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Summary

In this thesis, we study two classes of stochastic differential equations
(SDEs in short) with jump noise in weighted L? spaces over R%. More pre-
cisely, the first class of SDEs is a jump-diffusion model in the sense of Merton
(see his paper [82] on the theory of option pricing), i.e. the SDE is driven by
a Wiener noise and a Poisson noise. The second class consists of SDE’s with
Lévy noise. We show existence of mild solutions and establish their regu-
larity properties in the case of a drift term consisting of a nonautonomous
linear (differential) operator and a non-Lipschitz Nemitskii-type operator.
There are two principal issues, that make it impossible to apply the general
theory of stochastic evolution equations in Hilbert spaces directly. First,
the diffusion coefficients, given by multiplication operators in L?, are not
Hilbert-Schmidt and, second, the generating functions of the Nemitskii drift
operators are non-Lipschitz and have polynomial growth.
Compared to the framework known for SDEs with Wiener noise, the new
situation requires a detailed analysis of the stochastic convolution w.r.t. a
compensated Poisson random measure in weighted L? spaces. To this end,
we introduce several regularity conditions on the evolution operator gener-
ated by the nonautonomous drift operators, which are additional to those
in the Wiener case. Furthermore, we need certain integrability conditions
on the Lévy intensity measure associated to the jump process. We prove
both the meansquare continuity and, under certain restrictions, the cadlag
property of the stochastic convolution w.r.t. compensated Poisson random
measures.
We first show existence (and even uniqueness) of solutions in the case of
Lipschitz functions defining the corresponding Nemitskii operators. Then,
we prove an infinite-dimensional comparison theorem for jump-type diffu-
sions with different Lipschitz drift coefficients. This allows us to prove the
existence of solutions in the case of non-Lipschitz drifts by constructing ap-
propriate Lipschitz approximations and applying the comparison theorem
shown before. It should be noted that a sufficient condition for the solvabil-
ity of the above equations involves an explicit relation between the degree
of polynomial growth of the drift coefficients, integrability properties of the
Lévy intensity measure and the regularity properties of the evolution oper-
ator. Furthermore, in the autonomous case with a Nemitskii drift operator
being defined through a maximal monotone function, we even get uniqueness
of some of the solutions in the additive case if we restrict our considerations
to bounded domains © € R? and cylindrical Wiener processes.
To establish the existence and comparison results in the multiplicative case,
we need to analyse approximating equations in Sobolev spaces W™2(0) of
order m > % in domains © C R? obeying the weak cone property. Further-
more, the jump coefficient has to be monotonically increasing and uniformly
bounded, whereas the intensity measure corresponding to the jump noise has
to be concentrated on the set of only positive functions in L2.
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Chapter 1

Introduction

This thesis is concerned with two types of stochastic evolution equations
with jump noise in weighted L2-spaces. Such an abstract setting includes
a large class of stochastic partial differential equations (SPDEs in short) of
parabolic type in (bounded or unbounded) domains © C RY.

The first equation, named (1.1) below, is a stochastic differential equation
(SDE in short) consisting of:

e a drift part with a nonautonomous operator and a continuous drift
coefficient having polynomial growth,

e a Wiener part with a Lipschitz diffusion coefficient, and
e a Poissonian jump part with a Lipschitz jump coefficient.

This is a jump-diffusion model in the sense of option pricing theory (cf.
Merton’s paper [82], where this terminology was introduced).
The second equation, named (1.2) below, is an SDE consisting of

e a drift part of the same type as in equation (1.1),
e a Lévy jump part with a Lipschitz jump diffusion coefficient.

Note that in the whole thesis, we use the term diffusion coefficient resp.
jump coefficient for the coefficient corresponding to the Wiener resp. Pois-
son noise of an SDE of the form (1.1). Since, in general, a Lévy process L
obeys both a diffusion and jumps, we use the term jump diffusion coefficient
for the coeflicient corresponding to the Lévy noise of an SDE of the form
(1.2).

The basic aim of our work is to develop a unified theory of infinite-dimensional
SDEs driven by jump noises (i.e. Poisson random measures or Lévy processes)

1



2 CHAPTER 1. INTRODUCTION

in weighted LP-spaces. This includes most of the known results for continu-
ous diffusions in Hilbert spaces driven by a Wiener noise as well as particular
results known so far in infinite dimensions for jump diffusions driven by Lévy
noise (see the discussion in Section 1.2 below).

In this thesis, we will put particular emphasis on the transition from the
standard assumptions of (globally) Lipschitz drift coefficients to the case
of continuous coefficients of polynomial growth. The latter case is of es-
sential interest in various applications. Furthermore, we cover the case of
time-dependent evolution operators and non Hilbert-Schmidt coefficients of
Nemitskii type.

The equations will be solved in weighted Lebesgue spaces L%(@) resp. Lg"(@)
over a Borel set © C R? (for more details on the spaces see Section 1.2 and,
in particular, Section 3.1 below). Especially, we will be interseted in the
technically more difficult case of unbounded domains, e.g. © = R%.

But before we describe the exact setting for equations (1.1) and (1.2), let us
give a general motivation for considering SDEs with jumps.

1.1 Motivation for SDEs with jumps

In recent years there has been large interest in SDEs with general, not nec-
essarily continuous, semimartingales as driving noises. This is reflected in a
growing number of papers going beyond the well-known framework of SDEs
with Wiener noise, e.g. by considering compensated Poisson random mea-
sures or Lévy processes as noise.

Monographs considering this topic with a focus on Lévy processes as driving
noise are, in finite dimensions, Applebaum [7] and, in infinite dimensions,
Peszat and Zabczyk [95].

In the preface of his book [7] on the subject (see p.ix there), Applebaum
presents the following list of reasons, why Lévy processes are important in
probability theory:

e Lévy processes are analogues of random walks in continuous time;

e Lévy processes form special subclasses of both semimartingales and
Markov processes, for which the analysis is, on the one hand, much
simpler and, on the other hand, provides valuable guidance for the
general case;
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e Lévy processes are the simplest examples of random motion whose
sample paths are right-continuous and have a number (at most count-
able) of random jump discontinuities occuring at random times, on
each finite interval;

e Lévy processes include a number of very important processes as special
cases, among them Brownian motion, Poisson process, stable and self-
decomposable processes and subordinated processes.

Concerning the properties of infinite-dimensional Lévy processes, see also
Section 2.4.

In general, stochastic evolution equations in infinite dimensions are often
used to describe complex models in natural sciences. Numerous examples
of SDEs with Wiener noise in infinite dimensions can be found e.g. in the
introductory chapter (Chapter 0) in the monograph [26] by DaPrato and
Zabczyk.

Stochastic evolution equations with Lévy noise, which constitute a large
class of Markov processes, are particularly important. In finite dimensions
there is a famous theorem by Courrege (cf. e.g. [23] and [52]), which states
that, under rather general assumptions, any Markov semigroup on R? is a
Lévy-type semigroup, i.e. it can be represented as a transition semigroup
corresponding to a certain SDE driven by Lévy noise.

In general, SDEs with compensated Poisson random measures or Lévy processes
as driving random forces are candidates to model situations, where the sys-
tem does not develop in a time-continuous way. Typically, the theory of
SDEs with jumps in infinite-dimensional spaces plays a role in modelling
critical phenomena. Among areas of application let us mention neurophysi-
ology, environmental pollution and mathematical finance.

A prominent example of an application is the so-called FitzHugh-Nagumo
equation in neurophysics. This equation has been treated mathematically
e.g. by Bonnacorsi and collaborators in [16].

As an example from mathematical finance, let us mention the Heath-Jarrow-
Morton model. This model describing the development of interest rates was
originally proposed as an SDE driven by Wiener noise. In recent years, the
model has been refined as an SDE with Lévy noise e.g. by Jakubowski and
Zabczyk in [55] and by Marinelli in [78]. Furthermore, there have also been
attempts to introduce jumps in the Heath-Jarrow-Morton model by consid-
ering an SDE with both a Wiener and a jump noise, where the jump noise
is usually given by a compensated Poisson random measure. Such models
have e.g. been treated by Bjork and collaborators (cf. [13]), by Carmona
and Tehranchi (cf. [19]) and by Filipovic, Tappe and Teichmann (cf. [38]).

Having motivated the use of SDEs with jumps, we continue with the in-
troduction of the setting we work in. Furthermore, we relate this setting to
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several important results from the literature.

1.2 The basic equations and their relation to the
existing literature

Let us describe now in detail the equations (1.1) and (1.2) of our interest.
We consider the two SDEs

(1.1)dX(t) = (A@®)X(t) + F(t, -,~X(t)))dt + M, x 0y dW (t)
+ f MF(t,-,X(t))$ N(dt, dﬂ:‘), te [O,T],
2

and

(12)dX(t) = (A@DX () + Bt X (1))t
+M2(t,-,X(t))dL(t)’ te [O,T],

in weighted LP-spaces over R, d € N, which are defined as follows:
On R%, we introduce the weight a: R? — [1,00) given by
a(f) = (1+ 16>z, 6 € R

For p € NU {0}, let p, be the (possibly infinite) measure on R? given
by

(1.3) pp(dl) == a=P(0) do,

where df denotes the Lebesgue measure on R

Given a Borel-measurable set © C RY, let L;%V (©), v > 1, be the Banach
space of 2v-integrable functions w.r.t. the measure p1, on ©. In what follows,
we will always choose p such that j, is a finite measure on ©. Note that
this family of weighted LP-spaces is commonly used in the theory of (both
deterministic and stochastic) PDEs of parabolic type, see e.g. Appendix B.2
in the monograph [95] by Peszat and Zabczyk. For a closer look at these
spaces, see Section 3.1 below.

Concerning the terms in (1.1) and (1.2) we assume that:

e the family (A(t))ic[0,1) generates an almost strong evolution operator
U= (U(t,s))o<s<t<r in L?,(@) (for its definition see Section 2.1 below),

e F F,Y and I' are Nemitskii-type nonlinear operators defined through
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predictable functions e, f, o and v: [0,T] x 2 x R — R, e.g. we have

E(t,p)(0) :=e(t, (), 0 €0 ,tc[0,T], p€ L/Q)(@),

e My resp. Mr denotes the multiplication operator corresponding to X
resp. ', i.e. Myx: L?(©) — L;(@) is defined through

MZ(t,w,cp)(w)(e) = o(t,w,0(0)y(0), ¢ € L;Q)(@)’ eo,tel0,T]
o€ 12(0), ¥ € 17()

and Mr analogously through ~.

o (W(t))ie[o,r) is a Q-Wiener process in L*(0©) with the correlation op-
erator () to be specified in Section 2.3 below,

e N: [0,T]xQxL?*©) — R is a compensated Poisson random measure
(see Section 2.4 below), and

o (L(t))iero,r] is a Lévy process in L*(0) (see Section 2.5 below).

The solutions to these equations will be constructed in the mild sense. More
precisely, given an L%(@)—valued initial condition &, we look for L,%(@)—valued
predictable processes (X ()):c[o,r] such that for each t € [0,T'] we have,
P-almost surely,

X(t)= U(t0¢E+ OfU(t, s)F(s, X (s)) ds

U(t, 8) Mxy(s,x(s)) AW (5)

X(t)= U(t0)¢+ OjU(t, s)E(s,X(s))ds

t
+ f U(t, S)ME(S,X(s)) dL(s).
0

Let us stress that equations (1.1) and (1.2) are models of jump diffusions
with Nemitskii-type operators. In the particular case I' = 0, such type of
infinite-dimensional diffusion equations was considered e.g. by Manthey and
Zausinger in [76]. Compared to [76], our equation (1.1) has an additional
multiplicative (i.e. solution-dependent) jump noise, which needs a careful
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analysis.

In the autonomous case, i.e. in the case A(t) = A, t € [0,T'], with A being
the generator of a Cp-semigroup, equation (1.2) describes a jump diffusion
driven by a Lévy process. In general separable Hilbert spaces, such equations
were considered e.g. by Knéble in [59]. As compared to [59], the novelity
of our work is that, restricting our consideration to the weighted L? spaces
introduced above, we can cover the case of time-dependent operator coeffi-
cients (A(t))se[o,r)- Furthermore, our multiplication operators My, are of
Nemitskii type and do not preserve the space L?(©) resp. L%(@) and hence
are not Hilbert-Schmidt. Moreover, the drift coefficients are not necessarily
(local) Lipschitz continuous.

Before we come to the main results and the structure of our work, let us
give a short overview on the results known so far for equations of the above

type:

Equation (1.1): This equation has two noise sources, a Wiener process
and a compensated Poisson random measure.

First, let us give some remarks on the Wiener noise term.

Recall that the standard type of stochastic evolution equations in infinite-
dimensional Hilbert spaces, which was considered in numerous papers on
S(P)DEs, is

(1.4) dX (t) = (AX(t) + F(t, X (t)))dt + S(t, X (£))dW (t), t € [0,T).

Given separable Hilbert spaces G and H, one usually has the following
assumptions:

e A is the generator of a Co-semigroup (S()):e[o,r] on H,

e F: [0,T] x H— H is a drift term fulfilling proper regularity condi-
tions,

e X: [0,T]|x H — Lo(G, H) (with L2(G, H) denoting the set of Hilbert-
Schmidt operators from G to H) is an operator diffusion coefficient,

o (W(t))e[o,r] is a Wiener process taking values in G.

FExistence and uniqueness of so-called mild solutions in the case of Lipschitz
coefficients, i.e. when we have, uniformly for ¢t € [0,7'] and z,y € H,

(Lp) |E(t,2) = F(t, )|l < Crllz = yllm
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resp.

(Las) 12(t,2) = 2(t )l eoem) < Osllz = yllm

with some positive constant C'r resp. Cy;, is a well-known result in the liter-
ature (see e.g. the widely cited monograph [26] by DaPrato and Zabczyk).
Recall that, given an initial condition £ € H, a mild solution to (1.4) is an
H-valued pathwise continuous process (X (t));c[o,7] such that for each

t € [0,T] we have, P-almost surely,

¢ t

X(t)=8St) &+ [S(t—s)F(s,X(s))ds+ [S(t—s)E(s,X(s)) dW (s).
0 0

Note that eristence and uniqueness in the special case A = A and

H = L2(©) was shown e.g. in the paper [66] by Kotelenez.

Nevertheless, in many interesting applications we cannot apply this stan-
dard framework. There has been a large activity in getting existence results
in the case of non-Lipschitz drift since the 1980’s. A popular example in
applications is the situation, where A is the Laplace operator and F' is a
polynomial.

Without claiming to be complete, the following list of papers contains the
main achievements in removing the global Lipschitz condition (Lp) on F' in
the case of the Laplacian A = A in (1.4):

e In 1971, Marcus in [77] in the case ¥ = I (I denotes the identity
operator) and, in 1987, Iwata in [54] in the case of bounded, solution-
dependent 3 obeying (Lgg) have showed ezistence and uniqueness
of mild resp. weak solutions in the case of F' fulfilling the strong
monotonicity condition

(SM) < F(z) - F(y),x —y>u>allr —ylly, v,y € H
and the growth condition

(G) I1E @) < ea(1+[l2ll)

with positive constants ci, co and p > 2, g = 1%‘

e In 1988, in [72] Manthey weakened the assumption (SM) on F to the
semi-dissipativity condition

(SD) <F(t,x)fF(t,y),x—y>H§ﬂHx—y||%{,x,yeH,
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with some 8 € R;.

In 1995, in [27] Da Prato/Zabczyk assumed F' to be the Nemitskii
operator corresponding to a polynomial of the form

2n+1
(1.5) fly) = - bry®, bony1 <0, b €R, 0 <k <2n,n>1,
k=0
and construct so-called generalized (mild) solutions in weighted L2-
spaces over R%.
Similar results for stochastic reaction-diffusion equations with nonlin-
ear terms having polynomial growth and satisfying some dissipativity
conditions can also be found in [20], [42] or [57].

In 1996, in [73] Manthey showed the existence of mild solutions in the
case of F' being the Nemitskii operator corresponding to a function
f, which is continuous, has one-sided linear growth and is of at most
polynomial growth. The solutions take their values in weighted L?2-
spaces with possibly unbounded domains (for applications to finance,
see e.g. [85]). Similar results are achieved by Gyongy, Pardoux and
Bally in the series of papers [11], [49], [50], [47] for weak solutions on
bounded domains. Here (see also Section 3.2), one-sided linear growth
means that there is some positive constant cy(7") such that uniformly
in t € [0,7'] we have the estimates

f(t,u) > —cp(T)(1 —u) if u <0 and
(LG)
f(t,u) < cp(T)(1+w) if u >0,

whereas the polynomial growth property means that there is a v > 1
such that, again uniformly in ¢ € [0,7],

(PG) If(t,u)| <cp(l+ |ul)if ueR.

Let us note that polynomials of the form (1.5) obey these properties.

Another class of results relates to the case of a time-dependent operator fam-
ily (A(?)):ej0,r) replacing A in (1.4). In the case of Lipschitz coefficients the
equation (1.4) has been considered e.g. by Seidler in [103]. Among the con-
tributions extending to the case of a mon-Lipschitz drift F' we mention the
following, which both work on weighted L?-spaces with unbounded domains:

e In 1992, in [65] Kotelenez showed existence and uniqueness of mild
solutions in the case of W being a cylindrical Wiener process (in the
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sense that W is a Q-Wiener process with operator ) = I), F' being a
polynomial of the form (1.5) and ¥ obeying the local Lipschitz property
and having at most linear growth.

e In the late 1990’s, in [74] and [76], Manthey and his collaborators
showed existence of solutions in the case of F' having at most polyno-
mial growth and obeying the one-sided linear growth condition. This
is a generalization of the previously mentioned paper.

All the papers mentioned above approximate the non-Lipschitz drifts by a
family of Lipschitz ones and then use comparison theorems for the solutions
to the equations corresponding to the Lipschitz drifts.

Generally speaking, the comparison method compensates the lack of a proper
version of Girsanov’s formula in the case of time-dependent A(t).

Manthey and Zausinger invented a new method to prove their compari-
son theorem in [76], (cf. Theorem 3.3.1 there), simplifying the earlier one
from Kotelenez’ paper [65]. We intend to adapt and extend the comparison
method from [76] to the case of additive, i.e. solution-indpendent, jump
resp. jump diffusion coefficients in equation (1.1) resp. (1.2).

Given Hilbert spaces G and H, the simplest example of an infinite-dimensional
SDE with jumps is

dX(t) = (AX(t) + F(t, X (t)))dt + [T(t, X (t))xN(dt,dz), t € [0,T],
G

where A and F are as above, N is a compensated Poisson random measure
and T is appropriate for stochastic integration (conditions for stochastic in-
tegration w.r.t. compensated Poisson random measures are presented in
Section 2.5 below).

This equation has been treated e.g. in the following papers:

e in 1998, in [5] Albeverio, Wu and Zhang showed ezistence and unique-
ness of cadlag mild solutions in the case A = A and H = Lg(@). It
means that, given the initial conditon £ and the semigroup S gener-
ated by A, there exists a unique H-valued cadlag process (X (t))e[0,7]
satisfying for any ¢ € [0,7T'], P-almost surely

X(t)=St)¢E+ Oft S(t—s)F(s,X(s))ds+ Oft(f;S(t — 5)I(s, X (s—)) N(ds, dx).

e In 2005, in [60] Knoche showed ezistence and uniqueness of mild cadlag
solutions in the case of Lipschitz coefficients and A being the genera-
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tor of a Cyp-semigroup (S(t))s>0 in an abstract Hilbert space.

e In 2008, in [37] Filipovic, Tappe and Teichmann showed ezistence and
uniqueness of predictable mild and weak solutions, taking values in
some Hilbert space H and being meansquare time-continuous in the
case of Lipschitz drift and diffusion coefficients and A being the gen-
erator of a Cy-semigroup (S(t))>o0.

e In 2009, Albeverio, Mandrekar and Ridiger in [3] showed existence and
uniqueness of H-valued cadlag mild (but non-Markovian) solutions in
the case of the Lipschitz coefficients F' and I depending on the whole
solution path t — X (t), t € [0,T'].

The next step is to consider SDEs with both Wiener and jump noises (given
by compensated Poisson random measures)

dX(t) = (AX(t) + F(t, X(t)))dt + X(t, X (t))dW (t)
+ [T(t, X (t))xN(dt,dz), t €[0,T].
G

Given an H-valued initial condition &, a mild solution to this equation is
an H-valued predictable process (X (t))ic[o,r) such that for all ¢ € [0,T],
P-almost surely,

X(t)y= St)¢+ biS(t —$)F(s,X(s))ds+ ‘of S(t—s)X(s, X(s))dW(s)

—i—fth(t — 5)T'(s, X (s))xN(ds, dx).
0G

In 2008, in [79] Marinelli, Prévot and Rockner showed ezistence, unique-
ness and regular dependence on the initial condition for mild solutions to
this equation in the case of Lipschitz coefficients. Let us list some further
results concerning certain special cases of this equation:

e In 2009, in [14] Bo and his collaborators showed existence of mild
solutions in the case of A being a positive self-adjoint operator on
some Hilbert space H.

Under Lipschitz assumptions on the coefficients, the solution takes
values in Sobolev spaces H, constructed by means of the operator A“.

e In 2010, in [81] Marinelli and Réckner proved ezistence and unique-
ness of cadlag weak and mild solutions to the above equation with
dissipative drift and Lipschitz diffusion and jump coeflicients.
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e The so-called variational approach to diffusions with jumps in Banach
spaces, including those driven by Lévy noise, was developed in [46],
[70] and [105].

Compared to our work, these papers impose stronger assumptions on the
operator coefficient 3, namely that it is Hilbert-Schmidt. This is surely not
the case for the Nemitskii-type operator ¥ in equation (1.1). In our con-
text, the absence of the Hilbert-Schmidt property will be compensated by
the smoothing properties of the evolution operator (U(t,s))o<s<t<7, Which
are nevertheless not as strong as the smoothing properties of Cp-semigroups
(S(t))o<t<T (see conditions (A0)— (A8) in Section 3.1 below).

Equation (1.2): Recall that the standard class of stochastic evolution
equations with Lévy noise is

(1.6) dX (t) = (AX(t) + F(t, X ()))dt + S(t, X ())dL(t), t € [0,T],

where

A is the generator of a Co-semigroup (S(t));ej0,7] on H;

F: [0,T] x H— H is a progressively measurable drift term;

¥: [0,T] x H— L5(G, H) is a progressively measurable operator dif-
fusion coefficient;

L: [0,T] x Q — G is a Lévy process taking values in some Hilbert
space G.

Of particular importance for our considerations are mild solutions to (1.6).
Given an H-valued initial condition &, a mild solution to (1.6) is an H-valued
predictable process X = (X (t));e[0,r) obeying for any ¢ € [0,7T'], P-almost
surely,

¢ ¢
X(t)=SH)E+ [S(t—s)F(s,X(s))ds+ [S(t—s)X(s, X (s))dL(s).

0 0
For example, equations of such kind in infinite dimensions are treated in
the recent monograph [95] by Peszat and Zabczyk. For a general theory of
Lévy processes in finite dimensions, see e.g. the monographs [12] by Bertoin
and [96] by Protter.
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Let us give an overview on the results known so far under the standard
assumptions, i.e. the conditions on A are the ones from above:

e In 1987, in [21] Chojnowska-Michalik constructed a weak solution to
(1.6) in the case F' = 0 and ¥ = I. The solution process is just the
Ornstein-Uhlenbeck process associated with Lévy noise. This is known
to be the first paper dealing with a Hilbert space-valued SDE with a
Levy process as noise.

e In 2000, in [41] Fuhrmann and Rockner show the existence of weak
solutions in the case F' = 0 and X = I, which is a generalization to
the paper [15], where Bogachev, Rockner and Schmuland treat the
Wiener case. Both papers are mainly concerned with the so-called
Mehler semigroups.

e In 2004, in [7] Applebaum extended the result of Chojnowska-Michalik
to the case of FF = 0 and X being a bounded, solution-independent
operator (not necessarily I).

e In 2005, the result of [7] was improved in [106] by Stolze by allowing for
Lipschitz drift coefficients F' # 0 and bounded, solution-independent
Y. Furthermore, existence and uniqueness of mild solutions was shown.

e In 2006, in [59] Knéble showed existence and uniqueness of mild solu-
tions to (1.6) in the case of Lipschitz coefficients and the Lévy measure
71 corresponding to L obeying the square integrability property

(s1) [ lalfn(ds) < .
(For the definition of a Lévy measure see Section 2.4 below.)

e In 2010, in [17] Brezniak and Hausenblas showed ezistence of a martin-
gale solution in the case of a second order uniformly elliptic operator A,
a dissipative drift coefficient F' of polynomial growth, and a bounded
and continuous jump coefficient .
A typical example, to which all this applies, is the case, where A = A
in H := L*©) and f(u) = —u® + .

Analogously to the case of equation (1.1), the operator coefficient 3 in (1.2)
is not Hilbert-Schmidt and the absence of this property is compensated by
the smoothing property of the evolution operator (U(t, s))o<s<t<T-

Let us now describe the main results of this thesis and the methods applied
to obtain them.
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1.3 The main results and the structure of the the-
sis

The thesis is devided into two parts. The first part, including Chapters 2—4,
collects technical preliminaries and supporting material.

e In Chapter 2, we recall some general properties of Banach space-valued
stochastic processes and evolution operators. This includes the defin-
ition and properties of Wiener processes, Lévy processes and Poisson
random measures in Hilbert spaces. Furthermore, we discuss the sto-
chastic integration w.r.t. Hilbert-space valued Wiener processes and
(compensated) Poisson random measures, which will play a crucial
role in the second part of the thesis.

In particular, we recall the Lévy-Ito decomposition, which is the key
tool to link the results for the two equations (1.1) and (1.2) in the
later chapters.

e In Chapter 3, we place ourselves in the framework of the weighted
Lebesgue spaces L%”(@), v>1.
In Sections 3.1 and 3.2, we specify the conditions on evolution opera-
tors and Nemitskii operators in the weighted Lebesgue spaces Lg”(@),
whereas, in Sections 3.3 and 3.4, we discuss the regularity properties of
Bochner integrals and stochastic convolutions w.r.t. Wiener processes
in the Banach spaces L2"(©).

e In Chapter 4, we study the regularity properties of stochastic convo-
lutions w.r.t. compensated Poisson random measures in the spaces

£2(e).

The main new results in this part (besides that unbounded domains © are
allowed) are the continuity properties of the Bochner integrals and of the
stochastic convolutions, which we will describe more precisely in the con-
tents of Chapters 3 and 4 below.

In the second part, consisting of Chapters 58, we treat the following items:

e In Chapter 5, we prove the general existence and uniqueness results
for equation (1.1) resp. (1.2) in the case of Lipschitz coefficients F, %
and I" resp. E and 3.

e In Chapter 6, we establish comparison results for mild solutions to
equation (1.1) resp. (1.2) in the Lipschitz case with functions f resp.
e defining F' resp. F in the Nemitskii sense being replaced by larger
resp. smaller ones and additive, i.e. solution-independent, jump resp.
jump diffusion coefficients in equation (1.1) resp. (1.2).
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e In Chapter 7, we show existence and (in some cases) uniqueness results
for equation (1.1) resp. (1.2) with the drift coefficients F' resp. FE
being of at most polynomial growth and the jump resp. jump diffusion
coefficients being additive.

e In Chapter 8, we extend the results of Chapters 6 and 7 to the case of
multiplicative jump resp. jump diffusion coefficients in equation (1.1)
resp. (1.2).

In Section 8.2, we establish comparison results for solutions to equa-
tions (1.1) and (1.2) in the case of Lipschitz coefficients with functions
f resp. e defining F' resp. E in the Nemitskii sense being replaced by
larger resp. smaller ones.

In Sections 8.3 and 8.4, we prove existence results for equations (1.1)
and (1.2) in the most general setting of non-Lipschitz drifts and mul-
tiplicative diffusion, jump and jump diffusion coefficients.

Mainly, we have two classes of new results in this part. First, we prove
existence and uniqueness results in the case of nonautonomous, i.e. time-
dependent, generators of the evolution operator and non-Lipschitz drift co-
efficients, both in the case of additive (see Theorem 7.1.2 and 7.1.3 below)
and multiplicative (see Theorems 8.1.1 and 8.1.2) jump resp. jump diffusion
coefficients in equation (1.1) resp. (1.2). Second, we have a generalization
of the finite-dimensional comparison theory for SDEs with jumps (see e.g.
[92], [113], [67]) to the infinite-dimensional case (see Theorem 8.1.1).

In the main results, an explicit relation between the degree of polynomial
growth of the drift coefficients, integrability properties of the Lévy intensity
measure and the regularity properties of the evolution operator is estab-
lished.

In the following, we describe the content of our work chapter by chapter.
The contents of the chapters

In Chapter 2, we collect some technical preliminaries, the main of which
we shall briefly describe here.

First, we recall the general definitions of (almost strong) evolution operators
in Banach spaces B (Section 2.2) and of ()-Wiener processes (Section
2.3), Lévy processes (Section 2.4) and compensated Poisson random
measures (Section 2.4) in Hilbert spaces H.

A crucial issue to have a link between the two equations (1.1) and (1.2) later
is the so-called Lévy-Ito6 decomposition (see Lemma 2.4.10 below) and its re-
finement for square-integrable Lévy processes (cf. Lemma 2.4.13 below).

If the square-integrability property (SI) is fulfilled for the intensity measure
n corresponding to a Leévy process (L(t)):>0 in a Hilbert space G, the Lévy-
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1té decomposition takes the form

L(t) = tm + W(t) + [xN(t,dx)
G
with a drift vector m € G, a Q-Wiener process W and a compensated
Poisson random measure N.

With the help of this decomposition we can rewrite equation (1.2) as an
equation of form (1.1) with a new drift term F' := E + Myx(m). Never-
theless we will treat equation (1.2) separately, because, in our setting, the
singular drift term Msx(m) is only in Lfl,(@), and the general -Wiener
process (W (t)).e0,r] does not obey the coordinate representation

W(t) = XG:N Vanwp(t)ey, t € [0,T], (cf. (2.5) below)

with an orthonormal basis (e,,)nen C L?(©) obeying

sup ||en||re < 0.

neN
For technical simplicity only, in Chapters 5-8 below we only consider L?(©)-
valued Lévy processes L, whose intensity measures 77 obey the square-integrability
property (SI), but the corresponding results can be extended to general Lévy
processes in L?(©). Note that (SI) is equivalent to the finiteness of the sec-
ond moments of (L(t))c[0,7] (see Proposition 2.4.14 below).

Then, in Section 2.5 resp. 2.6, we recall the properties of stochastic inte-
grals w.r.t. ()-Wiener processes resp. compensated Poisson ran-
dom measures in Hilbert spaces H.

The following analytic tools are of particular importance for the rest of
the thesis:

e the Burkholder-Davis-Gundy inequality for stochastic integrals w.r.t.
(QQ-Wiener processes (cf. Lemma 2.5.4/2.5.6 below);

e the (infinite-dimensional version of the) Bichteler-Jacod inequality for
the stochastic integration w.r.t. compensated Poisson random measure
N from [80], [81](cf. Lemma 2.6.10 below);

e the Gronwall-Bellman lemma (see Lemma 2.7.3 below).

In Chapter 3, we introduce the special weighted spaces LIQ)”(@), v > 1,
where the weight 1, is defined by (1.3). We introduce some regularity con-
ditions on almost strong evolution operators and Nemitskii operators in these
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spaces. Furthermore, we present some preliminary facts on (stochastic) con-
volutions in L?)(@).

In Section 3.1, we impose conditions on almost strong evolution operators
U = (U(t,s))o<s<t<r In Lf,(@) (see (A0)—(A8) in that section). These
conditions later yield the well-definedness and regularity properties of the
stochastic convolutions w.r.t. -Wiener processes resp. compensated Pois-
son random measures (see I ZV and [ g below).

In Section 3.2, we recall the definition of (nonlinear) Nemitskii operators
and specify the conditions of Lipschitz continuity, linear boundedness, one-
sided linear growth and at most polynomial growth (see (LC), (LB), (LG)
and (PG) in that section) for their generating functions on R.

In Sections 3.3 and 3.4, we are concerned with the well-definedness of con-
volution Bochner integrals and the stochastic convolutions w.r.t. Q-Wiener
processes in Lf,(@). Similar problems have already been treated e.g. by Man-
they and Zausinger in [76]. As is typical in the literature, we consider two
basic cases. In the so-called nuclear case, we assume W = (W (t)).c[0,7]
to be a Q-Wiener process with a nuclear covariance operator @ in L%(0),
which yields a coordinate representation

W(t) = > agwp(t)en, t € [0,T].
neN
Here, (an)nen is a summable family of positive numbers, (e, )nen is & com-
plete orthonormal system in L?(0), consisting of eigenvectors of Q (corre-
sponding to the eigenvalues a,) such that

sup ||en|]ee < 00,

neN
and (wp)nen is a family of independent real-valued Brownian motions.
The second case (the so-called cylindrical case) deals with the cylindrical
Wiener process, i.e.

W(t) = Z wn(t)env te [O,T],
neN
is a Q-Wiener process with () = 1.
Then, the assumptions imposed on the almost strong evolution operator
(U(t, s))o<s<t<T guarantee the well-definedness of the so-called (Bochner
resp. Wiener) convolution processes

t— I,(t) = OftU(t, s)p(s)ds,
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¢
t— I, (t) = fU(t,s)./\/lw(s)m ds, m € L*(©)
0

and

t
t— 1V (t) = {U(t, §) M) AW (s), t € [0,T],

for predictable processes (p(t))ie[o,r) taking values in L(©) resp. L2¥(©).
A crucial role here is played by condition (A2), which assumes that there
exists a regularity constant ¢ € [0,1) associated to the evolution operator
such that the following estimate for the Hilbert-Schmidt norm holds

(L7) UG )Ml[2, 12 12) < (TNt =) llpllZ 0 < s <t < T, p € LY(O).

This allows us to establish the continuity of the above convolutions, which
will imply similar properties of the solutions to equations (1.1) and (1.2).
Alternatively to (A2), (A5) (with v = 1) from Section 3.1 below implies
the same.

The pathwise continuity of ¢ — I,,(t) and t — IV (t) was already known e.g.
from the paper [76] (see Theorem 3.1.1, p.56 there).

Furthermore, we also show the continuity of the above processes in the Ba-
nach spaces

LU L5(0)) = {f: Q — L] S{Hf(@ll%g P(dw)}
resp.
L L () == {f: Q@ — L3"| S{Hf(w)l Tav P(dw)}
for g > 2 and v > 1.

A technical problem is caused here by the fact that M) is not a Hilbert-
Schmidt operator in Lg(@). Well-definedness and continuity properties of
the above convolutions are achieved by additional regularity assumptions on
U= (U(t,s))o<s<t<T (see Section 3.1 below).

In particular, the regularity constant ¢ € [0, 1) corresponding to U (cf. (1.7)
above) plays an important role for the rest of this thesis. It determines the
possible choices of the parameter ¢ resp. v in the definition of the spaces
L4($Y; L2(0)) resp. L*”(Q; L37(©)) (Note that, for a given ¢, in Section 3.4
we need g > %—C resp. v > l—ic)

In this thesis we will treat both the case of the Nemitskii drift operator be-
ing Lipschitz and obeying a one-sided linear growth condition (see (LG) in
Section 3.1 below). The latter is the most general class of drift coefficients
considered so far. In particular, it includes the case of semi-dissipative drifts,



18 CHAPTER 1. INTRODUCTION

i.e. F resp. E in the equation (1.1) resp. (1.2) fulfills condition (SD) with
H = L%(@). The solvability of PDE’s similar to equation (1.1) with dissipa-
tive drifts was established both in an L2-setting (cf. Theorem 13 in [80]) and
for general Hilbert spaces (cf. Theorem 3 in [81]) by Marinelli and Rockner.

We note that we have to treat the convolutions in the scale of Banach
spaces L%”(@) in view of the later considerations with drifts, which are
non-Lipschitz but have at most polynomial growth.

In Chapter 4, we study the properties of stochastic convolutions w.r.t.
compensated Poisson random measures. More precisely, given a compen-
sated Poisson random measure N in [0,7'] x Q x L?(0), we show the well-
definedness and continuity in L%(€; L%) resp. LV (9; Lf)" ) of the stochastic
convolution

¢ N
J | Ul(t, s)Mys)(z) N(ds,dxr)
L

t»—>IN

0
for a predictable process p = (p(t))sc[0,r] Obeying

(1.8) sup Ellp(t)]l2, < o0
te[0,T] P

resp.

(1.9) sup E||<p(t)|]%’§u < 0.
t€[0,T] p

Later in Chapter 5, the classes of such processes will be denoted by H4(T)
resp. G,(T).

Analogously to the stochastic convolutions w.r.t. -Wiener processes, we
here face the problem that, given any ¢ € L2 ( ), My, is not a Hilbert-
Schmidt operator from LQ(@) to L2(@)

To overcome this problem, in the current chapter we have to impose an ad-
ditional assumption on U = (U(t, s))o<s<t<7 (cf. assumption (A5)/((A5)*
from Section 3.1), which generalizes (A2) for v > 1. Namely, for a given
v >1and any ¢ € L2/(0) with its multiplication operator My, U(t,s)M,,
should be a Hilbert-Schmidt ((A5)) resp. bounded ((A5)*) operator map-
ping L*(©) to L2"(©).

This leads to the restriction ¢ < 2 resp. v < % on the choice of the spaces
HY(T) resp. G,(T') in terms of the regularity constant ¢ € [0,1).

Let us stress that this condition differs from that needed in the Wiener case
(g > ﬁ resp. v > ﬁ) Note that this is the case, since we apply the
Bichteler-Jacod inequality (cf. Theorem 2.6.10 below) for compensated Pois-
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son random measures instead of the Burkholder-Davis-Gundy inequality (cf.
Theorem 2.5.4 (nuclear case) resp. Theorem 2.5.6 (cylindrical case) below)
in the Wiener case.

Another crucial issue for the well-definedness of the stochastic convolution
w.r.t. a compensated Poisson random measure N is the ezistence of higher
moments of the intensity measure 7 corresponding to N. This is reflected
in the assumption

2
(1.10) J (el v 1) n(ds) + < J (el A1)2 n(dx>> <o
L*(©) L*(©)

both for r = ¢ and r = 2v.

It is well-known that the moment estimate (1.10) for the intensity measure
7n implies the existence of the corresponding moments of the associated (via
the Lévy-Ito decomposition) Lévy process (L(t))icio,r], i-e. Bl[L(t)[[7. < o0
for r = q resp. r = 2v (see Proposition 2.4.14 below).

Finally, we show that in the case of ((t))¢c[0,7] being uniformly bounded
in mean in the sense that

sup E||p(t)||r~ < 0o (see Section 3.1 below)
te[0,T]
and U being pseudo contractive, i.e. there exists a constant [ such that
U (t, s)||£(L%) < eP=9) for any 0 < s <t < T (cf. condition (A7) in Section

3.1 below), there exists a cadlag version of the process ¢ — Ifj(t) € L%(@)
both in the case of (¢(t)).ejo,r] being in HY(T') resp. G, (T') (see (1.8) and
(1.9)).

In Chapter 5, we prove the main existence and uniqueness results in the
case of Lipschitz coefficients.

The solutions will be constructed in the Banach spaces H%(T") and G, (7))
of predictable Lf)(@) resp. L%”(@)—valued processes (X (t))iec[o,r] obeying
(1.8) and (1.9). The parameters ¢ > 2 and v > 1 will be specified below.
We check that Nemitskii operators corresponding to functions fulfilling the
Lipschitz property preserve the spaces HY(T) resp. G, (T).

The spaces H?(T') will be used to study equations (1.1) and (1.2) in the case
of the drift coefficients having at most linear growth, whereas the spaces G,
are needed in the case of the drift coefficients having at most polynomial
growth of order v > 1.

We start our study of equations (1.1) and (1.2) with the case of Lipschitz
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continuous drift and diffusion coefficients. The main results of this chapter

are Theorems 5.2.1 and 5.2.2, where we establish the existence and unique-

ness of mild solutions to equations (1.1) and (1.2) in the spaces H%(T') and

Gy (T).

Because of the singularity properties of the Hilbert-Schmidt norm ||U (¢, s)] |52(L2’L/2))
ast | sresp. s 1t (cf. (1.7) above), we have to overcome some essential
technical difficulties to prove solvability even in the Lipschitz case.

Namely, to control the convergence of approximations in Banach’s fixed

point theorem resp. Picard’s iteration procedure, we have to apply the
Gronwall-Bellman lemma (see Lemma 2.7.2 resp. Remark 2.7.3 below) al-
lowing for the time-singularity (¢t —s)~¢ as s | ¢ resp. t | s.

Furthermore, we prove continuity of ¢ — X (¢) in L(€; L%(@)) resp. L2 (Q; Lg”(@))
both for the solutions to (1.1) and (1.2) in the case g € |2, % )resp. v € [1, % )

(with the regularity constant ¢ from (1.7)). Crucial for the ezistence of
cadlag versions is the restriction to evolution operators

U = (U(t, s))o<s<i<r With regularity constants ¢ < 1. This assumption ex-
cludes the application to second order elliptic operators, but still allows for
differential operators of higher order (see Appendix D on this topic). The
restriction to the regularity constant { < % is necessary, since we need both

the (pathwise) theory for Wiener convolutions from Chapter 3 (requiring

q> % resp. v > ﬁ) and Poisson convolutions from Chapter 4 (requiring

q < % resp. v < %) To have both conditions, we have to assume that the
ot
setting § := 00) gives us the condition ¢ € [0, ).

Additionally assuming the boundedness of the jump resp. jump diffusion
coefficient and the pseudo contractivity of the evolution operator, we then
get the existence of cadlag versions of the solutions.

Finally, let us mention the result of Remark 5.1.11 covering the continuity
properties of the Bochner integrals for polynomial drift. In Chapters 7 and
8, this result will allow us to prove time-continuity in L(Q; L2(©)) if the
drift is polynomial of order 1, whereas for polynomials of order strictly big-

ger than 1 we have time-continuity in L*(; L(©)).

intervall ( ), where v and { take their values, is nonempty, which (by

In Chapter 6, we extend the comparison theorems for SDEs with Wiener
noise and Lipschitz drift and diffusion coefficients shown by Kotelenez (cf.
[65]) resp. Manthey and Zausinger (cf. [76]) to the case of additive jump
resp. jump diffusions coefficients. The latter means that " in (1.1) (and
later 3 in (1.2)) is solution-independent.

Recall that, when considering (1.1), we assume the Q-Wiener process W to
be as in the nuclear resp. cylindrical case from Chapter 3.

The proof of such comparison theorems in infinite dimensions relies on a
suitable finite-dimensional approximation. This can be done similar to the
comparison theory for SDEs with Wiener noise by Tkeda and Watanabe (cf.



1.3. THE MAIN RESULTS 21

Chapter VI in [53]) resp. Karatzas and Shreve (Chapter 5, Proposition 2.1.8
in [56]). It is crucial to have a family of bounded operators (An(t))ic[o0,7],
N € N, approximating (A(t))e[o,r] in a proper sense (cf. (A6) from
Section 3.1). Furthermore, we construct approximations (Xn,a(t))eec[o,r],
N, M €N, of the solutions (X (t))¢c[o,r] to (1.1) resp. (1.2). These approx-
imations are mild solutions to equation (1.1) with A being replaced by An
and W being replaced by the finite dimensional Wiener noises

W (t) = %1 Vanwy(t)en, t € [0,T].

Thereafter, showing the convergence in LQ(Q;L%(@)) of the approximat-
ing solutions Xy as to the unique mild solution X to (1.1) resp. (1.2), we
conclude the required comparison for the initial equations.

According to Theorem 6.1.1, which is the main result of Chapter 6, the rela-
tion ) < @ resp. e < e® for the generating function of the Nemitskii
drift operator F resp. F implies that

XM () < XA(t) P-almost surely for all t € [0,T]

for the mild predictable solutions (X (t))ic[o,r) to (1.1) resp. (1.2) with
solution-independent I' resp. .

In Chapter 7, we show the main existence and uniqueness results in the
case of non-Lipschitz drift coefficients and additive jump resp. jump diffu-
sion coefficients in equation (1.1) resp. (1.2).

Instead of the Lipschitz property (LC), we assume that the function f
resp. e corresponding to the Nemitskii drift operator F' resp. E is continu-
ous, satisfies the one-sided linear growth condition (LG) and is of at most
polynomial growth satisfying (PG) for some v > 1.

The proof of the existence result (cf. Section 7.2 ad 7.3 below) is based on
the comparison theorem established in Chapter 6. To this end, we adapt the
standard scheme of proof used e.g. by Kotelenez in [65] and by Manthey
and Zausinger in [76].

More precisely, in the case of equation (1.1) we consider monotone Lipschitz
approximations fy, fn ., N, M € N, of the function f obeying fnam T fn
as M — oo and fy | fas N — oo (see (7.12) and (7.13) below).

We prove the convergence in H4(T") resp. G,(T') of the corresponding solu-
tions Xy s to a certain process X. Thereafter, we check that X is a mild
solution to equation (1.1). The proof in the case of equation (1.2) works
completely analogous with monotone Lipschitz approximations ey, en u,
N, M € N, of the function e.
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Recall that whether we consider the equations in HY(T') or G,(T') depends
on the drift coefficient. More precisely, the mild solutions X to (1.1) resp.
(1.2) take their values in H%(T) if the function f resp. e corresponding to
the Nemitskii drift coefficient F' resp. E obeys the polynomial growth con-
dition (PG) with v = 1, whereas the solutions are in G,(T") if the function
f resp. e corresponding to the Nemitskii drift coefficient F' resp. E obeys
the polynomial growth condition (PG) with v > 1.

As in Chapter 5, the possible values of ¢ and v depend on the behaviour
of the almost strong evolution operator U = (U(t, s))o<s<t<T for s T t resp.
t | s. In the case v > 1, we particularly need the integrability assumption
(1.10) on the intensity measure n with r = 12, i.e.

2

14
I (lellz2 v 1) n(de) + (f(”xHLQ A 1)277(d96)> < .
L2(0) L2

This condition seems to be quite natural in the case of higher order poly-
nomials as drifts in SDEs with jumps. In particular, a similar condition
was imposed in Marinelli’s and Rockner’s paper [80] dealing with the well-
posedness of stochastic reaction-diffusion equations with Poisson noise (see
Section 2.1, p.1531 there).

With the help of Remark 5.1.11 (i), in the case v = 1 we prove the conti-
nuity of ¢t — X (t) in L1(Q; LIQJ(@)) analogously to the claims in Chapter 5
(cf. Theorem 5.2.1 there). Furthermore, with the help of Remark 5.1.11 (ii)
we prove the continuity of ¢ — X (t) in L?(€; L%(@)) in the case v > 1, i.e.,
compared to the Lipschitz case, we are no longer able to prove continuity
in L2 (Q; Lzl’) due to the polynomiality of the drift coefficient. Finally, we
show that there are cadlag versions of the solutions if U obeys the pseudo
contractivity property and «y (in the case of equation (1.1)) resp. o (in the
case of equation (1.2)) is uniformly bounded.

To this end, we apply the corresponding results on cadlag properties of
stochastic convolutions w.r.t. Wiener processes resp. compensated Poisson
random measures established in Chapter 3 resp. 4. Thus, as in Chapter
5, we again restrict our consideration to evolution operators with regularity
constant ¢ < 1. Furthermore in the case of (PG) being fulfilled with v = 1

we impose the condition ¢ € (ﬁ, % ), whereas in the case of (PG) being

fulfilled with v > 1 we need that v € ( 1%(, % ).

Then, in the special case of a Co-semigroup (S(t)).e[0,7] replacing the evo-
lution operator (U(t,s))o<s<t<T, We also show uniqueness of the solutions
to (1.1) with the help of Marinelli’s and Rockner’s uniqueness result (cf.
Proposition 7 in [80]) in the additive case. To this end, we restrict to the
case of a bounded © C R?, a cylindrical Wiener process (W())ielo,r) and
a uniformly mazximal monotone drift f.
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In Chapter 8, we show the eristence of mild solutions to equations (1.1)
resp. (1.2) in the case of non-Lipschitz drift coefficients and multiplicative
jumps resp. jump diffusions (see Theorems 8.1.1 and 8.1.2 below).

We intend to apply the same scheme of proof as in Chapter 7, which makes
it necessary to prove a comparison theorem in the case of Lipschitz drift
and diffusion coefficients (cf. Theorem 8.1.3 below). Therefore, we have to
extend the comparison results from Chapter 6 to the case of multilplicative
jump resp. jump diffusion coefficients.

In Section 8.2, we extend the finite-dimensional comparison theory for SDEs
with jumps (see e.g. the papers [92] / [113] resp. [67] by Peng and Zhu resp.
Krasin and Melnikov (and also Appendix C below)) to infinite dimensions.
Similarly to the scheme in Chapter 6, we first prove a comparison theo-
rem for finite-dimensional approximations of equations (1.1) and (1.2). To
this end, we consider the approximating equations in the Sobolev spaces
Wm2(0) C L*(©). Here, m € N is chosen big enough such that W™2(0) is
continuously embedded into the space Cy(0O) of continuous bounded func-
tions on ©. More precisely, we choose a domain © C R¢ such that the weak
cone property is fulfilled. Then, by Sobolev’ s embedding theorem (cf. also
Appendix A, Theorem A.6 below), we can embed W"2(0) continuously
into Cy(©) for suitable m € N.

We also need to assume that the family of operators (Uy)nen approximat-
ing the almost strong evolution operator U (recall (A6) needed in Chapter
6) obeys certain regularity properties in W2(0) (see condition (A8) in
Section 3.1 below). Finally, the jump coefficient I" resp. the jump diffu-
sion coefficient ¥ has to be monotonically increasing in the sense that it is
generated by a monotonically increasing function, and the intensity mea-
sure 7 corresponding to the compensated Poisson random measure N resp.
the Lévy process L has to be concentrated on the set L2, of functions in
L?(©) that are almost everywhere nonnegative on ©. Alternatively, we can
also treat the case of a monotonically decreasing jump resp. jump diffusion
coefficient (in the sense that it is generated by a monotonically decreasing
function), and an intensity measure 1 being concentrated on the set L2<0 of
functions in L?(©) that are almost everywhere nonpositive on ©. For fields
of application for the latter family of processes see e.g. Chapter 7 in the
monograph [12] by Bertoin.

Showing the convergence in L2(Q;L%(@)) of the approximating solutions
Xn,m to the unique mild solution X to (1.1) resp. (1.2), we conclude the
required comparison for the initial equations.
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Having achieved a comparison result for Lipschitz coefficients, we apply the
scheme used in proving the existence results in Chapter 7 to get existence of
mild solutions in HY(T) resp. G, (T'), which are continuous in L7(€; L%(@))
resp. L2({; L%(@)). Again there are cadlag versions of the solutions if U
obeys the pseudo contractivity property and + (in the case of the equation
(1.1)) resp. o (in the case of the equation (1.2)) is uniformly bounded.

By the same reasoning as in Chapter 5, we need to restrict our considera-
tions to evolution operators with regularity constants ¢ < %

In comparison to Chapter 7, we are not able to prove uniqueness of the
solutions in the case of a Co-semigroup (S(t)).e[o,] by directly applying the
uniqueness condition from [80] (cf. Remark 8.1.4 below and Theorem 13
in [80]). This needs a modification of the assumptions on the compensated
Poisson random measure N resp. the Lévy process (L(t))te[o,r]> which we
will not discuss here (see also Remark 8.1.6 (v) below).

Finally, this thesis is completed by an Appendix consisting of five chap-
ters.

Appendix A deals with Sobolev spaces in general and the Sobolev em-
bedding theorem (cf. Theorem A.6 below) in particular. This theorem is
crucially used in proving the comparison theorem in Chapter 8, where we
construct approximations of the equations (1.1) and (1.2) in the Sobolev
spaces W™2(0) with © C R? obeying the weak cone property.

Appendix B recalls the definition of Bochner integrals in Banach spaces
and is mainly needed to prove the existence of the Bochner convolution in-
tegrals in Chapter 3.

Appendix C collects comparison theorems known for finite-dimensional
SDEs with jump noise. Such comparison results are crucially used in Chap-
ter 8 to prove the comparison results for the finite-dimensional approxima-
tions of the equations (1.1) and (1.2) in W™2(0).

Appendix D presents an example of an almost strong evolution operator
obeying (most of) the properties (A0)—(A8) required in Section 3.1. A
large class of examples is constituted by all elliptic differential operators.
The results strongly depend on the space dimension d > 1 and on the order
m > 1 of the diffusion operators.

Finally, Appendix E presents a way of constructing measures, which obey
the properties (QI) and (P) required for the Lévy intensity measures in the
main results in Chapter 8.

Concerning the calculations appearing in the thesis, we note that we al-
ways add the constants, on which a constant in an estimate depends, in
brackets, and that, for simplicity, unessential constants are denoted by the
same symbol though they may have different values.
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Chapter 2

General definitions and
supporting results

In this chapter, we recall some technical preliminaries needed in the thesis.
In particular, we present infinite-dimensional analogues of basic probabilis-
tic concepts.

The following results hold for Banach or Hilbert spaces in general, whereas
the results in Chapter 3 concern with the special case of the weighted L?-
spaces introduced in Section 1.1.

In Section 2.1, we recall some general facts on stochastic processes tak-
ing values in Banach spaces.

In Section 2.2, we introduce the notion of an almost strong evolution oper-
ator (A(t))ie[o,r) (With a fixed 0 < T < oo) taken from [76].

In Section 2.3, we recall the definition of the ()-Wiener process in a sep-
arable Hilbert space G. In particular, we make use of the representation of
a Q-Wiener process as an infinite sum, i.e.

W) i= ¥ amwa(t)ga: t € [0.T],
neN
where (an)nen resp. (gn)nen is the family of positive eigenvalues resp. eigen-
vectors of the covariance operator @ > 0 in G and (wy,)npen is a family of
independent real-valued Brownian motions.

In Section 2.4, we recall the definitions of Lévy processes, compensated
Poisson random measures and martingale measures in the Hilbert space G.
The most important facts from this section are the Lévy-Ité6 decomposi-
tion of a Lévy process L (cf. Lemma 2.4.10 below) and its refined form for
square-integrable Lévy processes (cf. Lemma 2.4.13 below). Note that the
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refined form of the decomposition will be used later to rewrite the equation
(1.2) as an equation of the form (1.1).

In Section 2.5, we collect basic facts on stochastic integration w.r.t. Wiener
processes in Hilbert spaces. In particular, we recall the Burkholder-Davis-
Gundy inequality for stochastic integrals w.r.t. Wiener processes (cf. Lemma
2.5.4/2.5.6 below), which will play an important role in the existence (and
uniqueness) proofs in Chapters 5, 7, and 8.

In Section 2.6, we recall basic facts on stochastic integration w.r.t. compen-
sated Poisson random measures. The most important result of this section
is the Bichteler-Jacod inequality for stochastic integrals w.r.t. compensated
Poisson random measures (cf. Lemma 2.6.10 below). This inequality will
be the key tool to establish the well-definedness of stochastic convolutions
w.r.t. compensated Poisson random measures in Chapter 4. Furthermore,
it will also play an important role in the existence (and uniqueness) proofs
in Chapters 5, 7, and 8.

In Section 2.7, we collect auxiliary analytic results, among them the Gronwall-
Bellman lemma (cf. Lemma 2.7.2 and Remark 2.7.3 below), which will play
a crucial role in the existence (and uniqueness) proofs in Chapters 5, 7 and
8.

2.1 Some general facts on stochastic processes

In this section, we collect some basic facts on stochastic processes taking
values in Banach spaces, which can be found e.g. in the monographs [26],
[29], [34], [53] and [96]; see also Sections 1.2 and 1.3 in [61]. To be more
precise, we fix the time-intervall I := Ry :=[0,4+00) or I := [0, 7] for some
fixed 0 < T < oo0.

Let (2, F, P) be a probability space with complete filtration (F;)ic;. The
latter means that Fj contains all sets of P-measure zero. A filtration (F)er
is called right-continuous if F; = Fi4 := NgstFs. Furthermore, let £ be
a separable Banach space with norm || - ||z and the Borel o-algebra B(E).

Definition 2.1.1:  Let X = (X(¢))ter and Y = (Y (t))ier be two E-
valued stochastic processes.

X is called a modification or version of Y if P[X(t) =Y (t)] =1 for each
t € I. In this case, we say that X and Y are stochastically equivalent.
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X and Y are said to be indistinguishable or P-equal if there exists a
P-zero set N € F such that we have

X(t,w) =Y (t,w), for all t € [ and w € N°.

We say that a process X is defined P-uniquely by certain properties if any
further process fulfilling these properties and the process X are P-equal.

Definition 2.1.2:

(1) An E-valued process (X (t))icr is said to have left resp. right limits if,
for P-almost all w € ), the path I 5t — X (t,w) € E has left resp. right
limits.

(ii) An E-valued process (X (t))cr is called continuous (right-continuous
resp. left-continuous) if, for P-almost allw € Q, [ 5t — X (t,w) € E is
continuous (right-continuous resp. left-continuous).

(iii) An E-valued right-continuous process with paths having left limits
is called cadlag.

(iv) An E-valued left-continuous process with paths having right limits is
called caglad.

Definition 2.1.3:
(i) An E-valued process (X(t))ier is called adapted to the filtration
(Ft)ter if the random variable X (t) is Fy-measurable for any t € 1.

(ii) The process (X (t))ier is measurable if it is a measurable mapping
from I x Q to E, where I x §) is equipped with the product o-field B(I)® F.

(iii) Let Pr denote the o-field of predictable sets, that is, the smallest
o-field on I x §) containing all sets of the form {0} x A, (s,t]NI x B, where
s,t€l,s<t, Ae Fyand B € F;. Equivalently, Py is the minimal o-field
such that all left-continuous, adapted processes (X (t))ic; are measurable.
In particular, by Pr we denote the o-field of predictable sets on [0,T"] x €.
An E-valued process (X (t))ier is called predictable if it is a measurable
mapping from I x § to E, where I x ) is equipped with the o-field Pj.

A predictable process is not only adapted to the original filtration (F)¢>o,
but also to the smaller filtration (F;_)¢>0, where Fy— 1= Nyt Fs.

(iv) Given p > 1, an E-valued process (X(t))ier Is called p-integrable
if
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E|| X (t)|]% < oo, forallt € I.

The space of all such X will be denoted by LP(Q; E). For X € LP(); E),
one can define the Bochner integral in E

| X (t)dP, cf. [95], p.24 or Appendix B.
Q

In the special cases p = 1 resp. p = 2, we also say that (X (t))ies Is in-
tegrable resp. square-integrable.

Definition 2.1.4: Let (X (t))ter be an E-valued process with left limits.
For 0 < t € I, we denote X (t—) := ling(s). For t = 0, we make the

sel
convention X (0—) := X(0).
We define a jump at t by AX(t) := X(t) — X (t—).

Clearly, a cadlag process (X (t)):cs can only have jump discontinuities. By
Theorem 2.8.1 in [7], for almost all w, the set of all ¢ € I such that
AX(t,w) # 0 is at most countable.

By Proposition 3.17 from [95], if (X (¢)):er and (Y (t))ier are cadlag processes
on (Q, F, P) and X is a modification of Y, then X and Y are indistinguish-
able, i.e. thereis aset N € F of P-measure zero such that X (t,w) = Y (¢, w)
for all (t,w) € I x N°€.

Definition 2.1.5:
(i) An E-valued stochastic process (M (t))ier is called an (F;)-martingale
if it is an integrable Fi-adapted process such that

E[M(t)|Fs) = M(s) P-a.s., for all t > s.

For the notion of conditional expectation in Banach spaces, see e.g. p.
24 in [95].

(ii) An R-valued stochastic process (M (t)).es is called an (F;)-submartingale
if it is an integrable Fi-adapted process such that

E[M(t)|Fs] > M(s) P-as., for all t > s.

(iii) An R-valued stochastic process (M (t)):cr is called an (F;)-supermartingale
if (=M (t))¢es is a (Ft)-submartingale.
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By Theorem 3.35 from [26], if (M (t))tes is an E-valued martingale, then
(||[M(t)||%)ter is an R, -valued submartingale, for each p > 1.

Proposition 2.1.6: (Doob’s submartingale inequality, see e.g. [34],
p.63)

Given T > 0, any right-continuous Ry -valued (F)iec(o,r)-submartingale M
obeys for all 1 <p < oo andr >0

E
0<t<T

P ({ sup M(t) > T}) < TE[M(T)),
0<t<T

P ({ sup M(t) > r}) < LE[M(T)P.

0<t<T

sup M(t)p] < (%)pEM(T)p,

As a sequel, we have Doob’s inequality for E-valued cadlag martingales.
Namely, for all 1 < p < oo and r > 0

E
0<t<T

sup HM(t)II%] < (32) BIM@)I,

(2.1) P ({ sup [[M(t)]|e > T}) < JE[|M(T)||g,

0<t<T

P({ sup HM(t)HEZr}> < FE|IM(D)|[-

0<t<T

Definition 2.1.7: (i) An E-valued process (X (t))ier is called pathwise
continuous if the mapping I > t — X(t,w) € E is continuous for any
w e .

(ii) The process (X(t))ier C E is called stochastically continuous or
continuous in probability if we have, for any t € I,

lim P[|X(t) — X(s)| > €] = 0 for any € > 0.

sel

(iii) Given p > 1, the process (X (t))ier C E is LP continuous if it is
p-integrable and obeys, for any t € I,
lim B X (5) - X(8)}, = 0.

sel

If p =2, the process (X (t))ier is called meansquare continuous.
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Lemma 2.1.8: (cf. e.g. Proposition 3.21 in [95])
Any measurable stochastically continuous (F)-adapted E-valued process
(X (t))ter has a predictable modification.

An adapted cadlag process (X (t)):er need not be predictable. But its left
limit (X (t—))er will surely be predictable, see definition of the o-field P;.

Suppose that G is a separable Hilbert space. Then, by Doob’ s regularity
theorem (see e.g. Theorem 3.40 in [95]), every stochastically continuous
square-integrable martingale M = (M (t)):er in G has a cadlag modification,
which will be again denoted by M.

Recall that this modification obeys the Doob inequalities (2.1).

Given T' > 0 and I := [0,T], the space of all cadlag square-integrable
G-valued martingales M = (M (t));co,r] W.r-t. the filtration (F)ic(0,7)
is denoted by MZ(T).

As usual, indistinguishable processes M: [0,T] x  — G are identified.
Endowed with the inner product

(M,N) - E < M(T),N(T) >¢,

MZ,(T) is a Hilbert space. We denote by MéC(T) resp. /\/lélo(T) the sub-
space of continuous martingales M resp. those M such that My = 0. Both
M%’C(G) and M%O(G) are closed in M2(G).

Given any M € M2(G), by the Doob-Meyer decomposition (see e.g.
Theorem 3.43 in [95]) there exists a unique increasing predictable process
<M >= (< MM >t)t€[0,T}, called the predictable quadratic varia-
tion or the Meyer process of M, such that < M, M >y= 0 and
IM(t)||Z— < M, M >, t € [0,T], is a martingale.

The predictable quadratic variation < M, M >; is used e.g. to construct
(via the It6 isometry) the stochastic integrals w.r.t. dM(t).

An alternative process is the so-called adapted quadratic variation

[M] := ([M, M]t)se(0,1)-

Namely, for any M € M?2A(G), there exists a unique increasing adapted
cadlag process [M] := ([M, M];).ej0,r) such that [M, M]o = 0 and

[[My]|2, — [M, M)y, t € [0,T], is a cadlag martingale. Note that, for any
sequence of partitions of [0, 7]

I :={0=t; <ty <..<tj =T}
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such that
mesh II" := sup(t?+1 — t?) — 0 as n — oo,
J

one has
. Jn—1 5
[M, M]; = Tim go |[Mn | — M|,

where the limit is in L!(Q, F, P). Note that
E[M, M), = E[[M(t)|[2, — E||M(0)|[Z-

If M has stationary independent increments, i.e. for all t > s, M (t) — M(s)
is independent of F, and has the same distribution as M (¢t —s) — M (0), then

< M, M >=t E[[[M1)[|Z — [|M(0)][&]-

Furthermore, if M € M?F’C(G), then [M,M] =< M,M >. For discon-
tinuous martingales, [M, M]; and < M, M >; need not to coincide.

Note that E[M, M), = BJ|M(8)] % — BI|IM(O)|%.
The quadratic variation [M, M] is also involved in the following inequality
for real-valued martingales M € M%O (R) with G =R:

Theorem 2.1.9: (Burkholder-Davis-Gundy, cf. e.g. Theorem 3.50
in the monograph [95] by Peszat and Zabczyk)

For every p > 1, there ewists a universal positive constant C, such that, for
any T >0 and any M € M%O(R),

(2.2) o ElM, M]? <E < sup Mtlp> < GE[M, M]é
te[0,T]

Another important issue, where one needs the quadratic variation [M], is
the It6 formula for cadlag semimartingales (see e.g. [95], Appendix D).

2.2 Strong evolution operators in Banach spaces

For this section, let B be a Banach space. Let £(B) denote the space of
linear, bounded operators A: B — B with the usual operator norm || - ||.
We present the definition of an almost strong evolution operator from [111]:

Definition 2.2.1: Let us fix some T € (0,00).
A family U = U(t, 8)g<s<i<r C L(B) is called an almost strong evolu-
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tion operator if the following holds:
(i) U(t,t) =1,t € [0,T], where I denotes the identity operator in B;
(ii) U(t,r)U(r,s) =U(t,s),0<s<r<t<T;

(iii) U is strongly continuous, i.e. the map
U(-,)z: {(t,s)|0 < s <t<T}— B is continuous for any x € B and

sup _[[U(t,9)]] < e(T) < o0;
0<s<t<T

(iv) For anyt € [0,T], there exists a closed linear operator A(t) on B such
that U(t,s): D(A(s)) — D(A(t)) for all s <t and

ftA(r)U(r, s)pdr = (U(t,s) —I)p

for any ¢ € Dy 5(A) :={p € B|U(r,s)p € D(A(r)) forallr € [s,t]}.
Obviously (iv) implies that for every ¢ € Dy 5(A)
(v) GU(t,s)p =AUt s)p
for Lebesgue-almost all t € [0, T ], which justifies the terminology.
Analogously to the theory of one-parameter semigroups, (A(t))iejo,r] is
called the generator of U. If (v) even holds for all t € [0,T'], U is called

a strong evolution operator.

Remark 2.2.2: (i) For U being an almost strong evolution operator in
the sense of 2.2.1, by (i) we have in particular that

[s,T]|>t—U(t,s)r € B

is a continuous mapping for any fized s € [0,T] and x € B, and respectively
[0,t]2s—U(t,s)r € B

is a continuous mapping for any t € [0,T] and x € B.

(ii) It is instructive to compare 2.2.1 (i4t) with the strong continuity prop-
erty of operator semigroups.
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Recall that the Co-continuity of a semigroup (S(t))¢>0 in B means that

lim S(t)x =
im S(t)o = o

for each x € B, which readily implies the continuity of the map
[0,T]>t— S(t)x € B

for all x € B.
Instead of 2.2.1 (4i3), let us assume the weaker property

lim U(t =

im (t,s)x ==
for any x € B and any s € [0,T'] resp.

ImU(t,s)x ==z

sTt

for any x € B and any t € [0,T].
Herefrom, by 2.2.1 (ii) we get

ltlfn U(t,s)x =U(r,s)x
resp.

ImU(t,s)x = U(t,r)z

sr

forallz € Band0<s<r<t<T.

In contrast to the semigroup (S(t))i>0, these properties of right- resp. left-
continuity do not imply each other and are weaker than those in 2.2.1 (4i3).
Further assumptions on the evolution operator U(t,s), 0 < s <t < T, will
be imposed in Section 3.1.

2.3 (-Wiener processes in Hilbert spaces

The presentation in this subsection is based on [26], Chapter 4 there, and
[97], Chapter 2.

Let (2, F, P) be a probability space, and let (F;);>0 be a complete right-
continuous filtration in F.
Let G be a separable Hilbert space with inner product < -,- > and corre-
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sponding Borel o-algebra B(G).

Definition 2.3.1: (cf. e.g. [97], Definition 2.1.1, p. 9)
A probability measure i on (G,B(G)) is called Gaussian if all bounded
linear mappings

v: G—R
Go>g—<g,v>geR
have Gaussian laws, i.e. for any v € G there exist m = m(v) € R and

o :=o(v) > 0 such that

(z—m)?

plv e A) = \/2;?1{67 222 dz, A € B(R),

or
p = 64 for some g € G, where 6,4 is the Dirac measure placed in g.

Theorem 2.3.2: (cf. e.g. [97], Theorem 2.1.2, p. 10)
A measure i on (G,B(Q)) is Gaussian if and only if its characteristic func-
tional has the form

fi(g) == [ ei<97>6 y(dx) = i<m9>6—3<Q9.9>6 geaq,
G

where m € G and Q € L(G) is nonnegative, symmetric, with finite trace.
The above p will be denoted by N(m,Q), where m is called mean and Q is
called the covariance operator. Furthermore, i is uniquely defined by m and

Q.

In what follows, we denote the set of nonnegative, symmetric linear op-
erators Q € £(G) with finite trace by 77 (G).
Recall that 0 < @ € £(G) has finite trace if

(23) tT‘Q = Z < an;gn >g <0
neN

for some (and thus for any) orthonormal basis (g )nen C G.
Proposition 2.3.3: (cf. e.g. [98], Theorem VI.21 and Theorem VI.16)

For any Q € T (Q), there exists an orthonormal basis (gn)nen of G such
that

(2.4) Qgn = angn, an >0, n € N.

Hence, by (2.3) we have
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trQ= > a, < o0,

neN

and thus 0 is the only accumulation point of the sequence (an)neN-

Without loss of generality, we may assume (ap)peny from 2.3.3 to be in
decreasing order.
Then, there is a canonical form of Gaussian random variables.

Proposition 2.3.4: (cf. e.g. [97], Proposition 2.1.6, p. 13)
Let m € G and Q € T (G) obey the eigenvector expansion (2.4).

A G-valued random wvariable X is Gaussian with law
Po X' = N(m,Q) if and only if

X=7> \/Cann(t)gn +m,

neN

where w, are independent real-valued random variables with
Pow,' = N(0,1) for all n € N with a,, > 0. The series converges in
L*(Q, F,P;G).

In particular, we have the following statement, which is the inverse to The-
orem 2.3.2.

Corollary 2.3.5: (cf. e.g. [97], Proposition 2.1.7, p.15)
Let Q € TT(G) and m € G.
Then, there exists a Gaussian measure p = N(m,Q) on (G,B(Q)).

Now, we will give the definition of a ()-Wiener process in the case of

Q€ T+(G).

Definition 2.3.6: A G-valued (F;);>0-adapted stochastic process (W (t))¢>0
is called a (standard) Q-Wiener process (w.r.t. the filtration (Fi)t>0)
if:

1. W(0) =0 (P-almost surely);

2. W has independent increments, i.e. W(t) — W (s) is independent
of Fs for all 0 < s < t;

3. W has stationary increments and for all 0 < s < t the random
varaiables W (t) — W(s) are normally distributed with mean 0 and
covariance operator (t — $)Q;

4. W is a pathwise continuous process.
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There is a canonical representation of a ()-Wiener process given as fol-
lows.

Proposition 2.3.7: (cf. e.g. [97], Proposition 2.1.10, p. 17)
Let (gn)nen be an orthonormal basis of G consisting of eigenvectors of
Q € T(G) with the corresponding eigenvalues a, > 0, n € N.
Then, a G-valued stochastic process (W (t))i>0 is a Q- Wiener process if and

only if

(2'5) W(t) = Z \/@wn(t)gny t>0,

neN
where wy,, n € {n € N|a, > 0}, are independent real-valued Brownian mo-
tions.
The series is convergent in L*(Q,F,P;C([0,T],G)) and thus has a P-
almost surely time-continuous modification.

So, by Corollary 2.3.5 and Proposition 2.3.7, for any operator Q € 7 (G)
there is a ()-Wiener process and it is of the form (2.5).

There is an equivalent coordinate representation of W using an orthonormal
basis in the so-called reproducing kernel Hilbert space(in short RKHS,
see e.g. Section 7.1, Definition 7.2 in [95]).

Given Q € T7(G) obeying (2.4), the corresponding RKHS is given by
g .= Q%G. This is a Hilbert space with the inner product

<@ >g= Y ayt <o, g0 >a< Y, gn >, 0, Y EG,
neN
an#0

where < -, > denotes the inner product in G. Since this space is gen-
erated by the orthonormal basis (g )nen defined by

=

- 1
gn = Q2gyp = angn, n €N,

we have the Hilbert-Schmidt embedding G < G.
This leads to the representation

(2.6) W(t) = 5 wn(t)gn: t € [0,T)

whereby the series is convergent in L?(Q2, F, P;C([0,T],G)) by 2.3.7 (cf.
equation (2.5) there).

In general, an operator () > 0 need not to have finite trace. Given such
situation, we write @ ¢ 7 (G). This leads to the class of so-called cylin-
drical Wiener processes.
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In the following, we construct such a Wiener process in the important case
Q =1¢ T7(G). This is done by establishing a representation similar to
(2.6), but converging in an appropriately large space.

More precisely, a cylindrical Wiener process can be defined in the following
way (cf. [97], Section 2.5.1, pp 39-41):

We need a further Hilbert space (Gi1,< -,- >¢,), G C Gi, such that
G = Q%(Gl) with Q@ € 71(G1). By Remark 2.5.1 from [97], such G; and
@ always exist. To this end, we just take a sequence (by,),ecn of nonnegative
real numbers such that

3 b2 < oo

neN
Let (gn)nen be an orthonormal basis of G. Then, we define G as a comple-
tion of G w.r.t. the inner product

< g h>6= 3 by < gnyg >6< gn b >a-
neN
Obviously, the orthonormal basis in (7 consists of the vectors g, := b, 'gn,
n € N.
Let J: GgGl be the embedding operator and J*: G; — G its adjoint.

Then, Qq := JJ* € TT(G1) with

tr(Q1) = Y b2 < oo.
neN
1 1
Furthermore, Q7 (G1) = G and Q7f: G; — G is an isometry. Now, the
previous scheme runs with the RKHS G and the covariance operator
Q1 € T1(Gy). We get (see also [97], Proposition 2.5.2, p. 47):

Theorem 2.3.8:  Given an orthonormal basis (gn)nen of G and a family
(wn)nen of independent real-valued Brownian motions, define

Q1 :=JJ* € TT(Gy) with J as above.

Then, the series

(2' 7) W(t) = %:an(t)‘]gn; t>0,

converges in L*(Q,F,P;G1) and defines a continuous, square-integrable
martingale. Moreover, (W (t))i>o0 is a Q1-Wiener process in Gj.

When we talk about cylindrical I-Wiener process in the following, we al-
ways mean the process (2.7) from the theorem above.
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2.4 Lévy processes, compensated Poisson random
measures and martingale measures

In this section, we recall the definition of Hilbert space valued Lévy processes,
compensated Poisson random measures and martingale measures.

Lévy processes and their path properties

First, we introduce the notion of Lévy processes in Hilbert spaces and dis-
cuss some basic results. This topic is treated e.g. in the monograph [95]
by Peszat and Zabczyk as well as in the monograph [7] by Applebaum and
the paper [8] by the same author. We also refer to the papers of Albeverio,
Mandrekar, Riidiger and Ziglio ([3], [4], and [102]), which cover the more
general case of Lévy processes in Banach spaces.

For a concise review, see also the manuscripts [58] and [60].

We assume G to be a separable Hilbert space (again denoting its inner
product by < -, -, >¢ and the corresponding o-algebra by B(G)).

Let (©,F, P) be a probability space and let (F;)i>0 be a complete right-
continuous filtration.

Definition 2.4.1: A G-valued, (F;):>0 adapted process (L(t))>¢ is called
a Lévy process if:

1. L(0) = 0 (P-almost surely);

2. L has independent increments, i.e. L(t) — L(s) is independent of
Fs for all 0 < s < t;

3. L has stationary increments, i.e. for all 0 < s < t the random
variables L(t) — L(s) and L(t — s) have the same distribution;

4. L is stochastically continuous.

A principal difference between Lévy processes and Q)-Wiener processes
is that Lévy processes in general do not have continuous paths.

Remark 2.4.2: (i) By Theorem 2.17 from [8] every Lévy process has
a cadlag modification, which is itself a Lévy process.

Thus, concerning the path structure of Lévy processes, it is clear that all
possible discontinuities could only be of jump type.

In what follows, we always assume a Lévy process L to be cadlag.

(i) Given a G-valued Lévy process (L(t))i>0, for any w € Q, the path
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(L(t,w))t>0 only has finitely many jumps of norm > 1. Otherwise we
could find an accumulation point t > 0 such that t — L(t,w) does not have
a left limit at t. This would contradict the cadlag property!

(iit) Given a G-valued Lévy process (L(t))i>0, the process

(< L(t),9 >c)e>0 is a real-valued cadlag Lévy process for any fivred g € G
(cf. Lemma 2.7 from [58]). Let us take an orthonormal basis (gn)nen in G
and set 1, (t) :=< L(t),gn >q, t > 0.

Then, by Theorem 4.39 in [95], we have the expansion

(2.8) Lt) = 3 ln(t)gn,
neN
where the series is convergent in probability uniformly on any compact time-
intervall.
In particular, if L is square-integrable, i.e.

E||L(t)||% < oo for any t > 0,

the right hand side in (2.8) converges in L*(Q2, F, P; G) (cf. e.g. [88], Propo-
sition 2.1).

(iv) Basic examples of Lévy processes are Poisson processes and Q- Wiener
processes.

In fact, any Lévy process can be built from Poisson processes and Q-Wiener
processes in a constructive way by the Lévy-1té decomposition, see Theorem
2.4.9 below.

(v) In this manuscript, we do not consider the so-called eylindrical Lévy
or Poisson processes with the corresponding RKHS equal to G.
Such processes are represented as

L(t) = > ln(t)gn, t 20,
neN
with (gn)nen being an orthonormal basis in G and (I,)nen a family of inde-
pendent, identically distributed real-valued Lévy processes on (0, F, P). The
above series converges P-a.s. uniformly on compact time-intervalls, but in
a larger Hilbert space G1 with the Hilbert-Schmidt embedding GCG1. If the
Lévy processes l,, n € N, are themselves square-integrable, then the conver-
gence is also in L*(Q, F, P;G1) (see Section 4.8 in [95] or the paper [99]).

Next, we are going to describe the discontinuities of a Lévy process. So
let (L(t))i>0 be a Lévy process as in 2.4.1:

Definition 2.4.3: (i) Set
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AL(t,w) := L(t,w) — L(t—,w), t >0, w € Q.

By definition, AL(t,w) is the jump size of the path L(w) at time t.
Note that by Lemma 2.3.2 in [8], for a fixed t > 0, AL(t) =0, P-a.s.

(ii) Introduce a random variable

(2.9) N(t,A,w) :=card({0 < s <t:AL(s,w) € A}) = > 14(AL(s,w)),
0<s<t
€[0,T], AeB(G),weq, -

with card(-) denoting the set cardinality. In other words,

N(t,A,w) € Z; U{oo} counts the jumps of a path L(w) that take values in
A€ B(G).

Concerning well-definedness of N (t, A,w), see Lemma 2.4.4 below.

(iii) A (possibly infinite) measure n on (G, B(G)) is called a Lévy measure
if

(2.10) [ (l2llg A 1)n(dz) < oo.
G\{o}

We will see below that for each Lévy process L there is a Lévy measure
1 giving information about size and likelihood of jumps of L.

Let us denote by Ag the family of all A € B(G) such that 0 ¢ A.

Such sets are called bounded below, whereas 0 is called the forbidden
point.

It is easy to see (cf. e.g. Lemma 2.18 in [58]) that A4 is a ring in G\ {0}, i.e,
(i) O € Ay, (ii) A,B e Ay = A\B € Ap and (iii) 4,B € Ay = AU B € A,.

Now, let us qoute some results on the notations introduced above.
Lemma 2.4.4: (cf. Theorem 2.7 in [4])

Suppose that A € Ag.

Then, N(t, A) is finite for each t > 0 P-a.s..

Let us introduce

B(G\{0}) := o(Ag) = {A € B(G)|0 & A},

which is the minimal o-algebra containing the ring Ag. It is easy to check

that o(Ag) = {A:= B\ {0}| B € B(G)}.
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Lemma 2.4.5: (i) (cf. Proposition 2.3.5 from [106] resp. Theorem

2.13 from [4])
For each 0 <t <T and w € Q, we get a mapping

N(ta '7"‘))" Ap — R-‘r U {0}
A~ N(t,Aw).

For all 0 < t < T and P-almost all w € Q (cf. Proposition 2.4.4), this
s a o-finite pre-measure, i.e.:
e N(t,0,w) =0;

o For any family (An)nen of pairwise disjoint sets from Ay, we have

N (t, L] An,w> =Y N(t,Ap,w);
n=1

n=1

e There is a sequence (Ap)nen C Ay ezhausting G\ {0} such that

N(t, Ay, w) < oo for any n € N.

In particular, one can take here A, = {z € G| L <||z||¢}, n € N.

(ii) (cf. Corollary 2.14 from [4])

Given 0 <t <T and w € €, there is a unique o-finite measure N (t,dx,w)
on B(G \ {0}) extending N(t,-,w) from part ().

(iit) (cf. Theorem 2.17 from [4])
The mapping n given by

n(A) :=E[N(1,A4)], A € A,
s a o-finite pre-measure on Ag.

(iv) (cf. Corollary 2.18 from [4])

There is a unique o-finite measure n on B(G \ {0}) extending n from part
(iii).

By Theorem 2.21 from [4], n is a Lévy measure, i.e. it fulfills (2.10).

In the following we call n the intensity measure corresponding to L.
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To describe the properties of the random variables N (t,-), let us recall the
following general definition.

Definition 2.4.6: Given a measurable space (S,S), a family (N(5))ses
of random variables on a common probability space (2, F, P) is called a
Poisson random measure if:

e For almost all w, N(-,w) is a measure on (S, S);

e The random variables N(A1), N(As), ..., N(Ay,) are mutually inde-
pendent for any finite family of mutually disjoint A1, As, ..., A, € S
and n € N;

e Fach N(A) has a Poisson distribution whenever EN(A) < oo, i.e.
there is a A4 > 0 such that

P(N(A) = k) = 2aempi=dal e Ny (o},

Indeed, here Ay = EN(A).

Proposition 2.4.7:  Setting S := G\ {0} and S := B(G\{0}) as above
and firzing t > 0, N(t,-) from Definition 2.4.8 (it) is a Poisson random
measure.

Proof:  Note that N(f,w,-) is a measure on (S,S) for all ¢ > 0 and
almost all w € Q by 2.4.5 (ii).

The two remaining properties from Definition 2.4.6 follow from Theorem 2.7
from [4] and its proof. W

The so-called compensated Poisson random measure N(t,:) corre-
sponding to N (t,-) is defined on (G \ {0}, B(G \ {0})) by

(2.11) N(t,dz) := N(t,dx) — tn(dz), t >0,

where 7 is the same as in Lemma 2.4.5 (iv).

Actually, one starts from the definition N (¢, A) = N(t,A) — tn(A) € R
for all A € Ap.

By Lemma 2.4.5, N(t,dz) then extends to a random measure on G with
the forbidden set {0}.

Lemma 2.4.8: (cf. e.g. Example 2.3.7(3) from [8])
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For any A € Ay, t — N(t,A) is an (Fi)s>0-martingale.

Remark 2.4.9:  Recall from Remark 2.4.2 that, given a G-valued Lévy
process (L(t))ej0,r] and a vector g € G, the process Ly(t) :=< L(t),g >,
t €[0,T], is a real-valued Lévy process.

Analogously to Definition 2.4.3, Lemma 2.4.5 (i) and (2.11), we define

Ny(t,A,w) ;== card({0 <s<t:ALy(s,w) € A})
= > 14(ALy(s,w)), t€[0,T], Ac B(R\{0}), we Q,

0<s<t

ng(A) = E[Ny(1,4)], A € B(R\{0})
and
N,(t,dz) := N,(t,dzx) — tny(dz), t > 0.

Then, Ng4 is a Poisson random measure, 1y a o-finite premeasure and Ng a
compensated Poisson random measure with compensator ng @ dt. Obviously,
for a given g € G Ny can be seen as a projection of N to the one-dimensional
subspace

Gy :={<z,9>c9|r G} CQGq,

whereas 1y and Ng are the projections of n resp. N to Gy.

The Lévy-Ité6 decomposition

There is a canonical representation for Lévy processes, which is given by
the celebrated Lévy-It6 decomposition.

Theorem 2.4.10: (cf. e.g. [7], Theorem 2.4.16 or [8], Theorem 1)
For any G-valued Lévy process (L(t))¢>0, there exist a drift vector b € G
and a Q-Wiener process W with Q € T (G) such that, for all t > 0,

(2.12) Lt)=tb+Wt)+ [ aN(t,dz)+ [ aN(t,dz).
{llelle<1} {llzlle>1}

Furthermore, W is independent of N(-, A) for all A € Ay, where N(t,dx),

t > 0, are Poisson random measures defined by (2.9).

The compensated Poisson random measure N (t,dzx) is defined by (2.11) and

the intensity measure n respectively by Lemma 2.4.5.

The triple (b,Q,n) is called the characteristics of L. It is uniquely deter-

mined by the Lévy process L.
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The integrals in (2.12) are understood in the Bochner sense (cf. Appen-
dix B for the general definition of Bochner integrals in Banach spaces).
Concerning the random Bochner integral w.r.t. N, we note the following:

Remark 2.4.11:  Since, by Remark 2.4.2 (ii), for each w € Q, there
is only a finite number of jumps obeying ||AL(s,w)||¢ > 1, the Bochner in-
tegral w.r.t. N in (2.12) can be calculated as a random finite sum

aN(t,dz) = 37 AL($)1{jjz||e21} (AL(5))-
{llz|lc>1} 0<s<t

Clearly,

xN(t,dx)
{ll=l|=1}
gives rise to a cadlag stochastic process in G as we vary t > 0.
Next, we define the compensated sum of small jumps

N (t,dz).
{lzlla<1}
For deterministic integrands, the construction of the compensated
Poisson integrals is described in Chapter 3 of [4] in the most general
case of Banach spaces and in Section 2.3 of [8] in the case of Hilbert spaces.

To define the above integral for G-valued functions w.r.t. the compensated
Poisson random measure N (¢, dz), we first need the Bochner integral w.r.t.
the Lévy intensity measure 7 from 2.4.5 (iv).

We call a mapping f: G\ {0} — G elementary if it can be written as

K

(2.13) flz) = 22 arla,(z)

k=1
with some a;, € G, Ay € Ao, k€ {1,2,..., K}, and K € N.

Given A € 0(Ap) = B(G \ {0}) and an elementary f as in (2.13), we define
the Bochner integral of f w.r.t. n on A by

K

I{f(l‘)n(dx) = Y apn(Ap N A).

k=1

The notion of integral will be extended to general f by a limit procedure.
Given p > 1, a B(G \ {0})/B(G)-measurable f: G\ {0} — G is said to be
Bochner p-integrable w.r.t. n on A € B(G\{0}) if there exists a sequence
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(fn)nen of elementary functions such that f, — f n-almost surely on A and

(2.14) Jm [ (@) = S i) = 0.

Such sequences will be called LP-approximating f on A.
Then, the Bochner p-integral of f on A € B(G \ {0}) is defined as

[ F@)n(da) = lim_ [ o) n(da),
A A

and this definition is independent of the LP-approximating sequence f, — f
we choose in (2.14).

By Remark 3.7 from [4], a B(G \ {0})/B(G)-measurable mapping
f: G\ {0} — G is Bochner p-integrable w.r.t. n on G \ {0} if and only if it
fulfills

(2.15) @) n(dz) < oo
G\{0}

In this case, f is also Bochner p-integrable w.r.t. non any A € B(G\{0}) and

[ F@)nida) = [ 1a(@)f()n(da).
A G\{0}

We assume that t >0, p > 1 and f: G\ {0} — G fulfills (2.15).

Our aim is to define the integral w.r.t. the compensated Poisson random

measure N (¢, dz) from Lemma 2.4.8.

For elementary f of the form (2.13) and A € B(G \ {0}), we define

{f(:c)N(t, dr) := i apN(t, A, N A).

ol

We say that a B(G \ {0})/B(G)-measurable f: G \ {0} — G is strong
p-integrable on A € B(G \ {0}) w.r.t. N(¢,dx) if

f fn(x) N(t, dx)
A

converges in LP(Q, F, P;G) for any sequence (f,)nen of simple functions
LP-approximating f on A in the sense of (2.14), and the limit does not de-
pend on the choice of such sequence.

The integral [, f(z)N(t,dz) is called the strong 2-integral of f w.r.t.
N(t,dz) on A.

In [4], cf. Theorems 3.21 and 3.24 there, it was proven that the integrability
condition (2.15) with p = 1 resp. p = 2 implies the strong 1-integrability
resp. the strong 2-integrability of f w.r.t. N(¢,dz).
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In this case, for any ¢t > 0 and A € B(G \ {0}),

ff N(t,dr) = [ 1a(x)f(z) N(t,dz), P-almost surely.
G\{0}

If not pointed out explicitly, below we restrict ourselves to the case p = 2.

Proposition 2.4.12: (cf. Proposition 3.26 from [4])

Let f fulfill (2.15) with p = 2.

For all A € Ay, the strong 2-integral of f coincides with the natural integral
of f, i.e.

ff N(t.dr)= > f(AL($))1a(A(L(s)) =t [ f(z)n(dx), P-a.s.

0<s<t<T A

By standard arguments (see e.g. [7], Chapter 2 or [8]), we can see that
for each A € B(G \ {0})

ff N(t,dz), t >0,

is a centered, square-integrable martingale with

2

J f(x) N(t,dx) —tfllf z)|[Z n(d),

A G
provided f satisfies (2.15) with p = 2.
In particular, since

E

[ (l2llg A1) n(de) < oo
G\{0)

the strong 2-integral

x N(t,dz)
{0<lzl|e<1}

is correctly defined. For notational simplicity, we will denote it just by

[ xN(t,dx).

l|lz|la<1
Furthermore, see e.g. [8], Section 2.3., p.179,
z N(t,dz) = lim i x N(t,dz),

n—oo
{llzlla<1} {5 <llzlle<1}

where the limit is taken in L?(2, F, P; G).
Having explained the terms in the decomposition 2.4.10, we continue with a
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special form of the Lévy-It6 decomposition needed in the subsequent chap-
ters. To this end, we impose the square-integrability assumption (SI) al-
ready mentioned in the Introduction.

Theorem 2.4.13: (cf. Lemma 1.1 from [59] )
Let L be a Lévy process with characteristics (b, Q,n) such thatn fulfills (SI),
i.e.

J 2| [&m(da) < co.
G
Then, the Lévy-Ito decomposition can be written as
(2.16) L(t) =tm +W(t) + [xN(t,dzr)
G
with a drift vector m € G given by m = b+ f{”quzl} xn(dz).

Let us note the following equivalence relation between a Lévy process and
its intensity measure.

Proposition 2.4.14: (cf. [95], Theorem 4.47, p.67)
A Lévy process L on a Hilbert space G is square-integrable, i.e.

E||L(t)||%, < oo for any t > 0,

if and only if its intensity measure satisfies (SI).
Furthermore the assumption

(PI) [ z|[%n(de) < oo for some p > 1
G\{0}

implies by Proposition 6.9 in [95] that

E||L(t)|[; < oo for all t > 0.

Martingale measures

It is an important observation that the third term on the right hand side of
the Lévy-It6 decomposition (2.16) is a martingale measure. The notion
of the martingale measure combines the two important concepts of random
measure and martingale.

In particular, there is a well-developed L?-theory of stochastic integration
w.r.t. martingale measures in Hilbert spaces, which is presented e.g. in
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the monograph [7] by Applebaum (for some basic facts see also Section 2.6
below).

The notion of martingale measure for G = R was first introduced by Walsh
in Chapter 2 of [110]. For the corresponding extension to the case of Hilbert
spaces, see e.g. [7] or [8], Section 2.2. Below, we give a short account adapted
to our purposes.
So, let G be a separable Hilbert space with the forbidden point 0. Let us
define the family Ag of sets A € B(G) bounded below (i.e. such that 0 ¢ A).
Next, let S :={z € G|0 < ||z||[¢ <1}, Sp :={z € G| L < ||z||c < 1},
So:=AoN S, B(S) =0c(Sy) = SNB(G), and B(S,) = S, N B(G), n € N.
Obvously, S = |J S, and Sy is a ring in S.

neN
Definition 2.4.15: A family of G-valued random variables M (t, A), in-
dexed by t € Ry and A € 8y, is called a martingale-valued measure if
it has the following properties:

1. M(0,A) = M(t,0) =0 P-a.s. for allt >0, A € Sy;

2. Finite additivity: M(t, AU B) = M(t,A)+ M(t,B) P-a.s. for all
disjoint A,B € A andt € [0,T];

3. o-finedness: sup{E||M(t, A)||%| A € B(S,)} < oo for alln € N,
te[0,T];

4. o-additivity on each B(S,), n € N:
lim E||M(t, A;)||% = 0 for any sequence (A;)jen C B(S,) decreasing
j—00

to the empty set;

5 Ry >t~ M(t, A) is a square integrable martingale for each
AeS.

M is called orthogonal if
[Oa T] St (M(tv A)vgn >g < M(ta B)agm >G)7

is a martingale for all disjoint A,B € A, all n,m € N and an orthonor-
mal basis (gn)nen of G.

To continue, let us recall that a family T = {T4|A € Sp} of nonnegative

bounded symmetric operators in G is called a positive operator-valued
measure if:

[ ] T@ZO;
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e T,y p=Tx4+ Tp for all disjoint A, B € Sp.
T is said to be of trace class if T4, € 71 (G) for every A € Sp.

Let T be a trace class positive operator-valued measure and let p be a
Radon measure on (0, c0).

The martingale measure M is called nuclear with (T, p) if
E[< M((s,t],A),g >¢ < M((s,t],A),h >c] =< g, Tah > p((s,1])
forall 0 <s<t< oo, A€ Syand g,h,€G.

M is called decomposable if T is decomposable, i.e. there exist a o-finite
measure 1 on B(S) and a family (T, ),es of nonnegative bounded symmetric
operators in G such that S 3 x — T,g € G is measurable for all g € G and

Tag = szgn(d:E)
A

forall A€ Aand g € G.
Again, the integral is understood in the Bochner-sense in G (with p = 1).

Next, we note the following relation between martingale measures and com-
pensated Poisson random measures.

Theorem 2.4.16: (cf. e.g. Theorem 2 in [8] or Theorem 2.5.2 and Propo-
sition 2.5.4 in [106])

Let N (t,dx) be a compensated Poisson random measure corresponding to a
Lévy process L(t), t > 0, in G.

Then,

M(t, A):= [« N(t,dz), t >0, A€ B(S),
A

18 an orthogonal martingale-valued measure with independent increments.
It is nuclear with (T, dt), where dt denotes the Lebesgue measure on Ry and
T ={Ta| A€ Sy} is given by

Tag = [(z,9)crn(dz), for A€ So, g€ G.
A

Here, n is the Lévy intensity measure defined in Lemma 2.4.5 (iv). Each
Ta€7T7(G) and

tr(Ta) = [ ||z]|Zn(dz) < 0o, A € Sp.
A
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Furthermore, T is decomposable with the measure 1 and the operator family
(2.17) Gog—Tg:=<z,9>gred.

We close this section by taking a closer look at the operators T,, = € S.
Let us recall the following definition:

Definition 2.4.17: Given two separable Hilbert spaces G and H, a
bounded linear operator T: G — H is said to be a Hilbert-Schmidt
operator if

Tl = tre(T*T) = S [ITgallfy < oo,
ne

where (gn)nen Is an orthonormal basis of G.

We denote the space of all Hilbert-Schmidt operators from G to H by
Lo(G, H).
It is a separable Hilbert space with inner product

<1, Ts >, G,m)=tra(T7Th)

and induced norm ||T|z,(q,m)- Actually the above definition does not de-
pend on the choice of the orthonormal basis (gp,)nen. Furthermore, Lo(G, H)
is a two-sided ideal in the Banach space L(G, H) of all bounded linear oper-
ators from G to H, i.e., for any T € Lo(G,H) and Ry € L(G), Ry € L(H),
we have RyT Ry € Lo(G, H) and

(2.18) ||R2T Ral|z(a iy < N[BT Rall 2oy < B2l oo 1T 2o, my || Ball 2

The spaces L(G,H) and Lo(G, H) will be equipped by the corresponding
o-algebras B(L(G, H)) and B(L2(G, H)).

Because of the continuous embedding L2(G, H)C L(G, H), a general argu-
ment based on Kuratowski’s theorem (see Theorem 3.9, p.21 in [91])
yields that Lo(G, H) is a measurable subset of L(G, H) and

B(L2(G, H)) = L2(G, H)(B(L(G, H)).
Remark 2.4.18: [t is easy to check that each T,, x € S, defined in

(2.17) is a bounded, nonnegative and symmetric operator in G. Its square-
root operator has an explicit form as

1
G>g—T2g:= <|"|‘:;;‘|">GGxe G,rc€S.
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1
Furthermore, T, € TT(G), T2 € Lo(G) and

1
T2, ) = tr(T2) = I Tal| = [lal[2.

Assuming the global integrability condition (SI), one can prove the same
results for S := G\ {0} and Sy = Ap.

2.5 Stochastic integration w.r.t. Wiener processes

In this section, we briefly recall the standard construction of stochastic in-
tegrals w.r.t. Wiener processes in Hilbert spaces.
For more details, see e.g. the monographs [26] and [97].

Let G and H be separable Hilbert spaces.
We have to distinguish two main cases:

e Nuclear case: stochastic integration w.r.t. Q-Wiener processes with

Qe THG).

e Cylindrical case: stochastic integration w.r.t. cylindrical I-Wiener
processes.

As in the previous sections, let (2, F, P) be a probability space and let
(ft)te[o,T] be a complete right-continuous filtration in F.

Nuclear case
Given Q € 77 (G), the integration w.r.t. Q-Wiener process (W (t))>0 tak-
ing values in G is defined as follows.

Recall that we write G for the Hilbert space Q%(G) defined in Section 2.3:

For the rest of this section, we fix 0 < T' < oo. First, we introduce the
class of elementary processes.

Definition 2.5.1: (cf.[97], Section 2.3, Definition 2.3.1 resp. Propositions
2.3.5 and 2.3.6)

(i) An L(G, H)-valued process (®(t))ic[o,r] is called an elementary (or
simple) process if there exists a partition of [0,T],
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O=to<ti<...<ty:=T,M €N,

such that
M—-1
Q(t) = Z (bml(tm,tnk!»l}(t)’

m=0

where for each 0 <m < M — 1:

o &, is F; -measurable;

e &, only takes a finite number of values in L(G, H).

(ii) Given such a process, for each t € [0,T'] the stochastic integral is
defined by

<J<I>(s) dW(s)> (w) == MZ: Dy (W) (W (g1 A t)(w) — Wt At)(w)), w € S

Furthermore, we have the Ité6-isometry

Ja(s) aw(s)

0

(2.19) E

t
= Ef H(I)(S)H%Q(Q,H) ds
H 0

and the mapping

t
[0,T]>t— [®(s)dW(s) € H
0
is a continuous, square-integrable martingale w.r.t. (ft)te[o,T}-

Note that the Hilbert-Schmidt norm in the right hand side of (2.19) is finite
due to the elementary estimate

1
Pl zy6,m) < (21 Q)2 ||| 26,
valid for any operator ® € L(G, H).

By the It6-isometry, the notion of stochastic integrals is extended to a larger
class of integrands ®:

Proposition 2.5.2: (cf. [97], Section 2.3, Proposition 2.3.8)
For any L2(G, H)-valued, predictable process ® obeying



2.5. WIENER STOCHASTIC INTEGRATION 55

T
(2.20) Ebf H<I>(s)|]%2(g’H) ds < o0,

there exists a sequence of elementary processes (®p,)nen such that

T
nan;oEOf 12(5) = @u(s)l1Z, (g1 ds = 0

Then, one defines the stochastic integral for ® as the L?-limit of the sto-
chastic integrals corresponding to ®,, that were constructed by 2.5.1, i.e.

bfq)(s) dW(s) := lim [ ®,(s)dW (s), t € [0,T],

n—oo 0

in L?(Q,F,P; H).

Obviously, the limit does not depend on the choice of the approrimating
sequence (Pp)nen. Furthermore, Ito’s isometry (2.19) holds true for this
stochastic integral and

[0,T]>t— f@(s) dW(s) = M(t) € H
0

18 a continuous square integrable martingale as well. Its quadratic varia-
tion equals

¢
< M,M >=[M,M]; = [ ||<1>(s)|y§:2(g7H) ds, t € [0,T].
0
The Wiener stochastic integral has the following continuity property.
Proposition 2.5.3: (cf. [97], Lemma 2.4.1, p.35)

Let @ be as in 2.5.2, let L € L(H, JEI), where H is another separable Hilbert
space. Then, (L(®(t)))ejo,r] C L2(G, H) and, for any t € [0,T],

¢ t
L (f O (s) dW(s)> = [L(®(t)) dW(s), P-a.s..
0 0
We finish our consideration of the nuclear case with the following funda-

mental inequality due to Burkholder, Davies and Gundy.

Proposition 2.5.4: (cf. [26], Chapter 7, Lemma 7.2)
Let r > 1 and define positive constants

o o 2r
T\ 2r—1

and
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C = (r(2r — 1)) (2311>2T2.

Then, for any Lao(G, H)-valued, predictable process (®(t)).e(0,r] obeying (2.20),
S
J ®(u) dW (u)
0

we have
2r 2r
< ¢ sup E
H s€[0,t] H
T

E| sup
s€[0,t]
t
G (190005 ) 1€ 0.71.

A

Of B (w) dW ()

IN

Cylindrical case

Let @ = I and W be the corresponding cylindrical Wiener process defined
in Section 2.3.

Recall that to construct this process, we need an auxiliary Hilbert space G
with the Hilbert-Schmidt embedding J: G < Gy.

To this end, let (b, )nen be a sequence of nonnegative real numbers such that
> by < oo,
neN

and let (g, )nen be an orthonormal basis of G.
Then, Gy is defined as a completion of G w.r.t. the inner product

< g, h>g = > b% < Gn,g >a< gn,h >c.
neN

By the above construction, we get the Hilbert-Schmidt embedding oper-
ator J € [:Q(G, Gl)

Gogr—Jg:= 3 bu<g,9n>c gn €G1.
neN

Now, the idea is to define the stochastic integral w.r.t. the cylindrical Wiener
process as the stochastic integral w.r.t. to the Q1-Wiener process introduced

1
in 2.3.8. Its correlation operator is Q1 := JJ* € T1(G1) with G = Q3 (G1).
1

Now the previuos construction runs for G := G and G := Q% (G1) = G.
By Theorem 2.5.2, the stochastic integral w.r.t. the cylindrical Wiener

1
process W exists for all predictable L£2(Q7 (G1), H)-valued processes
(U (t))sepo,r) fulfilling

T
E[|¥@)|? . dt < oo.
0 L2(QFG1,H)
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It is clear that a predictable process (®(t));c(o,r) is L2(G, H)-valued if and

1
only if (W(t) := ®(t) o J)yepo,r] is L2(QF G1, H)-valued. This leads to the
following:

Definition 2.5.5: Let W be a cylindrical I-Wiener process in the sense of
Section 2.3. Let J be as defined above.

Given a predictable Lo(G, H)-valued process (®(t))yc[0,1) such that
T 2
B |96, s < o

its stochastic integral w.r.t. W is defined by

(2.21) O(s)dW (s) := ftCI)(s) oJ LdW(s) € H, t €[0,T].
0

o o

Here, It6’s isometry takes the form

¢ 2 T
E||[®(s)dW(s)|| =E[[|®(s)|Z, (. ds; t €[0,T].
0 H 0

Let us note (cf. [97], Remark 2.5.3, p.42) that the integral in (2.21) is
independent of the choice of (by,)nen and (gn)nen-

Furthermore, we have the following version of the Burkholder-Davis-
Gundy inequality for the cylindrical I-Wiener process:

Proposition 2.5.6: (cf. [26], Chapter 7, Lemma 7.7)
Given an L2(G, H)-valued, predictable process (®(t)).ejo,r], for each r > 1
and t € [0,T], the following estimate holds

s 2r
‘of D (u) dW (u)

sup E
s€[0,t]

< (rr = )" (IR ) )

We finish this section with the following notation convention:

H

Definition 2.5.7: If it does not lead to misunderstandings, we use the
notation Ly for EQ(Q2L2 LQ) both in the case of Q € T1(G) and in the
case of Q =1¢ TT(Q).

Definition 2.5.8: For a given T' > 0, we denote by Sy (T') the set of ele-
mentary (or simple) processes (®(t))yc[0,7] With values in Lo and by Ny (T)
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the set of all predictable processes (®(t))ic[o,r] With values in Lo such that

T
Eof]|<b(s)||%2 ds < co.

Remark 2.5.9: Actually, the predictability of the integrand process ® is
not necessary to define

Oftq)(s) dW (s).

Using Ito’s isometry, by the previous scheme one can extend the definition
of stochastic integral to all measurable, adapted processes ® such that

= [ |®(t,w)]|Z,dtdP < cc.

[ ——
[0,T]xQ

2.6 Stochastic integration w.r.t. compensated Pois-
son random measures

The main ingredient of equations (1.1) and (1.2) is the stochastic integral
w.r.t. compensated Poisson random measures and orthogonal martingale
measures.

Here, we briefly present the LP-theory of stochastic integration w.r.t. that
kind of measures. For a more detailed exposition for p = 2 resp. p = 1 see
[7] resp. [102].

Furthermore, we discuss the so-called Bichteler-Jacod inequality and path
properties of stochastic integrals w.r.t. compensated Poisson random mea-
sures.

Analogously to Section 2.5, we fix some 0 < T < o0.

Let (2, F, P) be a probability space and let (F)¢c[o,7) be a complete right-
continuous filtration in F.

Stochastic integration w.r.t. a compensated Poisson random mea-
sure

Let G, H be two separable Hilbert spaces as in Section 2.5. As in Sec-
tion 2.4, let N be a compensated Poisson random measure on [0,7'] X G
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with compensator n(dx) ® dt, where 7 is a Lévy measure.

The following presentation is based on Section 3 of [102], where Riidiger
and Ziglio elaborate an LP-theory (with p > 1) of stochastic integration
w.r.t. Poisson random measures on separable Banach spaces. We restrict
ourselves to the case of separable Hilbert spaces, which will be sufficient for
Our purposes.

Recall from Section 2.4 that N(t,A) is P-a.s. finite for any ¢ € [0,T]
and A € Ay. Here,

Ao = {A e B(GQ)|0¢ A}

is the ring of the so-called bounded below sets in G. Furthermore (cf. (7),
(8) from [102], p. 5 there), for any 0 < t; <ty <T,

(2.22) N((t1,ta] x A)(w) = > 1a(AL(s))(w), w € Q.

t1<s<to
Herefrom, by the definition (2.11) of N (¢, dz),

(2.23) N((t1,t2] x A)(w) = N((t1, t2] x A)(w) = (t2 — t1)n(A4), w € €L

We define the stochastic integration w.r.t. the compensated Poisson ran-
dom measure N for vector-valued integrands f: [0,7] x Q@ x G\ {0} — H.

First, we need the proper notion of measurability for the integrand func-
tions.

By Pr., we denote the o-algebra on [0,7'] x  x G \ {0} generated by
product sets of the form {0} x B x A and (s,t] x C x Awith0 <s <t <T,
A€ Ay, Be Fyand C € Fs.

The integrand functions f are assumed to be Pr 4,/B(H)-measurable and
hence such that t — f(t,w,z) is F-adapted for any fixed z € G\ {0}. We
will call such f predictable and denote their set by Ng 1 (T).

As in the Wiener case, we start with the definition of the integral for simple
functions.

Definition 2.6.1: (cf. Definition 3.3 from [102])
(i) A function f € Ng/p(T) belongs to the set Sq/u(T) of elementary
(or simple) functions if it can be represented as
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M

(2.24) f(t,w,x) = Z 1A, (2)1B,,, (W)ao,m

(o3 (t
M
Z z_: tkikﬂ](t)lf‘\k,m (m)]‘Bk,m (w)akﬂm

where K, M € N, Ay, € Ao, Bpm € Ft,» apm € H and
0=:tg <ty <..<ty=T. Foreach k € {1,2,..., K} fixed, we assume

(Ak,ﬂu X Bk,ml) N (Ak7m2 X Bk7m2) =0 if my 75 mo.

(ii) Given t € [0,T], A € B(G\ {0}) and f € Sg/u(T), we define the
Poisson stochastic integral as a random variable

(2.25) ffftwa: N(ds, dz)(w)
ffftw:c dsd:n)()

(0] A
-1 M ~
= > > akmlBy,,, (W)N ((tx, ti1] N (0,¢] x Agm N A)(w), w e Q.
k=0 m=0
Moreover, for 0 < t; <ty <T, we set

fzf{ s,w,z) N(ds,dz)(w)
= [ [f(s,w,2) N(ds,dz)(w)

(t1,t2] A
= [ [f(s,w,x) ds Jdr)(w)— [ ff(s,w,a:)N(ds,dx)(w)
(o ta] A (0] A
—fff s,w,z) N(ds,dr)(w) — flff(s,w,x)]\?(ds,da:)(w).

Remark 2.6.2: We set tg = t1 = 0 in (2.24) in order to include the
value of f € Sq/u(T) at to = 0 and hence to define the integrand function
on the whole intervall [0,T']. However, (2.25) shows that the concrete value
of f at t = 0 does not influence the integral. For this reason, it is more
accurate to use the notation

[ [ f(s,x) N(ds,dz).

(0] A

For p > 1, we denote by Ng7H( ) the set of functions f € Ng/(T) such
that
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oy

[ E||f(t, z)|[% n(dx) dt < co.
G

Definition 2.6.3: (cf. Definition 3.5 from [102])

Letp>1, Ae B(G\{0}) and f € Ng/u(T).

A sequence (fn)nen C Sq/u(T) is called LP-approximating f on

(0, T]xQx A w.r.t. dt x P xn if f, is dt x P x n-almost surely converging
to f as n — oo, and

T
Jim [ Bl (t2) — 100, i) dt =0,

Theorem 2.6.4: (cf. Theorem 3.6 from [102])
Let p>1, T > 0. Then, for each f € Ng7H( ), there is a sequence
(fn)nen C SG/H( ), which is LP-approzimating f on (0,T]x Q x A for all

A e B(G\{0}).
Now, we describe the class of admissible integrands.

Definition 2.6.5: (cf. Definition 3.9 from [102])

(i) Let p > 1, T > 0 and A € B(G \ {0}). We say that f € Ng/u(T) is
strong-p-integrable on (0,T] x Q x A w.r.t. N if there exists a sequence
(fn)nen of simple functions LP-approximating f on (0,7] x £ x A.

(ii) For any such sequence and any t € [0,T], the limit of the integrals of
f, w.r.t. N exists, i.e.

t T -
(2.26) bf,{f s,w, ) N(ds,dz)(w) == ‘Offl[O’t](s)f(s,w,x) N(ds, dz)(w)

and the limit does not depend on the choice of the LP-approximating se-

quence (fn)neN- .
The limit in (2.26) will be called the strong-p-integral of f w.r.t. N on
(0,t] x A.

Moreover, given 0 < t; <ty < T, we set

tfff(s,w,x) N(ds,dz)(w) :== htff f(s,w,z) N(ds,dz)(w)

t1 A

—fffswx N (ds, dz) (w).

In the special case p = 2, there is a constructive description of the pos-
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sible integrands.

Theorem 2.6.6: (cf. Theorem 3.13 from [102], Proposition 3.15 from
[71] and Proposition 3.6. in [61])

Let f € Né;’H(T) Then, f is strong-2-integrable w.r.t. N(dt,dz) on

(0,t] x A forany 0 <t <T, Ae B(G\{0}) and

I 104(s)1a(z)f(s, ) N(ds,dz).

¢
[ [ f(s,x) N(ds,dz) =
04 a\{o}

Moreover, we have the isometry

2

(2.27) [ [ £(s,2) N(ds, dx) ]foEllfsx 13 n(de) ds.
0A H 0A
The process
(2.28) M(t) ::j [ f(s,z) N(ds,dz), t € [0,T]
0 G\{0}

1S a square-integrable Fi-martingale with mean zero.
Its predictable quadratic variation (i.e. the Meyer process) is given by

t

<M, M>=[ [ |If(s,2)l[}n(dz)ds

0 G\{0}

whereas for its adpted quadratic variation we have

t
=[ [ |f(s,2)|} N(ds,dz).
0 a\{o}

Furthermore, M is cadlag and M (t) = M (t—), P-a.s. for allt € [0,T].

Remark 2.6.7: From It6’s isometry we see that

t t ~
I [ fi(s,z) N(ds, dx) = | fo(s,z) N(ds,dz)
0 G\{0} 0 G\{o}

for any two predictable processes fi, fo € NG/H satisfying

t

[ | Elfi(s,z) = fa(s,)||% n(dz) ds = 0.

0 G\{0}

In particular, except for a zeroset, the value of f at tg = 0 does not in-
fluence the integral
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jff(s,x)N(ds,dac),
0A

since the process 1(oy(s) f(s,x) is P ® dt ® n-equivalent to the indentity zero
process. Again it would be more accurate to use the notation

[ [ f(sx) N(ds, dz).

(0,t] A
Recall that by the definition

M (t) ::j [ f(s,x) N(ds,dz), t € [0,T],
0 G\{0}

is a cadlag process, and hence it obeys a predictable modification M (t—),
t € [0,T]. To distinguish between the cadlag and the predictable versions
some authors use respectively the notation

t+

[ f f(s,x)N(ds,dx)

0 G\{0}

and

f_ i f(s,:v)N(ds,dx).
0 G\{o}

We have an anlogous proposition to 2.5.3.

Proposition 2.6.8: (cf. [60], Proposition 3.7, p.58)
Let f € é/"H(T) and let L € L(H, H), where H is another separable Hilbert

space. Then, Lf € J\/’éfg(T) and, for each t € [0,T],

L (ft i f(s,x)N(ds,da:)) = ij(s,x) N(ds,dz), P-a.s..
0 G\{0} 0

Remark 2.6.9: Let us apply the Theorem 2.6.6 to the concrete func-
tion f € Né’;’H(T) given by

(2.29) ftw x) =1g(x)g(t,w)z, (t,w,z) € [0,T]x QX G,
with S = {x € G|0 < ||z||g < 1}. Under the assumption (2.10), i.e.
é(HUCH% A1) n(dr) < oo,

a sufficient condition for the above f to belong to ./\/'é;]H(T) 1s that
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[0,T] x Q> (t,w) — g(t,w) € L(G,H)
is predictable and obeys

T
Eof Hg(t,w)H%(G’H) ds < 0.

Note that if g1, g2 € L?([0,T] x ; L(G, H)) are predictable and stochasti-
cally equivalent in the sense of Definition 2.1.1, then by It6’s isometry

|

<(s ||x\|én<dx>) B[ 110 () ~ 252 oy s = 0. 0S¢ < .

ftf N(ds, dz) ftffg N(ds, dx)
0G 0G&

i.e. the integrals are also stochastically equivalent.

The integrands of such form naturally appear in the theory of SDEs driven
by Lévy processes.

For notational simplicity, for f € Né/nH(T) such that f(x) =0 if 2 =0, we
shall write

t t
[ [ f(s,x)N(ds,dx)= [ [ f N(ds,dz).
0G 0 G\{o}

We finish this section by recalling LP-properties of the Poisson stochastic
integral.

We state the important Bichteler-Jacod inequality, which e.g. can be
found in [18] (cf. Lemma 3.1 there) and [79] (cf. Lemma 3.1 , p.7 there).

To this end, for p > 2, we consider the space of integrands f & Ng’7H(T),
where the functions f are predictable, i.e. f € Ng/g(T), and fulfill

p

T 2
230 B fuf<s,:c>r\%n<dx>+(C{uf<s,xm%m<dx>) ]ds<oo.

Obviously N&7 (T) C N G/ 7 (T) and hence the integral (2.28) is well-defined

G/H
for such f.

Theorem 2.6.10: Forp>2 and f € N27H( ), the process
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ftffsx N(ds,dz), t € [0,T],
0G

obeys the supremum bound

(2.31) sup E[M@)[[} < E( sup || M( )Hp>
t€[0,T] te[0,T]

IN

T
KP,TEf!< J ||f(8,w)\|%77(dx)>

0 [ \G\{0}

[S]4S]

+E<Gf If(s,w)ll?gn(dx)> ds,

\{0}

where (p,T) — K, € Ry is continuous.

An advantage of the Bichteler-Jacod inequality (2.31) (as compared with
the Doob-Meyer decomposition and Burkholder-Davies-Gundy inequality)
is that we do not need to calculate the corresponding quadratic variation
processes.

A lower bound for the left hand side in (2.31) was established in the recent
work [31] by Dirksen, see also Remark 4.5 below.

Remark 2.6.11:  Note that, for f € N27H( ) of the form (2.22), to

have (2.31) it is sufficient to assume that

fEHgtw)Hp oy ds < 0.

Stochastic integration w.r.t. martingale measures

In Hilbert spaces there is a unified L2-theory for stochastic integration,
which includes both integration w.r.t. Wiener and Poisson processes.

This theory, which is based on the concept of a martingale-valued measure
(see Section 2.4 above), was developed by Walsh in finite dimensions (cf.
the monograph [110]) and by Applebaum (cf. [7]) in general Hilbert spaces.
We will briefly explain the basic issues of this theory adapted to our frame-
work.

Let again G and H be two separable Hilbert spaces. As before, let

S={zecG|0<|z|g<1}

and
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So={AeB(G)|ACS,0¢ A}

Furthermore, let N(¢,dz) be a G-valued orthogonal martingale measure,
which is nuclear with (T, dt) and decomposable with intensity measure 7.

Definition 2.6.12 : We denote by N3;(T) the set of all mappings
F :[0,T] xS xQw— L(G,H) obeying the following properties:

e Predictability: (t,x) — F(t,x)g is Pr ® B(S)-measurable for each
g €G;

1
e For any (t,x,w) € [0,T ]| xSxQ, F(t,z)(w)T#: G — H is a Hilbert-
Schmidt operator, i.e. it belongs to Lo(G, H), and we have

2

T
(2.32) 1|z, ) = <EM||F 5, 2)T? 12, . () ds) < 0.

As usual, the construction of the integral is started by considering simple
integrands.

Definition 2.6.13: The subspace S3,(T) € N,(T) consists of all ele-
mentary processes F': [0,T] x S x Q+— L(G, H) having the form

M
F= 3% 11la,Fom
m=1
K-1 M

+ Z Z 1 tlwthrl]]'A ka
k=0 m=1

with K, M € N, 0 :=tg = t1 < to < ... < tg := T, pairwise disjoint
Ay € So, and random variables Fy,, € L(G,H) such that Fy,g € H is
Fi,-measurable for all g € G.

It can be checked that N3 (T) is a Banach space and S3,(T) is dense in
N3/(T) w.r.t. the norm (2.32) (cf. e.g. Lemma 3.1.2 in [106]).
For each F € 8%,(T), we define

¢
[ [F(s,x)M(ds,dx):= [ [F(s,x)M(ds,dx)
05 0, S
K—1 M
= Z E kaM((t/\tk,t/\thrl],Am).
k=0 m=1

Analogously to Definition 2.6.5, given 0 < t; <ty < T, we set
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fsta: (ds,dz) := fstx (ds, dx)
t1 8 (t1,t2] S
= [ [F(s,z)M(ds,dzx)— [ [F(s,x)M(ds,dz)
(0 tg] S (O,tl S
2 31
= [ [F(s,z)M(ds,dz) — [ [ F(s,z) M(ds,dz).
0Ss 0Ss

A crucial issue is the Ito-isometry

(233) E

t
=E [ [||F(s,z) xT |l 2o(c, ) n(dz) ds.
0Ss

o o

[ F(s,z) M(ds,dz)
S H

Lemma 2.6.14 : For each F' € N3,(T), there exists a sequence
(Fn)nen C S2,(T) such that

T 1
1B = Fl oy = B [ () = F( )2 g, yn(d) i — 0

Then, fo Js F( M (ds,dx) is defined as the L*(Q, F, P; H)-limit of the
integrals correspondmg to any approzimating sequence (Fp)nen C Sap(T).
In particular, by Ito’s isometry the limit does not depend on the concrete
choice of such sequence.

Respectively for A € B(S), we call

ffF (s,x) M(ds,dz) := ;glA(x)F(s,x)M(ds,dm)

= [ [F(s,x) M(ds,dx)
(0] A
the strong integral w.r.t the martingale measure.

The properties of the integral defined above are described by

Theorem 2.6.15:(cf. f.e. [106],Theorem 3.1.5)
The process (f(;5 Js F(s,z)M(ds, dz))icio,r) is an H-valued square integrable
martingale with cadlag paths. Furthermore, for all t € [0,T],

2

¢ ¢
[ [ F( M (ds, dx) :EffHFs:cT ||£ GH)n(dx)d
0s 0s

H

To complete the discussion, let us compare the definitions of stochastic inte-
grals given in this section. Having in mind applications to SDEs with Lévy
processes, we are interested in the stochastic integral
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t ~
(2.34) | [ g(s)zN(ds,dx)
0 {o<||z||<1}
with predictable
[0,T]x Q5 (t,w) — g(t,w) € L(G, H)

obeying

T
(2.35) Eof g7y At < o0
(2.34) is correctly defined in the L%-sense, see Remark 2.6.6. On the other

hand, (2.34) can be seen as the stochastic integral w.r.t. the Lévy martin-
gale measure

M(t, A) := [2 N(ds,dz), A € Sp.
A
By Theorem 2.4.15, M is decomposable with (T).es C 7 (G) given by
Go9g—T,g:=<z,9>gz €.

Obviously, for z € §:={z € G|0 < ||z||¢ < 1} we have

1
2, .— <Tg>g

Tig:= i 9€G.
Then, by considering elementary processes g(t), t € [0,7], and using It6’s
isometry, one can check that these two integrals coincide, i.e.

t g(s)x N(ds,dz) = bf | g(s)M(ds,dz).

0 {o<]fal[<1} {0<]ff[<1}

Moreover, under the assumption (2.35)
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1
lg(tYT2 |12, .y m(der)

|
&=

Hg”?\fﬁ,(T) =

1
lg(t)TZ gnll3; n(da) dt

|
&=
3
)
Z

I
=

n(dx) dt

2
<T,gn>Gx
Hg(t)iumnc z ‘H

3
m
Z

e

lg

Hg(t)Hi(G,H)dt) ({ f HwII?{n(dw)>

0<|lz||<1}

t)[[3 n(dx) dt

AN
—— =
=

<

3

where (gn)nen is an orthonormal basis in G.

2.7 Supporting analytical results

We finish this chapter by collecting some lemmata, which shall be needed in
the manuscript. All these results are more or less known in the literature,
so we restrict ourselves to just quoting and giving references.

Our first result is a discrete analogon of Lebesgue’s dominated convergence
theorem.

Lemma 2.7.1: (cf. Lemma 2.5 from [59])
Let (znm)men, n € N, be sequences of real numbers such that, for each
n € N, there exists

lim ., =z, € R.
m—0o0
If there exists a majorizing sequence (Yn)nen C Ry such that |zpm| < yn
forallm € N and ), .y yn < 00, then

Im > pm= Y, xp.
M= neN neN
Next, we give a generalization of Gronwall’s lemma, which will be used
to prove the existence and uniqueness result for the stochastic convolutions
under consideration. Generalized versions of the Gronwall inequality have
been given e.g. in [110] (cf. Theorem 3.3 there) or in [66]. We will use the
following version of it, the so-called Gronwall-Bellman lemma:

Lemma 2.7.2: (cf. [75], Appendix, Lemma Al or [112])
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Let (gn)nen be a sequence of measurable functions g,: Ry — Ry obeying

¢
9n(t) < q+0b [(t—5)gn_1(s)ds, t € [0,T], n €N,
0

with some 6 € [0,1), b >0, ¢ > 0. Then,

n—1
() <q 3 qet* 7 4 ¢, t"179 sup  go(s)
k=0 s€[0,T]

with

k(b,6
QO:17Q1:%}Qk:mfork>l;

where I is the Gamma-function defined by

I'(t):= [zt le ®dx, t > 0.

oy

Furthermore, one has the following summability property
(o.]
> g THI7) < oo,
k=0

and in particular

li =0.
boo ¥

Remark 2.7.3: (cf. [76], Remark 3.2.5, p. 59)
In the special case of g, = g for all n € N with a bounded g: Ry — R,
2.6.3 implies

n—1
g(t) < ¢ lim <Z e T"“(H)) + ( lim gy, T”(H)) sup g(r)
n—oo \ .20 n—oo re[0,T]

[e.e]
= q 3 qT*0) = q¢(T,b,6)
k=0
with a proper constant c(T,b,0) > 0.
In particular, the case 6 = 0 here corresponds to the usual Gronwall’s lemma
widely used in the literature on SDEs.



Chapter 3

Introduction to Stochastic
Analysis in weighted
L2—spaces

In this chapter, we concentrate on the case the weighted Lebesgue spaces
L%”(@), v > 1, as underlying Banach spaces for equation (1.1) and equation
(1.2). The weight p, is the same as in the Introduction (cf. equation (1.3),
p. 7 there). We start with elements of functional analysis in these spaces,
namely we introduce some conditions on almost strong evolution operators
and Nemitskii operators in L%”(@).

The main issue of this chapter is to define Bochner integrals and stochastic
convolutions w.r.t. Wiener processes in L%(@) resp. L%” (©) needed for the
existence of mild solutions to our basic equations (1.1) and (1.2).

We stress that in this chapter we have time-continuity of the Bochner in-
tegrals and the stochastic convolutions w.r.t. Wiener processes not only in
the pathwise sense (a result, which is already well-known) but also in the
meansquare sense, i.e. in the spaces

LI L3(0)) := {f : @ — L3(O)] g{l\f(W)Hng P(dw) < oo}
resp.
L Ly(0)) = {f : Q@ — L(©)] &{ [1f(@)I[F5, Pldw) < o0}

(for the precise conditions on ¢ > 2 and v > 1 see Sections 3.3 and 3.4
below) .

Recall that, for a given Borel domain © C R? we assume p to be such
that 11,(0) < co. Respectively, we consider the two basic cases:

71



72 CHAPTER 3. STOCHASTIC ANALYSIS

e p > d for unbounded © and
e p =0 for bounded ©.

Under these assumptions, our results hold true for arbitrary © € B(RY).
Thus, to shorten notation, we write Lz resp. Lf)” instead of L%(G)) resp.
L2(0).

Let us briefly describe the content of this chapter.

First, in Section 3.1 we take a closer look at the Banach spaces Lg” and
impose conditions on the evolution operators U(t,s), 0 < s < ¢ < T, in
L7 (see (A0)-(A8) there). Most of the conditions are taken from [76],
but there are some additional conditions caused by the jump property of
the noise in equation (1.1) resp. equation (1.2) (see Remark 3.1.1 below).
These conditions later yield the well-definedness and regularity properties
of the stochastic convolutions w.r.t. Q-Wiener processes and compensated
Poisson random measures.

More precisely, we need these assumptions on the evolution operator in order
to overcome the problem that the multiplication operators M, correspond-
ing to Lz-valued functions ¢ are in general no Hilbert-Schmidt operators.
By these conditions (cf. e.g. (AZ2) in Section 3.1 below) there is a con-
stant £ € [0,1) associated to the evolution operator describing singularity
behaviour allowed for [[U(t, s)||z, (L2, r2) at the diagonal ¢ = s, which plays a
crucial role for the regularity properties of the stochastic convolution w.r.t.
(QQ-Wiener processes and compensated Poisson random measures.

In Section 3.2 we take a closer look at the Nemitskii-type operators and
recall some notation from [76].

After these preparations, in Section 3.3 we consider the well-definedness,
moment estimates and regularity properties of Bochner integrals both in L%
and L%” . The integrands will be convolutions of an evolution operator and
a predictable process (¢()):ej0,7] C L% resp. C L%” for some fixed T > 0.
Finally, in Section 3.4 we consider the well-definedness, moment estimates
and regularity properties of stochastic convolutions w.r.t. Wiener processes.
A part of these results has already been proven by Manthey and Zausinger
in [76], but for convenience of the reader we will present all necessary details.
A crucial fact for the theory of SPDEs in Lf,” is that there exists a special
orthonormal basis (e, )nen C L2, which additionally is uniformly bounded
in the supremum norm (see Section 3.1). Thus, we have

(3.1) sup ||en]]oo < 00.
neN

For the @-Wiener process W, we consider the following two cases:
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e Nuclear case: W is a Q-Wiener process with the covariance operator
Q € TH(L?), i.e. @ is a nonnegative, symmetric operator with finite
trace.

Furthermore, the elements of the above orthonormal basis (ep)nen
constitute a complete system of eigenvectors of the operator @), i.e.
Qen = ape, with a, > 0, (3.1) and

tr@Q = "> a, < .
neN

The Q-Wiener process is represented by the convergent series in L?

W(t) = > anwp(t)en, t >0,

neN

where (wy,)nen are independent Brownian motions in R.

e Cylindrical case: W is a cylindrical I-Wiener process.
In other words, it obeys the coordinate representation

W(t)= > wy(t)en, t >0,
neN
with some (not necessarily uniformly bounded) basis (e, )nen in L?
and a system (wy, )nen of independent scalar Brownian motions.

Remark 3.1: Another two possible cases, which however will be briefly
touched upon in this manuscript, are the following:

e General nuclear case: The covariance operator Q is of trace class,
i.e. Q € TH(L?), but it does not need to posess a complete system of
eigenvectors (en)nen that is uniformly bounded in the supremum norm,
i.e. (3.1) possibly fails.

e General cylindrical case: Q) is a nonnegative, symmetric bounded
operator in L?, but it need not to have finite trace, i.e. Q ¢ T (L?).

Note that the general nuclear case typically occurs in the Wiener term of the
Lévy-Ité decomposition (2.16). The general cylindrical case is not relevant
for our work. The nuclear and the cylindrical case have been treated in [76].
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3.1 Some facts on the spaces L%” and conditions
for evolution operators in L?)

3.1.1 The spaces L>”

Consider RY, d € N, with Euclidean norm | - |, Borel o-algebra B(R?) and
Lebesgue measure df. Let oz R? — [1,00) be a weight function given by

a(f) = (1+ 16>z, 6 € R

For p € NU {0}, let us define a measure 1, on (R?, B(R?) by

pp(dO) := a=P(0)d6.
Note that, by definition, we have po(df) = d#.
Let us fix some (possibly unbounded) Borel subset © of RY.
As already said in the beginning of the chapter, we choose p € N U {0}
in such a way that p,(©) < co. This allows us to consider the two cases of
O = R? and © C R bounded simultaneously (in a similar way as Manthey
and Zausinger did in [76]).
Note that there is the following relation between the Borel o-algebras:

B(©) = B(RY) NO.

For v > 1 and p € NU {0}, by L2’(0) we denote the set of all Borel-
measurable mappings ¢ : © — R such that

éls@\”(@up(de) < 0.

L%”(@) is a Banach space with norm

1

lelliz = (P Ohgtan) ™

In the special case v = 1, we get a Hilbert space L%(@) with inner product

< 1,02 >r2= [ 1(0)p2(0) 1, (dO)
o

and norm
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1
2

Il = (J 2O untat))

Denoting by LP(O) the usual LP-space on (©,B(0©)), we obviously have
Lg'(©) = L*>(0).

A crucial fact (pointed out in [76]) is the existence of an orthonormal basis
(en)nen of L%(©) obeying (3.1).

Manthey and Zausinger prove the existence of such an orthonormal basis
with the help of general arguments from [87] (cf. Section 2, p.41 in [76]).
We will often use this fact in the following.

3.1.2 Conditions for evolution operators in L%

Let U = {U(t,s)|(t,s) € R2,0 < s <t < T} be an almost strong evolution
operator in the sense of Definition 2.2.1 with B := Lz there.

Recall that each U(t,s) is a closed linear operator in L/Z), see item (iv) in
Definition 2.2.1. The generator of U is denoted by (A(%)):e[o0,7]-
Depending on the problems under consideration, for the evolution operator
U in L,2) we introduce the following additional conditions:

(A0) The domain

is dense in L%.

(A1) The evolution operator U on L% is positivity preserving, i.e., for all
weL%andOSSStST,

©>0=U(t,s)p >0 (df-as.).

(A2) For a given p € Lf,, let us define the multiplication operator
L? 34— My(¥) := gy € L.

We suppose that, for 0 < s < t < T, there exists an extension of
U(t,s) to the domain
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(A3)

(A4)
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M:={helL,|h=M,(¥),pel’yecl?}

(again denoted by U(t,s)) such that U(t,s)M, € Lo(L?, Lg) for any
Y e Lz. Furthermore, there exist ( € [0,1) and ¢(7") > 0 such that

(3.2) Ut $)MellZy 12, r2) < o(T)(E = 5) 0]l

is fulfilled for any ¢ € L% and 0 <s<t<T.
Taking in particular ¢ = 1, we get

Ut )12, 2,12y < e(T)(E = 9)"[1][Z2,
ie Ult,s): L* — L% is Hilbert-Schmidt whenever s < t.

For a given v > 1, there exists a constant ¢(v,7") > 0 such that for
anychLf,” and 0<s<¢t<T

(U(t,s)|e|)” < e(v, T)U(t,s)|p|” (df-a.s.).
This implies that U(t, s)|¢| € L2” and

(3.3) (L )12, < e Toe(T) ]2
Furthermore, we assume that U is strongly continuous in L%”, ie.
the mapping U(-,-)¢: {(t,s)|0 < s <t <T} — L2” is continuous for
each ¢ € L%”.

Since U is positivity preserving (cf. (A1)), a sufficient condition for
the strong continuity in Lzl’ is that U(t,s)1 =1 for each (¢, s).

By (A1) and (3.3), we have U(t,s) € £L(L2") with

(3.4 10 9oz < [efo, T, e(T))] .

For a given v > 1, there exist ¢ € [0,1) and a constant ¢(v,T) > 0
such that for each L?)”—Valued predictable process ¢ = (p(t))ie[0,7]

v

B[ [ 50U s)My(QFe)2(6) ds| 1y (d6)
C) OnEI\i

<c(v,T) {(t — 8)"Ellp(s)[|75, ds.

In the nuclear case, i.e. if Q € TH(L?), we have ( = 0, whereas
in the cylindrical case, i.e. if @ = I, we have ( € [0,1) as in (A2).
Here, (en)nen denotes an orthonormal basis in L? consisting of the
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(A5)

(A5)*

(A6)

eigenvectors of () and obeying (3.1).
The integral and the infinite sum in the left hand side are understood
in the Bochner sense in Lj, see Remark 3.1.1 (ii).

Note that (A2) is equivalent to (A4) with @ =TI and v = 1.
At first sight, condition (A4) seems to be not transparent enough.
Below we formulate the next condition (A5), which generalizes (A2)
to all ¥ > 1 and readily implies (A4), see Remark 3.1.1 (iv).

For a given v > 1 and any ¢ € L%” , let M, be the multiplication
operator as defined in (A2). We suppose that, for 0 < s <t < T, the
operator U (t, s) extends to the domain

My = {h € L | h = My($),p € L, € L*}.

Furthermore, for any ¢ € L/Z)” we have U(t,s)M,, € EQ(LQ,L%V), and
there exist ¢ € [0,1) and ¢(T") > 0 such that

(35) 10 )M, 2 1) < e, T)E = 5) Il

In some cases it will be enough to assume the following version of

(A5):

For a given v > 1, the estimate (3.5) in (A5) holds with the usual
operator norm in £(L?,L2), i.e. there exist ¢ € [0,1) and ¢(T) > 0
such that

(3.6) Ut )Ml[Zo < e(v, T)(E = 8) (1]l 220
foranyngL%”,lj}eL2 snd 0 <s<t<T.

There exists a family of bounded operators
((An(t))eejo,r)) ven C L(L2) with the following properties:

(i) Denoting the operator norm in L2 by || - ||, we have

sup [|An(t)]] < e(N), N € N.
te[0,T]

(ii) For each N € N, the family (An(t));c0,r] generates an almost

strong evolution operator Uy in LZ, which is positivity preserving and

fulfills

sup ||(Un(t,s) = U(t,s))ell72 — 0, N — o0,
0<s<t<T »
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for any ¢ € L%. Furthermore, there is a uniform bound

K(T):=sup sup ||Un(t,s)|| < oo.
NeN0<s<t<T

(A7) U is pseudo contractive in Lg, i.e. there is a nonnegative constant
G such that

Ut )l g2y <P, 0<s <t <T.

(A8) The family (An(t)):cjo,r) from (A6) is such that, for any N € N, we
have (An(t))ejor) € LW™2(O)) and, for the corresponding evolu-
tion operators Uy,

1UN(E, 8)l| gwmey < en(T),0< s <t <T

Here, for a given m > %, W™2(0) is the Sobolev space of order m

defined in Appendix A
Remark 3.1.2.1:  Conditions (A0)—(A4) and (A6) have been introduced
in the paper [76], dealing with SPDEs driven by a Wiener noise.
The rest of the conditions is new and appears first in the context of Poisson
and Lévy integration.
Let us comment in more detail on the above assumptions.

(i) Conditions (A0)-(A2) are needed to study the stochastic convolution
w.r.t. Q-Wiener processes in L%. Note that we make use of (A2) only in the
case Q = I. In the case of a nuclear Wiener process, it suffices to assume
gust (A0) and (A1) (cf. the discussion in [76], Section 2).

For the corresponding Q € T+ (L?) we always have the following modifica-
tion of (A2) with ( =0

(3.7) [IU(t, s) M2

< Ut 2 2
2 @by < WE A

£2(Q2L2,12)
< (D)0 <sup||en||io> lol12,
neN P

(ii) Conditions (A8) and (A4) are needed to show that taking the stochas-
tic convolution w.r.t. the Wiener process preserves the space of L,%” -valued
predictable processes with v > 1 (see Proposition 3.4.3 below).

In (A4), we understand

N(U(t’ S)Mcp(s)Q%en)Q ds
ne

o o
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as a Bochner integral in Lll). Concerning well-definedness of the above inte-
gral, see Section 3.4, proof of Lemma 3.4.3, Step 1, below.

(iii) In the nuclear case, we get (A4) with ¢ = 0 directly from (A1) and
(A3)(see also Remark 2.3 (ii) in [76]).

(iv) In the general nuclear case (A5)* implies (A4) with the same
¢e[0,1).

Indeed, considering any orthonormal basis (en)nen of L? consisting of eigen-
vectors of Q, assuming (A5)* we can estimate the left hand side of (A4)
as follows

VEl [f S (UL, )Moy Qb enl2(0 >dsr p,(d6)

0 neN

<E f 2. [f[ (t, )Mw(s)Qéen]z”(Q)up(dQ)]u d8]

~E IZHU( M@l ds

B v
=E fHU t 3 (’D(S)QZH%Q(L27L%V) d3:|
t 14
< Q¥ 10,8 [ 106 50Moo 3, 5

< (trQVe(n. T)E [ [t = 5)<llg(s)| 12, ds ]

0
t ¢v—1)

=(trQ)’c(v,T,c(T))E L)f(t —s)" v (t— s)’%”gp(s)”%gy ds]

v—1 ‘
< (tr@)”c (f s dS) E ([(t =)~ lle(s)l 75 ds.

Here, in the first step, we used Minkowski’s inequality (4.25). To be rig-
orous, one has to take here B([0,T]) ® F ® B(©)-measurable realizations of

U(t, S)M¢(S)Q%en (see Section 3.4).

(v) Respectively in the cylindrical case, i.e. Q = I, (A4) is always im-
plied by (A5). This is obvious from the following modification of (3.8)
(with Q =1)

BJ || S 00Me 0 5]yl

0 neN

<E { ({ 10t 8) Mool 12, (12,20, ds]
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t 1%
{gt—s “lp(s)2,, ds }

v—1

t

T) (f s7¢ ds) B [(t—s)"lle(s)l[75, ds.
0 0

(vi) (A6) is needed to prove the comparison result by the approximation

method of Manthey and Zausinger (see proof of Theorem 3.3.1 in [76]).

(vii) (A7) is the generalization of the contraction property

|]U(t,s)||£(L%) < 1resp. [[UES)|lgey £1,0<s<t<T. In the case
of a semigroup U(t,s) := =94 0 < s <t < o0, a sufficient condition
of pseudo-contraction is that (A+ BI) is a nonnegative self-adjoint operator
n L,% resp. L?>. On the other hand, by the Hille-Yosida theorem, any Co-
semigroup e, t > 0, obeys the bound

HetAHﬁ(Lg) < Ceft, >0,

with proper constants C, B € Ry. In the case of pseudo-contractivity, we
have C' =1 in the later estimate.

A big class of elliptic differential operators satisfying (A7) in L? will be
constructed in Appendix D.

The above conditions (A0)—(A8) are satisfied for a large class of elliptic
differential operators A(t) in L%, see Appendix D.

The constant ¢ depends on the dimension of the underlying space R? and
on the order of the differential operators A(t).

Depending on the problems under consideration, we will assume that some
or even all of the above conditions (A0)—(A8) are satisfied.

3.2 Nemitskii operators

As already discussed in the Introduction, our coefficients F' and E in (1.1)
resp. (1.2) will be nonlinear operators of Nemitskii-type.

Let (Q,F, P) be a probability space and let A: [0,7] x 2 x R — R be a
measurable mapping.

Pointwise, for ¢ € LZ we define a Nemitskii-type-operator A by

(NEM) A(t,w,9)(0) := A(t,w,p(0)), 0 €O, (t,w) € [0,T] x Q.

Below, we discuss the conditions needed to make A a mapping in Lg.
We recall some standard notation from [76] to describe the regularity prop-
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erties of A\: [0,7] x @ x R — R:

(LC) (Lipschitz continuity) There is an L(T) > 0 such that
|>\(taw7u) - )‘(t7w>v)| < L(T)|’LL - U|7

for all (t,w) € [0,T] x Q and u,v € R x R.
(LB) (Local boundedness) There is an L(T') > 0 such that

A(tw,0)] < L(T),
for all (t,w) € [0,T] x Q.

(PG) (Polynomial growth) There exist v € N and L(7") > 0 such that
At w, u)| < L(T)(1 + [ul”)

for all (t,w) € [0,T] x Q and u € R.
(LG) (One-sided linear growth) There exists L(7') > 0 such that

AMt,w,u) > —L(T)(1 — u) if u <0,
AMt,w,u) < L(T)(1 4+ u) if u > 0,

for all (t,w) € [0,T"] x €.

Remark 3.2.1: Obviously, each X\ fulfilling (LC) and (LB) also fulfills
(PG) with exponent v = 1. It is easy to see that (LG) is equivalent to
claiming that

A(t,w,u)u < L(T)(1+u?), u € R.

In particular, the class of functions with one-sided linear growth includes
all semi-dissipative functions, i.e. those A, which obey

(At w,u) — At,w,v))(u —v) < L(T)(u — v)?
with some ¢(T) > 0 that is uniform for all (t,w) € [0,T] x Q and u,v € R.
The following simple lemma is crucial for our further considerations.
Lemma 3.2.2: Suppose A obeys (PG) with exponent v € N.

Then, the corresponding Nemitskii-operator A defined by (NEM) maps ij’
mto Lf). Furthermore, A is locally bounded.
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Proof: By direct calculations

J(A(Ew,0))%(0) po(df) = [(A(t,w,(0)))? p1,(d)

© < Z(L(T)(Hlso( )2 1 (d6)
< 2L(T)%w,(©) + 2L(T)2f!s0( )[“)? 1,,(d6)
— AL(TRun(O) + 2Ll
< Q0.

Here, we used (PG) with exponent v in the second step and the assumption
on p that

11p(©) = [ pp(df) < 0o
©

in the last step, respectively.
From the above calculation, it is obvious that A maps Lg” into Lﬁ and is
locally bounded there, which completes the proof. B

In Chapters 5-7, given measurable e, f: [0,7] x Q@ x R — R, the drifts
E and F in (1.2) and (1.1) will be defined through e and f by (NEM).
Furthermore, 3 and I' in the multiplication operators My and Mr in (1.2)
and (1.1) will be defined through measurable o, v: [0,7] x Q@ x R — R by
(NEM).

3.3 Bochner integrals depending on parameters

In this section we consider the Bochner integrals

t
(3.9) = [U(t, s)ds, t € [0,T],
0
and
t
(3.10) = [U(t, o(symds, t €[0,T],

0
in L2 resp. L2”7 where ¢ = ((t))e[0,r] 15 a predictable process in L2
resp. L2V and m € L2
First, we consider the case v =1, i.e. L%, which only requires the assump-
tions (A0)—(A2). The above integrals will be defined pathwise, i.e. for
P-almost all w € Q. Especially, we will be interested in the meansquare and
time-continuity properties of the Bochner convolution processes (3.9) and
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(3.10). It is convinient to fix the concrete representation for the integrand
mappings as

[0, T] x Q23 (s,w) = Loy (s)U (L, 5)(s) € L,
resp.
[0,T] x Q3 (s,w) = 1g4)(s)U(t, s) Myym € L.

For each fixed ¢t € [0,T'], the integral is well-defined P-a.s. if

t t
[0, 5)p(s)l s < o0, 11Ut 8) Mgl ds < oo

To proceed, we need the following general measurability result, which will
also be used later for constructing Wiener and Poisson stochastic convolu-
tions.

Lemma 3.3.1:  For any fized t € [0,T] and any Pr-measurable process
(0(s))sero.r] € L2, the mapping

(3.11) [0,T] x Q3 (s,w) = 1g4)(s)U(t, s)p(s) € L2
is PT/B(L%)—measumble, i.e. predictable.

Proof: We extend the method used in [62] for proving Lemma 3.5 there.
The proof involves the following two steps:

1 e show Ppr-measurability of (3. or simple (elementary) predictable
i) We show P bili f (3.11) for simple (el dictabl
processes (¢(s))sejo,r] € L% having the form

(312) #5) = 3 il (s), s € [0.T]

WherengEL%,AkE’PT,1§k‘§K€N.

(ii) We show Pr-measurability of (3.11) for general predictable processes
(¢(8))selo,r) C LIZ) by approximating them by simple processes.

Concerning (i), note that for any simple predictable process of form (3.12)
and any B € B(L?)

TCx

(Lo (9)U(t,8)p(s)7H(B) = U ({s € [0,) [ 1[0,)(s)U(t, 8)gk € BY) x Q) Ag,

eB([0,t))

1

ePr
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because of the strong continuity of s — U(t, s) in L%.

Note that for any predictable process (¢(s))se[o,1] there exists a sequence
of simple predictable processes of form (3.12) such that in Lg

on(s,w) — p(s,w), as N — oo

for all (s,w) € [0, T]x€ (see e.g. Lemma A.4 in [62]). Since U(t,s) € L(L32),
we have U (t, s)pn(s) — U(t, s)p(s) in L? as N — oc.

Thus, 1(04)(s)U(t, s)p(s) is predictable as a pointwise limit of predictable
processes, which shows (ii). B

The main results of this section are Propositions 3.3.2/3.3.3 resp. Propo-
sitions 3.3.4/3.3.5, which state the time-continuity of the Bochner integrals
(3.9) and (3.10) both pathwise and in L7(€; Lf,) resp. L%(§; L%”).
Actually, instead of the predictability of ¢ it would be enough to assume
B([0,T']) ® F-measurability.

Proposition 3.3.2: Let U be an almost strong evolution operator in the

sense of Definition 2.2.1. Let ¢ = (¢(t))e[o,r] be an L%—valued predictable
process obeying

T
(3.13) J Ellp(®)][7; dt < oo
0

for some ¢ > 2. Then, for each t € [0,T], the convolution I,(t) is well-
defined in Lz. Furthermore,

t
(3.14) B[ ()][Z3 ds < ela, o(T)) [ Bllo(s)I7, ds
and hence
(3.15) sup El[|1,()][], < oo.

te[0,T'] ’

The process [0,T] 3 t — I (t) € L/2) s pathwise continuous, as well as
continuous in L9(€2; Ll%).

Proof:  The integral (3.9) will be defined, for P-almost all w € €2, as
a Bochner integral in L?).

For each t € [0,T'], the integrand function

[0,T] 3 s — 1104y (s)U(t, s)¢(s) € L2 is Pp-measurable by Lemma 3.3.1.
By (3.13) we have
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T
E [ [|(t)]]1 dt < oc,
0

and hence there exists a subset Qy C  of full P-measure such that

(3.16) {HU(M)@(S)HL; ds < c(T) Of [l (s)]] Lz ds < oo

forallt € [0,T] and w € Q. Therefore, I,(t) is well-defined for all t € [0, T']
and w € .

Let us assume that ¢ > 2. By Bochner’s and Holder’s inequalities we get
the following chain of estimates

q q

t

OfU(t, s)p(s)ds

E

t
< B[ el)lz s
L2 0

t
< AT [Ele(s)l[ ds,
0 P

which is just (3.14), (3.15).
To prove the continuity result, let us consider 0 < r <¢ < 7T and w € Q.
In this case, we have

(3.17) [[Lp(t) = Lp(r)l| L2 < bf!l[U(t, s) = U(r,8)lp(s)||12 ds

+ S 11U 5)o(5) |3 ds.

By Lebesgue’s dominated convergence theorem, the first integral on the
right hand side tends to 0 as ¢ | 7 resp. r T t due to the strong continuity of
U(t,s) and the uniform bound

0<il<l£)<T||[U(t’ s) = U(r; s)le(s)]|2 < 2¢(T)[le(s)] |2,

whereby by (3.16)

T
/ Hgo(s)HL% ds < oo for all w € Q.
0

Since the second integral on the right hand side in (3.17) obviously tends to
0 as r T tresp. t | r due to the uniform bound

sup [U(t;s)p(s)llzz < e(T)lle(s)]] L2,
0<s<t<T

we get the continuity of the map ¢ — I,(t) for P-almost all w € .

By the same arguments based on Lebesgue’s theorem and (3.13), the path-
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wise continuity of ¢ — I,(t) implies the L?(Q; L2)-continuity, which finishes
the proof. B

Proposition 3.3.3:  Suppose (A2) (or the weaker assumption (A5)*
with v = 1) holds for the almost strong evolution operator U.

Let ¢ = (¢(t))iejo,r) be an L%—Ualued predictable process obeying (3.13) for
some q > 2.

Then, for each t € [0,T'], the convolution I, is well-defined in L/2r
Furthermore,

t
(3.18) E[|lom(®)][7z ds < c(g,(;m, T) [ Ellp(s)][7; ds,
0

where ¢ € [0,1) is the same as in (A2).
Furthermore, the process t — I, (t) is, on the one hand, pathwise contin-
uous in Lg and, on the other hand, continuous in LI(€2; L%).

Proof: A technical problem is that, for general m € L2, M ym does
not belong to L,%. Thus, a proper approximation is needed.

Let us first consider m € L. Then, Y(t) := M,ym, t € [0,T], is
Pr/ B(Lf,)—measurable and, by (3.13), is surely such that

T T
JEIIJ’(t)HqL% dt < |Jm||7e OfEHsO(t)HqL% dt < oco.

Hence, Proposition 3.3.2 applies, which yields the well-definedness of
I, m(t) = Iy(t), the moment estimates and the required continuity proper-
ties in this case.

In the general case m € L?, let us take a sequence (my)nNen C L™ such that
[lmn —ml|p2 — 0 as n — oc.

Then, by (A2) and Hoélder’s inequality, for each s € [0,t) and w € €,
we have

1U(t 8) M) (mn —m)llz, < e(T)( = 5) " |lmn = ml[2: |l (s)]17
— 0Oas N — oo.
Thus, [0,T] 3 s — 1194)(s)U(t, s)Mym € L7 is Pr/B(L%)-measurable

as a pointwise limit of predictable functions (see Lemma 3.3.1).

Therefore, I, ,,(t) is well-defined as a Bochner integral in L?) provided
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t
(3.19) JHU(t,s)M‘p(S)mHL% ds

swwmmgw@%W@mws

<ce(D)|Iml|gz | [s @D ds [lle(s)l|}2ds | < oo, P-as.,
0 0 i

which holds by assumption (3.13) and the relation

(5 1)<1forq>2

Here, we used (A2) with ¢ € [0,1).
Similarly, by Bochner’s inequality (cf. Appendix B) we have

q
(3.20)

t
f )mds
0

L3
< c3(T)|[m||%,e(q, ¢, T) fEHso L ds

which proves (3.18).
Let Qo € B(2) be a subset of full P-measure such that

T
[ llp(t, )l dt < o0, w € .

Such a subset exists by (3.19).

To check the continuity of [0,T] 3 ¢ — I,m(t) € L2, we again use the
approximation of m by (my)yeny C L. Thus (see the proof of Proposition
3.3.2), all I, ;my, N € N, w € Q, are well-defined and time-continuous on
[0,T"]. But, for each w € Qy,

sup HI@,mN (t,w) — Iw,m(taw)HLg
te[0,T]
t
= sup ||[ U(t, s) M (s w)(my —m)
te[0,T]

L3

t
< sup fHU(taS)Map(s,w)(mN_m)HLg ds
te[0, 7] 0
t
< [lmny —mllg2 sup [[|U(t $)M(sw)llere,2) ds
te[0,7]0

1 ¢ _<
< [lmy —ml|g2c2(T) sup [(t —s)"%|l(s,w)l|2 ds
te[0,7]0
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N =

1
1 T 2 /(T
<|lmy —ml[p2e2(T) <g 576 dS) (E)f e (s, @)z d8>

— 0as N — oo,

where we need (A2) (or the weaker assumption (A5)* with v =1).

Thus, for each w € Qq, I, n,(t,w) is continuous in L% as a uniform limit
of continuous functions. Herefrom, by Lebesgue’s dominated convergence
theorem, we also get

sup El[Iymy (t) = Ipm(t)||, — 0 as N — oo,
t€[0,T'] L

which in turn implies the continuity of I, in L7(; Lf)). [ |

To control the properties of the (stochastic) Bochner convolutions (3.9)/(3.10)
in the Banach spaces Lz”, v > 1, one needs regularity properties of the evo-

lution family U = (U (%, s))o<s<t<7 in these spaces. To this end, we have to

additionally assume (A3) and (A4).

The properties of the convolutions in L%” are described by the following two

propositions (generalizing Propositions 3.3.2 and 3.3.3).

Proposition 3.3.4: Let v > 1 and suppose that (A3) holds.
Let ¢ = (p(t))iejo,r] be an L%”—valued predictable process obeying

(3.21) fEHso 2% < oo.

Then, for each t € [0,T], one has

¢
= [U(t, dsELQ”(Pas)
0

Furthermore, there exists a positive constant c(v,T) such that

(3.22) E||I¢(t)||L2V <c(v,T) fE||g0 HL’%V ds < o0,
and hence
(3.23) sup E[|1,(t)][7%, < oco.

te[0,T] P

Finally, the mapping t — 1,(t) is continuous both pathwise in L%l’ and in
L2 (Q; L2Y).

Proof: For any ¢ € [0,T'], the integrand function



3.3. BOCHNER CONVOLUTION INTEGRALS 89

[0,T] 2 s 1104)(s)U(t, s)p(s) € Lg” is Pp-measurable by Lemma 3.3.1.
Furthermore, by (3.21) there exists a subset Qp € B(Q) with P(Qy) = 1
such that for all w € Qg

T
0

Since by (A3)

t Lt
ST 8)p(s,0)l 120 ds < (e, T))% [ Ilio(s, )|z ds,
0 0

I,(t,w) is well-defined as a Bochner integral in L?,” for all t € [0,7'] and
w € Q.

As L?)” is continuously embedded in L%, Proposition B.2.2 says that I,(t)
coincides with the Bochner integral in LZ defined by Proposition 3.3.3.

By (A3), together with Bochner’s and Hélder’s inequalities, we have

t 2v

B[Ol < B JHU(@S)MS)HL;}V ds
t

< C(MT)JEWP(S)H%”;MS’

which proves (3.22) and (3.23).

To check the continuty properties, we proceed analogously to the proof of
Proposition 3.3.2. We have for 0 <r <t < T and w € Qg

Lo (t,w) = Tp(r,w)|[p2r < Of!I[U(t, s) = U(r,s)lp(s, )12 ds

t
+ [ U, 5)(s,w)ll 2w ds.

By the strong continuity of U in L%” (cf. (A3)), we can literally repeat
the previous arguments to get the pathwise continuity of

[0,T] >t~ I,(t) € L2

Finally, by (3.23) and the pathwise continuity shown before, Lebesgue’s
convergence theorem yields the time-continuity of I, in L?"(; LIQJ” ). |

Proposition 3.3.5:  Suppose that (A83) and (A5) (or even the weaker
assumption (A5)*) withv > 1 and ¢ € [0,1) hold.
Let p = (¢(t))ieo,r) be an ij’—valued predictable process obeying
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(5.24) fEHgo \|L2Udt<oo

Then, for each m € L? and t € [0,T], one has
¢
= OfU(t, s)Mpmds € L2 (P-a.s.).
Furthermore, there exists a positive constant c¢(v,T,c(T')) such that

t
(3.25) E||Lym (t)]]%% 12 <c(v,m,T,c(T)) [(t — )" E||¢(s)]|% L3 ds < 0.
0

Finally, the mappingt — I, (t) is continuous both pathwise and in L** ($; L%”).

Proof: By (A5)* (cf. (3.6)) and Holder’s inequality we have the fol-
lowing chain of estimates

¢ 2v
El|Lpm(8)|134, < [f E|[U(t, 5) Moym|| 2 ds]

2v
Tl | [ VTt~ 9 SEllo(olle ]

<
t 22U
< cn DTy Imls | [ - ) SRl o
t
< DYDY T o= o) Bllo(o) | s
t
= c(vym,T,c(T g s)"VEl|p(s )||L2v

which yields (3.25).

Concerning the required continuity property, analogously to the proof of
Proposition 3.3.3, let us start with the special case m € L. This gives us a
predictable mapping [0,7'] > t — Mpym € L?)” , for which, by Proposition
3.3.4, we have the well-definedness and continuity of I, (t,w) € L%” for all
t€[0,T] and w € Q.

Here, €}y is the set of full P-measure such that

T
Jlle(t, )|z dt < oo for all w € Q.
0

Such  exists by (3.24).
Next, we consider the general case m € L%. There exists a sequence

(my)nen C L such that

i [y — mllz2 = 0.
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Now, by (A5)/ (A5)* we have, for each w € €,

sup HIcp,mN (t,w) — I%m(taw)HLf,'/

te[0,T]
t
= sup ||f Ul(t, s) My(sw)(mn —m)
te[0,T] 110

2v
L3

t
< sup [ [[U(t, 8) M(sw)(mn —m)|| v ds
te[0,7] 0
t
< ||mN _mHL2 sup f”U(tv S)Mgo(s,w)Hll(LQ,L%V) ds
t€[0,7] 0
1 t ¢
< lmy = mllgz(c(v,T))2e sup [(t—s)"2|lp(s,w)||r2v ds

te[0,T] 0
2v—1

1
T _ ¢(2v) 2v T 2v
< [Jmy —ml|g2(c(v,T)) 2 (fs 2@v=D d5> (fl@(s,w)lli”zy ds)
0 0 °

—0as N — o0.

Thus, t — I, ,,(t,w) is continuous as the uniform limit of continuous map-
pings t — I, my (t,w).

Finally, by the finiteness of the right hand side in (3.25) and the pathwise
continuity shown before, Lebesgue’s dominated convergence theorem gives
us the time-continuity of I, in L (£ LIQ)"). [ |

3.4 Stochastic convolution w.r.t. ()-Wiener process
in weighted L?-spaces

In this section, we present results on the stochastic convolution w.r.t. Wiener
processes in L% resp. L?,” (see e.g. [76]).

An emphasis is put on the well-definedness (Proposition 3.4.1 resp. Proposi-
tion 3.4.3) and on the (pathwise (see Proposition 3.4.4) and meansquare (see
Proposition 3.4.5-3.4.7)) continuity properties of Wiener stochastic convolu-
tions in L% resp. LZ”, v > 1. A new result of this section is Proposition 3.4.7,
where we prove the time-continuity in L?”(£; Lﬁ” ). This will be important
later for establishing similar continuity properties of the mild solutions to
(1.1) resp. (1.2). Furthermore, unlike Manthey and Zausinger in [76], we
also consider the general nuclear case, which is of importance for the later
considerations of equation (1.2), since the @Q-Wiener process appearing in the
Lévy-It6 decomposition of a Lévy process in general does not fit to the nu-
clear case introduced above. We emphasize that, in the general nuclear case
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of this section, we apply the assumption (A5)* to get the well-definedness
of the stochastic convolution in Lg”.

The other results mentioned before are more or less known. Nevertheless, we
include detailed proofs of them, especially of Proposition 3.4.3, since later
we will adapt them to the case of compensated Poisson random measures in
Chapter 4. In doing so, we will fill some gaps in the original proof in [76].

In the whole section, we assume that (A0)—(A2) hold.

First, we consider the case v = 1.

Given a predictable process (¢(t))ie[o,r] taking values in L?), we consider
the following stochastic integral, which is called Wiener stochastic con-
volution,

(3.26) V() = OfU(t, §) M (s AW (s).

A technical problem is caused by the singularity of the integrand function
at s =1.

In particular, we will show that the simplest condition for (3.26) to be well-
defined is

(3.27) sup_ Ellp(t)|[2; < oo.

te[0,T] p
The Banach space of all predictable processes ¢ obeying this property will
be denoted by H?(T') (for an exact definition of this space, see in Section 5.1).

Proposition 3.4.1:  Let ¢ = (p(t))ic[o,r] be an L%-valued predictable
process obeying

¢
(3.25) sup [(t = 5)<Bllp(s)|2, ds < ox,

te[0,T]0 s
where ¢ = 0 in the nuclear case and ¢ € [0,1) as in (A2) in the gen-
eral nuclear and in the cylindrical case.
Then, for each t € [0,T], the stochastic convolution IJ;V is well-defined in
L% in both the nuclear and the cylindrical case.
In particular, (3.28) is fulfilled in case of (3.27) being fulfilled. In this case,
we even have well-definedness of the stochastic convolution in the general
nuclear case.

Furthermore, if for some q > 2
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¢
(5.29) sup [(t— 5>’)*<EH90(3)H‘1L2 ds < oo,
te[0,T]0 L
then also
¢
(3.50) EHI;V(t)H ds < c(q,¢,T) [(t —5)" El|e(s)[|1, ds < oc.
0 14

In particular,
sup_ Elp(n][%, < oo
te[0,T] P
implies

sup B[V (8)][2, < o
te[0,T'] 4

Proof: As in the Bochner case, let us first fix some ¢t € [0,T].
We fix the representative of the integrand process as

(3.31) [0, T] x Q23 (s,w) = x(s,w) := 1194 (s)U(t, ) M(s) € L2

First, we show that it is Pr/B(L2)-measurable, where L5 stands for £2(Q% L% L%).
By the arguments used in proving Lemma 3.6 in [62], this is equivalent to
the Pr/ L%—measurability of the mappings

[0, T] x Q> (s,w) — X(s,w)Q%en e L2, neN,

where (e,)neny C L? is an orthonormal basis in L? of eigenvectors of Q,
which always exists by 2.3.3.

The statement will be a corollary of the general fact that

[0,T] x Q> (s,w) = 1j04)(s)U(t,5)V(s) is Pr-measurable for each Pr-
measurable process (V(t))ic[o,1] C Lg, which has already been proved in
Proposition 3.3.1.

In both the nuclear and the cylindrical case we take Y(s) := @(S)Q%en € LZ

(recall that Qze, € L™ for any n € N in both cases).
In the general nuclear case, given any n € N, we set Y(s) := @(s)hp p € ngj

for any s € [0,7'] and a sequence (hy, ar) men C L™ approximating Q%en in
the L2-norm. Then, by (A2) we have, for each (s,w) € [0,T] x Q,

. 1
lim ||x(s,w)hnm — X(s,w)anH%g =0,
M —oo P
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which implies the required measurability in the general nuclear case.

Now, as was discussed in Section 2.5 (cf. Definitions 2.5.2 and 2.5.5 there),
the stochastic integral

IV (t) :=

A U(t, S)Mcp(s) dW(S)

x(s) dW(s)

ot L O—

is well-defined in all three cases provided

t
(3.33) E [|U(t, s)My(s)l|Z, ds < oo, t € [0,T'].
0

It is easy to see that, combined with (3.1) and (A2), (3.33) follows from
(3.28). Indeed, we have

t t .
(3.34) E{ HU(t,,9)./\/l<p(s)|\%2 ds = E{ ZNHU(t, S)Mw(s)(Qien)Hig ds
ne

< or) (S o) (suplenl) [Elloto) o

neN neN
< oo (by (3.28) with ( =0 and (3.1))

in the nuclear case, respectively,

t t
(3.35) Eg Ut 8)Mo(s) |2y 12,12y ds < e(T) [(t = 5)Ellp(s)l[75 ds

< oo (by (3.28) and (A2))

in the cylindrical case, respectively
! 2 f 2
(3.36) Ebf [U(t, s) My llz, ds < tr QE{ U (t, S)MW(S)HCQ(L27L%) ds

t
< oT)tr QB [(t = s)*[le(s)[[7; ds
0
< oo (by (3.28) and (A2))
in the general nuclear case.
It remains to prove the estimate (3.30) for ¢ > 2.

By the Burkholder-Davis-Gundy inequalities 2.5.4/2.5.6, estimate (3.2) from
(A2) and Holder’s inequality, we have
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N

t
BILY Ol < cla DB ([0 9Mo0ol12, 05

q
t 2
- s %% ds)
0

(a—2)¢

(
(bf(t —s) o« (t— 3)7%“@(3)\@3 ds)
T
!

IN
Q.
R
3
=
—
=~
|
=
I
sy

b

q—2

2 ¢
- ds) f(t = $)~<Ello(s)][%, ds
0 14

— 0.) [(t ) CEllp(o) ]y ds

which proves the claim. H

Remark 3.4.2: (i) As one can see from (3.834)-(3.36), the stochastic
convolution is well-defined in L% even under the sufficient conditions

T
(3.37) JEllp()lI; ds < oo
0

i the nuclear case and, respectively,

T
(5.58) J(Elle@®)|[72)" dt < oo for some r > = C

o

in the general nuclear and the cylindrical case. The latter condition comes
from the following estimate of the integral, appearing on the right hand side
of (3.35) and (3.36),

o o

(t = 8)Ellp(s)lIZ, ds
)

t 144 T (1 2 (o o
< (fsemnas) T (e T as)

where we used Hélder’s inequality and choose some § > 0 such that
C(1+6) <1

The last integral is finite for § = ﬁ > 0 under the assumption (3.38).
Besides the process o being in H?(T), a sufficient condition for (3.38) is also

fEHgo \|L2rdt< oo for some r > = C

(ii) As we have seen, (A2) allows to consider all three cases from 3.4.1 si-
multaneously. In the cylindrical case, we could also apply (A5) with v =1,
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whereas in the general nuclear case we could assume (A5)* with v =1 in-
stead of (A2).

(iii) Actually, the results of this section remain true if we just assume that
the integrand process ¢ is measurable and (ft)te[()’T]-adapted.

Let us stress that the stochastic convolution process (3.26) is not a mar-
tingale, and thus one needs more comprehensive methods to study its regu-
larity properties.

Now, we consider the general case v > 1.

A key idea is to control the well-definedness of the stochastic convolution
(3.26) in the Banach spaces L2”, v > 1, by additional regularity properties
of the evolution family U = (U(t s))o<s<t<T in these spaces.

The properties of the stochastic convolution in Lf,” are described by

Proposition 3.4.3: (cf. [76], Chapter 2, Remark 2.3(iii))

Let v > 1. Suppose that, additionally to the previous assumptions, U obeys
(A3) and (A4) (In the nuclear case, (A4) certainly holds with ( = 0, cf.
Remark 3.1.2.1 (it3), in the cylindrical case (A4) is implied by (A5) with
the same ¢ € [0,1), ¢f. Remark 3.1.2.1 (v), whereas in the general nu-
clear case, (A4) is implied by (A5)* with the same ( € [0,1), ¢f. Remark
3.1.2.1 (iv)).

Let ¢ = (p(t))sejo,r] be an Li”—valued, predictable process obeying

¢
(3.39) sup [ (t—s) " El|p(s)||% L2 ds < oo,
t€[0,7] 0

where ¢ = 0 in the nuclear case and ¢ € [0,1) as in (A2) in the gen-
eral nuclear and the cylindrical case. Then, in all cases we have, for each
e[0,T],

V() = J‘U(t,s)M¢(s) dW(s) € L2 (P-a.s.).

Furthermore, there exists a positive constant c(v,T) such that
¢
(3.40) EHIZV(t)\ 12 <cw,T) [(t—s) )SE||o( )H%;U ds < 00.
0 P
In particular,
sup Elfp(t)]|2%, < oo

te[0,T]
is sufficient for (3.89) and implies
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sup E[[I1}Y (1)|[75, < oo.
te[0,T] ’

Proof: We follow the original proof from [76], but give more explana-
tion to some of the key steps.

Let us fix an arbitrary ¢ € [0,7'] and define the predictable integrand
process, cf. (3.31),

[O,T] S S X(S) = l[oyt)(S)U(t,S)Mq,(s) € Lo.

Note that we have already shown the well-definedness in L% of

— [ x(s) W (s
0

Recalling the coordinate structure of the Q-Wiener process from Section
2.3, heuristically we could also consider the infinite series of stochastic inte-
grals

t
(3.41) 5 [ x(5)(QFen) dun(s)
neN 0

constructed by means of the family (wy,)nen of independent scalar Brownian
motions as in Section 2.3. Our aim is to identify (3.41) with the L?) valued
stochastic integral (3.26). Then, we will examine the Lf,” -properties of each
term and establish the convergence of the above expansion in L?”((; le)”).

The proof works in the following way:

Step 1 We find a family (¢/("),cn of Pr®B(6) —B(R)-measurable represen-
tatives for the LZ—Valued functions (XQéen)neN (for their definition
see below).

Step 2 In L?(€; L2) we check the identity

t ¢
OfX(S) AW (s) = 5 [¢™(s,-) dwn(s)
with x as in (3.31).

Step 3 We show the required inclusion

5 60 (5, ) duwn(s) € L% (P-as.).

neN 0
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Step 1 is done by the following claim.
Claim 1: There are representatives ™ for the functions
[0,T] 3 s 1104y (s)U(t, )M Q7 ey € L2,

i.e. Pr® B(©) — B(R)-measurable functions
Y™ Q% [0,T] x © — R such that

T
(3.42) E gNOf U (t, ) M) Q2 e — ™) (s, )N, ds =o.

Proof: In order to ﬁnd such measurable representatives, we need to ”eval-
uate” U(t, s)M S)an at any point 6 € ©.

To this end, we exp101t the smoothing properties of a standard convolution
operator for real-valued functions.

Let us first recall the following:

Definition:
(i) A sequence (01,)ren C L' (R?) is called a (general-) Dirac sequence if

8k > 0 (dz-as.), [ 0x(0)df =1 and
Rd
(3.43)
lim [ 6;(0)dd =0 for any p > 0,
FTOORN\ B, (0)

where B,(0) is the ball of radius p > 0 around 0.

(ii) If ¥1: R? — R is measurable and 1), € LP(RY) for some 1 < p < oo, the
standard convolution mapping conv is given by

(conv(th1,12))( f 1§ — 0)ya () d€, 6 € RY,
provided the integral in the right hand side exists.

It is well-known that:
e For any function ¢ € C§°(RY), the sequence (J;,)ken given by
(3.44) 6r(0) := (%) o(kB), 0 € R,

is a Dirac sequence (cf. 2.13 2 in [6]).
e The Dirac sequence from (3.44) fulfills
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(3.45) conv(8, 1) € C(R?)
for any ¢ € L2(R?) (cf. 2.12.4 from [6]).

e For any Dirac sequence (03) C L'(RY) and any ¢ € L?(R%), we have
(cf. 2.14.2 from [6]) that

(3.46) conv(0x, V) 72 Y ask— oo.

e Tor any p € L} (R?) and any v € L%(R?), the convolution exists and
obeys the bound (cf. 2.12 2. from [6])

(3.47) |lconv(p, ¥)[[12 < llllL1[[¥]]z2-

We show Claim 1 with the help of the above definitions and properties.

Let (en)nen C L? be a complete orthonormal system of eigenvectors of
the operator Q € T(L?).

Given the weight function p, as in the Introduction, for n € N and almost
all (s,w) € [0,T] x €, we have (cf. (3.34)—(3.36))

1 1 1 1
15 X(8)Q2 en = 1104)(s)up U(t, 5) My Q2 en € L*(O).
Outside © we trivially continue this function by 0.
Thus, by (3.46) we have, for any n € N,

1 1
(3.48) conv(8, 17 X(5)Q%en) 12 mAX(5)Q2en as k — oo,

where (0 )ken is the Dirac sequence from (3.44).
Furthermore, by (3.45) we get
1

conv(dg, ugx(s)Q%en) € C®(R?).

Thus, for any n € N and almost all (s,w) € [0,T] x £, we can calcu-
1
late (conv(ék,uﬁx(s)Q%en))(ﬁ) for any fixed 0 € ©.

Given n, k € N, we define w,(en): [0,T] x Q2 x O — R by

(349) 0" (5,,0) == (s * conv(G 3 X(5)Q ) (0)
= Lj0)() (1 * conv(B, 3 UL, 8) Moy Q2 €0))(6)
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_1
Obviously, p, 21 € Lf, for any 1 € L?. Thus, for @ZJ,(:L) given by (3.49)
and for almost all (s,w) € [0,T] x Q, we get

zp,i")(s,w, ) € L%
and
(3.50) Li£||¢£”>(s,w, ) = U(t, )My QZenll 2 = 0.
We next show Pr ® B(©) — B(R)-measurability of each 1/;,&”), n,k € N.
To this end, we use Theorem 6.1 from [51]. To apply it, we need the follow-
ing two properties to be fulfilled:
e continuity of the mapping
036 " (s,w,0)
for any (s,w) € [0,T'] x £, and
e Ppr-measurability of
(5,0) = 0" (5,0, 0)
for any fixed 6 € ©.

By (3.45)/(3.49) there is a version of w,in) obeying the required continuity
property.

Concerning the Ppr-measurability required for any fixed 6 € ©, note that
n -3 3 L
U (s.0,0) = 1 (6) [ 0n(€ — 0) (uEx(5.w)Q€n) (9) d
©

_1 1 1
= pp°(0) <o —0),upx(s,w)Q2en >po.
Since y is predictable, we get the Pp-measurability of
(s,w) — w,(c")(s,wﬂ) by Fubini’s Theorem.

Thus, for each n,k € N, the assumptions of Theorem 6.1 from [51] are
fulfilled. This gives us Pr ® B(©)-measurability of

(5,0,0) — ™ (5,0, 0).
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By construction, see (3.46),

(%(gn) (87 w, '))kEN
is a Cauchy sequence in L% for each n € N and almost all (s,w) € [0,T'] x Q.

Due to the uniform bound (3.45), Lebesgue’s theorem is applicable, which
yields that

(S,L«J) = wlg;n)(87w7 ')7 ke N7

is a Cauchy sequence in L?(2 x [0,T], Pr, P ® dt; L%)ﬁfor each n € N.
Furthermore, by Fubini’s theorem we have for any k, k € N

E [ [0 (s,0) — ") (s,0)2 1 (d0) ds — E [ ) (5, — ™ (s, ]2, d
bfef)\wk (s,0) 1% (8,0)]% pp(do) ds > [[ey, (s, ) Q/Jk (s, )HLg S.

N 0 neN

This implies that, for a fixed n € N,
(s,w,0) — wlin)(s,w,O), k €N,
is a Cauchy sequence in
L2([0,T] x 2 x ©) :==L3([0,T] x Qx 0,Pr ® B(O), P ®ds ® u,).

Moreover, by Lebesgue’s theorem and (3.46) (w,in)) keN is a Cauchy sequence
in L2([0,T] x Q x ©;12), which is the space of all sequences (™), cy in
L?([0,T] x © x ©) such that

T
ST E [ [|9™(s,0)2 u,(d6) ds < oo.
neN 060
Since L%([0,T] x Q x ©;1?) is a Hilbert space, there exists a limit se-
quence (™), ey € L2([0,T] x Q x ©;12) such that each (™ is Pp x B(©)-
measurable and

T
(3.51) S E [ [ (s,0) — ™) (s,0)[2 pp(df) ds — 0 as k — oc.
neN 00O
Obviously, this implies that each component zp(”)(s,w, ) € LI% for dt ® P-
almost all (s,w) € [0,T] x Q.
On the other hand, by the definition of w,gn) we have, for each n € N and
almost all

(s,w) € [0,T] x Q,
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lim (|6 (5,0, ) = x(5,0)Q2enl 13 = 0
and thus
. n n 1 n
i ([ (s,0,) = 60 (s, 0,2 = IIx(s,0)Q2en — ™) (s,w, )| z-

This implies

T 1
(352) E[ 3 |Ix(s,w)Q7en — ") (s, 7z ds

0 neN

T
:E{ = ;}Lm 9" (5, ) = ) (s,0, )17 ds

Ef > [l ,')—w(”)(s,w,~)]|ig ds

0 neN

hm ZNEff\w — (M (s,0)|? p,(d6) ds
k—0oo e

=0,

which yields (3.42). O

Thus, the proof of Step 1 is finished. A

Step 2: This step is proven by the following claim.

Claim 2: In LQ(Q;L%), for x given by (3.31) we have

WS AW() = 3 [r(8)Qbendun(s) = 3 J o (s, ) dun(s),

neN 0 neN 0
where for each n € N (by (3.49))

Ig’ (t) =

o o

(3.53) f P (s, ) dw(s)

1s the usual Lf,—valued stochastic integral of the predictable process
[0,T] 35— ¢p™(s,.) e L? (see e.g. [97]).

Proof: By the definition of (" as a measurable modification of X(S)Q%en
(see (3.49)), the claim is equivalent to showing that (in any case) the sum

(3.54) S [ ()@ en dun(s)

neN0
converges in L?(Q; L%) and that
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¢
X(s)dW(s) = 3 [ ()@ enduwn(s) = 3 In(t),

neN 0 neN
where the I,,(t) are defined by (3.53). To prove the convergence of (3.54), we
use a proper version of It6’s isometry. Recall that, for a real-valued Brown-
ian motion (w(t))s[o,7) and an L%—Valued, predictable process (¢(t))iec[0,7]s
we have (cf. e.g. [97])

(3.55)

o o

t 2

J ¢(s) duw(s)

0

E

t
=E [||p(s)|[2, ds, t € [0,T],
L’Q) 0 P

provided the right hand side is finite.

Due to the mutual independence of (wy,)nen, we have by (3.15)

2

S [ x(s)Q¥en duon(s)

E
neN 0 L%
¢ 1
= 3 E [[Ix(s)Q%enl[7, ds < oo.
neN 0

Hence, the series (3.54) is convergent in L*(Q; L2).

To check the identity (3.55), let us first proceed in the nuclear and general
nuclear case, i.e. we suppose W is a )-Wiener process with the covariance
operator @ € T+ (L?).

Recall that by 2.5.2 there is a family of elementary processes (X )men such
that

T
(3.56) lim E [ |[xm(s) = x(s)l[Z, ds = 0,
m—0o0 0

where Lo denotes the set £2(Q%L2,L%) of Hilbert-Schmidt operators from

QzL? to L? (see also Definition 2.5.7 above).
We first show (3.55) for the elementary processes xm, € Sw (7).
Any such elementary process can be written in the form

an_l .
_ J
Xm(t) = J;O Xml[t;ﬂ,tﬁl)(s),

with 0:= tf < 7' < ... <t =T and x}, € L(Q7L? L2), 0 < j < jim — L.

For this x,,, we have the following chain of equations in L?(€2, F, P; L%).

S xm(5)Q e dun(5)

neN 0
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Jm—1 . L
= > (Z X L[gm gm )(8)) Q2en(wn () Nt) — wn(t] At))

neN Jj g+l
m—1 )

=78 i o) (5 Qe A0 - wntey 10) )
Jm—1 . t

=" il V(€0 1) = W D) = i W (),

where we used (2.5) (with G := L? and (ey,)nen) for W in the last line.
Thus, the claim holds true for any elementary x,, € Sy (7).
On the other hand, we have

(3.57)

B | [(tm(s) — x(s)) ¥ (s)
0

3
[xm(5) = x(3)]12, ds

< E [ [[xm(s) = x(s)l[z, ds — 0, as m — o0

by Itd’s isometry and (3.56). Taking into account (3.15), (3.56) and the
mutual independence of w,, for different n € N, we also have

2

(358) B|| T [(xn(s) — x(5))@ben duwn(s)
neN 0 L2
-5 Ef||<xm<s> —X(5)@benllEy ds
neN 0

< Ef HXm(S) _X(S)”%z ds — 0 as m — o0.
0

Combining (3.57) and (3.58), we get (3.55) both in the nuclear and the

general nuclear case.

Concerning the cylindrical case, note that the stochastic integration w.r.t.
the cylindrical Wiener process is defined via an auxiliary Q1-Wiener process
for some Q1 € T+ (L?), see Section 2.5. Thus, (3.55) in the cylindrical case
readily follows from the (general) nuclear case. [J

Thus, we have finished Step 2. A

Note that so far we did not use the measurability properties of the fam-
ily (™), en. This is needed in

Step 3: P-almost surely, each
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fw ") (s, ) dwn(s)

belongs to L%” . Furthermore, their sum

ZIW ) dwy ()

neN 0

converges P-almost surely in Lf)” .

To prove this step, we first need the pointwise representation for the above
integrals:

Claim 3: Forn € N, let us consider the stochastic integral

(3.59) ftd) (s,0)dw,(s) € R
0

depending on the parameter 6 € ©.

Then, there exists an Fy @ B(©)-measurable realization of (3.59), which we
again denote by I,(t,0).

Furthermore, I,(t) coincides P-almost surely with the L%-fualued integral (cf.

(3.53))

1(t) = 0fw<n><s> (),

i.e.

E||L(t) = In(t)|[7; = B g (In(£)(0)|? 1 (dO)| =

Proof of Claim 3: Let us first check that I,(t) is well-defined for s,-
almost all 0 € ©.

Indeed, by the construction (see (3.49) and (3.51)),

(W) pen € L2(Q x [0,T] x ©, P @ dt  jup;l2). Thus, we have

B[ [ 5 10 (s, 0)[2 1y (df) ds < oc.
0 © neN

Then, Fubini’s theorem gives us

T T
(3:60) [ [ B (5,0, O ds () = B [ [1040) (5,0, 0) () s < o0
©0 06

and hence
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(3.61) E(y™(s,0))?ds < oo

for p,-almost all 6 € ©. .
By Itd’s isometry, this implies the well-definedness of I,,(¢,0), n € N, t €
[0,T'], for p,-almost all 6 € ©.

In the following, we will crucially use the measurability of I,(t, ).

We claim that I, (t) allows an F; @ B(©)-measurable realization for all n € N.
A general measurability result A.1(a) from [13] states that, under the suf-
ficient condition (3.61), for each ¢ € [0,7'], there exists an F; ® B(O)-
measurable realization of the stochastic integral (3.59). More precisely,
one can find an F; ® B(©)-measurable function I/ 2 x © — R and a
set ©g € B(O) of full y,-measure such that I['(w,0) = I,(t,w,d) for all
(w,0) € Q2 x BOy.

Below, we identify I,,(t) with its measurable representative I*.

So, we want to identify the map fn(t): Q x © — R with the Lf,—valued
random variable

In(0) = [ 65, ) 5.
To this end, we consider cylinder functions F' of the form
(3.62) F=F -F, Fi € L>(0,F,P), F, € L*(0,B(0), 11,,).
Obviously, such F belong both to L?(€; L%)) = L%(Q, F, P; LZ) and
L?(Qx0):=L*(Qx0,F2B(O), P u).

We will show that the pairings of fn and I,, with such functions coincide.
Since functions F of the form (3.62) constitute a total set in L?(€2; L2), this
would imply the identity I,, = I,, as elements of L?(; LZ).

So, let F' € L?(%; LZ) be of the form (3.62).

An important observation is that P-a.s.

t

(3.63) Of g&(x)w(")(s, 0) 11,(d0) | dwy(s) = g Fa(0)1n(t,0) 1 (d6).

This follows by the stochastic Fubini theorem 4.18 from [26]. A sufficient
condition to apply this theorem is that
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Fyp € LY(Q, pp; L2(Q x [0,T], P ® ds)).
Indeed, by the Cauchy inequality we have

2

/ Eljkfa<9>w0ﬂ<s,e>>2ds] 10(d6)

S}

2

E (1/1(")(879))2658] 1o (d0)

= [ F»(0)

S}

2

<||Fllz [B

L™ (5,0))? ,(d0) ds]
(C)

< 00,

where we used (3.61) in the last step.

Thus, we can rewrite the inner product as

< In( F >L2 ©L2)

i [fF w, 0) ( P (s, ) dwn(s)) (w, 0) ,up(dﬁ)] P(dw)

Q Lo

[ Fi(w (f Fy(0 (f@[} ) dwy (s )) (w,0) ,up(de)) P(dw)

Q S}
t

Fy, [ 4™ (s, ')dwn(3)> ]

0 L%

~—

<F25 @D(")(S, .)>L% dwn(s)]

[ [ Fa0)00(5.0) () (5 )
06

ffan@ﬁnmwm)]

[ [f F(w,0)I,(t,w,6) up(de)} P(dw)
Q Lo
<

In(t), F > L2(:12)

Here, we simply used the definition of the inner product in Lg in the third
and the fifth, Proposition 2.5.3 in the fourth, (3.56) in the sixth, and (3.62)
in the second and the second last step.

So, the inner products of I,,(t) and I,,(t) with F of the form (3.62) coincide,
which proves Claim 3. [J

We finish Step 3 by the following claim:
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Claim 4:  For any n € N, we have I,(t) € L%”, P-a.s., and the se-
ries

> In(t)
neN
converges in L* (Q, F, P; Lf)”).

Proof: By the above construction, see Claim 3, there is an F; ® B(0)-
measurable version

ftw sden()
0

of I,(t) for any n € N.
Since, by Claim 2, the infinite sum

2. In(t ZM) ) dwn(s)

neN neN 0
is convergent in L2(Q, F, P; Lg), by Claim 3 we get the convergence of

> In(t,0) = f¢(” (5,0) dwn(s)

neN nEN 0

in L2(Q x ©,F®B(O), P ® u,).
Thus, we can apply Fubini’s theorem yielding

t 2v
[ x(s)dW (s)
0 L%”
2v
> In()
neN L%V
2v
(3.64) E/[ (Z [ (s,0) dwy (s )) 11,(d6)
© \neNo0 o
=[E (Z 9™ (s,0) dwn(s)) pp(d)
o neN 0 0
~ B[S 100 ulan)
neN

provided the right hand side is finite.
Now, we will show that the partial sums

f() N €N,

ﬁM’z

constitute a Cauchy sequence in L2 (; Lf)”) =L (Q,F, P; Lf)”).



3.4. WIENER CONVOLUTION INTEGRALS 109

Indeed, for any N, K € N,

N+K—1 _ 2v N+K—1 _ 2v
s | T L) = B (X w0) @)

n=N Lgv S n=N

N+K—1t 2v
= fE( Z f swﬁdwn(sw)> pp(df).
® n=N 0
Setting
W (s,0) = (00 (s,0)))

and

WH(s) = (wal(s)nZn

by the Burkholder-Gundy inequality for multi-dimensional Wiener processes
we have, for a fixed 6 € O,

o (N—i—ZK 1ftw (0.0)dus ))2u ) <<Oft¢K dWK>RK>2u
< B ([ I8 HRde)V

t N+K—1 v

_ E[Of > v(s0)2d ] |

Thus, we can continue (3.65) as

N+K—1 _ 2v
(3.66)E‘ X ) .
t N+K—1 ’ v
<) [T S W00 as| e
© (zN;L;(q v
=B [T w2 as| @) utan)
© Ot]\;l—:K—l ) v
—eB ) ([ 3 (e)Qie) ds) () uylat)
© Ot NT—ZFK—I ) v
B[ ([T Wt MQien)ds) (0)plao)
® \0 n=N

where in the last three lines we passed to the Bochner integral over [0,7]
in L}, (cf. Remark 3.1.2.1 (ii) above) and used Claim 1.
Since by assumption (A4)



110 CHAPTER 3. STOCHASTIC ANALYSIS

t ) v
B (] £ 00 MuQien) ds) a,
© \0 neN

t

< c,T) [(t = 5) " Bll(s)l| 75 ds
0
< 00,
by Lebesgue’s theorem we can conclude that the last line in (3.66) tends
to 0 as N, K — oo. 3
So, we have proven that Y, I,(t) converges in L?”(; Lf)”). A
To complete the proof of Proposition 3.3.1, let us recall that 3" 1,,(¢) con-

verges to Izv(t) in L?(Q; L%) by Claims 2 and 3.
Thus, P-a.s., we get the required inclusion

fX €L2V

It remains to show estimate (3.40). But this follows immediately by com-
bining (3.66) with (3.64) and (3.65). W

Remark 3.4.4:  Actually, Proposition 3.4.3 extends to any predictable
L-valued process (x(t))ic|o,r] such that

T
Eof X ()17, dt < oo.

Namely, we can prove that

o o

x(s)dW (s) € LY (P-a.s.)

and

2v
(3.67)E

fxee

Lgv )
E [IHX(S)Qéng(LaL%u) ds}
0 T) [ BIX(IQE 5 05
provided the right hand side in (3.67) is finite.

The proof of (3.67) follows by Minkowski’s inequality applied to (3.66) (see
Remark 3.1.2.1 (iv)).

To finish this section, we discuss the continuity property of the stochas-
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tic convolution (3.26).

First, we recall the following proposition from [76], the proof of which is
based on the so-called factorization method for Wiener-type convolutions
(cf. e.g. [25] or the proof of Theorem 5.9 in [26]) and the Burkholder-Davis-
Gundy inequality (see Section 2.5).

Theorem 3.4.5: (cf. [76], Theorem 3.1.1 there)

Given a predictable process ¢: [0,T] x Q — Lg, suppose that

T
(5.68) B J llp(t)l[%, dt < oo
0

for some q > 2 in the nuclear case and q > I%C with ¢ € [0,1) as in
(A2) in the general nuclear and in the cylindrical case.

Then, there exists a continuous modification of the process

¢
[0,T]>t+— gU(t,s)Mw(s) dwW(s) € L%.

Note that in Theorem 3.4.5 it is really necessary to assume g > 2 in the

nuclear case resp. q > IL—C in the general nuclear and in the cylindrical case.
Otherwise the factorization method for Wiener-type convolutions would not

be applicable.

Since, in later chapters, the presence of jump terms in the equations (1.1)
and (1.2) causes us to consider other continuity properties, we finish this
section by the following propositions, which seem to be new for evolution
operators U(t,s), 0 <s <t <T.

Proposition 3.4.6: Suppose that the conditions of Proposition 3.4.1 hold
for the evolution operator U.

Let (@(t))te[o,T] be an Li-valued predictable process obeying the uniform mo-
ment bound

(5.69) sup El[|p(t)]|7, < oo.
t€[0,T] L

Then,

¢
t— IV (t) := OfU(t, 5) M5y AW (s)
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1S continuous in LZ(Q;L%) i the nuclear, general nuclear and cylindrical
case.

Proof: We extend here a method of proving meansquare continuity, which
is used e.g. by Knoche in [60] and by Knéble in [59], to the case of non-
Hilbert-Schmidt operator valued coefficients M.

For a > 1, consider the process

(3.70) D(t) = [U(t, ) My dW(s) € L2, 0 <t < T,

O —p|~

which is well-defined in all three cases by (A2) and (3.69).
We claim that ®*(t), 0 <t < T, is meansquare continuous. Indeed, for any
0<r <t<T, we have by It0’s isometry

E[[[U(t, s) = U(r, $)lMy)lIZ, ds

O —plx

(3.71) E[|@%(t) — @*(r)|[7; < 2 (

+ EHU(t, S)Mcp(s)H%g ds

RIF—p |«

Let us start with the first integral on the right hand side. We consider
simultaneously the nuclear and the cylindrical case. Note that

E||[U(t,s) = U(r, s)|MysI2, ds

O —pl=

E X [[U(t5) — Ur, )M @ienl |2, ds

neN

E Z ||[U(ta as) - U(Ta OéS)]U(OéS, S)Mgo(s)QéenH%ﬂ ds,
neN P

O —p|s C—ps

where we have () = I in the cylindrical case.

Note that both in the nuclear and in the cylindrical case the orthonormal
basis (e, )nen C L? of eigenvectors of @ especially fulfills (e, )neny C L.
By the strong continuity of U in L,% we have, for any s € [0,7]

(3.72) L1, 2 (s)[|[U (t, aus) — U(r, as)]U(ozs,s)/\/lw(S)Q%enH%Q — 0 P-a.s. as
o P
rTtresp. t|r.

On the other hand, uniformly for all 0 <r <t < T,

(3.73) 110,21 (s)[[[U (L, ovs) — U (r, aus)]U (v, S)Mw(s)QéenHQLg
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< 20(T)|U (s, $) My Q7 enl 2.

In the nuclear case we have
o 2
(3.74) OfEHU(Oé&S)M@(s)Hcg
<c(T)trQT | sup E||cp(t)|]%2 < 00,
te[0,T] L
whereas in the cylindrical case we have, by (A2),

(3.75) [ E[|U(as, s)Mysl|2,

<«(T)

(o = 1)s)~Bllp(s)l[Z; ds

<«(T)

=N O —

T
sup E\@(t)\]é) (a—1)"¢ [s7Cds < o0.
te[0,T] ’ 0

Thus, Lebesgue’s theorem is applicable, which gives us the convergence to
0 asr T tresp. t|rof the first integral in (3.71).

The second integral in (3.71) can be estimated as follows. In the nuclear
case, analogously to (3.74), we get

E||U(t, S)Mw(S)H%Q ds

RIF—p |«

< c(T)trQ< sup. EII«p@)H%g) (55):

te[0,T]

whereas in the cylindrical case, analogously to (3.75), we get

EHU(t, S)Mgo(s)H%Q ds

RIF—p |

< oT) [(t = 5)"Ellp(s)lIZ, ds

<«T)

P QH%Q\N

t
sup El[p(t)|[2, | [s¢ds —0asr T tresp. t]r.
t€[0,T] L z

Thus, it remains to consider the general nuclear case.

Similar to the previous considerations, for the first integral in the right hand
side of (3.71) we have
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E[[[U(t, s) = U(r, $)lMy)lIZ, ds

O —pls

O%Qh O%Qh

B 3 V() = Ul 9]l Mi @l i ds
ne

E Y [[[U(t, as) — U(r, as)]U(as, s) M Q2 enl[2, ds.
neN P

In contrast to the nuclear case, we do not assume that (e,)neny C L obey-
ing (3.1). We have

E[|[U(t,s)=U(r, s)]M ||52d8—f21[or s)E[[[U(t,5)— U(T,S)]Mw(s)Qéenlligds,

O —ps

whereby uniformly for alln e Nand all 0 <r <t < T,

10,2 1)U (£,5) = U(r, )My @2 enl[5

= 1102 1()[|[U (1, as) = U(r, as)]U (as, ) My @ eall
1

< 2c ( )1[0 T]( )||U(O‘378)M@(5)Q26n||ig ds.

Since, by (A2)U(as,s)Mw(s)Q%en € L2 P-as., for any s € [0,T] and
any n € N, we get

1
Loz ()U(t as) = U(r,as)]U(as, s) My Q2enl |7, — 0

P-a.s. asr T tresp. t | r. Furthermore,

T
JE X 2e(T) 10,2 )()||U (05, ) My) Q7 enl 2, ds
0 neN P
T) tr@f E||¢(s)|[2, dssup||en]| 2
0 P neN

—_——
=1

Thus, Lebesgue’s theorem gives the convergence to 0 of the first integral
n (3.71).
The second integral can be estimated by

JEIU(t, s)M(s)llZ, ds < o(T )TtTqugHenHm ( sup EHsO(t)H%g) (5)
ne

te[0,T]

o%

=1
—Qasr tresp. t|r.

Thus, in all three cases, the mapping [0,T] 3 ¢t — ®“(t) € L? is mean-
square continuous. Now we observe that, for any o > 1,
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t
sup E[1 (1) = d*(#)][7, = sup [E|U(t, s)My)llZ, ds
te[0,T] P tel0,T) ¢

in all three cases.
Since in the nuclear and in the general nuclear case we have
HU(t7 S)Map(s)H%g <irQ HU(t, S)Mcp(s)H%Q(L{L%)
P-a.s. for any s € [0,T], it suffices to consider only the cylindrical case.

In the cylindrical case, we have

t
sup EHIEV(t)—(IDa(t)H%QZ sup fEHU(t,S)M@(S)H%st
te[0,T] 4 te[O,T]é
t
< oT) sup [(t—s) " Ellp(s)]|7, ds
tE[O,T}é ’
t
< c<T>< sup EH<P(t)Hiz> sup [sCds
te[0,T] P te[O,T}i
<

T1-¢_ 2)1*4

o) [ swp Ellp)|2, ) Tl
te[0,T] ’

which tends to 0 as o | 1.

Thus, I ZV is also meansquare continuous as a uniform limit in C([0, 7], L?($; Lf,))

of [“asa [ 1. W

A generalization of Proposition 3.4.6 to ¢ > 2 is the following:

Proposition 3.4.7: Let the assumptions of Proposition 3.4.5 hold.
Suppose additionally that

sup Ellp(t)[|7, < oo
te[0,T] P
for some q € [2,%) with ¢ = 0 in the nuclear case and ¢ as in (A2)
(or (A5) with v =1) in the general nuclear and in the cylindrical case.
Then, the mapping t — Igv(t) is continuous in L1(€; L%).

Proof: We keep the same notation and repeat the arguments used in prov-
ing Proposition 3.4.6.

Let us start again with the cylindrical case. Using the Burkholder-Davis-
Gundy inequality and Hélder’s inequality (similarly to the proof of Propo-
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sition 3.4.1), we arrive at the following estimate for 0 < r <¢ < T
(3.76) E[|o7(t) — @%(r)||7; < (g fEH U(r, s)|Mysllz, ds

E[[U(t, s) M)z, ds| -

R HHQ [

The first integral tends to 0 as r» T t resp. t | r by Lebesgue’s theorem,
where we use (3.72), (3.73) and the uniform bound

T T
)%
JEHU(as,S)M@(S)H ds < c(q, T { (a0 = 1)) 2 Ellp(s)ll{ ds.

The second integral in (3.76) tends to 0 as r | ¢ resp. ¢ | r, since

_g
E||U(t, )Ms)llf, ds < [(t—9)7% EHSO(S)H%;J ds

QHHQ‘N

sup Ellp(0)]|7;
te[0,7]

sup EHSO(t)Hng> <(a) 1_—ng) )

€[0,T]
— QasrTtesp. t|r.

<

IN
T~ QH%Q‘“
IS e
Cn‘
iR
QL
»

In the nuclear and general nuclear case, the integrals in the right hand
side of (3.76) are estimated by the ones from the cylindrical case similary to
the proof of Proposition 3.4.6. B

Moreover, we have an extension of Proposition 3.4.4 to the spaces Lg” with
v>1.

Proposition 3.4.8: Suppose that U obeys the assumptions from Proposi-
tion 3.4.5 and additionally (A5) in the cylindrical and (A5)* in the general
nuclear case (see also the remark about these conditions in Section 3.1 (cf.
Remark 3.1.2.1) and in the formulation of Proposition 3.4.3).
Furthermore, let (p(t))wcio,r] be an L%"—valued predictable process as in
Proposition 3.4.3 but additionally obeying the uniform moment bound

(3.77) sup El|(t)][%4, < oo,
t€[0,T] L

Then, assuming that v € [1%) with ¢ = 0 in the nuclear case and ¢ € [0,1)
as in (A5) resp. (A5)* in the cylindrical resp. in the general nuclear case,
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t
L IZV(t) = [U(t, S)MSD(S) dW (s)
0
is continuous in L* (§; L%V).

Proof: As was shown in Proposition 3.4.3, IZV € LZV, P-a.s., for each
te[0,T].

Now, the previous scheme of proving Proposition 3.4.6 and 3.4.7 runs with
v > 1if we use the strong continuity of U(t, s) in L2” (see assumption (A3)).
Indeed, for ®“(t) € Lg” defined by (3.70) and 0 < r <t < T', we have

(3.78) BJ[@%(t) — &(r)[| 75

< C(l/) E H[U(ta 048) - U(ﬁ OéS)]U(OéS, 8)M¢(S)Q%||%2(L27L%V) dS)

N
O —px

5 . ’
+E (I HU(t’ 5)-/\/l<,o(s)Q2 H%Q(LQ,L%") dS) ] ’

where we use the moment estimate (3.67) (cf. Remark 3.4.4).

Concerning the first integral on the right hand side of (3.78) we note that, by
(A5)/ (A5)*, in all three cases we have, P-a.s., U(as, S)M¢(S)Q%€n € L%l’
for any n € N, where (e, )nen C L? denotes an orthonormal basis of L? con-
sisting of eigenvectors of the operator @) in the nuclear and general nuclear
case.

Therefore, by the continuity assumption from (A3), we have, for any n € N
and s € [0,T],

which implies that, for any s € [0,T],

Lo,z (s)[U(t, as) — U(r, as)]U(as,s)Mw(s)Q% — 0 € EQ(L2,L§V) asr |t
resp. t | r, P-a.s..

Note that so far there were no restrictions on Q).
Furthermore, by (A3), (A5)*, Holder’s inequality and the fact that

vellg)= <,

in the nuclear and general nuclear case we have the estimate

: ) v
E ({ H[U(ta 048) - U(T, QS)]U(a57 S)MLP(S)Q2 H%Q(L2,Lg”) dS)
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HU(tv as) - U(Tv O‘s)H%(L%U) ‘ ]U(oas, S)Mgo(s) ‘ ’%(LQ,L%V) d8>

O%Qh

< (trQ)"E<

c(v, T, c(T)) (tr Q)" E z ((a —1)s)~¢|o(s )HLQV >

(o = 1)) ™" [lep(s)l[ 750 ds

OHQH/\

c(, T, c(T)) (tr Q)" E

< c(y,T,c(T))(trQ)V< sup }E!Iso( )IILQU> (o = 1) (ﬁl—g)

te[0,T

< oQ.

Concerning the cylindrical case, we note that just applying (A5) instead
of (A5)* the previous chain of arguments changes to

a 1 )
<{ U(t,as) = U(r,as)|U(as, s) M, Q2 H%Q(L?,L,%V) ds)
< (trQ)’E (f Ut ) = U @8)llu0) 108, ) Mool 22,10 ds)

c(v, T, c(T)) (tr Q)" E {a (= 1)8)~¢|o(s )|\L2,, >

OHQH/\

c(v, T, e(T)) (tr Q)" B [((a = 1)5) =" |lio(s) |75, ds

< c(w, T, c(T)) (tr Q)" ( sup E!Iso(s)ll%%) (a—1)% (‘“’11—_5:)

te[0,7]

< oQ.

Thus, we can apply Lebesgue’s dominated convergence theorem to get con-
vergence to 0 as r T ¢t resp. t | r for the first integral in estimate (3.78) in

all three cases.
Concerning the second integral on the right hand side of (3.78) note that,

in the nuclear and general nuclear case, we have

& . Y
(trQ)V< sup El||¢(s)] %%D) (

t€[0,T']

N
el —ps

IN

whereas in the cylindrical case we have

[(t = 5)"lle()lIZ2 ds >

tf'r)l—Cu

R

1—Cv

9
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—els

<

r

E A N G
< sup Ello(s)|[75, | =7
te[0,T] .

E<fHU(t,sw@(s)uzQ(p?Lg)ds> < E< <t—s><uso<s>\|iguds)

ol
ol

A

Obviously, both estimates tend to O as r Tt resp. t | r. W

Next, we give an alternative and very short proof of Proposition 3.4.6 by
using the result of Theorem 3.4.4.

Alternative proof of Proposition 3.4.8: First, assume that the inte-
grand process ¢(t), t € [0,T], satisfies conditions of Theorem 3.4.4, i.e.

(3.79) sup El[p(1)|24, < 00
t€[0,T] Ly

for a large enough ¢q > v.
We have to prove that for each sequence (t,)neny C [0,T], t,, — t asn — oo,

EHIZ,V(tn) — Igl(t)H%%l, — 0 as n — oo.

To this end, we use an F; ® B(0O)-measurable modification of I ZV (1),
t € [0,T], which exists by Step 3 from the proof of Proposition 3.3.1. We
have

3.80) sup E [[IV(t,0)2 u,(df) = sup E|[IY(1)|*L < cc.
(3.80) sup E [ |15 (t,0)[* u, D , Ly
te[0,T] © te[0,7] Lo

We claim that the pathwise L2-continuity of ¢ — Ig/ (t) together with the
uniform bound (3.80) imply the P ® p,-continuity of

[0,T]3t— I)(t,0),0 €O.

Indeed, by Lebesgue’s dominated covergence theorem for any ¢ > 0 we
have

P& pp({(w,0) | |1 (tn,w, 0) — I}Y (t,w,0)| > })
:S{ <g 1{((4},9) | \I:;V(tn,w,e)—fgv(t,wﬂ)|>€} d,up> dP — 0 as n — oo.

Due to the Lﬁ—continuity of ISZV , the inner integral in the previous line con-
verges to 0 as n — oo for almost all w € 2. Thus, by (3.73) and (3.74), we
can apply the de la Vallée-Poussin theorem with any ¢ > v. This yields

lim [ [ 1Y (tn,0) — 1)) (t,0)|* p,(d6) dP = 0.
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Obviously, the left hand side of the above equation is just
Tim BJ|1Y () — 1Y (9] 24,
which proves the required continuity under the assumption (3.79).
Now, let us take any general ¢ satisfying (3.77).
For such ¢ one can always find a sequence of regular ¢,,, n € N, satisfying

(3.79) and approximating ¢ in the sense that, given § > 0 as in Remark
3.3.1 (i),

o1
(Ellen(t) — ()] %%u) ds — 0 as n — oo.

Actually, for ¢,, one can take simple processes from Ny (T'), see e.g. Propo-
sition 2.24 in [61].
Then, we have by (A4) (or (A5)) and Holder’s inequality

sup EHIW - IW||L2V

t€[0,T]
t
<c,T) sup [(t —s)"°Ellpn(t) — o()|[75, ds
te[0,7]0 L
r (T 541 7
c(v,T) (f 5~ ¢(1+9) ds) (f Ellon(s) —¢(s)]|74,) & ds) )
0 0 P

Thus, t — I;V(t) is continuous in L?¥(€2; L,%V) as a uniform limit of L2 ({; L%”)—
continuous mappings.

To finish this section, we give a remark on the special case of a bounded in-
tegrator ¢, which will be relevant for the equation (1.2) driven by Lévy noise.

Remark 3.4.9: If (¢(t))ic[o,r] is bounded in the sense that

(3.81) sup Ellp(t)||ne < oo,
te[0,T]

then the statements of Propositions 3.4.1, 3.4.8, and 3.4.5-83.4.7 remain
valid under the weaker assumption that (A5) resp. (A5)* holds only for
p=1le L2”, i-e., instead of (3.5) resp. (3.6), it is enough to suppose

U (t, s)||%2(L%,,) <ce(T)(t—s)~¢
resp.

UGt 8) 1By < (T~ )¢
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Chapter 4

Stochastic convolution w.r.t.
compensated Poisson
random measures in
weighted L -spaces

In this chapter, we are concerned with stochastic convolutions w.r.t. com-
pensated Poisson random measures on the weighted L?-spaces from Section
1.1.

The main results of this chapter establish the existence and moment bounds
of the stochastic convolution w.r.t. compensated Poisson random mea-
sures in L2(©) resp. L2Y(0) and its time-continuity in L9(€; L2(©)) resp.
LQ”(Q;L?)”(@)) with ¢ > 2 resp. v > 1.

Analogously to the stochastic convolution w.r.t. (-Wiener processes, we
face the problem that, given any ¢ € L?)(@), the multiplication operator
M., is not a Hilbert-Schmidt operator from L*(0) to L2(©). Thus, we have
to impose additional conditions on the Poisson random measure and the
evolution operator.

The key assumption on the compensated Poisson random measure is that
the corresponding Lévy intensity measure 1 obeys

(QI) [ lelffen(dz)+ [ [lzllfa n(dz) < oo
{0<[lz[| 2 <1} {llzll 2 =1}

with ¢ > 2. The necessity of this assumptions follows from the Bichteler-
Jacod inequality for Poisson integrals, cf. Lemma 2.6.10 in Section 2.6.
Respectively, the key (and, compared to the Wiener case, new) assump-
tion on the almost strong evolution operator U is (A5) resp. (A5)* from
Section 3.1. These assumptions allow us to control the Poisson stochastic
convolution in the spaces L9(§2; L,%(@)) resp. L2 (8 L%”(@)).

Assuming pseudo contractivity of the evolution operator (cf. condition (A7)

123
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from Section 3.1) and uniform boundedness of the multiplicator function,
we can also show existence of a cadlag version of the stochastic convolution
(see Proposition 4.11 below).

Similar to the case of stochastic convolutions w.r.t. Wiener processes, a
crucial role is played by the regularity constant ¢ € [0, 1) associated to the
evolution operator via condition (A2).

As in Chapter 3, we assume p € N U {0} to be such that p,(0) < ooc.
Under this assumption, the following considerations do not depend on the
choice of ©. Thus, we use the shortened notations for the Lh-spaces on ©.

More precisely, in this chapter we are focused on establishing analogons
to Propositions 3.4.1 and 3.4.3 by extending their methods of proof to the
case of compensated Poisson random measures. After that we also establish
continuity properties similar to that from Chapter 3. In that respect, recall
the shortened notations L7(€); L/%) = L1Q, F, P; L?)) and L?(Q, F, P; Lf)”).
Let (N(t, ‘))tefo,r] be a family of compensated Poisson random measures
with commutator dt ® n in the sense of Section 2.4.

Given an almost strong evolution operator U on L% with properties (AO0),
(A1) and a predictable process (¢(t))e[o,r) taking values in L2, we consider
the stochastic integral

- t ~
(4.1) IN(t) = of f2 U(t, s) M) () N(ds, dzx).
L
Let us check the well-definedness of the Poisson stochastic convolution (4.1)
in L2(Q;L/2)) and, more generally, in the spaces Lq(Q;L?)) and LQV(Q;L?,”)
with ¢ > 2 and v > 1.

To this end, we introduce the notation (QI) for both integrability con-
ditions (SI) and (PI) (with p := ¢) being fulfilled for the corresponding
Lévy measure n for some g > 2, i.e.

Qn [ leliZen@n)+ [ llall%n(de) < .
{o<]lzll L2 <1} Il 221}

Similar to the case of the Wiener stochastic convolution, the simplest as-

sumption guaranteeing well-definedness of the Poisson stochastic convolu-

tion (4.1) is

sup El[p(t)]|7, < oo.
te[0,T] L

The following proposition is the analogon of Proposition 3.4.2 for the case
of Wiener stochastic convolution.
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Proposition 4.1:  Suppose that (A0)- (A2) (or even the weaker as-
sumption (A5)* with v = 1 instead of (A2)) hold. Furthermore, assume

(QI) with

q

2
(4-2) Cym = f ||2||7> n(da ({ Hfﬂizﬁ(dfﬂ)) < .
L
Let p = (¢(t))ieo,r) be an L%—Ualued predictable process obeying
t
(4.3) sup f(t—s)_CEHgo(s)H%2 ds < oo,
te[0,T]0 ’

where ¢ € [0,1) as in (A2). Then, for each t € [0,T], the convolution
Ig is well-defined in L/%.
Furthermore, for any q € [2, %) such that n obeys (QI) and

t
(4-4) sup [ (t — )" Ellp(s)]|}, ds < oo,
te[0,T]0 P

we have the moment bound

~ t C
(4.5) BIIZ (I ds < o(q, T, Coy) [(t = 5)" T Ello(s)]I7 ds
0
In particular,

(4.6) sup Bllp(t)]|%, < oo
t€[0,T] s
is sufficient for (4.4) and implies

sup BJ|IY (#)]|%, < oc
t€[0,T] L

Proof: Analogously to the proof of Proposition 3.4.3, we fix t € [0,T].
Setting (cf. (3.31))
X(8) = Lj0,)()U(t, s)My(s), 0 < s < T,

we need to establish the Pr @ B(L?)/ B(L%)—measurability of the integrand
function

[0,T] x Q@ x L? 3 (s,w,z) — x(s,w)z € L2.

To this end, we will use Theorem 6.1 from [51], which requires the following
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properties to be fulfilled:

(i) The mapping
L?> 2w x(s,w)z € L?,

is continuous for almost any fixed (s,w) € [0,T] x Q.

(ii) The mapping
[0,T] x Q23 (s,w) = x(s,w)z € L]

is Pr-measurable for any fixed x € L?.

Note that (i) immediately follows from (A2) (or (A5)*). To show (ii), let
us note that, for each € L2, the function x(s,w)z € L% can be pointwise
approximated on [0, 7] x © by linear combinations of x(s,w)e, € L%, n € N.
Under the same assumptions, each ye, is predictable as we showed in the
proof of Proposition 3.4.1, cf. Step 1 there. This implies the predictability
of xx required in (ii).

Thus, Theorem 6.1 from [51] is applicable and gives us existence of a
Pr® B(L%)—measurable modification of the integrand function, which we
again denote by yz.

Being restricted to the set [0,T] x Q x L? \ {0}, the integrand x(s,w)z is
obviously Pr 4,-predictable as required to define Poisson integrals (see Sec-
tion 2.6, p.57). In our context Ay = {B € B(L?)|0 ¢ B}.

For the well-definedness of (4.1), we have to check that

T

(4.7) E [ [ lIx(s)]|72 n(dz)ds < oo,
012 e

ie. xz € L*([0,T] x Q x L* L?).

Indeed, we have

T
Eff HX(S)xH%E n(dx) ds
0 L2

t
=EJ U, 8) My (@)|[7 2 n(dx) ds
L2 4

t
< J;Hffflliz 77(6@) E{HU(LS)Mws)H%Q(L;Lg) ds
L

t
< Cone(T) ({(t = 8)"Ell(s)|IZ, ds
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< oQ.

Here, we used (3.2) from (A2) in the third step, respectively (4.2) and
(4.3) in the last step.
Thus, f(s,w,z):= x(s,w)r € N 212 (T') such that Definition 2.6.6 gives us

the well-definedness of Ifov (t) as an element of L2((; Lz).

It remains to prove the estimate (4.5) for ¢ > 2.
By the Bichteler-Jacod type inequality 2.6.10, (4.2), estimate (3.2) from
(A2) and Holder’s inequality, we have
o T
El|150Il7; < C(q,T)Of

E <L,£ [Ix ()17 n(dﬂf)> ds

E [ {Ix(s)z[7, n(dz)
L2

q

[N

T
= cq,7) f |17z n(dz) + (f HﬂfHLG(d-%')> EJ\\X(S)H& ds
= c(q, T, Cq U)EIHU(tv S)M (S)Hq[lg ds

t
a<
< @, Tye(T), o) [t = 5) S Bllp(s)][ ds
0

which finishes the proof. B

Remark 4.2: Analogously to Remark 3.4.2 in the Wiener case, the Pois-
son stochastic convolution is well-defined even under the weaker assumptions

(4-8)

(Ello(t)|[7,)" dt < oo for some r > ﬁ
P

Indeed, the sufficient condition (4.3) is implied by the following estimate
with § = 15 >0

t
(1= ) Bllp(s)] 5 ds

146 T [t 2 (& i
< (fsemnas) " (JEIlp, 5 as)

already appearing in Remark 3.4.2 ().
In turn, (4.8) is implied by
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fE||<p )12 ahf<oof07’so7m37‘>1 z

To describe admissible integrands in (4.1), for ¥ > 1 we introduce the Ba-
nach spaces G, (7)) of all predictable L%”—valued processes (¢(t))e0,7] such
that

1

2w
(4.9) lellg, () = ( sup El|p(t )||L2u> < 00,
t€[0,T']
Since L2 € B(Ly) and B(L2) = B(L2)( L2, any ¢ € G,(T) is even

predlctable as a process with values in L2” Note that the spaces G, (T") will
be treated more detailed in Section 5.1.

Let us start with the following proposition, which is a Bichteler-Jacod
type inequality for Poisson convolutions in L%” .

Proposition 4.3: Let v > 1 and suppose that (A0)—(A2) (Here, (A2)
can be replaced by (A5)* with v = 1) hold. Furthermore, let the integrabil-
ity condition (QI) on the Lévy measure n be fulfilled with ¢ = 2v.

Given an L%—valued predictable process obeying (4.3), we have

ot 5
= [ [ U(t,s) My (2) N(ds,dx) € L2, P-a.s.,
0 12

for allt € [0,T], provided

(4.10) E ft
0

J 11U (6, $) Mgy ()] 25, (k) + (fHUtsM <x>rzgyn<dx>) ] ds < oo,

L2
Furthermore, for any fixred t € [0,T], we have the moment estimate

2v
(4.11)

({tj;U(t,s)Mw(s)(x)N(ds,d:v)

v
t
E[
0
The main result of this section is the following proposition, which will be

relevant for later considerations of the SDEs (1.1) and (1.2). It is an imme-
diate corollary of the previous proposition (cf. (4.10)/(4.11)).

SO, 8) M) ()17, n(de (f 1U(t, 8) M) (@) n(dx)> ] ds.

L2

Proposition 4.4: Let v > 1 and assume additionally to the assump-
tions of 4.3 that (A5) (or even the weaker assumption (A5)*) holds.
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If

t
(4.12) sup [(t —s)"VEl|p(s )||L2u ds < oo,
t€[0,T] 0

then, for allt € [0,T],

t ~
[ [ Ut s)My ) (x) N(ds,dz) € LY, P-a.s..
012

Furthermore, we have the moment estimate

2v
(4.13) E

J Ut 8) Mo (a) N(ds, d)
02 L%u

t
c(v, T, c(T),Capy) [(t — 5)"VE||p(s )H%’g,,ds
0

with a positive constant only depending on v, T, U and 7.
In particular, the right hand side is finite if v < % (of course, this condition
is only needed in case ¢ # 0) and ¢ obeys (4.9), i.e. p € G,(T).

Remark 4.5: The estimate (4.13) (aswell as estimate (4.27) in Remark
4.6 (i) below) extends the Bichteler-Jacod inequality for Hilbert spaces (cf.
Section 2.6) to the Banach spaces L%V with v > 1. A similar result in LP-
spaces in bounded domains was established by Marinelli and Rockner in [80]
(see Lemma 4, p.1532 there).

There is also a general theory on stochastic integration w.r.t. compensated
Poisson random measures in a special family of Banach spaces, the so-called
UMD-Banach spaces, which is based on the theory of stochastic integration
w.r.t. Wiener processes developed in 2007 in [109] by van Neerven and col-
laborators. After this thesis was almost completed, we got to know about the
recent PhD-thesis [31] by Dirksen, where the Bichteler-Jacod inequality for
stochastic integrals w.r.t. compensated Poisson random measures is proven.
There an upper and a lower estimate on the stochastic integral w.r.t. com-
pensated Poisson random measures is given.

Proof of 4.3: Let us fix an arbitrary t € [0,7'].
Setting (cf. (3.31) in the proof of Proposition 3.4.3)

X(8,w) = 11041 (8)U (L, 8) My(s ) € EQ(LQ,L/%), (s,w) €[0,T] x Q,

we are interested in the properties of the Poisson integral
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Ul(t, s) M5 N(ds, dz)
L2

x(s)z N(ds, dz).

o O

~
[

Note that we have the expansion in L?

x= Y (z,en)r2€n,
neN

which implies the corresponding expansion in L%

(4.14) x(t)xr = %:N(x,en)px(t)en, P-a.s.

Analogously to the proof of Theorem 3.4.3, we will proceed in three steps.

Step 1 Making use of the expansion (4.14), we find a measurable representa-
tive v of the mapping

[0,T] xQx L? > (s,w, ) — x(s,w)x € L2.

By definition, this is a Py ® B(L? \ {0}) ® B(0)/B(R)-measurable
function ¢: Q x [0,7] x L?\ {0} x © — R such that

T
(4.15) BJ [ lx(s)z—(s,2, )|} yn(dz)ds = 0.
0 L2\{0}

Step 2 In L%(%; LZ), we check the identity

Ig(t) = !LfQ x(s)z N(ds,dz) = £L2\£0} U(s,x,) N(ds,dz).

Step 3 We show that

t ~
[ | (s,z,-)N(ds,dx) € L2, P-as.,
0 L2\{0)

and satisfies the estimate (4.11).

Step 1: To this end, everything was mainly prepared in Step 1 in the proof
of Proposition 3.4.3.

Indeed, there we have constructed a family (¢/(),en of Pr @ B(0)/B(R)-
measurable representatives for the functions ye,, n € N, such that
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T
(4.16) E Y [ lx(s)en — 0 (s, )| ds = 0.

neN 0

We claim that the series

(417)  (5m,0) = X (3 en) 2™ (5,0), (5,2,0) € [0,T] x 1 x ©
neN

is convergent in
L2(Qx[0,T]xL2\{0}x0O) := L2(Q2x[0, T |x L\ {0} x 0, dP®ds@dn®dyu,,).
Indeed, for any N, K € N by Fubini’s theorem and (4.16)

T N+K—1 2
41 11 (TR e 6.0.0)) o) i ds i)

L2\{0}© \ n=N
T N+K 1
=// I (2, en)12(@, em) 290" (5,0, )9 (5,0, 0) | 1 (d0) n(d) ds P(duw)
Q0 L2\{0} © nm N

N+K-1

SN

n(dz)

I
—

L™ (s,w,0)0™) (s,w,0)1,(d) ds P(dw)
(C]

(z,en)r2(z,em)r, [f
Q

12\{0} nm=N
N+K—-1

= f Z (x7en)L2(xa€m)L2

L2\{0} nm=N
T N+K-1

—® [

012

E

< x(8)en, x(s)em >z ds] n(dx)

(2 en)2(@em) 12 < X(8)ems X(5)em >Lg] n(dz) ds

2

n,m=N

N+K-1

> (zyen)r2x(s)en

n,m=N

n(dzx) ds

2
L3

l[x(s)PN.N+K-17] I%E n(dx) ds
|Ix(s x”m n(dr) ds

U2, ) Mgyl n(de) ds.

N+K-1
Py nikx—1z:= >, (z,en)r2en
n=N
is the projection of x € L? on the linear subspace generated by the vectors
EN, EN+15 -y EN+K—1. Obviously || Py n+x—12|[z2 — 0 as N, K — oo. The
last integral is finite by the integrability assumption (4.10) on 1. Therefore,
by Lebesgue’s dominated convergence theorem the left hand side in (4.18)
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tends to 0 as N, K — oo.
Thus, (4.17) defines v € L?2(Q x [0,T] x L?\ {0} x ©).
The above reasoning also shows that

(4.19) %:N(a:, en)r2X(8)en

is convergent in L?(2 x [0,T] x LQ;L/%) and by (4.14) its limit coincides
with x(s)z.
Thus, by (4.16),

T
Ef f HX(S)x_w(va?‘)H%% n(d$) ds

0 L*\{0}
T N 2
= lim E f Z ($, €n)L2X(S)€n - ($, en)[ﬂw(n) (87 x, )
N—oo 0 2\{0} n=1 L;%
pr— O,

which we needed to prove. A
Step 2: This step is proven by the following claim:

Claim 2: In L*(Q; L), we have

Ig(t) = ofoz x(s,x) N(ds,dz) = osz\f{o} (s, x,) N(ds,dz).

Proof: The well-definedness of the integral on the left hand side has al-
ready been shown in the beginning of the section. Thus, we get the claim
by It6’s isometry and (4.15) from Claim 1. O A

t ~
Step 3: [ [ W(s,z,-) N(ds,dz) € LY, P-a.s..
0 L2\{0}

This step will be shown by the following two claims.

Claim 3: Let us consider the stochastic integral

t
(4.20) I(t,0):= [ [ (s,x,0) N(ds,dz) € R
0 £2\{0}
depending on the parameter 6 € ©.
Then, (4.20) allows an F ® B(©)- measurable modification, which we again
denote by I(t).
Furthermore, P-almost surely, f(t) coincides with the Lz—valued random
variable
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1(t) ::ft [ (s, ) N(ds,d:v),
0 L2\{0}

i.€.

B|lI(t) ~ 1(1)|3; = B (g; T(,60) — (10))(0) up<d0>) —o.

Proof: First of all, we note that I(¢,6) is well-defined for p,-almost all
6 € ©. Indeed, by Step 1 ¢ € L?(Q2 x [0,T] x L? x ©), which means

Bf [ [((52,0)? upld6) n(ds) ds < o,
0 12\{0} &

and hence, by Fubini’s theorem,

t

(4.21) E[ [ (W(s,z,0))?n(dz)ds < oo
0 £>\{0}

for p1p-almost all 6 € ©.

By Itd’s isometry this implies the well-definedness of I(t,) for pp-almost
all § € ©.

Next, we are going to show the measurability property of I.

To this end, we apply a general measurability result A.1.(b) from [13]. It
says that there exists an F; ® B(©)-measurable mapping I: @ x © — R
and a Borel subset ©g C © of full u,-measure such that for each § € 6
I(0) = I(t,0).

Below, we will always identify I(t) with its measurable realization I.

Next, we show that [ (t) can be identified with the Lf,—valued random vari-
able I(t).

To this end, we take the inner product of I and I with cylinder functions
F € L*(Q2 x ©) of the form

J—1
F(w,0) = Fi(w) (E dlej(9)>, (w,0) e x 0O
=0
with Fy € L*(Q, F, P), d; € R, pairwise disjoint B; € B(0©) for
1 <j<Jand J € N. Since such F' constitute a total set in

L2(%; L%), it suffices to show that the inner products coincide.

An important observation is that, P-a.s.,
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t ~

(4'22) f f fFQ(Q)w(S,x,Q) :uﬂ(dg) N(ds,dx) = fFQ(H)I(tvg) :up(dg)'
0 L2\{0} © (C]

This follows by the stochastic Fubini theorem for Poisson processes, which
can be found e.g. in [106] (cf. Proposition 3.3.4 there).
A sufficient condition to apply this theorem is that

T
B[ (Fo0)u(s,a,0))2 ) do i d0) < oc.

0 L2\{0}

which is checked by the following estimates

T
= [ F3(0) (Ef [ (@(s,2,0))*n(dx) dS) #p(d)

T
j (Ef f (1/)(8,1‘,9))2 77((133) dS) :up(de)

2 M T
JE[ [ ((s.2,0)n(dz)ds ,(d6)

J > J=0B; 0 [2\{0}

S (W(s,2,0))? n(dz) ds p,(dO)
L2\{0}

D—
=

Now let us show that the inner products are equal. We get

< I(t_), F >L2(Q;L%)

t

=B |[F(0) (f ) w<s,x,->N<ds,dx>) (9)up(d9)]

0 L2\{0}

-E F1<F2,ft J w(s,x,-)N(ds,dm)> ]
0 L2

L2\{0}

=E Flf i (Fg,w(s,x,-»L% N(ds,dx)]

0 £2\{0}

=E Flj f fFQ(G)w(vave)up(dg) N(dsvdx)]
0 £2({0} &

=E |Fi [ B(0) (f ) w<s,x,9>mds,dx>) up(dG)]

o 0 £2\{0}
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E | [ F(-,0)I(t,0)u,(do)

<I(t),F >0 r2)-

@

Here, we used the Fubini theorem (4.22) in the sixth, the definition of the
inner product in L% in the second and the fourth, Proposition 2.6.8 in the
third and the form of F' in the second and the second last step.

By the previous chain of equations, the inner products of I(t) and I(t) with
F' coincide as elements of

L2(%; L%), which proves Claim 3. [

Now, we can finish Step 3 with the following claim.

Claim 4: The integral

I(t,0) ::j [ w(s,z,0) N(ds,dz),
0 2210}

as a function of 0 € ©, belongs P-almost surely to L%“.

Proof: Applying the Bichteler-Jacod inequality 2.6.10 with H = R, we get

(4.23) [E (ft [ (s,z,0) N(ds,d:v)) pp(d6)

& \0L2\{0)

2v
§gE < sup [ [ w(s,x,ﬁ)N(ds,daz)) p(d6)

0<r<t0 L2\{0}

<c(/<c,T)fj (E( / ]1/1(5,x,0)|2”77(dx))
00 L

“\{0}

< i W(S,l‘a@)\Q??(dx)) ]) dsp,p(d).
L2\{0}

It remains to show that both integrals in the right hand side are finite.

+E

By the measurabilty property of 1 and Fubini’s theorem, we immediately get

T
(@20 [JB [ his, 0, 0) n(da) dspy(d0)

L2\{0}

) J
(€]
[ B[ l(s,2,0) y(d0) n(de) ds

o
2
@

T
J
0 L2\(
[ ] E[IU, )M () 11,(d0) n(da) ds
0 12\{o} ©
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= f fEHU(tv S)Mgo(s)(x)‘ L2V (dl')d

012

which is finite, since by the assumption of 4.1 the right hand side is fi-
nite.

To estimate the second integral in (4.24), we use the following Minkowski
inequality (see Theorem 2.4 in [69]) with p > 1

(4-25)Quf(x,y)wdy)] dx) < J | ramn dxﬂl v(dy).

This inequality is valid for any measurable spaces X and Y, o-finite mea-
sures u and 7 on X and Y and any nonnegative measurable function
f: X xY — R+.

Hence, by (4.25) we get

( (s a:,e)?n(dx)) ds j1,(d6)
L2\{0}

( f\wsxeP” >)”n<dx>) s

LQ\{O} ,

t

E0f< M¢<s><x>>|2”dup> n(dw)> ds

N

( ST ) Mop(s) (@)l 72 n(dw)> ds,
L2

is finite by the assumption (4.10).
Now, combining (4.23), (4.24) and (4.26) gives us Claim 4. [J

It is easy to see that the stochastic integral I 5 (t), which was initially defined
in L%, actually belongs to L,%”.

By Claim 2 and 3, we have the identity IN (t) = I(t) in L*(Q; L?).
But in Claim 4, we have just shown that I(t) belongs to L%”, P-as., as a
function of 6.

To finish Step 3 and the proof of 4.3, it remains to show the estimate (4.11).
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With the help of Step 2 and Claim 3, we immediately get

2v
t ~
E||[ [ U(t,s)My(z) N(ds,dz)
012 L%ll
T . 2v
=E||[ [ 4(s,z,-)N(ds,dx)
0 L\{0} L2

T } 2v
Ef(f / w<s,x7'>N<ds,dx>> (6) 1,(d0)
e \0 2\{0}
2v

(!E <}: f w(&wv 0) N(dsv dl‘)) :U’P(dg)

0 L2\{o0}

T
<crT)[[ <E< [ (s, z,0)* n(d$)>
00 L2\{0}

< (s, 9)\277(6196)) ]) dspip(d).
L*\{0}

The last integral was aready estimated by (4.23)—(4.26). This gives us the
required estimate (4.11). A

+E

Thus, we are finished with the proof. B

Proof of 4.4: By (A5)/ (A5)* for U and (QI) with ¢ = 2v for n and
(4.12), we get

JNNUE )M (@)l 50 n(dar) + (Lf2 1U(t, 8) Mo(s) ()], n(dw)> ] ds <

t
E[

0 [L2
(0. 0]

Thus, by 4.3, we have for any fixed t € [0, 7]

t ~
({LIQ Ul(t, s) My () N(ds,dr) € L%”, P-as..

Furthermore, the estimate (4.11) together with (A5)/(A5)* for U resp.
(QI) for n with ¢ = 2v gives us

. 2v

E||[ [ Ut s) My () N(ds, dx)
012 L2r
< C(”? T) (Eof Lf2 HU(t? S)Mgo(s)(x)’ %%v U(dx) + ([:f? HU(t7 S)Map(s)(w)"%%u n(d$)> ] dS)
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t
c(v, T, c(T) 021/77 f (t—s) CVEHSO( )H%’éu ds,
0
which is just (4.13). B
Remark 4.6: (i) Actually, analogously to Proposition 3.4.3 and Re-
mark 3.4.4, Proposition 4.3 extends to any predictable process

X [0,7] x @ x L2\ {0} — L such that x € Nfﬁ/Lg(T).
Namely, we can prove that (cf. (4.28)-(4.26))

Ojéx(s,x)N(ds,dx) € LY (P-a.s.)

L
and
2v
(4.27)E f [ x(s,x) N(ds,dx)
012 L2v
’ 14
t
( T lIx(s,z HLzu n(dz) + (fl!x(s,x)!\izun(dx)> ] d8>,
0 |L2 12 ’

provided the right hand side is finite.

(ii) Let us give a direct proof of Step 1 in the proof of Proposition 4.3
without referring to Step 1 in the proof of Proposition 3.4.3.

So, a measurable realization (s, xz,0) of x(s)x can be constructed as follows.
By arguments analogous to that in Step 1 in the proof of Proposition 3.4.3,
we can approzimate X(s)x € L?, by standard convolutions

(4.28) U (s, @) := py  conv(6m, ppx(s)x) € L%ﬂC(Rd)

in such a way that, for all (s,w,z) € [0,T] x Q x L*\ {0},

(4.29) Jim [ (s, 2) = x(s)z[7; = 0
and
(4.50) sup [t (5.2 |23 < (o) 13

Since Pm(s,x2) € C(RY), we can evaluate (s, x,0) for any 0 € ©. Fur-
thermore, Theorem 6.1 from [51] guarantees that there exists a
Pr ® B(L?\ {0}) ® B(0)/B(R)-measurable realization of

(s,w,x,0) — p(s,w,z,0).
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Sufficient conditions to apply this theorem are

(i) continuity of the mapping
030 — Yp(s,w,z,0) R
for almost any fized (s,w,z) € [0,T] x Q x L?\ {0}, which holds

by (3.45);
(i) Pr @ B(L?\ {0})-measurability of

[0,T] x Qx L2\ {0} > (s,w, ) — ¥m(s,w,z,0) €R

for any fized 6 € ©.

The latter readily follows by Fubini’s theorem from the definition (4.28) of
Vm, 1.€.

1 1
Y (s,w,z,0) = pp 2 (0) < om(- —0), 15 x(s,w)x >7e.

Next, by (4.29), (4.30) and Lebesgue’s theorem, we observe that the cor-
responding sequence of measurable realizations ¥, m € N, is a Cauchy
sequence in the Hilbert space

L2Qx[0,T]x L*\ {0} x ©,Pr @ B(L*\ {0}) ® B(©), P ® dt @ n ® u,; R).
Indeed, for allmn,m,e N

T
Ef f me(Sa«Tﬁ) _¢n<37x79>‘2ﬂp(d9) 77(d(13) ds
0 £2{{0} ©

T
=E[ [ |lbm(s,x) = tn(s,2)|[7. n(dz)ds
0 £2{{0} ’

with the uniform bound
Su%”d’m(s?x)HL% < |Ix(s)zllzz € L*(Q x [0,¢] x L?).
me

Thus, there exists a limit function
Y e L2Qx[0,T]x L2\ {0} x ©, Pr @ B(L*\ {0}) @ B(©), PRdt @@ 1, R)
such that

(4.31) lim Ef [ [ m(s,,,0) — (s, z,0)|? u,(d0) n(dx) ds
T 0oy e

T
= lim B[ [ [|[¢n(s,2) = ¢(s,2)||7; n(d) ds
TR0 L2\{0) !
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= 0.

Combining (4.29)-(4.31), we conclude that

T
Ef [ [W(s,2)— X(S)wl\%g n(dz)ds =0,
0 L2\{0}

i.e. (s, x,0) is a measurable realization of x(s)x obeying (4.15). B

Recall that in Section 3.4 we showed pathwise continuity for the stochastic
convolution w.r.t. the Wiener process.

But such continuity is surely not the case for Poisson processes (even in the
finite-dimensional case). Instead of this, one may expect to have meansquare
continuity. We finish this section by the following propositions, which are
the analogons of Propositions 3.4.4-3.4.6 in the case of Poisson stochastic
convolutions:

Proposition 4.7:  Suppose, we have (A0)-(A2) (or (A5)* with v =1
instead of (A2)) for an almost strong evolution operator U and

J l1zl[Z2 n(dz) < oo
L2

for the Lévy measure n corresponding to the compensated Poisson random
measureN .

Furthermore, let (p(t))ie[o,r] be an Li—valued predictable process obeying the
uniform moment bound (3.27) from Section 3.4, i.e.

(4.32) sup Elg(t)[|2, < co.
te[0,T] L

Then,
t

ts IN (1) = Oj f U(t, s) Moz N(ds, dz)
L

is continuous in L*($; Lf,).

Proof: Again, we extend here a method of proving meansquare conti-
nuity, which is used e.g. in [60] and [59], to the case of non-Hilbert-Schmidt
operator valued coefficients M, ;) and two-parameter evolution operators
U(t,s).

For o > 1, consider the process
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i
(4.33) = [ [U(t, s) Mz N(ds,dx) € L2, 0 <t < T,
012

which is well-defined due to (4.32).

We claim that ®*(t), 0 < t < T, is meansquare continuous. Indeed, for any
0 <r <t<T, we have by It0’s isometry for compensated Poisson random
measures and (QI)

(4.34) E[[@(t) — @(r)|[l; < 2 <f E||[U(t,s) = U(r, s)lMyzll72 n(dz) ds
P 02 P

+

Rlse—p |

E||U(t,s) M z|[32 n(dx) ds
L2 g

[[2][Z2 1(dx)

IN
\

fEH U(r, s)]Mw(S)H%z(LQ,L%) ds
L2
—_—

<oo

+ [ EIU(t 5) Mo l1Z, (12 12) ds | -

Q=

Thus, see inequality (3.71), by the same arguments as in the cylindrical
case of Proposition 3.4.6, we get the convergence to 0 as r T ¢t resp. ¢ | r.

Now, we observe that, for any o > 1,

t
sup E|[IN(t) —@(t)|2, =  sup [ [ BJU(ts) My 9[2; n(d) ds
t€[0,T] ’ te[0,T] L 12

(f ||2]132 n(da ) )| JEIU(t S)MW(S)H%Q(LQ,L?,) ds.

o

IN

Since the first term on the right hand side is finite and the second term
tends to 0 as « | 1 uniformly in [0, 7] (cf. the cylindrical case in the proof

of Proposition 3.4.5), the term from the left hand side above tends to 0 as
all

Thus, I g is also meansquare continuous as a uniform limit in C([0, T'], L*(©; L%))
of [asa 1. A

A generalization of Proposition 4.7 to ¢ > 2 is the following.

Proposition 4.8: Let the assumptions of Proposition 4.7 hold.
Suppose additionally that
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sup E|[o(t)||7, < oo
t€[0,T] P

and that (QI) holds for n with some q € |2, %) with ¢ as in (A2) (resp.
(A5)* withv=1) . ]
Then, the mapping t — Ig(t) is continuous in LI(€% L2).

Proof: We keep the same notation and repeat the arguments used in prov-
ing Proposition 4.7.

Using the Bichteler-Jacod and Hélder’s inequalities, similarly to the proof
of Proposition 3.4.3 we arrive at the following estimate for

0<r<t<T:

(4.35) E[|9(t) — *(r)|I7

; (;

(f i u(r, 8)]M¢(s)$|\%g77(dw)> ds

sz E[|[U(t, 5) = U(r, 5)lM(s)[7; n(dz) ds

N

+¢(q,T)

[£E||U(t7S)Mgo(s ||L277( )

RI3—p |

N

E <f2 E||U(t, S)Mw(s)xHign(dx)) ds
QvT an (fEH (T 5)]M<p(s)‘|q£2(L27L%) ds

E|[U(t, S)Mw(s)”qu([lz,[%) ds

Q \%%Q =

From (4.35), proceeding analogously to the proof of 3.4.7 (the cylindrical
case there) we get the convergence to 0 as r | t resp. t | r, which finishes
the proof. B

Moreover, we have an extension of Proposition 4.7 to the spaces L%” with
v>1.

Proposition 4.9: Suppose we have (A0)-(A2) and (A5) (or (A5)%)
for an almost strong evolution operator U.

Furthermore, let v € [1,1) with ¢ € [0,1) such that n fulfills (QI) with
q=2v and (¢(t))ic[o,r] s an L%”-valued predictable process obeying
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(4.36) sup Bllo(t)|75, < 0.
te[0,T'] P

Then,

. t R
t Ig(t) = bfLIQ Ul(t, S)M¢(S)CIJ N(ds, dx)

is continuous in L* (€% L2").

Proof:  As was shown in Proposition 4.3, Ig € L%”, P-a.s., for each
e[0,T].

Now, the previous scheme of proving Proposition 4.7 and 4.8 runs with v > 1

if we use the strong continuity of U(¢, s) in Ll%” (see assumption (A3)).

Indeed, for ®“(t) € Lg” defined by (4.33) and 0 < r < ¢ < T we have

(4.37) BJ[0%(t) — &(r)[| 75

B[
0

f2 |[U(t,as) —Ul(r, as)]U(as,s)Mw(S)(x)H%%V n(dx)+
L

(f [I[U(t,as) — U(r, ozs)]U(as,S)Mw(s)(x)H%gV n(dx)) ] ds

+E Lf2||U(t,5 M(s) (@)||F5 m(dx) + (LJ; Ut 8)Mo(s) ()72, n(d$)> ] d8],

RIs—p =

where we use the moment estimate (4.27) (cf. Remark 4.6 (i)).
Concerning the right hand side of (4.37), let us note that by (A5)/ (A5)*
we have, P-a.s., U(as, s) My (s (x) € L2 for any x € L?. Therefore, by the
continuity assumption from (A3) we have, for any z € L? and s € [0, T],

1[075}(8) U(t,as) — U(r,as)|U(as, )My (z) — 0 € L%” as r T t resp.
t
Furthermore, by (A3) and (A5)/ (A5)*, (QI), Holder’s inequality and
the fact that

v < % = (v <1,

we have the following estimate

E [[U(t,as) — U(r,as)|U(as, S)M@(S) ()] |%”%1, n(dz)

L2

C—ps

<2¢(v,T)E

O —plx

1U (s, ) Mop(s) (@)l 25 m(de) ds
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HU(O&S’ S)MQO(S)H%I;(LQ,L%V) ds

< 2¢(v,T) (fH:UHLQn )E

< 2¢(v,T) <f|]a:||L277 )

E
_ 1—¢v
< 20 I/ T (f H-:UHLQT] ) ( Sup EH()O |LI:27V> (a_ 1 (1/71“7(1/

< 00.

O s O—p)s

(o= 1)s) "l (s)l| 75 ds

Thus, we can apply Lebesgue’s dominated convergence theorem to get the
convergence to 0 of the first integral on the right hand side of (4.37) for r 1 ¢
resp. t | r. The proof for the second integral on the right hand side of (4.37)
runs completely analogous.

Thus, it remains to consider the third and the fourth integral on the right
hand side of (4.37). Concerning the third integral we have

t
B[ [ U s)Mos) (@)l[Z, n(dz) ds

t
(fllx\ 72 n(d )E[t—s )= lle(s)l[ 75 ds

t—r 1—Cv
< o(e(T). Chy) ( sup_ Bl L> o

te[0,T]

which tends to 0 as r T ¢ resp. t | r. By similar arguments also the
fourth integral in (4.37) tends to 0. W

Alternative Proof of Proposition 4.9

Let us first consider regular enough integrands ¢(t), ¢ 0,7]. Namely,

€|
we suppose that ¢ € L*°(0), P-a.s., for each t € [0,T'], and

sup El|o(t)|[75, < oo for some r > v.
t€[0,T'] i

Let t € [0,T] be arbitrary and let (t,)nen C [0,7'] be a sequence such
that t,, — t as n — oo.

In the following, we would like to apply the de la Vallée-Poissin theorem,
which only holds for finite measures. To this end, we observe that, by inte-
grability condition (4.2) (with ¢ = 2v) for 7,

fH:UHLG ), A€ B(L?)
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is a finite measure on L?. In particular, we also get a finite measure 7
by setting

Mn(A) = A[ [|2][72 n(de).

Next, for s € [0,T'], we define the L%—Valued random variables

u(5,0,2) 1= 1101, ()0 (b ) Mooy (@) lal |2 i ]2 # 0
and

gn(s,w,x) = 0 if [[z[[ 2 = 0

for (s,w) € [0,T] x Q.
Thus, applying the Bichteler-Jacod inequality, we get
(4.38) B|IIY (ta) — I3 (1) 35,

T
< (v, T)E({ Lf2 lgn(s, %) = g(s, @)l 75 D (dx)

+ (f lgns.) = g5, ﬁl(dx)> ] s,

L2
Therefore, to prove the claim, it suffices to prove that the both integrals
on the right hand side converge to 0 as n — co.

Since ¢(s)x € L? (recall that at the moment we restrict ourselves to regular
processes ¢ such that ¢(s) € L for any s € [0,7T']) and

(s, T2t~ Ul(t,s) € E(Lz,Lg”)

is strongly continuous, we get that P-almost surely

(4.39) gn(s,w,x) — g(s,w, x)||75, — 0 as n — oo
P
for any fixed s € [0,7] and x € L.

Furthermore, due to the de la Vallée-Poissin theorem we have uniform inte-
grability of ||g,||7%, w.r.t. P ® ds ® f),. Indeed, given a small enough & > 0
P

such that ((1+¢) <1 and v(1+¢) < p, we get by (A5)/(A5)*
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2v(1 ~
Eff gn (s, ) HLZ;,(, *e) My (dx) ds
0 L2
Ut s) Moy @75

=B 0 12 IR io(dz) ds
L L2

< e(D) (i (L2)E g (tn = )< jo(s) 150 ds

SC(E,V,T>C(T))(7?V(L2))( sup Eljg(1)] L2p) ( [ s0+9) ds>

t€[0,T]
00

uniformly for any n € N. Thus, we have

Sup B [ [ [1gn(s,2) 24 i (do) ds < oc.
neN 072

Together with the P-almost sure convergence (4.39), this gives us
tim B [ [ [lga(s.) — g(s, 2)|[2%, i (dz) = 0.
n— o0 072 P

Analogously, we consider the second term in (4.38).

Let again ¢ > 0 be such that {(14+¢) < 1 and v(1 +¢) < p. Then, by
Holder‘s inequality
v(1+e)

E{ <f |gn(s $)|‘L2u nl(d$)> ds

21/1 ~
< (. E [ [ llgn(s @)l[75 ) i (de),
02

which is uniformly bounded in n € N similarly to the previous argument.
Thus, we get

T (1+¢)
supEf (f l|gn (s x)||L2V771(dx)> ds < o0,
neN 0 \[2

which together with (4.39) implies

L2

T v
Jim B (f lgn(s.) = (s, 2)] 2, m(m)) ds =0.
0

Therefore, the right hand side of the estimate of E||I§(tn) ( )HLQ,,

tends to 0 as n — oo, which proves the claim for such regular ¢.
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The claim for general ¢ follows from the continuity of t — Ig (t) for regular

© analogously to the alternative proof of Proposition 3.4.6 from Section 3.4.
|

Remark 4.10:  If (¢(t))sejo,r) s bounded in the sense of (3.81) from
Section 3.4., i.e.

sup E||¢]]eo < 00,
t€[0,T]
then the statements of Propositions 4.3, 4.4 and 4.7—4.9 remain valid under
the weaker assumption that (A5) resp. (A5)* holds only for p =1 € L%”.

Remark 4.11:  From the proof of Claim 3 in the proof of Proposition
4.3 we know that, for each t € [0,T'], there is an F; ® B(©)-measurable
version of

- t ~
[6.0)=[ [ v(s,2,0)N(ds,dz), 0 €O (cf (4.20))
0 L2\{0}

with representation v as in (4.17).
On the other hand, from Proposition 4.7 it follows that
[0,T] >t I(t,w,0) € R is meansquare continuous (and hence continuous
in probability) w.r.t. P ® p,. ~
Thus, by Proposition 2.1.8, there exists a version (Ig(t))(w, 0) € R,
(t,w,0) € [0,T] xQx O, of the Poisson integral I
w.r.t. the predictable o-algebra Pr @ B(O).

2

(t), which is measurable

hS)

We finish this section by the following path property.

Proposition 4.12:  Under the additional assumption that ¢ is uniformly
bounded, i.e.

(4-40) sup E|[p|[L= < oo,
te[0,T]

and U is an almost strong evolution operator obeying (A7), the mapping

- t 5
t— Iﬁs) (t) = oij; U(t, s) Mys)(z) N(ds,dr) € L%”

has a cadlag version in L? resp. LIZJ.

Proof:  Under our assumptions, the multiplication operators M, are
both in L? and L% with
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sup E|[My)llc < sup Elfp(t)|[L~ < oo.
te[0,T] t€[0,T]

The evolution operator U is pseudo-contractive in L? resp. Lf,.
Recall from Section 2.4 that setting

M(t,A):= [ xN(tdx), (t,A) €[0,T] x B(L?)
A\{0}
gives us an orthogonal martingale-valued measure. Then, denoting
M(t) == M(t,L?),t € [0,T], we get

N ¢
Ig(s)(t) = 0fU(t, §)My(s) dM(s), t € [0,T].
Now, by the contraction property (A7) of U in L? resp. L%, the uniform
moment bound (4.40) and the fact that M defined above is cadlag in L?, we
get the claim in L? resp. Lg from Corollary 2.1 from [63] resp. Remark 1.2
1. from [64]. W

Remark 4.13: (i) In the case of a contractive semigroup

Ult,s) = e =94 0 < s < t, the ezistence of a cadlag version of the sto-
chastic convolution w.r.t. compensated Poisson random measure was proven
e.g. by Albeverio, Mandrekar and Ridiger in [3]( cf. Proposition 2.5., p.840
there).

(ii) The proof of the cadlag property is based on the general mazximal in-
equality for martingales, see Theorem 1.1 in [64]. An essential drawback of
this method is that we should assume ¢ to be uniformly bounded (see (4.40))
and U to be pseudo-contractive (see (AT)).

Furthermore, as was noted in [95], Section 11.4, pp 199/200 there, the fac-
torization method is not applicable to study convolutions of general martin-
gales, in contrast to the special case of a Wiener process (cf. e.g. [26],
Chapter 7, Proposition 7.3, p.184).

Remark 4.14: Let us clarify the relation between cadlag and predictable
versions of t — Ig(t).

From the considerations above it follows that Ig(t), t €0,T], possesses a
predictable version under the general assumptions of Proposition 4.3.
Indeeed, from Proposition 4.7, it follows that the mapping )

[0,T] 3t — IY(t) € L2 is continuous in probability. Since IY(t) is Fy-
measurable for each t € [0,T], by Proposition 2.1.8 we get existence of a
predictable version of t — Ig(t).
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If we know that t — Ig(t) obeys a cadlag version fg(t) (see Proposition

4.12), then surely t — fg(t—) will be predictable.
To distinguish between the two versions, some authors use the notation

t+

of fz U(t, 5) My(s)z N(ds, dx)
L

for the cadlag and

t_ ~

[ JU(t,s) Mgz N(ds,dx)

0 L2
for the predictable version. If it does not lead to misunderstandings, we
will use the universal notation

t ~
J‘QU(@ $) M (s)x N(ds, dz).
L
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Chapter 5

Existence and uniqueness of
mild solutions in the
Lipschitz case

In this chapter, we show several existence and uniqueness results for solu-
tions to equation (1.1) resp. equation (1.2) in the case of Lipschitz coeffi-
cients. A precise meaning to such solutions will be given in Section 5.1 below.

Given © C R? with d € N, let p > 0 be such that p,(0) < oo, i.e. p > d for
unbounded and p = 0 for bounded ©O.

For the whole chapter, let (€2, F, P) and (F).c(o,r] be as in Section 1.2,
where we fix some T' > 0. Furthermore, we here assume that e, f, o, 7:
[0,T] x 2 x R — R (generating F, F and X, I" by (NEM)) fulfill the Lip-
schitz continuity property (LC) and the local boundedness property (LB).
We further assume that e, f, o and v are measurable functions mapping

([0,T] x 2 x R,Pr ® B(R)) to (R,B(R)). We note that we assume the
functions to be predictable just for simplicity. This property is only needed
to define the Poisson integral terms. Clearly, for the drift and diffusion co-
efficients e, f and o it suffices to assume only progressive measurability.

Given ¢ > 2 resp. v > 1, the solutions will be constructed in the Ba-
nach spaces H(T") and G,(T) of predictable L%(@) resp. L?)”(G))—valued
processes (X (t));c[o,r] With finite g-th resp. 2v-th moment (see also Defi-
nition 5.1.1 below). We consider solutions both in Lz(@) and LI%”(G)) with
v > 1, since later in the case of drifts of polynomial growth, depending on
the polynomiality of the drift, the solutions will take their values either in
L%(@) or in L%”(@) (see Chapter 7).

The explicit setting including the definition of mild predictable solutions

151
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is introduced in Section 5.1. Formulation and proof of the existence and
uniqueness result are given in Section 5.2.

5.1 Definition of mild solutions

In Sections 5.1. and 5.2, we are in the following setting:

L. (A(t))iec[o,) generates an almost strong evolution operator
U= (U( t s))o<s<i<T in L2(©) in the sense of 2.2.1.

2. (W(t))sejo,r is a Q-Wiener process in L?(©) such that either
Q € T*(L*(0)) has the representation (2.4) with an orthonormal basis
(én)n obeying (3.1) (called the nuclear case in the following) or
Q=1¢ T (L*O)) (called the cylindrical case in the following).

3. (N(t, ))tefo,r] is a compensated Poisson random measures on L*(0).
We further assume that the corresponding Lévy intensity measure 7
fulfills the integrability condition (QI).

4. L is a Lévy process in L?(©) with characteristics (b, W, 7). Concerning
W and n, we assume the properties of the previous items, namely
Q € TH(L*(®)) obeys an eigenvector expension with the property
(2.4). Note that in general the eigenvector basis in (2.4) does not obey
(3.1) (called the general nuclear case later).

To define solutions to equation (1.1) resp. equation (1.2), we introduce the
following spaces of predictable processes:

Definition 5.1.1: Let ¢ > 2 and v > 1 be fixed.
(i) By HY(T') we denote the Banach space of all predictable (up to a sto-
chastic modification) Lg(@)—valued processes (Z(t)).e|o,r] such that

(5.1) sup E|[Z(t)[|1, < oo.
te[0,T'] L

The norm in H(T') is given by

1
(5.2) 1Z 1y = sup (BIIZ@I1%)"
t€[0,T] P

(ii) By G,(T') we denote the Banach space of all predictable (up to a sto-
chastic modification) ij’(@)—va]ued processes (Z(t))ie[o,r) such that

(5.3) sup E[|Z(t)|[3%, < oo.
te[0,T] L
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The norm in G,(T) is given by

1
(5.4) 1Z1lg, () :Ztsup](EHZ( NIEs)2

)

In particular, we have G1(T) = H?(T).
Note that the same spaces of predictable processes were used in the papers
[79] and [81].

The above notations are justified by the following

e since in (i) only the moment changes, the index q is written above;

e since in (ii) the basic space L%”(@) changes with the index v, the index
v is written below.

To guarantee the completeness w.r.t. norms (5.2) resp. (5.4), actually
we consider the equivalence classes (up to stochastic modifications) in H%(T)

resp. G, (T).

Depending on the choice of initial conditions, which are L%(@)—valued, Fo-
measurable random variables, we split our considerations into two cases:

Case (A) L%(@)—Valued initial conditions & with E[£[|}, < co for some ¢ > 2;
P

Case (B) L2"(©)-valued initial conditions £ with EH{HQL%V < oo for some v > 1.

Now, we rigorously define what we mean by a solution to equation (1.1) resp.
equation (1.2) in Case (A) resp. in Case (B) in the following chapters:

Definition 5.1.2: (i) In Case (A), an HY(T')-valued process X is called

a mild solution to (1.1) resp. (1.2) if the following identity in L%(@) holds
P-almost surely for any t € [0,T]

(5.5) X(t) = U(t,0)§+OftU(t,s)F(s,X(s))ds
+ [ U(t, 8) Mss, x(5))dW (5)

_l’_

O O — &

U
szU (t, s) Mrs x (s ))(a:)N(ds,d:c)

(5.6) X(t) = U(t,0)¢ + OftU(t,s)E(s,X(s))ds + OfU(t, §) Mo x (s dL(5),
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whereby all the integrals on the right hand side exist.

(ii) In Case (B), a G,(T)-valued process X is called a mild solution to
(1.1) resp. (1.2) if (5.5) resp. (5.6) holds true, P-almost surely, for all
te[0,T].

The well-definedness of the integral terms in (5.5)/(5.6) is discussed in Lem-
mata 5.1.5-5.1.10 below.

In later chapters, the spaces HY(T) will be used to study equation (1.1)
resp. equation (1.2) in the case of the drift coefficients obeying condition
(PG) with v = 1, whereas the spaces G, (T") will be used to study equation
(1.1) resp. equation (1.2) in the case of the drift coefficients obeying condi-
tion (PG) with v > 1.

Remark 5.1.3: (i) Note that, in contrast to the solution definition in
[76], there is no condition on pathwise continuity in our setting. Indeed,
due to the presence of the Poisson resp. Lévy integral we cannot expect
pathwise continuity of the solutions anymore.

Nevertheless, in view of Proposition 4.12 we get existence of cadlag versions
of the solutions under special assumptions on the jump coefficient I' (case
(1.1)) resp. the jump diffusion coefficient ¥ (case (1.2)) and the evolution
operator U.

The pathwise continuity will be substituted by the meansquare continuity of
the solutions resulting from Propositions 3.4.6 and 4.7.

(i) By Definition 5.1.1 it is obvious that HI(T) C H*(T) for ¢ > 2 and
G,(T) € H*(T) C H*(T) for v > 1. Thus, both for Z € HI(T) with q > 2
and Z € G,(T) with v > 1, we have

sup E[|Z(1)|[7. < oo.

te[0,T] L
Furthermore, for v < {—1( with ¢ as in (A2) resp. (A5)/(A5)*, any
process from G,(T) fulfills the integrability conditions (3.39) and (4.12),
which means that 3.4.3 and 4.3 are applicable.

(iii) Given any measurable function A: [0,T] x Q x © — R fulfilling the
Lipschitz property (LC) and the local boundedness property (LB), we see
that

sup BI[A(t, Z(t))]|, < oo
te[0,T] p
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for any Z € HY(T) and

sup E[|A(t, Z(t))[|75, < o0
te[0,T] L
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for any Z € G,(T), with A being defined through A by (NEM). Indeed,

we have
(57) sup BJIAGZ@)I[L, =  sup E(f w20 )ha))
t€[0,T] L te[0,T] )
< sm>E<f )L+ 20 la)
t€[0,T] (C)
< clgen(T)) | 14 sup E[[Z(1)]]},
te[0,T] L
= (g, A+ ZO)[3a (7))
< o0
for any Z € HY(T) and
(5.8) sup E|A(t,-,Z(t))][35, = sup Ef IA(t, - Z(t,y)))* 1p(dy)
te[0,T] 4 te[0,T]
< sup Ef ex(T)(1+ Z(t,y)))? p(dy)

te[0,T] ©

< (v, ex(T)) <1+ sup EHZHL2»>
te[0,T']

= D)1+ 1212 )

< o0

N

for any Z € G,(T), where we used (LC), (LB) for X\ in the second and

the finiteness of 1,(©) in the third step of both cases.

So we have shown that under the above conditions the Nemitskii operator
preserves finiteness of the H4(T)- resp. G,(T')-norm.

The following general proposition concerning existence of measurable re-
alizations for the processes under consideration will be frequently used both
in this chapter and the following ones:

Proposition 5.1.4: For any PT/B(LZ(@))—measumble process
@: [0,T] x Q— L%(©) obeying

(5.9)

there is a Pr ® B(©
such that

T
[ Bllg(s)|} ds < oc,

)/B(R)-measurable version ¢:

[0,T

| xQ2xO0 — R
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T ~
{EHsO(S) = @(s)I7; ds = 0.

Proof: Analogously to Steps 1 in the proofs of 3.4.3 and 4.3, we can apply
Dirac sequences to construct measurable representatives. Without loss of
generality, we may assume here that © = R?. In the case of © C RY, the
function ¢(s,w) € Lf,(@) should be extended by zero outside ©.

By analogous arguments as in Step 1 in the proof of 3.4.3, we have the con-
vergence (in L?(0))

(5.10) conv(Om, tpp(s)) — ppe(s) as m — oo,

for almost all (s,w) € [0,T] x Q (with conv denoting the standard con-
volution with the Dirac sequence 6,,, m € N, defined by (3.44) and the
weight function p, as in the Introduction). Furthermore, we can calculate

conv(6m, ppp(s))(0) for any 6 € ©.
Thus, for m € N, we define ¢,,,: [0,T] x Q x L?(©) x © — R by

(5.11) Pm(s,w,0) = ;! (conv(Om, 11pp(5))) (0)-

By construction, for almost all (s,w) € [0,T'] x Q,

(5.12) pm(s,w) € L3(O), [lom (s, w)llzz < llo(s, w)llzz
and
(5.13) i [[om(s,w) — o(5,w)|[2; = 0.

From Theorem 6.1 in [51] we get Pr @ B(0O)-measurability of ¢,,, m € N.

Recall that this needs the following properties to be fulfilled:

e continuity of the mapping
0 — om(s,w,0)
for almost any fixed (s,w) € [0,T'] x Q, and
e predictability of

(s,w) — Pm(s,w, )
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for any fixed 6 € ©.

The required continuity property holds by (3.45).
For any fixed 6 € ©, we have P ® ds-almost surely
_1 1
Pm(s,w,0) = o> (0) [ 0m(€ — 0) (15 (s, w))(€) d§
(S

_1 1
= (0) <om(-—0),p50(s) >z
By Fubini’s Theorem, we get the required predictability of
(s,w) — ©m(s,w,d) from the predictability of the process ¢.

Thus, for each m € N, Theorem 6.1 from [51] gives us Pr®B(O)-measurability
of

(s,w,0) — pm(s,w,z,0).

By (5.9) and (5.12)/(5.13), (#m(s,w))men is a Cauchy sequence in L2(0©)
for almost all (s,w) € [0,T"] x €.

By (5.12) we have for all m,m € N and almost all (s,w) € [0,T] x
(5.14) ln(5,7) = o5, 125 < 4lle()] s

By (5.9) the right hand side of (5.14) is integrable w.r.t. P ® ds. Thus,
Lebesgue’s dominated convergence theorem is applicable. Therefore,

(s,w) = ¢pm(s,w), m €N,
is a Cauchy sequence in L*(Q x [0, T],Pr, P ® dt; L?).

Furthermore, by Fubini’s theorem we have

E

() = 82 (5O () ds = B [ 11687 (5.) = 82 (5.} .
Thus,

(s,w,0) — pm(s,w,0), meN,
is a Cauchy sequence in the Hilbert space

LX([0,T] x 2 x ©):= L*([0,T] x Q x 0,Pr ® B(©), P ® dt ® p,).
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So, there exists a limit function
¢ € L*([0,T] x Q2 x O)

such that

m—0o0

(5.15) lim E({tg lom(s,0) — @(s,0)|? p,(d) ds = 0.

Obviously, this implies that @(s,w,-) € Lf,(@) for P ® dt-almost all
(s,w) € [0,T] x €.

On the other hand, by Lebesgue’s theorem and (5.11)/(5.12) we have

t
(5.16) Jim E [ [lon(s) - ¢(s)|[2; ds = 0.
0

Combined with (5.15) and (5.16), this implies

T ~
Eofoz lp(s) = @(s)l[7 ds = 0.

Thus, ¢ is a version of ¢ obeying the required measurability properties.
|

We note that the authors in [76] showed pathwise time-continuity of the
solutions to (1.1) in the case I' = 0. Because of the jump behaviour of N
resp. L, we are not able to have this kind of time-continuity in our case. It
will be substituted by meansquare continuity or cadlag properties.

Thus, before we proceed with proving existence and uniqueness of solu-
tions, we need to show that the integrals appearing on the right hand sides
of (5.5) and (5.6) map HY(T') resp. G,(T') onto itself and fulfill the required
time-continuity properties. This is done by the following six lemmata:

Let f and o be as in the introduction of this chapter.
Everywhere below we assume that U is an almost strong evolution operator

in the sense of 2.2.1 obeying (A0)—(A1).

We start with the drift terms and define processes Ir(2), I ,(Z) by

(5.17) Ir(Z)(t) := [U(t,s)F (s, Z(s))ds,

o o
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(518) IE,m(Z)(t) = U(t, 8)M2(57z(5))(m) dS, t e [O,T},

o o

with m € L? being defined through b and n as described in the refined
Lévy-Ito6 decomposition 2.4.13.

The integration is meant in the Bochner sense in Lg(@). This is a special
case of the Bochner convolutions considered in Section 3.3.

Lemma 5.1.5: Case (A)
Given q > 2, suppose (Z(t))iejo,r) € HIUT).

(i) The process Irp(Z) is adapted, has finite HY(T)-norm and t — Ip(Z)(t)
is continuous in L9(SY; Lf,(@)).

(i) Additionally assuming that U obeys (A2) (or even the weaker assump-
tion (A5)* with v = 1), the process Ix, ,,(Z) is adapted, has finite H(T)-
norm and t — Is, , (Z)(t) is continuous in L7(€2; Lf,(@)).

Thus, Ip(Z) and Is, ;m(Z) obey predictable modifications and hence they are
HY(T)-valued.

Furthermore, both t — Ip(Z)(t) and t — Is n(Z)(t) are pathwise continu-
ous, and there are Pr&B(©)-measurable versions of the processes by Remark
5.1.4.

Proof: We prove (i) and (ii) simultaneously following a certain pattern.
It involves the following claims:

e predictability, i.e. Pp/B(L3())-measurability of ¢t — F(t, Z(t)) and
t— X(t, Z(t)),

the well-definedness of Ip(Z) and Iy ,,(Z) in L%(@),

finiteness of H?(T")-norms,

the required continuity properties of t — Ip(Z)(t) and t — Ix. ,,,(Z)(1).

predictability of ¢ — Ir(Z)(t) and t — Is ,,(2)(t)
Claim 1: t— F(t,Z(t)) € L%(@) is predictable.

Proof: This follows immediately from the assumption Z € HY(T) and
the Pr @ B(R)/B(R)- measurability of f. [

Claim 2: ¢+ X(t, Z(t)) € L5(0©) is predictable.
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Proof: This follows immediately from the assumption Z € H%(T) and
the Pr ® B(R)/B(R)- measurability of o. [J

Claim 3: [p(Z) is well-defined as a process in L?,(@).

Proof: Putting

(5.19) ot) == F(t, Z(1)), t € [0,T),

by Claim 1, Remark 5.1.3 (iii) and the finiteness of 7' > 0 the process
@ = (p(t))ie[o,r) C L5(©) fulfills the sufficient condition (3.13) from Propo-
sition 3.3.2. Thus, we get Claim 3 by the well-definedness part in Proposition
3.3.2. 0

Claim 4: Ix,,(Z) is well-defined as a process in Lf,(@).

Proof: Putting

(5.20) ot) == St Z(1), t € [0,T],

by Claim 1, Remark 5.1.3 (iii) and the fact that 0 < ¢ < 1 the process
o = (¢(t))efor) C Li(@) fulfills condition (3.13). Thus, we get Claim 4 by
the well-definedness part in Proposition 3.3.3. [J

Claim 5: Ip(Z) has finite H1(T)-norm.

Proof: Since ¢ defined in (5.19) obeys (3.13) (cf. the proof of Claim
3 above), Claim 5 follows from Proposition 3.3.2. O

Claim 6: Iy ,,(Z) has finite HY(T)-norm.

Proof:  Since ¢ defined in (5.20) obeys (3.13) (cf. the proof of Claim
4 above), Claim 6 follows from Proposition 3.3.3. O

Claim 7: t— Ip(Z)(t) is continuous in L1(<; Lz(@)).

Furthermore, there is a pathwise continuous version of t — Ip(Z)(t).

Proof: Since ¢ defined in (5.19) obeys (3.13) (cf. the proof of Claim
3 above), Claim 7 follows from the continuity result in Proposition 3.3.2. [
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Claim 8: t— Ix(Z)(t) is continuous in LI(Q; L%(@)).
Furthermore, there is a pathwise continuous version of t — Is ;m(Z)(t).

Proof:  Since ¢ defined in (5.20) obeys (3.13) (cf. the proof of Claim
3 above), Claim 8 follows from the continuity result in Proposition 3.3.3. [

Claim 9: Ip(Z) obeys a predictable modification.

Proof: Recall that, by Lemma 2.1.8, stochastic continuity and adapted-
ness imply the existence of a predictable version of the process.

By the continuity property shown in Claim 7, we immediately get stochastic
continuity. Thus, it remains to show adaptedness of ¢ +— Ir(Z)(t).

Since Z is predictable, Z(s) is Fy-measurable for all 0 < s < ¢t < T. The
measurability assumption on f then implies F;-measurability of

F(s,Z(s)) € LZ(©). Since U(t,s) € L(L2), we get the F-measurability of
U(t,s)F(s, Z(s)).

Thus, the Bochner integral

Ir(Z)(t) = jU(t,s)F(s,Z(s))ds

is also Fy-measurable. Ast € [0,7 ] was chosen arbitrarily, Ir(Z) is adapted
as well. O

Claim 10: t— Is,,,(Z)(t) obeys a predictable modification.

Proof: Analogously to Claim 9, it remains to show adaptedness in or-
der to get predictability by an application of Lemma 2.1.8.

As in the proofs of Section 3.4, we start with m € L*°(0). In this case,

we have My, 7(s)ym € LZ(@) for any 0 < s < t < T. Thus, we get Fy-
measurability of

t
Ism(2)(t) = JU(t, $) M5, 2(s)) ds

by Claim 9.
For general m € L?(0), we take any sequence (my)neny C L*(0) such that

||mny —m||p2 — 0as N — oo.

Analogously to the proof of 3.3.3, we get
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El|Inmy (t) = Inm(t)][7; — 0 as N — oc.

Thus, for general m € L?(0), Iy, (t) is Fi-measurable as the L?({; Lz(@))—
limit of F;-measurable processes. [

By Claims 1-10, we have proven that Ir and Iy ,, are well-defined pre-
dictable processes (up to stochastic modifications) with finite H?(7")-norms
and that Ir and Ix ,,(Z) are time-continuous in L7(€2; L%(@)). [

Lemma 5.1.6: Case (B)
Given v > 1, let U additionally fulfill (A3).

(i) For Z € G,(T), the process Irp(Z) defined by (5.17) also belongs to
Gu(T).

Furthermore, t v Ip(Z)(t) is continuous in L* () Lg”(@)), and there ex-
ists a pathwise continuous version of this mapping.

(i) Suppose U also fulfills (A2) (or the even weaker assumption (A5)*
with v = 1). Then, for any Z € G,(T), the process Is ,(Z) defined by
(5.18) has finite G, (T)-norm. Furthermore, t — Is p(t) is continuous in
L2(Q; L27(0)).

In particular, both in (i) and (i3), there is a pathwise continuous version of
each of the processes.

Proof:  As in the proof of 5.1.5, we first prove well-definedness, then
finiteness of the G, (T)-norm, then continuity in L”(£; LIQ)”(@)) resp. the
pathwise continuity property, and finally predictability.

Claim 1: tw— F(t,Z(t)) is predictable.

Proof: This follows immediately from the assumption Z € G,(T) and
the Pr ® B(R)/B(R)- measurability of f. [J

Claim 2: t— X(t, Z(t)) is predictable.

Proof:  This follows immediately from the assumption Z € G,(T) and

the Pr ® B(R)/B(R)- measurability of o. [

Claim 3: [p(Z) is well-defined as a process in Lg”(@).
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Proof: The process ¢ = (4(t))ic[o,r] defined by (5.19) obeys (3.21) from
the setting of Proposition 3.3.4 by Claim 1, Remark 5.1.3 (iii) and the fact
that T' > 0 is finite. Thus, we get Claim 3 by the well-definedness part from
Proposition 3.3.4. [

Claim 4: Iy ,,(Z) is well-defined as a process in LZ"(G)).

Proof: The process ¢ = ((t))¢e[o,r] defined by (5.20) obeys (3.24) from
the setting of Proposition 3.3.5 by Claim 1, Remark 5.1.3 (iii) and the fact
that ¢ € [0,1). Thus, we get Claim 4 by the well-definedness part from
Proposition 3.3.5. O

Claim 5: Ip(Z) has finite G, (T)-norm.

Proof: Since the process ¢ = (¢(t));c[0,r) defined by (5.19) obeys (3.21)
(cf. the proof of Claim 3), we get Claim 5 from Proposition 3.3.4. O

Claim 6: Iy ,,(Z) has finite G, (T')-norm.

Proof: Since the process ¢ = (¢(t))¢c[o,r) defined by (5.20) obeys (3.24)
(cf. the proof of Claim 4), we get Claim 6 from Proposition 3.3.5. O

Claim 7: t s Ip(Z)(t) is continuous in L* (€ L%”(@)).
Furthermore, there is a pathwise continuous version of t — Ip(Z)(t).

Proof: Since the process ¢ = (¢(t));c[0,r) defined by (5.19) obeys (3.21)
(cf. the proof of Claim 3), we get Claim 7 from the continuity results in
Proposition 3.3.4. [

Claim 8: t+ Ig(Z)(t) is continuous in L?"(S; L?f’(@)).
Furthermore, there is a pathwise continuous version of t — Is, ;(Z)(t).

Proof: Since the process ¢ = (¢(t));c[0,r) defined by (5.20) obeys (3.24)
(cf. the proof of Claim 4), we get Claim 8 from the continuity results in
Proposition 3.3.5. U
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Claim 9: Ip(Z) obeys a predictable modification.

Proof:  This claim holds true by the same arguments as in the proof
of Claim 9 in the proof of Lemma 5.1.5. [J

Claim 10: ¢ — Ix,,(Z)(t) obeys a predictable modification.

Proof:  This claim holds true by the same arguments as in the proof
of Claim 10 in the proof of Lemma 5.1.5. [J

By Claims 1-10, we have proven that Ir and Iy ,, are well-defined pre-
dictable (up to stochastic modifications) processes with finite G, (7")-norms
and that I and Ix,,(Z) are time-continuous in L?”(£); LZ”(@)). [

Given a Q-Wiener process (W (t))e[o,r] in L?, we define the Ito-integral

(5.21) IV(Z)(t) =

o o

U(t, 8) Msy(s,2(5)) AW (s), t € [0, T'].
This is a special case of the Wiener convolution considered in Section 3.4.

Lemma 5.1.7: Case (A)
Suppose U additionally obeys (A2) with some ¢ € [0,1).
The claims in this lemma hold

e in the nuclear case (which we could prove without assuming (A2)),

e in the general nuclear case (which we could also prove in case of U
obeying the weaker assumption (A5)* with v =1), and

e in the cylindrical case.

Let us fix some q € |2, %) with ¢ as in (A2). For each

(Z(t))iefor] € HUT), the process IV (Z) is HI(T)-valued and t — IY (Z)(t)
is continuous in L9(§; L%(@)).

In particular, if ¢ > 1%( with ¢ as in (A2) in the general nuclear and the

cylindrical case and ¢ = 0 in the nuclear case, there is a pathwise continuous
version of [0,T] 3t — LY (Z)(t) € L3(O).

Proof: We first show well-definedness, then finiteness of the H?(T')-norm,
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then continuity in L7(€; L%(@)) and finally predictability.
Claim 1: For any t € [0,T], I (Z)(t) is well-defined in L%(@).

Proof: Note that (5.21) is just the stochastic convolution from Section
3.4.

First, by 5.1.3 (ii) and H4(T) c H2(T), for any q > 2 (3.28) from Section
3.4 is fulfilled for ¢ as in (5.20). Thus, we have well-definedness in all three
cases by Proposition 3.4.1. [J

Claim 2: 1Y (Z) has finite HI(T)-norm.

Proof : Defining ¢ as in (5.20), by the measurability assumption on o,
Remark 5.1.3 (iii) (cf. (5.7) there) and the choice of (, the process ¢ =
(o(t))tefor) obeys (3.29). Thus, we can apply Proposition 3.4.1 to get
Claim 2 in all three cases. [J

Claim 3:  Given g from the assumption, t — I3 (Z)(t) is continuous
in L(SY; L2(0)).

If additionally q > IE—C, there is a pathwise continuous modification.

Proof: Let ¢ be as in (5.20). Then, in view of 5.1.3 (iii) (cf. (5.7) there),
the process ¢ obeys the assumptions of Proposition 3.4.7, which gives the
time-continuity in L(Q; L2(©)).

In the case ¢ > I%C’ even the assumptions from Theorem 3.4.5 are fulfilled,

which gives us the existence of a pathwise time-continuous modification of
1Y in L,%(@)‘ O

Claim 4: t — IY(Z)(t) obeys a predictable version.

Proof: As a stochastic integral, ¢ — I3V (Z)(t) is adapted. Furthermore,
by Claim 3, t — I}V (Z)(t) is stochastically continuous. Thus, by Lemma
2.1.8, there is a predictable modification of t — I¥ (Z)(t). O

By Claim 1-4 the proof of Lemma 5.1.7 is finished. W

Lemma 5.1.8: Case (B)

Suppose U additionally obeys (A2) with some ¢ € [0,1), (A3), (A4) and
(A5)*. Let us fir some v € |1, %) with ¢ as in (A2).

Again, the claims in this lemma hold
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e in the nuclear case (which we could prove without assuming (A2) and

(A4)),

e in the general nuclear case (which we could also prove in case of U
obeying the weaker assumption (A5)* with v = 1 instead of (A2)
and (A4)), and

e in the cylindrical case.

For (Z(t))iclo,r] € Gu(T') the process I¥(Z) is G,(T)-valued and

t I¥(Z)(t) is continuous in L?((; L).

Additionally assuming that v > ﬁ with ¢ as in (A2) in the general nuclear
and the cylindrical case and ( = 0 in the nuclear case, there is a pathwise

continuous version of [0,T] >t — I¥(Z)(t) € L?,(@).
Proof: We proceed analogously to the proof of 5.1.7.
Claim 1: For any t € [0,T], IV (Z)(t) is well-defined in L2/(0).

Proof: Note that, by 5.1.3 (iii) (cf. (5.8) there), the sufficient condi-
tion (3.39) from Section 3.4 is fulfilled for the process ¢ defined by (5.20).
Thus, by Proposition 3.4.3, we get Claim 1. [J

Claim 2: 1Y (Z2) has finite G, (T)-norm.

Proof : Defining a process ¢ by (5.20), by the measurability assumption
on o, Remark 5.1.3 (iii) (cf. (5.8) there) and the choice of (, we can again
apply Proposition 3.4.3 to get Claim 2. [J

Claim 3:  Given v from the assumption, t — IX (Z)(t) is continuous
in L*(Q; L27(0)).

If additionally v > fl(’ there is a pathwise continuous modification in
L2(©).

Proof: Let us define a process ¢ by (5.20). Then, in view of 5.1.3(iii) (cf.
(5.8) there), the process ¢ obeys the integrability condition from the assump-
tions of Proposition 3.4.8, which gives the time-continuity in L?”(; L%" (©)).
In the case

V>ﬁ <= 2u>&22,

since || - [|zz < || - |[r2v, even the assumptions from Proposition 3.4.5 are
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fulfilled, which gives us the existence of a pathwise time-continuous modifi-
cation of I in Lg(@). O

Claim 4: t — I (Z)(t) obeys a predictable version.

Proof: As a stochastic integral, ¢ — I}V (Z)(t) is adapted. Furthermore,
by Claim 3 t — I}V (Z)(t) is stochastically continuous. Thus, by Lemma
2.1.8, there is a predictable modification of t — I (Z)(t). O

By Claim 1-4 we get Lemma 5.1.8. B

Next, we consider stochastic integrals w.r.t. compensated Poisson random
measures N.

Let (N(t,-))ie[o,r] be as described in the introduction of the chapter. We
define

(5.22) N(2)(t) = ofth2 U(t,s)./\/lp(s,z(s))(m)N(ds,dm), te[0,T].

This is a special case of the Poisson stochastic convolutions considered in
Chapter 4.

Lemma 5.1.9: Case (A)
Suppose U additionally obeys (A2) (or alternatively the weaker assumption
(A5)* with v =1) for some ¢ €[0,1).

For any Z € HY(T) with q € |2, % ), the process IIN(Z) has finite H4(T)-
norm.

Furthermore, we have continuity in LY(Q; L2(©)) for t — II&(Z)(t).
If we additionally assume that v is uniformly bounded on [0,T]~>< QxR
and (A7) holds for U, there is a cadlag version of [0,T] >t — IN(Z)(t) €
L%(©).

p

Proof: We first show well-definedness, then finiteness of the H%(T")-norm,
then continuity in L9(€2; L%(@)) and finally predictability.

Claim 1: II&(Z) is well-defined in L%(@).

Proof: By 5.1.3(iii) and the fact that ¢ € [0,1),
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(5.23) o(t) =Tt Z(t)), t € [0,T],

fulfills (4.3) for Z € HY(T) € H*(T). Thus, by Proposition 4.1, we get
the required well-definedness of I (Z). O

Claim 2: Iljy(Z) has finite H1(T')-norm.

Proof: Defining a process ¢ by (5.23), in view of 5.1.3 (iii) (cf. (5.7)
there) and the choice of ¢ the process ¢ fulfills (4.4) from the assumptions
of Proposition 4.1, which gives us Claim 2. [J

Claim 3: t— Ify(t) is continuous in LI(SY; Lg(@)).
If we additionally assume that ~y is uniformly bounded on [0,T ] x QxR and

(A7) holds for U, we get a cadlag modification of t — Ig.

Proof: In view of 5.1.3 (iii) (cf. (5.7) there) and the choice of (, the
process ¢ defined by (5.23) fulfills the assumptions of Proposition 4.8, which
gives us time-continuity in L7(€; LZ(@)).

Concerning the cadlag property, note that for ¢ as before under the addi-
tional assumptions we are just in the situation of Proposition 4.12, which
proves Claim 3. [

Claim 4: t — Ify(Z)(t) is predictable.

Proof: As a stochastic integral, t — Ify (Z)(t) is adapted. Furthermore,
by Claim 3 t — IN(Z)(t) is stochastically continuous. Thus, by Lemma
2.1.8, there exists a predictable modification of t — I (Z)(t). O

By Claims 1-4 Lemma 5.1.9 is proven. B

Lemma 5.1.10: Case (B)

Suppose U additionally fulfills (A3) and (A5) (or (A5)*) with some
¢€[0,1). Let us fix some v € [1,%).

For Z € G,(T), the process Ir(Z) has finite G, (T)-norm.
Furthermore, t — IN(Z)(t) is continuous in L? (<; L27(0)).

Under the additional assumptions that
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(5.24) sup  |y] = K <
[0,T]xQxR

and that condition (A7) on U is fulfilled, there is a cadlag version of
[0,T] 5t~ IN(Z)(t) € L2.

Proof: We proceed analogously to the proof of 5.1.9.
Claim 1: IY(Z) is well-defined.

Proof:  Let us define a process ¢ by (5.23). By 5.1.3 (ii) ¢ fulfills
(4.3), which, analogously to Claim 1 in the proof of 5.1.9, implies the well-

definedness of IN(Z). O
Claim 2: IILV(Z) has finite G, (T)-norm.
Proof: By 5.1.3 (iii) we have

sup EHF(t,Z(t))H%ZV < 0.
te[0,T] L
By this and the obvious predictability of ¢ +— T'(t,-, Z(t)) following from
the predictability of Z and the measurability property of v, we get that the
process ¢ defined by (5.23) is in G, (T'). Thus, we can apply 4.4 to get

: t
sup E||IN(Z)(0)]175, < c(v,e(T), Cauy) [(t—5)"VE[[L(s, Z(s ))||%3v ds
te[0,T] 4 0
t
< (v, e(T),Cop) <fs CVds> ( sup E||I'(t, Z(t))| LQ,,>
0 te[0,T]
< o0. U

Claim 3: t— I%V(Z)(t) is continuous in L?¥({; L%”(@)).
Under the additional assumption that v obeys (5.24) and (A7) holds for U,
there is a cadlag modification of t — IX (Z)(t).

Proof: Defining a process ¢ by (5.23), we get inequality (4.36) from Chap-
ter 4 by Remark 5.1.3 (iii) (cf. (5.8) there). Thus, by Proposition 4.9, we
get the required continuity property.

Finally, by the boundedness assumption on v and (A7), the conditions of
Proposition 4.12 are fulfilled. Therefore, we get the required cadlag versions.
O

Claim 4: t — va(Z)(t) obeys a predictable modification.
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Proof: This holds true by the same arguments as in the proof of Claim 4
from the proof of 5.1.8. I

By Claims 1-4 we get 5.1.10. B

We finish this section with a remark on Bochner integrals I in the case
of a non-Lipschitz f. This remark will be relevant for Chapters 7 and 8.

Remark 5.1.11:  Let us consider Ir defined by (5.17) with F defined
by (NEM) from a measurable function f: [0,T] x Q@ x R — R, which is
continuous in the third variable.

Suppose that f obeys (PG) and (LG) from Section 3.2.

(i) Suppose that v =1 and Z € HY(T) for some q > 2.

Then, the process Ip(Z) is adapted, has finite H(T)-norm and

[0,T] 3t~ Ip(Z)(t) € L2 is continuous in LI(Q; L2). Furthermore, there
exists a pathwise continuous version of the previous mapping.

(ii) Suppose that v > 1 and Z € G,(T).

Then, the process Ir(Z) is adapted, has finite H2(T)-norm and

[0,T] 3t~ Ip(Z)(t) € L is continuous in L*(Q; L2). Furthermore, there
exists a pathwise continuous version of the previous mapping.

Proof: Concerning (i), note that (PG) with » = 1 means that
[f (w0, 9)| < ep(T)A +[yl), (8w,y) € [0,T] x QxR

Thus, we get the same chain of arguments as in (5.7) (of course with A = f)
from 5.1.3(iii) in this case. Then, literally repaeting the arguments from
the proof of Lemma 5.1.5 (i), we get (i).

Concerning (ii), note that setting ¢(t) := F(t,Z(t)), t € [0,T'], for
Z = (Z(t))ejo,r] € Guv(T) we get, analogously to estimate (5.7) from Re-
mark 5.1.3 (iii) (with ¢ = 2)
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sup Ellp(t)l[7, = sup E [([f(t, Z(t,9))])*1o(dy)
te[0,T] 4 te[0,T] ©
< sup E [(ep(T)(1+[Z(t9)]")po(dy)
te[0,T] ©

< (v, ep(T)) <1+ sup EHZ(t)I%’éu>
te[0,T] i

< o

for any Z € G,(T). Thus, by repeating almost literally the arguments from
the proof of Lemma 5.1.5 (i), we get (ii). W

5.2 Existence and uniqueness of mild solutions in
the case of Lipschitz coefficients

By the lemmata proven in the previous section, we can show existence of
unique solutions to equations (1.1) and (1.2) with Lipschitz coefficients E,
F, > and I'.

The proofs will follow the lines of proof of Theorem 3.2.1 from [76]:

Theorem 5.2.1: Case (A)

Suppose the almost strong evolution operator U, generated by (A(t))ie(o,1]
has properties (A0)—(A2) (In the nuclear case (A2) can be replaced by
(A5)* withv =1.).

Let the initial condition & be as in Case (A), whereby q € [2, %) is such
that the integrability condition (QI) for the Lévy measure n (corresponding
to N (equation (1.1)) resp. L (equation (1.2))) is fulfilled with q € |2, % ).

Then, there exists a unique predicatable mild solution to each of the equa-
tions (1.1) and (1.2) in the sense of 5.1.2 (i). These solutions are time-
continuous in L(SY; L3(0)).

Furthermore, we have the moment estimates (concerning (1.1))

(5.25) Sup E[[X @7, < e(a, ¢ T, e(T), (1), €0 (T), 5 (T), Can) (1 + El[€][72)

)

and (concerning (1.2))

(526) S[%I;_‘} EHX(t)H%ﬁ S C(Qa Cv K7 T,C(T),CE(T), CU(T)7 C‘]a”])(l + EH&H%?)
te , P P

with a positive constant both on the right hand side of (5.25) and (5.26).
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Let us assume that ¢ € |0, %) and q € (ﬁ, % ). Furthermore, let v resp. o
obey (5.24) and let U fulfill (A7). Then, there exist cadlag versions of the
mapping t — X (t) both for solutions to (1.1) and (1.2).

Theorem 5.2.2: Case (B)

Suppose the almost strong evolution operator U, generated by (A(t))ic(o,r]
has properties (A0)—(A5) with some ¢ € [0,1) (Note that in the nuclear
case (A5) can be replaced by the weaker assumption (A5)*.).

Let the initial condition & be as in Case (B), whereby v € [1, % ) is such that
the integrability condition (QI) for the Lévy measure n holds with ¢ = 2v.

Then, there exists a unique solution to each of the equations (1.1) and
(1.2) in the sense of 5.1.2 (). These solutions are time-continuous in

L (Q; L (9)).
Furthermore, we have the moment estimates (concerning (1.1))

(5.27) S{l(l)pT]EHX(t)! o0 < e, Toe(T), ¢p(T), co(T), ¢4 (T), Couy) (1 + E€][75,)
tefo, p P

and (concerning (1.2))

(5.2 sup BIXOIf < el Com Te(T), (1), alT): Cag) 1+ Bl
S )

with positive constants in the right hand sides of (5.27) and (5.28).

Let us assume that ¢ € [0,3) and v € (flca%)

Under the additional assumption that v resp. o obeys (5.24) and that U
obeys (A7), there is a cadlag version of t — X (t) both for solutions to (1.1)
and (1.2).

Remark 5.2.3: (i) Note that by the assumptions in Theorem 5.2.1 and
5.2.2 we can treat the case of the Q- Wiener process W in (1.1) being

e nuclear, i.e. Q € T1(L?) such that (2.4) holds with an orthonormal
basis obeying (3.1),

e general nuclear, i.e. Q € TT(L?) such that the orthonormal basis
in (2.4) does not obey (3.1), and

e cylindrical, i.e. Q =1.



5.2. EXISTENCE AND UNIQUENESS OF MILD SOLUTIONS 173

Recall from Lemma 5.1.7 and Lemma 5.1.8 that the conditions, under which
the stochastic integrals w.r.t. QQ-Wiener processes are well-defined, are dif-
ferent in the above three cases. Nevertheless under the given assumptions,
we have well-definedness of the stochastic integrals in any of the three cases
of Q-Wiener processes mentioned above.

In the nuclear case (A2) and (A5) can be substituted by (A5)*.

(i1) By ce(T), cf(T) and cs(T'), we denote the common constants in (LC)
and (LB) for the functions e, f and o.

We need ¢ € [0, %) in order to have the intervall ( 1T2<7 %) (Theorem 5.2.1)
resp. (ﬁ, %) (Theorem 5.2.2) non-empty. We take q resp. v from that

intervalls, since, for cadlag versions, we need both v > ﬁ (cf. Lemma
5.1.8) and v < % (cf. Lemma 5.1.10).

The two main results will be proven by two different methods.

Theorem 5.2.1 will be proven by a general Banach contraction argument,
whereas Theorem 5.2.2 will be proven by a Picard iteration method.

The second method is more general and can also be applied to prove Theo-
rem 5.2.1. Furthermore, it can be used to prove unique solvability even in
larger spaces than H%(T) and G, (T).

Proof of 5.2.1: Let us start with equation (1.1). On the intervall [0,7'],
we look for solutions X € H4(T) to

(5.29) X(t) = U(t,0)¢ +ftU(t, $)F(s, X (s)) ds
0
+ [ Ut 5) Msox(o dW(s)

t ~
+ f f U(tv S)MF(S,X(S)) (ZL‘) N(dS, d$)
012

= U(t,0)¢ + Ip(X)(t) + IV (X)(t) + IN (X)(t).

We note that, by 5.1.5, 5.1.7 and 5.1.9, the I-terms preserve H4(T).
Furthermore, the I-terms are time-continuous in L9(€2; Lg(@)) by the same
lemmata.

Thus, any solution to (5.29), if there is one, is HY(T)-valued and time-
continuous in L4(€2, Lf,(@)).

In particular, in the case of v being bounded uniformly on [0,T] x @ x R
and (A7) being fulfilled for U, we get the required existence of a cadlag
version of the solution.

Let us denote the right hand side of (5.29) by I(X). Let us check the
contraction property of the mapping I acting in the Banach space H4(T)
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(Note that I is well-defined in the sense of stochastic versions). For any pair
of processes X,Y € H9(T'), we have

(5.30) I1(X) — I(Y)]lpear)
< W (X) — 1V sty
I (X) — 1Y ()b
1Y (X) = B ()l

< sup (EHIF(X)(t)—IF(Y)(t)”%g)

Q|

t€[0,T]

+ sup (E[[LYV(X)(t) — LY (Y)(®)]]].)
te[0,T] i
+ sup (E[[IF(X)(t) — X (YV)(#)|[7.)
te[0,T] i

= sup (E ftU(t, s)[F(s,X(s)) — F(s,Y(s))]ds
te[0,7] 0

1
Q>q
L3

1

fI)q
2
L3

t -
+ sup (E ffU(tas)[/\/lr(s,x(s))—Mr(s,y(s))](fﬁ)N(d&dfﬁ)
0L

te[0,T'] 2

t
+ sup <E fU t,s) MZ 5, X (s )_ME(S y(s))]dW(S)
te[0,T] 0

1

q)q
L3

1

+ c(q,¢(T), &(T), Cqpy) suD f((t—sr%EuX(s)—Y(sm‘zz ds)"
te[0,T]0 P

Q=

t
< o(T)eg(T) sup (B [[|X(s) = Y(s)||%, ds)
te[0,T] 0 4

FelaeD)en) swp ([0 5 BIX() - VSl ds)”

te[0,T]

Q=

%“

<c(q,,T,c(T),cp(T),ce(T),cy(T), C. sup

_a«
2E[[X(s)=Y(s)||7- ds)
te[0,T] 0 L

1
1-95\ q
— (55) el 6 T el (D), (). (7). Con) X = Y

where we used 2.2.1 (iii) for U, estimate (3.30) from Proposition 3.4.1,
estimate (4.5) from Proposition 4.1, the fact that

<2 = L <1,
and the Lipschitz property of f, o and ~ in the third step.

Thus, given T > 0 with
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—1— 98 é
o) i= (555 ) el G T e,y (D)o D). (T). Gy < 1.

by the Banach fixpoint theorem (5.29) has a unique fixpoint X, which is
a solution to (1.1) on [0,T'] by construction. Setting ¢ := X (T') leads to a
unique solution on [T,2T]. By finite iteration of this procedure, we get a
unique solution on the whole intervall [0,7'] in the sense of 5.1.2(i).

The uniqueness in H%(7T) means uniqueness up to modifications. If X
and Xs are two predictable solutions from H9(T"), then X;(t) = X2(¢) in
L%, P-as., for any fixed ¢t € [0,7']. Since Lemma 5.1.7 and 5.1.9 ensure

the existence of a continuous resp. cadlag modification of I%V resp. Ify , any
solution X posesses such a modification, too.

Furthermore, any two cadlag solutions coincide up to indistinguishability
(see p.28), i.e

P{Xi(t) = Xs(t) forallt € [0,T]} = 1.

Thus, it remains to show the estimate (5.25). Similarly to (5.30), for our
solution X € H%(T) and arbitrary ¢t € [0,T'], we have

EIX®)%, < cla) (EIU( )&%, +EllIr(X) (1)1,
+E| 1Y (X)(0)11
B (OW)12)

< ola) (ela, o, cDEIKI
+elaoT) [ BIF(s, X ()l ds
+c<q,c<T>>0ft<t—s>—<EHz<s,X<s>>r|z,2ds
+elg, e(T), Cy) Oﬂt ~ 8) " FEI|T(s, X (s))][5 5 ds
<

C1 (Qa C? Ta C(T)a Cf(T)v CO'(T)7 C’Y(T)v Cq,n)(l + E| |§H%%)
t
Fea(0n T eo ()1 Co) [ 6 =) BIX ()] .

Here, we used 2.2.1 (iii) for U, estimate (3.30) from Proposition 3.4.1 and
estimate (4.5) from Proposition 4.1 in the second and the fact that f, o and
v obey (LC) and (LB) in the third step.

Thus, by the Gronwall-Bellman lemma, we get estimate (5.25), which fin-
ishes the consideration of the equation (1.1).

Concerning equation (1.2) note that, by the Lévy-1t6 decomposition 2.4.13
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we are looking for a solution to
(5.31) X(t) = U(t,0)¢ —i—JtU(t,s)E(s, - X(s))ds
+ JU(t, 8) Msys,x(s)) (M) ds
+ [ U(t, 8) Msys,x(s)) AW (5)

+

ogﬂo%“ogﬁ

U
‘]; t S ME sX(s))( ) N(dsvdx)

= U(t,06 + Ip(X)(t) + Inm(t) + IV (t) + IV (1)

By 5.1.5, 5.1.7 and 5.1.9, all five terms on the right hand side and thus
the solution to (5.31), if it exists, are H?(T")-valued. By 5.1.5, 5.1.7 and
5.1.9, all these terms and hence X will be time-continuous in L7(€2; L%(@)).

Furthermore, additionally assuming boundedness of o and the pseudo-contraction
property (A7) for U, there is a cadlag version of ¢ +— I&(¢) and thus, by

the well-known pathwise continuity properties of the mappings

t— Ig(X)(t), t — Ixm(t) and t — I (¢), also of a fixpoint of (5.31).

So, let us denote the right hand side of (5.31) by I(X) and check the con-
traction property of the mapping I in the Banach space H4(T).

Similar to the case of equation (1.1), we get

(5.32) [I1(X) = I(Y)|lpa(r)

< |He(X) = Ip(Y)|lya(r)

+ HIE,m(X) - IZ,m(Y)HHQ(T)
HIILY(X) = I (V) lpgacr

IS (X) = I (V)lgacry

= sup (E[[Ip(X)(t) = Ie(Y)(®)II1,)

te[0,T]

1
+ sup (E|[Igm(X)(t) = Ism(Y)(#)][].)
t€[0,T] °

+ s ](EHI%V (X)(1) = 1 (V) (0)]1%)
+ sup (B|ILY (X)(6) — IX(Y)(#)]]%,)
te[0,T] i

Q=

Q=

=

1

i q
<c(q,,m,T,c(T),ce(T),ce(T)) sup < J(t—s)E||X(s) — (s)HqL%ds>

te[0,T] 0

Felg.e(D), (1), Cy) sup [ (¢~ ) S (s) - V(]I ds)
t€[0,7] 0 i

Q=
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<clg,¢,m,T,c(T),ce(T),co(T),cy(T),Cqy) sup (f(t - s)f%CEHX(s) — Y(S)HqL% ds> ’

te[0,T] \0
1
-9\ ¢
- <7;_‘12?> (g, ¢ T, e(T), c4(T), co(T), Cam)l| X = Yllpa(r)

Here, we used 2.2.1 (iii) for U, estimate (3.18) for Is,,, estimate (3.30)

for Ig/ , estimate (4.5) for Iév and the Lipschitz property for e and o.
Thus, by the same procedure as in (i), we get existence of a unique solution
X € HYUT) in the sense of 5.1.2 (i).

Similarly to (5.32), using the fact that e and o obey (LC) and (LB), we
have for our solution X € H(T")

Bl X (112,

IN

o(a) (BIIU (0] + Il (X) @)% + Bl n (OO
R (O, + B (O,
< el G T K, e(T), eo(T), Ca) (1 + BIEIIL,)

+e(g,m, ¢, T, e(T), ce T)) [(t—s)" $E|[X(s)||%, ds
0 P

Now, by the Gronwall-Bellman lemma, we get (5.26), which finishes the
proof of Theorem 5.2.1. B

Proof of 5.2.2: Here, we apply a Picard iteration method to prove the
unique solvability in the Banach space G, (7).

Equation (1.1)
We define a sequence (X,,)nen of processes by

Xo(t) == U(t,0)¢, t € [0,T],

Xn(t) = Xo(t) + OjU(t, s)F(s,, Xn-1(s))ds

(t, 8) Mxy(s,x,_1(s)) AW (5)

U
J U, 8)Mr(s,x,_1(s)) () N(ds, dx)
= Xo(t) + Ip(Xn 1) (1) + IV (Xp1)(t) + IN(X)(t), t € [0,T], n € N.

Let us show that these processes are G,(T')-valued. By (A3) and our as-
sumption on &, Xy is obviously G, (T')-valued.

Now suppose we know that X,,_1 € G, (T) (which we do for

n = 1). We know from 5.1.6, 5.1.8 and 5.1.10 that Ir(X,—1), I3 (Xn-1)
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and Iév (Xy,—1) are in G, (T'). This immediately gives us G, (7T')-valuedness of
Xn.

Next, we show that the sequence (X, )nen converges in G, (7).
For any t € [0,T'] and n € N, we have

E[| X1 (1) = Xn(1)]|7

t(

E|[U(t,s VM5, x0(5) — Ms(s,x0_1(s))) AW (5)
0

t

{ (t,s Mp (,Xn(s) — MF(sX 1 (s ))] N(ds,d:l:)

2v
[F'(s, Xn(s)) = F(s, Xn-1(s))] ds

2v
L3

2v
L2V

¢, ¢, T,e(T), cf(T), ¢o(T), &y(T), Covn) gt $)TVE||Xn(s) = Xn1(s)[[75, ds

2v

2v
LP

where we used Proposition 3.4.3 and 4.4 and the Lipschitz property (LC)
for f, o and . Herefrom, by the Gronwall-Bellman lemma 2.7.3 we get, for
all n € N,

sup E|[Xpi1(t) — ()||Lzu
te[0,T']
< TN e(w, ¢, ¢(T), cp(T), co(T), ¢y (T), Cavy) sup B||IX1(t)—Xo(t)[|%,
te[0,T] L
with
sup E[|X1(t) — Xo(t)||Z3.
te[0,T]
t 2v
<c(v)| sup E||[U(t, s)F(s,U(s,0)§)ds
tE[OT] 0 L%u
2v
+ sup E f (t, ) Mxy(s,0(s,0)¢) AW (5)
te[O,T] 0 L%u
‘ 2v
+ sup E||[ U(t, s)Mr(s,u(s,00¢)(z) N(ds, dxr)
te[0,T'] 0 L2 L2

< e, ¢, T,c(T),cp(T), co(T), cy(T), Cav) (1 + E|[E] Lzu)
Thus, we finally get

[| Xn+1 — Xn”éZ(T) < 7M1=y < o0
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with a positive constant

cl = C(I/, C, C(T),Cf(T),Cg(T) ( ) 021/77) (V C T c( ) cf(T)vCU(T)’C’Y(T)702V777)'

Since 0 < v < %, the right hand side tends to 0 as n — oo, which gives
us the existence of a mild solution to (1.1) on the whole intervall [0,7'].

Concerning the uniqueness of the solution, let us note that for any two
solutions X,Y € G, (T) we have (analogously to the X,,-estimate)

t 2v
B[ X(t) =Y (®)[f5 < c(r) (E OfU(t, s)[F'(s, X (s)) — F(s,Y(s))] ds

L2V

t 21/

+E JU(tas)[ME(s,X(s)) — M5,y (s)] AW (s)

L2

‘ 2v

f f U(t, 5)[MF(S,X(S)) - MF(S,Y(S))](z)N(ds?dx)

0 L2 L%V

IN

Ct(V7 ¢T, C<T)7 Cf (T)7 Co (T)v c (T)7 CQVW)
({(t = 8)TVE[|X(s) = Y(s)lIZ3 ds

Then, applying 2.7.3 with g, (t) := g(t) := E[|X (t) — Y (¢)||7%., gives us
P

E||X(1) =Y (0)llfs <0

for any t € [0,7"]. Thus, we obviously have
X =Yllg, ) =0,

which proves uniqueness in G, (T'). Again, we have continuity in L?”(€2; L%”)
by Lemmata 5.1.6, 5.1.8 and 5.1.10.

Furthermore, for bounded « and (A7) for U, there is a cadlag version by
Lemmata 5.1.6, 5.1.8 and 5.1.10.

Thus, concerning (1.1), it remains to show the estimate (5.27) for our solu-
tion.

To this end, we note that, for any ¢ € [0,T]:

E[|X (1)[[7.
2v

< c(v )(EHU(t 0)§HL2» +E F(s,X(s))ds

t
bf tSME(SX )dW()

L%V
2v

2v
L
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2v
t ~
+E||[ [ U(t, s)Mr(s x(s)) () N(ds, dz)
0L L2v
P
< c(v) (c(y, T)E||E][2%,

+c(v, (T, c(T),cp(T), co(T),cy(T), Covy) (1 + bf(t - s)_C”EHX(S)H%‘%V ds>>

< (v, ¢, T,e(T), ¢4(T), ¢(T), &5 (T), Covy) (1 + E|[¢][75)
+ e, ¢ T eT), ¢p(T)s (1), 4 (T), Covy) Of (t = 5)"B[| X (s)[[ 5 ds.

2v
L

Thus, (5.27) follows by the Gronwall-Bellman lemma 2.7.2/2.7.3 and we
are finished with the consideration of equation (1.1).

Equation (1.2)
Let us define a sequence of processes (X, )nen by

Xo(t) :==U(t,0)¢

t) —l—OftU(t, s)E(t,w, X5—1(t)) ds

Ul(t, s)Mss,x,_(s))(m) ds

&
i
>

0
+

+ [ Ut 5)Ms(s x,1(5)) AW (5)

+ [ [ U 8)Mss.x, (s (@) N(ds,dz)

L2

= Xo(t) + Ip(Xp-1)(t) + Inm(Xn—1)(t) + I (Xp—1)(t) + I (Xn1)(2)
for t € [0,T] and n € N, where W is as in the general nuclear case (cf.
Sections 2.5 and 3.4).
Again, we have to show that these processes are G, (T')-valued. By (A3)(i)
and our assumption on &, X is G, (T')-valued.
Suppose we know that X,,_; € G,(T)(which we do for n = 1). We know
from 5.1.6(ii), 5.1.8 and 5.1.10 that Ig(Xn—1), Inm(Xn-1), I¥ (X,—1) and
IY(X,-1) are in G,(T). Thus X,, is in G,(T) as a sum of elements from
G, (T).

O O O—

Next, we show that the sequence (X, )nen converges in G, (7).
Indeed, we have



5.2. EXISTENCE AND UNIQUENESS OF MILD SOLUTIONS 181

E[| X1 () =Xn (I < (k) (E

0

t 2v
+E || [ U(t, 5)[Mss,x,(s) — Ms(s,X_1(s))) d5

0 L2V

t p21/
+E JU(tvs)[ME(s,Xn(s)) — Msys,x,_1(s))] AW (5)

2v
L3

t ~
FE| U )M xa(e) = Mg xo @) (@) Nds, de)
L

< (v, ¢ m, T, (T, ce(T), o (T), Ci)

t

J(t = 5)"VE[| Xn(s) — Xn1(5)|[75, ds

2v
L2

[e=]

for all ¢ € [0,7"] and arbitrary n € N.

Thus, by the Gronwall-Bellman lemma 2.7.3, we get for all n € N

sup E|[Xp41(t) — ()HLz»
te[0,T]
ST"(lfc’)c(v,m,c(T),ce(T),cU(T),cA,(T),CQV,n) sup EHXl(t)—Xo(t)H%’g,,
te[0,T] s
with
sup E|[X1(t) — Xo(t)[|7% L3
te[0,T]
t 2v
< c(v) ( sup E||[U( [ s,U(s,0)€) +M2(57.7U(870)§)(m)] ds
tE[O,T] 0 L%u
¢ 2v
+ sup E fU(t,S)ME(s,-,U(s,O)g) dW(S)
te[0,T'] 0 L2v
. 2v
+ sup E ffU(t)S)ME(s,-,U(s,O)ﬁ)(:C) N(dS,de‘) )
te[0,T] 0 12 L2

< (v, ¢;m, T, K, e(T), ce(T), ¢o(T), c4 (T )Czu,n)(1+E!|€|\L2u)

Thus, we finally get

sup B[ X1 () — Xn(0)][75,
te[0,T]

<Tn(1 ) (V Cam C(T)7 ( )HCU( )02'477)
c(v, ¢, T, K, o(T), ce(T), Covy) (1 + E[I¢]75.)

< 00

jU(t, S)[E(s, Xn(s)) — E(s, Xn-1(5))] ds

2v

2v
Ly



182 CHAPTER 5. MILD SOLUTONS IN THE LIPSCHITZ CASE

for all n € N.

Since 0 < v < %, we get existence of a mild solution to (1.2). Now, we estab-
lish the uniqueness result. Note that, for any two solutions X,Y € G, (T),
analogously to the X,-estimate we have

E‘ |X L2u
2v
(E (S7X(8)) - E(S,Y(S))] ds
L2
t 2v
+E || [ U(t, 5)[Mss,x(s)) — Mxs,y (sl (m) ds
0 L2u
t 7
+E fU t S ME(S X(s)) MZ(S,Y(S))] dW(S)
0 L2u
‘ 3 2v
+E||[ [ U(t,5)[Mss x(s)) — Mss,ys)l(x) N(ds, dx)
0 L2 L‘%y
t
<c(v,m,T,c(T),ce(T),co(T),Covy) f (t—s) C”EHX( ) — (s)||%’§,, ds.
0 P

Thus, by the Gronwall-Bellman lemma 2.7.3 we get, for any ¢t € [0,T'],

E[|X(t) =Y (®)l75 <

Thus, we obviously have
X =Yllg,(r) =0,

which proves uniqueness in G, (T). Again, we have continuity in L*(€; L2"(©))
from the fact that Ig(X), I, I{ and I are continuous in L2 (£; L2/(9))
as was shown in 5.1.6 (ii), 5.1.8 and 5.1.10.

Similar to (i), under the additional assumption (A7) we get existence of
cadlag versions of the solutions in (ii).

Thus, it remains to show the a-priori bound (5.28).

Note that we have, for ¢t € [0,T'],

n 2v

({ U(t,s)E(s,X(s))ds

B[ X0l < c) (EIU(t 0)¢l175. +

2v

2
Lz
t

Of U(t, S)ME(S,X(s))(m) ds

+E

2v
L3
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t 2v
+E fU(LS)ME(S’X(S)) dW (s)
0 L%V
¢ 2v
+E fo(t,s)Mg(&X(s))(x) N(ds, dx)
012 2

< cfv) (e(v. TIBI[e] 3%,

el 7o), (7)o (1), Cay) (14 [0 = 9) BIIX ()3 05 )

< 10, Gm, T, e(T), (T), 6 (T), o) (1 + BI€]135,)
t

+ a0, G, T e(T), (), e (T), Cag) [ (£ = 5) VBN X (5) 34, d.
0 P

Thus, (5.28) follows from the Gronwall-Bellman lemma 2.7.2/2.7.3, which
finishes the proof. B

We complete this section with the following corollaries and remarks, we
need later.

Corollary 5.2.4: Under the assumptions of 5.2.1 resp. 5.2.2, there ex-
ist mild solutions V' to (1.1) resp. (1.2) with £ =0 and F =0 resp. E =0
such that

(5.33) S[%PT]EHV(UH%E < ¢(q,¢.T,e(T), co(T), ey (T), Cyp)
te| 0,
(534) Sup E||V(t)”%2 S C(q,C,m, Ta C(T)?CO'(T)’C(]J])
t€[0,T] P

with positive constants on the right hand side resp.

(5.95) sup BV ()1 < e, T.el) (), e(T), Coy)
te[o,T
(5.36) sup E[|[V(8)|[34, < c(v,(,m, T, c(T), co(T), Cavy)
t€[0,T] e

with positive constants on the right hand side.

From Theorem 5.2.1 and 5.2.2, in the special case that I" and X are solution-
independent, we get

Corollary 5.2.5: (i) In the setting of Theorem 5.2.1, in the special case
that v: [0,T]xQ — R resp. 0: [0,T]xQ — R and |y| < K resp. |o] < K
for some K > 0 uniformly in [0,T] x Q, there exists a unique solution to
(1.1) resp. (1.2) in the sense of 5.1.2 (i). Furthermore, t — X (t) is con-
tinuous in Lq(Q;L?)(@)) and obeys estimate (5.25) resp. (5.26).
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(ii) In the setting of Theorem 5.2.2, in the special case that

v: [0, T x Q2 —=Rresp. 0: [0,T] xQ— R and |y| < K resp. |o| < K for
some K > 0 uniformly in [0,T] x Q, there exists a unique solution to (1.1)
resp. (1.2) in the sense of 5.1.2 (ii). Furthermore, t — X(t) is continuous
in LQ"(Q;L%”(G))) and obeys estimate (5.27) resp. (5.28).

Remark 5.2.6: As was proven in the above theorems, under certain as-
sumptions the solutions X to the equations (1.1) and (1.2) allow cadlag
modifications in L2(0). Let us denote them by X(t), t €[0,T].

The processes X (t), t € [0,T], are in general not predictable. To over-
come this, we define

Xty .= X(t-), t €[0,T].

This process is surely left-continuous and hence predictable.
It is easy to see that

(5.87) X (t) = X(t), P-a.s., for any t € [0,T].

Indeed, given any t € [0,T] and any sequence (tp)neny C [0,T'] such that
tn, Tt asn — oo, by definition we get

Xe(t) = lim X%t,), P-a.s. .

n—oo

On the other hand, in L*($; L,%(@)) we have

X(t) = lim X°(t,) in probability.

n—oo
Combining both convergences we get (5.37).
The It6 isometry shows that the stochastic equivalence of X and X im-

plies the stochastic equivalence of all processes on the right hand side of
equation (1.1) resp. equation (1.2).

Let X(t), t € [0,T], be a cadlag modification of the unique predictable
solution to (1.1) resp. (1.2). This modification satisfies the equation
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(5.38) X(8) = UL0) + [ Ut 5)F(s, X(s))ds
0
+ U(t,S)ME(&X(S))dW(S)

+

Ot O — &

U(t7 S)MF(S,X(sf)) (x) N(dsv d.’L‘)
L2

resp.

(5.39) X(t) = U(t0)6 + OftU(t,s)E(s,X(s))ds + J’U(t, §)Ms(s.x (s AL (5)
= U(t,0)¢ + OftU(t,s)E(s,X(s))ds

+ [U(t, 8) Mo x (s m ds

+ [U(t, 8)Msy(s x (s AW (5)

+

Ot O O

f U(t7 S)ME(S,X(sf)) (1’) N(d*S? d[]?),

L2
P-almost surely, for each fized t € [0,T].

Taking the cadlag modification of all integrals on the right hand sides in
(5.38) and (5.39), we have the identity for all t € [0,T] on the same uni-
versal subset Qo € B(Q2) with P(p) = 1.
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Chapter 6

Comparison results in the
Lipschitz case with additive
jump noise

For the whole chapter, let (Q2,F, P) and (F)¢c[o,r] for some T' > 0 be as in
Section 1.2.

As in Chapter 5, we consider SDEs in Lf)(@) for © c R? for some d € N.
Again, we assume p to be such that p,(©) < oo, i.e. p > d for unbounded
© and p = 0 for bounded ©O.

Let (en)nen be an orthonormal basis of L?(©) obeying (3.1).

In this chapter, we show comparison results both for equation (1.1) and
for equation (1.2) in the case of additive jumps, i.e. when the coefficients
corresponding to the jump parts (I' in (1.1) and ¥ in (1.2)) are solution-
independent (see Section 6.1 below).

Thus, we assume that the drift coefficients e, f®: [0,T] x Q x R — R,
i = 1,2, are of the same type as e resp. f in Chapter 5, i.e. they are
Pr ® B(R)/B(R)-measurable and Lipschitz continuous w.r.t. the third vari-
able.

Note that a crucial point to show a comparison theorem for equation (1.1)
in the case of an additive jump part is that for our L?(0)-valued Q-Wiener
process W we suppose that the orthonormal basis (e, )nen of L?(©) appear-
ing in the representation

W(t) = Z \/@wn(t)en’ te [OvT]a

neN

(which exists by Proposition 2.3.7) is uniformly bounded, i.e. (e, )nen obeys
(cf. (3.1) in Section 3.1)

187
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sup |len]]oo < 00.

neN
The proof, whose method is based on Manthey’s and Zausinger’s proof of
their Theorem 3.3.1 in [76], works by showing comparison theorems for finite
dimensional approximations of the solutions and establishing their conver-
gence to the solutions of the initial equations. Let us note that the proof
of Theorem 3.3.1 in [76] is a simplification of Kotenlenezproof of his com-
parison result in [65]. For the whole chapter, we assume the existence of
a bounded family of operators ((An(t))iejor))Nen C L£(L3(0)) fulfilling
(A6) (see Section 3.1 for its definition).

The chapter has the following structure. First, in Section 6.1 we state the
main result, a comparison result for some approximating SDE with finite-
dimensional Wiener noise and a convergence result for the approximating
stochastic differerential equation. Furthermore, we explain, why the method
from [76] gives us our main result. Then, we show the comparison result
for the approximating SDE in Section 6.2 and the convergence result for the
approximating SDE in Section 6.3.

In the subsequent sections, given X, Y € L%(@), by writing X <Y we
mean that X (6) <Y () for p,-almost all € ©.

6.1 The main result and the scheme of comparison
method for additive jumps

In this section, for ¢ = 1,2, we consider a pair of equations
dXO(t) = (AGXD(t) + FOt, XO(8))dt + My x 0 ())dW (¢)

+ fMC(t)ZUN(dt,dx), te[0,T],
12

(6.1)

resp.
dXD(t) = (AR)XO(t) + EO(t, XO(t)))dt + MowydL(t), t € [0,T],

(6.2)
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with ¥ defined through a Pr ® B(R)-measurable o: [0,T] x @ x R — R
as in Chapter 5. Suppose that ¢: [0,T] x  — R is Pp-measurable and
uniformly bounded, i.e.

(6.3) sup le(t,w)| < K

(tw)€[0,T]xQ
for some K > 0. The multiplication operator M¢: L?(0) — L?(0) is
given by

(Mo(ew) ())(0) = c(t,w)p(0), (t,w) €[0,T] xQ, 0 €6, € L2

Thus, (6.1) resp. (6.2) is just a special case of equation (1.1) resp. of
equation (1.2) with additive Poisson resp. additive Lévy noise, i.e. the coef-
ficients corresponding to the compensated Poisson random measure N resp.
to the Lévy process L are independent of the solution.

As in Chapter 5, for the initial conditions £ we have the following two
cases

Case (A) The initial condition £ is an L%(@)—valued random variable such that
E[|¢D]|9, < oo for some ¢ > 2.
)
The solutions to (6.1) and (6.2) will be constructed in H%(T).

Case (B) The initial condition & is an L?J” (©)-valued random variable such that
E[l¢01%,

The solutions to (6.1) and (6.2) will be constructed in G, (7).

< oo for some v > 1.

In view of Theorems 5.2.1 and 5.2.2, to have existence of (unique) solutions

to (6.1) and (6.2) we also need to assume that g < % resp. v < % with

¢€[0,1) from (A2).
It will be enough to get comparison results in Case (A), since the compar-
ison results in Case (B) follow immediately. Indeed, since L2"(©) C L2(©)

for v > 1, we have

BIIE 2, < o0 = BIIEV |2 < oo
b b
Thus, we are again in Case (A) with ¢ =2v > 2.

For the Wiener process W in (6.1), we have the following basic cases.

e nuclear case, i.e. W is a @)-Wiener process in the sense of Section



190 CHAPTER 6. COMPARISON RESULTS

2.3 with Q € T+ (L?(0)) such that the operator @ obeys a complete
orthonormal system of eigenvectors (e, )nen fulfilling (3.1), i.e.

sup ||en|oo < 00.
neN

e general nuclear case, i.e. W is a ()-Wiener process in the sense of
Section 2.3 with Q € 7+ (L%(0)), but Q does not allow an eigenvector
expansion fulfilling (3.1).

e cylindrical case, i.e. W is a I-Wiener process in L?(0) in the sense
of Section 2.3.

The general nuclear case typically occurs in equations driven by Lévy noise,
for which we apply the Lévy-It6 decompostion.

In both cases of bounded and unbounded domain O, we write Lg for the
spaces L%(@).

A basic assumption on U is that it constitutes an almost strong evolution
operator in L2 obeying (A0)-(A2). In the nuclear case, we set ¢ = 0.
Thus, (A2) is surely fulfilled inthis case. In the general nuclear case, we can
substitute (A2) by the weaker assumption (A5)* with v = 1.

Under the assumptions imposed above, there exist unique mild solutions
X € HYT) (cf. Definition 5.1.1 (i) for the notation) to (6.1) and (6.2)
(cf. Section 5.2, Corollary 5.2.5).

We prove a comparison result for (6.1) and (6.2) in Case (A) by adapting
the proof of Theorem 3.3.1 from [76].

Theorem 6.1.1: Let U be an almost strong evolution operator gen-
erated by (A(t))ie[o,r) such that (A0)-(A2) and (A6) hold. Suppose the
Lévy measure corresponding to N resp. L obeys the integrability condition
(QI) with a given q > ﬁ, where ¢ € [0,1) is as in (A2). The coefficients
f, o and e fulfill the Lipschitz assumption (LC) and ¢ obeys (6.3). Further-
more, let €0, @) ¢ L/Q) be as in Case (A), i.e.

E||¢D]|7, < oo,
P
and let W be as in the nuclear or the cylindrical case. Then,

(i) £ <¢@ pogs.,
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and
fOt,y) < fA(t,y) for all (t,y) € [0,T] x R, P-a.s.,
imply
XMt) < XA(¢), P-a.s.,

for all t € [0,T], where X € HIYT), i = 1,2, denotes the unique pre-
dictable mild solution to (6.1).

(ii) Respectively,
¢ <@ pogs.,
and
eW(t,y) < e@(t,y) for all (t,y) € [0,T] x R, P-a.s.,
imply
XW(t) < XA (1), P-a.s.,

for all t € [0,T], where X% € HIY(T), i = 1,2, denotes the unique pre-
dictable mild solution to (6.2).

Remark 6.1.2:  Assume that the evolution family (U(t,s))o<s<t<r ful-
fills (A7).

Then, by Proposition 5.2.1 there are cadlag solutions X with X(j) € HUT)
to each of the equations (6.1) and (6.2). Thus,

P({we Q| XW(t,w) < XO(t,w) forallt € [0,T]}) = 1.

Both in the proof of (i) and (ii), we use the following comparison method:

1. We show a comparison result for appropriate finite-dimensional ap-
proximations of X (9.

2. We show that these approximations tend to the solution to (6.1) resp.
(6.2), which immediately implies the comparison result for the solu-
tions to (6.1) and (6.2).
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This will be the content of the Propositions 6.1.3 and 6.1.4 below.

So, let us first of all construct approximations for both equation (6.1) and
(6.2).

Equation (6.1)

Given the Wiener process (W (t)):c[0,7] from equation (6.1) introduced above,
for M € N, we define a covariance operator Qs € 7+ (L?) by

M
QMU} = Z anp < Y, e, >[2 €n
n=1

and the associated Q-Wiener process (War(t))sejor) C L? by

M
W (t) := > Vanwn(t)en, t €[0,T],
n=1
where wy(t) =< W(t),e, >r2, t € [0,T]. Obviously (wn)i<n<imr is a
family of mutually independent real-valued Brownian motions.

Let X](\Z) € HY(T) be a mild solution to (6.1) with Wy, substituting W, i.e.

dX\)(t) = (AWX (1) + FO@, X3 (1))dt
+ My AW (t) + [ M (x) N(dt, dzx), t € [0,T],
L2

£.X57 (1)
(6.4)

X3 (0) = €9,

By Definition 5.1.1, X](\f[) satisfies the following identity in L%

X0y = Ut 00 +£U(t, $)FO(s, X} (5)) ds

+ AW (s)

o o

U(t, S)ME(S,XX?(S))

t ~
+ [ [ U(t, s)Mcoz N(ds,dx), P-as., for any t € [0,T].
012

Next, we fix additionally N € N and consider the equation

dX%?M(t) = (AN(t)X%?M(t) +F0 (t’XJ(\?M@)))dt N
+M2(t,XN,M(t)) dWM(t) + f MC(t) (l‘) N(dtv dl‘), te [0’ T]’
L2

(6.5)
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where Ay (t) € L(L?) approximates A(t) in the sense of (A6). Due to the
boundedness of the operator Ay (t) and the Lipschitz-continuity of all coef-

ficients, equation (6.5) has a unique (mild=strong) solution X](\Z})M e HIUT).

For general results in infinite dimensions about equivalence of globally Lip-
schitz coefficients see e.g. [97] in the Wiener case, [60] in the Poisson case
and Section 9 in [95] in the Lévy case.

Therefore, we have the following identity in L%

. 4 t ' .
X](\ZI)M(t) = Un(t,0)¢9 + of Un(t, S)F(l)(st](V?M(s)) ds

)

+fUN(t,s)M AWy (s)
0

S8, X0 (5)
t ~

+ [ [ Un(t,8) Mc(syx N(ds, dz), P-a.s. for any t € [0,T].
012

Note that the existence and uniqueness of the X](\f[) and X](\l,)M in HY(T)
follows from the general solvability results in the Lipschitz case (see Sec-
tion 5.2, Theorem 5.2.1/Corollary 5.2.5), since Ay and W), are only special
cases of A and W from Sections 5.1/5.2.

The solutions can be constructed e.g. by Picard’s iteration method (as
in the proof of Theorem 5.2.2). Furthermore, under the above assumptions
the classes of strong and mild solutions coincide (see e.g. [37], Sections 8
and 10).

Equation (6.2)

Let us define approximations similar to those for the equation (6.1). We
first note that by the integrability assumption (QI) on 7, we have

J lzll72 n(dz) < oo,
L2

i.e. (SI) holds true.
Thus, we can apply the Lévy-Itd decomposition 2.4.13 in L? to get

(6.6) L(t) = tm +W(t) + [ 2 N(t,dz), t €[0,T],
L2

with W being a Q-Wiener process with Q € 7+(L?).
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Recall from Section 2.3 that any Q-Wiener process W obeys the represen-
tation

W(t) = > anwp(t)en,
neN
where (ap)neny C Ry is such that
> an < o0,
neN

(wn(t))tefo,r]; m € N, is a family of independent real-valued Brownian mo-
tions and (e, )nen is an orthonormal basis of L2.

Note that, in contrast to equation (6.1), (e,)nen does not necessarily obey
(3.1).

By (6.6), (6.2) becomes

(6.7)dXW(t) = (AB)XO(t) + ED(t, XD(1)) + Mcgym)dt
+Mew) aw (t) + f Mc(t)xN(dt,d:L‘), te[0,T]
.2
x (@) (0) = £,
Given N € N, let Ay be a bounded operator in L2 as in condition (A6).
For M € N, let Wj; be a finite-dimensional Wiener process as in the ap-

proximation of the equation (6.1). We denote by X](\?M, X](\f[) € HY(T) the
unique mild solutions to

(6:8)dX\)(8) = (An(OXW () + BO(E XT, (1)) + Mcym)dt
+MC(t) dWhr(t) + f Mc(t)a:N(dt,dx), te[0,T]
L2

and

(6.9)dX () (1) = (ADX[) (1) + EO(t, X1 (1)) + Mcgym)dt
+./\/l()(t) AW (t) + f Mc(t):L‘N(dt, dx), t € [0,T]
L2

X0 = €0,
existing by Corollary 5.2.5 (i).

Having defined the approximations for both equation (6.1) and (6.2), we for-
mulate the following lemmata, which will be proven in Sections 6.2 (Lemma
6.1.3) and 6.3 (Lemma 6.1.4).

Lemma 6.1.3: Let U, W, the coefficients f, o and e, and the initial
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conditions €@ be as in Theorem 6.1.1.
(i) Let €9, i =1,2, be as in Case (A), and
£D <¢@ pogs..
Furthermore, suppose that
f < f@ for all (t,y) € [0,T] xR, P-a.s..

(@)

Then, we have for the corresponding solutions Xy ,,, 1 = 1,2 of equation

(6.5)
X () < X9y (1), P-as.,
for any t € [0,T] and all N,M € N.
(i) Let €9, i =1,2, as in Case (A), and
e <@ pogs..
Furthermore, suppose that
e <e@ for all (t,y) € [0,T] xR, P-a.s..

Then, we have for the corresponding solutions XJ(\?M, 1 = 1,2, of equa-
tion (6.8)

1 2
X\ () < X9y (1), P-as.,
for allt € [0,T] and all N,M € N.

Lemma 6.1.4: (i) Considering X, X](\f[), X](\?M, N,M €N, i=1,2,
as defined in (6.1), (6.4) and (6.5), we get the following convergence results:
lim E|| XV, ) — X()||2, =0, for each M € N,

—00 ’ P
: (4) i —
Tim BX(0) - XO@], =0

i) Considering X, X(i), xW ,N,M €N, i=1,2, as defined in (6.2),
M AN.M
(6.9) and (6.8), we get the following convergence results:
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z\}im EHXZ(\?)M(t) - Xz(\?(t)H%z =0, for each M € N,
— 00 ) H
Jim BILXG (1) = XO )7, = 0.
Thus, we first get
X](\},)M(t) < X](\?,)M(t), P-a.s.,

for allt € [0,T] by 6.1.3 (i) (for equation (6.1)) resp. by 6.1.3 (ii) (for
equation (6.2)). Then, by first letting N — oo and then letting M — oo, we
get 6.1.1 (¢) resp. (it) by 6.1.4 (i) (for equation (6.1)) resp. by 6.1.4 (ii)
(for equation (6.2)).

6.2 Proof of Lemma 6.1.3

We adapt the proof of 3.3.2 from [76] to our situation.

Both in the proof of (i) and (ii), the idea is to construct approximating
processes by splitting [0, 7"] into smaller intervalls of equal length. We show
comparison results for those processes and conclude the required comparison
result by letting the length of the subintervalls tend to 0.

The aim of such approximation is to separate stochastic and determinis-
tic terms, which require quite different methods of analysis.

(i) For a fixed j € N, we set t := kji, k =0,1,2,....7, and thus get a
partition of [0,7"] into j intervalls of length % We define processes Z,gi;,
Vk(zj) € HI([tx, tk + 1]) in a recursive way by the following chain of identities
holding P-almost surely

t
@) () .— ¢l Y
ZO,j(t) = {( ) + ‘O[ME(S’Z&J)‘(S)) dWM(S) + f f Mc(s) (x) N(ds, d.l‘),
(6.10)

, . t . 4 ;
V() = 2§ (t) + I (An(s)Vi(s) + FO (5, V) (s))) ds,

for t € [0,t1] and

AW (s) + [ [ M (@) N(ds, dx),

) X t
250 = Vil + ] My 40 ih o
k ’ k

(6.11)
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. t . ] :
V() = 2 (tr) +/ (An() VO (s) + FO (s, V() ds,
k

for t € [tk,tk+1] and k = 1727 7] -1

Note that the processes Z,(;;(t), t € [tg,tr+1], are described by the SDE
driven by the Wiener process and Poisson noise.

For each 0 < k < j — 1, the equation for Z,(;; (t) has a unique (up to modifi-
cation) strong (and hence also mild) predictable solution in H?([tx, txi1]),
which is time-continuous in L?(Q; L2).

This is guaranteed by the finite-dimensionality of W}, the Lipschitz prop-
erty of 3, the boundedness of C' and the integrability property (QI) of the
Lévy measure n corresponding to N.

Then, a standard application of the Banach fixed point theorem (like in
the proof of Theorem 5.2.1), as well as the Picard iteration method (like
in the proof of Theorem 5.2.2), gives us the unique solvability result in

HY([th, thg ]).

Let us recall that the Poisson integrals

J | Mes () N(ds, dx)

ty L2
in the right hand sides of (6.10) and (6.11) are cadlag by their definition.

So, to get the versions of Z,gz; from H9([tg,tx+1]), one has to take the pre-
dictable versions of the above integrals

t—

f fMC(S)(x)N(ds,dx): f f/\/lc(s)(x) N(ds,dm).

lg L2 [tk 7t) L2

The V-terms are governed by deterministic equations but with random co-
efficients. Thus, the predictability of the integrand process is not essential
for defining the corresponding Bochner/Lebesgue integrals in the right hand
sides of (6.10) and (6.11).

Due to the boundedness of Ay and the Lipschitz property of the F(®)| there

exists a unique pathwise continuous process [tg,tx+1] 2t — Vk(zj) (t) € L%
solving (6.10), (6.11) P-almost surely.

Furthermore, [ty tky1] D¢ — Vk(z]) (t) € L2 is continuous in L7(€; L2).
Since Vk(? (t) is Fy,.,-measurable for each ¢ € [ty,t41], there exists an
Fippr @ B([tg, tg41])-measurable modification of Vk(zj) However, by its con-
struction Vk(zj) (t) is not Fi-adapted and hence not predictable.

Next, we define ZJ(.i), Vj(i): Qx[0,T] — L% by
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Z0(t) = Z00 (1), t € [t it ), b =0,1,2, 5 — 1,

@y — 6
(6.12)
V() = V@), ¢ € (b taga) b =0,1,0005 = 1,

Z(T) = Vj(]i) (T).

One easily checks the following identities (holding P-almost surely)
() ) 0 )(s 0
(6.13) Z;°(t) = £0) 4 {(AN(S)V]. (5) + FO)(s, ViV(s)))ds
t ~
+ [ | Mc(s)(z) N(ds, dz)

012

+[M AW (s),

o o

(5,257 (s))

for t € [tkatk—H ), k=0,1,....,57—1, and

610 VO® = €0+ [(AneV () + FO(s,VO(5)) ds
0

J
ki1 t41 B
+ [ My 0 WVuls)+ [ | Me (@) N(ds, de),
0 7 0 I

for t € (tkatk+1]7 k=0,1,....,57 — 1.
In particular, Z]@ (tx) = Vj(i) (tg) for all 0 < k < j.

Note that by this definition, the V-terms are of the same structure as in
the proof of 3.3.2 in [76], whereas, compared to that proof, our Z-terms
have an additional jump term (cf. equations (3.1) and (3.2), p. 63 in [76]).

By construction, the processes Z ](-l) obey a cadlag version on the whole in-

tervall [0, 7], whereas the Vj(i)’s are caglad.
Again, we will take a predictable version of ZJ@ (t), t € [0,T], as a limit

value at t— on the right hand side in (6.13).

In contrast, the process Vj(i) (t), t € [0,T], is not adapted, but obeys an
Fr & B(]0,T])-measurable version.

The proof of Lemma 6.1.3 (i) will be splitted into the following two claims:

Claim 1: For our processes defined in (6.10)/(6.11), we have in L?)
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() (2)
Vi) < Vi),
(6.15)
(1) (2)
zM () < 2P (),

P-almost surely, for each t € [0,T].

Proof: Let us start with the intervall [0, ).
By (6.13), we have

AW (s)+ f [ Meys)(x) N(ds, dz),

(6.16) Z\(t) = Z\)(t) = @HM J
L2

5,259 (s))

for any ¢t € [0,t1 ).

For a moment, we consider this equation on the whole intervall [0, ].

As already mentioned before, it has a unique predictable solution ZJ(-Z) (1),
t e [0, t1 ]

Thus, by Proposition 5.1.4, similarly to the approximation procedure from
Step 1 in the proof of Proposition 3.4.3, we can find P}, ® B(©)-measurable
realizations of the mappings

[0,t1) x 2% O3 (t,w,0) > Z\)(t,w,0) €R, i =1,2.

We prove the required comparison on [0, ) with the help of Itd’s formula
applied to a localization of (6.16).

To this end, we take Fy ® B(0)-measurable realizations of £ (w,0) and
P:, @ B(O©)-measurable (i.e. predictable) realizations of both the Wiener (cf.
the proof of Proposition 3.4.3 in Section 3.4) and the Poisson integral

012

(f J Mo () N(ds, dﬂ?) Oftj;c N(ds, dz).

In both cases, the identity holds in LQ(Q;LZ). For the Poisson integral,
such realizations exist by Lemma 5.1.8 and Step 3 in the proof of Proposi-
tion 4.3.

Thus, (6.16) can be interpreted (see also the proof of Theorem 3.3.1 in [76])
as a family of one-dimensional SDEs

mmﬁ%mzéwwzwaf (5,0))en(0) dwy(s)

¢
+ [ [ e(s,w)z(0) N(ds,dzx), P-as., for t € [0,t1],
0 L2

where 6 is from some subset ©g € B(©) of full y1,-measure.
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For each fixed 6 € Og, equation (6.17) has a unique predictable solution
Z9(,), t €[0,t], such that

sup E]Z (15,9)]2 < 00.
te[0,t1 ]
Since the coefficient o(s,w,y) is Lipschitz continuous in the third variable,
this solution can be constructed by the Picard iteration method (as it was
done in the proof of Theorem 5.2.2 for the equation (1.1)).
Setting

200 (t,0) = €0(0), t € [0, ],

and

¢
(3,n) L (i,n—1)
Z;70(t,0) == ( )+ Z Vanen (0 JJ (t,0)) dwy(s)
t
+ [ [ e(s,w)z(0) N(ds,dz), t € [0,t1], n €N,
012
we get a sequence of processes (ZJ(-i’n) (t,0))oco0,te0,t1], M € N, which obey
Pi, ® B(©)-measurable versions (see Proposition A.1 in [13]).
Let us fix n € N. For any t € [0,%1] and 6 € ©g, by (3.1) and the Lipschitz

property (LC) for o we get

(i,n+1) (i,m) 2
(6.18) B|Z; (t,0) — Z;""(t,0)]

M t . .
= % anlen(®) [ Elo(s, 28"V (@,0) = o (s, 20D (t,0)) 2 duwn (5)

n=1
< M 2 i,n—1) (i,n—1) 2
< (5 an) (s leal fErZ (,6) — 20" (t,0)[2 ds.

Herefrom, by the Gronwall-Bellman lemma 2.7.2 we conclude that

sup E|Z{"V(t,0) — 20 (2,0))2

te[0,t1]

< t1guc(co(T)) sup E|Z"V(t,0) — 200 (t,0) )
te[0,t1]

with

sup E|Z\"V(1,0) — 20 (t,0)?
te[0,t1]

< sup B[S Vi | (5, E©)en) dus(5)

te[0,t1] n=1

2

t

M
— sup 3 a [ Elo(s.£(6))ea(0)? ds

te[0,t1 | n=1 0
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< (£ a0) (suplleali ) e colT) 1 + BIEO))

n=1 neN

Thus, we finally get

S[HP]E!Z’”“)@ 0) — Z8"(4,0)]> < t7qne(ca(T))e(T, co(T))(1 + E[E(0)[?)
te|0,t1
< Q.

Here, (¢n)nen is gained from (6.18) as described in 2.7.2. Note that

éfC(T7 co(T))(L + E§(0)[?) p1(df) < o0

Since, in view of the Gronwall-Bellman lemma 2.7.2, we have

D ttgn < o0
nelN

and t7q, — 0 as n — oo, and since £ is a Fy @ B(O)-measurable ver-
sion of the initial condition, we get the existence of Z](-i) (t,0), t € [0,t1],
for p,-almost all 6 € ©, as the limit of the processes Zj(-i’n) (t,0), n € N, in
L?(;R).

Furthermore, by similar estimates we have the convergence of Z](-i) (t) in
L2(%; LIQJ) uniformly in ¢ € [0,¢;]. Applying pairing with cylinder functions
(as in Step 3 in the proof of Proposition 3.4.3 resp. 4.3), we can conclude
that Z](.i) (t) solves (6.16) in L,%.

On the other hand, ¢ +— Z;i)(t) € L% is a predictable solution to (6.16),
which is unique up to modifications in H%(T'). So, ZJ@ (t,0) is a Py, ® B(©)-
measurable realization of Z (l)( t)e L2

Let us consider the dlfference processes. We have

(6.19) A%Z(t) = 2" (t,0) — 2P (1,0)

551 - @ <9>
+ z \/@f o(s, 23 (5,0)) — (5. 28" (5.0)))en(0) duwn (s),

P-almost surely for any § € ©g and t € [0,¢;]. The right hand side in
(6.19) obeys a pathwise time-continuous modification by the standard prop-
erties of Wiener integrals.

Thus, we can apply the finite-dimensional Itd’s formula (see e.g. Section
IL5 in [53]), which gives us for any CZ-function ¢: R — R

(6.20) 9 (AJ(1))
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0
.S anfw (A9(s))[o(s, Z0(s,8)) — o (s, 22 (5, 6))]en(8) dur(s)

([tw (AJ(s)lo(s, 20 (5,0)) — a(s, 23)(s,0))]e;, (6) ds,

for all t € [0,t1 ), P-almost surely.

To make a proper choice of 1, we first need some technical preparations,
which can e.g. be found in Sections IV. 3 and VI.1 in [53].

As a Lipschitz function, the diffusion coefficient ¥ obeys the estimats

|U(t’w7§) - U(t?wveﬂ < h(‘f - 0‘)? §,0 €R,

uniformly on [0,7"] x Q with h(z) = ¢,(T)z, z > 0.
Furthermore, h fulfills 2(0) = 0 and

| h72(u)du = oo for any & > 0.
(0e)
Thus, we can find a strictly decreasing sequence (a;);eny C (0, 1] with
aj—1

ap =1, hmal—Oand [ h™2(u)du =1 for any [ € N.

ap

For each [, there is a continuous function a; with support in (a;,a;—1) such
that

0 <z )<lh2 and fa’“ (2)dz = 1.
Defining
1/%(2) =0,2<0,

and

z
= [ [ ay(u)dudy > 0, z > 0,

0

gives us a nondecreasing sequence (1), of C7 functions with 0 < le/ (2) <1
and limy o ¥;(2) = 2zt := 2V 0 for each 2z € R.

Furthermore, we have

Ot—rw

(6.21) 4 ()] = lou(2)| < gy = > 0.



6.2. PROOF OF LEMMA 6.1.3 203

Now we substitute into (6.20) the functions 1y, [ € N, constructed above.
Note that, for all 1 <n < M and t € [0,t; ), we have

(6.22) Ebf o(s, 2 (5,0))en(0) | ds

2 t .

< (suplleallx ) 72(0) (1481205007 as)
neN

< OOE 0

for i = 1,2 and p,-almost all 0 € ©.

Without loss of generality, we may assume (6.22) to hold for all

6 € ©g € B(O) with some ©¢ having full u,-measure. Furthermore, we
assume that, for all § € ©g, M () < £3)(g), P-as., and E[¢M(0)| < oo,
E[?) ()] < co.

Thus, the stochastic integral
t A
[45(AD7(s: 2] )en(B)dun(s)
is well-defined for all § € ©g. For ¢t € [0,¢;) and 1 <n < M, we have
t
B [ i(A5()(o(s, 27 (5,6)) = 7(5, 2" (5. 0)))en(6) duon(s) = 0

and (by (6.21))
Mot 1) 2)
623) B [y (A%())(0(s, 2 (5,0)) — o (s, 21 (s,0)))2e2 (0) ds
2 t
< (igguen\m) ME [ 4] (AJ(s)2(A0(s)) ds
< fate (supllea | )

Substituting these estimates in the right hand side of (6.20), we obtain

Bu(a9(0) < Br(A90) + } (sup enl2. ) Mt
ne
Thus, we get lim E¢i(A%(t)) < Jim E (£ (9) — £2)(8)).

By construction we have

0<i(2) T 2+ as I — oo,



204 CHAPTER 6. COMPARISON RESULTS

which by B.Levi’s monotone convergence theorem implies
E[(AY(1) 1] < E[(£M(0) — ¢ (0)) ] for all 6 € O and ¢ € [0,1).

Since for § € ©g, by our assumption, we have €1 (0) < £3)(), P-almost
surely, we get Ag(t) < 0, P-almost surely, for all t € [0,¢; ). Herefrom, using
the time-continuity of A?(t), we conclude that for z,-almost all § € ©

P({w e Q| 2V (t,0) < 2P (t,0) forallt € [0,t1)}) = 1.

Finally, taking into account the Py, ® B(©)-measurability of ZJ@ (t,0) and

the continuity of the map [0,¢1) 2 t — Zj(l)(t) - Z](?) (t) € L2, we conclude
that

P({we Q| Z2V(t) < 2P (t)in L2 forallt € [0,t1)}) = 1,

which proves that ZJ(.I)(t) < Z](.Q) (t) in L% for all t € [0,¢;) P-almost surely.

Similarly, we prove that Z(()}]) (t1) < Zé?j) (t1) P-almost surely.

Next, we consider V;-(z) (t) on [0,¢1].

We will continue to follow the lines of proof of 3.3.2 from [76] and use the
analytical tools from operator theory applied there.

Note that the V-terms in our proof coincide with the ones from the proof of
Lemma 3.3.2 from [76]. The sole difference is that the authors in [76] only
consider the case of w-independent coefficients. Nevertheless, the proof can
be done by the same arguments as in [76].

Obviously, we have Vj(l)(O) =M <@ = Vj(Q)(O), P-almost surely.
For V}(i) (t) with ¢ € [0,¢;), we have the following deterministic integral
equation (with random coefficients) in LZ

. . t . .
(6.24) vt =z () + OfAN(s)vj“)(s) + FO(s, V) (s)) ds.
Since [0,t1) > ¢ +— Vj(l) (t) € Lf, is pathwise continuous, one finds a uni-
versal subset {29 C € of full P-measure such that (6.24) holds for all w € Q,
t € [0,t1) and ¢ = 1,2. Without loss of generality, we may assume that
€@ > M and fO(t,w,0) > fV(t,w,) on [0,T] x R, for all w € Q.
Next, we fix w € Qo and define a linear operator B(t) € L(L2) for t € [0,T]
by

FO v (1)-F@(s,v D (1))
Bt)p:= VOO0
J J

in the case Vj(2) (t) # Vj(l)(t) and

2
@, p € Ly,
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B(t)gp = CF(T)Qpa p e L/2)7

otherwise. Here, C(T') denotes the common Lipschitz-constant of f() and

@ ie.
Cp(T) = max(c;u)(T), cpe (T)).

Obviously, B(t) is a bounded operator in L? p» Whose operator norm is less
than Cp(T).
From Step 1(ii) in the proof of Lemma 3.3.2 in [76], we know that (with the
help of [24])

(6.25) An(t) == An(t)+ B(t), t € [0,T],
generates a positivity preserving evolution operator Uy in Lz.

By the definition of the V-terms we have, for all ¢ € [0, ],
t —
AV () =V v = Z8 ) - Z8m) + I An(s) (VP ) - v (@) ds

f (FO(s,V,(s)) = FO (5, (s))) ds.

Next, following the lines of [76], we rewrite the above equation in the mild
form, using the evolution family Uy. Thus, for all ¢ € (0,1],

VA0 vy = On(t0)(Z5 (1) — Z5) (1)
+ ft On(t,s)[F@ (s, VY (s)) — FO(5,V ) (s))] ds.
0

Recall that Z(gf;- (t1) = ZJ@ (t1) = Vj(i) (t1) and, by the previous arguments,

Z(()}J) (t1) < Zg(? (t1), P-almost surely.

Recall that Uy is positivity preserving and f®(w) > fM(w) on [0,T] x R,

for all w € Qp. Thus, we immediately get Vj@) (t,w) > V(l)( w) for each
€ (0,t1] and all w € Q.

Since Vj(z) (0,w) — Vj(l)(O,w) = £ (w) — £M(w) > 0 for all w € Qp, we can

thus conclude that Vj(Q) (t,w) > Vj(l)(t,w) for each t € [0,¢; ] and all w € Q.

We also have Z](-z)(tl) = V}(z)(tl) > Vj(l)(tl) = Z;l)(tl), P-almost surely,
which yields

1 2
Zj(. )(t) < Z](- )(t) P-almost surely on [0, ].

Claim 1 follows by the same arguments on each interval [tx, tx11]. O
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We finish the proof of (i) by the following claim.
Claim 2: Fori=1,2

lim 2\ = X\,

J—00

in H*(T), i.e.

lim sup E[\Z](.i)(t) - X](\?M(t)H%g =0.

J%0te[0,T] ’ e
Hence, inequality (6.15) (cf. Claim 1) implies that
X](\}?M(t) < X](\i)M(t), P-almost surely, for allt € [0,T'].

Proof: Recall that Z ](Z) and X](\;?M are H9(T')-valued for all

4, N,M eNand:=1,2.

Since H4(T') C H?(T) for any q > 2, it is enough to consider the processes
in this setting.

Furthermore, it is enough to take any modification of the processes Vj(z),
Z ](-Z) and XJ(\Z,) o because all estimates will be in the meansquare sense.

First, let us note some a-priori estimates for the above processes:

By the moment estimate in the Lipschitz case (cf. Corollary 5.2.5), we
get

exari=max sup E||IXV (1)[2, < oc.
=12 ¢ef0,T) ’ ’

For arbitrary j € N and ¢ = 1,2, we have

) ] j—1 :
sup B[V (#)[[2, < c<E||5<Z>|z2+z sup E||v,§,}<t>|\z2>
te[0,T] L P k=0 t€[tg,trr1] s

< ev(j) <oo
and similarly

sup E[|Z1(8)]12, < ez(j) < .

te[0,T'] L
So,
6.26 E[[VP @) - xO @)1 AU D ¢ UWOIIE
(6.26) sup E[||[V)(t) = X012 + 1127 () — XG0 0112, ]

te[0,T] L L

<evz(j, N,M) < o0, i=1,2.
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From the definitions (6.13) and (6.14) of Zj(.i) and Vj(i), i =1,2, we have

t
(@) gy (4) ,
(6.27) Z;7(t) = V;"(tr) +t{ My, 29 (s) dW(s)
t ~
+f f MC(S)CC N(ds,dx), i=1,2,
l L2
for any t € [tg,tg41) and 0 < k < j — 1.
Furthermore, taking the solutions X](\?M, 1 = 1,2, in the strong form, we
have

) ) t ) ) ;
(628) X{hs(0) = XNhy(th) + (AN () XRs(5) + FO (s, X (5))) ds
k

dWas(s) +tf Lf2 Mes)(x) N(ds, dzx)

t
+t{ MZ(SNXI(\;L?M(S))

for any t € [tg, tre1).

Th'is allows us to express Z J(.i) (t) — X](\?M(t) in terms of
V() = X0 ()

By the isometries for stochastic integrals w.r.t. Wiener processes and Pois-
son random measures, assumption (QI) on the Lévy measure corresponding
to N, Lipschitz property (LC) for both f®) and o, the boundedness prop-
erty (LB) for o and the boundedness of the operator Ay, we get

BV, () - X 013

) t 5 ) ; tey1
=E g(l) 4 E{‘(AN(S)‘/J( )(3) + F(Z)(S’ VJ( )(3))) ds + bf ME(S,ZJ(-i)(S)) dWhs(s)
tet1 5
+ [ | Mes)(x) N(ds, dx)
0 L2
ot . A . ¢
_ <§(z) n J(AN(S)XJQM(S) + FO(s,X\)(5))) ds + {ME(S,X%?M(S)) AW (s)
) ) 2
+ [ M) (z) N(ds, dm))
0 L%
M | let1 )
< C(C(T)7 C(N)> 02,77) ngl Of EH(MZ(S,Z](-“(S)) - MZ(S,X%?M(S)))(en)HL% ds
tht1 ) trt+1 )
L BIMy o (@l ds| + [ BIICE)E ds

+0fEHVj(i)(S) - X%?M(s)]|%g d8>
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tet1

< (T M, e(N), Cp(T); € (T),Can) | | BIZY () = Xy (]I ds

(b1 — 1) (1 + s ]E||X%?M<r>||ig> + (tear — te) K2 Ty, (O)
re[0,T

t . .
+ BRIV - Xy (ol o

tey1

< o(T, M, K, e(N), Cr(T), ¢(T), Can) | | EIZ(5) = Xy (3)2; ds
0

. t . .
(b1 — ) (1 + s[%pT]EHX}é?M(r)H%g) LBV @) = X0 6l ds]
rel0,

t . .
= (M. K (N). Co(T), (T, Ca) | Byftisn) + BV 6) = X0l s
0

for t € (tg,tg+1] and k € {0,1,...,7 —1}. With the help of (6.26) the
term B; can be estimated by

Bj(tk+1)
) G G
= [ ElZ;"(s) =Xy ()72 ds+(tera—te) | L+ sup E[| Xy, (r)]]72
0 ° r€[0,T'] ’
<T sup E[||V;7(0) = X0y 1B +1127(0) = X{ 0113,

te[0,T]

+§ (1 + sup EHX](\?M(t)H%Q
te[0,T] ?

< T [erz0i.6) + 11+ (6]
< 0.

Now we can apply Gronwall’s lemma, which leads to

(6.29) B[V, (6) = X, (8)]135 < e(T, M, e(N), C(T),6(T), Ca) By (tr11)
for any t € [tg,tgs1), k€ {0,1,...,5 —1}.

Let t € [tg,tg41 ) for some k € {0,1,...,7 —1}. By (6.27) and (6.28) we get

El|z (1) - X (012,
< C (BIV () = X¥ 0 )13,
2

+E ) AW s (s)

t
S M z00) = Maax@, 0
L
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t ) ) :
+E | [I1AN )21 1XN 2 ()5 + 1FO (s, X, ()11 dD

123
=: C(Il + IQ + Ig)

By the previous considerations, we have (cf. (6.29))
I < 5(T, M, C(N)a C(T)7 CU(T)a CZ,n)Bj(tk—‘rl)-

Concerning Is and I3, we observe

t . .
Iy < (Mo ) [ EIIZ) () = X013,
k

and

0<I < T, N,CT) 1+ sup EHXJ(?M““)”%)
re[0,T] ’

< Se(T,N,C(T))(1 + en,m)-
Summing all together, by the definition of B;(ty41) we get

BIIZ"(6) = X{u Il < F(1+e(T, N, M) (1 + ()

¢ . .
He(TM,e(N), C(T), (1) [ BI|Z) () = X ()] .
Then, Gronwall’s lemma finally implies

Bl 2 (1) - XJ(\?M(t)H%% < (14 C)(1+ ¢(6®))e < 0,
where C' denotes the maximum of the two constants ¢ and ¢ from the pre-
vious inequalities. Thus,

(6.30) lim E[|Z\"(t) - X](\Z,?M(t)H%% =0,

J—00

which proves Claim 2. [
From (6.15), we know that for all ¢t € [0,T]

(1) (2)
Z;’(t) < Z;7 (1), P-almost surely.

On the other hand, (6.30) implies the existence of a subsequence (Zj(g) (t)ien,
which P-almost surely converges in LZ to X](\? y(t) as l — oo.
This leads to
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X () < X$h (1) in L2, Pas., for all t € [0,T],
which proves Lemma 6.1.3 (i). O

(ii) As in (i), we fix j € N and set t := ’““]—.T, k = 0,1,...,4, such that
again we have a partition of [0,7"] into j intervalls of length % We define

processes Z (3, v ]) from H?(T') in a recursive way. Compared to (6.10) and
(6.11) in the proof of (i), the processes change to

Z3N(t) == €0 + f Mes) dWar(s) + Of [ Mot () N(ds, dz),
A t _
Voo (0 := Z55(00) + J(AN ()Y (5) + EO(5, Ve () + Moy (m) s

for ¢t € [0,t1] and

Zlig( ) - vk(l)lj tk +fMC(s dWM +f f MC(S )N(ds,daj),

tk L2

VW) = Z0tr0) + J(An @V (5) + BO (5, V() + Mgy (m) ds,

lk
for t € [tk,tk—i-l] and k=1,2,....,7 — 1.
Thus, we get the required comparison for the processes ZJ@ (see Claiml
in the proof of (i)) as an immediate consequence of the solution indendence
of the stochastic integrals, whereas the comparison result for the processes
Vj(z) follows analogously to the proof of (i).

The rest of the proof works analogously to the proof of (i) and is even
simpler, since only the drift coefficients are solution-dependent. [1 H

Remark 6.2.1:  So far, in the proof of 6.1.3 (i) we needed the special
property (3.1) of the eigenvectors (ep)nen of Q € TT(L?), i.e.

sup ||en|oo < 00,

neN
to control the diffusion terms (see (6.22) and (6.23)) corresponding to
o: [0, T]xQxR — R, which is Lipschitz in the third variable. In particular,
this means that we cannot apply this method to show a comparison theorem
for equation (6.1) with a Q-Wiener process W as in the so-called general
nuclear case (cf. Chapter 3) resp. for equation (1.2). In Chapter 8 below,
we solve this problem by approximating the Q- Wiener processes Wiy from
equation (6.4) by Wiener processes Wy, 1, given by
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M
WM’L(t) = Z \/@en,Lwn(t), te [O,T],
n=1

where, for any 1 < n < M, (en)rLen 1S a sequence of L?-valued func-
tions obeying (3.1) such that

lim |lenr, — en|[z2 = 0.
L—oo
Thus, we could also prove a comparison theorem for equation (6.1) with

W being a Q-Wiener process for some Q € T+(L?) not obeying (3.1). This
just requires an additional convergence result, namely for L — oo.

6.3 Proof of Lemma 6.1.4

(i) Let us fix N,M € N:
The difference between the corresponding solutions X](\l,)  and Xz(\? can be
represented as

X (8) = X{7(0) = an(€) + by (F) + an(F) + by () + an(L), t € [0,T],
with the terms defined by

an(§) = [lth(t,O) — U(t,0))¢®
bn(F) = JUN(t, S)[F(i)(s,X](é?M(s)) — FO (s, Xpr(s))] ds

t .
an(F) = [[Un(t,s) — Ut, s)|FD (s, X\)(s)) ds
0
t
by(2) = g‘UN(t, 8)[ME(S,X]<\?1W(S)) - ME(S,XI(GI)(S))] AW (s)
t
CLN(E) = J[UN(t, 8) — U(t, 8)]./\/12(87)(](&)(8)) dWM(S)

Let us first estimate the apn-terms.
By (A6), we have for all p € L2

lim sup |[|[Un(t,s) = U(t, s)l¢l[rz = 0.
N_’OOtE[O,T] P

By the Banach-Steinhaus uniform boundedness principle for operators (see
e.g. [98], Theorem III.9), this implies
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sup sup ||Un(t, s)HL(L%) =: Cy(T) < .
NeNte[0,T]

Thus, imy_. [Jan(§)|[7. = 0 and by Lebesgue’s dominated convergence
P

theorem
- 2 _
Jim_ Bllan(€)]2, = 0.
Similarly, limy_. ||an(F)[|7, = 0, where we used the uniform bound
P

sup [|Un (6 5)FO (s, X )1 < e(Cu ), O+ X0 15),

which is integrable due to the fact that X](\? v € HYUT).
Concerning ay(X), note that by It6’s isometry

Mot
2 _ 2
Ellavn®)[[7; = X anofEH(UN(t, s) = U, )My, v enllrs ds

n=1

IN

M t .
5= an ) (supllel 2 ) [EION (0.5) = Ut )56 X0 ds
n= ne 0

— 0, a3 N — o0,

where the integral on the right hand side tends to 0 as N — oo by the
previous step.
The by-terms are estimated by the Lipschitz property of f and . Namely,

t , .
Bllen (P I3 < c(c(N),s (T) [ BIX )y () = X (6)1[3, ds
t

Bllbx (D)3 < e(M, (V). (7)) [ B0 (5) = X{5) 13 s

Alltogether, this gives us

E|[ X3 (1) — X37 (D112
< € ((Bllan(©)]12; + Bllax(F)[[2; + Bllax(D)]2,)
t . .
+e(M,e(N), cs(T), co(T)) [ Bl X (5) — X}J}(s)uig ds>.
0
Recall that by Corollary 5.2.5 (i), X](\?M and X](\? are time-continuous in
LI L2).
Applying Gronwall’s lemma, the first part of the claim follows by the fact
that the ay-terms tend to 0 for N — oc.

Next, we prove the convergence of XJ(\? to X as M — oo. We have,
for all t € [0,T'],
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X](\Z)(t) _ X(i)(t) _ Ult, S)[F(i)(S,W,X](\Z)(S)) _ F(i)(s,w,X(i)(s))] ds

o o

+ gt" U(t, s)[2(s, X\ (s)) — (s, XO(s))] dWps (s)
- fﬁ ft VanlU(t,5)5(s, XD (s))](en) dwn(s), P-as..
n=M+10

Analogously to the by-terms above, by Itd’s isometry we have , for all
€[0,T],

Bl (1) - XO0)]12, < cwdexqam%lﬂJTmXﬁ@y—Xw@m%ds

o0
+ > anfEH tSMZsX(l) () enHLQdS
n=M+1
Now, Gronwall’s Lemma yields

BJ|X{)(5) — XO(0)][2, < ear(S)ectMhees MieaDr

with ¢pr(2) given by

o ¢
em(B) = X an [E|| U 8) My, x () enll7s ds.
n=M+1 0 g

In the nuclear case, we have

[e.e]
tr@Q:= > ap, < ©
n=1

and hence
00 t
em(®E)= ¥ an [E||[U(, S)MZ(S,X(i)(s))(en)HQLQ ds
n=M-+1 0 P

ST( 5 %)Gum%w)<sw:mmwx@@mg>
n=M+1 neN te[0,T] °

—0as M — oo.
Here, we used the Lipschitz property of ¥ and (5.1) (with ¢ = 2).

In the cylindrical case , we also have

[e) t
em(B)= X [E| U 8)Msy (o) (en)llzs — 0 as M — oco.
n=M+10 L

Here, we used the bound
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[&.°]

(6.31) > E|U(t,s)Mg( xos)(en)ll72
n=M+1 p

E[[U(t, s)Msys x 0 (s))| ’%Q(LQ,L,%)

<
< o(T)(t - 8)E[Z(s, X ()13,

and Lebesgue’s dominated convergence theorem. Finally, by the Gronwall-
Bellman lemma we get

i BI[XG7 () - XO@)]F, — 0 as M — oo,
which finishes the proof of (i). O

(ii) Let us first fix an arbitrary M € N.
For any N € N, setting

FUO(t,¢) := BV (t, ) + Mogym for (t,¢) € [0,T] x L,
the equations (6.8) and (6.9) become

AX i (0) = (AN X (0) + FO (8, X0y, (1)) di
+ My dWa(t)
(6.32)

+ fMC(t)xN(ds,dx)
L2

and

dXD) = (AOXD @)+ FO @, XD (1) ) dt
A () = (A X (1) + FU(t, X3, (1)) )

+Mc(t)dWM(t)

(6.33) ]

+ [ Mowa N(ds, dz)
L2 ‘

X3 (0) = €9,

Thus, the convergence of X](\?)M to X](\? as N — oo follows from (i).

Concerning the convergence of X](\? to X as M — oo note that

Xy — x0(¢) = g‘U(t, $)[ED(s,w, X\ (s)) — EO(s,w, XD (s))] ds
=S [ @t s)e(s)gn duwas)
n=M+10

for all t € [0,T'] and arbitrary M € N.
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Thus, applying Gronwall’s lemma, we get
E|[X}7 (1) - XO@)13, < ear(Cecr T
P

with ¢g(T) := max{c,a)(T), c,»(T)} and

00 t
em(C) = ) anfE||U(t,s)Mc(s)gn||%2 ds.
n=M+1 0 L

Hence,

o0
em(C) <KX Y an ) |suplignllia | — 0as M — co.
n=M+1 neN

=1
Here, we used the boundedness of ¢, the fact that () is trace class and
the fact that (g,)nen is an orthonormal basis of L? C Lf,.
Thus, we get (ii). O B



216 CHAPTER 6. COMPARISON RESULTS



Chapter 7

Main results in the case of
non-Lipschitz drift and
additive jump noise

This chapter contains the main results of this work in the case of non-
Lipschitz drift, Lipschitz diffusion and additive jump resp. jump diffusion
coefficients.

We first show existence in the case of an additive Poisson noise added to the
equation considered by Manthey and Zausinger in [76]. This is just equation
(1.1) with the coefficient I" being independent of the solution. Furthermore,
we consider equation (1.2) with the coefficient 3 being independent of the
solution, which corresponds to the case of additive Lévy noise. More pre-
cisely, for © C R? and p € NU {0} such that ,(©) < oo, we show existence
results for

dX(t) = (A()X () + F(t, X(1)))dt + Msz, x (1)) dW ()
+ f Mc(t)xN(dt7dx), te[0,T]

L2
(7.1)
X(0) = ¢
resp.
dX(t) = (A®)X () + EO(t, X(t))dt + Mc@pdL(t), t € [0,T]
(7.2)

In both equations the solution-independent jump resp. jump diffusion coef-
ficient C' is defined from a uniformly bounded function ¢: [0,7] x 2 — R
(for more details on this function, see Section 7.1 below). Since we always

217
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have £1,(©) < oo, we use the shortened notations L?, Lf, and L,%” instead of
L*(©), L2(©) and L2"(O).
Our considerations are divided into two cases.

Case (A) We suppose that f resp. e generating F resp. E by (NEM)
fulfills the condition (PG) from the introduction with v =1, i.e. f resp. e
is of at most linear growth.

An L2-valued initial condition ¢ fulfills E|[¢ H%% < oo for some g > 2.

We show existence of a solution X € H4(T) starting from the above &.

Case (B) We suppose that f resp. e generating F resp. E by (NEM)
fulfills condition (PG) from the introduction with v > 1.
An Lg—valued initial condition £ obeys E||£]|75, < oo for the above v.

P

We show existence of a solution X € G, (T) starting from the above £. A
crucial point in this proof will be the additional assumption that the Lévy
measure associated to the compensated Poisson random measure (equation
(1.1)) resp. the Lévy process (equation (1.2)) obeys (QI) with ¢ = 2v2
which seems to be a natural condition in view of the main existence result
in [80].

Finally, given some restrictions on O, the evolution operator U and the
drift coefficients, with the help of Marinelli’s and Rockner’s paper [80] (see
Proposition 7 there) we even get a uniqueness result (see Theorem 7.1.6
below).

For an exact description of the setting, see Section 7.1 below.

Let us outline the structure of this chapter.

First, in Section 7.1 we present the explicit setting and the main existence
and uniqueness results for equation (7.1) and equation (7.2). Sections 7.2
and 7.3 are devoted to the proof of the above results. The scheme of prov-
ing the existence result is quite standard and goes along the lines of proving
Theorem 3.4.1. in [76]. In particular, we use the same approximation of
the non-Lipschitz drifts as Manthey and Zausinger did in [76]. The proof
is based on the comparison method derived in Chapter 6. Of course, com-
pared to Manthey’s and Zausinger’s case, additional technical difficulties are
caused by the presence of driving jump terms. Similarly to Chapter 5, this
is reflected in the use of the conditions (A5)/ (A5)* for the almost strong
evolution operator U. Again, we do not have pathwise time-continuity re-
sults but cadlag versions of the solutions in the case of the evolution operator
U obeying (A7) and the jump resp. jump diffusion coefficients being uni-
formly bounded.
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For the whole chapter, let (€2, F, P) and (F)ic[o,r) With some T" > 0 be
as in Section 1.2.

7.1 The main results of this chapter

In this section, we give the exact settings and state the main existence and
uniqueness results of this chapter.
We assume:

® (A(t))eo,r] generates an almost strong evolution operator in Lg in
the sense of 2.1.1.

e 0: [0,T] x QxR — R generating ¥ by (NEM) is Pr ® B(R)/B(R)-
measurable and fulfills (LC) and (LB).

e e f:[0,T] x QxR — R generating E, F by (NEM) are
Pr ® B(R)/B(R)-measurable, continuous in the third variable and
fulfill (LG) and(PG) with exponent v > 1. (to recall (PG) and
(LG) see Section 3.1).

e ¢: [0,T] x 2 — R defining C by
(C(t,w))(0) = c(t,w), 0 € O
is Pr/B(R)-measurable and bounded, i.e.

(7.3) sup le(t,w)] =1 K < 0.
(t,w)€[0,T1xQ

e W is a Q-Wiener process in L? such that either @ € 7+ (L?) and the
system of eigenvectors (e,)nen of @ obeys (3.1) (called the nuclear
case below) or Q =1 (called the cylindrical case below).

e [ is a Lévy process such that the corresponding Lévy measure 1 obeys
(SI). This yields the Lévy-Ité decomposition (2.16) (cf. Theorem
2.4.13 above) in L? with a Q-Wiener process such that Q € 7 (L?)
(referred to as the general nuclear case below).

In this setting, we look for solutions to (7.1) resp. (7.2) in the following sense:

Definition 7.1.1: (i) In the case v = 1, given an initial condition
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¢ € L7 as in Case (A), an H(T)-valued process X is called a mild solution
to (7.1) resp. (7.2) if, P-almost surely, we have for all t € [0,T'] in L%

(7.4)X(t) = U(t,0)¢ —I—OftU(t, s)F(s,X(s))ds
+ U(t, S)MZ(&X(S))CZW(S)

+ U(t, s) Mcs) () N(ds, dx)

o O

L2
resp.

(7.5) X (t) = U(t,0)5+0ftU(t, s)E(s, X (s))ds + OjU(t,s)Mc(s)dL(s).

(i) In the case v > 1, given an initial condition £ € L2” as in Case (B), a
G, (T')-valued process X is called a solution to (7.1) resp. (7.2) if (7.4) resp.
(7.5) holds true in L%, P-almost surely, for all t € [0,T].

This includes the requirement that the right hand sides in (7.4) resp. (7.5)
are well-defined.

Our first main result describes the case of drifts having at most linear growth,
i.e. when (PG) holds with v = 1.

Theorem 7.1.2:  Suppose the almost strong evolution operator U gener-
ated by (A(t))e|o,r) has properties (A0)-(A2) and (A6).

Let (PG) be fulfilled with exponent v = 1 both for e and f. Suppose that
qge( ﬁ, %) for ¢ from (A2) with the additonal assumption that ¢ € [0, 3 )
and the initial condition £ is as in Case (A).

Futrhermore, assume that the integrability condition (QI) for the Lévy mea-
sure i is fulfilled with the above q.

Finally, let T in (1.1) resp. ¥ in (1.2) be replaced by C, which corresponds
to the case of additive driving Lévy noise.

Then:

(i) There exists a solution X € HI(T') to (7.1) in the sense of 7.1.1 (3).
The process t — X (t) is continuous in L1(€; L%).

Furthermore, we have the estimate

(7.6) ts[lé%]EllX(t)Hng < elg, K, T,e(T), ¢f(T), ¢5(T), Cqn) (1 + El[€][72)
€0,

with a positive constant on the right hand side.
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(i) There exists a solution X € HY(T) to (7.2) in the sense of 7.1.1 (3).
Furthermore, t — X (t) is continuous in L(S; L/%) and we have the estimate

(7.7) e E[|X(#)||7; < clg, K, T,¢(T), ce(T), Cqn) (1 + E[IE]|72)
te , P P

with a positive constant on the right hand side.

Both in (i) and (ii), under the additional assumption (A7) and the as-
sumption that o obeys (71.3), there is a cadlag version of the solution process
[0,T]>t— X(t) € L2

Remark 7.1.3:  Actually, in the assumptions of the previous theorem,
we could also assume (A5)* with v =1 instead of (A2) in the nuclear case
in claims (i) and (1) (see Remark 3.4.2 (ii) and Theorem 4.1 above).

The second result covers the case of a drift having at most polynomial
growth, i.e. the drift obeys (PG) with exponent v > 1. Let us stress
that, in contrast to the existence and uniqueness result in the Lipschitz case
(cf. Theorem 5.2.2 above), the solutions take their values in L,%” but are
time-continuous only in L?(£); L%). This is due to the polynomial growth of
order v > 1 of f resp. e (see also Remark 5.1.11 (ii)).

Theorem 7.1.4: Suppose the almost strong evolution operator U gener-
ated by (A(t))ic[o,r) has properties (A0)- (A4), (A5)* and (A6) (note
that in the nuclear case (A2) and (A4) can be omitted, see Proposition
3.4.3).

Furthermore, let e, f fullfill (PG) with an exponent v € (l—ic, %) with,

¢ from (A2) (resp. (A5)*) obeying ¢ € [0,3).

Suppose the initial condition & is as in Case (B). Assume that the integra-
bility condition (QI) for the Lévy measure 0 is fulfilled with ¢ = 2v2.

Then:

(i) There exists a solution X € G,(T') to (7.1) in the sense of 7.1.1 (i3).
The process t — X (t) is continuous in L*(Q; L2). Furthermore, we have the
estimate

(7.8) S[%PT]EIIX(t)Hi%u < e, G K, T,e(T), ¢(T), ¢o(T), Cauy) (1 + E|I€][75.)
tel0,

with a positive constant on the right hand side.

(ii) There ezists a solution X € G,(T) to (7.2) in the sense of 7.1.1 (it).
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Furthermore, t — X (t) is continuous in L*(€%; L2) and we have the estimate

(7.9) s E[| X (0)[[75, < (v, ¢, K, T, e(T), ce(T), Cauy) (1 + BIE|I5.)
tel 0,

with a positive constant on the right hand side.

Again, assuming additionally (A7) and that o defining ¥ by (NEM) obeys
(7.3), there is a cidlag version of the process [0,T] > t — X(t) € L2 both
in (i) and (i3).

Remark 7.1.5: (%) In the case of equation (1.2), a sufficient condition
for well-definedness of the stochastic convolutions in (7.4) is just (A5)*
with ¢ =1 (see Remarks 3.4.9 and 4.10).

(ii) The integrability condition (QI) with q = 2v? will be crucial in Step2
in the proof of Theorem 7.1.4 (see the estimate of the term f](\j) on p.245).

The proofs of Theorem 7.1.2 and 7.1.3 will be done in Sections 7.1.2 and
7.1.3.

Finally, in the special case that (A(t))¢c[o,r) in (7.1) and (7.2) is replaced by
the generator A of a Cy-semigroup, we get the following uniqueness result,
which is based on the uniqueness results of the two papers [80] and [81] by
Marinelli and Rockner.

Theorem 7.1.6: For this theorem, let © C R? be an open bounded set with
smooth boundary 0©. So, as described in the introduction of the chapter,
we let p=0, i.e. Lf,”(@) = L?(©) for any v > 1.

(i) Let v = 1. Suppose we have E|[£]|T, < oo with some q > 2 as in
Theorem 7.1.2 for the initial condition &.

Suppose that A € L(L*(©)) admits a unique extension to a strongly contin-
uous semigroup of positive contractions on L*(©).

Let f, o, ¢ and n obey the assumptions from Theorem 7.1.2 (i). Further-
more, let f be uniformly maximally monotone on [0,T]x (), i.e. there
is a positive constant cy(T') such that

Roy— flt,w,y) +cp(T)y €R
is a monotone function for any (t,w) € [0,T] x Q.

Now, if the Wiener process W obeys the assumptions of the cylindrical case
(cf. Chapter 3), then the solution to (7.1) (in the sense of Definition 7.1.1
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above) ezisting by 7.1.2 (1) is unique.

(ii) Let v > 1. Suppose we have E||{[|75, < oo with v obeying the as-
sumptions of Theorem 7.1.4 for the initial condition &.

Suppose that A € L(L?*(©)) admits a unique extension to a strongly contin-
uous semigroup of positive contractions on L*(©) and L*’(©).

Let f, o, ¢ and n obey the assumptions from Theorem 7.1.4 (i). Further-
more, let f be uniformly maximally monotone on [0,T] x  in the sense of
Now, if the Wiener process W obeys the assumptions of the cylindrical case
(cf. Chapter 3), then the solution to (7.1) (in the sense of Definition 7.1.1
above) existing by 7.1.4 (i) is unique.

Proof: See Section 7.4. below.
In the proofs, we want to apply our knowledge about existence and unique-
ness in the case of Lipschitz drift functions e, f. To this end, we prepare

the following definitions and lemmata.

Definition 7.1.7:  Consider a real-valued, Pr ® B(R)-measurable func-
tion f: [0,T] x Q@ x R — R and define

(710) fN<t7w7y) = f(t7w7y) \ (_N)
(7.11) Nt w,y) = gg’{{f]\z(t,w,u)-i-M\u—y\}

forallt € [0,T],weQ,y e R and N,M € N.

This construction implies the pointwise monotone convergence

(7.12) Inm(tw,y) T fn(t,w,y) as M — oo
and
(7.13) In(t,w,y) | f(t,w,y) as N — oc.

Note that (7.12) and (7.13) (and the Comparison theorem 6.1.1) will be
crucially used in the proof.
Clearly, fy and fy ar are Pr ® B(R)-measurable as well.

Lemma 7.1.8: The functions fn n introduced in 7.1.7 fulfill Lipschitz con-
dition (LC) and the boundedness assumption (LB),whereby the correspond-
ing constants can be chosen uniformly for N € N.

Proof: Let N, M € N be arbitrary.



224 CHAPTER 7. THE CASE OF ADDITIVE JUMP NOISE

We first prove the Lipschitz property (LC). Indeed, given
Yy, z,u € R, we have

Mlz—yl= Mly—z[=M|—-(u—y)+u-—2|
> Mlu—z| - Mlu—y|
= (fv(twu) + Mlu—z[) = (fn(t,w,u) + Mlu—yl)
Z fN,M(t7wvz) - (fN(tawvu) +M’u_y’)7

which implies fn v (t,w,2) — fym(t,w,y) < M|z —y|. By changing the
roles of y and z, we get

fN,M(t>way) - fN,M(t7w7Z) < M‘y - Z| = M|Z _y|>

which shows (LC) for fy a with the Lipschitz constant M.
Concerning the boundedness assumption (LB), let us note that by the con-
struction we get

(7.14) —N < fym(t,w,0) < fan(t,w,0) < cp(T)
and thus

/N (tw, 0)] < e(N)

with the constant ¢(NV) := max{N, cf(T)}, which is the same for all M € N
andw €. W

Remark 7.1.9: (i) A standard example of drift terms e(t,w,y), which
fulfill the polynomial growth condition (PG) and the one-sided linear growth
condition (LG), are polynomials of the form

e(y) = bey®, by <0, b, €R, 0<k<n-—1, n odd.

n
k=0

The coefficients by, = bi(t,w), 0 < k < n have to be bounded functions

of
(t,w) € [0,T] x Q.

(ii) Let us note that the proof of Theorem 7.1.6 will be based on the unique-
ness condition from Marinelli’s and Réockner’s paper [80]. Recall that in this
paper the authors also need the assumption (QI) to be fulfilled with q = 2>
in the case of the drift being of polynomial growth of at most order v. So
this condition from 7.1.4 seems to be quite natural in such framework.

(iit) As compared to the existence and uniqueness results in Chapter 5,
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we assume that ¢ € (0, %) for ¢ from (A2) right from the start. By this
assumption the intervall (%, %) is non-empty, which is needed to prove the

existence of cadlag versions of the solutions.

We finish this section by describing the outline of the proofs in the fol-
lowing sections. In general, all proofs run along the lines of the proof of
Theorem 3.4.1 from [76], but of course we have to take into account the
presence of the jump terms.

The scheme of proving Theorems 7.1.2 and 7.1.3
The proofs are devided into five steps:

Step 1: We define auxilliary functions g and h, which later will help us
to estimate the non-Lipschitz drift term in each of the proofs.

Step 2: We show existence and uniquness of solutions Xy s corresponding
to the case of F' resp. E being replaced by Fy i resp. En . Here, Fy v
resp. En v are defined by (NEM) from fy a resp. ey from (7.11).
With the help of the Comparison Theorem 6.1.1, we further establish certain
M-independent estimates of Xy ps, which will be crucial for the rest of the
proof.

Step 3: We construct processes Xy := A}im XnN,m, which will be our
— 00

candidates for solutions to the equations with F' resp. FE being replaced
by Fyn resp. Ey, being defined by (NEM) from fy from (7.10) resp. e,
defined analogously to fn. In this step, we only check the convergence in
the appropriate spaces.

Step 4: We show that the processes Xy from Step 3 solve the equation,
when F' is replaced by Fiy resp. F is replaced by Ey.

Step 5: We first show that there are N-independent estimates for solu-
tions Xy from Step 4.

Then, we define candidates X := lim X for solutions to the initial equa-
— 00

tions and prove that they really solve the equations (7.1) and (7.2).
Finally, we prove the required estimates on the moments of the solution.
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7.2 Proof of Theorem 7.1.2

Step 1: Let us define mappings g, h: R — R by

0<u<v
(t,w)€e[0,T]xQ

(7.15) g(v) := min < inf f(t,w,u)l[ovoo) (v), O) —Cf(T)(l—v)l(_oojo) (v),

(7.16) h(v) := max sup ft,w,u)1 (o 0)(v),0 —|—Cf(T)(1+v)1(0’OO) (v).
()61 6.7 1x02
Note that for all v € R
inf f(tawvu) Z *Cf(T)(]' =+ |U|)

0<u<v
(t,w)€[0,T]xQ

and
sup  f(t,w,u) < cp(T)(1 + [vl),
v<u<0

(t,w)€[0,TxQ

which implies
(7.17) g(v) = —cp (M)A + [v)1jo,00) () + (1 = )L (—o0,0) (V)]

and

(7.18) h(v) < cp(T)[(1 4 |v])1 (00,01 (v) + (1 + )1 o0y (v)].

Since f fulfills (LG), g and h obey, for (t,w,v) € [0,T] x @ x R
(7.19) g<0,g(v) < f(t,w,v),

(7.20) h >0, h(v) > f(t,w,v).

Furthermore, gl ) and Bl(—oo,O] are decreasing functions on R.

Of course, (7.19) and (7.20) also hold true, when f is replaced by e in (7.15)
and (7.16).

These auxiliary functions help us to estimate the integral Ip(X), defined in
Section 5.1, in the non-Lipschitz case.

Step 2: Given arbitrary N, M € N, we know that the function fn s defined
by (7.10)/(7.11) from 7.1.5/7.1.6 is Pr ® B(R)-measurable, obeys (LC) and
(LB) and is such that fy s is Pr ® B(R)-measurable.

Of course, this also holds true for the function ey s defined analogously to

the fN,M-
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Thus, the existence and uniqueness results from Section 5.2 are applica-
ble. By 5.2.1 (applied to the special cases I' = C resp. ¥ = C), there are
processes Xy s € HY(T') solving equations (7.1) resp. (7.2), when f resp. e

is replaced by fn ar resp. en -
To proceed along the lines of Manthey’s and Zausinger’s proof, we need to
find M-independent estimates for the moments of Xy /.

(i) The Poisson noise case - equation (7.1)

By 5.2.1, the map t — X a(t) is continuous in L7(€2; L%). Since
Iy < fn,m+1, by Theorem 6.1.1 we have

(721) XNVM(LL) < XN7M+1(LL), P-a.s., for any ¢ € [O,T]
We denote solutions to equation (7.1) as follows:

e by Xo ) in the case of initial condition £ := £V 0 and drift Fp ps resp.
EO,M)

e by Xy ) in the case of initial condition £~ := { A 0 and drift Fy ,,

resp. EK,’M,
e by V in the case of initial condition ¢ = 0 and drift ' = 0 resp. £ = 0.
We observe that, for all N, M € N,
(7.22) v < Ivm < fomrs

(7.23) Pt <0< four,

and analogous estimates hold for the e-terms. Hence, by 6.1.1 we have
in L2
P

(7.24) Xnm(t) < Xnm(t) < Xom(t),
(7.25) Xnu(t) <

P-almost surely, for any ¢ € [0,7'] and N, M € N.
Note that similarly to Section 5.2, all the solutions above are time-continuous
in LI(; L%) and, by assumption (7.3) on ¢, have a cadlag version under the

additional assumption that U obeys (A7).

In view of (7.24), we show the M-independent estimate required for Xy as
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by showing an M-independent estimate both for X, ps and X N,M-
By (5.25) and the boundedness assumption (7.3) on ¢, we first have

e B[ Xom (I, < elg, K, T, e(T), ¢5,1 (1) o (T), Con) (1 + BT 75)
te[o,

with an M-dependent constant in the right hand side.

To find an M-independent estimate, let us define, for ¢ € [0,T],

I (1) = E[|U(t,006™]|2,

t q

E||fU tsFoMsXOM())ds

)

0 L%
=(3 t d
L7(t):=B||[Us JMess(s. %000 (s)) AW (3)
0 L%
and
. i q
Nt =E|[ [ U(t, s)Mc(s)(z) N(ds, dx)
0 L2 L%

Thus, we have for each M € N
(7.26) Bl Xoar(0)l[F; < c@TD@) + L7 (1) + 17 (0) + 19(0)].
We start with the obvious estimate

TO(r) < e(T)BE*I4, < e(T)BIl€][%,

for the first term.
To handle the second term, we note that by (7.16), (7.18) and (7.22) we have

(7.27) fou(t,v) < h(v) < e (T)[(1 + [v])1(—o0,0)(v) + (1 +0)Ljg,00) (V)]

This implies
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— t p— —
20 < g, T,e(T)) B [ 17(Xo(5))I7 ds

IN

c(q,T,c(T),c (ff [ (1 4+ X3 0 (5:0) 1150 11 (50504 (5:0)
1+ V(s,0) r>1{XO,M<S,9><0}<s,e>} poldt))* ds

t T
< (g, Toe(T), es(T)) <1 + [BISo a0l ds + [V ds)

t —
< el KT eT)cr(T), (D). Ca) (14 B an(o)l 1 ds).
0

Here, we used (7.20) in the first, (7.18) in the second and estimate (5.33)
for the V-term in the fourth step.

By the Burkholder-Davis-Gundy inequality 2.5.4/2.5.6, condition (A2) for
U, Holder’s inequality, the fact that

2 ¢

and (LC), (LB) for o, we get (cf. Proposition 3.4.1)

10 < el ([0 5) IS Kool ds)

< (q,T,¢,e(T),ce(T)) (1 + JEHXOM(s)HqL% ds).

By the Bichteler-Jacod inequality 2.6.10, (QI) for n, (A2) for U, the fact
that

<%= Y<1

and the assumption (7.3) on ¢, we get (cf. Proposition 4.1)

@) < ci, Of (t = 5) FBIC(S)|I1, ds < clg,C, K, T, Cy).

Summing up in (7.26), we thus get, for t € [0,T'],
B[ Xom @)z, < e, (KT e(T), ¢5(T), ¢o(T), Co) (1 + E[€]I7,)
elan G I ()7 (T), (1), ) B11 K (5]

Therefore, by Gronwall’s Lemma we get

B[ Xom(0)l[, < ela, ¢ K, T, e(T), ¢4(T), ¢4 (T), Con) (1 + EI[E]I7,)
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for arbitrary M € N and ¢ € [0,T']. Thus, we have proven that

(7.28) S{l(l)r;] EHXO,M(t)Hng < &g, ¢ K, T, e(T), ¢4(T), ¢o(T), Co) A+EIE][7)-
te
MeN

The fact that (7.20) holds true uniformly in M € N was essential for getting
the above estimate, which shows that the X ps are uniformly bounded in M.

Next, we consider Xy, with arbitrary N, M € N. For any ¢ € [0,T],
we define
10 (1) == E[[U(t,0)¢ 1Z25

@) !
IN M

t
f NM(S XNM)d
0 L%

and

q
I, :=E

t
Of ue, S)ME(&XN,M(S)) dW (s)

L7
Thus, we have for any ¢t € [0,7'] (with I as in (7.26))

2 3
BI|X o (1)]1%5 < el@IV(0) + I8 (0) + Iy (6) + 19 (1),
Analogously to the consideration of fj(\j) above, we get

I§)/(0) < e(.C. T e(T), o (T)) (1 + Of EIXN,M@)'%)'

As obviously IM(t) < ¢(q, o(T))E|[¢]]], and I has already been calcu-
P
(2)

lated before, it remains to estimate I/, (t).
Since by the construction

—N < fyu(t,w,y) <0 for any (t,w,y) € [0,T] x Q xR,
we immediately get

sup I§\,)M( t) <c(N,q,T,¢(T)) < oc.
te[0,T]
MeN

Thus, putting all the estimates together, we have
Bl Xyullpy < eN,q, G KT o(T), ¢o(T), Co) (1 + EJIE]|7,)

t
(q C>TC fE||XNM HL2
0
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and hence by Gronwall’s lemma
Bl Xy a7 < e(N, g, ¢ KT, o(T), ¢o(T), Con) (1 + EJIE][75)-

As the previous estimate holds for arbitrary ¢t € [0,7'] and M € N, we
have shown that

(729) tS[LOlF;] EHXN,MH%% S Q(Nv q, C? Kv T7 C(T)7 CU(T)7 Cq,n)(l + EH§|’%%)
€0,
MeN

Finally, by (7.24), (7.28) and (7.29) we get

(7:30) sup El|Xx ol < o(N.0.C K. Toe(T),o(T). ) (1 + EIelIfy)

te[0,T
MEN
withec=c¢+ec.
(ii) The Lévy noise case - equation (7.2)

Now, we replace ¥ by the solution independent coefficient C.

For the Q-Wiener process W appearing in the Lévy-It6 decomposition of
L we cannot guarantee the representation (2.5) with an orthonormal basis
(en)n C L? obeying (3.1). So, W is as in the general nuclear case (cf. Sec-
tion 3.4) but not necessarily as in the nuclear case.

We denote the solutions to (7.2) as follows:

e by Xo if €7 and Eg s replace € and E,
e by Xy if £ and Exu replace £ and E, and
e by V if 0 and 0 replace £ and E.
Obviously, we get the relations (7.24) and (7.25) again. By (5.25), we have

sup B[ Xoa(t)]|%, < (g, M)(1+EJ[ET]]9,) < 0.
te[0,T] P P

For any ¢t € [0,T], we define

IW(t) = E|[U(t,0)6" ]|,
P
I0) :=E||[U(t, s)Eon(s, Xo(s)) ds
0 L%
and
t q
16 (t) =E f U(t, S)Mc(s) dL(s) .
0 L%
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Thus, for ¢t € [0,T], we have
(7.32)  EllXom(@)f; < c@TV®) + L7 (1) + IO (1)),
Obviously I™M () < ¢(q, c(T))EH{H%%.
By the same arguments as in (i), we get
L7 (t) < (g, K, T,e(T), ce(T), Cyy) (1 + JEHXOM(S)H% ds)-

Applying first the Lévy-1td6 decomposition 2.4.13 and then the Burkholder-
Davis-Gundy and Bichteler-Jacod inequalities, we obtain for ¢ < % that

1(3) (t) S C(Q7 ga T7 K7 C(T)) Cq,n)'

Thus, by (7.32), we have for t € [0,T]

E||X0,M(t)”%§ < ola, G KT e(T), ee(T), Can) (1 + E[E][72)
t —
+C(Q7 K7 T? C(T)7 CE(T)7 Cq777) f7 EHXOvM(S)H%% ds.
0

Hence, by Gronwall’s Lemma we conclude that

(733) tes[l;I;] E"X07M(t)‘|%% < C(Q? ¢ K,T, C(T)7 CG(T)7 Cqm)(l + EH§H%3)
MEN

Next, we consider X y 5, for arbitrary N, M € N. Setting
I0(t) = E[|U(t, 006717,

and

q
,t€]0,T],
L3

2
19, =E

t
OfU(ta $)En 1 (8, X v ar) ds

we get (with I®) as before)

El|X v (D18 < @)LV (0) + L3, () + 1O (1))

(2)

Since obviously IV (t) < ¢(g, ¢(T))E||€||%,, it remains to consider Iy ().

Recall that by construction

q
2
Lz’

—N <eyytwy <0
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for any (t,w,y) € [0,7'] x @ x R. Thus, there is a constant depending
on N, q, T and U such that

L) (1) < e(N,q, T,e(T)) < oc.
Putting all the estimates together, we get for any ¢ € [0, 7]
Bl X ar (OIS < e(N.q.C. K Te(T). o (1), Cyy) (1 + E€][2,)

Since the previous estimate holds for arbitrary ¢ € [0,7'] and M € N,
we have proven that

(7'34) S[%I;] EHXN,MH%% < Q(Nv q, C’ Kv T’ C(T)7 CU(T)’ Cq,n)(l + EHf”%g)
telo,
MeN

Finally, by (7.24), (7.33) and (7.34) we conclude that

(7:35) sup B|IXnllfy < e(N.0. K, TelT) o(T), Cy) (L + EIf[])
te[0,T
MeN

with ¢ = ¢ + ¢, which finishes Step 2.

Step 3: Our aim is to show that X ys converges, as M — oo, to a process
X, which shall solve equation (7.1) resp. (7.2) with F resp. E being re-
placed by Fy resp. En, N € N. Recall that Fiy and Fy are defined by
(NEM) with fy from (7.10) resp. ey defined analogously to fy. In this
step we only check that the limit process Xy exists and belongs to H%(T).

Let us define

Znm(t) = Xnm(t) — Xna(t), NM eN, ¢t €[0,T].
Thus, we have (by (7.24) and (7.32), (7.35))
(7.36) 0<Znm(t) < Znm4i(t), t€]0,T],

and

sup Bl|Zva(®llf; < (o) | sup Bl Xnallf; + sup Bl Xna (0]l
et ” e " elor) ”

< 0Q.

Next, we define
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(7.37) 0< ZN(t) = sup ZN7M(t), NeN, te [O,T].
MeN

Actually, for each N € N and ¢ € [0,7], the random variable Zy(t) is
uniquely defined up to a P ® p,y-zero set in € x © (which depends on the
B(£) ® B(©)-measurable representations chosen for Zy ar).

By (7.24) and B.Levi’s monotone convergence theorem, we get

(7.38) sup E||Zy(t)]|7. = sup sup E||Znn(t)|[7, < oo
te[0,T] L te[0,7] MeN P

By construction, t — Zy(t) € Lz obeys a predictable modification. Thus,
(ZN(t))te[o,r) is a process in HY(T) for any N € N.
Finally, we define

(7.39) XN(t) = ZN(ﬂ—i-XN’l(t),tG [O,T], N eN.

Obviously, [0,T] 2t — Xn(t) € LIQ) is again predictable as a sum of pre-
dictable processes. From (7.35) and (7.38), we get

(7.40) sup BJ|IXy (8L, < oo
te[0,T] L

such that Xy € HY(T) for any N € N.

Now, we check that for each fixed N € N Xy s converges to Xy in HY(T)

as M — oo.

Indeed, by (7.37) and B.Levi’s monotone convergence theorem we have, for
each t € [0,T],

(7.41) ]\/}EHOOEHXN,M@) - XN(t)Hng = ]\/}iinooEHZN,M(t) - ZN(t)”%% =0.

Herefrom, by (7.38) and Lebesgue’s dominated convergence theorem we im-
mediately get

(7:42) fim_[ Bl Xocar(t) = X (Ol dt = tis_ Bl Zar(t) ~ Z (03t =
In the same manner, we construct processes X , X € H9(T) such that
T
i BIX 00 (8) ~ X ()} ds =0

(7.43)
T — —
lim [ E[|Xoa(t) — X(0)[|9, ds =0,
M—o0 0 P

and (by (7.24), (7.25))
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Xpn(t) < Xn(t) < X(1),
(7.44)
Xy(t) V() < X(1),

P-almost surely, for all ¢ € [0,7].

Step 4: We show that for each N € N, the process Xy defined in Step 3
solves (7.1) resp. (7.2) in the case of F' resp. E being replaced by Fj resp.
En described in the beginning of Step 3.

Furthermore, we show that ¢t — Xy(t) is continuous in LY (Q;L%) and
that, under the additional assumption (A7), there is a cadlag version of
[0,T] >t~ Xn(t) € L2.

By (7.42), there is a subsequence of (X 1) men that converges P®@ds®@dp,-
almost everywhere to X . Without loss of generality, we assume (X ) mren
itself to be this sequence.

(i) The Poisson case - equation (7.1)
Putting

1

Iihe(8) = BlIXn() = Xnar (0|35,

2
2

IPy(t) =E

)

2
L3

jU(t, [P (5 X () — Fy (s, Xov.1(s))] ds

2
,t€[0,T],
L3

3
IDy(t) =E

t
OfU(t, $)[Ms(s xn(s) = Ms(s,Xn a0 (s))) AW (5)

we have, for a fixed ¢t € [0,T],

E HXN(t) —U(t,0)§ — ftU(t, S)Fn(s,Xn(s))ds — ({tU(t, 8) M5, x5 (s)) AW (8)

0
2

— [ JU(t,s)Mes)(x) N(ds, dx)
072

< Ol () + Iy () + Ty ()]

2
L3

Thus, by (7.41) at least the first term tends to 0 as M — oo. Let us
consider the second term.
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T
IPy () < 2e(T) (({EHFN(S,XN(S)) — P (s, Xn o (9))][7 ds

T
+ [ BI[Fn (s, X (s) = Fnaa (s, Xnow ()2 d8>
0

= 2e(D)(IG3(T) + I$7, (D).

Note that, by the continuity of fx and the convergence property of Xy,
we have for almost all s € [0,7]

]fN(s,w,XN(s,w,Q)) - fN(vaaXN,M(Sawve))‘ —0as M — o0

for P ® dp, almost all (w,0) € Q x ©.
Condition (PG) with exponent v = 1 and the relation

Xni(s) < Xnm(s) < Xn(s), N,M €N
imply, for almost all s € [0,T],

|fN(87 w, XN(S,(A), 0)) - fN(S,w, XN,M(Sa w, 9))|
< 2¢(N,cp(T))(1+ | Xn(s,w,0)| + | Xn,1(s,w,0)]), P® dpu,-almost surely.

To apply Lebesgue’s theorem, we need integrability of the majorizing map-
ping

(745) sup [ [ |Xn(s,0,0)2 + | Xna(s,w,0) [ 1 (d6) P(dw)

s€[0,T7]Q ©
= sup (B[ Xn(s)|[7. +EllXn1(s)]72) < oc.
s€[0,T] i i

The right hand side in (7.45) is finite, since Xy, Xn1 € HY(T) C H*(T) by
Step 3.
Thus, Lebesgue’s theorem is applicable and gives us first

A}im E|[Fn(s, Xn(s)) — Fn(s, Xnm(s))|[22 = 0 for almost all s € [0,T]
—00 P
and hence

T
lim [B|[Fy(s, Xn(s)) — Fn(s, Xnum(s))|[72 ds = 0.
M—>ooo P

To estimate I](\?i\)/[, we use the following trick, which was already imple-

mented in [76].

Let us fix some L < M, L,M € N. In full analogy to the consideration
of Iz(\%\)m the fact that fxy o 1T fn (and thus fxy — fam | 0) as M — oo
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implies
(22) r
A}im Inar < J\}im [E||Fn(s, XN (s)) —FNyL(s,XMM(s))H%g ds
—00 —00

T
= JEHFN(S,XN(S)) — Fiv,p(s, Xn(s)[Z ds,

which holds for any L € N. Letting L — oo and noting that fy 1 T fn
as L — oo gives us, by Lebesgue’s convergence theorem, that

. (22) .
A/}linoo INu(T) =0.

Thus, we have

lim I, (t) =0,te[0,T).

M —oco

)

Finally, we examine I](\? M
By Itd’s isometry, (A2), (LC), Holder’s inequality and the fact that
2

q>ﬁ<:? qC_7q2<1,

t
I](\ib(t) < CQ(T)EOI(t —5)7¢|%(s, Xn(5)) — E(S,XN,M(S))H%g ds

q

T
< g, 6T, e(T), ¢0(T)) (EfHXN(S) = Xnm(8)lIL, dé’) ,
0
which by (7.42) tends to 0 as M — oc.

So, Xn solves the equation in the sense of 7.1.1 (i), when F' is replaced
by Fn for arbitrary N € N.

Substituting X in the equation (7.1), we now obtain from the above esti-
mates

1XN = XnulBpy = sup Bl Xn() = Xna(b)]2
te[0,T] L

< BP0 + I () + I, (0)] — 0 as M — oo,

Similar reasoning shows that X solves equation (7.1) with £~ and fy
and X solves equation (7.1) with ¢+ and f+.

The required continuity properties of the solutions Xy, Xy and X follow
immediately from the corresponding properties of the integrals in the right
hand side of (7.4), which were established in Section 5.1.
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(ii) The Lévy case - equation (7.2)
Setting

1
I5h () = Bl X (8) = Xnas (0)]135,
2

,t€[0,T],
L3

t

fEN(S,XN(S)) — ENyM(S, XN7M(8)) ds

USORLA

we have, for each t € [0,T],

t t 2
E HXN(t) — U(t,())f — f U(t, S)EN(S,XN(S)) ds — OfU(t, S)Mc(s) dL(S)

0

L3
< 2Ly (1) + 100 (1)),

But A}im I](\})M(t) = 0 by (7.41), whereas N}im IJ(\?)M(t) = 0 just by re-

placing F-terms by E-terms in the above reasoning for (7.1).
Thus, X solves (7.2) in the sense of 7.1.1 (i) with E being replaced by Ey.
The continuity properties of Xy follow analogously to the case (i).

Step 5: In this final step, we shall check that

(7.46) X(t) = inf Xn(t), t€[0,T]

solves equation (7.1) resp. (7.2).
To this end, we first show that

(7.47) sup sup E|[Xn(2)[[1, < oc.
NeNte[0,T] P

Recall that by the above construction
Xn(t) < Xn(t) < X(t) in L2

The process X € H4(T) was defined in Step 3. Thus, in particular, we
have

sup EJ| X (1)[[%, < oo
te[0,T'] L

Therefore, it would suffice to establish the N-independent estimate for X .

From Step 4 we already know that

sup E[| Xy ()]|7. < (N, ¢)(1+E[[¢]|7.),
te[0,T'] P P
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where the constant on the right hand side depends on N. Now, we will
improve the estimate by using Gronwall’s lemma.

(i) The case of Poisson noise - equation (7.1)

Setting

ID(t) = E[U (006 [|7, < /(T)E[€]|7,.

q
)
2
L3
q

t
OfU(t, s)Fy (s, X n(s))ds

JU(t,8) My x  (s)) AW (5)

IP():=E

2
L3

and

,te€]0,T],
L3

we have, for each t € [0,T],
BIIX v (0], < @)L (1) + LY (1) + L7 (1) + T ).

We proceed analogously to the case of f](\? and .f](\? considered in Step 2.
By means of (7.17) and (7.19), we get

I7(0) < ela.e(D) [ 1Fy (s, Xn(o)llf, ds

~+

< ela,e(T) [ ENg(Xn ()7, ds

[e=]

< cla o) eg (1) (14 [EIXN (G ds).

where we used that X () < V(¢) and g < f~.
Then, by the Burkholder-Davis-Gundy inequality 2.5.4/2.5.6, (A2), Holder‘s
inequality, the fact that

and the Lipschitz and monotonicity assumption (LC), (LB), we get
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t

lg\?;)@) < ¢(q,e(T))E <bf(t - S)fCHE(S,XN(S))H%l% ds) 5

0., elT), (1) (14 [ BN 01 ds).

Recall from Step 2 that

IN

IW(t) < e(q,¢, K, T,Cyp), t €10,T].
Putting the four estimates together, we get for all ¢t € [0,T]
BIXy ()% < (g G KT e(T), (1), c0(T), Co)(1 + B€1[%,)
el C. (). 65(T), () B Xy (9] .
and herefrom by Gronwall’s lemma
BILX y (0][4 < e(a,¢, K, T, e(T), ¢(T), ¢o(T), Co) (1 + BIi).
Hence, we have proven that

sup_ B[ Xy@)7; < e(e, ¢ K, T,e(T), ¢5(T), ¢ (T), Co) (1 + E[E]IL,),

te[0,T
NeN

which implies (7.47).

(ii) The case of Lévy noise - equation (7.2)
We set
10(t) = B0 (1,06 [1, < (DB,
t q
19 =E||[U(t,s)Ex(s, Xn(s)) ds||
0 L%
t q
I8)#) :=E||[U(t, s)Mc(s) dL(s)|| ,te[0,T],
0

2
L3

and obtain, for any ¢ € [0,T],
El|IXy(1)]IE; < o(a) (100 + 19 1) + 101).

Replacing Fy by En in the previous arguments, we get

t
IQ(t) < e(q, T, e(T), ce(T)) (1 + ({EHXN(S)H%E ds)'
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Analogously to Step 2, we have
l(g) S C(Qa Ca ma K> Ta C(T)7 Cq,T])'

Putting the three estimates together and applying Gronwall’s lemma, we
conclude that

EHXN(t)H%% S Cl(Qa Ca K7 T7 C(T)7C€(T)7 C‘]ﬂ?)(l + EHgH%%)
for all N € N and ¢ € [0,7]. Thus,

S[l(l)[;] EHXN(t)HqL% < Cl(Qa C7K7 Ta C(T)7 CE(T)? Cqm)(l + EH&H%%)’
te(o,
NeN

which is the N-independent estimate on the moments of X, we needed
to prove.

Next, we consider the process _X € HY(T). Recall that this process was
defined in Step 3 as a limit of X ps for M — oco. More precisely, by (7.41)
we have

lim E||Xoa(t) — X(t)]|%, =0 for each t € [0,T].
M—o0 P
By Step 2, we know that

sup. B[ Xom(0)I[7, < ela, ¢ K, T, e(T), ¢4(T), €6 (T), Con) (1 + E[E]I75)
te(o,
MeEN

in the Poisson noise case resp.

S[up : E‘ |X07M(t)”%;27 S C(Qa Ca m, K7 T? C(T)7 Ce(T)7 Cqm)(l + EH& ’%;27)
te[0,T
MeN

in the Lévy noise case.

Thus, we get

o B[ X7, < e3(q, KT e(T), ¢4(T), ¢ (T), Cgin) (1 + EJIEN7)
in tirle Poisson noise case resp.

o BIIXOIG; < eala KT, el colT), Co) 1+ Ble])

in the Lévy noise case.
By construction (cf. (7.44)) we have for all ¢t € [0,T]
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which leads to

sup E[|Xn()[],
te[0,T] P
NeN

< (Cl (Qa C7 K,T, C(T>7 Cf(T)7 CU(T)’ Cq,n)
+c3(q, ¢ K, T,¢(T), ¢(T), co(T), Cq)) (1 + E|\§||%g)

(in the Poisson noise case) and, respectively, (in the Lévy noise case)

sup E[|Xy(0)|[],
t€[0,T] P
NeN

< (e2(q; ¢ K, T, ¢(T), ce(T), ¢5(T), Cyy)
+C4(Q7 C?Kv T,C(T), CE(T)’ Cq#ﬂ)) (1 + EHEH%%)

Thus, we have shown that there are N-independent estimates for the X
both in the Poisson and the Lévy noise case.

Next, we define our candidates for the solution to (7.1) resp. (7.2).

Since fy | f resp. en | e, the comparison from Theorem 6.1.1 implies

XN+1(t) < XN(t)7
(7.48)
Xni1(t) < Xn(1),

P-as., forallt €[0,T], N € N.
We claim that

X(t) = ]%/réfNXN(t)’ te[0,T],
is a solution in the sense of 7.1.2 (i) both in the Poisson and the Lévy
noise case.
We would like to proceed similarly to Step 3 and 4. But, in contrast to the
(XN, m)Mmen, the sequence (Xn)nen is decreasing.
Thus, we define

Yn(t) == X1(t) — Xn(t), t € [0,T], N € N.

By (7.48), this is a sequence of random variables in L% with the proper-
ties

0< YN(t) < YN+1(t)7 P-as., te [OvT]v N eN,
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and
sup B||[Yy(t)|[7; = sup BJ|IXi(t) - Xn (4|7,
t€[0,T] P t€[0,T] L
< c(q)( sup E||X1()][7, + sup EIIXN(t)II‘iQ>
te[0,T'] P te[0,T] L
<  00.

Hence, Yy € HY(T) for any N € N.
Now, analogously to the definition of Xy in Step 3, we set

(7.49) Y (t) := sup Yn(t) = X;(t) — X(¢), t € [0,T].

NeN
Note that, for each ¢ € [0,T'], the random variable Y (¢) is uniquely de-
fined up to a zero set in {2 x © .
By its construction, ¢ — Y'(¢) obeys a predictable modification. By B.Levi’s
monotone convergence theorem and the previous estimate on Yy, we get

(7.50) sup EHY(t)HqLQ: sup supEHY]\f(t)HqL2
te[0,T'] e te[0,T] LNeN p
< 2c(q) sup E[[Xn(1)]|7. < oo,
te[0,T] p
NeN

where the last term is finite by (7.47).
Since by (7.49)

X(t) = Y(t) - Xl(t)’ te [OaT],
we have proven that X € HY(T).

Next, we show that
T
lim [E||Xy(t) — X (1), dt
N—>ooO b
A q
= Jim_ [BIYx(0) =Y (Ol dt = 0.

As |Yn(t) — Y(t)| < 2|Y(t)| P-almost surely, by (7.50) Lebesgue’s theo-
rem is applicable and gives us

(7.51) lim E|[Yy(t) - Y ()7, =0,t€[0,T],
N—o0 P
which in turn implies

(7.52) Jim B[ Xy () — X(0)|[3, =0, ¢ € [0,T],
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and

T
(7.53) Jim B J11X(0) = X ()7 de = 0.

It remains to show that X solves equation (7.1) resp. (7.2). We apply
the method used in Step 4 for Xy.

We denote the process on the right hand side of (7.3) by K(X) and the
process on the right hand side of (7.4) by K(X). Then, by setting

1P() :=E||X(t) — X2,

19(t) :=E be(t, $)[F(s, X(s)) — Fn(s, Xn(s))]ds|| ,
L
2
0t f E(s, X(s)) — En(s, Xn(s))] ds
0 L%
and
¢ 2
IP(t) =E [ U9 Msis.x) = Msoxue] W )|t 0.7,

L3

we get, for each t € [0,T],
EI[X(t) = KO @B, < 314 () + 17 (6) + I (1))
for (7.1) resp.

E|IX (1) — K(X)(1)]2,
<2100 + 1O0)

for (7.2). Analogously to Step 4, we find that
2
I7() < elq.p) (EIIX(0) = Xn(®)IIS; )"
1@< 20 (IEIIF £ X(2)) ~ F(s, Xn())|[2 ds

"“({EHF(S,XNQS)) - FN(S,XN(S))H%% ds>

1391y + 137(1).
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Note that, by (7.53), there is a subsequence of (Xy)yen converging to X
P ®ds® pp-everywhere on [0,7'] x Q2 x ©. Let us suppose that (X )y itself
is this sequence.

By the continuity of f and the convergence of X, we have for almost all
s€[0,T]

fs,w, Xn(s,w,0)) — f(s,w, X(s,w,0)) as N — o0

for P ® pp-almost all (w, ) € 2 x ©.
Condition (PG) with exponent v = 1 and the bound

X(t) < Xn(t) < Xi(t), t €[0,T], N €N,
imply, for any s € [0,T],

|f(57waX(S>w>9)) - f(s,w,XN(s,w,H)ﬂ
< (e (T))(1+ X (s,w,0)] + | Xn(s,w,0)))
< 2¢(cs (1) (1 + [X(s,w,0)| + [ X1 (s,w,0)])

for P ® pp-almost all (w, ) € Q x ©.
It is easy to check that

sup [ [(|X(s,w,0)|* + [ X1(s,w,0)[*) 1 (dO) P(dw)
s€[0,T]Q ©
< sup (E[|X(s)[7; +E[[X1(s)[75) < o0,
s€[0,T] P L
since X, X1 € HY(T) C H?*(T). Thus, Lebesgue’s theorem is applicable
and gives us

. (21)
N v

T
Df{fzg(f(s,w,X(s,w,H)) — f(s,w, Xn(s,w,0)))? pp(dl) P(dw) ds
0.

To estimate I](\?z) (T), let us fix some K < N, K,N € N. By the defini-
tion fy := fV(=N) | f as N — oo, we always have

(7.54) 2> fRand (f — fn)* < (f — fr)?

whenever K < N.
By the preceeding arguments, used to prove that I](\?l)(t) — 0as N — o0,
we get
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1PT) < lim fEHF(s,XN(s))—FK<8=XN<8>>”%,% ds

lim |
N—oo N—oo 0

T
= {EIIF(S,X(S)) = Fi (s, X (s))|I2 ds,

which holds for any K € N.
Letting here K — oo and noting that fx | f gives us that

dim 137(T) — 0.

Replacing the F-terms by E-terms, we know that fj(\?) (t) - 0as N — oo.
Therefore, X = K(X) solves equation (7.2) in the sense of 7.1.1 (i).

By (7.53) we also get A}im IJ(\:,)’) (T') = 0 by the same arguments as in Step 4.
Thus, X = K(X) solves (7.1) in the sense of 7.1.1 (i).

Concerning the required continuity properties of ¢t — X(t) € LIQ), we note
that, analogously to the X (¢) from Step 4, the Lipschitz property (LC) for
o and c gives us similar properties for the stochastic integrals on the right
hand side of (7.4) resp. (7.5).

It remains to show the a-priori bounds (7.6), (7.7). We note that, both
in the Poisson and the Lévy noise case, we have for any t € [0,T]

BIIX (0112, < cla) [BIY @)L, + EIX1 011,

and thus

sup E[[X(¢)||7. < c(q) | sup E[[Y()]|], + sup Ele(t)Ilizl
te[0,T] e _te[o,T] P tel0,T] e

< c(q) | sup E[Y(1)]|7; + sup B[ Xn(1)I[7
te[0,T'] P t%gﬁl P

< e(q,C KT e(T), ¢4(T), (T, Co) (1 + E[[¢][72)

in the Poisson noise case resp.

sup E[[X(¢)||7. < c(q) | sup E[[Y()]|], + sup Ele(t)Ilizl
te[0,T] e _te[o,T] P tel0,T] e

< c(q) | sup E[Y(1)]|7; + sup Bl Xn(1)I[7
te[0,T'] P t%gﬁl P

< el Gm, K, Toe(T), ce(T), Can)(1 + BIE][S)

in in the Lévy noise case, which finishes the proof. B
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7.3 Proof of Theorem 7.1.4

As in the proof of 7.1.2, we adapt the procedure from the proof of Theorem
3.4.1 in [76]. To shorten the proof, we proceed simultaneously for the Pois-
son and the Lévy noise case.

Step 1: Compared to Step 1 in the proof of Theorem 7.1.2 (cf. Section 7.2),
(7.15)/(7.16) and (7.19)/(7.20) remain valid, whereas (7.17)/(7.18) changes
to

(7.55) g(v) = —cs(T)[(1 + |v]")L0,00) (v) + (1 = v)1(—c00) (),
(7.56) h(v) > ep(D(1+ 01", (0) + (L +)1(00)(0), v € R
Again, all inequalities also hold true, when f is replaced by e.

Step 2: Here, we establish the M-independent estimates for Xy as € G, (1)
solving (7.1) resp. (7.2) with F resp. E being replaced by Fy a resp. En .
Analogously to Step 2 in the proof of 7.1.2, we refer to the results of Section
5.2 for the unique solvability of equation (7.1) resp. equation (7.2) with
Lipschitz coefficients.

By 5.2.2 applied to the special case of I' = C resp. ¥ = C, there are unique
(up to modifications) mild solutions Xy s € G, (T) to the equations (7.1)
resp. (7.2), when f resp. e is replaced by fn s resp. en .

The solution processes are time-continuous in L?”(; L?)“). Moreover, they
obey cadlag versions if U additionally fulfills (A 7).

Similarly to (7.24), we have

XN7M(ZL/) < XN,M+1(ZL/) P—a.s., te [O,T],

by the comparison result Theorem 6.1.1 both in the Poisson and the Lévy
noise case.

We denote by
e Xy s the unique solution to (7.1) resp. (7.2) with initial condition &+
and drift F07M,

e X the unique solution to (7.1) resp. (7.2) with initial condition
£ and drift Fy ,,,
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e U the unique solution to (7.1) resp. (7.2) with initial condition £ = 0
and drift £ = 0.

Then, we have (cf. (7.24),(7.25))

Xy (t) < Xnwm(t) < Xom(t),

)

Xyu(t) SV(t) < Xou(t)
P-almost surely, for each t € [0,7'] and N, M € N.
(i) The Poisson noise case - equation (7.1)
We first prove that

(7.57) sup E[| X0 (1)]|74, < oo
te[0,T] P
MeN

Setting

IO() = E||U(t, 00675,

I9) =E ftU(t, $)Fo.n (s, Xoar(s)) ds N ,
I =E||[Uts )M, %001 (s)) AW ()
0 L2
and
‘ 2v
IMt) :=E ofo2 Ul(t, S)MC(S)(x)N(ds,d:L‘) , ,te[0,T],
2

we get, for any ¢t € [0,T],
El[Xo.(8)| 35, < cv) D) + 157 () + L7 (8) + 1D (2)).
First, by (A3) we have

I < o(v, TEIET|Z

c(v, T)EHSHLau
(A1) and (A3) imply

<
<

t

g (t, )| Fo.n (s, Xoa(s))|” ds

fﬁ)()<cyT

L3
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and thus

@ < e T, o(TNE J I[h(Kos(5)) 12, ds

IN

c(v,T,c(T),c

o%“

E [ [ (4 Ko (5,015, 060050 (5:6)
S

+(]‘ + ‘V‘QV <S7 0))1{X0,N[(S,0)<0} (87 0)i| /’Lp(de) ds

IN

L2l/

< e, T,e(T),c(T),co(T)) (1 + £E||X0,M(s)| L2 ds)

where (7.20) was used in the first, (7.18) and (7.25) were used in the second
and estimate (5.35) for the V-term was used in the fourth step.

Let us note that to estimate E||V(t)] i’iz in a way similar to Corollary
P

5.2.4, we need to impose assumption (QI) with ¢ = 202,
This is in full consistency with the assumption imposed on the jump coeffi-
cient in [80].

To estimate the third term, we apply Proposition 3.4.3 to the process

@(t) == X(t, Xom(t)) € L2V, t € [0,T].
Then, (3.40) and (LC), (LB) for o give us

t —_
1Y) < cw,T) [(t—s)SE||S(s, Xo.ar(s))]|% %, ds
0
t —
< .G, T,co(T)) (1 4]t = ) B Ko (o) 12, ds )
0
Finally, by Proposition 4.4 we have

t

(v, T, e(T), Cavy) [ (t = 5)"E[C ()| 5 ds
0

C<V7 Ca T7 C(T)7 K’ 021477)7

where we take into account the boundedness of ¢ and the fact that

IW (1)

IN

A

v<i <= (<L

Putting these four estimates together, we get

t T
(v, T, ¢(T), cs(T)) (1 + [ Bl Xom(s)l[Z5, ds + [ E[[V(s) )12, ds
0 0

)
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E[|Xom ()75, < cv, T)EIEIL;

2v
Ly

+C(V) Ca K) Ta C(T)a Cf (T)a 021/,71)
t —
+c(v, (T, c(T), co(T), Covp) <1 + f(t — s)—CE|\X07M(5)||i’%V ds>
0
for arbitrary t € [0,7"]. Thus, by the Gronwall-Bellman lemma 2.7.3,
B[ XomO)lI75 < (v, ¢, T,e(T), ¢p(T), ¢o(T), ¢5(T), Covy) (1 + BIIE][75),

for arbitrary M € N and ¢t € [0,T'].
Thus, we have proven that

sup

te[0,T

t€[0,T']
MeN

E[|Xom (@75 < e, ¢, T,e(T),¢f(T), o (T), e5(T), Couy) (1 + E[€][75.)

< o0

as it is required.
Next, we consider X y 5, for arbitrary N, M € N. Setting

IO(@) = E||U(¢,0)6 |2

L2
t 2v
lg\%,)M(t) =E 0fU(t, 8)Fn ar (8, Xy ar) ds .
7
and
t 2v
15\?;,)1\4@) =E {U(t, $)M(s,x s () AW (5) " tel0,T],
P

we get, for t € [0,T'],
v 2 3
EllX x| < c)ID (@) + I (8) + I3 (8) + 19 (0)).

Analogously to the consideration of I_](\Z) above, we get

t
3 — v
104(0) < clelD), o) (14 [0 = ) Bl Xna (93 ).
Since obviously IV (t) < (v, o(T))E|[¢][34, and I™(t) is the same as in
P
the estimate for X(],M, it remains to estimate lﬁ)M.
Since by construction we have

—-N < f&M(t,w,y) <0 for any (t,w,y) € [0,T] x Q x R,

we get by Definition 2.2.1 that
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sup I( ) () <e(N,v, T, ce(T)) < oo.
te[0,T]
MeN

Thus, putting all the estimates together, we have
B[ Xy 2 < N, T eo(T), ¢6(T), ey(T), Couy) (1 + E[€][75,)
+c(v, ¢, T, e(T), co(T), cy(T), Cou ) Oftt—s ~E[[X y (s )|\§%y ds.
Again by the Gronwall-Bellman lemma 2.7.3, we get
E[| Xyl < e(N, v, ¢ K, T, e(T), ¢0(T), ¢(T), Cavy) (1 + E|[¢][25.)
and hence

sup EHXNMH SQ(N7V7K7T7C(T)7CU(T)’021”7 +EH§‘ L2v
te[0,T]
MEN

Finally, by (7.23) we conclude

sup B[ Xy w75 < o(N,v, K, T,c(T), ¢o(T), Covy) (1 + El[¢][5.)
S
with e=¢+c.

(ii) The case of Lévy noise - equation (7.2)

Let us first consider X as. Setting

N t B 21/
i) =E {U(t, $)Eo (s, Xoa(s)) ds
L2
and
N t 21/
i) =E g‘U(t, s)Meo dL(s)|| , te[0,T],
L2

we get, for t € [0,T'],
Bl X (t < TO@ + 1Y + 19
1 X0 (D75, < cW)IV() + Iy () + 1e (1)),

with I () < c(v, ¢(T))E||¢]|%, as in the Poisson noise case.

P
To estimate the second term, we use the same chain of arguments as in (i)
to get
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~ t — —
D) < o, T,(T)E f [17(Xo.01(5)) 135, ds

IN

t
T elT), e DB T [ [0+ X355 0115, 10150y (5 0)
S
F(+ V2 (5,015, s<0 (5:0) | 110(d0) dis

t T
< W, T,c(T),ce(T)) (1 +OfEHXO,M(5)H%%u ds + ({EHV( HLQU )

t p—
< ¢, T,¢(T),ce(T),Covy) <1 + fE||X0,M(8)H%”2,, ds)
0

Note that again the estimate on E||V (¢)] |%‘§?, requires that the Lévy measure
P

n obeys (QI) with ¢ = 202
Now, by (QI) and (A5)/(A5)*, the Lévy-Ito-decomposition 2.4.12 and the
stochastic convolution results 3.4.3 and 4.4 we get

t

1@ < elvsm, o(T), Couy) [ (t = )7 E||C(s)|%, ds
0

t
+e(v,e(T)) [ (t = 5) " E[|C(s)[[75, ds
0
S C(Vv C7m7 K7 C(T)’CQVJ])'
Putting all the estimates together, we get

E|| Xo,m(t )H%Vm,
<c(,T) EHfHLzu

t —
+c(v,(,m, K, T,¢(T), ce(T), cy(T), Covyy) <1 + fE|]X07M(s)H%§V ds>
0

for arbitrary t € [0,T].
Thus, by Gronwall’s Lemma we have

tes[%%] EHXO,MH%V%V < E(vaama K, T7C(T) ( ) CQV?Y)(l + E”6||L2V)
MeEN

Next, we consider X y 5, for arbitrary N, M € N. Setting

ID(t) == E||U(t,0)¢ 174,

@ 2v
2
INM

9

2v
L3

t
of VEN (8, X ar) ds
and I®) as before, we get for t € [0,7T]

Bl Xy ()| < )LD (@) + Ly (1) + IO,
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We already know that
IM() < e(v, o(T))E|I¢]Z.
and

1(3) (t) < C(Vv C? m, K7 T7 C(T), CQV,U)7

so it remains to estimate lg\%)M(t).

Since by the construction
—N < ey (t,w,y) <0 for any (f,w,y) € [0,T] x 2 xR,
by Definition 2.2.1 we immediately see that
I$)() < e(N,v, T, e(T)) < .

Thus, putting all the estimates together, we have

EHXN,M(t)H%gu < oy, C(T))Ellﬁlliéu +¢e(N,v, T, ¢e(T))
+C(V7 C? m, K7 T7 C(T)7 CQV,U)
+e(N,v,T,e(T))

< Q(N7 v, C’ m, K, T, C(T)7 021477)(1 + EH&H%%V)
and thus
S[%I?F] EHXN,M@)H%% < Q(N7 v, Ca K7m7T7 C(T)7 CQVJ])(l + EHE‘ %1:2)”)'
telo,
MeN

By (7.24), we then conclude that

S[llp] E||XN,M(t)| %:2)1/ < C(Na VaCamaKv T, C(T)aCQV,n)(l + EH5| %:231/)
te[0,T
MEeEN

with e=¢+c.

Step 3: Analogously to Step 3 in the proof of 7.1.2, we construct the
processes Xy = A}im Xn,m, which later shall solve our equations in the
—00

case of F' resp. F being replaced by Fiy resp. Ey.
To this end, we define the random variables

ZN,M(t) = XN’M(t) — XN,l(t) S L%y, t e [O,T], N, M €N,
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such that (cf. (7.36))
0<Znum(t) < Znna(t).

With the help of the M-independent estimate from Step 2, we get

sup E|[Zn (8|75, < c(v) | sup El|Xnya(t)|[75, + sup E[|Xn,1(8)]75,
e ’ ST ’ o te[oT] ’

< 0oQ.
Next, we define
ZN(t) = sup ZN,M(t)v t e [O,T], N e N,
MeN
and check that there exists a modification Zy € G, (T'), which fulfills
(7.58) sup EHZN(t)H%’gU = sup sup E\|ZN7M(t)H%’;U < 0.
t€[0,T] ’ t€[0,T] MeN P
Thereafter, we can define Xy € G, (T) by
XN(t) = ZN(t) +XN71(t) S Lzy, NeN te [O,T}

and check that
T
(7.59) lim [ B|[Xn () — Xn()]|75, dt
M—oco 0 p

T
= 1 E||Z -7 2y = 0.
i B Za0(t) = Z (835, dt = 0

Indeed, by B.Levi’s monotone convergence theorem we have for each
te[0,T]

. o 2U — . _ 2v —
Tim Bl Xy ar(t) - Xn(O|% = lm B Zy(t) — Zy(Ol[2, = 0.

Herefrom, by (7.58) and Lebesgue’s dominated convergence theorem we im-
mediately get (7.59).

In the same manner, we construct processes X , X € G,(T) such that
T )
lim [E||X t) — Xn(t)||5%, ds =0,
Ml ‘of HfN,M( ) — X n( )HLg S

2v
L3

T — —
lim [E|[Xomt) — X(#)||?%, ds =0
Mﬂooo
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and (by (7.24), (7.25))
(7.60)

P-almost surely, for any ¢ € [0,T'].

Step 4: The aim of this step is to show that, for any NV € N, the process
Xn € G,(T) defined in Step 3 solves (7.1) resp. (7.2) in the case of F' resp.
E being replaced by Fiy resp. Ey.

This implies that ¢ — Xpy(t) is continuous in L% (Q, F, P; Lf,”) and, under
the additional assumption (A7) on U, has a cadlag modification.

By (7.59), there is a subsequence of (X ) aen that converges P®ds®dp,-
almost everywhere to X . For simplicity, we assume (Xn ar)men itself to
be this sequence.

(i) The case of Poisson noise - equation (7.1)

We define for ¢t € [0,T]

I3 (t) = Bl Xy (0) = Xar(8)]12,

2

t
I (8) = B|| [ U(t, 9)[Fx(s, Xn(s)) — Faar(s, Xnar(9)] ds||
0 Ll2>
and
3 ¢ 2
Iy ) Of (t $)[Ms(s, xn(s) = Ms(s,Xnar(s))] AW (8)
L2

Thus, for each t € [0,T ], we have

E HXN(t) —U(t,0)¢ — ftU(t, $)Fn (s, Xn(s))ds — OftU(t, $)Ms(s,xx(s)) AW (5)

0

; 2

— [ J U s)Mcs)(@) N(ds, dz)
072

< B[N (0 + I () + I ).

First of all, by Holder’s inequality we get
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1
Ihe(8) == ElIXn () = Xnar(D)35 < (v, p)[BIXn(t) = Xnar (]33]

such that by construction the first term tends to 0 for M — oco. By 2.1.1
(iii) for U, we have for the second term

T
1P 1) < 2e(T) (E I 11Fi (s, Xov(s)) = Fxs, X (s)) I ds

T
+E [ |[Fn (s, X (5)) = Fnoaa (s, Xvow ()12 dS)
0
21 22
= 2e(T)[I\ () + I3 (T)].
By the continuity of fy and the convergence property of Xy s, we have
for almost all s € [0,T]

|[fn(s,w, Xn(s,w,0)) — fn(s,w, Xnm(s,w,0)) — 0as M — oo

P & dp, almost surely on € x ©.
Condition (PG) and the relation

XN,l(t) < XN,M(t) < XN(t)a te [OvT]a N,M eN
imply for almost all s € [0,7]

|fN(S,W,XN(S,w,9)) —fN(‘S?w’XN,M(Saw?e)”
< 2C(N7 cf<T))(1 + ‘XN(vave)’V + ’XNJ(S?“)vH)’V)ﬂ

P ® dpu, almost surely.
To apply Lebesgue’s theorem, we check that

sup [ [(|Xn(s,w, ) + | Xn1(5,w,0)[*) p1,(dB)) P(dw) ds
s€[0,T]Q 6

= sup (BIIXn()]3% + Bl Xna(s)|34 ) < oo,
s€[0,T] L L

since Xy, Xn1 € G, (T). Thus, Lebesgue’s theorem is applicable and gives
us

To estimate I](\?’%\Z(T), we fix L < M, L,M € N. In full analogy to the

consideration of 11(311\)4 with fyar T fyv (and thus fx — faar | 0), we get
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T
lim 705 < lm Bl Fy(s, Xnar(s) = Fne(s Xnoar(s)][2; ds
—0

M—0o0
— §E|’FN(S,XN(S)) — FN7L(8,XN(S))H%/2) ds.
Letting here L — oo gives us
lim 102 (T) = 0.
Mooo N
Thus, we have

' (2) —
A}lglooIN’M(T) =0.

By (A4), (LC), Ito’s isometry and Holder’s inequality, we get the following
estimate for the third term

IQNT) < e(elT), co(T))

o o

(t—s) “E[|Xn(s) — XN,M(S)II%% ds

T v
< e, T,c(T),cr(T)) (f E||[Xn(s) — XN,M(S)H%%U ds) .
0
Thus, by (7.59) IJ(\:,)’)M(T) tends to 0 as M — co.

So we have shown that Xx € G,(T) is the mild solution to the equation
(7.1), when F is replaced by Fy.

The required continuity properties of Xy follow immediately from the prop-
erties of the integrals on the right hand side of (7.1).

Indeed, the Bochner convolution integral in (7.1) is time-continuous in L?(€2; L%)
by Remark 5.1.11 (ii), whereas the stochastic convolutions integrals in (7.1)
are continuous by the continuity results 5.1.8 and 5.1.10 and the simple
(Holder’s) estimate

1
Bllél2, < (Blle|.)t
holding for any L,%” -valued random variable.

Similar arguments show that Xy € G, (7)) solves (7.1) with = and fy,
whereas X solves (7.1) with £t and fT.

(ii) The case of Lévy noise - equation (7.2)
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Defining
1
Ih () = BlIXn (t) - Xnar (0)]13,

and

2
,te[0,T],
L3

t

J U@, s)[En(s,Xn(s)) — Enm(s, Xnn(s))] ds

IYy(t) :=E J

we have for ¢t € [0,T]

t t 2
E HXN(t) —U(t,0)§ — [U(t,s)En(s, Xn(s))ds — OfU(t,s)./\/lc(S) dL(s)

0

L3
1 2

< 2150 () + I ()

But I](\}v)M(t) tends to 0 for M — oo by construction, whereas IJ(\?)M(t) tends

to 0 for M — oo by replacing the F-terms by the E-terms in the proof of

the same claim in the Poisson noise case.

Thus, for all N € N, Xy € G,(T) is a solution to (7.2) in the sense of
7.1.1.

Again, the stochastic integrals obey the required continuity properties by
the results from Section 5.1.

Indeed, the Bochner convolution integral in (7.2) is time-continuous in L?(£; Ll%)
by Remark 5.1.11 (ii), whereas the stochastic convolutions integral in (7.2)

is continuous by the continuity results 5.1.6 (ii), 5.1.8 and 5.1.10 and the
simple estimate

1
Ell€ll2, < (BlIel2s.)?

holding for any L/QJ" -valued random variable (by taking a F@B(0O)-measurable
version and applying Hélder’s inequality twice).

Step 5: As in Step 5 of the proof of 7.1.2, we first establish N-independent
estimates for the moments of X ;. Then, the required N-independent esti-
mate for X will follow from the inequality in L%” (cf. (7.21))

Xn(t) < Xn(t) < X(1),

which holds for any ¢ € [0,7'] and any N € N.

From Steps 2 and 4, we already know that
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ts[l(l)%}EHXN(t)H%%v < (N1, G, K, T, e(T), ¢ (T), ¢6(T), Cauy) (1 + EJ[€][75.)
€| 0,

in the Poisson noise case and (in the Lévy noise case)

S[%PT]EHXN@)H%’QU < (N, v, ¢ m, K, T, ¢(T), ¢e(T), Couy) (1 + BIIE][75)-
te( 0,

In the Poisson noise case, setting

ID(t) == E|U(t,0)¢ 1%,

t 2v
1) =B || [ Ut 5)Fy (s, X,(s))ds||
0 L%u
5 t 2v
IP(t):=E J U Msgox oy WG|
L2
2v

,t€[0,T],

1MW) =8 Of [ U, s)Mgs) () N(ds, dz)
L2

L2

we have for, t € [0,T'],
Bl Xy (0125, < o) [I00) + 19 @0) + 19 (1) + 19(0)|.
In the Lévy noise case, setting

10(t) = BV (5, 0)€ 12

. 2v
190 = & foe. oz o]
L2v
. 2v ’
Ji6)) E|[U (t, s)Mc(s) dL(s) , 1€ [0,T]
0 L

we have for ¢t € [0,T]
BILXy (013, < eI (1) + 13 (1) + 19(1)
AN LQV = LN .
Now, by (A3) (both in the Poisson and the Lévy noise case)

1M (1)

(v, T)E[|U(t, 0)|€_|”H%g
o(v, T, e(T)BI¢]| 75
In the Poisson noise case, we get by (7.20), (7.25) and (7.60)

<
<
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2 1
W< c fHF (5, X ()35, ds
< clwelD) [ BlaXn (D3 ds
t 2
< TelD)es () (14 [BIX () ds-+ [ BV ds)
0

t
< o T,e(T),ef(T), oo, (1 + [ BIX ()] ds)
0

where we used X () < V(t) and g < f.
Respectively, in the Lévy noise case, just replacing Fiy by Ey in the above
estimate, we get

t
1D(t) < (. T, e(T), co(T), Cope) (1 + [ BIXy @I ds>
0

Next, we consider the third term in the Poisson noise case. By 3.4.3 and
(LC), (LB) for o, we have

153) (t) < (v, T,c(T), co(T)) <1 + bf(t - 3)7<EH£N(3)H%§V ds)

Combining this with the estimate

2v
E

f f U(tv S)MC(S) (‘T) N(dsv dx)
012

t
<cw,T,c¢(T),Covy) f(t — s)—C”HC(s)H%gU ds
0

> C<V7 Ca K7 T? C(T)7 CQV#?)

2v
L3

following from 4.4 and the boundedness assumption on ¢, we get for all
€[0,T]

B[ Xy(0)T5 < e TIEIEIZ

t
e, T e(T), ¢4(T), co(T)) (1 # 6= ) BlX (o), ds)

+c(v, (, K, T,c¢(T), Coyp)
(v, K, T, c(T), cp(T), co (T )C2un)(1+EH§HLzu)

+C(V7T,C(T)’Cf(T)7Ca(T))bf(t—8) “E|| X n ()17

IN

Thus, by the Gronwall-Bellman lemma 2.7.3, we conclude that

sup Bl Xy (0)[[75 < e1(v, KT e(T), ¢ (T), ¢6(T), Cowy) (1 + EJIE][75.)-

te[0,T]
NeN
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The above arguments are modified to the Lévy noise case in the follow-
ing way. By the Lévy-It6 decomposition 2.4.13 together with 3.4.3 and 4.4,
we get

I18)(t) < e(v, ¢, m, K, T, ¢(T), Cayy).-

Combining this with the above estimates on IV (t) and I 5\2,) (t), we get for
all t € [0,T]
B[ Xy < e B[]

(v, Com, K, T, e(T), co(T), Cop) (1 n j(t — )| X (5) % ds )

L2l/

Then, the Gronwall-Bellman lemma is applicable, which yields

B[ Xy ()25 < c2(v, (m, K, T, e(T), ce(T), Cavy) (1 + El[€][25.)

and hence

S[%I;]EHXN@)H%%V < c(v,¢;m, K, T,c(T), ce(T), Czun)(1+EH€||Lzu)
telo,
NeN

also in the Lévy noise case.

As we have shown in Step 2, for any ¢ € [0,7'] and M € N,
B[ Xon ()75, < c3(v, I T, e(T), ¢ (T), ¢ (T), Cowy) (1 + EJ[¢][75.)
in the Poisson noise case respectively

E[| Xom (D)[[75, < ca(v, I T,m, oT), ce(T), Covy) (1 + E|[¢][75.)

in the Lévy noise case.

Next, let us consider the upper solution X.
Recall that, by its definition in Step 3, X is a process in G, (T such that

lim E||Xo(t) — X(2)]

N : LQ,,—Oforeachte[O,T].
—00

Thus, we get

tﬁ%%]EllX(t)\I%%u < (v, ¢ K, T, e(T), ¢4(T), ¢0(T), Couy) (1 + E[€][75.)
€10,

in the Poisson noise case respectively
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S[up ]EIIX(t)H%”gu <c(v,(;m, K, T, c(T),ce(T), Cou) (1 + Ellélli’gu)
te[0,T

in the Lévy noise case. Since by (7.44)
Xyt < Xy(t) < X(t) in L
we immediately obtain that

sup E||Xn(1)][75,
te[0,T] P
NEN

S (Cl(V7 K7 T, C(T)) Cf(T), CO’(T)7 02’/777)
+e3(v, ¢ K, T, e(T), ¢ (T), ¢o(T), Covy)) (1 + EIIE’II%%V)

resp.

sup E[|Xn(1)|[75.
te[0,T] P
NeN

< (ea(v, K, T,¢(T), ce(T), Covg) Fa(v, § K, T, (1), ce(T), Cow)) (IHEIE][75.),
which proves the N-independent estimates for moments of X .
By fn | f resp. en | e, Theorem 6.1.1 implies (cf. (7.44))
Xn41(t) < Xn(t), P-almost surely, for all t € [0,T'], N € N.
Now, we can define our solution candidates.
We claim that
X(t):= inf Xn(t),t€[0,T],

NeN

defines a solution in the sense of 7.1.1(ii) both for (7.1) and (7.2).

As in Step 5 in the proof of 7.1.2, we have to overcome the problem that
(Xn)nen is a decreasing but not necessarily positive sequence in Lf)l’ .

So, we first fix t € [0,7'] and define

(7.61) YN(t) = Xl(t) — XN(t), N eN.

Since
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sup E|[Yn()[[75, = sup E|IXi() = Xn (0|75
te[0,T] t€[0,T']
< c(v)| sup E[|Xq1(t)][75 + sup E||XN()HL2V>
te[0,T] P t€[0,T]
< 00,

we have Yy € G, (T) for any N € N.
Obviously, 0 < Yn(t) < Yn41(t), P-almost surely, for each ¢ € [0,7']. Thus,
defining a process Y by

[0,T]>t— Y(t):=sup Yn(t), N €N,
NeN
by B.Levi’s monotone convergence theorem we get that
(7.62) sup E||Y( )HLQV = sup sup EHYN(t)H%’Q,, < 0.
t€[0,T] te[0,T] NeN L

Since ¢t — Y (t) is predictable by its construction, it is also an element
of G,(T).
Since by (7.61)

X(t) =Y(t) - Xa(b),

we have proven that X € G,(T).
As |Yn(t) =Y (t)] <2|Y(t)| and Y € G,(T), by Lebesgue’s dominated con-

vergence theorem we conclude that, for each t € [0,T'],
. 21/ _ .
(763) i BJIXn() — X(0)|B% = T Bl[Yi(0) - V()| =

Taking into account (7.62) and applying Lebesgue’s theorem ones more,
we get

T T
(T60)  Jim B 11X () - X035 dt = fim B[ [Ya() - ¥ (0][35 di =

It remains to show that X solves equation (7.1) resp. (7.2) in the sense
of 7.1.1 (ii).

Defining
IV (6) = B|IX (1) - Xn(1)]I7,,
1 [ U 9P(s,X(6) ~ Fls Xn(9)] s QL
i [U(t {5, X(5) - Bl X(s))] ds 2

2
L3
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and

2
,t€[0,T],
L3

t
{U(t, 8)[Msys,x(s)) = Mo, xn(s))] AW (5)

1P() =E

we get, for each ¢t € [0,T],

E HX(t) - U(t,0)¢ — OftU(t, s)F(s,X(s))ds — ({tU(t, 8) Mss x(s)) AW (8)

2
t

_oij; Ul(t, s)Mcys)(x) N(ds, dz)

<P )+ 19 + 18 (1))

2
L3

in the Poisson noise case and, respectively in the Lévy noise case,

¢ 2

E HX(t) —U(t,0)06 — JU(t,s)E(s, X(s))ds — E)f Ul(t, s)Mc(s) dL(s)

2
L3

<o) + 1)

Analogously to Step 4, we have (by (7.63))

1
10(t) < e(v, p) (BIIX() = Xn(0)]12,)" = 0, a8 N = oc,

both in the Poisson and the Lévy noise case.

By (7.64) there is a subsequence of X, which converges to X, P®@dt®du,-
almost everywhere on [0,7'] x Q x ©. For simplicity, we assume Xy itself
to be this sequence.

Herefrom, by the continuity of f we have for almost all s € [0, 7]

f(s,w, X(s,w,0)) — f(s,w, Xn(s,w,0)) — 0, a8 N — oo,

P @ pp-almost surely on Q x ©.
Condition (PG) with exponent v > 1 and

X(t) < Xn(t) < Xi(t), t€[0,T], NeN,
imply that for all s € [0,T']

]f(s,w,X(s,w,y)) - f(s,w,XN(s,w,y))]
< C(cf(T))(l + ‘X(vaay”lj + |XN(S7w7y)|V)
< 2¢(cp(T) (A + [X(s,w,y)|” + [ X1(s,w,9)["),
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P @ py-almost surely on 2 x ©.
Obviously

sup [ [(1X (s,w,0)]* + | X1(s,w, 0) ) pp(dy) P(dw)
s€[0,T]Q ©

< swp (B|IX(5)|12, ds+ El[X:()]|2, ) < oo,

s€[0,T'] p L
since X, X1 € G,(T'). Thus, Lebesgue’s theorem is applicable and gives
us

N—oo

T
lim 10M(T) = Oftzféf(f(s,w,X(s,w,e))—f(s,w,XN(s,w,e)))mp(de)P(dw) ds
= 0.

To estimate I](\?QAZ(T), let us fix some K < N, K, N € N.

Using the relation (7.54), we find that

T
(7.65) lim ICP(T) < lim JE||F (s, Xn(s)) = Fic(s, - Xn(s)|[3, ds

N—oo N—»ooo

T
= TBIFG - X(5) = Ficlo, - X)) ds.

Since (7.65) holds for any K € N, letting K — oo we get I](\?Q) (T) — 0.

Replacing the F-terms by the E-terms, we know that 1:](\?) (t) = 0as N — oc.

In view of (7.64), we can apply the same arguments as in Step 4 to get
: 3y —
lim Iy’ (t) =0 for any ¢t € [0,T'].
N—oo
Thus, X solves (7.1) resp. (7.2) in the sense of 7.1.1 (ii).
The required continuity properties of the solution follow from the similar
properties of the integral terms in the right hand side of the equations (7.1)

and (7.2), which were considered in Section 5.1.

Thus, it remains to show estimates (7.8), (7.9).
We note that in both cases, we have for any ¢ € [0,T]

E||X(t)!|%”§u <c(v) E|\Y(t)||%%y + E||X1(t)||%”%,,

and thus
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sup E[|[X(0)[[75, < c(v) | sup E|[Y(0)|[Z5 + sup E|IXi(0)][7
te[0,T] t€[0,T] ’ te[0,T'] ’

< ()| sup EI\Y(t)\L2V+ sup EIIXN(MLQV
te[0,T] NeN

< e, KT, eo(T), ¢4(T), ¢(T), Cavy) (1 + E[¢] sv)

in the Poisson noise case resp.

sup E[|X(®)[[75, < cw) | sup E|Y(5)|[Z5 + sup E[[Xq( )!Lzu]
te[0,T] _te[o,T] t€[0,T]

< ¢(v) | sup EHY(t)\Lzu—i— sup Bl Xn(t )‘LZU
te[0,T]

< e, ¢,m, K, T,¢(T), ce(T ),Ow +Bll¢l175.)

in the Lévy noise case, which finishes the proof. B

7.4 Proof of Theorem 7.1.6

So far, we have only established existence of a solution, but not uniqueness.
Before we start with the proof of Theorem 7.1.6, let us recall two related
uniqueness results on SDEs in infinite dimensions with non-Lipschitz drift.
First, in the framework of Section 7.1, Manthey and Zausinger proved path-
wise uniqueness of mild solutions to the Wiener noise driven SDE

dX(t) = (A()X(t) + F(t, X ()))dt + My xay dW (¢), t € [0,T'],
X(0)=¢,

which is just equation (7.1) with C' = 0.
Their result requires the following additional assumptions:

O is bounded;

W is a cylindrical Wiener process in L?;

f is bounded, i.e. sup |f(t,y)] < oo;
(t,y)€[0,T xR

o is strictly positive, i.e.

inf t > 0. (t 0.7 o
(t:y)el[%,T]xR|U(’y>‘—5> , (t,y) € [0,T] x
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To prove their uniqueness result, Manthey and Zausinger used Girsanov’s
theorem, which is not applicable in our case. Therefore, our proof of Theo-
rem 7.1.6 is based on the following uniqueness result in infinite dimensions
with both Wiener and Poisson noise.

In Section 2.1 of their paper [80], Marinelli and Rockner consider the SDE

(7.66)dX(t) = (A()X(t ) F(X(t)))dt 4+ B(t)dW (t)
+ [G(t,2) N(dt,dz), t € [0,T],
Z
X(0)=¢.

In their setting, solutions to equation (7.66) take values in L?(©) with
© c R? being open and bounded with a smooth boundary. Here, W is
a cylindrical Wiener process in L? and N is a compensated Poisson random
measure on [0,7] x Z with compensator dt ® m, where (Z, Z,m) is a mea-
surable space.

Since the results in [80] are restricted to open bounded © with smooth

boundary 00, we will not use the shorthened notations from the previous
sections.

Definition 7.4.1:  Assume that f defining F' by (NEM) obeys (PG)
with exponent v > 1. Given an initial condition ¢ € L?'(0), an adapted
process (X (t)):e[o,r) such that

E sup [ X(1)]2 <
te[0,T]

is called a mild solution (7.66) if (cf. Definition 2, p.1531 in [80])

e X(t) € L*(©), P-a.s., for allt € [0,T], and
¢
X(t)= e+ fe(t_s)AF(X(s))ds

—i—fte(t DAB(s) dW (s) —i—ffe(t AG(s,2) N(ds,dz),
0

P-a.s., for all t € [0,T] and the mtegra]s on the right hand side are
well-defined.

Besides the assumption that f is of at most polynomial growth, it is
assumed that (cf. p.1531 in [80]):

e A admits a unique extension to a strongly continuous semigroup of
positive contractions on L2”(©) and L**(©).

e fis a continuous maximal monotone function, i.e. there is some p € R
such that R 5 6 — f(0) + pf € R is monotone.
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o G: [0,T] x Qx Z — L?(O) obeys

T v?
(7.67) E/[ fHG (t,2) LQVQ m(dz) (fHG (t,z HLQUQ m(dz)) ] dt < .
0

Under these assumptions, the uniqueness result proven in [80] (cf. Proposi-
tion 7, p.1539 there) can be stated as follows

Proposition 7.4.2:  There is a unique cadlag mild solution to (7.66)
in the sense of Definition 7.4.1. It satisfies the estimate

E sup [[X(t)|[7% < (v, T)(1+E[|¢][7.),
te[0,T]

where c(v,T) is a positive constant.
Now, let us prove Theorem 7.1.6 with the help of Proposition 7.4.2.

Proof of 7.1.6(i): First, we recall that by Theorem 7.1.2 (i) we have
the existence of a mild predictable solution [0,7] > t — X(t) € L*(0),
which obeys a cadlag version.

As was mentioned in [80] (cf. Remark 13, p.1546 there), Proposition 7.4.2
extends to the case of an additional solution-dependent Wiener noise with
a Lipschitz coefficient. This gives us the possibility to apply Proposition
7.4.2 to the solutions of equation (7.1) if the other conditions from 7.4.2 are
fulfilled.

Note that the original result in [80] was formulated for nonrandom and time-
independent f. Since by assumption f is maximal monotone uniformly in
(t,w), the dependence of f on (t,w) does not cause any problem in extending
Proposition 7.4.2 to our setting.

By assumption (QI) for n and the fact that ¢ is bounded uniformly in
[0,T] x §2, we immediately get (7.67) with G(t,7) = Mg (v),

(t,z) € [0,T] x L*(©).

Now, since the assumptions on A are such that the assumptions from above
are fulfilled, Proposition 7.4.2 gives us the claim. [J

Proof of 7.1.6(ii): In this case, by Theorem 7.1.3 (i) we have the existence
of a mild predictable solution [0,7'] > t — X(t) € L*(0), which obeys a
cadlag version. Similarly to the proof of 7.1.6 (i), we get that Proposition
7.4.2 is applicable. Again, by the assumption that f is maximal monotone
uniformly in (f,w) and the fact that G from the proof of 7.1.6 (i) obeys
(7.67), since (QI) holds with ¢ = 22 for n and ¢ is bounded uniformly in
[0,7'] x Q, we can apply Proposition 7.4.2. Thus, we get the claim. [0 B

Remark 7.4.3: Theorem 7.4.2 can also be proven by the abstract unique-
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ness result for dissipative stochastic evolution equations in Hilbert spaces
proved in [81] (see Theorem 1, p.365/366 there). Also, this approach allows
us to consider infinite-dimensional SDEs with nuclear Wiener processes.

Remark 7.4.4: Unfortunately, in the solution-dependent case, under the
assumptions of the existence theorem for equations (1.1) and (1.2) (cf. Sec-
tion 8.1) the uniqueness result given by Theorem 12 in [80] and Theorem 3
in [81] is not directly applicable as we will see in Remark 8.1.6 (v) below.
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Chapter 8

Existence in the case of
non-Lipschitz drift with
multiplicative jump noise

In this chapter, we will present the main result of the thesis. We will prove
the existence of mild solutions to equations (1.1) and (1.2) in the case of
non-Lipschitz drift, i.e. we allow the jump coefficients in the equations to
be solution-dependent.

The proofs will be done analogously to the proofs of Theorems 7.1.2 and
7.1.4. To shorten the presentation, we will merely discuss the parts that
differ from the proofs in Chapter 7. Of course, this procedure requires com-
parison results for equations (1.1) and (1.2) in the case of Lipschitz drifts.
These results will be proven similarly to the results in the additive case in
Chapter 6, namely by using finite-dimensional approximations of the initial
equations. To compare the corresponding solutions to the finite-dimensional
equations driven by multiplicative Poisson resp. Lévy noise, we consider the
approximations as equations in Sobolev spaces, since then we can apply
the Sobolev embedding theorem to get solutions, which are continuous and
bounded in space. With the help of this technique we can apply the com-
parison results from [92], [68] and [67] collected in Appendix C. To make use
of the Sobolev embedding theorem, we need the restriction that the domain
© C R? obeys the weak cone property (cf. Appendix A, Theorem A.6).
The application of the finite-dimensional comparison results mentioned be-
fore forces us to assume that the function defining the jump resp. jump
diffusion coefficient is monotonically increasing (resp. decreasing), the Lévy
measure is supported by the set L2,(0) of nonnegative functions (resp. by
the set L2,(©) of nonpositive functions). Furthermore, the family (Un)nen
approximating the almost strong evolution operator U in the sense of (A6)
should obey the regularity property (A8) in Sobolev spaces W™2(©). This
is the main new issue compared to Chapters 6 and 7.

271
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Let us recall the basic framework.

For the whole chapter, let (Q2,F, P) and (F)ic[o,r) for some T' > 0 be as in
Section 1.2.

We suppose that p € NU {0} is such that 1,(©) < oo, i.e. we have the two
basic cases

e p > d for unbounded © C R¢ and
e p =0 for bounded ©.

Again, given X, Y € L%(@), by writing X <Y we mean that X (0) < Y (0)
for pp-almost all 6 € ©.

Analogously to the formulation of Theorem 7.1.6, in order to emphasize that
we have a restriction on the domain ©, we will not use the shortened nota-
tion in this chapter, i.e. we will always write L?(0) or L?)(@).

8.1 The main results of this chapter

First of all, let us give the exact setting.
Recall that according to the general framework from Chapter 7:

(A(t))te[o,r) generates an almost strong evolution operator in Lg(@)
in the sense of 2.1.1.

e 0,7 [0,T] x Q2 xR — R generating X, I" by (NEM) are
Pr @ B(R)-measurable and fulfill the Lipschitz property (LC) and the
local boundedness property (LB).

o ¢, f:]0,T] x QxR — R generating E, F' by (NEM) are
Pr @ B(R)-measurable, continuous in the third variable and fulfill the
polynomial growth condition (PG) with exponent v > 1 and the one-
sided linear growth condition (LG).

e W is a Q-Wiener process in L?(©) such that either Q € T+ (L?(09))
and the system of eigenvectors (ey)nen of @ obeys (3.1) (referred to
as the nuclear case) or Q =1 (referred to as the cylindrical case).

e N is a compensated Poisson random measure and L is a Lévy process
such that the corresponding intensity measure 77 obeys the square in-
tegrablility condition (SI).
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Additionally to the previous conditions, we need to assume that

(M) Let v, 0: [0,T]xQ2 xR — R be Pr® B(R)-measurable functions such
that

Y(tw,y1) < Y(t,w,ye) for any (¢, w) € [0,T] x Q and y1 < yo
resp.

o(t,w,y1) < o(t,w,ya) for any (t,w) € [0,T] x 2 and y; < ya.

(P) The intensity measure 7 is supported on

LQ20 ={p e L?|¢Y >0, df —a.e.}.

Assuming (M) and (P) is crucial to apply the comparison method in the
case of multiplicative Poisson resp. Lévy noise.

Assumption (M) means that v resp. o is nondecreasing in the last vari-
able.

(P) is surely satisfied if 1 corresponds to a Lévy process L of positive
jumps, ie., AL(t) € L%,.

Alternatively, we could assume that 7 resp. ¢ is nonincreasing in the last
variable and that 7 is supported on L%, := {¢ € L? |9 < 0 df — a.e.}. E.g.
this is the case if n corresponds to a Lévy process L of nonpositive jumps,
ie. AL(t) € L2<0. Lévy processes with nonpositive jumps are e.g. used to
model queing, insurance risk and dam theory.

For further examples of application and a closer look at Lévy processes with
nonpositive jumps, we refer to [12], Chapter 7.

In the proof of the comparison theorem 8.1.5 below, we have to work in a
Hilbert space setting in order to develop proper stochastic analysis and de-
fine Wiener and Poisson stochastic integral via It6’s isometry, which is not
evident in the case of general Banach spaces. We further need to evaluate
the equations pointwise. Thus, we will work in Sobolev spaces W™2(0) (for
the definition see Appendix A) with large enough m > %, since

1. W™2(©) is a Hilbert space (in contrast to the general Sobolev spaces
W™P(©)) and
2. Wm’Q(G)gC’b(@), i.e. W™2(0) is continuously embedded in Cy(0).
Recall from Appendix A (cf. Theorem A.6 Case 1 (with j = 0) there) that

in the case of © being a domain obeying the weak cone property(cf. Def-
inition A.1.1 in Appendix A), the second item holds for any m € N such that
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mp=2m>d < m>g.

The weak cone property is a standard assumption in the theory of Sobolev
spaces.

Below, we always suppose that © € B(R?) obeys the weak cone property
(for examples of spaces fulfilling this property, see Appendix A).

For a comparison theorem it is enough to consider the solutions in W2,(T),
the space of predictable, W2 (0)-valued processes X = (X(t));e[o,r) such
that

sup E[|X(8)|[m2 < co.
te[0,T]

Furthermore, we need an additional assumption on the approximations of
the generating family of operators (A(t))eo,7]:

(A8) The family (An()):c(o,r) from (A6) is such that, for any N € N, we
have (An(t))iejo,r] € LW™?2(O)) and, for the corresponding evolu-
tion operators Uy,

sup [|UN(2, 8)|[gwme2y = en(T) < o0.
0<s<t<T

Now, we can formulate the main results of this chapter, which will be proven
in Sections 8.2-8.4 below.

As in the case of Lipschitz coefficients considered in Chapter 5, we split
our considerations into the following two cases:

Case (A) We suppose that f resp. e generating F' resp. E by (NEM) fulfills
the condition (PG) from the introduction with v =1, i.e. f resp. e
is of at most linear growth.

An L2-valued initial condition ¢ fulfills E|[¢ H%E < oo for some g > 2.

We show existence of a solution X € H?(T') starting from the above

&.

Case (B) We suppose that f resp. e generating F' resp. E by (NEM) fulfills
condition (PG) from the introduction with v > 1.
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An L2"-valued initial condition & obeys E||¢]|75, < oo for the above v.
)

We show existence of a solution X € G,(T") starting from the above &.

Analogously to the situation in Chapter 7, the first theorem describes the
case of at most linear growth for the drift terms.

Theorem 8.1.1:  Suppose that, additionally to (A8), the almost strong
evolution operator U generated by (A(t))icjo,r] has properties (A0)-(A2),
and (A6).

Suppose that in (A2) we have ¢ € [0, ).

Furthermore, let (PG) be fulfilled with exponent v = 1 both for e and f.
Suppose that q € (ﬁ,%) (Note that, by the choice of (, this intervall is
non-empty!) and the initial condition is as in Case (A).

Finally, assume that the integrability condition (QI) for the Lévy measure
1 1s fulfilled with the above q.

(i) There exists a predictable mild solution to (1.1) in the sense of 5.1.2
(i). The process t — X (t) is continuous in L1(Q; L2(©)).
Furthermore, we have the moment bound

(&1 S[%pT]EHX(t)Iqu% < elg, K, T, e(T), ¢4(T), ¢o(T), Cqp) (1 + EIE][7)
€0,

with a positive constant on the right hand side. Additionally assuming that
v resp. U obeys

(82) sup |’7(tvway)| =K < oo
(t7w7y)€[O7T]XQXR

resp. (A7), there exists a cadldag version of the solution.

(i) There exists a predictable mild solution to (1.2) in the sense of 5.1.2
The process t — X (t) is continuous in L9(§2; L%(@)).
Furthermore, we have the moment bound

(.3) onp. BN} < cla, KT e(T).ce(T), o) 1+ B[
te| 0,

with a positive constant on the right hand side. Additionally assuming that
o resp. U obeys

(8.4) sup oty y)| == K < 0o
(t,w,y)€[0,T]xQXR

resp. (A7), there exists a cddldg version of the solution.
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Remark 8.1.2: Actually, in the nuclear case we could also assume (A5)*
with v =1 instead of (A2) (see Remark 3.4.2 (i) and Theorem 4.1 above).

The second theorem describes the general case of drift terms having poly-
nomial growth of order v > 1. Analogously to Theorem 7.1.4, the solutions
take their values in Lf,” but are only time-continuous in L?(; L%).

Theorem 8.1.3:  Suppose that, additionally to (A8), the almost strong
evolution operator U, generated by (A(t))ic[o0,1], has properties (A0)- (A4),
(A5)* and (A6) (Note that, analogously to Theorem 7.1.4, we could also
assume (AS5) instead of (A2) and (A4). Furthermore, in the nuclear case
we can drop (A2) and (A4) at all).

Suppose that in (A2) (resp. (A5)) we have ¢ € [0,3).

Let e and f fullfill (PG) with an exponent v € ( 1i(7 %) with ¢ from (A2)
(Note that, by the choice of , this intervall is non-empty!).

Suppose the initial condition £ is as in Case (B). Assume that the integra-

bility condition (QI) for the Lévy measure 0 is fulfilled with q¢ = 2v2.

(i) There exists a predictable mild solution X to (1.1) in the sense of 5.1.2
The process t — X (t) is continuous in L*(£); Lg(@)). Furthermore, we have
the estimate

(8.5) S[UP ]EHX(t)’ %l%” <c(v, ¢, K, T,c(T), Cf(T)7 co(T), CQV,ﬁ)(l + El[¢] %%u)
te[0,T

with a positive constant on the right hand side. Additionally assuming that -y

resp. U obeys (8.2) resp. (A7), there exists a cadlag version of the solution.

(ii) There exists a predictable mild solution X to (1.2) in the sense of 5.1.2
The process t — X (t) is continuous in L*(Q; L3(0©)). Furthermore, we have
the estimate

5.6)  oup BN < o KT eT):eo(T): Ca) 1+ Bl
te|0,

with a positive constant on the right hand side. Additionallly assuming that
o resp. U obeys (8.4) resp. (A7), there exists a cadlag version of the solu-
tion.

The proofs of Theorems 8.1.1 and 8.1.3 will be done in Sections 8.3 resp. 8.4.

Remark 8.1.4:  Analogously to Theorem 7.1.4 in the previous chapter,
the assumption that (QI) holds with q¢ = 2v? will be crucial in Step 2 in the
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proof of Theorem 8.1.3 (see estimate of the term 1:](\3) from the proof of 7.1./
on p.245 (which accurs again on p.321 below)).

To prove Theorem 8.1.1 and 8.1.2, similarly to the proofs of Theorems 7.1.2

and 7.1.4, we need the following comparison results in the case of Lipschitz
drifts.

Theorem 8.1.5: Let U be an almost strong evolution operator generated
by (A(t))ic[o,r) such that, additionally to (A8), also (A0)-(A2), (A6)
and (A7) hold. Let (QI) hold with the given q € (ﬁ,%) for ¢ from (A2)
in [0,1). Furthermore, let W, €@ be as in Case (A):

(i) Let fO, i = 1,2, o and ~ fulfill the Lipschitz property (LC) and the
local boundedness property (LB). Suppose that v additionally fulfills (M).
Furthermore, assume that
5(1) S 6(2)7 P—a.s.,
and
fO(t,y) < fO(t,y) for all (t,y) € [0,T] xR, P-a.s..
Then, we have

XW(@) < XA(t), P-a.s.,

for any t € [0,T], where X € HA(T) denotes the unique predictable mild
solution to (1.1).

(i1) Let €9, i = 1,2, and o fulfill the Lipschitz property (LC) and the
local boundedness property (LB). Suppose that o additionally fulfills (M).
Furthermore, assume that
g(l) S 5(2): P-G.S.,
and
e (t,y) < e@(t,y) for all (t,y) € [0,T] x R, P-a.s..
7y 7y 7y 9 )

Then, we have

XW) < XA (1), P-a.s.,
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for all t € [0,T], where X € HY(T) denotes the unique predictable mild
solution to (1.2).

Proof: See Section 8.2 below.

Remark 8.1.6: (i) By Proposition 5.2.1, (A7) implies the existence
of cadlag solutions X with x9 e HY(T) to each of the equations (1.1)
resp. (1.2). Thus,

P{we Q| XD (t,w) < XO(t,w)for all t €[0,T]}) = 1.

(i) Repeating literally the arguments from Section 6.1 a comparison re-
sult with initial conditions €9 as in Case (B) follows immediately from
the comparison theorem 8.1.5 in Case (A).

(iii) Recall that already in Chapter 4 we had integrability conditions on
the Lévy measure n, which of course also have to be fulfilled in this special
case.

For a class of examples fulfilling both (P) and (QI) from Chapter 4, see
Appendixz E at the end of this thesis.

(iv) The assumption q € (%, %) and the boundedness assumption on vy
resp. o are needed to guarantee the existence of a cadlag mild solution (cf.
the results on the pathwise properties of the Bochner convolutions and the
stochastic convolutions w.r.t. Wiener processes and compensated Poisson
random measures from Sections 3.3, 3.4 and 4.2).

(v) Note that in this chapter, we do not have a uniqueness result by the
means used so far.

Indeed, in their paper [80] Marinelli and Riockner get the additional assump-
tion

E [ [[Mrgn) — Mrsgnal2 n(dz) < h(s)llpr — el I2,
L2(@) P P

for the jump coefficient in the case, where the jump coefficient is solution-
dependent (cf. Theorem 12, p.1544 in [80]). Here, h is supposed to be in
Li([0,T)).
To have such an estimate, we need that n is supported on the Sobolev space
Wm™2(0) with m > % as above and with © C RY obeying the weak cone
property.
Then, by Theorem A.6, we have Wm’z(@)gC’b(Q) and thus

sup [z(0)| < C||x||yym2 for any x € W™2(O).
0cO
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Therefore, for any s € [0,T] and 1, @2 € L%(@), given a Lipschitz function
I' we have

f [{(Mr(s.or) = Mr(s,e))2l[72 1(dz)

- f H MF (s,01)—T'(s,02) x||L2 n(dl‘)

= (s, 01(0) ~ 2(5, 2O 0)pyd0) i)
wmabd
sc2< el (e >>\|r<s o) = Tls. el

go%%(T)( [ el me n(da ))Hsﬁl #2122,

m,

and obviously

h(s) := CQCEY(T) (C’ J HmH‘Q/VW2 n(d:]:)), s€[0,T]
Wwm,2

defines an element in L'([0,T]) such that the assumptions of Theorem 12

in [80] are fulfilled.

Thus, to be able to have an estimate of the required form we may strengthen

the assumption (QI) in the sense that it holds in W™2(0) instead of L*(©).

8.2 Proof of Theorem 8.1.5

Recall that in Chapter 6 the jump coefficients were just additive, i.e. solution-
independent, whereas in Theorem 8.1.5 we allow for multiplicative, i.e.
solution-dependent, jump coefficients.

To this end, we need to apply the corresponding finite-dimensional com-
parison results for jump diffusions shown by Peng and Zhu (cf. [92]) resp.
Krasin and Melnikov (cf. [67]). To apply those results, we need to evaluate
our solution processes pointwise, which gives reason to consider the Sobolev
spaces W™?2(0) described in the introduction of this chapter.

We try to keep the structure of Chapter 6, but, compared to that chap-
ter, we need further approximations to evaluate the equations pointwise.

The approximations will be described in Subsections 8.2.1 (for equation
(1.1)) and 8.2.2 (for equation (1.2)). The comparison results for the ap-
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proximating equations from Subsections 8.2.1 and 8.2.2 will be shown in
Subsection 8.2.3, whereas the convergence of the approximation is shown in
Subsection 8.2.4.

To shorten the presentation, in Subsections 8.2.3 and 8.2.4 we only present
the issues that principally differ from that of Chapter 6.

8.2.1 Approximations of equation (1.1)

It has already been emphasized before that, in order to prove Theorem
8.1.5, we need to evaluate the solutions pointwise. Therefore, we will work
in Sobolev spaces W™2(0) with m > g and © C R? obeying the weak cone
property.

The main difference to the proof of the comparison result in Chapter 6 is
that we first approximate equation (1.1) by equations that are uniquely solv-
able in Wva(@)gLQ(G)gL%(@). After getting the comparison result for
the regularized equations, by taking limits in L%(@) we can conclude the
similar result for the initial equations. The latter will be done by reasoning
close to that from Chapter 6.

To be able to approximate in W2(0), we need the some technical prepa-
rations:

For a fixed ¢ € C§°(RY), let (J,7)sen be given by
(8.7) 5(0) := L(.J0), 0 € RY, J € N.

This is a Dirac sequence (cf. 2.13 2 from [6]) and for any ¢ € L%(R%)
we have 17 := conv(v,0;) € C(R?) (cf. 2.12 4 from [6]), where conv de-
notes the standard convolution mapping in R% (More about the properties
of convolutions can be found in the proof of Proposition 3.4.3 in Chapter 3.).

Recall that we also need boundedness of the approximating functions. In
the following, we describe the procedure of getting such approximations by
considering the initial conditions £ e L/QJ(@), i1 =1,2. We have

. . I
¢0 e L2(0) < ¢ :=p, 20 € L2(0).
In the case © # R? denoting the trivial extension of £() on RY again by

) . _1
€@ we get that @ = o 260) ¢ L2(RY).
Next, we define a sequence of cut-off functions yj: Ry — [0,1],
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xJ € C§°(Ry), J € N, with the properties x;(r) =1 for r € [0, J],
xJ(r)=0forr>J+1and xy41(r) = xs(r — 1) for r > 1.
Thus, by setting

. 1 .
(8.8) W = ug conv(x 0, 85), J €N,

(and, if necessary, taking a subsequence /s, J — 00) we get families
(wy))JeN C C’(‘)X’(Rd), 1 = 1,2, with the properties

1€P1125 < 11€D]] 53,
(8.9)

. , _1 1
[0 = @[5 = |l €Y = 1y 7€V 12 — 0 a5 J — o0,
By Lebesgue’s dominated convergence theorem, this immediately gives us
Bll¢) — DI}, — 0 as J — oo
J L2 :

Obviously for each J € N ¢f;) restricted to © is an element of W™2(O)
and 1/{(]1) < wgz) provided 1) < 2,

Next, we approximate the identity function
L*(©) 34— () =1 € L*(O)
by the family of mappings
L2(©) 2 ¢+ I;(¢) := conv(y,d;) € W™2(O).

Therefore, for any v € L?(0), I;(¢)) — I() = 1 in L*(©) as J — oo
and

(8.10) L (@)llz2 < |[¥]]z2-

Obviously, 1 € L%(©) implies I;(¢)) € C*°(R?) and , for arbitrary a € N,
for the corresponding partial derivative we have

9%I; = conv(vh,0%0;) € L*(O).

Furthermore, we need to approximate the coefficients £, o and ~, which
define the operators F(), 3 and T' by (NEM), by smooth functions with
the following properties (cf. e.g. [65], items (2.15)—(2.17) in Section 2 there):

1. The k-th derivatives of fl(,i), oy and vy w.r.t. y € R are bounded and
continuous for £ = 0,1,...,m 4+ 1 and ¢ = 1,2 with all partial deriva-
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tives taking values in L?(0);
2. fﬁl)(t,y) < f§2) (t,y) for all (t,y) € [0,T] x R, P-a.s.;

3. fy)(t,w,y) — fO(t,w,y) as J — oo for any (t,w,y) € [0,T] x A x R
and 7 =1, 2.
The same holds true for oy and ~vy;

4. The functions fy), i =1,2, 0y and 7 fulfill (LC) and (LB) uniformly
in J e N.

Such functions can e.g. be gained by using cut-off and mollifiers in R? (like
in the previous constructions). A crucial moment here is that the convolu-
tion operator is a contraction not only in L?(©) but also in the Lipschitz
norm (see e.g. [108]), which guarantees that (LC) holds for all f}l), JeN,
with the same constant, which does not depend on t € [0,7'] and w € Q.
Furthermore, the convolution operator preserves the monotonicity property,
ie. given any t € [0,7] and any y € R, fD(t,y) < f@(t,y) implies
§1)(t, y) < f§2) (t,y) for all J € N.

For a fixed J € N, we consider the SDE

dxPty = AnxP ) + FO e, xP0)))dt

+ Mz, x,0) WV @) + [ My I;(x) N(dt,dz), t € [0,T],
L2

X5 (t)

(8.11)
XP(0) =€,

We look for solutions in the mild sense, i.e. for each ¢ € [0,7'] we have
in L2(©), P-a.s.,

. . t . .

(812) X () = U0} + [ Ut 5)F) (s, X (5)) ds
0

Ul(t,s)M

+ dW (s)

S(s,X5(s))

+ Ul(t, S)MFJ(S’XSi)(t))IJ(x> N(ds, dzx).

ot O — &

L2
Since by construction the fﬁi), oy and ~; fulfill (LC) and (LB) and ~;
is bounded, we get the existence of cadlag modifications of mild solutions to
(8.11) in L2(©) from the existence and uniqueness results in Chapter 5.
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Starting from (8.11), we define the further approximations similarly to the
procedure in Chapter 6.

Analogously to equation (6.4), for a fixed L € N, we solve in L%(@), for
€[0,T]

axy, () = (AWXL, )+ F) (¢, XS"J( 1))t

+M dWr(t) + f/\/l I;(x) N(dt,dz),

S(6X5 (1) e.x5", )"

(8.13)

X0 =€

)

in the mild sense. Recall that, given the representation (2.5) from Sec-
tion 2.3, W, was defined as

(8.14) Wr(t) == il Vanenwy(t), t € [0,T].

Note that in general we do not assume that the orthonormal basis (e )nen
obeys (3.1).
The solution XS)J € HY(T) satisfies P-a.s. the identity in L2(©)

(8.15) X, (1) = U(t,0)¢] +fU (t, ) FY) (s, X1, (5)) ds
t
+ Of U(t, S)MEJ(S,XSL(S)) dWL(S)
t ~
+0fo2 Ul(t, S)MFJ(stg)J(t))IJ(:E) N(ds,dz),t € [0,T].

Next, we approximate any element e, € L?(©) of the orthonormal basis
in the representation (8.14) by a sequence (e,,a1) men C C3°(O) in the sense

of (8.9).
Let us fix some M € N. We define

M

(8.16) Warn(t) == 3 \Janenyrwn(t), t € [0,T],

n=1

In L2(©), we solve, for t € [0,T]

dXJ(\ff),L,J(t) = (A(t)X](\?,L,J(t) + O, XJ(\?L (B)))dt

Mo sex, Ly VMLO + S Mp 0,10

(8.17)

N(dt,dz),
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Xﬁ?,L,J(O) = 59)
in the mild sense. The solution process X](\f[) 1 € HYT) satisfies P-a.s.
the identity in L2(©)

) ) t . .
(8.18) X\, ,(t) = Ut 00 + { U(t,s)Fy) (s, X371 5(s)) ds

(t, S)M dWM7L(S)

Sa(s.X5) 1 5 (5))

U
J U, s)M I;(x) N(ds,dz), t € [0,T].

(s, X5, ()

Finally, we additionally fix some N € N and consider the equation

Xy = (ANOXTy 0 + PO XDy, (0)dt
+MEJ(t,XN,M,L,J(t)) dWM,L(tZ
+i]; MF](t,X](\;")]\/I’L’J(t))IJ(x) N(dt, d.r), S [0, T],

(8.19)

X](\ZI?M,L,J(O) = gf}’,

where An(t) € £(L?) approximates A(t) in the sense of (A6) and obeys
(A8).

Since all coefficients are Lipschitz continuous with a uniform Lipschitz con-
stant for all (t,w) € [0,T] x Q, analogously to equation (6.5) we get the
existence of a unique (strong=mild) solution XJ(\?M, 1.y € HYT) to (8.19).
Being rewritten in the mild form, P-a.s., for each t € [0,7'] we have the
following identity in L%(G))

t

(320) X010 = Un(E O + JUN(ESFS (5, X 1,(5)) ds

t
—i—fUN(t, s)M dWr,1(s)
0

EJ(&X](\;?M,LJ(S))

+ft J Un(t, S)MFJ I;(x) N(ds,dz).

(1)
012 ($:XN 1,5 (5))

To summarize, the aim of the construction is to consider approximations
of W by finite-dimensional Wiener processes W) 1, and the approximation

of A(t) by the bounded operators Ay (t). Furthermore, all functions defining
Nemitskii operators are chosen to have bounded smooth derivatives.
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Analogously to the consideration of (6.4) and (6.5) in Section 6.1, we get
the existence and uniqueness of the X ](\2) 1.y and X ](\l,) v.z,g I HI(T) from the
general solvability results in the Lipschitz case (see Section 5.2, Theorem
5.2.1/Corollary 5.2.5), since Ay and Wy 1, can be seen as special cases of
A and W from Sections 5.1/5.2.

Furthermore, we have a unique strong solution to equation (8.19) considered
in the Sobolev spaces W™?2(0). This follows by general results about SDEs
with Poisson noise and Lipschitz coefficients in Hilbert spaces (see e.g. [95]
or [80]). We point out that according to the above approximation procedure
all operator coefficients in (8.19) are Lipschitzian in the space W™2(0),
whereby the Lipschitz constant for them can be chosen to be the same for
all (t,w) € [0,T] x Q.

Thus, we also have X](\;?My LJ € W2 (T) and it obeys a cadlag modification
in W™2(0).

Furthermore, we have the existence of cadlag versions in L?,(@) of the solu-
tions to (8.11), (8.17) and (8.19).

In Section 8.2.3, for fixed N, M, L,J € N we will show a pointwise com-
parison result for the processes Y (%) := X](\zf) M.L.J € W2 (T).

8.2.2 Approximations of equation (1.2)

Taking into account the Lévy-Itd6 decomposition, we note that (1.2) becomes

(821)axX(t) = (AMXD () + ED(t, XO(1)) + My x ) ym)dt
F My x 1)) AW () + £M2(t7X(i)(t))xN(dt,dx),
x (@) (0) = £, r
Analogously to (8.11), (8.13), (8.17) and (8.19), we get the following SDEs:

Given J € N, let us consider

5 (x 0y L (m))dt

Ij(x) N(dt,dz), t € [0,T],

ax§(t) = (AXP ) + Bt x5 () + M
+Ms, x50 AW (t) +i£ Mz_,(t,xf,“(t))

(8.22)
XP(0) =€

Here, the e(Ji) are constructed analogously to the fﬁi).
Since by the construction the e and o fulfill (LC) and (LB), by the
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existence and uniquenes results from Chapter 5 there are mild predictable
solutions Xf,i) € H(t) to (8.22). In particular, due to the boundedness of
oy we get the existence of a cadlag version of this solution.

Given additionally L € N, let Xg)t] € HY(T) be the mild solution to the
equation

AX[5(t) = (ADXPH0 + BY (6 X 0) + My
+M dWL(t) + f M
L2

t’Xﬁ)J(t))IJ(m))dt

I;(z) N(dt,dz),

256X (1)) Ly (X5 (1)

with W, as in (8.14).
Next, for M € N and Wy f, as in (8.16), we uniquely solve in H4(T')

dX](\?,L,J(t) = (A(t)XJ(\jf),L,J(t) + B, X](\?,L,J(t)) + My,
+M dWr,(t) + f Mz
My

(tX](\;)’L’J(t))IJ(m))dt

I;(x) N(dt,dz),

SrX0 L ) LX47 1 (1)

(8.24)
XJ(\?,L,J(O) = 59)'

Finally, given N € N, for ¢ € [0,T"] we consider

dX](Vi?M,LJ(t) = (AN(t)X%?M7L7J(t) + Eﬁi)(ta X](\?M,L,J(t)) + MzJ(t,Xj\}')Al . J(t))IJ(m))dt

+MEJ(t,XN,M,L(t)) AW (t) +if2 sz(t’Xx?M,L,J(t))IJ(x> N(dt,dx),

(8.25)

XZ(\;?M,L,J(O) - ffl”?

where Ay(t) € £(L?) approximates A(t) in the sense of (A6) and obeys
(A8).

We get the existence and uniqueness of the XJ(\2 L, and XJ(\}) ML D HY(T)
from the general solvability results in the Lipschitz case (see Section 5.2,
Theorem 5.2.1/Corollary 5.2.5), since Ay and Wy, are only special cases of
A and W from Sections 5.1/5.2.

Analogously to the case of equation (8.19), we have a unique strong solution
X](\?M’LJ € W2,(T) to (8.25). In particular, we get the existence of cadlag
versions in L%(@) of the solutions to (8.24) and (8.25). Obviously, these
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solutions also obey cadlag modifications in W™2(©).

In Section 8.2.3, for fixed N, M, L,J € N we will show a pointwise com-
parison result for the processes Y := X](\v}) ML.J"

8.2.3 Comparison results for the approximations of (1.1) and
(1.2)

To prove Theorem 8.1.3, we proceed analogously to the proof of 6.1.1.
Similar to Section 6.2, we first prove a comparison result for the approxima-
tions in (8.20) and (8.25).

Given arbitrary N, M, L,J € N and i = 1,2, we shorten notation by setting
(8.26) YO(t) = X\, (0), t € [0,T).

The main result of this subsection is the following comparison result for
the processes Y, i = 1,2, as in (8.26).

Lemma 8.2.3.1: (i) Let £ € L%(©), i = 1,2, as in Case (A) and
€D <@ pogs..
Furthermore, suppose that
fO < @ for all (t,y) €[0,T] x R, P-a.s..
Then, for cadlag processes (8.20) we get

Y () <YO(1), for allt € [0,T], P-a.s..

(i) Let €9, i =1,2, as in Case (A), and
D <@ pogs..
Furthermore suppose that
e < e®@ for all (t,y) € [0,T] xR, P-a.s..

Then, for cadlag processes (8.25) we have
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Y(t) <YP(t), for all t € [0,T], P-a.s..

Remark 8.2.3.2: Note that in contrast to Section 6.2, in the proof
of 8.2.5.1 (i) we will not use the special property (3.1) for the orthonormal
basis (en)nen C L2(©) from (8.14) (since by construction, the approximat-
ing vectors (en m)nen obey this property). Thus, we do not need to restrict
the covariance operator @) corresponding to W to the nuclear case.

Therefore, we can conclude the comparison result (ii) for (1.2) from that
for (1.1) (in the case F = E 4+ My ,(m) and ¥=I").

Proof of 8.2.3.1:

By Remark 8.2.3.2, it suffices to show (i).

We use a discritization scheme similar to that of Section 6.2.
For a fixed j € N, we set t := kj—.T, k=0,1,2,...,7, and thus get a partition

of [0,T] into j intervalls of length % We define processes Z,g? and Vk(? by

t ~
dWM:L(S) + f f MF](S)IJ(x) N(dS, dl‘),
0 L2

t
(8 gy . (@)
Zo(t) =85+ Of M 6.2 )

. R t X X .
Vi 1) = Z5(0) + [ (An()Ve] () + 1§ (s, Ve 9))) ds

for ¢t € [0,t1] and

, . ¢ t ~
Z0 (1) = V! _)Lj(tk)th{ M 6) dWM,L(s)th{ sz My L5 () N(ds, dz),

. N t 3 ]
V() == 20 (ten) + [(An () (s) + FS (s, V) (5)) ds

»J J J
tg
for t € [tg,tps1] and k=1,2,...,5 — 1.

Due to the Lipschitz continuity of the coefficients, the above equations obey
unique strong solutions Vk(’?, ZS; EW2 ([tr, trs1])-

Next, analogously to the proof of Theorem 6.1.1 in Section 6.2, we define
processes Vj(i) and ZJ@, i = 1,2, taking values in W2, (T), from the above
processes by setting (cf. (6.12) in Chapter 6)

Z0(t) = Z0 (1), t € [ty tesn ), k= 0,1,2,.,5 — 1,
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V() = V() t € (tro i) k= 0,1, f — 1,

5

Furthermore, Z; obeys a cadlag version in W™2(0). Because of the contin-
uous embedding Wm’Q(@)ng(@), we can evaluate Vj(l) (t,0) resp. Z](-l) (t,0)
for any ¢t € [0,7'] and any 6 € ©.

First, we prove

Claim 1: For the processes V;, Z; defined above we have, P-almost surely,

) (2
v (t,0) < v (,0),
(8.27)
(1) (2)

for any 0 € © and any t € [0,T].

Proof: Let us start with the intervall [0, ].
By (6.13), we have for t € [0,1; )

t

(828)2() = Z{)(H) =€ + S M 6,20 (9 WVa12(5)
t ~
+ ({[21; MF](S,ZJ(.i)(s))IJ(:E) N(ds, dl‘)

For a moment, we consider (8.28) on the whole intervall [0, ; ].

Now, for the first time we need a comparison result in the jump noise case.
Note that, by construction, there exists a unique strong solution to (8.28)
in Wm’Q(@)ng(@). Thus, we can really evaluate ZJ(.Z) (t) pointwise in any
fec0o.

By the boundedness of v, there is a cadlag version Z ]@(t) of Z j@ (t).

To estimate the value of Z ]@(t, 0), we consider the pairing of Z ]@ (t) with dg,

where Jy denotes the d-function at a fixed # € R%. Due to the embedding
theorem Wm72(9)ng(®), this is a linear bounded functional in W™2(0).

Thus, by Propositions B.8, 2.5.3 resp. 2.6.8 for the Bochner- Wiener- resp.
Poisson stochastic integral, we get
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(8.29) 2(t,0) = < Z\" (t),ig > 120
0
= fj (9) + nZ::1 \/%()f < MEJ(S,Z](.“(s))e”vM’ Og >r2 dwn(s)

t ~
—|—f f < MFJ( xy,09 >r2 N(ds,dx).

()
3 5,2(s))

Obviously, for any 1 <n < L and 0 € © we have

t t .

[ < My (o 70 enats 00 >12 dun(s) = OfaJ(S,Z](Z)(s,a))en,M(e) dwy(s).
The integral w.r.t. the compensated Poisson random measure can be rewrit-
ten as follows:

t ~
830) [ [ < MF (s Z(_i)(s))fj(a:), 6o >12(0) N(ds,dx)
0 L2(®) J\S &5

¢ . 8
= [ Quls. 2 ()1 ())(0) N(ds, dx).
0 12(0)
Note that I;(z)(0) := [ (y)d;(0 —y)dy =< x,059 >r2, where

Rd
0 < 859 € C(RY) is defined by ds0(y) := §;(0 —y), y € R% Thus, the
integral in (8.30) can be rewritten as

¢ , .
ff’}/J(S,ZJ(-Z)(S,H))UNQ(dS,du),
0OR

where Ny(ds,du) is the projection of N(ds,dx) (cf. Section 2.4 for gen-
eral projections) on the one-dimensional subspace of functions

L% :={< 2,059 >12659|7 € L}(©)} C L*(O).

Since 1 corresponding to N is supported on Lon’ 71y corresponding to Ny
is supported on Ry. Here, we crucially use that < x,079 >;2> 0 for any
z € L2,

Now, by the Lipschitz properties of o and v and the monotonicity property
(M) for v, we can apply the finite dimensional comparison theory for cadlag
solutions of SDEs from [92] resp.[67] (for more details, cf. Appendix C).

From (8.29) and (8.30), Z](-i) (t,0) =< Z]@ (t); 00 >12(0)€ R is a cadlag solu-
tion to the equation

YO L (i)
Z;(t,9) £ (0)+ > Van [o4(s,Z;7(s,0))en,n(0) dwn(s)

n=1

+ftf’YJ(S,Z(~i)(8*,9))u]§f9(d5,du).
0R

o o

J
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Then, by Theorem C.2.1 (with f; = 0) we have Z\"(t,8) < Z*)(¢,0),

P-almost surely, for each fixed # € © and t € [0,1; ].

Since 0 — Z ](i) (t,0) is a continuous function, there exists a subset €, of full
P-measure such that

(1) (2)
Zj (tvwve) S ZJ (t7w’9)

for all w € ©; and 6 € ©. By considering cadlag versions of Z ](i)(t) € Lf,(@),
we can get this inequality for each ¢t € [0,7] on a universal subset € of full
P-measure.

Analogously to Section 6.2, we define operators By: W™2(0) — W™2(0)
by

FP 2@ @) —FP (5,200 m
Bty o= EEGEDOIE600), o ymae)

in the case 23 (t) # ZM(t) and
By(t)p = C(T)p, p € W™2(0),

otherwise. Here, C(T) is as in the proof of 6.1.1 in Section 6.2. Due to
the existence of a common Lipschitz constant for all F}l). By the additional
assumption that Ay maps W™2(©) onto itself, analogously to the proof of
Claim 1 in Section 6.2, we get

V() < V() in Wr2(6) for all t € [0,1] Pras.

Now, by the continuous embedding property W™2(0) C.Ch(O), this gives
us (8.27) on [0,¢; ] and analogously to the proof of Claim 1 in Section 6.2,
we get (8.27) on [0,T'] by iterating the previous procedure on all intervalls
[tkatk-i-l]? k=1,2,..,5-1.0

Let us note that, by the boundedness assumption on -, the processes ZJ@
and Vj(i) are also elements of H4(T"). This is shown analogously to the proof
of Lemma 6.1.3 in Section 6.2.

Thus, to finish the proof of Lemma 8.2.3.1, we need the following claim,
which is the analogon to Claim 2 from Section 6.2:

Claim 2: Fori=1,2

lim 7\ =y

J—00
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in H3(T), i.e.
lim sup E||Z () — YO ()|, = 0.
P

J—0 el0,T]

Hence, inequality (8.27) (cf. Claim 1) implies that
Y (t) < YO(t), P-almost surely, for all t € [0,T].

Proof: Actually, we have Y()(¢,0) < Y (¢,6), P-almost surely, for all
t €[0,T] and 6 € ©. This follows for the cadlag solutions YD, v due to
the continuous embedding Wm’Q(@)gC’b(@).

We only describe the necesssary modifications to the proof of Claim 2 in
Section 6.2.

We express the difference Z ]@ (t) — YO(t) in terms of the difference
ZRORSEIO!

By the Lipschitz property of v, the latter can be estimated as follows.

E|V," (1) - YO (1) 2,

‘ ! i i i tht1
= B|e J(AN(S)VJ'( () + F) 5,V (9)) ds + { M, (5,280 (a)) PWV1.L(5)
tkt+1 ~
L S My o @) N s, )

) t 4 : A t
- (55” + [(An(s)YD(s) + FY (5, YO (s))) ds + [ My, sy (sy) AWar.L (s)
0 0
¢ ~ 2
[ M ooy (1) N s, dm))

3
M 7% )
< (O(), dN), Cog) | 3 an | [ BIIMy 0y, = M o) enan)lf ds

tet1 tet1

+ [ EIMy, o (enan)li ds] + [ Bl 27() = To (s YO )1 ds

tet1 ) t ) )
+ [ Bl (s, YO ()2, ds + [BIVV(s) = YO(s)]12, ds)
t 0

tr4+1

< T M, e(N), C(T)so(T), (1), Co) | [ BIZY () =Y (5)][3, ds

+(tkr1 — ti) (1 + sup E||Y(i)(7’)!|%2)
re[0,T'] L
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t ) ,
+ BRIV ) - YO, ds
0

tey1

< (T MK o), C(T)so(T): (1), Cag) | [ EIIZY(5) = Y O(s)][3 ds

+(trr1 — tr) (1 + sup EH“”(T)H%z) + jE||‘G(i)(S) ~YO(s)|[3, d«9]
r€[0,T] p 0 P

= (T M. K e(N), O (1), (D), Ca) | Byltin) + [ BV 0) = YO0

with Bj as in Section 6.2 (replacing Xy a-terms by Y = Xy a1, j-terms).

As in that Section, we apply Gronwall’s lemma to get

E|[V,"(t) = YO ()|, < o(T, M, e(N), C(T), 5(T), & (T), Coyy) B (ti+1)

for any t € [tg,txy1), k€ {0,1,...,5 —1}.

The estimate of Z J(i) (t) — Y (t) from that proof changes as follows.

Given t € [tg, txr1), K €{0,1,...,5 — 1}, we get

El|Z) (1) - YO (1)|3,
< (BIV () - YOw)I13,

2
t
+E tf(MEJ(S,ZJ(-i)(S)) — MEJ(S,Y(i)(s)) AW, L(s)
k 2
t ’ 2
+E f f (MrJ(s zW(s) MFJ(s,Y(")(s)))UJ(x)) N(ds,dx)
tr L2 ] Lg

+E

t

THAN@IP WY O ()7, + [[FO(s, -, YO (s))[7, ds

; L2 L2

k

= C(Il + Iy + Igd + Ig).

Since the o; are uniformly Lipschitz, except for the term Igd, all terms

in the estimate are as the ones from the proof of Claim 2 in Section 6.2
(again with X x a/-terms being replaced by Y = Xy a1, -terms).

But, by It6’s isometry w.r.t. compensated Poisson random measures, the
fact that the «; are uniformly Lipschitz and the fact that

[ @)l n(dz) < [ |l2[|72 n(dz) < oo,
L2(6) L2(©)
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we immediately get

37 < ofey(T), Cay) Lf El|Z)"(s) - YO(s)|[2, ds
<Ol o)L CT), e, (1), Cag) | B (5) = YO0 |-

Thus, summing all the estimates together and recalling the definition of
By(tis1), we got

E|z(t) - YO0,
< T(1+&T,N,C(T))(1 + enmr)

¢ , ‘
+ C(T, M, C(N), C(T), CU(T), CW(T)’ 02777) f E| ’Z](Z)(S) _y® (S)H%% ds
0
Then, Gronwall’s lemma finally implies
BJIZ" () = YOI, < 20+ 01 + enarn)e® < ox,

where C' denotes the maximum of the two constants from the equations
before. Thus,

Jim B 777 (1) = YO)|[3, =0,

which was needed to prove Claim 2. [0 H

8.2.4 Convergence of the approximations

As already mentioned in the introduction of this section, in the proofs of
this subsection we restrict ourselves to the issues that differ from the proofs
in Section 6.3.

But let us first formulate the main result of this subsection:

Lemma 8.2.4.1: (i) Considering predictable solutions X, X(i) X]gi)J,

X](\?LJ andX() g, NyM,L,J € N, i = 1,2, to the equations (1.1),
(8. 11) (8.13), (8 17) and (8.19), we get the following convergence results:

(8.31) Jim BIXP, (0 = X5 01 =0,
(8.32) lim E\|XMLJ()—X$)J(t)|]%g =0,

: (4) (@ 2 _
(8.33) 1,11—>I20E|’XL7‘](t) XJ (t)”Lg 0,
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(8.34) lim Elx5(6) - XO@)|3, = 0.

(ii) Considering X©, X, X\ x\), | and X3, ;. N,M,L,J €N,
i=1,2, as defined in (1.2) and (8.22)-(8.25), we get the following conver-
gence results:

(8.35) dim BIXP, 0 - X0, 013, =0,
(8.36) Jim BIGD ) - X012, =0,
(8.37) lim EI1x75(0) - XP 01, = 0
(8.38) lim EJ[XJ (1) - XO@)]3, = 0.

From Lemma 8.2.4.1 and Lemma 8.2.3.1 we immediately get Theorem 8.1.3.
Indeed, we first get

1 2
X](V,)M,L,J(t) < X](V,)J\/I,L,J(t)v P-as.,
for all t € [0,7"] by 8.2.3.1 (i)(equation (1.1)) resp. (ii) (equation (1.2)).

Then, by taking N — oo, M — oo, L — oo and finally J — oo, we get
Theorem 8.1.3.

Proof: To shorten the proof, we only consider the issues that appear
additionally to the proof of Lemma 6.1.4 in Section 6.3.

(i) The limit properties of the approximations of (1.1)

For fixed M, L, J € N, the difference between solutions X ](\Z,) M.L.J and X](\f[)’ LJ
can be represented as

X%?M,L,J(t) - X(i),L,J(t) = an(§) +an(F) +bn(F) + an(X) + by (%)
+an(T) + by (T)

for fixed t € [0,7'] and N € N, with the terms defined by

an(€) = [Un(t,0) — U(t,0)¢,
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t . .
= [[Un(t,s) = Ut s)|FS (s, X3 1 5(5)) ds,
0
f . v (i)
ON(F) = [Un(t,8)[F}" (s, Xnar0.(8) = Fj7 (s, Xoa,n,0(s))] ds,

0
L ¢

an(¥) = 3 Van [[Un(t,s) = Ut )My o
0

M,L,J

(s)) M dwp,(s),
L t
bN(E) = E \/@‘Of UN(t’ S>[MEJ(S,XJ(\§,)]W,L,J(S)) N MZJ(S:XJ(vl}),L,J(S))]en’M dwn(s)’

an(T) := bft [Un(t,s) = U(t,s)|IM I;(z)N(ds, dx)

FJ(SvX]%?A[’LY‘](S))

t ~
N E)[‘lﬁ U(t7 8) [MF‘](&XI(\?,)M,L,J(S)) B MFJ(SvXJ(\i[{L,J(S))]IJ(x) N(ds’ dx)
Analogously to the proof of Lemma 6.1.4 (cf. Section 6.3), we get
Jim Bllax(|2, = 0. lim Bllay ()|, =0

and the estimate

¢ ,

Bllex (F)|If; < ee(N), ep(T) [BIX Dy 1,0(5) = X3, g (5)l3 ds
Concerning an(X) and by (X), note that the system (e, ar)i1<n<r, C C§°(O)
is not orthonormal in L?(6). Thus, compared to the part (i) in the proof

of Lemma 6.1.4 in Section 6.3, the proof changes as follows.

First of all, by It&’s isometry and the boundedness of o7 we get

L t
2 _ ) 2
Bllay(DlZ; = 2 an [BIUNGE) = UMy (g oy enllzs ds
< )

2
&~
=
o o

o
(S
=
K
N
-
~
=
)
S

=
S
I8
)

—0as N—oo

< 2Tl KoMl el

< 00.

By Lebesgue’s dominated convergence theorem we get
: 2 _

i Ellay (B[, = 0.

On the other hand, for by (%) we get
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L
> an

=1
(L, c<N>,ca<T>>beHX§3?M,L,J< s) = Xat £

where we applied the fact that max llen,n||Le < 00, (A6) and the Lip-
n

Ellby (D)1,

E[|Un(t, s)[M

o o

_ ) 2
() MzJ(s,x<l> ,‘,(SM%,MHLg

EJ(S’X](\;,)AI,L,J S

3

<

o

schitz property (LC) for o (recaﬂ that by construction this property holds
uniformly in J).

By Itd’s isometry for the stochastic integration w.r.t. compensated Pois-
son random measures and the boundedness of v;, we get

t
2 _ v 2
Bllev(Dlff = [ [ EIUNS) = Ul WMy, o Tr(@I 3 n(de) ds

< (L,K) ‘0fo2 E||[Un(t,s) — U(t, 3)][](.7])”%% n(dz) ds.

—0as N—oo

By the fact that

E[|[Un(t,5) = U(t, )]s (2)[[75 < e(c(N), e(T)|ILy(@)[[Z2

and (cf. (QI) and (8.10))

0fL2 c(e(N), e(T))| Iy (2)[[7 n(dz) ds < Te(e f 125 (2)[[72 n(da) < e(e(N), e(T), Cqp) < o0,

we can apply Lebesgue’s theorem to get EHaN( )|IF: — 0as N — oc.
P

Finally, applying It6’s isometry for the stochastic integration w.r.t. com-
pensated Poisson random measures, (A2) (or (A5)* with v = 1) and (QI)
we get

2 2
EHbN(F)HL% f f EHU t s) T(s XJ(\?]M,L,J(S)) - MFJ(S,XI(QL!J(S))]IJ(:C)HL% n(dz) ds

0 L2

< (7)) <f2 [EF U(d$)>
jt—s )BT Xy 1 (5)) = T, XS0, (DI
< ¢(c(T), ¢y, C jt—s CE||XNMLJ( ) — MLJ( )”

0
Thus, given any ¢ € [0,7'], we can estimate

Bl XN h0,0(9) = X319
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< (Ellan (€)1 + Ellan (F)[7; + Bllan (2)[[7; + Bllan (D)[[Z2)
t .
+c(C L, T e(N), cp(T), co(T), ¢y Oft s) CEHXNMLJ( )— X](\i[),L,J(S)H%% ds

Thus, by the Gronwall-Bellman lemma 2.7.2 and the corresponding Remark
2.7.3, we get

EHX](\?M,L,J(S) - X](\Z),L,J(S)H%g
< (Bllan(©)]% + Bllay(F)|% + Ellay (D], + Bllay(T)][2)
C(Ca Lv Ta C(N)> Cf(T)7 CU(T)a C’Y(T)a Cq,n)'

Now, since the apn-terms tend to 0 as N — oo, we get the convergence
result (8.31) for N — oo.

Next, we consider the M-approximation. For any ¢ € [0,7T'], we have

XJ(\?,L,J(t) - Xg)J(t) = by (F) + ap () + bar (%) + by (T)

)

with the terms defined by

by (F) = OfU(t CIEY (5, X370 5(9)) = FS (s, X1,5(s))] ds,
L t
ap(X) := ;1\/@bfU(t’S)[ME(I(S,XS?J(S))(en’M — ep) dwp(s),

L t
bM(E) = Z \/CTn‘({U(t’s)[MEJ(s,Xﬁ1L7J(S)) - MZJ(S,Xii’)J(S))]en’M dwn(s),

t ~
by (D) := ‘([ f Ul(t,s)M ) MFJ(S,XE/Z')J(S)):IIJ(:B) N(ds,dzx).

FJ(SVX](J[)’L’J

Analogously to the N-convergence case, we show that the a,/-term tends to 0
as M — oo. Indeed, by (A2) and the uniform boundedness of the o ; we get

|
M=
)
3

2 2
EHCLM(Z)HL% - EHU(t>3)M2J(S’X(i) (S))(en,M - en)HL% ds

3
Il
—

IN

Mh
/\O%w
SIS,

(t — 5)~<BS(s, X, ()] 2, ds)uen,M—enH%z

n:l
M
< C(C7K7T) Z Hen,M - enHQ
n—1 —_—

—0as M—oo for 1<n<L

l
y
S
!
8
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Furthermore, similar to the N-convergence we have
t , .
Bllear ()| < ele(T):es(T)) [ BN}, ,(5) = X2 (6)1[3, ds

t . .
Bllbar (D)1, < eLoe(T)seo(T) [BING 5 (5) = X5 (5)IF, ds

and

Elfbar (D)2, < clelT). . jt—s )CBIX () — X (8) 2,

Thus, given any ¢t € [0,7'], we can estimate

El[ X} 1,s(5) = X15(5)I3
< Ellan(D)]1,
t . .
(G LT elT), (T, co(T)s s (T): Co) [ (4=8) BIXY s (5) =X (9) I .

Thus, by the Gronwall-Bellman lemma 2.7.2 and the corresponding Remark
2.7.3, we get

Bl X} 1, () = XL ()12
< (Bllan (D)]35)e(¢, M, T e(N), ef(T), (1), (1), Coy).

Now, since the ajs-term tends to 0 as M — oo, we get the convergence
result (8.32) for M — oo.

Let us now proceed with the convergence for L — oo.
For any t € [0,T'], we have

XD - xP) = JUt,s)EW (s, X1 () — F (s, X5(s))] ds

o o

+fth(t,s)[MF( — M

072 2(5.X5(s)) |1;(x) N(ds, dz)

Ly (s,X57(s))
L t
+ Z ‘/anfU t,s) MZ (s XS,)J(S)) - ME](S,X‘(JZ‘)(S))]en dwy,(s)
+ a, | U(t,s)M (@), \En dwp ().
n= L+1\ﬁf B(s:X;7(9) )

Analogously to the by-terms above, we get
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E|IX[)(0) = X (03, < e(6 LT e(T), ep(T), co(T), eo(T), Cyy)

t . .
[(t =9 BIXE)() = X7 Gl ds

00 t

+ > an [E|U, s)M

2
@, yenll72 ds.
o ) £ (5.xP () 1Lz

Thus, the Gronwall-Bellman lemma yields
EJ|X})5(6) — X5 (][ < e (2)er BTN (D) Cont
) b

with ¢z (X) as in the proof of Lemma 6.1.4 (i) (cf. Section 6.3), i.e.

(S = S an [E|U )M

2
@ . enll72 ds.
o Ol £ (5.3 (s)) 1122

Let us first check the nuclear case, when

o0
> ap, 0.
n=1

Since each o is bounded (cf. Section 8.2.1), we get

fe's) t

. , 2
cn(¥) = n:;-&-l an{EHU(t,S)MZJ(S,Xy)(S))enHL% ds

00 t
< o enl?
< B o (s BIV0My i enly )

oo
< T, ce(T),cr(T)) > an
n=L+1
— 0Oas L — oo,
which proves EHXS)J(t) - XSi) (t)|[3: — 0 as L — oo in this case. Note
) P
that here we did not apply property (3.1) such that the claim indeed holds
in the general nuclear case.
In the cylindrical case, we get c(X) — 0 as L — oo analogously to the
consideration of ¢ (X) in the proof of Lemma 6.1.4 (i). Thus, also in the
cylindrical case we have E||X](-JZ)J(t) - Xy) (t)]|2, — 0 as L — co. Therefore,
) b
the proof of (8.33) is finished.

Finally, for fixed J € N we have
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X0 - x0() = U, 0)[e) — ] + { Ut,s)[F) (s, X (s) = FO(s, X (s))] ds

+ 2 \/@fU (t,8) My (o x X0 () ~ Mi(s,xt0)( sylen dwn(s)

nEN
+fo(t7 8) MI‘ e X(Z)( )) ( ) MF( X(’>(s)) ]N(d&dm)
012

= aJ(f)-i-CLJ(F)—i-bJ( )—l—aJ(E)—i-b](E)
+a(I') + b, L(T)

with the terms defined by

ay(€) = U(t,0)(€}) — @),

t

J UGS (s, XD (s5)) = FO (s, XD(5))] ds,
0

t N .

= [Ut,)[FW (s, X (5)) = F (5, X0 (5))] ds,
0

t

U(t, 8)[Ms, (5 x0)(s)) = Ms(s,x o (s))] dW (s),

5(5) =

=/
0
t
be My, 7(5,X% () = M, 5, x0 (5] AW (5),

t ~
= g f2 U t S MFJ(S X(Z)(s))IJ( ) MF(S,X(i)(s))x] N(dS,d,I)
L

and

t ~
- { f2 utt, 8)[MFJ(S,X5,">(S)) — Mp (s, x 00 (s (z) N(ds, dz).
L

Analogously to the proof of Lemma 6.1.4 in Section 6.3, we show conver-
gence of the ay and estimate the bj-terms with the help of the Lipschitz
property of the coefficients.

First, concerning a;(§) we note that for any fixed ¢ € [0,T]

E|[U(L0)(&] - D3, < «DEIE] — D)2,
—0 asJ—oo.
For aj(F), we know that the integrand converges to 0 as J — oo, since
f7 — f by the choice of the approximating functions.
Furthermore, by the uniform Lipschitz property of the f;, J € N, we can
estimate

E|[U (L, 5)[Fy (s, XD(s)) = FO (s, XD (s))][25 < e(e(T), e (T))(1+E[IXO(5)]13,),
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where the right hand side is intergrable by the fact that

X® e HUT) € HA(T).

Thus, by Lebesgue’s dominated convergence theorem, we get aj(F) — 0 as
J — o0.

Concerning aj(X), note that by the fact that oy — o as J — oo we get, for
any s € [0,T],

lim E||%, (s, X¥(s)) = X(s, X (5))|| 3 = 0.
j—o0

Furthermore, since the o fulfill (LC) and (LB) with constants uniformly
in J, we have, for any s € [0,T'],

Jim. E||(s, X" (5)) = X5, XD (9))||1z < eleo(T))(1 + E[[ XD (5)]|2)
and, for any ¢t € [0,T],
(t = 5)"Ce(co(T))(1 + E[[ XD (s)|2)

is integrable on [0, ], since X (s) € HY(T) c H3(T).
Thus, for any ¢t € [0,T'], by the estimate

EllasXz; = JEIUE ) Ms, (o x5 = M xo oIz, ds

<

o O

(t = 5) " El[S(s, X (s)) = B(s, X(5))[[7, ds
we get that Eljas(X)[|7, — 0 as J — occ.
P

Concerning a;(I"), note that

(8.39) Ellas(I)|2,
t
= bf f2 E||[U(t, $)[Mr 5 x0 (o) Lo (@) = Mns,st))x]\!%g n(dx) ds
t
{fQEHU(t 2 8) M (5 x0 (o)) [ 1 (%) = 2l m(dx) ds
L
t
+ of , E|[U(, S)[MFJ(S,X(i)(s)) - MF(S,X(i)(s))]xH%% n(dz) ds
L

S(éwxm—xMwy )ft—s<mwx,x@@m%ds

0
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(f |27z n(da ) Jt"(t — 5)°E||%,(s, X (s)) — X(s, X (s))[[ 75 ds

0

Note that the first term on right hand side of the above estimate tends
to 0 as J — oo by Lebesgue’s dominated convergence theorem, since 7 is
o-finite, ||z — 2l[2, < 2/[][2, for any x € L2(0),

J 2z L2 n(dz) < oo
L2
and since, by the the fact that |v;| < |y| for all J € N and  obeys the

Lipschitz property (LC) and the local boundedness property (LB), we have

t
i —¢
J(t = 5) Bl (s, XO(s)) I3 ds < ey (D)1 + X Olia ) T < 0o

The second term on the right hand side tends to 0 for J — oo by (QI)
and since

hm f(t — 5) CE||T (s, X (s)) — F(S,X(i)(s))H%2 ds =0
J—o00 0 P
analogously to the considerations of a;(X) before.
Thus, we get Jlim Ella;(T)|[2, = 0.
—00 p

So all the aj-terms tend to 0 as J — .

Concerning the b -terms note that with the help of the It6 isometries w.r.t.
Wiener processes and compensated Poisson random measures and the uni-
form Lipschitz properties, we get

¢ A A A , 2

B||[USF (5, X (5) = £} 5, XO (o)) ds
L3
t . .

< e(elT), e (T) [ BIIXY () = XO(s)] 3, ds

¢ 2
E be(t 8)[./\/12 (5.X9 (5)) MEJ(S X(z)(s))} dW (s)

L3

and by (A2) (or (A5)* with v =1)

t

g fQ U(t, S)[MFJ(S,Xf,i)(s)) — MFJ(S7X(1)(S))]IJ($) N(ds, dzx)
L

E

2
L3
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t ) )

< e(elT), e (T), Cy) [ (¢ = 5)BIIXT () = XO ()3, ds
Thus, given any ¢ € [0,7'], we can estimate

E|[ X} (s) = XO(s)|3,

< (Bllas(§)|2; + Bllas(F >|\iz + Elas(D)][3; + Ellas(D)]3,)

t
+c(e(T), cp(T), co(T), ¢y Oft—s ) SB[ X (s) - X0(s)|12, ds

Thus, by the Gronwall-Bellman lemma 2.7.2 and the corresponding Remark
2.7.3, we get

E|[ X (s) - XD (s)]2,
< (Bllas(©)|; + Bllas(F)|2; + Ellas ()]}, + Bllas(m)]13,)
c(e(T),cf(T),coe(T), cy(T), Cyn)-

Now, since the aj-terms tend to 0 as J — oo we get the convergence result
(8.34) for J — oo, which finishes part (i).

(ii) The limit properties of the approximations of (1.2)

Fixing M, L, J € N, the difference between solutions X](\Z})M .y and XJ(\? L7
can be represented as

XJ(\?M,L,J(t) ](\?L 5(0)
= an(€) + an(E) + by (E) + an(E,m) + by (2, m) + an(E) + by ()
+an(X2) + by (22)

for t € [0,7] and fixed N € N with the terms defined by
an(€) = [Un(t,0) = U(t, 0))¢f,

t . .
— ({ Un(t,s) — Ut $)IEY (s, X3, () ds,

t . . .
b (E) = [ Un(t,s)[EY (s, X\ hp1.5(8) — BV (s, Xar,2,(5))] ds,

an(X,m) = j[UN(t s) —Ul(t,s)|M I;(m)ds,

S5 X50 1 5(5)

bN(E,m) = fUN(t, S)[M i - M

0 ZJ(‘S?WX](\I?M’L“](S)) ZJ(S7'7X](V7;[>,L(S))
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L t
( ) nZ::l ‘!UN t S U(ta S)]MEJ(SX(Z.)

M,L,J

(s)) M dwy,(s),

L t
() = 2 a [UNE )M 0, 0 ™ Mo, s oplenn d0n(s)

by (22) := JLIZ Un(t, 8)[M2J(5,X§3’)M7L’J(s)) — ME](S,X](\;;I)’L(S))}IJ(LE) N(ds,dz).

Again, the aim is to show that the ay-terms tend to 0 as N — oo.
Clearly, we have

: 2 : 2
Jim Ellan(€)|[3,0, lm Bllax(E)|3, =0

analogously to the proof of Lemma 6.1.4 (cf. Section 6.3). Since the o
are uniformly Lipschitz in J and ||I;(m)||z2 < ||m]|r2, we get

: 2 _
Jim Bla(S,m)|[2, =0

analogously to the consideration of ax(m) in the proof of 6.1.4 (ii).
Analogously to the proof of (i), we also have

~ 2 _
T Bllay(2)]2, =0.
Finally, analogously to the consideration of ax(I") in the proof of (i), we get
lim E ¥o)|[2, = 0.
Jim Bllay ()3, =0

Concerning the by-terms note that, applying the uniform Lipschitz proper-
ties in J of e; and o, we get

t .
Bllex (B)I3; < ele(N), ce(T) [ BIXN 1.0(5) = X{7 sG] ds

E[[bn (2, m)[[7; < c(m, ¢o(N), ¢ (T)(T)) (t=8)EIIXN 0, (5)=Xip 1. (s 9l

o o

Bllen (S)I1E; < clm e(N): co(T)) JBIX R ,0(5) = Xiin, s (5) I

and
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t
EHbN(E2)H%g§C(C(N) bft s) CEHXNMLJ() MLJ )H

Thus, for any ¢t € [0,T'], we have the estimate

E|[ Xy 1.(5) = X3 1 (913
< (Bllan(§)|};+Ellan(E >r|Lg+Er|aN<z m>|\i2+E|\aN< )13 +Ellan (Z2)]13,)
+c(C, M,m, T, c(N),ce(T), co(T),cy(T), Cqp )of(t s5)” CEHXNMLJ( )*XJ(\?,L,J(S)H%gdS

Thus, by the Gronwall-Bellman lemma 2.7.2 and the corresponding Remark
2.7.3, we get

E|[ Xy 1.(8) = X3 1 (913
< (Bllan(§)|};+Ellax(E >r|L%+Er|aN<z,m>|\ig+EHaN<z>+Er|aN<zz>\@%)
c(¢, M,m, T, c(N), ¢ (T), co(T), ¢y (T), Cyup)-

Now, since the ay-terms tend to 0 as N — oo, we get the convergence
result (8.35) for N — oo.

Next, we consider the M-approximation. For any ¢ € [0,7T'], we have
X300, = X0 = bar(F) + bar (S,m) + anr(S) + bar(2) + bar(52)

with the terms defined by

)= JUSIEY (5. X3, () = B (s Xrs () ds,
bu = OftU M oex®y 60 = Mo x?, ol (m) ds,
(D) = 3V [0 My o (ent = ) dun(s),
bu(X) = nél \/@bfIE Ul(t, s)[MEJ(S x®, ()~ MEJ(S,X&)J(S))]%?M dwy,(s)
and

:jfU(t,s)[ 5 (5,x

072 M,L,J

) MEJ(&XS’)J(S))]I](JJ) N(ds,dz).

Analogously to the N-convergence case, we show that the aps-term tends
to 0 as M — oo. Indeed, this holds true by the same arguments as in the
proof of (i).

Furthermore, similar to the N-convergence we have



8.2. PROOF OF THEOREM 8.1.5 307

El[bas (B)|[3 < e(e(T), ce fE||XMLJ<> X1 ()13, ds
t .
E bar (2, m)|[2, < c<m,c<N>,ca<T>><T>>0f<t—s>*<EHX§2L,J< =X, )I1%
El[bar ()] 2, < elL, o(T), e fEHXMLJ( )= X (s)l17 ds
and
t .
Bllbar (2)I[E; < ele(T): o, Can) [(t = 5)BIXL Ly (5) = X1, (5)IF.

Thus, for any ¢ € [0,T'], we can estimate

El[ X} 1,s(s) = X153
< EHGM(E)HLE

t .
HlG LT e(T), ¢4 (T o (T): (T, ) [ (4=5)BIIXGY 5 (5)=X ) (53 s

Therefore, by the Gronwall-Bellman lemma 2.7.2 and the corresponding
Remark 2.7.3 we get

Bl X} () = XL ()2
< (Bllan (D)]3,)e(¢, M, T e(N), 5 (), o(T), (1), Coy).

Now, since the ajs-term tends to 0 as M — oo, we get the convergence
result (8.36) for M — oo.

Let us now proceed with the convergence for L — oo.
For any t € [0,T'], we have

x00) - X010 = [UED (5. X0,() — EP (s, X5 (5))] ds

)

—l—of f Ul(t,s MF (5.XD (5)) _MFJ(s,X(L’)J(
t
+0fU My x5 ~ M o.x 0, (s} 17 (m) ds

+ Z \/(EJ‘U t,S ME (S,Xéi,)‘](s)) - ME](S X(l)(s))]en dwn(s)

OO

+ Vay | U(t,s) (@), \En dwp ().
n= L+1 f Ms, 1(5:X57(s) )

Analogously to the by-terms from the previous steps we get
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EI[XE () = XS (0185 < (¢ Mom, T, e(T), (1), (1), ¢ (T), Cou)

t | |
I $)EIIX [ () = XP(5)]12, ds
%) t

+ > an [E|U(t, )M

2
@)y €nll72 ds.
n=L+1 0 EJ(SvXJ (5)) P

Thus, the Gronwall-Bellman lemma yields
(@) (@) M, T,c(T),c o (T), ,C.
E||XM,L(t) — XV (t)Hig < CL(E)@C(C T,e(T),cf(T),co (T),en(T),Cq,n)t

with ¢z (X) as in the proof of Lemma 6.1.4 (i) (cf. Section 6.3). By the
same arguments as in the proof of part (i) we get c.(X) — 0 as L — oo.

This proves EHXS)J(t) - Xgi) ()72 — 0 as L — oo, i.e. (8.37) holds.
) b

Finally, for fixed J € N we have

t

XP) - x0@) = U, 0)[eY — D)+ [U(t, 5)[EY (s, X (5)) — BD (s, XD (5))] ds

0

+ | U(t,s)IM I;(m) = My x6)(s))m] ds

£(5,X5 (s))

+ U(tv 5)[M - ME(S,XU)(S))] dW(S)

£(5,X5 (s))

+

N O O O

= a;(§) +as(E) +b;(E) +a;(%,m) +b;(X,m)
+GJ(E> + bJ(Z) + aJ(EQ) + bJ(ZQ).

Here, a;(£), ay(X) and by(X) are as in the proof of (i), aj(E) resp. bj(E)
is just ay(F) resp. by(F') from the proof of (i) with F' being replaced by
E and aj(X2) resp. bj(X2) is just ay(I') resp. b;(T') from the proof of (i)
with I" being replaced by ¥. Finally, a;(X, m) resp. b;(X, m) is defined by

¢
ay(X,m) = [U(t, s)M I;(m) — Mz(s,x(z‘>(s))m] ds
0

=6 (s, X0 (s))

resp.

by(X,m) = [U(t,s)M M m) ds.

o o

50 (s,x () ~ M (o, x0 (s 1

Analogously to the proof of (i) we get

Tim Bllay(©)]2, =0,

f2 U(tv S)[MZJ(57X§”(5))IJ(x) - Mz(&X(i)(s))ﬂf] N(ds, dil,‘)
L
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lim E||as(E)||2, =
Jim Efla;(E)[[7; =0,
and
: 2 __
lim Elfla;(B)[[7; = 0.

Concerning a (3, m), note that

t
EHaJ(E,m)H%% < JE|U® s) My, (5 x5y Ls(m) = MZ(S,X(i)(s))m]H%% ds

o 4O

< JEIU )My, x0T (m) = m|[7; ds
t
n bf E[|U(t, 8)[Ms, 5, x00(s)) = Mo, xos)]mlIz2 ds
t .
< (Msm) = mllza ) [t =) BIIZs (s, XO(s))lIz3 ds

t . .
+Iml|Z bf(t — 5)El[Z(s, XW(s)) — (s, X(5))[|2, ds.

The first term on the right hand side tends to 0 as J — oo, since
Jlim |17(m) —m||3, =0 and
—00

t

it~ s) B[ Z5(s, XD ()35 ds < e(ea(1)) =5 < oc.

The second term obvously tends to 0 as J — oo by the uniform Lipschitz
convergence of oy, J € N.
This yields E|[a;(3,m)|[7. — 0 as J — oo.

P

Analogously to the consideration of a;(I') in the proof of (i), we get
Ellas(32)|7: — 0 as J — oo.
)

So all EHaJHL%—terms tend to 0 as J — oo.

Concerning the bj-terms note that with the help of the It6 isometries w.r.t.
Wiener processes and compensated Poisson random measures and the uni-
formness of the Lipschitz properties, we get

2
E

t . . . .
Jue. SIEY (s, X5 (s)) — BV (5, X0)(s))] ds

2
L3

< e(elT), (1) [ BN (5) = XO9)l [ ds,
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t 2

E Of U(t, S)[MEJ(S,X5i>(S)) - MEJ(S,X(”L)(s))]IJ(m) ds
L3
t . )
< e(m.e(T), eo(T)) [ (t = ) EI[X[(s) = XO(s)][7, ds.
0
t 2
B\ JU® My, x0) ~ Mestsxo )] W (5) p
P
t . )
< e(elT),co (1) [ (¢ = ) “BIIX](5) = XO(5)F, s
and
¢ 2
E

L L UMy 0y = Mssgoxo L) N(ds, de)
L

2
L3

<c(e(T),co(T),Cqn) Oft(t — s)*<E|]X§i)(s) — X(i)(s)HQL% ds.

Thus, for any ¢t € [0,T'], we can estimate
E|[ X} (s) = XO(s)|3
< (Bllas (7 +Elas (E)][7;+Ellas (3, m)|[2;+Ellas (37 +Ellas (2, 2)[[7,)

+ elm, 1), e(1): co(T): Cog) [ =) “BIXJ(5) = XOs)I [ ds.

Thererfore, by the Gronwall-Bellman lemma 2.7.2 and the corresponding
Remark 2.7.3 we get

E|[ X} (s) = XO(s)|3,
< (Ellas ()15 +Bllas (F)|2,+Ellas (S, m) |2 +Ellas ()] 2,4 Bl las (5] 25)
c(m, C(T)v Cf(T)a CU(T)v Cq,n)'

Now, since the aj-terms tend to 0 as J — oo, we get the convergence
result (8.38) for J — co. A

8.3 Proof of Theorem 8.1.1

Step 1: This is just Step 1 fro_m the proof of Theorem 7.1.2, i.e. by (7.15)
and (7.16) we get functions g, h: R — R obeying

(8.40) g<0,g(v) <f(tw,v), (t,w,v) €[0,T] x Q2 xR,
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(8.41) h >0, h(v) > f(t,w,v), (t,w,v) € [0,T] x 2 x R.

Of course, (8.40), (8.41) also hold true, when f is replaced by e.
These auxiliary functions help us to estimate the integral I7(X) (defined in
Section 5.1) in the non-Lipschitz case.

Step 2: Given arbitrary N, M € N, let fy s be defined by (7.10), (7.11)
from 7.1.7. Then, fya obeys (LC) and (LB) and is such that fy s is
Pr @ B(R)-measurable by Lemma 7.1.8. Of course, this also holds true for
functions ey ys defined analogously to the fy .

Thus, the theory from Sections 5.1/5.2 is applicable. By 5.2.1 there are
processes Xy ar € HY(T') solving equations (1.1) resp. (1.2), when f resp. e

is replaced by fn ar resp. en -
To proceed along the lines of Manthey’s and Zausinger’s proof, we need to
find M-independent estimates for the moments of Xy /.

(i) Equation (1.1) - the Poison case

By Theorem 5.2.1 ¢t — Xy a(t) is continuous in L(€; L2). Furthermore,
we have

(8.42) XN,M(t) < XN7M+1(t) for all t € [O,T],

P-almost surely, by Theorem 8.1.5. We denote solutions to the equations
with initial conditions £, £~ resp. 0 and drifts Fp a, Fy ,, resp. 0 by
Xo.m, Xy resp. V. Of course, by 8.1.5 we have

M(t)7

(8.43) Xy () < Xnvu(t) < Xo,
< Xo,m (1),

(8.44) Xymt) <V(t)
P-almost surely, for each t € [0,7'] and arbitrary N, M € N.

Note that similar to Section 5.2, all the solutions above are time-continuous
in L9(; L%) and, by the uniform boundedness of v, have a cadlag version

under the additional assumption that U obeys (AT).

In view of (8.43), we show the required M-independent estimate for Xy as
by showing M-independent estimates for Xo s and Xy p.

Let us fix t € [0,7']. To find an M-independent estimate, we note that
for each M € N
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(845) Bl Xoar(0)l|f; < c@TO) + L7 () + I (0) + I (1)].

Here, I, f](\? and .7](\3) are as in Step 2 of the proof of 7.1.2 (i), whereas
f](\j) is defined by

q

t ~
({Lf2 U(t, $)Mp(s 54 0 (s)) (@) N(ds, dz)

f(4)(t) =E

2
L3

Analogously to Step 2 in the proof of Theorem 7.1.2 (i), we have

IM(t) < A(T)E|¢]|

q

7

— t —

(0 < el T () 5(1), o)1), Coo) (14 [ Bl Ko ()11 )
0

and

910 < a1l o) (14 [ B K0r(6)3y s,

Finally, by the Bichteler-Jacod inequality 2.6.10, (QI) for 7, (LC) and
(LB) for v, (A2) for U and the fact

g<? = $<1,
we get
~(4) it _& - g
Ly (t) < Cgn [(t =) 2 E[[L(s, Xom(s))l[7, ds
0
t -
< 0 6T (D). Cop) (14 (¢ ) FEI|Xuar(o)fy ds ).
0
Thus, by (8.45) we have

B Ko (12

< g, (T el(T), (1), €6 (T), (T, Co) (1 + EJIE]I75)
14 —
+c(q, T, e(T), ¢4(T), ¢ (T), e4(T), Cqp) {(t - 8)7%E!|X0,M(8)||%g ds

for arbitrary ¢ € [0,7']. Therefore, by the Gronwall-Bellman lemma we
get

B[ Xom (I, < &g, G Ty e(T), ¢5(T), o (T), ¢4(T), Cyn) (1 + ElIE][7)
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for arbitrary M € N and ¢ € [0,T"]. Thus, we have

Sup. B[ Xom(0)lI7; < elq, ¢ T, e(T), ¢p(T); ¢o(T), ¢y (T), Con) A+E[€] 7).
te[0,
MeN

Next, we consider X y ,, for arbitrary N, M € N. For any ¢ € [0,T'], we have
2 3 4
Bl X llf; < (@) (I (0) + L7 (1) + Igh () + Ly ()

with l(l), 15\2,)]\/[ and lg\?)M as in the proof of Theorem 7.1.2 (i) and

¢ q

INRAUE S)MF(&XN’A{(s))(x)N(ds,dx)

4
Iy (1) =E [

L
Similarly to Step 2 in the proof of Theorem 7.1.2 (i), we get
1M (1) < e(q, c(T))E[E]IL2,

ID(8) < (N, ¢, T, e(T))

and

1030(0) < 0. GoelD D) (14 [BIX a9l )

Furthermore, by the Bichteler-Jacod inequality 2.6.10, (QI) for 7, (LC)
and (LB) for v, (A2) for U and the fact

§<? = <

1t
7 q _<q
/(0= Ciy [(t =) FEIIN (s Xy ai(s)) I ds

¢ <
< (g, Ty, (T),Cyn) (1 T (- 9 FBX a6, ds>.
0 14

Putting the estimates together we conclude
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Bl Xyullpy < cla, (THEIENL + (N g, T, C(T))

0. c(T) (D)o () (1 0= 9) FBIX (01 )

S C(N>Q7CaT7 C( ) (T) C’Y(T)ch,ﬁ)(l—i_EHgH )

+c(q, ¢, e(T), ¢o(T), ¢y n) (=) BBl Xy (s )1z

0

Herefrom, by the Gronwall-Bellman lemma we get
Bl Xy a1} < eN.q.C. T,e(T). (T, (7). Cy)(1 + B2,
Since the previous estimate holds for arbitrary ¢t € [0,7' ] and M € N, we get

S Bl Xy llf € eN,0,CT,e(T). (7). (1), Cy)(1 + B ]).
MeN

Finally, by (8.43) we get

sup B[ X arlfy < N, 0,C, T3 elT), eo(T), (7). Co) (14 BIEG)
te| 0,
MeN

withec=¢+ec.
(ii) Equation (1.2) - the Lévy noise

Denoting solutions to (1.2) with £ and Ep s resp. £ and Ej,, resp.
0 and 0 replacing £ and E by X s resp. X N resp. V, we get relations
(8.43) and (8.44) again.

Concerning Xo s note that we have, for any ¢ € [0,7T],

(846) Bl|Xoar(t)llf; < e(a) D) + Iy (0) + L, (1)

with 7™ and fj(\j) as in Step 2 in the proof of Theorem 7.1.2 (ii) and

t q

be(t, $) My (s, %0 ) AL(S)

2
L3

Analogously to Step 2 in the proof of Theorem 7.1.2 (ii),

T0(t) < elq, e(T)EIIE]I%,

and

jJ(VQ[) (t) < C(q, T, C(T), Ce(T)a CO’(T)v CQJ)) <1 + OjEHXO’M(S)H%/% ds)

ds.
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hold true for any ¢ € [0,T'].

Applying first the Lévy-1t6 decomposition 2.4.13 and then estimate (3.30)
from Proposition 3.4.1, estimate (4.5) from Proposition 4.1, the integrability
condition (QI), (LC) and (LB) for ¢ and the fact that

§<% = Y<1,

we easily get

I](\fl)(t) <c(q, ¢, T,¢e(T),co(T),Cqn) <1 + [(t—s) 5 EHXO,M(S)HQL% ds>.
0
Thus, by (8.46) we have, for arbitrary ¢ € [0,7],

E’ ’XO,M(t)HqL% S C(Qa Ca Tv C(T)7 Ce(T)a CG(T)a Cqm)(l + E‘ |§H%/2J)
t _
+elg, Toel): (1), e(T), Con) [ (¢ = )" BN Koaa (5)3 s

From this estimate, analogously to the consideration of (1.1) in (i), we get

Sup. EIIXO,M(t)H%g < e(g,¢ T, e(T), ce(T), e(T), Co) (1 + EIE][75)-
tefo,
MEN

Next, we consider Xy, for arbitrary N,M € N. For any t € [0,T],
we get

BIX v arlf < ea) L) + L0 (1) + L7 (1)

with I and 15\2,)]\/[ as in Step 2 in the proof of 7.1.2(ii) and

t q

f U(t, S)MZ(S»XN’]\/[(S)) dL(S)

3
lg\/,)M(t) =E J

2
L3

From Step 2 in the proof of 7.1.2 (ii), we immediately get
IO(t) < e, «(T)E(E]I7
and
I (1) < o(N,q, T, c(T)).
Finally, applying first the Lévy-It6 decomposition 2.4.13 and then estimate

(3.30) from Proposition 3.4.1, estimate (4.5) from Proposition 4.1, the inte-
grability condition (QI), (LC) and (LB) for o and the fact that
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g<2 = g<1,

we obey

L0 () < e(q,¢. T, e(T), ¢ (T), Cyy) (1 + bf(t — ) FE|Xy ()] ds).
Thus, putting the estimates together, we have
BI Xy (05 < cla, e(T)BIE]L, + (N, q,T,e(T)
Felar G (D), Cy) (14 0= 9 FBIX a0l ds).
which by the Gronwall-Bellman lemma gives us
BlLX y s ()14 < e(N,,C, T, e(T), o (T), Cyy) (1 + Bl€][5).
Since the previous estimate holds for arbitrary ¢t € [0,7' ] and M € N, we get

ts[%li)"] EHXN7MH%’2) S Q(Na q, C? T7 C(T)7 CU(T)7 Cqm)(l + EH‘SH%%)
€10,
MeN

Now, by (8.43) we get

sup EHXN,MH%Q S C(Na q, Cv T7 C(T)’ CU(T)7 Cq,n)(l + EHSH%Z)
te[0,T] P P
MeN

with ¢ = ¢ + ¢, which finishes Step 2.
Step 3: Recall that in Step 3 in the proof of 7.1.2 we had the following
procedure.
For N, M € N, define
ZN,M(t) = XN7M(t) — XNJ(t), t e [O,T].
Furthermore, we set
ZN(t) = sup ZN,M(t), te [O,T]
MeN
and
XN(t) = ZN(t) + XNJ(t), t e [O,T}.

By the well-definedness of the Xx s, (8.42) and the M-independent es-



8.3. PROOF OF THEOREM 8.1.1 317

timates on the Xy ps shown in Step 2, by almost literally repeating Step 3
from the proof of 7.1.2 we get Xy € H(T) for any N € N both in (i) and
(ii). Furthermore, denoting X and V as in Step 3 in the proof of 7.1.2, the
processes obey

),

XN()<XN()SX(t
< X(1),

Xy(t) <V(t) < X(

P-almost surely, for any ¢t € [0,T'].
Finally, we have

(847) ]\/}lm EHXN,M(t) - XN(t)HqLQ =0,te [O,T}7
—00 P
and
T
(8.48) Jim SB[ Xy ar(t) = Xn (@)1, di =0,
—)OOO

both in (i) and (ii), and there are processes X , X € H9(T) such that

T
lim [ E[|Xy () - Xy, ds=0
M—>ooO P
r Y Y q
li E||X t)— X(¢t ds = 0.
Jm Bl (t) ~ X (D)l ds = 0

Step 4: We show that, given arbitrary N € N, the processes Xy defined
in Step 3 solve (1.1) resp. (1.2) in case of F resp. E being replaced by Fy
resp. Ey.

Furthermore, we show that ¢t — Xy () is continuous in L7(€; L,%) and that,
additionally assuming (8.2) for 7 (for equation (1.1)) resp. (8.4) for o (for
equation (1.2)) and (A7) for U, there is a cadlag version of ¢ — Xy (¢).

By (8.48), there is a subsequence of (X a7)men that converges P®ds®dp,-
almost everywhere to X. We assume (Xn, ar)men itself to be this sequence.

(i) Equation (1.1) - the Poisson case
We have, for each t € [0,T'],

E HXN(t) —U(t,0)§ — ftU(t, S)Fn(s,Xn(s))ds — J‘U(t, S)MZ(S,XN(s)) dW (s)

0
2

t ~
—({ J Ut 8) Mrs x y(s)) (x) N(ds, dx)

L3
1 2 3 4
< Oy () + Iy () + I, (1) + 19, (1)
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Here, I](\})M, I](\?)M and I](\?)M are as in Step 4 in the proof of Theorem 7.1.2,

whereas

t

[ J U, 5)[MF(s,XN(s)) - MF(s,XN,M(s))](iU) N(ds, dx)

4
I](V)M(t) =E
0 12

73
In view of (8.47) and (8.48), which is just (7.22) and (7.23) from Step 4
in the proof of Theorem 7.1.2(i), we immediately get (for 1 <1i < 3)

lim I{)(t) =0.

M—oc0

Applying It0’s isometry for the stochastic integration w.r.t. compensated
Poisson random measures, (A2), (QI) and the fact that

2 /(8
q>q@ 11_72<1,

we get

100 < ddnx%mEju—@ﬂmN&XN@»—NaXMM@m&yw

< (g, ¢, T, e(T), co(T), Cyn) <E g X (5) = X (5)]1% ds) "

which tends to 0 for M — oo by (8.48).
Thus, Xy solves the equation in the sense of 5.1.2 (i), when F' is replaced
by Fn for arbitrary N € N.

Similar to Step 4 in the proof of Theorem 7.1.2 (i), to prove the required
continuity property we only need to consider the drift term, but this follows
by literally repeating the arguments from Step 4 in the proof of Theorem
7.1.2 (i).

(ii) Equation (1.2) - the Lévy case

For any fixed t € [0,7'] we have

t ¢ 2
E HXN(t) —U(t,0)§ — OfU(t, s)En(s, Xn(s))ds — gﬂU(t,s)Mg(&XN(s)) dL(s)

L3

< By (8) + Iy () + I, (1)

with T, ,, i = 1,2, as in Step 4 in the proof of 7.1.2 (ii) and
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2
,t€[0,T].
L3

t

JU(t,8)[Ms(s.xx(s)) = Ms(s,xn01(s))] 4L(5)

3
Wu®:=E|

Thus, I%)M(t), i = 1,2, tends to 0 for M — oo by the same arguments
as in Stef) 4 in the proof of 7.1.2 (ii), whereas, by first applying the Lévy-
It6 decomposition 2.4.13 and then estimate (3.30) from Proposition 3.4.1.,
estimate (4.5) from Proposition 4.1, (QI) for 7, (LC) for ¢ and the fact

2

¢> % = <,

we obtain

t q
000 < la.G.T.0(T), (D), Ca) [ BIXN () = s 5 )

which tends to 0 as M — oo by (8.48).

Thus, X solves (1.2) in the sense of 5.1.2 (i), when F is replaced by Ey.
By simply replacing Fy by Ep, the continuity property follows analogously
to (i).

Step 5: In this final step, we first obtain IN-independent estimates for
the XN.
By construction, we have

Xn(t) < Xn(t) < X(t) in LX(O).

Therefore, we have the required N-independent estimate for the moments
of Xy if we show N-independent estimates for X () and X (¢).
We consider separately equations (1.1) and (1.2).

(i) Equation (1.1) - The Poisson case
Fix an arbitrary ¢ € [0,7']. We estimate
Bl Xy (1)]|%; < cla)IO0) + 17 (0) + I (1) + 13 (1))

with l(l), 15\2,) and 15\3;) as in Step 5 in the proof of Theorem 7.1.2 (i) and with

¢ q

f f U(t7 S)MF(S) (l’) N(dS, dx)
012

IV(t) =E

2
L3

Thus, from Step 5 in the proof of Theorem 7.1.2 (i) we get

IV(#) < I(T)E¢]]

q
£ 2
L2
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19t < (g, T, e(T), e4(T)) (1 + ({tEHXN(S)”qL% ds)

and

190) < a6 T, 1) (14 [ RIS (9)1 ).

Finally, by the Bichteler-Jacod inequality 2.6.10, (A2) for U, the integra-
bility property (QI) for , (LC) and (LB) for v and the fact that

g<? = %<1,

we get

t
4 _4a<
IV < e(q, ¢, T, e(T), e (T), Cyy) (1 +[(t—s)""% EHXN(S)H%% ds>.
0
Putting the four estimates together we get, for all ¢t € [0,T'],

B Xy (1)
< elq, ¢ Toel(T), (1), o (T), &4 (T); Co) (1 + EJIE]I75)
(0G5 (D)D), (7). Cyg) (0= ) BIXn (9] .
By the Gronwall-Bellman lemma 2.7.2/2.7.3 this yields

Bl (1)1 < cla: T2 eT), e (T)sco(T), o (T), Cypg) (1 + Bl 1)
for all N € N and ¢t € [0,7'] and hence

Sup B[ Xy@)l7; < e1(q, (T, e(T), ¢p(T), ¢o(T), e4(T), Con) (1 + EI[E]I7)-
€10,
NeN

(ii) Equation (1.2) - The Lévy case
For arbitrary ¢t € [0,7"] we have

2 3
El[X x()]1%; < el) (100 +IF(0) + 19(1))

with I and 15\2,) as in Step 5 in the proof of 7.1.2 (ii) and

t q
Of U(t, s) Msys) dL(s)

D) :=E

2
L3

Thus, from Step 5 in the proof of 7.1.2(ii), we immediately get
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1M@) < cq(T)EHfH%E,

and

t
I2(t) < e(q, T, e(T), co(T)) <1 + OIEHXN(S)H%% d8>~

Applying first the Lévy-1t6 decomposition 2.4.12 and then estimate (3.30)
from Proposition 3.4.1, estimate (4.5) from Proposition 4.1, integrability
condition (QI) for 7, (LC) and (LB) for o and the fact that

<%= %<1,

we obey

! _«
L) < elq. ¢ T,e(T), (1), Cou) <1 [t =) FRIXy ()7 ds>-
0
Putting the three estimates together we get, for all ¢t € [0,T'],

BIX (05 < o(g,C T e(T),celT), ¢o(T), Ca)(1 + EBIE]IL,)
t
+ela, T,e(T),ee(T), (1), Co) [ (0= 5) F B Xy (o)1 s

Herefrom, by the Gronwall-Bellman lemma 2.7.2/2.7.3 we get

sup E[[Xn(1)||7, < e2(q, (T, e(T), ce(T), co(T), Cop) (1 + E[€][7)-
te[0,T] P P

Since this estimate holds for any N € N, we conclude

sup B[ Xy (0)[7; < e2(q, (T, e(T), ce(T), o (T), Ca) (1 + ElIE]|75),

t€[0,T]
NeN

which is the required N-independent estimate on the moments of X .
Let X be as in Step 3 in the proof of 7.1.2. Recall from Step 2 that

teS[%I;] E| |X0,M(t)”%g < C(Qa ¢, T, C(T)v Cf(T)¢ CJ(T)a C"/(T)7 Cqﬂ])(l—i_EHﬂ |(I]/;23)
MeN

in (i) resp.

sup B[ Xo.m(8)l[7; < ¢(a, ¢, T, e(T), ce(T), o (T), Co) (1 + E[E]IZ,)

te[0,T]
MeN

in (ii).
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Thus, we get

sup B[], < ex(a ¢ TelT) (T, o) (), o)1+ EIE]I)
S )

in (i) resp.

S[%%] EHX(t)H%% S C4(q7 C? K7 T7 C(T)v CG(T)7CU(T)7 C‘]ﬂ?)(l + EHgH%%)
te| 0,
in (ii).

By construction, for all ¢ € [0,7"] we have

and this leads to

sup E[|Xn(t)][7,
t€[0,T] P
NeN

S [Cl (Qa Cv Ta C(T)7 Cf (T)’ Co (T)v C’Y (T)’ Cq,n)
+e3(q, G I T e(T), e (T)s €0 (1), 4 (T), Cg)] (1 + EJ[€][75)

(in (i)) and (in (ii))

Sup E[[Xn(®)[]
te[0,T] p
NeN

—[62(q7C7T70( )7 >7CU(T)7 77)
+ea(q, ¢, T, e(T), ( )s¢a(T), Co)] (1 + ElIE][75)-

S

Thus, we have shown that there are N independent estimates for the X
both in (i) and (ii).

Next, we define our candidates for the solution to (1.1) resp. (1.2).

Note that, by fy | f resp. ex | e, 8.1.5 implies

(8.49) Xn+1(t) < Xn(t) P-as.,t€[0,T], NeN

both in (i) and (ii).

Analogously to Step 5 in the proof of Theorem 7.1.2, we claim that

X(t) := inf Xn(t).t T
(t) nf N(t),t€[0,T],

is a solution in the sense of 5.1.2 (i) in both cases.

With the help of the N-independent estimates shown above, we get
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(8.50) Jim B[ Xy(t) = X(8)|[3, = 0

for all t € [0,7"] and

T
(8.51) Jim B [ X (1) - X1, dt =0

both in (i) and (ii) by literally repeating the arguments from Step 5 in
the proof of Theorem 7.1.2.

Let us show that X solves equation (1.1) resp. (1.2).

Let us fix t € [0,T']. We denote the process in the right hand side of (5.5)
by K(X) and the process in the right hand side of (5.6) by K(X). Then,
by setting

1
Iy = BlIX (1) - Xn(0)]2,

1P =E OfU(t, $)[F(s, X (s)) — Fx(s, Xn(s))] ds

%
. 2
IO =E||[U s)[E(s,X(s)) — Enx(s, Xn(s))]ds|| ,
0 L2
3 ! I
% g JU(t, 8)[Mss,x(s) — Mss,xns)] AW (s)||
L2
Iz(v) =E ‘({U(t’ 8)[Ms(s,x(s)) — Msi(s,xn (s))) AL(8)
L3
and
. 2
I](\;l) =E f f U(tv 8) [MF(S,X(S)) - MF(S,XN(S))}J"N(d’S?d:E) )
012 L2
we get

EIIX () — KCO@I, < CUY + 1Y) + 1Y) + 17
for (1.1) resp. for (1.2)

E[|X(t) - K(X)(1)IIZ,
<21 + 1 + 1),
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Analogously to the procedure in Step 5 in the proof of Theorem 7.1.2, we
getI](\Z,)—>0asN—>oofori:1,2,3and1:](\I,)—>0asN—>oof0ri:1,2.

Thus, it remains to consider I](\‘,L) and f](\?).
Concerning I @) , note that, by the Bichteler-Jacod inequality 2.6.10, (A2),

(QI) and the Lipschitz property of 7, we get
L q
4
I <l T (1), o) ([ BIX )~ Xn0E5)

which converges to 0 as N — oo by (8.51).
Concerning fj(\?), note that applying the Lévy-It6- decomposition 2.4.13,
analogously to Step 4, we get

) < T, o), Co) (JEIXG) = Xn(0) 5
which again converges to 0 as N — oo by (8.51).
Thus, X solves (1.1) resp. (1.2) in the sense of 5.1.2 (i).
The required continuity property in Lg"(@) follows from the continuity re-
sults for stochastic convolutions presented in Section 5.1. In particular, by

Remark 5.1.11 (i) for the Bochner convolution integral we have continuity
of the mapping

t
[0,T]>t— be(t, s)F(s, X (s))ds € L2(©)
even in the case of a non-Lipschitz F'.
Analogously to the proof of the estimates (7.6) and (7.7) in the proof of 7.1.2,

we get the estimates (8.1) and (8.3) with the help of the N-independent es-
timates for X. W

8.4 Proof of Theorem 8.1.3

Step 1: This step is completely identical with Step 1 from the proof of 7.1.2.

Step 2: We show that we have M-independent estimates for Xy 57, where
XN, is the solution to (1.1) resp. (1.2) with F' resp. E being replaced by
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Fn ar resp. En - Analogously to Step 2 in the proof of 7.1.4, we get that
the theory from Section 5.2 is applicable.

By 5.2.2 there are processes Xy v € G, (T) solving equations (1.1) resp.
(1.2), when f resp. e is replaced by fn s resp. en . The solutions are
time-continuous in L?”(€2; L%”). In the case of 7 resp. o obeying (8.2) resp.
(8.4) and U fulfilling (A7) they have a cadlag version.

(i) Equation (1.1) - The Poisson case
By Theorem 8.1.5 we have
XN7M(t) < XN7M+1(t) P-as., for each t € [O,T],

where the processes Xy v € G, (T') solve (1.1), when f is replaced by fn .
We denote solutions to the equations with initial conditions £*, £~ resp. 0
and drift Fyar, Fy ,, resp. 0 by Xo.n,s Xy resp. V. Again, by Theo-
rem 8.1.5 we get (8.43) and (8.44) P-almost surely for each ¢ € [0,7] and
arbitrary N, M € N. This allows us to show the wanted M-independent es-
timate of Xy as by showing M-independent estimates for X’oy M and Xy .

Let us first consider X ps. We get, for any ¢ € [0,7'],

Bl Xo.r (013, < c)ID () + 15 () + 17 (1) + 17 (1)).

Here, IM, T ( ) and I( ) are as in the proof of 7.1.4. Recall that it is crucial
to have the mtegrablhty condition (QI) with ¢ = 22 to estimate I_](\Z) .
Finally, for any ¢ € [0,7T'], we have

2v
I_](é[) (t):=E

t ~
ofo U(t7s)MF(s,-,XO’M(s))(x) N(dS,dl‘)

2
2v
Ly

By Proposition 4.4, (LC) and (LB) for v and the fact that v < %, we
get, for any ¢t € [0,T],

t
ID0) < e, T, e(T), Cany) [(t — 8)"VE||T(s, Xo,u (s ))HLQV
0

< e, T,(,T,c(T),cy(T),Cop) <1 + Uf(t - s)_<”E||X07M(5)||%”2V ds).

Putting the four estimates together we get, for arbitrary ¢ € [0,T'].

E||Xo,nm(t )H%Vm,

< (. B[ L2v
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e, ¢, T, (T, 5 (7)o (T, (T, Cong) ( [ Bl (ol )

Thus, by the Gronwall-Bellman lemma 2.7.3, we get

E[| Xom (D] 75, < c(v, ¢, T,e(T), ¢4(T), ¢(T), &5 (T), Covy) (1 + E[[¢][75.)

for arbitrary M € Nand t € [0,T']. So, the M-independence of the constant
implies

sup B[ Xon(1)||Z50 < e, ¢, T, e(T), ¢p(T), o (T), e5(T), Couy) A+ EIE][75.).

te[0,T]
MeN

Next, we consider X, for arbitrary N, M € N. We have, for any ¢ €
[0,T],

El[X v a3 < e@)ID () + LD (1) + L0y (8) + Ly (1)

with I, I, and I§y), as in Step 2 in the proof of 7.1.3 and

‘ 2v

ofoz U(t, S)MI‘(&XN’M(S)) N(ds, dz)

4
19 =E

L2
7(4)

By the same arguments as in the case I,,/, for any ¢t € [0,T'] we get

t
%)M(t) < e, T, e(T), Covy) [(t — s)"VE||T(s, Xy ps(s ))H%’éu ds
0

IN

(0, T, C, T, (T, e (T), Cany) (1 " Of(t ) B 00 ()] 2 d)
Putting the estimates together, we have

Bl Xyl < el e(T)BIIEIR, + (N0, T.e(T))
(0Tl co(T) (1), ) (14 +f ) Xy (3 )
(N, K. T,e(T). (7). (7). G (1 + Elfg]2)

+c(v, ¢, T, ¢(T), ¢o(T), c4(T)) J(t — ) El| Xy, (s)l[ 75 ds

IA

Again, by the Gronwall-Bellman lemma 2.7.3 we get

B[ Xy lTs < e(N,v, KT e(T), 60 (T), Couy) (1 + BIIE]75)-

Since the previous estimate holds for arbitrary ¢t € [0,7' ] and M € N, we get
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S[UI; EHXNMH SQ(NavavTvc(T)7CU(T)ﬂ021/,77) +EH§HL2u)
te[o
MEN

Now, by (8.43) we get

Sup EIIXN,MIILzu < (N, v, K,T,¢(T),co(T), Cavp)(1 +EII£IIL2V)
te[o,T
MeN

with e=¢+c.
(ii) Equation (1.2) - The Lévy case
Let us first consider X ps. For any t € [0,T] we get

El[ Xo.ar(D][#, < e()IM () + 117 (1) + L7 (1)

with I and INZ(\? as in Step 2 in the proof of 7.1.4 (ii) and

2v
i) =E

t
f U(t’ S)ME(S,',XO,I\/I(S)) dL(S)
0 L3

By the Lévy-Itd decomposition 2.4.13 and with the help of 3.3.5 resp. 3.4.3

(with ¢ = T" and ¢ = 0 since W is nuclear) resp. 4.4 and the Lipschitz
property of o, we get

IO < o T [(€ - ) B Xon (oI ds
+c(v, (,m, T, c(T), Coy,p) jt—s ~VE||2(s, Xom(s ))H%%V ds
S clvGom KT o), Ca) (14 (08B Kor(s) [ ).
Thus, we get

B[ Xom(8)]1 5
< (v, T)El\ﬁlleu

+c(v, (,m, T, c(T),ce(T), co(T), Conpy) (1 + g(t — 5)"VE|| Xom (s )HLQV )

for arbitrary t € [0,T].
Therefore, by the Gronwall-Bellman lemma we have

E||X0,M||%l%u S E(V>C7m7K’ T7 C(T),CQ(T) ( ) CQV?Y)(]‘ + E||§HL2V)

for any ¢ € [0,7'] and any M € N. This implies
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ts[%I;] EHXO,MH%%V < E(Vv ¢m, K, T, C(T),CG(T) ( ) 021/77)(1 + EHfHL%)
€lo,
MeN

Next, we consider Xy 5, for arbitrary N, M € N. For any ¢t € [0,T] we
get

El|X a2 < c)(ID®) + I35, (0) + 13, (1)

with 1(1) and lﬁ)M as in the proof of Theorem 7.1.4 and

2v
3
It =E

t
OfU(tj S)ME(&KN,M) dL(S)

L2
Analogously to the consideration of f](é) above, we get
t
I (1) < e(v,¢,m, K, T,e(T), o (T), Cauy) < + [t = 8)VEI|X a0 () 125, ds>.
0
Putting the estimates together, we have

E[| Xy a2
< e, oT ))Ellflley + (N, v, T, ¢(T))

el G T (), (1), o) (14 [0 ) VB s (93 ds ).
which by the Gronwall-Bellman lemma 2.7.3 gives us

B[ Xy 25 < e(N,v,¢m, K, T,e(T), ¢(T), Covy) (1 4+ El[€]125.)-
Since the previous estimate holds for arbitrary ¢t € [0, 7] and M € N, we get

S[%I;] EHXNMH SQ(N,I/,C,TI’L,K,T,C(T) ( ) CQVW)(1+E||£||L2V)
te
MeN

By (8.43) we get

sup EHXNMHL2USC(N7V7<7m7K7T7C(T) ( )CQV’V])(l_'_EHfHL%)

te[0,T]
MEN

with c=¢+c.

Step 3: For N, M € N we define

ZN7M(t) = XN7M(t> — XNJ(LL) € L?)V(@), t e [O,T].
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Furthermore, we set

ZN(t) = ]\S/[uell)\;ZN’M(t)’ te [O,T]

and
Xn(t) :=Zn(t) + Xna(t), t €[0,T].

By the well-definedness of the Xy s, the monotonicity property (8.42) and
the M-independent estimates on the Xy s shown in Step 2, by almost lit-
erally repeating Step 3 from the proof of 7.1.4, we get X € G, (T) for any
N € N both in (i) and (ii). Furthermore, denoting X and V as in Step 3
in the proof of 7.1.2, the processes obey

Xn(t) < Xn(t) < X(1),
Xy(t) <V(t) < X(1),
P-almost surely, for any ¢ € [0,7'].
Finally,
(8.52) Jim B[ Xva(f) — XN(t)H%Vgu =0,t€[0,T],
and
T
(8.53) A}EnooofEHXN,M(t) — XN(t)H%;D dt =0

both in (i) and (ii). )
Furthermore, there exist processes X 5, X € G, (T) such that

T
li E||X t)— X%, ds =0
i SBIE () = X (O, ds

T — —
lim [ E[[Xom(t) — X(¢)|[%, ds = 0.
M—>ooo P

Step 4: The aim of this step is to show that, for any N € N, the process
XN € G,(T) defined in Step 3 solves (1.1) resp. (1.2) in case of F resp. E
being replaced by Fy resp. En.

Furthermore, by the results from Section 5.1 ¢ — Xy(t) is continuous in
L?(Q, F, P; L,%”). In particular, by Remark 5.1.11 we have the required
continuity property of the Bochner convolutions even in the case of non-
Lipschitz f resp. e.

Under the additional assumptions that v resp. o obeys (8.2) resp. (8.4) and
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U obeys (AT), there even exist cadlag modifications of the solutions.
() Equation (1.1) - The Poisson case

For any given t € [0,7'] we have

E HXN(t) —U(t,0)§ — jU(t,s)FN(s,  Xn(s))ds — £U<t’ 8)My(s,. x5 (s)) AW (8)

0
2

t ~
UG 5)Mugs ) () N(ds, )

L?
< CUP () + ITh (6 + T () + I, (2)]

with I](\}’)M, IJ(\?)M and I](\E;’)M as in the proof of 7.1.4 and

t ~
f f U(t7 S)[MF(S,-,XN(S)) - MF(S,~7XN,AI(S))] N(ds> dl‘)

4
1P =E [

2
L3

Thus, we have J\/}im I%)M(t) — 0 for each ¢ = 1,2,3, by the same argu-
—00 ’

ments as in the proof of 7.1.4.

Finally, by It6’s isometry w.r.t. compensated Poisson random measures, the
integrability condition (QI) (which particularly implies the square integra-
bility of 1), (LC) for v, Holder’s inequality and the fact that

1 128
V>ﬁ<:\r>ﬁ<1,

we get
t

IGW(T) < ee(T), e (1), Cau) [(t = 5) Bl Xn(s) = Xnua(5)][2, ds
0

N

< (v, T e(T), ey(T), Cavg) (JEHXN(S) = Xy ()75 ds ) :
which tends to 0 for M — oo by (8.53).
Thus, X solves the equation, when F' is replaced by Fl.
(i) Equation (1.2) - The Lévy case

For any given t € [0,7'] we have

2
E HXN(t) — U(t,())f — b;‘ U(t, S)EN(S, -,XN(S)) ds — b;‘ U(t, S)ME(S,-,XN(S)) dL(S)

2
L3
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< O () + Iy (8) + I (2)]

with I](Vl)M and IJ(\?)M as in the proof of 7.1.4 and

2
IQy(t) =E

t
Ofo2 Ul(t,s) [ME(S,-,XN(s)) - ME(S,',XN’]W(S))] dL(s)

L3

Thus, we have lim I() y(t) — 0 for i = 1,2 by the same arguments as
—00

in the proof of 7.1.4.

By the Lévy-Ito decomposition 2.4.13, the I[t0 isometries w.r.t. Wiener
processes and compensated Poisson random measures, the Lipschitz prop-
erty of o, Holder’s inequality and the fact that

v> e = H <,

we get
t .
19),(8) < v, C. T, (T ¢ (T), Ca) ({EHXN,M(s) w(8)I12, ds ) ,

which tends to 0 for M — oo by (8.53).
Thus, Xy is a solution to (1.2) in the sense of 5.1.2 for all N € N.

Step 5: Asin Step 5 in the proof of 7.1.2, we first show an N-independent
estimate for the moments of X ;. Then, we get the required N-independent
estimate by the fact that P-almost surely

Xy(t) < Xn(t) < X(¢)

for any t € [0,7T'] and N € N.
From Steps 2 and 4 we already know that in (i)

ts[l(l)%]EHXN( Mz < e(N v, G T, e(T), ¢ (T), ¢0(T), ¢4(T), Couy) (1 + BII€]175.)
€10,
and, resp. in (ii)
S[%I;]Ellizv(t)lli’gu < (N, v, ¢, m, T, o(T), ee(T), ¢4 (T), Cow) (1 + E[E]I5)-
telo,

(i) Equation (1.1) - The Poisson case

We have
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Bl Xy (02, < o) (100) + 190 + 10 () + 17 (1))
for all t € [0,T] with I(1), 15\2,) and lg\?,’) as in the proof of Theorem 7.1.4 (i)
and

2v

t .
bff Ult, S)MF(S’.7§N(S))(ZE) N(ds, dx)
L2

IP():=E

2v
L3

From the proof of Theorem 7.1.4 we get

10(t) < e(v, T, e(T))EI€]| 74

L%u?
t
0) < oo T, ex0) 1+ [ BIEN O3 )

and

ID() < e, T, e(T), co(T)) <1 + g“(t =) Bl Xy (s)l[75 d8>-

Finally, by (LC) and (LB) for v and the integrability condition (QI) for n
we get

‘ 2v

Of f2 U(t, $)Mr(s,..x y (s)) () N(ds, dz)
L

E

L2
¢
<c,(,T,e(T),c(T),Covy) <1 + [(t — s)"VE|| X y(s)| %’%y ds),
0
which yields

B[ Xy@Z < e, GToe(T), ep(T), ¢o(T), ey (T), Cov) (1 + EJ[¢][75.)
t

+e(v, T, e(T), ¢4 (T), co(T), ey(T), Cau ) b[(t = 8)"VE|| XN (s)l T

for all t € [0,T]. Thus, by the Gronwall-Bellman lemma 2.7.3, we get

S[%I;] EHXNOS)H%%U < cl(”? C,T,C(T),Cf(T), CU(T)7 CW(T)v CQVJ])(l + EHEH%%V)
te(o,
NeN

(ii) Equation (1.2) - The Lévy case
For all t € [0,T'] we have
Bl Xy (02, < o) (1) + 190 + 1))

with I and 15\2,) as in (i) and
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2v
IY(t) =E

t
f U(t, S)ME(S,-,XN(S)) dL(S)
0 L;Q)u

By the Lévy-Itd6 decomposition 2.4.13, 3.3.5, 3.4.3 (with ¢ = ¥ and ( =0
since W is nuclear) and 4.4 we get

I (1) < e(v.¢m. T e(T), c5(T), Couy) < (1 + f (t =) Bl Xy (sl ds)-
Together with the estimates on I (¢) and I 5\,) (t) from above, this implies
B[ Xy®)[Z < e, TIEIEIZ:

+c(v, (,m, T, c¢(T), ce(T), co(T), Covn) (1 + j(t — s)_C”EHXN(s)H%ZV ds)
0

LQV

for all t € [0,7]. Then, by Gronwall’s lemma, we get
E‘ ’XN(t” Lz < CQ(V C? m, T, C(T), CE(T)v CU(T)7 CQVJ]) + E‘ ’é‘ |L2v)
for all N € N. Therefore,

sup B[ Xy (0|75 < (v, (;m, T, eo(T), ce(T), ¢ (T), Cauy) (1 + BIE|I5.)

te[0,T]
NeN

in (ii).

Next, let us consider the moments of X.
Recall from Step 2 that

B[ Xom (D75, < c3(1, T, ¢(T), ¢4(T), ¢(T), 5(T), Covy) (1 + E[[¢][75.)
in (i) and
B[ Xo (0|75 < ca(v, Ty e(T), ce(T), ¢ (T), Covy) (1 + El[€][5.)

in (ii) for any ¢t € [0,7"] and any M € N.
Thus, we get

tes[%%]EHX(t)Hi%u < e(v, ¢, T,e(T), ¢5(T), ¢ (T), &5(T), Cov) (1 + B [¢][5)
in (i) and

tes[%%]EllX(t)l Tav < o, Cm, K, T, e(T), ce(T), 6o (T), Couy) (1 + BII€]75.)
in (ii). Both in (i) and (ii) we have
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Xn(t) < Xn(t) < X(t) in L2Y(O).
Thus,

sup E||Xn(1)]175.
te[0,T] P
NeN

<[, T,e(T),cp(T),co(T),cy(T),Cop)
+e3 (v, G T, e(T), ¢4(T), ¢(T), ¢ (T), Cavg)] (1 + BIIE] 125

resp.

sup E[|Xn(t)[[75,
te[0,T'] P
NeN

< [CQ(Va T7 C(T), Ce(T)7 CO'(T>7 C2u,n) + 64(1/7 Ca T7 C(T)7 CG(T)’ CU(T)7 CQVJ?)] (1+
Ellg|).

which proves the required N-independent estimates for Xy .

We claim that
X(t) .= inf Xn(t),t€[0,T
() ]%]IéN N()7 G[a ]7
defines a solution in the sense of 5.1.2 (ii) both for (1.1) and (1.2).
First of all, the N-independent estimates of X give us the possibility to get
(8.54) lim E||Xy(t) — X(t)||%’§u =0
N—oo p
for all t € [0,T"] and

2v
L3

T
(8.55) Jim B [ [[Xn(t) = X(8)|[25, dt = 0
— 00 0

both in (i) and (ii).
Defining K, K, IJ(\Z,), 1<4<3, f](\l,), 1 <4 <2, as in the proof of 7.1.4 and
I](é) and 1:](\?) as in the proof of 8.1.1, we get

E|[X (1) - K(X)®)I}, < OUY + 19 + 10 + 1)

for (1.1) resp. (for (1.2))
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E|[X () ~ K(X)(8)|12, <2(Iy) + I + 1Y),

Analogously to the procedure in Step 5 in the proof of Theorem 7.1.4, we
getI](\Z,)—>OasN—>oofori:1,2,3andf](\Z,)—>0asN—>oofori:1,2.

Thus, it remains to consider I](\Z,l) and f](\?).

By It6’s isometry w.r.t. compensated Poisson random measures, (A2) for
U, (QI) for n, (LC) for v, Holder’s inequality and the fact that

IV(#) < e(el(T),e(T), Cavy) J(t =) EI|IX(s) = Xn(s)l[1; ds

N

< e, GT,e(T), ey(T), Covy) <OfE|X(S) N ()T ds ) ;
which tends to 0 for N — oo by (8.55).

Analogously, by the Lévy-It6 decomposition 2.4.13, the It isometries w.r.t.
Wiener processes and compensated poisson random measures, (A2) for U,
(QI) for n, (LC) for ~, Holder’s inequality and the fact that

v> e = H <,

1

~ t ]

190) < e, ¢, T, e(T), co (T'), o) (f BIIX(5) - Xn(s) 1%, ds) ,
0

which tends to 0 for N — oo by (8.55).

Thus, X solves (1.1) resp. (1.2) in the sense of 5.1.2 (ii).

Again, the requested continuity properties follow from Section 5.1. In partic-
ular, the continuity property for the Bochner stochastic convolution follows
from Remark 5.1.11 (ii).

Analogously to the proof of the estimates (7.8) and (7.9) in the proof of 7.1.2,
we get the estimates (8.5) and (8.6) with the help of the N-independent es-
timates for X. W
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Appendix A

Sobolev spaces on general
domains © ¢ R? and a
version of Sobolev’s
embedding theorem

In this section, we recall the definition of Sobolev spaces WP (©) for inte-
ger m > 1 and real p > 1, on domains © C R? for arbitrary d € N. As usual
under the term domain we understand non-empty, open subsets of R
Thereafter, we discuss a version of Sobolev’s embedding theorem presented
in the paper [2] and the monograph [1] by Adams and Fournier. This version
of Sobolev’s embedding theorem holds for a large class of domains obeying
the so-called weak cone property (see Definition A.1 below for the explana-
tion of this property).

The general theory was first introduced by Sobolev in [104] and later refined
e.g. by Gagliardo in [43] and Morrey in [86]. For a more recent overview on
Sobolev’s embedding theorem, see Chapter 4 in the book [1] by Adams and
Fournier.

Let us first recall the following regularity condition for the domain © c R?
(cf. Section 1 of [2]), which is supposed to hold in the main result in [2].

Definition A.1: Given § € © C R%, denote by R(6) the set of all points
& € O such that the line segment joining 0 to & lies entirely in ©. Setting

['0) :={ € R(O) : |- (] <1},

we say that © fulfills the weak cone property if there exists a constant
§ > 0 such that the Lebesgue measure in R% of T'(0) is at least & for all § € ©.

337
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Remark A.2: (i) Obviously, the weak cone property is fulfilled for any
open ball of finite radius in R. In particular, R? itself fulfills the weak cone

property.

(ii) Let us compare the above property with similar ones that are most often
considered in the literature(see e.g. 4.3—4.7 in Chapter IV in [1] or [43] and
[86]). Recall the following three classes of domains:

1. © C R? has the uniform cone property if there exists a locally finite
open cover (Up)nen of the boundary 0O and a corresponding sequence
(Cn)nen of finite cones, each congruent to some fized finite cone C,
such that

(a) For some finite M, every U, has diameter less than M.
(b) For some 0 >0, O5 := {x € ©|d(x,00) <} C U Uy.

(c) For every n € N, Upconu, (0 +Uy,) =: Qn, C O

(d) For some finite R, every collection of R+ 1 of the sets Q,, from
(¢) has empty intersection.

The subset C C R? is called a finite cone if there exist x € R% and
open balls B1, By such that x is the center of By, x is not contained
in By and C = By N{x+ Ay —z)|y € Ba, A > 0}.

2. © C R? has a strong local Lipschitz boundary if there exist posi-
tive numbers § and M, a locally finite open cover (Uy)nen of 00, and
for each U, a real-valued function f, of d—1 real variables, such that
the following conditions hold:

(a) For some finite R, the collection of R+1 of the sets U,, has empty
intersection.

(b) For every pair of points 0, § € ©s (with ©s as in (b) in 1.) such
that |6 — &| < 0, there exists an n such that

0,6 €V, :={xeU,|d,00) > }.

(c) Each function f, satisfies the Lipschitz condition with the same
constant M.
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(d) For some cartesian system (&n1, ..., En N) in Uy, the set © MU, is
represented by the inequality &, N < fn(§n1s -, &nN—1)-

3. A bounded domain © has the class C*-regularity property if there
exists a locally finite open cover (Uy) of 00 and a corresponding se-
quence (®y,) of k-smooth one-to-one transformations (see Section 3.34
in [1] for the definition of this term) taking U, onto By, the open ball
of radius 1 with center 0 € R%, such that

(a) For some 6 >0 and ©g as defined in 1. we have
Os5 C U Un({€ € RYJJE] < 3},

where W, == &1,

(b) For some finite R, every collection of R+ 1 of the sets U, has
empty intersection.

(¢) For eachn € N, ®,(U,NO) ={£ € By |& > 0}.

(d) If (Pra,...;PnN) and (¥y1,..., Uy n) denote the components of
®,, and V,, respectively, then there exists a finite M such that for
all a, || < m, for every 1 <i < N and for evry n, we have

|D*®,, ;(0)] < M, 6 € Uy,

|Da\1jn,1(£)‘ < M, § € Bj.

Between these three classes we have the relation 3. = 2. = 1., and the two-
dimensional domain

0:={(z,y) eR*|0<|z|]<1,0<y<1}
is an example of a domain obeying 1. but not 2. and 3..
(iit) Obviously, the cone condition from item 1. in (ii) implies the weak
cone property. Furthermore, there are many domains satisfying the latter

property but not the former (see e.g. Section 1 in [2]).

Next, we repeat the general definition of Sobolev spaces (cf. Section 2 of [2]).
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Definition A.3: Let © C R? be a domain in R%. For integer m > 1
and real p > 1, the Sobolev space W™P(0) consists of (equivalence classes
of) functions u € LP(O©), whose distributional derivatives D®u of orders
|a| < m also belong to LP(©), where the D*u are distributional in the fol-
lowing sense (cf. the section on distribution and weak derivatives in Chapter
1 in [1], p.19-22 there):

Given a = (ay,0,...,aq) € N% such that Zle a; = |a|, a function
Vo € L}, .(©) is called weak or distributional derivative of u if

Ju(0)D¢(0) db = (—1)'a‘gva(9)¢(9) df

S}

for every ¢ € D(©), where D(©) denotes the space of distributions on 0.
W™P(©) is a Banach space with norm

1
P
(A1) lullwmse) = ( > uDauui,,(@)) .

la<m

In the Sobolev embedding theorem, we also need the following definition
of the spaces of smooth bounded functions (cf. Section 2 in [2]):

Definition A.4: For integer j > 0 we denote by C’Z(@) the Banach
space of functions u posessing bounded, continuous partial derivatives Du
on © for 0 < |a| < j. The norm on C}(©) is

o) = D u(y)|.
lullcs o) fﬁgztelg! u(y)]

In particular, for j = 0 we have C,(0) := C)(©) with

l[ullc, @) = sup [u(y)].
NS

Remark A.5: (i) It is well-known (see e.g. [84] and p.52 in [1]) that
the intersection C™P(Q) := W™P(©) N C> is dense in W™P(0).

This means that we can define WP (0©) as the completion of C™P(0) w.r.t.
the norm (A.1).

(ii) Given any Banach space X of functions on ©, we write Wm’p(@)gX
for the embedding of W™P(0) into X. This embedding is equivalent to the

existence of a finite constant C such that, for every u € C"™P(0), we have

ul