended by zero on the set t ≥ s is smooth on Rd+1. Using it in (3) and taking into
account that the left-hand side of (3) vanishes for it, we arrive at the equality (in
this equality and below we do not indicate the arguments of the integrands in case
of integration in all variables)∫ s

0

∫
Ω

(∂t + L)(ζηH)% dx dt = 0. (14)

Into this equality we substitute the identities

∂t(ζηH) = ∂tζ(ηH) + ζ(∂tη)H + ζη∂tH

and

L(ζηH) = aijζ∂xi
∂xj

(ηH) + aijζijηH + 2aijζiHηj + 2aijη∂xj
Hζi

+ biζiηH + ζbi∂xi
(ηH) + cζηH,

which is transformed to the following more compact form taking into account that
the function η equals 1 on the ball U2r outside of which the derivatives of ζ vanish:

L(ζηH) = aijζ∂xi
∂xj

(ηH) + aijζijH + 2aij∂xj
Hζi + biζiH

+ ζbi∂xi
(ηH) + cζηH. (15)

As r → 0 (recall that ζ depends on r, which is suppressed in our notation), the inte-
grals with the weight % of the last two terms in this identity tend to the correspond-
ing integrals in the right-hand side of (12) by the Lebesgue dominated convergence
theorem.

For estimating the integral of the fourth term in (15) with the weight % we observe
that H(x, t) ≤ Cr−d/2 outside of Ur(0, s). Hence by the local boundedness of b and
the fact that (0, s) is a Lebesgue point we have∫

U2r

|biζiH%| dx dt ≤ C ′r−1−d/2

∫
U2r

|%| dx dt

≤ C ′′r−1−d/2+1+d,

which tends to zero as r → 0.
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Next we analyze the second term in (15). Similarly to the estimates above, we
have∫

U2r

|(aij(x, t)− aij(0, s))ζij(x, t)H(x, t)%(x, t)| dx dt

≤ Cω(r)r−2r−d/2

∫
U2r

|%(x, t)| dx dt ≤ C ′ω(r)r−1+d/2. (16)

On the other hand, from (11) with the function ϕ = ζ − 1 we obtain

−η(0, s)%(0, s) =

∫ s

0

∫
Ω

[∂tζ(x, t)− aij(0, s)ζij(x, t)] H(x, t)η(0, s)%(0, s) dx dt.

The right-hand side differs from∫ s

0

∫
Ω

[∂tζ(x, t)− aij(0, s)ζij(x, t)] H(x, t)η(x, t)%(x, t) dx dt

by a quantity tending to zero as r → 0, since

|∂tζ| ≤ Cr−1, |ζij| ≤ Cr−2,

H(x, t) ≤ Cr−d/2 if (x, t) ∈ U2r\Ur,

and the integral of |%(x, t)− %(0, s)| over Ur is estimated by o(r)rd+1 (since (0, s) is
a Lebesgue point). Thus, along with (16) this gives the equality

−η(0, s)%(0, s) = lim
r→0

∫ s

0

∫
Ω

[∂tζ(x, t)− aij(0, s)ζij(x, t)] H(x, t)η(x, t)%(x, t) dx dt

= lim
r→0

∫ s

0

∫
Ω

[∂tζ(x, t)− aij(x, t)ζij(x, t)] H(x, t)η(x, t)%(x, t) dx dt.

Therefore, for the integral with the weight % of the second term in (15) with the
added −∂tζηH we have∫ s

0

∫
Ω

[−∂tζ + aijζij]H%dx dt → η(0, s)%(0, s)

as r → 0. Note that now we have 2∂tζηH at our disposal in place of the original
term ∂tζηH, which will be important below.

Let us now consider the third term in (15) and verify that Therefore, for the
integral with the weight % of the third term in (15) we have

lim
r→0

∫ s

0

∫
Ω

[2∂tζH + 2aij∂xj
Hζi]% dx dt → −2η(0, s)%(0, s). (17)

By the bounds |ζi(x, t)| ≤ Cr−1, ∂xj
H(x, t) ≤ Cr−d/2−1/2 we have∫ s

0

∫
Ω

|∂xj
H(x, t)ζi(x, t)| |%(x, t)− %(0, s)| dx dt

≤ Cr−(d+3)/2

∫ s

0

∫
Ω

|%(x, t)− %(0, s)| dx dt ≤ o(r)r(d−1)/2 → 0

as r → 0. Hence in (17) we can replace %(x, t) with %(0, s), next we can replace
aij(x, t) with aij(0, s) by the continuity of aij. Let us now observe that by virtue
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of (11) we have∫ s

0

∫
Ω

[∂tζ(x, t)H(x, t) + aij(0, s)∂xj
H(x, t)ζi(x, t)] dx dt

=

∫ s

0

∫
Ω

[∂t(ζ − 1)(x, t)H(x, t)− aij(0, s)∂xj
∂xi

(ζ − 1)(x, t)]H(x, t) dx dt = −1,

hence (17) is established.
It remains to consider the first term in (15) and study the behavior of the integral∫ s

0

∫
Ω

aijζ∂xi
∂xj

(ηH)% dx dt.

We observe that the forth term in (12) equals∫ s

0

∫
Ω

%(x, t)(aij(x, t)− aij(0, s))∂xi
∂xj

(η(x, t)H(x, t)) dx dt

= lim
r→0

∫ s

0

∫
Ω

ζ(x, t)%(x, t)(aij(x, t)− aij(0, s))∂xi
∂xj

(η(x, t)H(x, t)) dx dt

by the Lebesgue dominated convergence theorem. The integral of the first term is
the one we are studying. Hence we have to consider the integral with the weight %
of the function

aij(0, s)ζ(x, t)∂xi
∂xj

(η(x, t)H(x, t)) = aij(0, s)ζ(x, t)H(x, t)ηij(x, t)

+ aij(0, s)ζ(x, t)η(x, t)∂xi
∂xj

H(x, t) + 2ζ(x, t)aij(0, s)∂xi
H(x, t)ηj(x, t).

In this expression, the integrals of the first and last terms with the weight % tend,
respectively, to the second and third terms in the right-hand side of (12) by the
Lebesgue dominated convergence theorem.

It remains to handle the function aij(0, s)ζ(x, t)η(x, t)∂xi
∂xj

H(x, t) in the expres-
sion above. However, adding to this function the term ζη∂tH from the derivative
∂t(ζηH) (which has been left aside so far) we obtain the expression that vanishes
identically since on the ball Ur the function ζ equals zero and outside this ball,
whenever t < s, we have the equality

∂tH(x, t)− aij(0, s)∂xi
∂xj

H(x, t) = 0.

Finally, the integral of ζ(∂hη)H% tends to the first term in the right-hand side of (12).
Thus, the desired formula is completely justified. �

Corollary 4. Under the stated assumptions, there is a continuous version of %.

Proof. It suffices to verify the continuity of the right-hand side of our representation.
We show that the right-hand side in (12) is bounded and then our claim will follow
by the known properties of convolutions (this will actually yield the continuity of
η%, but since η can be chosen arbitrarily, the continuity of % follows). To this end we
apply the following useful assertion from [12]: if nonnegative measurable functions
u, K and f on Rn are such that u, K ∈ L1, f ∈ Lp + L∞, 1 < p ≤ +∞, i.e.,
f = f1 + f2, where f1 ∈ Lp, f2 ∈ L∞, and almost everywhere

u ≤ K ∗ u + f,

then u ∈ Lp + L∞. �
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As an application of the obtained representation we give a sufficient condition for
the global boundedness of solution densities in case of b sufficiently integrable with
respect to the solution. For a Sobolev class matrix A such conditions are known
(see [4]), but their proof employs membership in Sobolev classes and embedding
theorems. Under our assumptions, % can fail to belong to a Sobolev class.

Theorem 5. Suppose that a bounded measure µ on Rd×(0, 1) satisfies equation (1),
where bi, c ∈ Lp(|µ|) with some p > d + 2, the matrices A and A−1 are uniformly
bounded and the functions aij have a modulus of continuity satisfying Dini’s condi-
tion. Then the solution density % is uniformly bounded on Rd × (0, 1).

Proof. We use again the lemma from [12] cited above. To this end we have to
estimate the integral∫

Rd×(0,s)

[
|bi(x, t)|∂xi

(η(x, t)G(x, t, z, s)) + |c(x, t)|η(x, t)G(x, t, z, s)
]
|%(x, t)| dx dt.

It suffices to consider the integral∫
Rd×(0,s)

(s− t)−1|b(x, t)| |x− z|G(x, t, z, s)|%(x, t)| dx dt.

By Hölder’s inequality it is dominated by

‖b‖Lp(|µ|)

(∫
Rd×(0,s)

(s− t)−p′|x− z|p′
G(x, t, z, s)p′|%(x, t)| dx dt

)1/p′

≤ C + CK ∗ |%|,

where the function K(x, t) = (s − t)−p′|x − z|p′
G(x, t, z, s)p′

is integrable, since
p′ < (d + 2)′ = (d + 2)/(d + 1). �
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