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1 Introduction

In this paper, we study thermodynamic states of the following model of an
interacting particle system. A countable collection of point ‘particles’ is chaot-
ically distributed over Rd, d ≥ 2. The corresponding mathematical model is
a homogeneous Poisson random point field πλ with intensity λ > 0. Each
‘particle’ represents a cluster of magnetically active physical particles, and
hence is supposed to bear spin σx which takes any real value. We assume that
σx ∈ R is characterized by a symmetric a priori distribution χ. The spin-spin
interaction is supposed to be pair-wise and attractive. For the ‘particles’ lo-
cated at x and y, it has the form Jxyσxσy with intensity Jxy = ϕ(|x−y|)Dxy,
where a non-random (measurable) function ϕ takes values in [ϕ∗, ϕ

∗], ϕ∗ > 0,
ϕ∗ < ∞. The random variables {Dxy : x, y ∈ Rd, x ̸= y} take values 1 and 0
with probability g(|x−y|) and 1−g(|x−y|), respectively. They are mutually
independent, and also independent of the underlying Poisson random field.
We suppose that g(r) ∈ [0, 1], and g(r) = 0 whenever r > r∗, where r∗ > 0 is
a fixed parameter of the model. The physical meaning of the factors Dxy is to
take into account that some of the exchange interactions between the spins
can be suppressed to zero by the random environment in which the system is
placed. We call this model the amorphous ferromagnet, cf. [18, Section 11].

In view of the randomness mentioned above, the notion of the thermody-
namic state of our model can be introduced in the following two ways. In the
first one, the randomness is taken into account already at the level of local
states defined on the space of joint configurations of particles, spins, and con-
nection variables D. The global Gibbs measures constructed in this way are
then the annealed states; they describe the equilibrium of the whole system.
In the case of non-random Dxy = 1, |x− y| ≤ r∗ and Dxy = 0, |x− y| > r∗,
the mentioned configuration space would be the space of marked particle
configurations γ̂ = {(x, σx) : x ∈ γ}, where γ is a locally finite subset of
Rd, see (1) below. The second approach, which we follow in this paper, is
to construct thermodynamic states of the spin system alone for fixed typical
configurations of the particles and the variablesD. These are quenched states.
The global observables characterizing such states are self-averaging, i.e., non-
random. Note that studying quenched states is a more difficult problem as
compared to that of annealed ones, in view of the present spatial irregular-
ities which do not allow for applying here most of the methods effective for
regular systems.

Actually, there exist only few publications on the mathematically rig-
orous theory of phase transitions in spin systems of general type living on
non-crystalline (amorphous) substances, cf. [6–8,20] where annealed states
were considered. The reason for this is presumably that the methods for
studying such phenomena, e.g., infrared estimates, are essentially based on
the translation invariance (and other symmetries) of the underlying crystals.
At the same time, for Ising spins σx = ±1, there exist methods applicable
to the corresponding models on graphs, cf. [9,10,15]. The main idea of prov-
ing phase transitions in such models is to relate the appearance of multiple
phases of the spin system with Bernoulli bond percolation on the underly-
ing graph. On the other hand, an amorphous substance can be described in
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terms of random point fields, and thereby can also be considered as a ran-
dom graph, in which one can observe a Bernoulli bond percolation, see [3,16,
17]. The main aim of the present work is to combine the mentioned methods
and prove that the mean magnetization in the model of an amorphous fer-
romagnet with spins σx ∈ R mentioned above can be positive almost surely,
and hence the Gibbs states can be multiple, if the particle density and the
interaction strength are large enough. The realization of the mentioned idea
goes along the following line of arguments. First we establish the existence
of the corresponding Gibbs states. For random graphs with unbounded ver-
tex degrees, proving the existence of Gibbs states with properties suitable
for physical applications is a nontrivial problem, especially if the single-spin
distribution χ has noncompact support. In the latter case, there can exist
states supported on configurations of spins with rapidly increasing |σx| as
|x| → +∞, whereas for typical configurations in a ferromagnetic phase, most
of the spins take values close to same s > 0. Therefore, Gibbs measures of
physical relevance ought to be supported on the configurations with tem-
pered growth of |σx|. In this paper, the existence of such tempered Gibbs
states is proven by means of a result of [11] and a property of the Poisson
random field obtained in Proposition 1 below. Next, by means of the results
of [3,16,17], we conclude that the underlying Poisson random field with the
adjacency relation established by the function g almost surely has an infinite
connected component, in which the Bernoulli bond percolation takes place
if the intensity λ exceeds some threshold λ∗ ∈ (0, 1). By means of a result
of [9], from this we deduce that the Ising model on such a graph can be
in a ferromagnetic state. Then the generalization to all other types of the
single-spin measures χ, including those corresponding to unbounded spins, is
performed by means of the Wells inequality [21]. For the reader convenience,
we present here a complete proof of the latter.

Finally, let us mention that, for our model with σx ∈ R, the problem
of uniqueness of Gibbs states – opposite to the one which we study here,
remains open except for some special cases, see Remark 1 below. For the
Ising model, the mentioned uniqueness can be established by showing that
the Bernoulli site percolation on the underlying graph is absent for small
enough values of the corresponding probability, see [5].

2 Quenched Gibbs states

2.1 The model

By Γ we denote the set of all locally finite configurations in Rd, that is,

Γ = {γ ⊂ Rd : |γ ∩K| < ∞ for any compact K ⊂ Rd }, (1)

where |A| stands for the cardinality of a finite set A. This set is equipped
with the vague topology being the weakest one in which the maps Γ ∋ γ 7→∑

x∈γ f(x) are continuous for all continuous functions f : Rd → R with

compact support, see e.g., [1] for more detail. This allows for introducing
the corresponding Borel σ-field B(Γ ). The vague topology is metrizable in
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such a way that the corresponding metric space Γ is complete and separable.
For λ > 0, by πλ we denote the homogeneous Poisson measure on (Γ,B(Γ ))
with intensity λ. It is convenient for us to consider πλ as the probability
distribution of a point process on a complete probability space (Ω,F ,P). In
that we assume the existence of a measurable map Ω ∋ ω 7→ γ(ω) ∈ Γ such
that, for each A ∈ B(Γ ), πλ(A) = P(γ−1(A)).

For r∗ > 0, let g : R+ → [0, 1] be a non-increasing function with support
in the interval [0, r∗]. We define a system of random variables D := {Dxy =
Dyx, x, y ∈ X, x ̸= y} on (Ω,F ,P) such that each Dxy takes values 1 and 0
with probability g(|x− y|) and 1− g(|x− y|), respectively. The function g is
assumed to be such that

g∗ :=

∫
Rd

g(|x|)dx > 0. (2)

All Dxy are mutually independent and are also independent of the Poisson
point process mentioned above. Now, for a fixed pair (γ,D), we consider a
graph G(γ,D) with vertex set γ and edge set

E(γ,D) = {{x, y} ⊂ γ : Dxy = 1}.

It is a random graph called the random connection model with connection
function g, driven by πλ, see [3,17]), and especially [16, pages 18–20], for a
more detailed exposition of this model. It will serve us as the underlying set
for spin configurations of the magnet we consider.

Let B(Rd) and Bb(Rd) stand for the set of all Borel and all bounded
Borel subsets of Rd, respectively. For Λ ∈ B(Rd) and γ ∈ Γ , by EΛ(γ,D)
we denote the set of edges of G(γ,D) both endpoints of which are in γΛ :=
γ ∩ Λ. To each x ∈ γ, there is assigned a variable – spin σx ∈ R. Then the
configuration of spins corresponding to γ is σ = (σx)x∈γ ∈ Rγ . The set of
all spin configurations Rγ is equipped with the product topology and with
the corresponding Borel σ-field B(Rγ). For Λ ∈ B(Rd), by σΛ we denote the
‘configuration in Λ’, i.e., σΛ := {σx : x ∈ γΛ}. Given two configurations σ
and σ̄, by σΛ × σ̄Λc we mean the configuration such that its restriction to
x ∈ γΛ (respectively, to x ∈ γΛc) is σx (respectively, σ̄x); Λ

c := Rd \ Λ.
For x ∈ γ, by ∂x we denote the neighborhood of x in G(γ,D), that is,
∂x := {y ∈ γ : Dxy = 1}.

Let χ be a finite symmetric measure on R. Our aim is to construct Gibbs
measures on Rγ corresponding to the single-spin measures χx = χ and to the
following relative energy functionals

−Eγ
Λ(σΛ|σ̄Λc) =

∑
{x,y}∈EΛ(γ,g)

Jxyσxσy +
∑
x∈γΛ

∑
y∈∂x∩γΛc

Jxyσxσ̄y, (3)

where the interaction intensities are

Jxy = ϕ(|x− y|)Dxy, (4)

and hence are random. In (4), ϕ : R+ → R+ is a non-random measurable
function such that, for some ϕ∗ > ϕ∗ > 0,

ϕ(r) ∈ [ϕ∗, ϕ
∗], for all r ∈ [0, r∗]. (5)
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For Λ ∈ Bb(Rd) and σ̄ ∈ Rγ , we define

ΠΛ(A|σ̄) =
1

ZΛ(σ̄)

∫
RγΛ

IA(σΛ × σ̄Λc) exp(−Eγ
Λ(σΛ|σ̄Λc))χΛ(dσΛ), (6)

where IA is the indicator of A ∈ B(Rγ), Eγ
Λ is as in (3), and

χΛ(dσΛ) :=
⊗
x∈γΛ

χ(dσx), (7)

ZΛ(σ̄) :=

∫
Rγ

exp(−Eγ
Λ(σΛ|σ̄Λc))χΛ(dσΛ).

Thus, for each A ∈ B(Rγ), ΠΛ(A|·) is B(Rγ)-measurable, and, for each
σ̄ ∈ Rγ , ΠΛ(·|σ̄) is a probability measure on (Rγ ,B(Rγ)). The collection
of probability kernels {ΠΛ : Λ ∈ Bb(Rd)} is called the Gibbs specification of
the model we consider, see [4, Chapter 2]. It enjoys the consistency property∫

Rγ

ΠΛ1(A|σ)ΠΛ2(dσ|σ̄) = ΠΛ2(A|σ̄),

which holds for all A ∈ B(Rγ), σ̄ ∈ Rγ , and all Λ1, Λ2 ∈ Bb(Rd) such that
Λ1 ⊂ Λ2.

Definition 1 A probability measure µ on (Rγ ,B(Rγ)) is said to be a quenched
Gibbs measure of the model considered if it satisfies the Dobrushin-Lanford-
Ruelle equation

µ(A) =

∫
Rγ

ΠΛ(A|σ)µ(dσ), for all A ∈ B(Rγ).

The set of all such measures is denoted by G(γ,D).

A priori it is not obvious whether G(γ,D) is nonempty. If this is the case,
then G(γ,D) depends on ω through γ and D, not necessarily in a measurable
way, cf. [12]. We leave aside here problems of this kind, which we are going
to tackle in [2].

As mentioned above, the set G(γ,D) may contain elements which are not
suitable for describing thermodynamic states of a ferromagnet since we have
no a priori information concerning the support of the eventual µ ∈ G(γ,D).
At the same time, Gibbs measures of physical relevance ought to be supported
on the so called tempered spin configurations, for which |σx| increases ‘not
too fast’ as |x| → +∞, cf. (12) below. In order to ensure the existence of
such measures we first establish some properties of the graph G(γ,D).

2.2 Properties of the underlying graph

2.2.1 Estimating the degree growth

For x ∈ γ, let n(x) be the number of neighbors of x, i.e., n(x) := |∂x|. Clearly,
n(x) is almost surely finite since each γ is almost surely locally finite. Note,
however, that supx∈γ n(x) = +∞, also almost surely.
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For an α > 0, we introduce the weight function

wα(x) = exp(−α|x|), x ∈ Rd. (8)

For x ∈ γ and θ > 0, we then consider, cf. Eqs. (4) and (5) in [11],

a(α, θ) :=
∑

{x,y}∈E(γ,D)

[wα(x) + wα(y)][n(x)n(y)]
θ,

b(α) :=
∑
x∈γ

wα(x).

Proposition 1 For each positive α and θ, both a(α, θ) and b(α) are almost
surely finite.

Proof By the very definition of the Poisson measure πλ, for each n ∈ N and
any measurable and symmetric function f : (Rd)n → R+ := [0,+∞), we
have that ∫

Γ

 ∑
{x1,...,xn}⊂γ

f(x1, . . . , xn)

πλ(dγ) (9)

=
λn

n!

∫
(Rd)n

f(x1, . . . , xn)dx1 · · · dxn

(the Mecke identity). Then

Eb(α) = λ

∫
Rd

wα(x)dx < ∞,

where E is the expectation with respect to P. Hence b(α) < ∞ almost surely.
To complete the proof we write

a(α, θ) = 2
∑
x∈γ

wα(x)mθ(x), mθ(x) :=
∑
y∈∂x

[n(x)n(y)]θ. (10)

Since n(x) takes integer values only, we have

mθ(x) ≤ [n(x)]k+1 max
y∈∂x

[n(y)]k, (11)

where k is the least integer such that θ ≤ k. Let I : Rd → {0, 1} be the
indicator of the ball B2r∗ := {x ∈ Rd : |x| ≤ 2r∗}. Clearly,

max
y∈{x}∪∂x

n(y) ≤
∑
z∈γ

I(z − x).

Applying this in (11) we get

mθ(x) ≤
∑

{y1,...,y2k+1}⊂γ\x

2k+1∏
j=1

I(yj − x).
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By this and (9), from (10) and (11) we then obtain

Ea(α, θ) ≤ 2

∫
Γ

∑
x∈γ

wα(x)
∑

{y1,...,y2k+1}⊂γ\x

2k+1∏
j=1

I(yj − x)

πλ(dγ)

= 2

∫
Γ

 ∑
{y1,...,y2k+2}⊂γ

2k+2∑
j=1

wα(yj)

2k+2∏
l=1,l ̸=j

I(yl − yj)

πλ(dγ)

=
λ2k+2

(2k + 1)!

∫
(Rd)2k+2

wα(y1)

2k+2∏
l=2

I(yl − y1)dy1 · · · dy2k+2

=
λ2k+2

(2k + 1)!
V 2k+1
2r∗

∫
Rd

wα(y)dy < ∞,

which completes the proof. Here V2r∗ =
∫
I(x)dx is the volume of the ball

B2r∗ .

2.2.2 Percolation in a typical graph

In Section 3 below, we explore the relationship between phase transitions in
our model and two (related to each other) percolation problems on the graph
G(γ,D).

The continuum percolation consists in the appearance of an infinite con-
nected component of the random graph G(γ,D), see [16,17]. It is known that
such a component exists with probability 1 (resp. 0) if the intensity λ of the
Poisson measure πλ satisfies inequality λ > λ∗

g (resp. λ < λ∗
g), where λ

∗
g ∈ R+

is a critical value, which depends on the connection function g. The threshold
value satisfies λ∗

g ≥ g∗, with g∗ given in (2). Observe that there can only be
a single infinite connected component, see [16, Theorem 6.3, page 172].

The bond percolation problem on G(γ,D) is posed as follows. Let q ∈
(0, 1) be fixed. Then each edge of G(γ,D) is marked independently open
with probability q, and closed otherwise. Now we can form a new graph, by
removing closed edges, and discuss the continuum percolation problem on it.
To make this procedure consistent with the continuum percolation discussed
above we introduce another system of random variables

D̂ := {D̂xy = D̂yx, x, y ∈ Rd, x ̸= y, |x− y| ≤ r∗}

on (Ω,F ,P) such that each D̂xy takes values 1 and 0 with probability q

and 1 − q, respectively. All D̂xy are mutually independent, are independent

of the connection variables D and of the Poisson point process. Let D̂D

denote the system of product random variables {D̂xyDxy, x, y ∈ Rd, x ̸=
y, |x − y| ≤ r∗}. We say that G(γ,D) admits Bernoulli bond percolation

if the graph G(γ, D̂D) has an infinite connected component. It is clear that

the probability that given x, y ∈ γ are connected in G(γ, D̂D) is equal to
qg(|x − y|). That is, the bond percolation in G(γ,D) is equivalent to the
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continuum percolation with connection function qg. Hence, in accordance
with the first part of this subsection, for a fixed intensity λ > λ∗

g, there exists

a critical probability q∗ ∈ (0, 1) such that the graph G(γ, D̂D) contains an
infinite connected component with probability 1 (resp. 0) if q > q∗ (resp.
q < q∗). It is known that q∗ ≥ 1/λg∗, cf. [3].

2.3 Existence of Gibbs states

As mentioned above, we aim at showing that the set of quenched Gibbs
measures as in Definition 1 contains more than one element, cf. Theorem
2 below. However, for random graphs with unbounded vertex degrees, the
existence of Gibbs states with properties suitable for physical applications is
not immediate if the single-spin distribution χ has noncompact support. The
usual way to exclude ‘non-physical’ Gibbs measures from the consideration
is to take into account only tempered elements of G(γ,D) by prescribing a
priori their support properties, see e.g., [14] or a more recent development in
[13]. Thus, for α > 0, we define

Σ(α) :=

{
σ ∈ Rγ :

∑
x∈γ

|σx|2wα(x) < ∞
}
, (12)

where wα is as in (8). For each fixed γ, it is a Borel subset of Rγ . The elements
of Σ(α) are called tempered configurations. Then

Gt(γ,D) := {µ ∈ G(γ,D) : µ(Σ(α)) = 1} (13)

is called the set of tempered quenched Gibbs measures. In view of Proposition
1, constant configurations σx = s, for all x ∈ γ, are tempered.

Now to ensure that the set Gt(γ,D) as given in (13) is almost surely
nonempty, we impose conditions on the single-spin measure. For positive u
and κ, we set

C±(κ) =
∫
R
exp (±κ|t|u)χ(dt). (14)

Theorem 1 Let the single-spin measure χ be such that, for some u > 2 and
each κ > 0, the quantities in (14) obey 0 < C−(κ) ≤ C+(κ) < ∞. Then
the set of Gibbs measures Gt(γ,D) is almost surely nonempty. Moreover, for
each positive ϑ and α, there exists an almost surely finite C(ϑ, α) > 0 such
that, uniformly for all µ ∈ Gt(γ,D),∫

Rγ

exp

(
ϑ
∑
x∈γ

|σx|2wα(x)

)
µ(dσ) ≤ C(ϑ, α). (15)

Proof The results stated follow from Theorem 1 of [11] since all the conditions
of that theorem are satisfied in view of (5), Proposition 1, and the assumed
properties of χ.
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Let us make some comments. First we mention that the existence of
Gibbs measures follows from the relative weak compactness of the family
{ΠΛ(·|σ̄) : Λ ∈ Bb(Rd)}, for at least some σ̄ ∈ Rγ . By Prokhorov’s theorem,
this fact is deduced from the tightness of the mentioned family. A typical
choice of σ̄, for which the tightness is proven, is σ̄x = s ∈ R for all x ∈ γ.
Note that such σ̄ is tempered, see (12). Then the accumulation points of the
family {ΠΛ(·|σ̄) : Λ ∈ Bb(Rd)} are shown to obey the Dobrushin-Lanford-
Ruelle equation and to satisfy the estimate in (15), in which the C(ϑ, α) can
be expressed explicitly in terms of the weights as in (8), cf. Proposition 1.
The boundedness just mentioned guarantee that all ΠΛ(·|σ̄) are tempered
measures. Let {Λn}n∈N ⊂ Bb(Rd) be a cofinal sequence, which means that
Λn ⊂ Λn+1, n ∈ N, and each Λ ∈ Bb(Rd) is contained in a certain Λn.
The mentioned weak compactness of the family {ΠΛ(·|σ̄) : Λ ∈ Bb(Rd)}
yields that, for each s > 0 and a cofinal sequence {Λn}n∈N, the sequence
{ΠΛn(·|σ̄)}n∈N with σ̄x = s weakly converges to a certain element of Gt(γ,D),
which is independent of the choice of {Λn}, cf. [13, Theorem 3.8]. By similar
arguments, one can show that Gt(γ,D) is compact in the weak topology. For
a > 0, by

µ±a ∈ Gt(γ,D) (16)

we shall denote the limiting elements of Gt(γ,D) for s = ±a.
Now we turn to the single-spin measure. If χ has compact support, as

was the case in [20], then clearly C+ < ∞ and C−(κ) > 0. The most known
example of such χ is

χ(dt) = δ−1(dt) + δ+1(dt), (17)

which corresponds to an Ising magnet. Here δs is the Dirac measure con-
centrated at s ∈ R. Since this magnet will be used as a reference model,
we reserve a special notation GIsing(γ,D) for the set of all corresponding
Gibbs measures, which are automatically tempered. By ν± ∈ GIsing(γ,D),
we denote the limiting Gibbs measures as in (16) with a = 1.

Another example is the measure which corresponds to ‘unbounded’ spins,
cf. [11,13]. Here

χ(dt) = exp (−V (t)) dt, (18)

where V : R → R is a measurable even function such that: (a) the set
{t ∈ R : V (t) < +∞} is of positive Lebesgue measure; (b) V (t) increases
at infinity as |t|u+ϵ with some ϵ > 0 and u being as in (14). This includes
the case where V is a polynomial of even degree d ≥ 4 with positive leading
coefficient.

Remark 1 By means of the Brascamp-Lieb and other known inequalities,
we can prove the following result. If V (t) in (18) is convex and the energy
functional instead of (3) has the form

−Eγ
Λ(σΛ|σ̄Λc)

= −
∑

{x,y}∈EΛ(γ,g)

Jxy(σx − σy)
2 −

∑
x∈γΛ

∑
y∈∂x∩γΛc

Jxy(σx − σ̄y)
2,
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then, for all values of the intensity λ of the underlying Poisson random field,
the set Gt(t,D) is almost surely a singleton, and hence no phase transition
occurs.

Finally, we mention that the boundedness |Jxy| ≤ ϕ∗ assumed in (4) and
(5) has been imposed for simplicity only. It can be relaxed by passing to
‘tempered’ interaction intensities as in [12].

3 The Phase Transition

3.1 The statement

Recall that by a phase transition in the considered quenched ferromagnet we
mean the possibility that the set of tempered Gibbs measures Gt(γ,D) almost
surely contains at least two elements which are thermodynamic phases of the
magnet. It is equivalent to the appearance of a nonzero magnetization in
states µ±a ∈ Gt(γ,D), cf. [4, Chapter 19].

Let us observe that there is no interaction between spins in different con-
nected components of the underlying graph G(γ,D). Then for a phase tran-
sition to occur it is necessary that G(γ,D) almost surely possess an infinite
connected component, that is, this graph admits a continuum percolation as
described in subsection 2.2.2 above. This is the case if the intensity λ of the
underlying Poisson random field obeys the bound λ > λ∗

g. For λ < λ∗
g, we

have no infinite connected component in G(γ,D) and thus |G(γ,D)| = 1 with
probability 1. In order to obtain a sufficient condition for a phase transition
to occur, we will explore the well-known relationship between the Bernoulli
bond percolation on the fixed sample graph G(γ,D) and the existence of
multiple Gibbs states in the corresponding Ising model, established in [9], as
was discussed in subsection 2.2.2 above. Our goal is to prove the following
result.

Theorem 2 Let the measure χ be as in Theorem 1 and such that χ({0}) <
χ(R). Assume also that the intensity λ of the underlying Poisson random
field satisfies the condition λ > λ∗

g. Then there exists ϕ∗ such that, for any ϕ
satisfying (5), the set Gt(γ,D) contains at least two elements with probability
1.

The proof of this statement is based on the following result, cf. (16).

Lemma 1 Let the conditions of Theorem 2 be satisfied. Then there exist
a > 0 and ϕ∗ such that, for ϕ satisfying (5), the following estimate holds
with probability 1 ∫

Rγ

σoµ
+a(dσ) > 0, (19)

for some o ∈ γ.

The proof of this lemma is given in the next subsection.
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Proof of Theorem 2 By the symmetry of χ and of the interaction in (3), we
have ∫

Rγ

σoµ
+a(dσ) = −

∫
Rγ

σoµ
−a(dσ).

Then (19) yields µ+a ̸= µ−a and hence the multiplicity in question. Note
that o in (19) belongs to the infinite connected component of G(γ,D), and
the integral in (19) is the mean value of the spin at this vertex in state µ+a.

3.2 Proof of Lemma 1

First, by means of percolation arguments of [9], we prove the lemma in the
case of the Ising model. Then we extend the proof to the general case by
comparison inequalities.

3.2.1 The case of the Ising model

Recall that the single-spin measure of the Ising model is given in (17),
GIsing(γ,D) denotes the set of all corresponding Gibbs measures, and ν+ ∈
GIsing(γ,D)) is the maximum Gibbs measure as in (16) with a = 1. The key
fact proven in [9] which we are going to use is that, for an infinite graph
G, the Ising model living on G with constant intensities Jxy = ϕ∗ > 0 on
the edges of G, cf. (3), has at least two phases if and only if the graph ad-
mits the Bernoulli bond percolation with critical probability q∗ ∈ (0, 1) such
that ϕ∗ > (log(1 + q∗)− log(1− q∗))/2. In our case, the graph G(γ,D) with
probability 1 admits this percolation and the threshold probability satisfies
q∗ ≥ 1/λg∗, as described in subsection 2.2.2. Then, for and some o ∈ γ, it
follows that ∫

Rγ

σoν̃
+(dσ) > 0, (20)

see [9, Theorem 2.1] and also the proof of Lemma 4.2 therein. Here ν̃+ is the
corresponding Gibbs measure of the Ising model with Jxy = ϕ∗ > 0. By the
standard GKS inequality, see, e.g., [9, Subsection 3.4], we have∫

Rγ

σoν
+(dσ) ≥

∫
Rγ

σoν̃
+(dσ),

which together with (20) yields the proof in this case.

3.2.2 The general case

Here we compare the integral in (19) calculated for the general model with the
corresponding value for the Ising model with a rescaled interaction intensity.
In view of this, we shall indicate the dependence on ϕ. That is, by Gt(γ,D, ϕ)
we denote the set of Gibbs measures in the general case. The corresponding
set for the Ising model is denoted by GIsing(γ,D, ϕ). The proof of the lemma
immediately follows from the Wells inequality used, e.g., in [19]. As the orig-
inal publication [21] is hardly attainable, for the reader convenience we give
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a complete proof of this inequality here in the form suitable for our purposes.
More general versions of this result can be proven in a similar way.

Proposition 2 (Wells inequality) Let a > 0 be such that

χ([a
√
2,+∞)) ≥ χ([0, a]). (21)

Then, for each x ∈ γ and for µ+a ∈ G(γ,D, ϕ) and ν+ ∈ GIsing(γ,D, a2ϕ),
we have that ∫

Rγ

σxµ
+a(dσ) ≥ a

∫
Rγ

σxν
+(dσ). (22)

Proof For the general choice of χ, let Π+a
Λ be defined as in (6) with σ̄x = +a

for all x ∈ γ. Since µ+a is an accumulation point of the family {Π+a
Λ : Λ ∈

Bb(Rd)}, one finds the sequence {Λn}n∈N such that the sequence {Π+a
Λn

}n∈N
converges weakly to µ+a. Since the weak topology is introduced by bounded
continuous functions, for unbounded spins the latter convergence does not
imply the convergence of moments as in (22). The same estimate as in (15)
can also be proven for all Π+a

Λ , which together with (15) yields the conver-
gence ∫

Rγ

σxΠ
+a
Λn

(dσ) →
∫
Rγ

σxµ
+a(dσ), n → +∞.

Since the sequence {Λn}n∈N is exhausting it contains a subsequence, {Λnk
}k∈N,

such that also∫
Rγ

σxΠ
Ising
Λnk

(dσ) →
∫
Rγ

σxν
+(dσ), n → +∞,

where ΠIsing
Λnk

is the kernel (6) corresponding to the Ising single-spin measure

(17), interaction intensities a2J , and the choice σ̄x = +1 for all x ∈ γ. Thus,
the validity of (22) will follow if we prove that, for each Λ which contains x,
the following holds∫

Rγ

σxΠ
+a
Λ (dσ) ≥ a

∫
Rγ

σxΠ
Ising
Λ (dσ). (23)

Let ZΛ(a) and ZIsing
Λ (1) be the corresponding normalizing factors defined in

(7). Then by (6) we have, cf. (3),∫
Rγ

σxΠ
+a
Λ (dσ)− a

∫
Rγ

σxΠ
Ising
Λ (dσ) =

(
ZΛ(a)Z

Ising
Λ (1)

)−1

(24)

×
∫
Rγ

∫
Rγ

(σx − aσ̃x) exp

{ ∑
{x,y}∈EΛ(γ,D)

Jyz[σyσz + a2σ̃yσ̃z]

+
∑
y∈Λ

[σy + aσ̃y]Ky

} ⊗
x∈γΛ

(
χ(dσx)⊗ χIsing(dσ̃x)

)
,
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where χIsing is given in (17) and Ky = a
∑

z∈∂y∩Λc Jyz if ∂y ∩ Λc ̸= ∅, and
Ky = 0 otherwise. Note that Ky ≥ 0 in both cases. Then (23) will follow
from the positivity of the integral on the right-hand side of (24). Now we

rewrite the integrand in (24) in the variables u±
x := (σx±aσ̃x)/

√
2, and then

expand the exponent and write the integral as the sum of the products over
x ∈ γΛ of ‘one-site’ integrals having the form

Cx

∫
R2

(u+
x )

mx(u−
x )

nxχ(dσx)⊗ χIsing(dσ̃x) (25)

= Cx

∫
R
[(σx + a)mx(σx − a)nx + (σx − a)mx(σx + a)nx ]χ(dσx), Cx ≥ 0.

Thus, to prove the statement we have to show that the right-hand side of
(25) is nonnegative for all values of mx, nx ∈ N0. By the assumed symmetry
of χ, the latter integral vanishes if mx and nx are of different parity. If both
are even, then the positivity is immediate. Then it is left to consider the case
of mx = 2k + 1 and nx = 2l + 1. By the symmetry of χ, we can take k ≥ l.
Thus, we have to prove the positivity of the following integral∫

R

[
(σ + a)2k+1(σ − a)2l+1 + (σ − a)2k+1(σ + a)2l+1

]
χ(dσ)

= 2

∫ +∞

0

(σ2 − a2)2l+1
[
(σ + a)k−l + (σ + a)k−l

]
χ(dσ).

The function φ(σ) := (σ + a)k−l + (σ + a)k−l is increasing on [0,+∞). The
integral on the right-hand side of the latter equality can be written in the
form ∫ +∞

0

(σ2 − a2)2l+1φ(σ)χ(dσ) = I1(a) + I2(a) + I3(a), (26)

I1(a) :=

∫ a

0

(σ2 − a2)2l+1φ(σ)χ(dσ) ≥ −a4l+2φ(a)χ([0, a]),

I2(a) :=

∫ a
√
2

a

(σ2 − a2)2l+1φ(σ)χ(dσ) ≥ 0,

I3(a) :=

∫ +∞

a
√
2

(σ2 − a2)2l+1φ(σ)χ(dσ) ≥ a4l+2φ(a
√
2)χ([a

√
2,+∞))

Then the property assumed in (21) yields that the sum on the right-hand
side of (26) is nonnegative, which completes the proof.
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