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Abstract—A PDE-based image restoration model is proposed 

in this paper. It aims to restore degraded images that are affected 

by both noise and missing zones. The considered restoration 

approach is based on two PDE variational techniques. The first 

variational method performs an efficient noise reduction, while 

the second variational model provides the image reconstruction. 

By using both variational models, one achieves a much better 
enhancement of the degraded image. 

Keywords—image denoising; image restoration; PDE model; 

variational approach; inpainting model. 

I.  INTRODUCTION 

The most important image pre-processing tasks, namely 
the image denoising and restoration, are performed by using 
some partial differential equation (PDE) based mathematical 
models [1]. The partial differential equations have been 
successful for solving various image processing and computer 
vision tasks since 1980s [1,2]. The variational and PDE-based 
approaches have been widely used and studied in these 
domains in the last decades, mainly because of their modeling 
flexibility and some advantages of their numerical 
implementation. 

Image noise reduction with feature preservation is still a 
focus in the image processing field and a serious challenge for 
the researchers. An efficient denoising technique has to not 
only substantially reduce the quantity of image noise but also 
preserve the image boundaries and other characteristics [3]. 
The conventional smoothing models, such as the averaging, 
median, Wiener, or the classic 2D Gaussian filter succeed in 
noise reduction, but could also have undesired effects on 
edges or other image details and structures [4]. The PDE-
based models provide efficient image filtering while 
preserving the features. The linear PDE-based denoising 
techniques are derived from the use of the Gaussian filter in 
multiscale image analysis [4]. The nonlinear PDE-based 
approaches are able to smooth images while preserving their 
edges, also avoiding the localization problems of linear 
filtering. Most popular nonlinear PDE denoising method is the 
influential nonlinear anisotropic diffusion scheme developed 
by P. Perona and J. Malik in 1987 [5]. Many smoothing 
methods derived from their algorithm have been proposed 
since then [6]. 

There are many ways to get the nonlinear PDEs. In image 
processing and computer vision it is very common to obtain 
them from some variational problems. The basic idea of any 
variational PDE technique is the minimization of a energy 
functional [1]. The variational approaches have important 
advantages in both theory and computation, compared with 
other methods. An influential variational denoising and 
restoration model was developed by Rudin, Osher and Fetami 
in 1992 [7]. Their technique, named Total Variation (TV) 
denoising, is based on the minimization of the TV norm [7] 
and is remarkably effective at simultaneously preserving 
boundaries whilst smoothing away the noise in flat regions. 
Because it suffers from the staircasing effect and its 
corresponding Euler- Lagrange equation is highly nonlinear 
and difficult to compute, many PDE approaches improving 
this classical variational model have been proposed in recent 
years [1,2]. 

Image reconstruction, which is known also as image 
inpainting, represents the computer vision process of restoring 
the missing areas of a damaged image as plausibly as possible 
from the known zones around them. The image reconstruction 
techniques are divided into the following categories: structural 
inpainting, textural inpainting, and combined approaches that 
perform simultaneous structure and texture inpainting. 
Texture-based inpainting is highly connected with the problem 
of texture synthesis. A lot of texture inpainting algorithms 
have been proposed since an influential texture synthesis 
model was developed by A. Efros and T. Leung [8]. In their 
approach texture is synthesized in a pixel by pixel way, by 
taking existing pixels with similar neighborhoods in a 
randomized fashion. Many other texture synthesis algorithms 
improving the speed and effectiveness of the Efros-Leung 
scheme have been elaborated in the last 15 years [9]. 

Structural inpainting uses PDE-based and variational 
reconstruction techniques. The PDE methods follow isophote 
directions in the image to perform the reconstruction. The first 
PDE-based inpainting model was introduced by Bertalmio et 
al. in [10]. Variational methods for image reconstruction have 
been introduced since 2001, when the Total Variation (TV) 
inpainting model was proposed by T. Chan and J. Shen [11]. 
Their variational scheme fills the missing image regions by 
minimizing the total variation, while keeping close to the 
original image in the known regions. It uses an Euler-
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Lagrange equation and anisotropic diffusion based on the 
strength of the isophotes. TV inpainting model has been 
extended and considerably improved in other papers, too. 

First we provide an effective variational PDE noise 
reduction technique, which is described in the next section. 
Then, a variational inpainting model is introduced in the third 
section. Some image enhancement experiments are provided 
in the fourth section. The paper finalizes with a conclusion’s 
section and a list of references. 

II. VARIATIONAL IMAGE NOISE REMOVAL TECHNIQUE 

The general variational framework used for image 
denoising is based on the following energy functional:  
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where the function  is the regularizer, or penalizer, of the 

smoothing term and 

 

represents the regularization parameter 
or smoothness weight [7,12]. We model a robust smoothing 
component, based on a novel penalizer function and a proper 
value of the smoothness weight. So, we consider the following 
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We use some proper values for the penalizer’s parameters. 
Then, we compute a minimizer for the energy functional given 
by (1), using the regularizer function provided by (2): 

 

    










duuu

uJu

Uu

Uu

2

0

2

min

 minarg       

minarg



             (3) 

 The minimization result 
min

u  represents the denoised 

image. The minimization process is performed by solving the 
following associated Euler-Lagrange equation [7,12]:   
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which leads to the following PDE: 
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differential equation provided by (5) will take the following 
form: 
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One can demonstrate the PDE model given by (6) 
converges to a unique strong and stationary solution,  

min
* uu  [13]. The numerical approximation of this model 

uses a 4-NN discretization of Laplacian operator. So, from (5) 
we get: 
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which leads to the following iterative approximation:  
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The iterative model developed by us converges fast to the 

solution 
min

uu
N
 , the parameter N taking quite low values. 

The effectiveness of the proposed denoising method is proved 
by the performed denoising experiments. 

III. VARIATIONAL IMAGE INPAINTING APPROACH 

We consider a robust variational PDE technique that 
reconstructs a degraded image that is observed in a number of 
points. Our approach uses a variational problem considered in 
the Sobolev distribution space whose Euler-Lagrange equation 
represents a nonlinear elliptic diffusion equation. The 
reconstructed image is determined from the following energy 
functional minimization: 
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where g: RR represents a convex and lower semi-continuous 

function, u is the restored image and 
0

u  is the observed image, 

characterized by missing zones, on the bounded domain 
2

R . The Euler–Lagrange optimality conditions from (9) 

are provided by next elliptic boundary value problem: 

 

 







on ,0

in ,
0

u

uuu




                           (10) 

where   constitutes the subdifferential of g defined as 

         RssgrgsrwRwr  ,; . It represents 

a maximal monotone and multivalued function [14]. The 
minimization problem (9) has a unique solution u*, which 
satisfies the equation given by (10). The steady-state solution 
u* to the following evolution equation: 
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represents also the solution to (10) and, respectively to the 
minimization problem (9). The discrete version of the equation 
(11) is provided by the following steepest descent algorithm: 
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Then, by using  uAu  , we obtain the following 

implicit finite difference scheme: 
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that is next transformed into the explicit finite difference 
scheme: 
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where  N  represents the number of iterations,  Tt ,0  and  
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explicit finite difference scheme: 
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where 1  and  1 ,0 , respectively. The image is 

reconstructed by applying the iterative algorithm given by (16) 

for k = 0,1,…,N – 1. The degraded image 
0

0
uu   is 

transformed into the restored image N
u , that is closed to the 

original image, in several tens steps. The inpainting algorithm 
is applied to the image that has been previously smoothed 
through the described denoising method. 

IV. EXPERIMENTS 

The described PDE-based variational approaches have 
been successfully applied on hundreds of images corrupted 
with various levels of Gaussian noise, which mean various 
values for mean and variance, and containing missing regions. 
The variational denoising algorithm has been applied by using 
several properly chosen parameters that provide optimal noise 

reduction results: ,5.0,66.0,7.0,25,14.0   K  

15,3.0,2.0  N . 

According to the method comparison, our technique 
outperforms many other noise reduction algorithms. Its 
denoising performance has been assessed by using the norm of 
the error image measure.  

TABLE I. Norm-of-the-error values for several models 

This algorithm 3
101.5   

Perona-Malik scheme 3
109.5   

Quadratic model 3
101.6   

2D Gaussian 3
102.7   

Median 3
106   

Average 3
103.6   

Wiener 3
107.5   

 
As one can see in TABLE I, the proposed denoising 

approach provides the lowest NE values. It achieves much 
better edge-preserving denoising results than non-PDE filters, 
such as the average, Gaussian, or median filters [4]. It also 
produces a better restoration and converges faster than other 
PDE variational schemes, like the quadratic variational model, 

characterized by the regularizer   22
ss  , or the Perona-

Malik variational scheme, given by  
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[12]. The proposed PDE model also outperforms the well-
known TV denoising algorithm [7], because it reduces 
considerably the staircasing effect [15].  

The proposed reconstruction technique executes also quite 

fast, being characterized by a low time complexity. Its 

approximate running time is 1 second. The optimal inpainting 

results are obtained for a number of iterations N = 40. Method 

comparisons have also been performed. The performance of 

this restoration technique has been compared with 

performances of some other inpainting methods, such as TV 

inpainting [11] and those based on Gaussian processes, such 

as GPR models [16]. We have found that our restoration 
approach runs faster that many other algorithms, while it 

produces comparable good results. 

 
Fig. 1. Image restoration example 

 



An image restoration example is displayed in Fig. 1. In (a) 
one can see the original Peppers image, while the degraded 
image is depicted in (b). The denoised image is represented in 
(c) and the reconstruction result is provided in (d). Our image 
noise removal and reconstruction experiments have been 
performed by using MATLAB.  

V. CONCLUSIONS 

We have proposed an effective image enhancement 
approach based on two robust variational PDE models, in this 
article. We have brought important contributions in both 
image denoising and inpainting domains. 

The denoising method minimizes an energy functional that 
is based on a novel regularizer function. The discretization of 
the PDE model representing its Euler-Lagrange equation is 
another contribution of this paper. Our smoothing method 
outperforms other denoising schemes, has an edge preserving 
character and removes the staircasing effect.  

The proposed variational reconstruction model is based on 
a functional energy minimization whose corresponding Euler-
Lagrange equation constitutes a nonlinear elliptic diffusion 
equation. It works properly on images still affected by missing 
zones, which have already been denoised, as resulting from 
our successful restoration experiments. 

While the described techniques use second-order diffusion 
equations, our future research in the PDE-based image 
restoration field will focus on developing some improved 
enhancement models based on fourth-order partial differential 
equations.  
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