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Abstract

We consider sufficient conditions for the absolute continuity of the distributions of smooth functions
on infinite-dimensional spaces with measures.
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In this note we are concerned with sufficient conditions for the absolute continuity of the distribution
of a smooth function f on an infinite-dimensional space X equipped with a measure µ. We shall
assume that X is a locally convex space and µ is a Radon probability measure on X (see [2]). Various
conditions of this sort are known for the most diverse classes of functions and measures, see [1], [3],
[4], [5]. An important sufficient condition comes from the one-dimensional case where the following
simple fact is known: if µ is an absolutely continuous measure and f is an arbitrary function, then,
letting D be the set where f has a nonzero derivative, we obtain that the restriction of µ to D is
taken by f to an absolutely continuous measure, i.e., the measure µ|D ◦ f−1 is absolutely continuous.
Throughout the image of µ under f is denoted by µ ◦ f−1 and is defined by µ ◦ f−1(B) = µ(f−1(B)).
It is known that in the considered case the set D is always Lebesgue measurable and f is measurable
on D.

This fact suggests the following obvious infinite-dimensional (actually, dimension-free) extension.
Suppose that h 6= 0 is a vector in X such that µ admits absolutely continuous conditional measures
µy on the straight lines y + Rh, where y ∈ Y and Y is a closed hyperplane complementing Rh. This
means that

µ(B) =
∫

Y

µy(B) µY (dy),

where µY is the image of µ under the natural projection on Y . Then, for any measurable function f ,
the image under f of the restriction of µ to the set D where the partial derivative ∂hf exists and does
not vanish is absolutely continuous. The partial derivative is naturally defined as

∂hf(x) = lim
t→0

f(x + th)− f(x)
t

.

The existence of absolutely continuous conditional measures is equivalent to the continuity of µ along h,
i.e., the continuity of the functions t 7→ µ(B + th) for all Borel sets B, which, in turn, is equivalent to
the equality lim

t→0
‖µ− µth‖ = 0, where ‖ · ‖ is the variation norm and µh(B) = µ(B − h).

As a corollary one obtains that µ◦f−1 is absolutely continuous provided f is a measurable function
such that there is a countable collection of vectors hn along which µ is continuous and for almost every
point x there is n such that ∂hn

f exists at x and does not vanish.
There is also an multidimensional analog of this result for mappings f = (f1, . . . , fd) with values

in Rd: under the same assumptions about µ, it is sufficient that µ-almost everywhere one can find
hi1 , . . . , hid

such that the partial derivatives ∂hi
fj exist and the matrix (∂hi

fj)i,j≤d is nondegenerate.
Apparently, one cannot expect efficient generalizations of these results. However, it could be of interest
to have efficiently verified conditions that guarantee that the stated hypotheses are fulfilled. In that
case, one could accept to deal with less general functions. In the one-dimensional case, the following
simple observation may be helpful.
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Lemma 1. If f ∈ Ck(R), then the set

{x : f ′(x) = 0} ∩ {x : f (k)(x) 6= 0}
does not contain its limit points and is at most countable. Therefore, the image under f of the
restriction of Lebesgue measure to the set where some of the derivatives of f does not vanish is
absolutely continuous. In particular, if f is infinitely differentiable and

E = {x : there is k such that f (k)(x) 6= 0},
then the image under f of the restriction of Lebesgue measure to E is absolutely continuous.

Proof. Since we have the absolute continuity of the image under f of the restriction of Lebesgue
measure to the set where f ′ does not vanish, it suffices to prove the first claim. This claim is,
however, obvious: if f ′(x) = 0 and there is a nontrivial sequence xn → x such that f ′(xn) = 0 and
f (k)(xn) 6= 0, then we can find another nontrivial sequence zn → x such that f ′′(zn) = 0, hence
f ′′(x) = 0. Continuing in this way we conclude that f (k)(x) = 0, so x does not belong to the indicated
set. Since the set {x : f (k)(x) 6= 0} is open and consists of a finitely or countably many intervals, we
obtain that the intersection of the closed set {x : f ′(x) = 0} with any of these intervals is at most
countable. �

Now an infinite-dimensional extension is immediate.

Theorem 1. Let µ be a Radon probability measure on a locally convex space X continuous along vec-
tors from a countable set S and let f be a µ-measurable function on X such that all partial derivatives
∂h1 · · · ∂hn

f exist everywhere for all h1, . . . , hn in the linear span of S. Let

E = {x : ∃h1, . . . , hn ∈ S with ∂h1 · · · ∂hn
f(x) 6= 0}.

Then the measure µ|E ◦ f−1 is absolutely continuous.

Proof. Let us observe that every differential operator ∂h1 · · · ∂hn can be written as a linear combination
of differential operators of the form ∂k

v , where k ≤ n and v is a linear combination of h1, . . . , hn

with rational coefficients. Adding to the set S all linear combinations of its elements with rational
coefficients we may assume from the very beginning that S is closed under taking such combinations.
Therefore, it suffices to prove our claim for the set

E0 = {x : ∃h ∈ S, n ∈ N with ∂n
hf(x) 6= 0}.

Now the lemma can be applied. Indeed, if Z ⊂ R is a set of Lebesgue measure zero, then in order to
verify that f−1(Z) has µ-measure zero, it suffices to show that the intersection of f−1(Z) with every
set Ev,n = {x : ∂n

hf(x) 6= 0}, where v ∈ S and n ∈ N has measure zero. Therefore, it remains to
observe that for every y such that the conditional measure µy is absolutely continuous, the intersection
Ev,n ∩ y + Rv has Lebesgue measure zero in the straight line y + Rv. �

We recall that a Radon probability measure µ on X is called centered Gaussian (see [1], [3]) if every
continuous linear functional on X induces a centered Gaussian measure. The Cameron–Martin space
H of µ consists of all vectors h such that the measures µ and µh are equivalent. It also coincides with
the set of all vectors along which µ is continuous. It is known that H is a separable Hilbert space
with respect to the norm

|h|H = sup{l(h) : l ∈ X∗, ‖l‖L2(µ) ≤ 1},
where X∗ is the space of all continuous linear functionals on X.

The Sobolev classes W p,k(µ) are defined as the completions of the class of functions of the form

f(x) = f0(l1(x), . . . , ln(x)), f0 ∈ C∞b (Rn), l1, . . . , ln ∈ X∗,

with respect to the Sobolev norm f 7→ ‖f‖p,k. The latter can be defined as follows. Let {en} be an
orthonormal basis in H. Then

‖f‖p,k = ‖f‖Lp(µ) +
(∫

X

∣∣∣ ∑
i1,...,ip

|∂ei1
· · · ∂eik

f(x)|2
∣∣∣p/2

µ(dx)
)1/p

.
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Every function f ∈ W p,k(µ) has a Sobolev derivative Dk
H

f (defined by means of the integration
by parts formula) with values in the space of k-linear Hilbert–Schmidt functions on H. See [1],
[3] for more details. The class W p,∞(µ) is defined as the intersection of all W p,k(µ), k ∈ N. Let
W∞(µ) =

⋂
p∈N W p,∞(µ).

It is possible to introduce local Sobolev classes W p,k
loc (µ) and their intersection. We say that f

belongs to W p,k
loc (µ) if there exists a sequence of functions χn ∈ W∞(µ) such that the sets {χn = 1}

are increasing and their union has full measure. The sequence {χn} is called localizing.

Remark 1. For example, if f is a Borel function on a sequentially complete space X that is bounded
on compact sets and has Fréchet derivatives Dk

H
f along H of every order k with values in the spaces

Hk of k-linear Hilbert–Schmidt functions such that the corresponding Hilbert–Schmidt norms of the
derivatives are also bounded on compact sets, then f ∈ W∞

loc(µ). Indeed, one can find a localizing
sequence of functions χh ∈ W∞(µ) such that 0 ≤ χn ≤ 1 and χn = 0 outside of some compact
absolutely convex set Kn (their existence is shown below). Then χnf ∈ W∞(µ), which follows by the
known characterizations of Sobolev classes (see [1, Chapter 5] and [3, Chapter 8]). Let us explain how
to construct χn (the details can be found in [1, Proposition 5.4.12 and Remark 5.4.13]). Since X is
sequentially complete, there exist metrizable absolutely convex compact sets Kn such that their union
has full measure (by Tsirelson’s theorem, see [1, Theorem 3.4.1], for any X one can find increasing
metrizable compact sets with union of full measure, and in the case of a sequentially complete space
the absolutely convex closed hull of a metrizable compact set is compact metrizable). By using the
Minkowski functional of Kn it is easy to construct a function fn ∈ W p,1(µ) such that 0 ≤ fn ≤ 1, f is
Lipschitzian along H, fn = 1 on Kn, fn = 0 outside of 2Kn. Then the Ornstein–Uhlenbeck semigroup
can be used for smoothing fn and obtaining the desired function.

Corollary 1. Let µ be a centered Radon Gaussian measure on X, let f ∈ W p,∞(µ) and

E :=
∞⋃

n=1

{x : Dn
H

f(x) 6= 0}.

Then the measure µ|E◦f−1 is absolutely continuous. The same is true for the class f ∈ W p,∞
loc (µ).

Corollary 2. Let µ be a centered Radon Gaussian measure on X and let f be a Borel function on X
such that, for some orthonormal basis {en} in H, the functions t 7→ f(x + ten) are real analytic
for almost each x. Then either f has an absolutely continuous distribution or coincides µ-almost
everywhere with a constant.

Proof. Suppose that µ◦f−1 is not absolutely continuous. Then it follows that the intersection Z of the
sets En = {x : ∂en

f(x) = 0} has positive measure. If we show that µ(Z) = 1, then by the analyticity
of f along en we obtain that, for every fixed n, the function t 7→ f(x + ten) is constant for almost
every x. By the zero-one law f coincides with a constant almost everywhere (see [1, Corollary 3.2.11]).
Therefore, it remains to show that µ(Z) = 1. The function t 7→ ∂en

f(x + ten) is real analytic for
each x such that t 7→ f(x + ten) is real analytic. Hence the set Z contains every straight line x + Ren

that intersects Z by an uncountable set. Therefore, the set Z coincides with Z +Ren up to a measure
zero set for each fixed n. Consequently, applying this to n = 1, 2, . . ., we conclude that Z coincides
up to a measure zero set with Z + L, where L is the linear span of {en}. Applying again the zero-one
law, we obtain that µ(Z) = 1, which completes our proof. �

Note that if H is dense in X and f is continuous and equals a constant µ-a.e., then it is constant.
This follows by the known fact that µ is positive on all nonempty open sets if H is dense.

Clearly, the same result is true for any measure µ with the following two properties: there is a
sequence of vectors en such that µ is quasi-invariant along en (the shifts µten

are equivalent) and any
measurable function invariant under the shifts along the vectors ten is constant almost everywhere.
It would be interesting to study this question for convex measures.
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There is a natural multidimensional analog of the last corollary. Recall that if f = (f1, . . . , fd),
where fi ∈ W 1,1

loc (µ), then the matrix with the entries (D
H

fi, DH
fj)H is called the Malliavin matrix. Its

nondegeneracy is sufficient for the absolute continuity of the measure µ◦f−1 on Rd (see [3, Chapter 9]).

Corollary 3. Let f = (f1, . . . , fd), where each fi satisfies the same conditions as f in the previous
corollary and, in addition, f ∈ W 1,1

loc (µ). Then either the measure µ ◦ f−1 is absolutely continuous on
Rd or the Malliavin matrix for f is degenerate almost everywhere.

Proof. The determinant of the Malliavin matrix for f is a Borel function satisfying the same assump-
tions as f in the previous corollary. Hence its zero set has measure either 0 or 1. �

Let µ be a Radon probability measure on a locally convex space X infinitely differentiable along
vectors from a densely embedded separable Hilbert space H (see [3] for this concept). It is possible to
introduce Sobolev spaces with respect to differentiable measures (see [3]). The same reasoning gives
the following result.

Corollary 4. Let f ∈ W∞(µ) and let E =
⋃∞

n=1{x : Dn
H

f(x) 6= 0}. Then the measure µ|E ◦f−1 is
absolutely continuous. The same is true for the local class W∞

loc(µ).
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