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Gedruckt auf alterungsbeständigem Papier nach DIN–ISO 9706



Abstract

In this thesis we are concerned with the following two problems.

1. The stochastic reflection problem on an infinite dimensional convex set and

BV functions in a Gelfand triple.

We introduce a definition of BV functions in a Gelfand triple which is an exten-

sion of the definition of BV functions in [ADP10] by using Dirichlet form theory with

an underlying Gaussian measure as reference measure. By this definition, we can

consider the stochastic reflection problem associated with a self-adjoint operator 𝐴

and a cylindrical Wiener process on a convex set Γ in a Hilbert space 𝐻. We prove

the existence and uniqueness of a strong solution of this problem when Γ is a regular

convex set. The result is also extended to the non-symmetric case. Finally, we extend

our results to the case when Γ = 𝐾𝛼, where 𝐾𝛼 = {𝑓 ∈ 𝐿2(0, 1)∣𝑓 ≥ −𝛼}, 𝛼 ≥ 0.

We then generalize the above to the case where the Gaussian measure is replaced

by a differentiable measure. Again we work in a Gelfand triple and use Dirichlet

form theory. By this definition, we can consider the stochastic reflected quantization

problem associated with a self-adjoint operator 𝐴 and a cylindrical Wiener process

on a convex set Γ in a Banach space 𝐸. We prove the existence of a martingale

solution of this problem when Γ is a regular convex set.

2. The stochastic quasi-geostrophic equation.

We study the 2d stochastic quasi-geostrophic equation in 𝕋2 for general parame-

ter 𝛼 ∈ (0, 1) and multiplicative noise. We prove the existence of weak solutions with

regular additive noise and the existence of martingale solutions with multiplicative

noise and pathwise uniqueness under some condition in the general case, i.e. for

all 𝛼 ∈ (0, 1) . In the subcritical case 𝛼 > 1/2, we prove existence and uniqueness

of (probabilistically) strong solutions and construct a Markov family of solutions.

The large deviations principle in the subcritical case with multiplicative noise is also

obtained.
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Chapter 0

Introduction

This thesis is devoted to stochastic differential equations in infinite dimensions. The

Itô stochastic differential equations were introduced by Itô in the 1940s. Later the

theory of stochastic differential equations became one of the most fruitful areas in

the theory of stochastic processes. Since 1960s, motivated by a need to describe ran-

dom phenomena from physics, chemistry, biology and so on, the theory of stochastic

partial differential equations (SPDE) has made much progress. Stochastic partial

differential equations can describe processes taking values in function spaces with

random influence. Basic theoretical questions on existence and uniqueness of solu-

tions have been considered under different conditions (cf. [DZ92], [PR97]). In this

thesis, we will consider the existence and uniqueness of two problems: reflection

problem and the stochastic quasi-geostrophic equation.

0.1 Reflection problem

In the first part of the thesis, we consider the following stochastic differential inclu-

sion in the Hilbert space 𝐻:{
𝑑𝑋(𝑡) + (𝐴𝑋(𝑡) +𝑁Γ(𝑋(𝑡)))𝑑𝑡 ∋ 𝑑𝑊 (𝑡),

𝑋(0) = 𝑥 ∈ Γ,
(1.1)

if Γ is regular. Here 𝐴 : 𝐷(𝐴) ⊂ 𝐻 → 𝐻 is a self-adjoint strictly positive definite

operator. 𝑁Γ(𝑥) is the normal cone to Γ at 𝑥 and𝑊 (𝑡) is a cylindrical Wiener process

in 𝐻. The precise meaning of the above inclusion will be defined in Section 2.4.2.

The solution to (1.1) is called reflected Ornslein-Uhlenbek (OU for short)-process.

(1.1) was first studied (strongly solved) in [NP92], when 𝐻 = 𝐿2(0, 1), 𝐴 is

the Laplace operator with Dirichlet or Neumann boundary conditions and Γ is the
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convex set of all nonnegative functions of 𝐿2(0, 1); see also [Za02]. In [BDL09] the

authors study the situation when Γ is a regular convex set with nonempty interior.

They get precise information about the corresponding Kolmogorov operator, but

did not construct a strong solution to (1.1). It seems difficult to solve this problem

by using general methods in SPDE theory.

In order to solve this problem, we introduce BV functions in a Gelfand triple,

which is an extension of BV functions in a Hilbert space defined in [ADP10]. Let

us recall that a function 𝑢 is called a BV functions in ℝ𝑛 if and only if one of the

following is satisfied:

i). there exist real finite measures 𝜇𝑗, 𝑗 = 1, ..., 𝑛 on ℝ𝑛 such that:∫
ℝ𝑛
𝑢𝐷𝑗𝜙𝑑𝑥 = −

∫
ℝ𝑛
𝜙𝑑𝜇𝑗,∀𝜙 ∈ 𝐶𝑐(ℝ𝑛),

ii).

𝑉 (𝑢) := sup{
∫
ℝ𝑛
𝑢𝑑𝑖𝑣𝜙𝑑𝑥 : 𝜙 ∈ [𝐶𝑐(ℝ𝑛)]𝑛, ∥𝜙∥∞ ≤ 1} <∞.

The equivalence of these two conditions can be proved by using Riesz representation

theorem. But in infinite dimensions, since lack of local compactness, we cannot prove

this equivalence directly. Fortunately, M. Fukushima proved a version of the Riesz-

Markov representation theorem in infinite dimensions by using the quasi-regularity

of the Dirichlet form (see [MR92]). Then M. Fukushima in [Fu00] gave a definition

of BV functions in abstract Wiener spaces based upon Dirichlet form theory, and

later extended by M. Fukushima and M. Hino in [FH01]. Here we introduce BV

functions in a Gelfand triple, which can be used to solve the stochastic reflection

problem.

Consider the Dirichlet form

ℰ𝜌(𝑢, 𝑣) = 1

2

∫
𝐻

⟨𝐷𝑢,𝐷𝑣⟩𝜌(𝑧)𝜇(𝑑𝑧)

(where 𝜇 is a Gaussian measure in 𝐻 and 𝜌 is a BV function) and its associated

process. By using BV functions, we obtain a Skorohod-type representation for the

associated process, if 𝜌 = 𝐼Γ and Γ is a convex set.

In (1.1), we consider a convex set Γ. If Γ is a regular convex set, we show that

𝐼Γ is a BV-function and thus obtain existence and uniqueness results for (1.1). By

a modification of [Fu00] and using [BDL10], we obtain the existence of an (in the

probabilistic sense) weak solution to (1.1). Then, we prove pathwise uniqueness.

Thus, by a version of the Yamada-Watanabe Theorem (see [Ku07]), we deduce that

(1.1) has a unique strong solution. We also consider the case when Γ = 𝐾𝛼, where
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𝐾𝛼 = {𝑓 ∈ 𝐿2(0, 1)∣𝑓 ≥ −𝛼}, 𝛼 ≥ 0, and prove our result about Skorohod-type

representation and that 𝐼𝐾𝛼 is a BV function in a Gelfand triple, if 𝛼 > 0.

The solution of the reflection problem is based on an integration by parts formula.

The connection to BV functions is given in Theorem 2.2.1 below , which is a key

result of this thesis. It asserts that the integration by parts formula for 𝜌 ⋅ 𝜇 gives

a characterization of BV functions 𝜌, in the case where 𝜇 is a Gaussian measure.

This is an extension of the characterization of BV functions in finite dimension. But

an integration by parts fomula is in fact enough for the reflection problem. This

we show in Section 2.5, exploiting the beautiful integration by parts formula for

𝐾𝛼, 𝛼 ≥ 0, proved in [Za02], which in case 𝛼 = 0, i.e, 𝐾0 = {𝑓 ∈ 𝐿2(0, 1) : 𝑓 ≥ 0},
is with respect to a non-Gaussian measure, namely a Bessel bridge. Theorem 2.2.1

applies to prove that 𝐼𝐾𝛼 is a BV function, but only if 𝛼 > 0.

Then we analogously define BV functions replacing the Gaussian measure with

a differentiable measure in a Gelfand triple. Differentiable measures form a general

class which contains more examples besides Gaussian measures (see [Bo10]). The

definition of differentiable measure, namely to have integration by parts in suffi-

ciently many directions, is essential for the definition of BV functions. We consider

the Dirichlet form

ℰ𝜌(𝑢, 𝑣) = 1

2

∞∑
𝑘=1

∫
𝐸

∂𝑢

∂𝑒𝑘

∂𝑣

∂𝑒𝑘
𝜌𝑑𝜇,

(where 𝐸 is a Banach space with a Hilbert space 𝐻 ⊂ 𝐸 continuously and densely,

𝑒𝑗 is an orthonormal basis in 𝐻, 𝜇 is a differentiable measure in 𝐸 and 𝜌 is a BV

function) and its associated process. Using BV functions, we obtain a Skorohod-type

representation for the associated process, if 𝜌 = 𝐼Γ and Γ is a convex set.

As a consequence of these results, we can consider the following stochastic dif-

ferential inclusion in the Banach space 𝐸:{
𝑑𝑋(𝑡) + (𝐴𝑋(𝑡)+ : 𝑝(𝑋) : +𝑁Γ(𝑋(𝑡)))𝑑𝑡 ∋ 𝑑𝑊 (𝑡),

𝑋(0) = 𝑥,
(1.2)

if Γ is regular. Here 𝐴 : 𝐷(𝐴) ⊂ 𝐻 → 𝐻 is a self-adjoint operator. 𝑁Γ(𝑥) is the

normal cone to Γ at 𝑥 and 𝑊 (𝑡) is a cylindrical Wiener process in 𝐻. The solution

to (1.2) is called reflected stochastic quantization process. We would like to stress

that our results apply to models from 2D-quantum field theory (”𝑃 (𝜙)2-models”)

both in finite and infinite volume. The latter is much more difficult than the first.

The stochastic quantization problem with space dimension 2(without reflection

term) was studied in [AR89] (”infinite and finite volume”), [AR91](”infinite and

finite volume”), [RZ92](”finite volume”), [LR98](”finite volume”) by using Dirichlet
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form theory. And Da Prato and Debussche in [DD03] proved the existence and

uniqueness of a strong solution of this problem, but only in the finite volume case.

By using BV functions, we obtain martingale solutions to the reflected stochastic

quantization problem in finite and infinite volume.

0.2 Stochastic quasi-geostrophic equation

In the second part of this thesis, we are concerned with the following two dimensional

(2D) stochastic quasi-geostrophic equation in the periodic domain 𝕋2 = ℝ2/(2𝜋ℤ)2:

∂𝜃(𝑡, 𝜉)

∂𝑡
= −𝑢(𝑡, 𝜉) ⋅ ∇𝜃(𝑡, 𝜉)− 𝜅(−△)𝛼𝜃(𝑡, 𝜉) + (𝐺(𝜃)𝜂)(𝑡, 𝜉), (1.3)

with initial condition

𝜃(0, 𝜉) = 𝜃0(𝜉),

where 𝜃(𝑡, 𝜉) is a real-valued function of 𝜉 ∈ 𝕋2 and 𝑡 ≥ 0, 0 < 𝛼 < 1, 𝜅 > 0 are

real numbers. 𝑢 is determined by 𝜃 through a stream function 𝜓 via the following

relations:

𝑢 = (𝑢1, 𝑢2) = (−𝑅2𝜃, 𝑅1𝜃) = 𝑅⊥𝜃. (1.4)

Here 𝑅𝑗 is the 𝑗-th periodic Riesz transform and 𝜂(𝑡, 𝜉) is a Gaussian random

field, white noise in time, subject to the restrictions imposed below. The case 𝛼 = 1
2

is called the critical case, the case 𝛼 > 1
2
sub-critical and the case 𝛼 < 1

2
super-

critical.

This equation is an important model in geophysical fluid dynamics. The case

𝛼 = 1/2 exhibits similar features (singularities) as the 3D Navier-Stokes equations

and can therefore serve as a model case for the latter. In the deterministic case this

equation has been intensively investigated because of both its mathematical impor-

tance and its background in geophysical fluid dynamics (see for instance [CV06],

[Re95], [CW99], [Ju03], [Ju04], [KNV07] and the references therein). In the deter-

ministic case, the global existence of weak solutions has been obtained in [Re95] and

one most remarkable result in [CV06] gives the existence of a classical solution for

𝛼 = 1/2. In [KNV07] another very important result is proved, namely that solutions

for 𝛼 = 1/2 with periodic 𝐶∞ data remain 𝐶∞ for all times.

0.2.1 Existence and uniqueness of the solution

In this thesis we study the 2D stochastic quasi-geostrophic equation on 𝕋2 for general

parameter 𝛼 ∈ (0, 1) and for both additive as well as multiplicative noise.
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For 𝛼 ∈ (0, 1): We prove the existence of weak solutions in the sense of Definition

4.2.1 (ii) with additive noise (Theorem 4.2.4). We also prove the existence of mar-

tingale solutions for multiplicative noise under two different assumptions on 𝐺 (see

(G.1) and (G.2) in Section 4): under (G.1) we use Galerkin approximations and the

compactness method in [FG95] (Theorem 4.3.2) and under (G.2) we use Aldous’s cri-

terion (Theorem 4.3.5). In order to prove the existence of (probabilistically strong)

solutions in subsequent sections, we need 𝐿𝑝 norm estimates for solutions, which are

obtained by using the 𝐿𝑝-Itô formula proved in [Kr10]. But these 𝐿𝑝-norm estimates

we cannot prove by Galerkin approximation, instead we use another approximation

(Theorem 4.3.3). Pathwise uniqueness is obtained under some extra condition on

the solution (Theorem 4.4.6). But, in general, we cannot prove a solution satisfies

this condition, except for very special cases (see Remark 4.4.7).

For 𝛼 > 1/2: We obtain pathwise uniqueness (Theorem 4.4.1) and therefore

get a (probabilistically strong) solution (Theorem 4.4.4) by the Yamada-Watanabe

Theorem. In particular, it follows that the laws of the solutions form a Markov

process.

For 𝛼 = 1/2: Using a result from the deterministic case in [KN09] and [CV06], we

also prove that there exists a unique solution of the 2D stochastic quasi-geostrophic

equation in the critical case driven by real linear multiplicative noise (Remark 4.4.7).

0.2.2 Large deviation principle

The large deviation theory concerns the asymptotic behavior of a family of random

variables {𝜃𝜀}. It asserts that for some tail event 𝐴, 𝑃 (𝜃𝜀 ∈ 𝐴) converges to zero

exponentially fast as 𝜀 → 0. It also gives the exact rate of convergence (rate func-

tion)(cf. [DZ92, Chapter 12]). The large deviation principle was first established

by Varadhan in [Va66]. Varadhan also studied the small time asymptotic of finite

dimensional diffusion processes in [Va67]. Since then, important results about the

large deviation principle have been established. For results on the large deviation

principle for the stochastic differential equations in finite dimensional case we refer

to [FW84]. For extensions to infinite dimensional diffusions or SPDE, we refer the

reader to [DZ92, Li09, XZ09] and the references therein.

Here we will study the large deviation principle for the stochastic quasi-geostrophic

equation for small multiplicative noise (Section 4.5) and the small time large devi-

ations for this equation (Section 4.6) in the subcritical case. The large deviation

principle for small multiplicative noise (Theorem 4.5.9) asserts that the probabil-

ity of the deviation of the solution of stochastic quasi-geostrophic equation from

the solution of the deterministic quasi-geostrophic equation converges exponentially
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fast. We use stochastic control and the weak convergence approach from [BD00].

The main difficulty lies in dealing with the nonlinear term since the solution to the

stochastic quasi-geostrophic equation is not as regular as in the 2D Navier-Stokes

case. To estimate the nonlinear term, we use Galerkin approximations and using the

method in [GK96] we prove that these approximations converge in probability to

the solution. The small time large deviation principle (Theorem 4.6.2) describes the

behavior of 𝜃 when the time is very small. We will use the approach from [XZ09].

However, since the solution is not as regular as in for 2D Navier-Stokes equation,

we cannot deal with the nonlinear term as in the 2D Navier-Stokes case. Instead,

we establish the small time large deviation principle on a larger space.



Chapter 1

Preliminaries

In this chapter, we collect some definitions and results of stochastic analysis as

preliminaries for the following chapters. All the content in chapter was included in

[MR92]. We omit the proofs of the theorem and refer the readers to [MR92] for

more details. In the first part, we recall the definition of quasi regular Dirichlet

form and the important result of quasi regular Dirichlet form corresponding to a

strong Markov process. In the second part, we recall some definitions and result in

stochastic calculus associated with Dirichlet form.

1.1 Some basic concepts for Dirichlet forms

Let us recall the definition of Dirichlet form from [MR92]. Let 𝐸 be a Hausdorff

topological space and assume that its Borel 𝜎-algebra ℬ(𝐸) is generated by the set

𝐶(𝐸) of all continuous functions on 𝐸. Let 𝑚 be a 𝜎-finite measure on (𝐸,ℬ(𝐸))
such that ℋ := 𝐿2(𝐸,𝑚) is a separable (real) Hilbert space. Let (ℰ , 𝐷(ℰ)) be a

coercive closed form on ℋ, i.e. 𝐷(ℰ) is a dense linear subspace of ℋ, and ℰ :

𝐷(ℰ)×𝐷(ℰ) → ℝ is a positive definite bilinear map, 𝐷(ℰ) is a Hilbert space with

inner product ℰ̃1(𝑢, 𝑣) := 1
2
(ℰ(𝑢, 𝑣) + ℰ(𝑣, 𝑢)) + (𝑢, 𝑣)ℋ, and ℰ satisfies the weak

sector condition

∣ℰ1(𝑢, 𝑣)∣ ≤ 𝐾ℰ1(𝑢, 𝑢)1/2ℰ1(𝑣, 𝑣)1/2,
𝑢, 𝑣 ∈ 𝐷(ℰ), with sector constant 𝐾. We will always denote the corresponding norm

by ∥ ⋅ ∥ℰ̃1 . Identifying ℋ with its dual ℋ′ we obtain that ℰ → ℋ ∼= ℋ′ → ℰ ′ densely
and continuously.

Definition 1.1 A coercive closed form (ℰ , 𝐷(ℰ)) on 𝐿2(𝐸,𝑚) is called a Dirichlet
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form, if for all 𝑢 ∈ 𝐷(ℰ), one has that

𝑢+ ∧ 1 ∈ 𝐷(ℰ), ℰ(𝑢+ 𝑢+ ∧ 1, 𝑢− 𝑢+ ∧ 1) ≥ 0 and ℰ(𝑢− 𝑢+ ∧ 1, 𝑢+ 𝑢+ ∧ 1) ≥ 0

In infinite dimensional spaces, to construct a strong Markov process is sometimes

difficult. However, the theory of quasi-regular Dirichlet form, which was introduced

by Z. Ma and M. Rockner, provides an useful method to construct a strong Markov

process in infinite dimensional spaces. This is an important development in the

theory of Dirichlet form and will be used in the chapter 2 and chapter 3. Let’s recall

the definition of the quasi-regular Dirichlet form here. For this reason we introduce

some useful notations.

Definition 1.2 (i) An increasing sequence (𝐹𝑘)𝑘≥1 of closed subset of 𝐸 is called

an ℰ-nest, if ∪𝐷(ℰ)𝐹𝑘 is dense in 𝐷(ℰ) (w.r.t. ∥ ⋅ ∥ℰ̃1).
(ii) A subset 𝑁 ⊂ 𝐸 is called ℰ-exceptional if there is an ℰ-nest (𝐹𝑘)𝑘≥1 such

that 𝑁 ⊂ ∩𝑘≥1𝐸∖𝐹𝑘.
(iii) A property of points in 𝐸 holds ℰ-quasi-everywhere(ℰ − 𝑞.𝑒.) if the property

holds outside some ℰ-exceptional set.
(iv) A function 𝑓 defined up to some ℰ-exceptional set 𝑁 ⊂ 𝐸 is called ℰ-quasi-

continuous (ℰ-q.c.) if there exists an ℰ-nest (𝐹𝑘)𝑘≥1, such that ∪𝑘≥1𝐹𝑘 ⊂ 𝐸∖𝑁 and

𝑓 ∣𝐹𝑘 is continuous for all 𝑘.

Definition 1.3 The Dirichlet form (ℰ , 𝐷(ℰ)) is called quasi-regular if:

(i) There exists an ℰ-nest consisting of compact sets.

(ii) There exists a dense subset of 𝐷(ℰ) (w.r.t. ∥ ⋅ ∥ℰ̃1) whose elements have

ℰ-quasi-continuous m-versions.

(iii) There exist 𝑢𝑛 ∈ ℱ , 𝑛 ∈ ℕ, having ℰ-quasi-continuous m-versions �̃�𝑛, 𝑛 ∈ ℕ,
and an ℰ-exceptional set 𝑁 ⊂ 𝐸 such that {�̃�𝑛∣𝑛 ∈ ℕ} separates the points of 𝐸∖𝑁 .

Now we can formulate the existence theorem.

Theorem 1.4 Let (ℰ , 𝐷(ℰ)) be a quasi-regular Dirichlet form on 𝐿2(𝐸,𝑚). Then

there exists a pair (𝑀, �̂�) of 𝑚-tight special standard process which is properly

associated with (ℰ , 𝐷(ℰ)).
Moreover, we have the following characterization of diffusion process which will

be used in chapter 2 and chapter 3.

Definition 1.5 The quasi-regular Dirichlet form (ℰ , 𝐷(ℰ)) is said to have the

local property if:

ℰ(𝑢, 𝑣) = 0, for all 𝑢, 𝑣 ∈ 𝐷(ℰ) with 𝑠𝑢𝑝𝑝[𝑢] ∩ 𝑠𝑢𝑝𝑝[𝑣] = ∅.
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Theorem 1.6 A quasi-regular Dirichlet form possesses the local property if and

only if it is associated with a pair of diffusions (ℰ , 𝐷(ℰ)).

1.2 Stochastic calculus associated with Dirichlet

forms

In this section we assume that the Markov process 𝑋 = (Ω,ℱ∞,ℱ𝑡, 𝑋𝑡, 𝑃
𝑥) is prop-

erly associated with the quasi-regular Dirichlet form (ℰ , 𝐷(ℰ)). Now we introduce

some definitions which will be relevant for our further investigations.

Definition 1.7 A family (𝐴𝑡)𝑡≥0 of extended real valued functions on Ω is called

an additive functional (abbreviated AF) of 𝑋 if:

(i) 𝐴𝑡(⋅) is ℱ𝑡-measurable for all 𝑡 ≥ 0.

(ii) There exists a defining set Λ ∈ ℱ∞ and an ℰ-exceptional set𝑁 ⊂ 𝐸, such that

𝑃 𝑧[Λ] = 1 for all 𝑧 ∈ 𝐸∖𝑁, 𝜃𝑡(Λ) ⊂ Λ for all 𝑡 > 0 and for each 𝜔 ∈ Λ, 𝑡 7→ 𝐴𝑡(𝜔) is

right continuous on [0,∞) and has left limits on (0, 𝜁(𝜔)), 𝐴0(𝜔) = 0, ∣𝐴𝑡(𝜔)∣ < ∞
for 𝑡 < 𝜁(𝜔), 𝐴𝑡(𝜔) = 𝐴𝜁(𝜔) for 𝑡 ≥ 𝜁(𝜔) and 𝐴𝑡+𝑠(𝜔) = 𝐴𝑡(𝜔)+𝐴𝑠(𝜃𝑡𝜔) for 𝑠, 𝑡 ≥ 0.

An AF is called a continuous additive functional (abbreviated CAF) if 𝑡→ 𝐴𝑡(𝜔)

is continuous on [0,∞) and a positive continuous additive functional (abbreviated

PCAF) if 𝐴𝑡(𝜔) ≥ 0 for all 𝑡 ≥ 0, 𝜔 ∈ Λ.

Definition 1.8 A positive measure 𝜇 on (𝐸,ℬ(𝐸)) is called smooth (w.r.t. (ℰ , 𝐷(ℰ)))
if 𝜇(𝑁) = 0 whenever 𝑁 ∈ ℬ(𝐸) is ℰ-exceptional and there exists an ℰ-nest (𝐹𝑘)𝑘≥1

of compact subsets of 𝐸 such that

𝜇(𝐹𝑘) <∞ for all 𝑘 ∈ ℕ.

Theorem 1.9 There is a one to one correspondence between smooth measures 𝜇

of (ℰ , 𝐷(ℰ)) and PCAF’s (𝐴𝑡) of 𝑀 which is specified by

lim
𝑡→0

𝐸𝑚[
1

𝑡

∫ 𝑡

0

𝑓(𝑋𝑠)𝑑𝐴𝑠] =

∫
𝑓𝑑𝜇,∀𝑓 ∈ ℬ+(𝐸).

For an additive functional 𝐴 we define its energy

𝑒(𝐴) := lim
𝑡→0

𝐸𝑚[
1

𝑡
𝐴2
𝑡 ],



10 Chapter 1. Prelimelaries

if this limit exists in [0,∞]. Define

ℳ := {𝑀 ∣𝑀 is a finite additive functional, 𝐸𝑧[𝑀2
𝑡 ] <∞, 𝐸𝑧[𝑀𝑡] = 0

for ℰ − 𝑞.𝑒.𝑧 ∈ 𝐸 and all 𝑡 ≥ 0}.

𝑀 ∈ ℳ is called a martingale additive functional(MAF). Furthermore, define

ℳ̇ = {𝑀 ∈ ℳ∣𝑒(𝑀) <∞}.

The elements of ℳ̇ are called martingale additive functional’s (MAF) of finite en-

ergy.

Define

𝒩𝑐 := {𝑁 ∣𝑁 is a finite continuous additive functional, 𝑒(𝑁) = 0, 𝐸𝑧[∣𝑁𝑡∣] <∞
for ℰ − 𝑞.𝑒.𝑧 ∈ 𝐸 and all 𝑡 ≥ 0}.

Now we recall the well-known Fukushima decomposition :

Theorem 1.8 If 𝑢 ∈ 𝐷(ℰ), then there exists a unique 𝑀 [𝑢] ∈ ℳ̇ and a unique

𝑁 [𝑢] ∈ 𝒩𝑐 such that

𝑢(𝑋)− 𝑢(𝑋0) =𝑀 [𝑢] +𝑁 [𝑢].



Chapter 2

Reflection problem and BV

functions in a Gelfand triple

In this chapter, we introduce a definition of BV functions in a Gelfand triple by

using Dirichlet form theory. By this definition, we consider the stochastic reflection

problem associated with a self-adjoint operator 𝐴 and a cylindrical Wiener process

on a convex set Γ in a Hilbert space 𝐻. We prove the existence and uniqueness of

a strong solution of this problem when Γ is a regular convex set. The result is also

extended to the non-symmetric case. Finally, we extend our results to the case when

Γ = 𝐾𝛼, where 𝐾𝛼 = {𝑓 ∈ 𝐿2(0, 1)∣𝑓 ≥ −𝛼}, 𝛼 ≥ 0. The result in this chapter have

been included in [RZZ11].

2.1 The Dirichlet form and the associated dis-

torted OU-process

In this section, we consider a special kind of Dirichlet form and its associated dis-

torted OU-process. Let 𝐻 be a real separable Hilbert space (with scalar product

⟨⋅, ⋅⟩ and norm denoted by ∣ ⋅ ∣). We denote its Borel 𝜎-algebra by ℬ(𝐻). Assume

that:

Hypothesis 2.1.1 𝐴 : 𝐷(𝐴) ⊂ 𝐻 → 𝐻 is a linear self-adjoint operator on H

such that ⟨𝐴𝑥, 𝑥⟩ ≥ 𝛿∣𝑥∣2 ∀𝑥 ∈ 𝐷(𝐴) for some 𝛿 > 0 and 𝐴−1 is of trace class.

Since 𝐴−1 is trace class, there exists an orthonormal basis {𝑒𝑗} in 𝐻 consisting

of eigen-functions for 𝐴 with corresponding eigenvalues 𝛼𝑗 ∈ ℝ, 𝑗 ∈ ℕ, that is,

𝐴𝑒𝑗 = 𝛼𝑗𝑒𝑗, 𝑗 ∈ ℕ.
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Then 𝛼𝑗 ≥ 𝛿 for all 𝑗 ∈ ℕ.
Below 𝐷𝜑 : 𝐻 → 𝐻 denotes the Fréchet-derivative of a function 𝜑 : 𝐻 → ℝ. By

𝐶1
𝑏 (𝐻) we shall denote the set of all bounded differentiable functions with continuous

and bounded derivatives. For 𝐾 ⊂ 𝐻, the space 𝐶1
𝑏 (𝐾) is defined as the space of

restrictions of all functions in 𝐶1
𝑏 (𝐻) to the subset 𝐾. 𝜇 will denote the Gaussian

measure in 𝐻 with mean 0 and covariance operator

𝑄 :=
1

2
𝐴−1.

Since 𝐴 is strictly positive, 𝜇 is nondegenerate and has full topological support.

Let 𝐿𝑝(𝐻,𝜇), 𝑝 ∈ [1,∞], denote the corresponding real 𝐿𝑝-spaces equipped with the

usual norms ∥ ⋅ ∥𝑝. We set

𝜆𝑗 :=
1

2𝛼𝑗
∀𝑗 ∈ ℕ,

so that

𝑄𝑒𝑗 = 𝜆𝑗𝑒𝑗 ∀𝑗 ∈ ℕ.

For 𝜌 ∈ 𝐿1
+(𝐻,𝜇) we consider

ℰ𝜌(𝑢, 𝑣) = 1

2

∫
𝐻

⟨𝐷𝑢,𝐷𝑣⟩𝜌(𝑧)𝜇(𝑑𝑧), 𝑢, 𝑣 ∈ 𝐶1
𝑏 (𝐹 ),

where 𝐹 := 𝑆𝑢𝑝𝑝[𝜌 ⋅𝜇] and 𝐿1
+(𝐻,𝜇) denotes the set of all non-negative elements in

𝐿1(𝐻,𝜇). Let 𝑄𝑅(𝐻) be the set of all functions 𝜌 ∈ 𝐿1
+(𝐻,𝜇) such that (ℰ𝜌, 𝐶1

𝑏 (𝐹 ))

is closable on 𝐿2(𝐹, 𝜌⋅𝜇). Its closure is denoted by (ℰ𝜌,ℱ𝜌). We denote by ℱ𝜌
𝑒 the

extended Dirichlet space of (ℰ𝜌,ℱ𝜌), that is, 𝑢 ∈ ℱ𝜌
𝑒 if and only if ∣𝑢∣ <∞ 𝜌 ⋅𝜇−𝑎.𝑒.

and there exists a sequence {𝑢𝑛} in ℱ𝜌 such that ℰ𝜌(𝑢𝑚 − 𝑢𝑛, 𝑢𝑚 − 𝑢𝑛) → 0 as

𝑛 ≥ 𝑚→ ∞ and 𝑢𝑛 → 𝑢 𝜌 ⋅ 𝜇− 𝑎.𝑒. as 𝑛→ ∞.

Theorem 2.1.2 Let 𝜌 ∈ 𝑄𝑅(𝐻). Then (ℰ𝜌,ℱ𝜌) is a quasi-regular local Dirichlet

form on 𝐿2(𝐹 ; 𝜌 ⋅ 𝜇) in the sense of Definition 1.3.

Proof The assertion follows from the main result in [RS92]. □
By virtue of Theorem 2.1.2 and Theorem 1.4, there exists a diffusion process

𝑀𝜌 = (Ω,ℳ, {ℳ𝑡}, 𝜃𝑡, 𝑋𝑡, 𝑃𝑧) on 𝐹 associated with the Dirichlet form (ℰ𝜌,ℱ𝜌).

𝑀𝜌 will be called distorted OU-process on 𝐹 . Since constant functions are in ℱ𝜌

and ℰ𝜌(1, 1) = 0, 𝑀𝜌 is recurrent and conservative. We denote by A𝜌
+ the set of all

positive continuous additive functionals (PCAF in abbreviation) of 𝑀𝜌, and define

A𝜌 := A𝜌
+ − A𝜌

+. For 𝐴 ∈ A𝜌, its total variation process is denoted by {𝐴}. We

also define A𝜌
0 := {𝐴 ∈ A𝜌∣𝐸𝜌⋅𝜇({𝐴}𝑡) < ∞∀𝑡 > 0}. Each element in A𝜌

+ has a

corresponding positive ℰ𝜌-smooth measure on 𝐹 by the Revuz correspondence. The

set of all such measures will be denoted by 𝑆𝜌+. Accordingly, 𝐴𝑡 ∈ A𝜌 corresponds
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to a 𝜈 ∈ 𝑆𝜌 := 𝑆𝜌+ − 𝑆𝜌+, the set of all ℰ𝜌-smooth signed measure in the sense

that 𝐴𝑡 = 𝐴1
𝑡 − 𝐴2

𝑡 for 𝐴𝑘𝑡 ∈ A𝜌
+, 𝑘 = 1, 2 whose Revuz measures are 𝜈𝑘, 𝑘 = 1, 2

and 𝜈 = 𝜈1 − 𝜈2 is the Hahn-Jordan decomposition of 𝜈 . The element of A𝜌

corresponding to 𝜈 ∈ 𝑆𝜌 will be denoted by𝐴𝜈 .

Note that for each 𝑙 ∈ 𝐻 the function 𝑢(𝑧) = ⟨𝑙, 𝑧⟩ belongs to the extended

Dirichlet space ℱ𝜌
𝑒 and

ℰ𝜌(𝑙(⋅), 𝑣) = 1

2

∫
⟨𝑙, 𝐷𝑣(𝑧)⟩𝜌(𝑧)𝑑𝜇(𝑧) ∀𝑣 ∈ 𝐶1

𝑏 (𝐹 ). (2.1.1)

On the other hand, the AF ⟨𝑙, 𝑋𝑡 − 𝑋0⟩ of 𝑀𝜌 admits a unique decomposition

into a sum of a martingale AF (𝑀𝑡) of finite energy and CAF (𝑁𝑡) of zero energy

(Fukushima decomposition). More precisely, for every 𝑙 ∈ 𝐻,

⟨𝑙, 𝑋𝑡 −𝑋0⟩ =𝑀 𝑙
𝑡 +𝑁 𝑙

𝑡 ∀𝑡 ≥ 0 𝑃𝑧 − 𝑎.𝑠. (2.1.2)

for ℰ𝜌-q.e. 𝑧 ∈ 𝐹 .

Now for 𝜌 ∈ 𝐿1(𝐻,𝜇) and 𝑙 ∈ 𝐻, we say that 𝜌 ∈ 𝐵𝑉𝑙(𝐻) if there exists a

constant 𝐶𝑙 > 0,

∣
∫
⟨𝑙, 𝐷𝑣(𝑧)⟩𝜌(𝑧)𝑑𝜇(𝑧)∣ ≤ 𝐶𝑙 ∥ 𝑣 ∥∞ ∀𝑣 ∈ 𝐶1

𝑏 (𝐹 ). (2.1.3)

By the same argument as in [FH01, Theorem 2.1], we obtain the following:

Theorem 2.1.3 Let 𝜌 ∈ 𝐿1
+ and 𝑙 ∈ 𝐻.

(1) The following two conditions are equivalent:

(i)𝜌 ∈ 𝐵𝑉𝑙(𝐻)

(ii) There exists a (unique) signed measure 𝜈𝑙 on 𝐹 of finite total variation such

that
1

2

∫
⟨𝑙, 𝐷𝑣(𝑧)⟩𝜌(𝑧)𝑑𝜇(𝑧) = −

∫
𝐹

𝑣(𝑧)𝜈𝑙(𝑑𝑧) ∀𝑣 ∈ 𝐶1
𝑏 (𝐹 ). (2.1.4)

In this case, 𝜈𝑙 necessarily belongs to 𝑆𝜌+1.

Suppose further that 𝜌 ∈ 𝑄𝑅(𝐻). Then the following condition is also equivalent

to the above:

(iii)𝑁 𝑙 ∈ A𝜌
0

In this case, 𝜈𝑙 ∈ 𝑆𝜌, and 𝑁 𝑙 = 𝐴𝜈𝑙

(2) 𝑀 𝑙 is a martingale AF with quadratic variation process

⟨𝑀 𝑙⟩𝑡 = 𝑡∣𝑙∣2, 𝑡 ≥ 0. (2.1.5)
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Remark 2.1.4 Recall that the Riesz representation theorem of positive linear

functionals on continuous functions by measures is not applicable to obtain Theorem

2.1.3, (𝑖) ⇒ (𝑖𝑖), because of the lack of local compactness. However, the quasi-

regularity of the Dirichlet form provides a means to circumvent this difficulty.

In the rest of this section, we shall introduce a special class of 𝜌 ∈ 𝑄𝑅(𝐻), which

will be used in Section 2.3 below.

A non-negative measurable function ℎ(𝑠) on ℝ1 is said to possess the Hamza

property if ℎ(𝑠) = 0 𝑑𝑠− 𝑎.𝑒. on the closed set ℝ1 ∖𝑅(ℎ) where

𝑅(ℎ) = {𝑠 ∈ ℝ1 :

∫ 𝑠+𝜀

𝑠−𝜀

1

ℎ(𝑟)
𝑑𝑟 <∞ for some 𝜀 > 0}.

We say that a function 𝜌 ∈ 𝐿1
+(𝐻,𝜇) satisfies the ray Hamza condition in direction

𝑙 ∈ 𝐻 (𝜌 ∈ H𝑙 in notation) if there exists a non-negative function �̃�𝑙 such that

�̃�𝑙 = 𝜌 𝜇− 𝑎.𝑒. and �̃�𝑙(𝑧 + 𝑠𝑙) has the Hamza property in 𝑠 ∈ ℝ1 for each 𝑧 ∈ 𝐻.

We set H := ∩𝑘H𝑒𝑘 , where 𝑒𝑘 is as in Hypothesis 2.1.1. A function in the family

H is simply said to satisfy the ray Hamza condition. By [AR90] H ⊂ 𝑄𝑅(𝐻), and

thus we always have 𝜌+ 1 ∈ 𝑄𝑅(𝐻), since clearly 𝜌+ 1 ∈ H.

Next we will present some explicit description of the Dirichlet form (ℰ𝜌,ℱ𝜌) for

𝜌 ∈ H. For 𝑒𝑗 ∈ 𝐻 as in Hypothesis 2.1.1, we set 𝐻𝑒𝑗 = {𝑠𝑒𝑗 : 𝑠 ∈ ℝ1}. We then

have the direct sum decomposition 𝐻 = 𝐻𝑒𝑗 ⊕ 𝐸𝑒𝑗 given by

𝑧 = 𝑠𝑒𝑗 + 𝑥, 𝑠 = ⟨𝑒𝑗, 𝑧⟩ .

Let 𝜋𝑗 be the projection onto the space 𝐸𝑒𝑗 and 𝜇𝑒𝑗 be the image measure of 𝜇 under

𝜋𝑗 : 𝐻 → 𝐸𝑒𝑗 i.e 𝜇𝑒𝑗 = 𝜇 ∘ 𝜋−1
𝑗 . Then we see that for any 𝐹 ∈ 𝐿1(𝐻,𝜇)∫

𝐻

𝐹 (𝑧)𝜇(𝑑𝑧) =

∫
𝐸𝑒𝑗

∫
ℝ1

𝐹 (𝑠𝑒𝑗 + 𝑥)𝑝𝑗(𝑠)𝑑𝑠𝜇𝑒𝑗(𝑑𝑥), (2.1.6)

where 𝑝𝑗(𝑠) = (1/
√
2𝜋𝜆𝑗)𝑒

−𝑠2/2𝜆𝑗 . Thus by [AR90, Theorem3.10] for all 𝑢, 𝑣 ∈
𝐷(ℰ𝜌),

ℰ𝜌(𝑢, 𝑣) =
∞∑
𝑗=1

ℰ𝜌,𝑒𝑗(𝑢, 𝑣), (2.1.7)
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where

ℰ𝜌,𝑒𝑗(𝑢, 𝑣) = 1

2

∫
𝐸𝑒𝑗

∫
𝑅(𝜌(⋅𝑒𝑗+𝑥))

𝑑�̃�𝑗(𝑠𝑒𝑗 + 𝑥)

𝑑𝑠
× 𝑑𝑣𝑗(𝑠𝑒𝑗 + 𝑥)

𝑑𝑠
𝜌(𝑠𝑒𝑗 + 𝑥)𝑝𝑗(𝑠)𝑑𝑠𝜇𝑒𝑗(𝑑𝑥),

(2.1.8)

and 𝑢, �̃�𝑗 satisfy �̃�𝑗 = 𝑢 𝜌𝜇 − 𝑎.𝑒 and �̃�𝑗(𝑠𝑒𝑗 + 𝑥) is absolutely continuous in 𝑠 on

𝑅(𝜌(⋅ 𝑒𝑗 + 𝑥)) for each 𝑥 ∈ 𝐸𝑒𝑗 . 𝑣 and 𝑣𝑗 are related in the same way.

2.2 BV functions in a Gelfand triple and distorted

OU-processes in 𝐹

We introduce BV functions in a Gelfand triple in this section, by which we can get

the Skorohod type representation for the OU- process.

As in [FH01], we introduce some function spaces on 𝐻. Let

𝐴1/2(𝑥) :=

∫ 𝑥

0

(log(1 + 𝑠))1/2𝑑𝑠, 𝑥 ≥ 0,

and let 𝜓 be its complementary function, namely,

𝜓(𝑦) :=

∫ 𝑦

0

(𝐴′
1/2)

−1(𝑡)𝑑𝑡 =

∫ 𝑦

0

(exp(𝑡2)− 1)𝑑𝑡.

Define

𝐿(log𝐿)1/2(𝐻,𝜇) := {𝑓 : 𝐻 → ℝ∣𝑓 Borel measurable, 𝐴1/2(∣𝑓 ∣) ∈ 𝐿1(𝐻,𝜇)},

𝐿𝜓(𝐻,𝜇) := {𝑔 : 𝐻 → ℝ∣𝑔 Borel measurable, 𝜓(𝑐∣𝑔∣) ∈ 𝐿1(𝐻,𝜇) for some 𝑐 > 0}.
From the general theory of Orlicz spaces (cf. [RR91]), we have the following prop-

erties.

(i) 𝐿(log𝐿)1/2 and 𝐿𝜓 are Banach spaces under the norms

∥𝑓∥𝐿(log𝐿)1/2 = inf{𝛼 > 0∣
∫
𝐻

𝐴1/2(∣𝑓 ∣/𝛼)𝑑𝜇 ≤ 1},

∥𝑔∥𝐿𝜓 = inf{𝛼 > 0∣
∫
𝐻

𝜓(∣𝑔∣/𝛼)𝑑𝜇 ≤ 1}.

(ii) For 𝑓 ∈ 𝐿(log𝐿)1/2 and 𝑔 ∈ 𝐿𝜓, we have

∥𝑓𝑔∥1 ≤ 2∥𝑓∥𝐿(log𝐿)1/2∥𝑔∥𝐿𝜓 . (2.2.1)
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(iii) Since 𝜇 is Gaussian, the function 𝑥 7→ ⟨𝑥, 𝑙⟩ belongs to 𝐿𝜓.
Let 𝑐𝑗, 𝑗 ∈ ℕ, be a sequence in [1,∞). Define

𝐻1 := {𝑥 ∈ 𝐻∣
∞∑
𝑗=1

⟨𝑥, 𝑒𝑗⟩2𝑐2𝑗 <∞},

equipped with the inner product

⟨𝑥, 𝑦⟩𝐻1 :=
∞∑
𝑗=1

𝑐2𝑗⟨𝑥, 𝑒𝑗⟩⟨𝑦, 𝑒𝑗⟩.

Then clearly (𝐻1, ⟨, ⟩𝐻1) is a Hilbert space such that 𝐻1 ⊂ 𝐻 continuously and

densely. Identifying 𝐻 with its dual we obtain the continuous and dense embeddings

𝐻1 ⊂ 𝐻(≡ 𝐻∗) ⊂ 𝐻∗
1 .

It follows that

𝐻1⟨𝑧, 𝑣⟩𝐻∗
1
= ⟨𝑧, 𝑣⟩𝐻∀𝑧 ∈ 𝐻1, 𝑣 ∈ 𝐻,

and that (𝐻1, 𝐻,𝐻
∗
1 ) is a Gelfand triple. Furthermore, { 𝑒𝑗

𝑐𝑗
} and {𝑐𝑗𝑒𝑗} are orthonor-

mal bases of 𝐻1 and 𝐻∗
1 , respectively.

We also introduce a family of 𝐻-valued functions on 𝐻 by

(𝐶1
𝑏 )𝐷(𝐴)∩𝐻1 := {𝐺 : 𝐺(𝑧) =

𝑚∑
𝑗=1

𝑔𝑗(𝑧)𝑙
𝑗, 𝑧 ∈ 𝐻, 𝑔𝑗 ∈ 𝐶1

𝑏 (𝐻), 𝑙𝑗 ∈ 𝐷(𝐴) ∩𝐻1}.

Denote by 𝐷∗ the adjoint of 𝐷 : 𝐶1
𝑏 (𝐻) ⊂ 𝐿2(𝐻,𝜇) → 𝐿2(𝐻,𝜇;𝐻). That is

𝐷𝑜𝑚(𝐷∗) := {𝐺 ∈ 𝐿2(𝐻,𝜇;𝐻)∣𝐶1
𝑏 ∋ 𝑢 7→

∫
⟨𝐺,𝐷𝑢⟩𝑑𝜇 is continuous with respect to 𝐿2(𝐻,𝜇)}.

Obviously, (𝐶1
𝑏 )𝐷(𝐴)∩𝐻1 ⊂ 𝐷𝑜𝑚(𝐷∗). Then∫

𝐻

𝐷∗𝐺(𝑧)𝑓(𝑧)𝜇(𝑑𝑧) =
∫
𝐻

⟨𝐺(𝑧), 𝐷𝑓(𝑧)⟩𝜇(𝑑𝑧) ∀𝐺 ∈ (𝐶1
𝑏 )𝐷(𝐴)∩𝐻1 , 𝑓 ∈ 𝐶1

𝑏 (𝐻).

(2.2.2)

For 𝜌 ∈ 𝐿(log𝐿)1/2(𝐻,𝜇), we set

𝑉 (𝜌) := sup
𝐺∈(𝐶1

𝑏 )𝐷(𝐴)∩𝐻1
,∥𝐺∥𝐻1

≤1

∫
𝐻

𝐷∗𝐺(𝑧)𝜌(𝑧)𝜇(𝑑𝑧).

A function 𝜌 on 𝐻 is called a BV function in the Gelfand triple (𝐻1, 𝐻,𝐻
∗
1 )(𝜌 ∈

𝐵𝑉 (𝐻,𝐻1) in notation), if 𝜌 ∈ 𝐿(log𝐿)1/2(𝐻,𝜇) and 𝑉 (𝜌) is finite. When 𝐻1 =
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𝐻 = 𝐻∗
1 , this coincides with the definition of BV functions defined in [ADP10]

and clearly 𝐵𝑉 (𝐻,𝐻) ⊂ 𝐵𝑉 (𝐻,𝐻1). We can prove the following theorem by a

modification of the proof of [Fu00, Theorem 3.1].

Remark 2.2.0 The introduction of BV functions in a Gelfand triple is natural

and originates from standard ideas when working with infinite dimensional state

spaces. The intersection of 𝐵𝑉𝑙(𝐻), when 𝑙 runs through 𝐷(𝐴) ∩ 𝐻1, describes

functions which are “componentwise of bounded variation” in the sense that their

weak partial derivatives are measures. In contrast to finite dimensions this does

not give rise to vector-valued measures representing their total weak derivatives

or gradients. Therefore, one introduces an appropriate “tangent space” 𝐻∗
1 to 𝐻,

in which these total derivatives can be represented as a 𝐻∗
1 -valued measure. This

approach substantially extends the applicability of the theory of BV functions on

Hilbert spaces. We document this by including the well-studied case of linear SPDE

with reflection, more precisely, the randomly vibrating Gaussian string, forced to

stay above a level 𝛼 ≥ 0, (see [NP92], [Za02]), which (in the case of 𝛼 > 0) is then

just a special case of our general approach.

Theorem 2.2.1 (i) 𝐵𝑉 (𝐻,𝐻1) ⊂
∩
𝑙∈𝐷(𝐴)∩𝐻1

𝐵𝑉𝑙(𝐻).

(ii) Suppose 𝜌 ∈ 𝐵𝑉 (𝐻,𝐻1)∩𝐿1
+(𝐻,𝜇), then there exist a positive finite measure

∥𝑑𝜌∥ on 𝐻 and a Borel-measurable map 𝜎𝜌 : 𝐻 → 𝐻∗
1 such that ∥𝜎𝜌(𝑧)∥𝐻∗

1
=

1 ∥𝑑𝜌∥ − 𝑎.𝑒, ∥𝑑𝜌∥(𝐻) = 𝑉 (𝜌),∫
𝐻

𝐷∗𝐺(𝑧)𝜌(𝑧)𝜇(𝑑𝑧) =
∫
𝐻
𝐻1⟨𝐺(𝑧), 𝜎𝜌(𝑧)⟩𝐻∗

1
∥𝑑𝜌∥(𝑑𝑧) ∀𝐺 ∈ (𝐶1

𝑏 )𝐷(𝐴)∩𝐻1 (2.2.3)

and ∥𝑑𝜌∥ ∈ 𝑆𝜌+1.

Furthermore, if 𝜌 ∈ 𝑄𝑅(𝐻), ∥𝑑𝜌∥ is ℰ𝜌-smooth in the sense that it charges no

set of zero ℰ𝜌1 -capacity. In particular, the domain of integration 𝐻 on both sides of

(2.2.3) can be replaced by 𝐹 , the topological support of 𝜌𝜇.

Also, 𝜎𝜌 and ∥𝑑𝜌∥ are uniquely determined, that is, if there are 𝜎′
𝜌 and ∥𝑑𝜌∥′

satisfying relation (2.2.3), then ∥𝑑𝜌∥ = ∥𝑑𝜌∥′ and 𝜎𝜌(𝑧) = 𝜎′
𝜌(𝑧) for ∥𝑑𝜌∥ − 𝑎.𝑒.𝑧

(iii) Conversely, if Eq.(2.2.3) holds for 𝜌 ∈ 𝐿(log𝐿)1/2(𝐻,𝜇) and for some positive

finite measure ∥𝑑𝜌∥ and a map 𝜎𝜌 with the stated properties, then 𝜌 ∈ 𝐵𝑉 (𝐻,𝐻1)

and 𝑉 (𝜌) = ∥𝑑𝜌∥(𝐻).

(iv) Let 𝑊 1,1(𝐻) be the domain of the closure of (𝐷,𝐶1
𝑏 (𝐻)) with norm

∥𝑓∥ :=

∫
𝐻

(∣𝑓(𝑧)∣+ ∣𝐷𝑓(𝑧)∣)𝜇(𝑑𝑧).

Then 𝑊 1,1(𝐻) ⊂ 𝐵𝑉 (𝐻,𝐻) and Eq.(2.2.3) is satisfied for each 𝜌 ∈ 𝑊 1,1(𝐻). Fur-
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thermore,

∥𝑑𝜌∥ = ∣𝐷𝜌∣ ⋅ 𝜇, 𝑉 (𝜌) =

∫
𝐻

∣𝐷𝜌∣𝜇(𝑑𝑧), 𝜎𝜌 = 1

∣𝐷𝜌∣𝐷𝜌𝐼{∣𝐷𝜌∣>0}.

Proof (i) Let 𝜌 ∈ 𝐵𝑉 (𝐻,𝐻1) and 𝑙 ∈ 𝐷(𝐴) ∩ 𝐻1. Take 𝐺 ∈ (𝐶1
𝑏 )𝐷(𝐴)∩𝐻1 of the

type

𝐺(𝑧) = 𝑔(𝑧)𝑙, 𝑧 ∈ 𝐻, 𝑔 ∈ 𝐶1
𝑏 (𝐻). (2.2.4)

By (2.2.2)∫
𝐻

𝐷∗𝐺(𝑧)𝑓(𝑧)𝜇(𝑑𝑧) =
∫
𝐻

⟨𝐺(𝑧), 𝐷𝑓(𝑧)⟩𝜇(𝑑𝑧)

=−
∫
𝐻

⟨𝑙, 𝐷𝑔(𝑧)⟩𝑓(𝑧)𝜇(𝑑𝑧) + 2

∫
𝐻

⟨𝐴𝑙, 𝑧⟩𝑔(𝑧)𝑓(𝑧)𝜇(𝑑𝑧) ∀𝑓 ∈ 𝐶1
𝑏 (𝐻);

consequently,

𝐷∗𝐺(𝑧) = −⟨𝑙, 𝐷𝑔(𝑧)⟩+ 2𝑔(𝑧)⟨𝐴𝑙, 𝑧⟩. (2.2.5)

Accordingly,∫
𝐻

⟨𝑙, 𝐷𝑔(𝑧)⟩𝜌(𝑧)𝜇(𝑑𝑧) = −
∫
𝐻

𝐷∗𝐺(𝑧)𝜌(𝑧)𝜇(𝑑𝑧) + 2

∫
𝐻

⟨𝐴𝑙, 𝑧⟩𝑔(𝑧)𝜌(𝑧)𝜇(𝑑𝑧).
(2.2.6)

For any 𝑔 ∈ 𝐶1
𝑏 (𝐻), satisfying ∥𝑔∥∞ ≤ 1, by (2.2.1) the right hand side is dominated

by

𝑉 (𝜌)∥𝑙∥𝐻1 + 4∥𝜌∥𝐿(log𝐿)1/2∥⟨𝐴𝑙, ⋅⟩∥𝐿𝜓 <∞,

hence, 𝜌 ∈ 𝐵𝑉𝑙(𝐻).

(ii) Suppose 𝜌 ∈ 𝐿1
+(𝐻,𝜇)

∩
𝐵𝑉 (𝐻,𝐻1). By (i) and Theorem 2.1.3 for each

𝑙 ∈ 𝐷(𝐴) ∩ 𝐻1, there exists a finite signed measure 𝜈𝑙 on 𝐻 for which Eq.(2.1.4)

holds. Define

𝐷𝐴
𝑙 𝜌(𝑑𝑧) := 2𝜈𝑙(𝑑𝑧) + 2⟨𝐴𝑙, 𝑧⟩𝜌(𝑧)𝜇(𝑑𝑧).

In view of (2.2.6), for any 𝐺 of type (2.2.4), we have∫
𝐻

𝐷∗𝐺(𝑧)𝜌(𝑧)𝜇(𝑑𝑧) =
∫
𝐻

𝑔(𝑧)𝐷𝐴
𝑙 𝜌(𝑑𝑧), (2.2.7)

which in turn implies

𝑉 (𝐷𝐴
𝑙 𝜌)(𝐻) = sup

𝑔∈𝐶1
𝑏 (𝐻),∥𝑔∥∞≤1

∫
𝐻

𝑔(𝑧)𝐷𝐴
𝑙 𝜌(𝑑𝑧) ≤ 𝑉 (𝜌)∥𝑙∥𝐻1 , (2.2.8)

where 𝑉 (𝐷𝐴
𝑙 𝜌) denotes the total variation measure of the signed measure 𝐷𝐴

𝑙 𝜌.
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For the orthonormal basis { 𝑒𝑗
𝑐𝑗
} of 𝐻1, we set

𝛾𝐴𝜌 := Σ∞
𝑗=12

−𝑗𝑉 (𝐷𝐴
𝑒𝑗
𝑐𝑗

𝜌), 𝑣𝑗(𝑧) :=

𝑑𝐷𝐴
𝑒𝑗
𝑐𝑗

𝜌(𝑧)

𝑑𝛾𝐴𝜌 (𝑧)
, 𝑧 ∈ 𝐻, 𝑗 ∈ ℕ. (2.2.9)

𝛾𝐴𝜌 is a positive finite measure with 𝛾𝐴𝜌 (𝐻) ≤ 𝑉 (𝜌) and 𝑣𝑗 is Borel-measurable. Since

𝐷𝐴
𝑒𝑗
𝑐𝑗

𝜌 belongs to 𝑆𝜌+1, so does 𝛾𝐴𝜌 . Then for

𝐺𝑛 :=
𝑛∑
𝑗=1

𝑔𝑗
𝑒𝑗
𝑐𝑗

∈ (𝐶1
𝑏 )𝐷(𝐴)∩𝐻1 , 𝑛 ∈ ℕ, (2.2.10)

by (2.2.7) the following equation holds∫
𝐻

𝐷∗𝐺𝑛(𝑧)𝜌(𝑧)𝜇(𝑑𝑧) =
𝑛∑
𝑗=1

∫
𝐻

𝑔𝑗(𝑧)𝑣𝑗(𝑧)𝛾
𝐴
𝜌 (𝑑𝑧). (2.2.11)

Since ∣𝑣𝑗(𝑧)∣ ≤ 2𝑗 𝛾𝐴𝜌 -a.e. and 𝐶
1
𝑏 (𝐻) is dense in 𝐿1(𝐻, 𝛾𝐴𝜌 ), we can find 𝑣𝑗,𝑚 ∈ 𝐶1

𝑏 (𝐻)

such that

lim
𝑚→∞

𝑣𝑗,𝑚 = 𝑣𝑗 𝛾
𝐴
𝜌 − 𝑎.𝑒.,

Substituting

𝑔𝑗,𝑚(𝑧) :=
𝑣𝑗,𝑚(𝑧)√∑𝑛

𝑘=1 𝑣𝑘,𝑚(𝑧)
2 + 1/𝑚

, (2.2.12)

for 𝑔𝑗(𝑧) in (2.2.10) and (2.2.11) we get a bound

𝑛∑
𝑗=1

∫
𝐻

𝑔𝑗,𝑚(𝑧)𝑣𝑗(𝑧)𝛾
𝐴
𝜌 (𝑑𝑧) ≤ 𝑉 (𝜌),

because ∥𝐺𝑛(𝑧)∥2𝐻1
=

∑𝑛
𝑗=1 𝑔𝑗,𝑚(𝑧)

2 ≤ 1 ∀𝑧 ∈ 𝐻. By letting 𝑚→ ∞, we obtain

∫
𝐻

√√√⎷ 𝑛∑
𝑗=1

𝑣𝑗(𝑧)2𝛾
𝐴
𝜌 (𝑑𝑧) ≤ 𝑉 (𝜌) ∀𝑛 ∈ ℕ.

Now we define

∥𝑑𝜌∥ :=

√√√⎷ ∞∑
𝑗=1

𝑣𝑗(𝑧)2𝛾
𝐴
𝜌 (𝑑𝑧) (2.2.13)
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and 𝜎𝜌 : 𝐻 → 𝐻∗
1 by

𝜎𝜌(𝑧) =

{ ∑∞
𝑗=1

𝑣𝑗(𝑧)√∑∞
𝑘=1 𝑣𝑘(𝑧)

2
⋅ 𝑐𝑗𝑒𝑗, if 𝑧 ∈ {∑∞

𝑘=1 𝑣𝑘(𝑧)
2 > 0}

0 otherwise.
(2.2.14)

Then

∥𝑑𝜌∥(𝐻) ≤ 𝑉 (𝜌), ∥𝜎𝜌(𝑧)∥𝐻∗
1
= 1 ∥𝑑𝜌∥ − 𝑎.𝑒., (2.2.15)

∥𝑑𝜌∥ is 𝑆𝜌+1-smooth and 𝜎𝜌 is Borel-measurable. By (2.2.11) we see that the desired

equation (2.2.3) holds for 𝐺 = 𝐺𝑛 as in (2.2.10). It remains to prove (2.2.3) for any

𝐺 of type (2.2.4), i.e. 𝐺 = 𝑔 ⋅ 𝑙, 𝑔 ∈ 𝐶1
𝑏 (𝐻), 𝑙 ∈ 𝐷(𝐴) ∩ 𝐻1. In view of (2.2.6),

Eq.(2.2.3) then reads

−
∫
𝐻

⟨𝑙, 𝐷𝑔(𝑧)⟩𝜌(𝑧)𝜇(𝑑𝑧)+2

∫
𝐻

𝑔(𝑧)⟨𝐴𝑙, 𝑧⟩𝜌(𝑧)𝜇(𝑑𝑧) =
∫
𝐻

𝑔(𝑧)𝐻1⟨𝑙, 𝜎𝜌(𝑧)⟩𝐻∗
1
∥𝑑𝜌∥(𝑑𝑧).
(2.2.16)

We set

𝑘𝑛 :=
𝑛∑
𝑗=1

⟨𝑙, 𝑒𝑗⟩𝑒𝑗 =
𝑛∑
𝑗=1

⟨𝑙, 𝑒𝑗
𝑐𝑗
⟩𝐻1

𝑒𝑗
𝑐𝑗
, 𝐺𝑛(𝑧) := 𝑔(𝑧)𝑘𝑛.

Thus 𝑘𝑛 → 𝑙 in 𝐻1 and 𝐴𝑘𝑛 → 𝐴𝑙 in 𝐻 as 𝑛→ ∞. But then also

lim
𝑛→∞

∫
𝐻

⟨𝐷𝑔, 𝑘𝑛⟩𝜌𝑑𝜇 =

∫
𝐻

⟨𝐷𝑔, 𝑙⟩𝜌𝑑𝜇,

and

∣
∫
𝐻

𝑔(𝑧)⟨𝐴𝑘𝑛, 𝑧⟩𝜌(𝑧)𝜇(𝑑𝑧)−
∫
𝐻

𝑔(𝑧)⟨𝐴𝑙, 𝑧⟩𝜌(𝑧)𝜇(𝑑𝑧)∣

≤ 2∥𝑔∥∞∥𝜌∥𝐿(log𝐿)1/2∥⟨𝐴𝑘𝑛 − 𝐴𝑙, ⋅ ⟩∥𝐿𝜓 .

Furthermore,

lim
𝑛→∞

∫
𝐻

𝑔(𝑧)𝐻1⟨𝑘𝑛, 𝜎𝜌(𝑧)⟩𝐻∗
1
∥𝑑𝜌∥(𝑑𝑧) =

∫
𝐻

𝑔(𝑧)𝐻1⟨𝑙, 𝜎𝜌(𝑧)⟩𝐻∗
1
∥𝑑𝜌∥(𝑑𝑧).

So letting 𝑛→ ∞ yields (2.2.16).

If 𝜌 ∈ 𝑄𝑅(𝐻), we can get the claimed result by the same arguments as above.

Uniqueness follows by the same argument as [FH01, Theorem 3.9]. Suppose that

𝜎′
𝜌 and ∥𝑑𝜌∥′ are another pair. Then,∫

𝐸
𝐻1⟨𝐺(𝑧), 𝛾⟩𝐻∗

1
𝜉(𝑑𝑧) = 0 for every 𝐺 ∈ (ℱ𝐶1

𝑏 )𝑄1/2(𝐻)∩𝐻1
,

where 𝜉 = ∥𝑑𝜌∥ + ∥𝑑𝜌∥′ and 𝛾 = 𝜎𝜌
𝑑∥𝑑𝜌∥
𝑑𝜉

− 𝜎′
𝜌
𝑑∥𝑑𝜌∥′
𝑑𝜉

. Taking a uniformly bounded
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sequence 𝐺𝑛 ∈ (ℱ𝐶1
𝑏 )𝑄1/2(𝐻)∩𝐻1

so that 𝐻1⟨𝐺𝑛(𝑧), 𝛾⟩𝐻∗
1
→ ∥𝛾∥𝐻∗

1
𝜉 a.e., we get 𝛾 = 0𝜉

a.e. Therefore, ∥𝜎𝜌∥𝐻∗
1

𝑑∥𝑑𝜌∥
𝑑𝜉

= ∥𝜎′
𝜌∥𝐻∗

1

𝑑∥𝑑𝜌∥′
𝑑𝜉

𝜉 a.e. Since ∥𝜎𝜌∥𝐻∗
1
= 1 ∥𝑑𝜌∥-a.e.

∥𝜎𝜌∥𝐻∗
1

𝑑∥𝑑𝜌∥
𝑑𝜉

= 𝑑∥𝑑𝜌∥
𝑑𝜉

𝜉-a.e. Similarly, ∥𝜎′
𝜌∥𝐻∗

1

𝑑∥𝑑𝜌∥′
𝑑𝜉

= 𝑑∥𝑑𝜌∥′
𝑑𝜉

𝜉-a.e. Then 𝑑∥𝑑𝜌∥
𝑑𝜉

= 𝑑∥𝑑𝜌∥′
𝑑𝜉

𝜉-a.e. which implies 𝑑∥𝑑𝜌∥ = 𝑑∥𝑑𝜌∥′. Also it follows that 𝜎𝜌 = 𝜎′
𝜌.

(iii) Suppose 𝜌 ∈ 𝐿(log)1/2(𝐻,𝜇) and that Eq.(2.2.3) holds for some positive finite

measure ∥𝑑𝜌∥ and some map 𝜎𝜌 with the properties stated in (ii). Then clearly

𝑉 (𝜌) ≤ ∥𝑑𝜌∥(𝐻)

and hence 𝜌 ∈ 𝐵𝑉 (𝐻,𝐻1). To obtain the converse inequality, set

𝜎𝑗(𝑧) := ⟨𝑐𝑗𝑒𝑗, 𝜎𝜌(𝑧)⟩𝐻∗
1
=𝐻1 ⟨

𝑒𝑗
𝑐𝑗
, 𝜎𝜌(𝑧)⟩𝐻∗

1
, 𝑗 ∈ ℕ.

Fix an arbitrary 𝑛. As in the proof of (ii) we can find functions

𝑣𝑗,𝑚 ∈ 𝐶1
𝑏 (𝐻), lim

𝑚→∞
𝑣𝑗,𝑚(𝑧) = 𝜎𝑗(𝑧) ∥𝑑𝜌∥ − 𝑎.𝑒.

Define 𝑔𝑗,𝑚(𝑧) by (2.2.12). Substituting𝐺𝑛,𝑚(𝑧) :=
∑𝑛

𝑗=1 𝑔𝑗,𝑚(𝑧)
𝑒𝑗
𝑐𝑗
for𝐺(𝑧) in (2.2.3)

then yields
𝑛∑
𝑗=1

∫
𝐻

𝑔𝑗,𝑚(𝑧)𝜎𝑗(𝑧)∥𝑑𝜌∥(𝑑𝑧) ≤ 𝑉 (𝜌).

By letting 𝑚→ ∞, we get

∫
𝐻

√√√⎷ 𝑛∑
𝑗=1

𝜎𝑗(𝑧)2∥𝑑𝜌∥(𝑑𝑧) ≤ 𝑉 (𝜌) ∀𝑛 ∈ ℕ.

We finally let 𝑛→ ∞ to obtain ∥𝑑𝜌∥(𝐻) ≤ 𝑉 (𝜌).

(iv) Obviously the duality relation (2.2.2) extends to 𝜌 ∈ 𝑊 1,1(𝐻) replacing

𝑓 ∈ 𝐶1
𝑏 (𝐻). By defining ∥𝑑𝜌∥ and 𝜎𝜌(𝑧) in the stated way, the extended relation

(2.2.2) is exactly (2.2.3). □

Theorem 2.2.2 Let 𝜌 ∈ 𝑄𝑅(𝐻) ∩ 𝐵𝑉 (𝐻,𝐻1) and consider the measure ∥𝑑𝜌∥
and 𝜎𝜌 from Theorem 2.2.1(ii). Then there is an ℰ𝜌-exceptional set 𝑆 ⊂ 𝐹 such

that ∀𝑧 ∈ 𝐹∖𝑆 under 𝑃𝑧 there exists an ℳ𝑡- cylindrical Wiener process 𝑊 𝑧, such

that the sample paths of the associated distorted OU-process 𝑀𝜌 on 𝐹 satisfy the
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following: for 𝑙 ∈ 𝐷(𝐴) ∩𝐻1

⟨𝑙, 𝑋𝑡−𝑋0⟩ =
∫ 𝑡

0

⟨𝑙, 𝑑𝑊 𝑧
𝑠 ⟩+

1

2

∫ 𝑡

0
𝐻1⟨𝑙, 𝜎𝜌(𝑋𝑠)⟩𝐻∗

1
𝑑𝐿∥𝑑𝜌∥

𝑠 −
∫ 𝑡

0

⟨𝐴𝑙,𝑋𝑠⟩𝑑𝑠 ∀𝑡 ≥ 0 𝑃𝑧−a.s..

(2.2.17)

Here 𝐿
∥𝑑𝜌∥
𝑡 is the real valued PCAF associated with ∥𝑑𝜌∥ by the Revuz correspon-

dence.

In particular, if 𝜌 ∈ 𝐵𝑉 (𝐻,𝐻), then ∀𝑧 ∈ 𝐹∖𝑆, 𝑙 ∈ 𝐷(𝐴) ∩𝐻

⟨𝑙, 𝑋𝑡 −𝑋0⟩ =
∫ 𝑡

0

⟨𝑙, 𝑑𝑊 𝑧
𝑠 ⟩+

1

2

∫ 𝑡

0

⟨𝑙, 𝜎𝜌(𝑋𝑠)⟩𝑑𝐿∥𝑑𝜌∥
𝑠 −

∫ 𝑡

0

⟨𝐴𝑙,𝑋𝑠⟩𝑑𝑠 ∀𝑡 ≥ 0 𝑃𝑧−a.s..

Proof Let {𝑒𝑗} be the orthonormal basis of H introduced above. Define for all

𝑘 ∈ ℕ

𝑊 𝑧
𝑘 (𝑡) := ⟨𝑒𝑘, 𝑋𝑡 − 𝑧⟩ − 1

2

∫ 𝑡

0
𝐻1⟨𝑒𝑘, 𝜎𝜌(𝑋𝑠)⟩𝐻∗

1
𝑑𝐿∥𝑑𝜌∥

𝑠 +

∫ 𝑡

0

⟨𝐴𝑒𝑘, 𝑋𝑠⟩𝑑𝑠. (2.2.18)

By (2.1.1) and (2.2.16) we get for all 𝑘 ∈ ℕ

ℰ𝜌(𝑒𝑘(⋅), 𝑔) =
∫
𝐻

𝑔(𝑧)⟨𝐴𝑒𝑘, 𝑧⟩𝜌(𝑧)𝜇(𝑑𝑧)−1

2

∫
𝐻

𝑔(𝑧)𝐻1⟨𝑒𝑘, 𝜎𝜌(𝑧)⟩𝐻∗
1
∥𝑑𝜌∥(𝑑𝑧) ∀𝑔 ∈ 𝐶1

𝑏 (𝐻).

By Theorem 2.1.3 it follows that for all 𝑘 ∈ ℕ

𝑁 𝑒𝑘
𝑡 =

1

2

∫ 𝑡

0
𝐻1⟨𝑒𝑘, 𝜎𝜌(𝑋𝑠)⟩𝐻∗

1
𝑑𝐿∥𝑑𝜌∥

𝑠 −
∫ 𝑡

0

⟨𝐴𝑒𝑘, 𝑋𝑠⟩𝑑𝑠. (2.2.19)

Here we get from (2.2.18), (2.2.19) and the uniqueness of decomposition (2.1.2) that

for ℰ𝜌-q.e. 𝑧 ∈ 𝐹 ,

𝑊 𝑧
𝑘 (𝑡) =𝑀 𝑒𝑘

𝑡 ∀𝑡 ≥ 0 𝑃𝑧−a.s.,

where the ℰ𝜌-exceptional set and the zero measure set does not depend on 𝑒𝑘. Indeed,

we can choose the capacity zero set 𝑆 = ∪∞
𝑗=1𝑆𝑗, where 𝑆𝑗 is the ℰ𝜌-exceptional set

for 𝑒𝑗, and for 𝑧 ∈ 𝐹∖𝑆, we can use the same method to get a zero measure set

independent of 𝑒𝑘. By Dirichlet form theory we get ⟨𝑀 𝑒𝑖 ,𝑀 𝑒𝑗⟩𝑡 = 𝑡𝛿𝑖𝑗. So for

𝑧 ∈ 𝐹 ∖ 𝑆, 𝑊 𝑧
𝑘 is an ℳ𝑡-Wiener process under 𝑃𝑧. Thus, with 𝑊 𝑧 being an ℳ𝑡-

cylindrical Wiener process given by 𝑊 𝑧(𝑡) = (𝑊 𝑧
𝑘 (𝑡)𝑒𝑘)𝑘∈ℕ, (2.2.17) is satisfied for

𝑃𝑧 − 𝑎.𝑒., where 𝑧 ∈ 𝐹 ∖ 𝑆. □
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2.3 Reflected OU-processes

In this section we consider the situation where 𝜌 = 𝐼Γ ∈ 𝐵𝑉 (𝐻,𝐻1), where Γ ⊂ 𝐻

and

𝐼Γ(𝑥) =

{
1, if 𝑥 ∈ Γ,

0 if 𝑥 ∈ Γ𝑐.

Denote the corresponding objects 𝜎𝜌, ∥𝑑𝐼Γ∥ in Theorem 2.2.1(ii) by −nΓ, ∥∂Γ∥ re-

spectively. Then formula (2.2.3) reads∫
Γ

𝐷∗𝐺(𝑧)𝜇(𝑑𝑧) = −
∫
𝐹
𝐻1⟨𝐺(𝑧),nΓ⟩𝐻∗

1
∥∂Γ∥(𝑑𝑧) ∀𝐺 ∈ (𝐶1

𝑏 )𝐷(𝐴)∩𝐻1 ,

where the domain of integration 𝐹 on the right hand side is the topological support

of 𝐼Γ ⋅ 𝜇. 𝐹 is contained in Γ̄, but we shall show that the domain of integration on

the right hand side can be restricted to ∂Γ. We need to use the associated distorted

OU-process 𝑀 𝐼Γ on 𝐹 , which will be called reflected OU-process on Γ.

First we consider a 𝜇-measurable set Γ ⊂ 𝐻 satisfying

𝐼Γ ∈ 𝐵𝑉 (𝐻,𝐻1) ∩H. (2.3.1)

Remark 2.3.1 We emphasize that if Γ is a convex closed set in 𝐻, then obviously

𝐼Γ ∈ H. Indeed, for each 𝑧, 𝑙 ∈ 𝐻 the set {𝑠 ∈ ℝ∣𝑧 + 𝑠𝑙 ∈ Γ} is a closed interval

in ℝ, whose indicator function hence trivially has the Hamza property. Hence, in

particular, 𝐼Γ ∈ 𝑄𝑅(𝐻).

By a modification of [Fu00, Theorem 4.2], we can prove the following theorem.

Theorem 2.3.2 Let Γ ⊂ 𝐻 be 𝜇-measurable satisfying condition (2.3.1). Then

the support of ∥∂Γ∥ is contained in the boundary ∂Γ of Γ, and the following gener-

alized Gauss formula holds:∫
Γ

𝐷∗𝐺(𝑧)𝜇(𝑑𝑧) = −
∫
∂Γ

𝐻1⟨𝐺(𝑧),nΓ⟩𝐻∗
1
∥∂Γ∥(𝑑𝑧) ∀𝐺 ∈ (𝐶1

𝑏 )𝐷(𝐴)∩𝐻1 . (2.3.2)

Proof For any 𝐺 of type (2.2.4) we have from (2.1.1), (2.2.5) and (2.2.7) that

ℰ𝐼Γ(𝑙(⋅), 𝑔)−
∫
Γ

𝑔(𝑧)⟨𝐴𝑙, 𝑧⟩𝜇(𝑑𝑧) = −1

2

∫
𝐹

𝑔(𝑧)𝐷𝐴
𝑙 𝐼Γ(𝑑𝑧). (2.3.3)

Since the finite signed measure 𝐷𝐴
𝑙 𝐼Γ charges no set of zero ℰ𝐼Γ1 -capacity, Eq.(2.3.3)

readily extends to any ℰ𝐼Γ-quasicontinuous function 𝑔 ∈ ℱ 𝐼Γ
𝑏 := ℱ 𝐼Γ ∩ 𝐿∞(Γ, 𝜇).

Denote by Γ0 the interior of Γ. Then Γ0 ⊂ 𝐹 ⊂ Γ̄. In view of the construction
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of the measure ∥𝑑𝐼Γ∥ in Theorem 2.2.1, it suffices to show that for
𝑒𝑗
𝑐𝑗

∈ 𝐷(𝐴) ∩𝐻1

𝑉 (𝐷𝐴
𝑒𝑗
𝑐𝑗

𝐼Γ)(Γ
0) = 0.

By linearity and since positive constants interchange with sup, it suffices to show

that,

𝑉 (𝐷𝐴
𝑒𝑗
𝐼Γ)(Γ

0) = 0. (2.3.4)

Take an arbitrary 𝜀 > 0 and set

𝑈 := {𝑧 ∈ 𝐻 : 𝑑(𝑧,𝐻∖Γ0) > 𝜀}, 𝑉 := {𝑧 ∈ 𝐻 : 𝑑(𝑧,𝐻∖Γ0) ≥ 𝜀},

where 𝑑 is the metric distance of the Hilbert space 𝐻. Then �̄� ⊂ 𝑉 and 𝑉 is a

closed set contained in the open set Γ0. We define a function ℎ by

ℎ(𝑧) := 1− 𝐸𝑧(𝑒
−𝜏𝑉 ), 𝑧 ∈ 𝐹, (2.3.5)

where 𝜏𝑉 denotes the first exit time of𝑀 𝐼Γ from the set 𝑉 . The nonnegative function

ℎ is in the space ℱ 𝐼Γ
𝑏 and furthermore it is ℰ𝐼Γ-quasicontinuous because it is 𝑀 𝐼Γ

finely continuous.

Moreover,

ℎ(𝑧) > 0 ∀𝑧 ∈ 𝑈, ℎ(𝑧) = 0 ∀𝑧 ∈ 𝐹∖𝑉. (2.3.6)

Set

𝜈𝑗(𝑑𝑧) := ℎ(𝑧)𝐷𝐴
𝑒𝑗
𝐼Γ(𝑑𝑧) (2.3.7)

and

𝐼𝑗𝑔 := ℰ𝐼Γ(𝑒𝑗(⋅), 𝑔ℎ)−
∫
Γ

𝑔(𝑧)ℎ(𝑧)⟨𝐴𝑒𝑗, 𝑧⟩𝜇(𝑑𝑧). (2.3.8)

Then Eq.(2.3.3) with the ℰ𝐼Γ-quasicontinuous function 𝑔ℎ ∈ ℱ 𝐼Γ
𝑏 replacing 𝑔 implies

𝐼𝑗𝑔 = −1

2

∫
𝐹

𝑔(𝑧)𝜈𝑗(𝑑𝑧).

In order to prove (2.3.4), it is enough to show that 𝐼𝑗𝑔 = 0 for any function 𝑔(𝑧) of

the type

𝑔(𝑧) = 𝑓(⟨𝑒𝑗, 𝑧⟩, ⟨𝑙2, 𝑧⟩, ..., ⟨𝑙𝑚, 𝑧⟩); 𝑙2, ..., 𝑙𝑚 ∈ 𝐻, 𝑓 ∈ 𝐶1
0(𝑅

𝑚), (2.3.9)

for we have then 𝜈𝑗 = 0.
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On account of (2.1.8) we have the expression

ℰ𝐼Γ(𝑒𝑗(⋅), 𝑔ℎ) = ℰ𝐼Γ,𝑒𝑗(𝑒𝑗(⋅), 𝑔ℎ) = 1

2

∫
𝐸𝑒𝑗

∫
𝑅𝑥

𝑑(𝑔ℎ̃)(𝑠𝑒𝑗 + 𝑥)

𝑑𝑠
𝑝𝑗(𝑠)𝑑𝑠𝜇𝑒𝑗(𝑑𝑥),

(2.3.10)

where 𝑅𝑥 = 𝑅(𝐼Γ(⋅𝑒𝑗+𝑥)), 𝐹𝑥 := {𝑠 : 𝑠𝑒𝑗+𝑥 ∈ 𝐹} for 𝑥 ∈ 𝐸𝑒𝑗 and ℎ̃ is a 𝐼Γ ⋅𝜇-version
of ℎ appearing in the description of (2.1.8). For 𝑥 ∈ 𝐸𝑒𝑗 set

𝑉𝑥 := {𝑠 : 𝑠𝑒𝑗 + 𝑥 ∈ 𝑉 },Γ0
𝑥 := {𝑠 : 𝑠𝑒𝑗 + 𝑥 ∈ Γ0}.

We then have the inclusion 𝑉𝑥 ⊂ Γ0
𝑥 ⊂ 𝑅𝑥 ∩ 𝐹𝑥. By (2.3.6), ℎ(𝑠𝑒𝑗 + 𝑥) = 0 for

any 𝑥 ∈ 𝐸𝑒𝑗 and for any 𝑠 ∈ 𝑅𝑥 ∖ 𝑉𝑥. On the other hand, there exists a Borel set

𝑁 ⊂ 𝐸𝑒𝑗 with 𝜇𝑒𝑗(𝑁) = 0 such that for each 𝑥 ∈ 𝐸𝑒𝑗∖𝑁 ,

ℎ(𝑠𝑒𝑗 + 𝑥) = ℎ̃(𝑠𝑒𝑗 + 𝑥) 𝑑𝑠− 𝑎.𝑒.

Here we set ℎ ≡ 0 on 𝐻∖𝐹 . Since ℎ̃(⋅𝑒𝑗 + 𝑥) is absolutely continuous in 𝑠, we can

conclude that

ℎ̃(𝑠𝑒𝑗 + 𝑥) = 0 ∀𝑥 ∈ 𝐸𝑒𝑗∖𝑁, ∀𝑠 ∈ 𝑅𝑥∖𝑉𝑥.

Fix 𝑥 ∈ 𝐸𝑒𝑗∖𝑁 and let 𝐼 be any connected component of the one dimensional

open set 𝑅𝑥. Furthermore, for any function 𝑔 of type (2.3.9) we denote the support

of 𝑔(⋅𝑒𝑗 + 𝑥) by 𝐾𝑥 (which is a compact set) and choose a bounded open interval

𝐽 containing 𝐾𝑥. Then 𝐼 ∩ 𝑉𝑥 ∩𝐾𝑥 is a closed set contained in the bounded open

interval 𝐼 ∩ 𝐽 and

𝑔ℎ̃(𝑠𝑒𝑗 + 𝑥) = 0 ∀𝑠 ∈ (𝐼 ∩ 𝐽)∖(𝐼 ∩ 𝑉𝑥 ∩𝐾𝑥).

Therefore, an integration by part gives∫
𝐼∩𝐽

𝑑(𝑔ℎ̃)(𝑠𝑒𝑗 + 𝑥)

𝑑𝑠
𝑝𝑗(𝑠)𝑑𝑠 =

∫
𝐼∩𝐽

1

𝜆𝑗
(𝑔ℎ̃)(𝑠𝑒𝑗 + 𝑥)𝑠𝑝𝑗(𝑠)𝑑𝑠.

Combining this with (2.3.8) and (2.3.10), we arrive at

𝐼𝑗𝑔 =

∫
𝐸𝑒𝑗

∫
𝑅𝑥

1

2𝜆𝑗
(𝑔ℎ̃)(𝑠𝑒𝑗 +𝑥)𝑠𝑝𝑗(𝑠)𝑑𝑠𝜇𝑒𝑗(𝑑𝑥)−

∫
𝐻

𝑔(𝑧)ℎ(𝑧)⟨𝐴𝑒𝑗, 𝑧⟩𝐼Γ(𝑧)𝜇(𝑑𝑧) = 0.

□
Now we state Theorem 2.2.2 for 𝜌 = 𝐼Γ.

Theorem 2.3.3 Suppose Γ ⊂ 𝐻 is a 𝜇-measurable set satisfying condition (2.3.1).

Then there is an ℰ𝜌-exceptional set 𝑆 ⊂ 𝐹 such that ∀𝑧 ∈ 𝐹∖𝑆, under 𝑃𝑧 there exists
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an ℳ𝑡- cylindrical Wiener process𝑊 𝑧, such that the sample paths of the associated

reflected OU-process 𝑀𝜌 on 𝐹 with 𝜌 = 𝐼Γ satisfy the following: for 𝑙 ∈ 𝐷(𝐴) ∩𝐻1

⟨𝑙, 𝑋𝑡 −𝑋0⟩ =
∫ 𝑡

0

⟨𝑙, 𝑑𝑊 𝑧
𝑠 ⟩ −

1

2

∫ 𝑡

0
𝐻1⟨𝑙,nΓ(𝑋𝑠)⟩𝐻∗

1
𝑑𝐿∥∂Γ∥

𝑠 −
∫ 𝑡

0

⟨𝐴𝑙,𝑋𝑠⟩𝑑𝑠 𝑃𝑧−a.s..

(2.3.11)

Here, 𝐿
∥∂Γ∥
𝑡 is the real valued PCAF associated with ∥∂Γ∥ by the Revuz correspon-

dence, which has the following additional property: ∀𝑧 ∈ 𝐹∖𝑆

𝐼∂Γ(𝑋𝑠)𝑑𝐿
∥∂Γ∥
𝑠 = 𝑑𝐿∥∂Γ∥

𝑠 𝑃𝑧 − 𝑎.𝑠.. (2.3.12)

In particular, if 𝜌 ∈ 𝐵𝑉 (𝐻,𝐻), then ∀𝑧 ∈ 𝐹∖𝑆, 𝑙 ∈ 𝐷(𝐴) ∩𝐻

⟨𝑙, 𝑋𝑡−𝑋0⟩ =
∫ 𝑡

0

⟨𝑙, 𝑑𝑊 𝑧
𝑠 ⟩−

1

2

∫ 𝑡

0

⟨𝑙,nΓ(𝑋𝑠)⟩𝑑𝐿∥∂Γ∥
𝑠 −

∫ 𝑡

0

⟨𝐴𝑙,𝑋𝑠⟩𝑑𝑠 ∀𝑡 ≥ 0 𝑃𝑧−𝑎.𝑠..

Proof All assertions except for (2.3.12) follow from Theorem 2.2.2 for 𝜌 := 𝐼Γ.

(2.3.12) follows by Theorem 2.3.2 and [FOT94, Theorem 5.1.3]. □

2.4 Stochastic reflection problem on a regular con-

vex set

In this section, we get the existence and uniqueness of the solution for (1.1) if Γ is

a regular convex set. We also extend these results to the non-symmetric case. Now

we consider Γ satisfying [BDT09] Hypothesis 1.1 (ii) with 𝐾 := Γ, that is:

Hypothesis 2.4.1 There exists a convex 𝐶∞ function 𝑔 : 𝐻 → ℝ with 𝑔(0) =

0, 𝑔′(0) = 0, and 𝐷2𝑔 strictly positive definite, that is,⟨𝐷2𝑔(𝑥)ℎ, ℎ⟩ ≥ 𝛾∣ℎ∣2 ∀ℎ ∈ 𝐻

for some 𝛾 > 0, such that

Γ = {𝑥 ∈ 𝐻 : 𝑔(𝑥) ≤ 1}, ∂Γ = {𝑥 ∈ 𝐻 : 𝑔(𝑥) = 1}

Moreover, we also suppose that𝐷2𝑔 is bounded on Γ and ∣𝑄1/2𝐷𝑔∣−1 ∈ ∩𝑝>1𝐿
𝑝(𝐻,𝜇).

Remark 2.4.2 By [BDT09, Lemma 1.2], Γ is convex and closed and there exists

some constant 𝛿 > 0 such that ∣𝐷𝑔(𝑥)∣ ≤ 𝛿 ∀𝑥 ∈ Γ.



2.4. Stochastic reflection problem on a regular convex set 27

2.4.1 Reflected OU processes on regular convex sets

Under Hypothesis 2.4.1, by [BDT10, Lemma A.1] we can prove that 𝐼Γ ∈ 𝐵𝑉 (𝐻,𝐻)∩
𝑄𝑅(𝐻):

Theorem 2.4.3 Assume that Hypothesis 2.4.1 holds. Then 𝐼Γ ∈ 𝐵𝑉 (𝐻,𝐻) ∩
𝑄𝑅(𝐻).

Proof We first note that trivially by Remark 2.3.1 we have that 𝐼Γ ∈ 𝑄𝑅(𝐻). Let

𝜌𝜀(𝑥) := exp(−(𝑔(𝑥)− 1)2

𝜀
1{𝑔≥1}), 𝑥 ∈ 𝐻.

Thus,

lim
𝜀→0

𝜌𝜀 = 𝐼Γ.

Moreover,

𝐷𝜌𝜀 = −2

𝜀
𝜌𝜀1{𝑔≥1}𝐷𝑔(𝑔 − 1) 𝜇− 𝑎.𝑒..

By [BDT10, Lemma A.1] we have for 𝜑 ∈ 𝐶1
𝑏 (𝐻)

lim
𝜀→0

1

𝜀

∫
𝐻

𝜑(𝑥)1{𝑔(𝑥)≥1}(𝑔(𝑥)−1)⟨𝐷𝑔(𝑥), 𝑧⟩𝜌𝜀(𝑥)𝜇(𝑑𝑥) =
1

2

∫
∂Γ

𝜑(𝑦)⟨𝑛(𝑦), 𝑧⟩ ∣𝐷𝑔(𝑦)∣
∣𝑄1/2𝐷𝑔(𝑦)∣𝜇∂Γ(𝑑𝑦),

where 𝑛 := 𝐷𝑔/∣𝐷𝑔∣ is the exterior normal to ∂Γ at 𝑦 and 𝜇∂Γ is the surface

measure on ∂Γ induced by 𝜇 (cf. [BDT09], [BDT10], [Ma97]), whereas by (2.2.2)

for any 𝜑 ∈ 𝐶1
𝑏 (𝐻) and 𝑧 ∈ 𝐷(𝐴)

lim
𝜀→0

1

𝜀

∫
𝐻

𝜑(𝑥)1{𝑔(𝑥)≥1}(𝑔(𝑥)− 1)⟨𝐷𝑔(𝑥), 𝑧⟩𝜌𝜀(𝑥)𝜇(𝑑𝑥)

=− lim
𝜀→0

1

2

∫
𝐻

⟨𝐷𝜌𝜀(𝑥), 𝜑(𝑥)𝑧⟩𝜇(𝑑𝑥)

=− 1

2
lim
𝜀→0

∫
𝐻

𝜌𝜀(𝑥)𝐷
∗(𝜑𝑧)(𝑥)𝜇(𝑑𝑥)

=− 1

2

∫
𝐻

1Γ(𝑥)𝐷
∗(𝜑𝑧)(𝑥)𝜇(𝑑𝑥).

Thus,∫
𝐻

1Γ(𝑥)𝐷
∗(𝜑𝑧)(𝑥)𝜇(𝑑𝑥) = −

∫
∂Γ

𝜑(𝑥)⟨𝑛(𝑥), 𝑧⟩ ∣𝐷𝑔(𝑦)∣
∣𝑄1/2𝐷𝑔(𝑦)∣𝜇∂Γ(𝑑𝑥) ∀𝑧 ∈ 𝐷(𝐴), 𝜑 ∈ 𝐶1

𝑏 .

(2.4.1)

By the proof of [BDT10, Lemma A.1], we get that 𝑔 is a non-degenerate map. So we
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can use the co-area formula (see [Ma97, Theorem 6.3.1, Ch. V] or [BDT10, (A.4)]):∫
𝐻

𝑓𝜇(𝑑𝑥) =

∫ ∞

0

[

∫
𝑔=𝑟

𝑓(𝑦)
1

∣𝑄1/2𝐷𝑔(𝑦)∣𝜇Σ𝑟(𝑑𝑦)]𝑑𝑟.

By [Ma97, Theorem 6.2, Ch. V] the surface measure is defined for all 𝑟 ≥ 0, moreover

[Ma97, Theorem 1.1, Corollary 6.3.2, Ch. V] imply that 𝑟 7→ 𝜇Σ𝑟 is continuous in

the topology induced by 𝐷𝑝
𝑟(𝐻) for some 𝑝 ∈ (1,∞), 𝑟 ∈ (0,∞)(cf [Ma97]) on the

measures on (𝐻,ℬ(𝐻)). Take 𝑓 ≡ 1 in the co-area formula, then by the continuity

property of the surface measure with respect to 𝑟 we have that 1
∣𝑄1/2𝐷𝑔(𝑦)∣𝜇Σ𝑟(𝑑𝑦) is

a finite measure supported in {𝑔 = 𝑟}. By Remark 2.4.2 and since 𝜇∂Γ = 𝜇Σ1
, we

have that ∣𝐷𝑔(𝑦)∣
∣𝑄1/2𝐷𝑔(𝑦)∣𝜇∂Γ is a finite measure. And hence by Theorem 2.2.1 (iii), we

get 𝐼Γ ∈ 𝐵𝑉 (𝐻,𝐻).

□

Thus by Theorem 2.3.3 we immediately get the following.

Theorem 2.4.4 Assume Hypothesis 2.4.1. Then there exists an ℰ𝜌-exceptional
set 𝑆 ⊂ 𝐹 such that ∀𝑧 ∈ 𝐹∖𝑆, under 𝑃𝑧 there exists an ℳ𝑡- cylindrical Wiener

process 𝑊 𝑧, such that the sample paths of the associated reflected OU-process 𝑀𝜌

on 𝐹 with 𝜌 = 𝐼Γ satisfy the following: for 𝑙 ∈ 𝐷(𝐴) ∩𝐻1

⟨𝑙, 𝑋𝑡−𝑋0⟩ =
∫ 𝑡

0

⟨𝑙, 𝑑𝑊 𝑧
𝑠 ⟩−

1

2

∫ 𝑡

0

⟨𝑙,nΓ(𝑋𝑠)⟩𝑑𝐿∥∂Γ∥
𝑠 −

∫ 𝑡

0

⟨𝐴𝑙,𝑋𝑠⟩𝑑𝑠 ∀𝑡 ≥ 0 𝑃𝑧 − 𝑎.𝑒.

where nΓ := 𝐷𝑔
∣𝐷𝑔∣ is the exterior normal to Γ and

∥∂Γ∥(𝑑𝑦) = ∣𝐷𝑔(𝑦)∣
∣𝑄1/2𝐷𝑔(𝑦)∣𝜇∂Γ(𝑑𝑦),

where 𝜇∂Γ is the surface measure induced by 𝜇 (c.f [BDT09], [BDT10], [Ma97]).

Remark 2.4.5 It can be shown that for 𝑥 ∈ ∂Γ, nΓ(𝑥) = 𝐷𝑔
∣𝐷𝑔∣ is the exterior

normal to Γ, i.e the unique element in 𝐻 of unit length such that

⟨nΓ(𝑥), 𝑦 − 𝑥⟩ ≤ 0 ∀𝑦 ∈ Γ.

2.4.2 Existence and uniqueness of solutions

Let Γ ⊂ 𝐻 and our linear operator 𝐴 satisfy Hypothesis 2.4.1 and Hypothesis 2.1.1,

respectively. Consider the following stochastic differential inclusion in the Hilbert
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space 𝐻, {
𝑑𝑋(𝑡) + (𝐴𝑋(𝑡) +𝑁Γ(𝑋(𝑡)))𝑑𝑡 ∋ 𝑑𝑊 (𝑡),

𝑋(0) = 𝑥,
(2.4.2)

where 𝑊 (𝑡) is a cylindrical Wiener process in 𝐻 on a filtered probability space

(Ω,ℱ ,ℱ𝑡, 𝑃 ) and 𝑁Γ(𝑥) is the normal cone to Γ at 𝑥, i.e.

𝑁Γ(𝑥) = {𝑧 ∈ 𝐻 : ⟨𝑧, 𝑦 − 𝑥⟩ ≤ 0 ∀𝑦 ∈ Γ}.

Definition 2.4.6 A pair of continuous 𝐻 × ℝ-valued and ℱ𝑡-adapted processes

(𝑋(𝑡), 𝐿(𝑡)), 𝑡 ∈ [0, 𝑇 ], is called a solution of (2.4.2) if the following conditions hold.

(i) 𝑋(𝑡) ∈ Γ for all 𝑡 ∈ [0, 𝑇 ] 𝑃 − 𝑎.𝑠.;

(ii) 𝐿 is an increasing process with the property that

𝐼∂Γ(𝑋𝑠)𝑑𝐿𝑠 = 𝑑𝐿𝑠 𝑃 − 𝑎.𝑠.

and for any 𝑙 ∈ 𝐷(𝐴) we have

⟨𝑙, 𝑋𝑡 − 𝑥⟩ =
∫ 𝑡

0

⟨𝑙, 𝑑𝑊𝑠⟩ −
∫ 𝑡

0

⟨𝑙,nΓ(𝑋𝑠)⟩𝑑𝐿𝑠 −
∫ 𝑡

0

⟨𝐴𝑙,𝑋𝑠⟩𝑑𝑠 ∀𝑡 ≥ 0 𝑃 − 𝑎.𝑠.

where nΓ is the exterior normal to Γ.

Remark 2.4.7 By Remark 2.4.5 we know that nΓ(𝑥) ∈ 𝑁Γ(𝑥) for all 𝑥 ∈ ∂Γ.

Hence by Definition 2.4.6 (ii) it follows that Definition 2.4.6 is appropriate to define

a solution for the multi-valued equation (2.4.2).

We denote the semigroup with the infinitesimal generator −𝐴 by 𝑆(𝑡), 𝑡 ≥ 0.

Definition 2.4.8 A pair of continuous 𝐻 × ℝ valued and ℱ𝑡-adapted processes

(𝑋(𝑡), 𝐿(𝑡)), 𝑡 ∈ [0, 𝑇 ] is called a mild solution of (2.4.2) if

(i) 𝑋(𝑡) ∈ Γ for all 𝑡 ∈ [0, 𝑇 ] 𝑃 − 𝑎.𝑠.;

(ii) 𝐿 is an increasing process with the property

𝐼∂Γ(𝑋𝑠)𝑑𝐿𝑠 = 𝑑𝐿𝑠 𝑃 − 𝑎.𝑠.

and

𝑋𝑡 = 𝑆(𝑡)𝑥+

∫ 𝑡

0

𝑆(𝑡− 𝑠)𝑑𝑊𝑠 −
∫ 𝑡

0

𝑆(𝑡− 𝑠)nΓ(𝑋𝑠)𝑑𝐿𝑠 ∀𝑡 ∈ [0, 𝑇 ] 𝑃 − 𝑎.𝑠.

where nΓ is the exterior normal to Γ. In particular, the appearing integrals have to

be well defined.
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Lemma 2.4.9 The process given by∫ 𝑡

0

𝑆(𝑡− 𝑠)nΓ(𝑋𝑠)𝑑𝐿𝑠

is 𝑃 -a.s. continuous and adapted to ℱ𝑡, 𝑡 ∈ [0, 𝑇 ]. This especially implies that it is

predictable.

Proof As ∣𝑆(𝑡−𝑠)nΓ(𝑋𝑠)∣ ≤𝑀𝑇 ∣nΓ(𝑋𝑠)∣, 𝑠 ∈ [0, 𝑇 ], the integrals
∫ 𝑡
0
𝑆(𝑡−𝑠)nΓ(𝑋𝑠)𝑑𝐿𝑠, 𝑡 ∈

[0, 𝑇 ], are well defined. For 0 ≤ 𝑠 ≤ 𝑡 ≤ 𝑇 ,

∣
∫ 𝑠

0

𝑆(𝑠− 𝑢)nΓ(𝑋𝑢)𝑑𝐿𝑢 −
∫ 𝑡

0

𝑆(𝑡− 𝑢)nΓ(𝑋𝑢)𝑑𝐿𝑢∣

≤∣
∫ 𝑠

0

[𝑆(𝑠− 𝑢)− 𝑆(𝑡− 𝑢)]nΓ(𝑋𝑢)𝑑𝐿𝑢∣+ ∣
∫ 𝑡

𝑠

𝑆(𝑡− 𝑢)nΓ(𝑋𝑢)𝑑𝐿𝑢∣

≤
∫ 𝑠

0

∣[𝑆(𝑠− 𝑢)− 𝑆(𝑡− 𝑢)]nΓ(𝑋𝑢)∣𝑑𝐿𝑢 +
∫ 𝑡

𝑠

∣𝑆(𝑡− 𝑢)nΓ(𝑋𝑢)∣𝑑𝐿𝑢,

where the first summand converges to zero as 𝑠 ↑ 𝑡 or 𝑡 ↓ 𝑠, because

∣1[0,𝑠)(𝑢)[𝑆(𝑠− 𝑢)− 𝑆(𝑡− 𝑢)]nΓ(𝑋𝑢)∣ → 0 as 𝑠 ↑ 𝑡 or 𝑡 ↓ 𝑠.

For the second summand we have∫ 𝑡

𝑠

∣𝑆(𝑡− 𝑢)nΓ(𝑋𝑢)∣𝑑𝐿𝑢 ≤𝑀𝑇 (𝐿𝑡 − 𝐿𝑠) → 0 as 𝑠 ↑ 𝑡 or 𝑡 ↓ 𝑠.

By the same arguments as in [Ro10, Lemma 5.1.9] we conclude that the integral is

adapted to ℱ𝑡, 𝑡 ∈ [0, 𝑇 ]. □

Theorem 2.4.10 (𝑋(𝑡), 𝐿𝑡), 𝑡 ∈ [0, 𝑇 ], is a solution of (2.4.2) if and only if it is

a mild solution.

Proof (⇒) First, we prove that for arbitrary 𝜁 ∈ 𝐶1([0, 𝑇 ], 𝐷(𝐴)) the following

equation holds:

⟨𝑋𝑡, 𝜁𝑡⟩ = ⟨𝑥, 𝜁0⟩+
∫ 𝑡

0

⟨𝜁𝑠, 𝑑𝑊𝑠⟩−
∫ 𝑡

0

⟨nΓ(𝑋𝑠), 𝜁𝑠⟩𝑑𝐿𝑠+
∫ 𝑡

0

⟨𝑋𝑠,−𝐴𝜁𝑠+𝜁 ′𝑠⟩𝑑𝑠 ∀𝑡 ≥ 0 𝑃−𝑎.𝑠..
(2.4.3)

If 𝜁𝑠 = 𝜂𝑓𝑠 for 𝑓 ∈ 𝐶1([0, 𝑇 ]) and 𝜂 ∈ 𝐷(𝐴), by Itô’s formula we have the above

relation for such 𝜁. Then by [Ro10, Lemma G.0.10] and the same arguments as the

proof of Proposition G.0.11 we obtain the above formula for all 𝜁 ∈ 𝐶1([0, 𝑇 ], 𝐷(𝐴)).

As in [Ro10, Proposition G.0.11], for the resolvent 𝑅𝑛 := (𝑛 + 𝐴)−1 : 𝐻 → 𝐷(𝐴)
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and 𝑡 ∈ [0, 𝑇 ] choosing 𝜁𝑠 := 𝑆(𝑡− 𝑠)𝑛𝑅𝑛𝜂, 𝜂 ∈ 𝐻, we deduce from (2.4.3) that

⟨𝑋𝑡, 𝑛𝑅𝑛𝜂⟩ =⟨𝑥, 𝑆(𝑡)𝑛𝑅𝑛𝜂⟩+
∫ 𝑡

0

⟨𝑆(𝑡− 𝑠)𝑛𝑅𝑛𝜂, 𝑑𝑊𝑠⟩ −
∫ 𝑡

0

⟨nΓ(𝑋𝑠), 𝑆(𝑡− 𝑠)𝑛𝑅𝑛𝜂⟩𝑑𝐿𝑠

+

∫ 𝑡

0

⟨𝑋𝑠, 𝐴𝑆(𝑡− 𝑠)𝑛𝑅𝑛𝜂⟩+ ⟨𝑋𝑠,−𝐴𝑆(𝑡− 𝑠)𝑛𝑅𝑛𝜂⟩𝑑𝑠

=⟨𝑆(𝑡)𝑥+
∫ 𝑡

0

𝑆(𝑡− 𝑠)𝑑𝑊𝑠 +

∫ 𝑡

0

𝑆(𝑡− 𝑠)nΓ(𝑋𝑠)𝑑𝐿𝑠, 𝑛𝑅𝑛𝜂⟩ ∀𝑡 ∈ [0, 𝑇 ] 𝑃 − 𝑎.𝑠..

Letting 𝑛→ ∞, we conclude that (𝑋(𝑡), 𝐿𝑡), 𝑡 ∈ [0, 𝑇 ], is a mild solution.

(⇐) By Lemma 2.4.9 and [Ro10, Theorem 5.1.3], we have∫ 𝑡

0

𝑆(𝑡− 𝑠)nΓ(𝑋𝑠)𝑑𝐿𝑠 and

∫ 𝑡

0

𝑆(𝑡− 𝑠)𝑑𝑊𝑠, 𝑡 ∈ [0, 𝑇 ],

have predictable versions. And we use the same notation for the predictable versions

of the respective processes. As (𝑋𝑡, 𝐿𝑡) is a mild solution, for all 𝜂 ∈ 𝐷(𝐴) we get∫ 𝑡

0

⟨𝑋𝑠, 𝐴𝜂⟩𝑑𝑠 =
∫ 𝑡

0

⟨𝑆(𝑠)𝑥,𝐴𝜂⟩𝑑𝑠−
∫ 𝑡

0

⟨
∫ 𝑠

0

𝑆(𝑠− 𝑢)nΓ(𝑋𝑢)𝑑𝐿𝑢, 𝐴𝜂⟩𝑑𝑠

+

∫ 𝑡

0

⟨
∫ 𝑠

0

𝑆(𝑠− 𝑢)𝑑𝑊𝑢, 𝐴𝜂⟩𝑑𝑠 ∀𝑡 ∈ [0, 𝑇 ] 𝑃 − 𝑎.𝑠..

The assertion that (𝑋(𝑡), 𝐿𝑡), 𝑡 ∈ [0, 𝑇 ], is a solution of (2.4.2) now follows as in the

proof of [Ro10, Proposition G.0.9] because∫ 𝑡

0

⟨
∫ 𝑠

0

𝑆(𝑠− 𝑢)nΓ(𝑋𝑢)𝑑𝐿𝑢, 𝐴𝜂⟩𝑑𝑠 =
∫ 𝑡

0

∫ 𝑠

0

⟨nΓ(𝑋𝑢),− 𝑑

𝑑𝑠
𝑆(𝑠− 𝑢)𝜂⟩𝑑𝐿𝑢𝑑𝑠

=− ⟨
∫ 𝑡

0

𝑆(𝑡− 𝑠)nΓ(𝑋𝑠)𝑑𝐿𝑠, 𝜂⟩+ ⟨
∫ 𝑡

0

nΓ(𝑋𝑠)𝑑𝐿𝑠, 𝜂⟩.

□

Below, we prove (2.4.2) has a unique solution in the sense of Definition 2.4.6.

Theorem 2.4.11 Let Γ ⊂ 𝐻 satisfy Hypothesis 2.4.1. Then the stochastic inclu-

sion (2.4.2) admits at most one solution in the sense of Definition 2.4.6.

Proof Let (𝑢, 𝐿1) and (𝑣, 𝐿2) be two solutions of (2.4.2), and let {𝑒𝑘}𝑘∈𝑁 be the

eigenbasis of 𝐴 from above. We then have

⟨𝑒𝑘, 𝑢(𝑡)−𝑣(𝑡)⟩+
∫ 𝑡

0

⟨𝛼𝑘𝑒𝑘, 𝑢(𝑠)−𝑣(𝑠)⟩𝑑𝑠+
∫ 𝑡

0

⟨𝑒𝑘,nΓ(𝑢(𝑠))⟩𝑑𝐿1
𝑠−

∫ 𝑡

0

⟨𝑒𝑘,nΓ(𝑣(𝑠))⟩𝑑𝐿2
𝑠 = 0
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Setting 𝜙𝑘(𝑡) := ⟨𝑒𝑘, 𝑢(𝑡)− 𝑣(𝑡)⟩, we obtain

𝜙2
𝑘(𝑡) =2

∫ 𝑡

0

𝜙𝑘(𝑠)𝑑𝜙𝑘(𝑠)

=− 2(

∫ 𝑡

0

⟨𝛼𝑘𝑒𝑘, 𝑢(𝑠)− 𝑣(𝑠)⟩⟨𝑒𝑘, 𝑢(𝑠)− 𝑣(𝑠)⟩𝑑𝑠+
∫ 𝑡

0

⟨𝑒𝑘,nΓ(𝑢(𝑠))⟩⟨𝑒𝑘, 𝑢(𝑠)− 𝑣(𝑠)⟩𝑑𝐿1
𝑠

−
∫ 𝑡

0

⟨𝑒𝑘,nΓ(𝑣(𝑠))⟩⟨𝑒𝑘, 𝑢(𝑠)− 𝑣(𝑠)⟩𝑑𝐿2
𝑠)

≤− 2

∫ 𝑡

0

⟨𝑒𝑘,nΓ(𝑢(𝑠))⟩⟨𝑒𝑘, 𝑢(𝑠)− 𝑣(𝑠)⟩𝑑𝐿1
𝑠 + 2

∫ 𝑡

0

⟨𝑒𝑘,nΓ(𝑣(𝑠))⟩⟨𝑒𝑘, 𝑢(𝑠)− 𝑣(𝑠)⟩𝑑𝐿2
𝑠.

(2.4.4)

By dominated convergence theorem for all 𝑡 ≥ 0 we have 𝑃 − 𝑎.𝑠:

∑
𝑘≤𝑁

∫ 𝑡

0

⟨𝑒𝑘,nΓ(𝑢(𝑠))⟩⟨𝑒𝑘, 𝑢(𝑠)− 𝑣(𝑠)⟩𝑑𝐿1
𝑠

→
∫ 𝑡

0

⟨nΓ(𝑢(𝑠)), 𝑢(𝑠)− 𝑣(𝑠)⟩𝑑𝐿1
𝑠 as 𝑁 → ∞,

and ∑
𝑘≤𝑁

∫ 𝑡

0

⟨𝑒𝑘,nΓ(𝑣(𝑠))⟩⟨𝑒𝑘, 𝑢(𝑠)− 𝑣(𝑠)⟩𝑑𝐿2
𝑠

→
∫ 𝑡

0

⟨nΓ(𝑣(𝑠)), 𝑢(𝑠)− 𝑣(𝑠)⟩𝑑𝐿2
𝑠 as 𝑁 → ∞.

Summing over 𝑘 ≤ 𝑁 in (2.4.4) and letting 𝑁 → ∞ yield that for all 𝑡 ≥ 0 𝑃 − 𝑎.𝑠

∣𝑢(𝑡)− 𝑣(𝑡)∣2 ≤ 2

∫ 𝑡

0

⟨nΓ(𝑢(𝑠)), 𝑣(𝑠)− 𝑢(𝑠)⟩𝑑𝐿1
𝑠 + 2

∫ 𝑡

0

⟨nΓ(𝑣(𝑠)), 𝑢(𝑠)− 𝑣(𝑠)⟩𝑑𝐿2
𝑠

By Remark 2.4.5 it follows that

∣𝑢(𝑡)− 𝑣(𝑡)∣2 ≤ 0,

which implies

𝑢(𝑡) = 𝑣(𝑡),

and thus

𝐿1(𝑡) = 𝐿2(𝑡).

□

Combining Theorem 2.4.4 and 2.4.11 with the Yamada-Watanabe Theorem, we

now obtain the following:
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Theorem 2.4.12 If Γ satisfies Hypothesis 2.4.1, then there exists a Borel set

𝑀 ⊂ 𝐻 with

𝐼Γ⋅𝜇(𝑀) = 𝜇(Γ) such that for every 𝑥 ∈𝑀 , (2.4.2) has a pathwise unique continuous

strong solution in the sense that for every probability space (Ω,ℱ ,ℱ𝑡, 𝑃 ) with an

ℱ𝑡-Wiener process 𝑊 , there exists a unique pair of ℱ𝑡-adapted processes (𝑋,𝐿)

satisfying Definition 2.4.6 and 𝑃 (𝑋0 = 𝑥) = 1. Moreover 𝑋(𝑡) ∈ 𝑀 for all 𝑡 ≥ 0

𝑃 -a.s.

Proof By Theorem 2.4.4 and Theorem 2.4.11, one sees that [Ku07, Theorem 3.14]

a) is satisfied for the solution (𝑋,𝐿). So, the assertion follows from [Ku07, Theorem

3.14] b). □

Remark 2.4.13 Following the same arguments as in the proof of [RSZ08, Theo-

rem 2.1], we can give an alternative proof of Theorem 2.4.12 for a stronger notion

of strong solutions (see 2.6 Appendix). Also, because of Theorem 2.4.10, by a mod-

ification of [On04, Theorem 12.1], we can prove the Yamada Watanabe Theorem

for the mild solution in Definition 2.4.8, and then also a corresponding version of

Theorem 2.4.12 for mild solutions for (2.4.2). This will be contained in forthcoming

work.

2.4.3 The non-symmetric case

In this section, we extend our results to the non-symmetric case. For Γ ⊂ 𝐻

satisfying Hypothesis 2.4.1, we consider the non-symmetric Dirichlet form,

ℰΓ(𝑢, 𝑣) =

∫
Γ

(
1

2
⟨𝐷𝑢(𝑧), 𝐷𝑣(𝑧)⟩+ ⟨𝐵(𝑧), 𝐷𝑢(𝑧)⟩𝑣(𝑧))𝜇(𝑑𝑧), 𝑢, 𝑣 ∈ 𝐶1

𝑏 (Γ),

where 𝐵 is a map from Γ to 𝐻 such that

𝐵 ∈ 𝐿∞(Γ → 𝐻,𝜇),

∫
Γ

⟨𝐵,𝐷𝑢⟩𝑑𝜇 ≥ 0 for all 𝑢 ∈ 𝐶1
𝑏 (Γ), 𝑢 ≥ 0. (2.4.5)

Then (ℰ , 𝐶1
𝑏 (Γ)) is a densely defined bilinear form on 𝐿2(Γ;𝜇) which is positive

definite, since for all 𝑢 ∈ 𝐶1
𝑏 (Γ)

ℰΓ(𝑢, 𝑢) =

∫
Γ

1

2
(⟨𝐷𝑢(𝑧), 𝐷𝑢(𝑧)⟩+ ⟨𝐵(𝑧), 𝐷𝑢2(𝑧)⟩(𝑧))𝜇(𝑑𝑧) ≥ 0.

Furthermore, by the same argument as [MR92, II.3.e] we have (ℰ , 𝐶1
𝑏 (Γ)) is

closable on 𝐿2(Γ, 𝜇) and its closure (ℰΓ,ℱΓ) is a Dirichlet form on 𝐿2(Γ, 𝜇). We

denote the extended Dirichlet space of (ℰΓ,ℱΓ) by ℱΓ
𝑒 : Recall that 𝑢 ∈ ℱΓ

𝑒 if and

only if ∣𝑢∣ < ∞ 𝐼Γ ⋅ 𝜇 − 𝑎.𝑒. and there exists a sequence {𝑢𝑛} in ℱΓ such that
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ℰΓ(𝑢𝑚− 𝑢𝑛, 𝑢𝑚− 𝑢𝑛) → 0 as 𝑛 ≥ 𝑚→ ∞ and 𝑢𝑛 → 𝑢 𝐼Γ ⋅𝜇− 𝑎.𝑒. as 𝑛→ ∞. This

Dirichlet form satisfies the weak sector condition

∣ℰΓ
1 (𝑢, 𝑣)∣ ≤ 𝐾ℰΓ

1 (𝑢, 𝑢)
1/2ℰΓ

1 (𝑣, 𝑣)
1/2.

Furthermore, we have:

Theorem 2.4.14 Suppose Γ ⊂ 𝐻 satisfies Hypothesis 2.4.1. Then (ℰΓ,ℱΓ) is a

quasi-regular local Dirichlet form on 𝐿2(Γ;𝜇).

Proof The assertion follows by [MR92 IV,4b] and [RS92]. □
By virtue of Theorem 2.4.14 and [MR92], there exists a diffusion process 𝑀Γ =

(𝑋𝑡, 𝑃𝑧) on Γ associated with the Dirichlet form (ℰΓ,ℱΓ). Since constant functions

are in ℱΓ and ℰΓ(1, 1) = 0, 𝑀Γ is recurrent and conservative. We denote by AΓ
+ the

set of all positive continuous additive functionals (PCAF in abbreviation) of 𝑀Γ,

and define AΓ = AΓ
+ −AΓ

+. For 𝐴 ∈ AΓ, its total variation process is denoted by

{𝐴}. We also define AΓ
0 = {𝐴 ∈ AΓ∣𝐸𝐼Γ⋅𝜇({𝐴}𝑡) <∞ ∀𝑡 > 0}. Each element in AΓ

+

has a corresponding positive ℰΓ-smooth measure on Γ by the Revuz correspondence.

The totality of such measures will be denoted by 𝑆Γ
+. Accordingly, A

Γ corresponds to

𝑆Γ = 𝑆Γ
+−𝑆Γ

+, the set of all ℰΓ-smooth signed measure in the sense that 𝐴𝑡 = 𝐴1
𝑡−𝐴2

𝑡

for 𝐴𝑘𝑡 ∈ A𝜌
+, 𝑘 = 1, 2 whose Revuz measures are 𝜈𝑘, 𝑘 = 1, 2 and 𝜈 = 𝜈1 − 𝜈2 is the

Hahn-Jordan decomposition of 𝜈. The element of A corresponding to 𝜈 ∈ 𝑆 will be

denoted by𝐴𝜈 .

Note that for each 𝑙 ∈ 𝐻 the function 𝑢(𝑧) = ⟨𝑙, 𝑧⟩ belongs to the extended

Dirichlet space ℱΓ
𝑒 and

ℰΓ(𝑙(⋅), 𝑣) =
∫
Γ

(
1

2
⟨𝑙, 𝐷𝑣(𝑧)⟩+ ⟨𝐵(𝑧), 𝑙⟩𝑣(𝑧))𝜇(𝑑𝑧) ∀𝑣 ∈ 𝐶1

𝑏 (Γ). (2.4.6)

On the other hand, the AF ⟨𝑙, 𝑋𝑡−𝑋0⟩ of𝑀Γ admits a decomposition into a sum of

a martingale AF (𝑀𝑡) of finite energy and CAF (𝑁𝑡) of zero energy. More precisely,

for every 𝑙 ∈ 𝐻

⟨𝑙, 𝑋𝑡 −𝑋0⟩ =𝑀 𝑙
𝑡 +𝑁 𝑙

𝑡 ∀𝑡 ≥ 0 𝑃𝑧 − 𝑎.𝑠. (2.4.7)

for ℰ𝜌-q.e. 𝑧 ∈ Γ.

Then we have the following:

Theorem 2.4.15 Suppose Γ ⊂ 𝐻 satisfies Hypothesis 2.4.1.

(1) The next three conditions are equivalent:

(i)𝑁 𝑙 ∈ 𝐴0.

(ii)∣ℰΓ(𝑙(⋅), 𝑣)∣ ≤ 𝐶∥𝑣∥∞ ∀𝑣 ∈ 𝐶1
𝑏 (Γ).
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(iii) There exists a finite (unique) signed measure 𝜈𝑙 on Γ such that

ℰΓ(𝑙(⋅), 𝑣) = −
∫
Γ

𝑣(𝑧)𝜈𝑙(𝑑𝑧) ∀𝑣 ∈ 𝐶1
𝑏 (Γ). (2.4.8)

In this case, 𝜈𝑙 is automatically smooth, and

𝑁 𝑙 = 𝐴𝜈𝑙 .

(2) 𝑀 𝑙 is a martingale AF with quadratic variation process

⟨𝑀 𝑙⟩𝑡 = 𝑡∣𝑙∣2, 𝑡 ≥ 0. (2.4.9)

Proof (1) By [Os88, Theorem 5.2.7] and the same arguments as in [Fu99], we can

extend Theorem 6.2 in [Fu99] to our nonsymmetric case to prove the assertions.

(2)Since

ℰΓ(𝑢, 𝑣) =

∫
Γ

(
1

2
⟨𝐷𝑢(𝑧), 𝐷𝑣(𝑧)⟩+ ⟨𝐵(𝑧), 𝐷𝑢(𝑧)⟩𝑣(𝑧))𝜇(𝑑𝑧), 𝑢, 𝑣 ∈ ℱΓ,

by [Os88 Theorem 5.1.5] for 𝑢 ∈ 𝐶1
𝑏 (Γ), 𝑓 ∈ ℱΓ bounded we have∫

𝑓(𝑥)𝜇⟨𝑀 [𝑢]⟩(𝑑𝑥) =2ℰΓ(𝑢, 𝑢𝑓)− ℰΓ(𝑢2, 𝑓)

=2

∫
Γ

(
1

2
⟨𝐷𝑢(𝑧), 𝐷(𝑢𝑓)(𝑧)⟩+ ⟨𝐵(𝑧), 𝐷𝑢(𝑧)⟩𝑢(𝑧)𝑓(𝑧))𝜇(𝑑𝑧)

−
∫
Γ

(
1

2
⟨𝐷(𝑢(𝑧)2), 𝐷𝑓(𝑧)⟩+ ⟨𝐵(𝑧), 𝐷(𝑢2)(𝑧)⟩𝑓(𝑧))𝜇(𝑑𝑧)

=

∫
Γ

⟨𝐷𝑢(𝑧), 𝐷𝑢(𝑧)⟩𝑓(𝑧)𝜇(𝑑𝑧).

Here 𝑓 denotes the ℰΓ-quasi-continuous version of 𝑓 , 𝜇⟨𝑀 [𝑢]⟩ is the Reuvz measure

for ⟨𝑀 [𝑢]⟩ and 𝑀 [𝑢] is the martingale additive functional in the Fukushima decom-

position for 𝑢(𝑋𝑡). Hence we have

𝜇⟨𝑀 [𝑢]⟩(𝑑𝑧) = 𝐼Γ⟨𝐷𝑢(𝑧), 𝐷𝑢(𝑧)⟩ ⋅ 𝜇(𝑑𝑧).

By [Os88, (5.1.3)] we also have

𝑒(⟨𝑀 𝑙⟩) = 𝑒(𝑀 𝑙) =

∫
Γ

1

2
⟨𝑙, 𝑙⟩𝜇(𝑑𝑧)

where 𝑒(𝑀 𝑙) is the energy of 𝑀 𝑙. Then (2.4.9) easily follows. □
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By Theorem 2.2.1 we can now prove the following:

Theorem 2.4.16 Suppose Γ ⊂ 𝐻 satisfies Hypothesis 2.4.1. Then there is an ℰΓ-

exceptional set 𝑆 ⊂ Γ such that ∀𝑧 ∈ Γ∖𝑆, under 𝑃𝑧 there exists an ℳ𝑡- cylindrical

Wiener process 𝑊 𝑧, such that the sample paths of the associated OU-process 𝑀Γ

on Γ satisfy the following: for 𝑙 ∈ 𝐷(𝐴) ∩𝐻1

⟨𝑙, 𝑋𝑡−𝑋0⟩ =
∫ 𝑡

0

⟨𝑙, 𝑑𝑊 𝑧
𝑠 ⟩−

1

2

∫ 𝑡

0
𝐻1⟨𝑙,nΓ(𝑋𝑠)⟩𝐻∗

1
𝑑𝐿∥∂Γ∥

𝑠 −
∫ 𝑡

0

⟨𝐴𝑙,𝑋𝑠⟩𝑑𝑠−
∫ 𝑡

0

⟨𝑙, 𝐵(𝑋𝑠)⟩𝑑𝑠 𝑃𝑧−a.s.

(2.4.11)

Here, 𝐿
∥∂Γ∥
𝑡 is the real valued PCAF associated with ∥∂Γ∥ by the Revuz correspon-

dence, which has the following additional property: ∀𝑧 ∈ Γ∖𝑆

𝐼∂Γ(𝑋𝑠)𝑑𝐿
∥∂Γ∥
𝑠 = 𝑑𝐿∥∂Γ∥

𝑠 𝑃𝑧 − 𝑎.𝑠.. (2.4.12)

Here nΓ := 𝐷𝑔
∣𝐷𝑔∣ is the exterior normal to Γ, and

∥∂Γ∥(𝑑𝑦) = ∣𝐷𝑔(𝑦)∣
∣𝑄1/2𝐷𝑔(𝑦)∣𝜇∂Γ(𝑑𝑦),

where 𝜇∂Γ the surface measure induced by 𝜇.

Proof By (2.4.6) and (2.2.16) we have

ℰΓ(𝑙(⋅), 𝑣) =
∫
Γ

1

2
⟨𝑙, 𝐷𝑣(𝑧)⟩+ ⟨𝐵(𝑧), 𝑙⟩𝑣(𝑧)𝜇(𝑑𝑧)

=

∫
Γ

⟨𝐵(𝑧), 𝑙⟩𝑣(𝑧)𝜇(𝑑𝑧) +
∫
Γ

𝑣(𝑧)⟨𝐴𝑙, 𝑧⟩𝜇(𝑑𝑧) + 1

2

∫
∂Γ

𝑣(𝑧)⟨𝑙,nΓ(𝑧)⟩∥∂Γ∥(𝑑𝑧).

Thus, by Theorem 2.4.15

𝑁 𝑙
𝑡 = −⟨𝐴𝑙,

∫ 𝑡

0

𝑋𝑠(𝜔)𝑑𝑠⟩ − ⟨𝑙,
∫ 𝑡

0

𝐵(𝑋𝑠(𝜔))𝑑𝑠⟩ − 1

2
⟨𝑙,

∫ 𝑡

0

nΓ(𝑋𝑠(𝜔))𝑑𝐿
∥∂Γ∥
𝑠 (𝜔)⟩.

By Theorem 2.4.15 and the same method as in Theorem 2.2.2 one then proves the

first assertion, and the last assertion follows by Theorem 2.4.3 and 2.4.4. □

Let Γ ⊂ 𝐻 and our linear operator 𝐴 satisfy Hypothesis 2.4.1 and Hypothesis

2.1.1, respectively. As in Section 2.4.2 we shall now prove the existence and unique-

ness of a solution of the following stochastic differential inclusion on the Hilbert

space 𝐻,{
𝑑𝑋(𝑡) + (𝐴𝑋(𝑡) +𝐵(𝑋(𝑡)) +𝑁Γ(𝑋(𝑡)))𝑑𝑡 ∋ 𝑑𝑊 (𝑡),

𝑋(0) = 𝑥,
(2.4.13)
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where 𝐵 satisfies condition (2.4.5), 𝑊 (𝑡) is a cylindrical Wiener process in 𝐻 on a

filtered probability space (Ω,ℱ ,ℱ𝑡, 𝑃 ) and 𝑁Γ(𝑥) is the normal cone to Γ at 𝑥, i.e.

𝑁Γ(𝑥) = {𝑧 ∈ 𝐻 : ⟨𝑧, 𝑦 − 𝑥⟩ ≤ 0 ∀𝑦 ∈ Γ}.

Definition 2.4.17 A pair of continuous 𝐻 ×ℝ-valued and ℱ𝑡-adapted processes

(𝑋(𝑡), 𝐿(𝑡)), 𝑡 ∈ [0, 𝑇 ], is called a solution of (2.4.13) if the following conditions hold.

(i) 𝑋(𝑡) ∈ Γ for all 𝑡 ∈ [0, 𝑇 ] 𝑃 -a.s;

(ii) 𝐿 is an increasing process with the property that

𝐼∂Γ(𝑋𝑠)𝑑𝐿𝑠 = 𝑑𝐿𝑠 𝑃 − 𝑎.𝑠,

and for any 𝑙 ∈ 𝐷(𝐴) we have

⟨𝑙, 𝑋𝑡−𝑥⟩ =
∫ 𝑡

0

⟨𝑙, 𝑑𝑊𝑠⟩−
∫ 𝑡

0

⟨𝑙,nΓ(𝑋𝑠)⟩𝑑𝐿𝑠−
∫ 𝑡

0

⟨𝑙, 𝐵(𝑋𝑠)⟩𝑑𝑠−
∫ 𝑡

0

⟨𝐴𝑙,𝑋𝑠⟩𝑑𝑠 ∀𝑡 ≥ 0 𝑃−𝑎.𝑠.,

where nΓ is the exterior normal to Γ.

Below we prove (2.4.13) has a unique solution in the sense of Definition 2.4.17.

Theorem 2.4.18 Let Γ ⊂ 𝐻 satisfy Hypothesis 2.4.1 and 𝐵 satisfy the mono-

tonicity condition

⟨𝐵(𝑢)−𝐵(𝑣), 𝑢− 𝑣⟩ ≥ −𝛼∣𝑢− 𝑣∣2 (2.4.14)

for all 𝑢, 𝑣 ∈ Γ, for some 𝛼 ∈ [0,∞) independent of 𝑢, 𝑣. The stochastic inclusion

(2.4.13) admits at most one solution in the sense of Definition 2.4.17.

Proof Let (𝑢, 𝐿1) and (𝑣, 𝐿2) be two solutions of (2.4.13), and let {𝑒𝑘}𝑘∈𝑁 be the

eigenbasis of 𝐴 from above. We then have

⟨𝑒𝑘, 𝑢(𝑡)− 𝑣(𝑡)⟩+
∫ 𝑡

0

⟨𝛼𝑘𝑒𝑘, 𝑢(𝑠)− 𝑣(𝑠)⟩𝑑𝑠+
∫ 𝑡

0

⟨𝑒𝑘, 𝐵(𝑢(𝑠))−𝐵(𝑣(𝑠))⟩𝑑𝑠

+

∫ 𝑡

0

⟨𝑒𝑘,nΓ(𝑢(𝑠))⟩𝑑𝐿1
𝑠 −

∫ 𝑡

0

⟨𝑒𝑘,nΓ(𝑣(𝑠))⟩𝑑𝐿2
𝑠 = 0.
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Setting 𝜙𝑘(𝑡) := ⟨𝑒𝑘, 𝑢(𝑡)− 𝑣(𝑡)⟩, and we have

𝜙2
𝑘(𝑡) =2

∫ 𝑡

0

𝜙𝑘(𝑠)𝑑𝜙𝑘(𝑠)

=− 2(

∫ 𝑡

0

⟨𝛼𝑘𝑒𝑘, 𝑢(𝑠)− 𝑣(𝑠)⟩⟨𝑒𝑘, 𝑢(𝑠)− 𝑣(𝑠)⟩𝑑𝑠

+

∫ 𝑡

0

⟨𝑒𝑘, 𝐵(𝑢(𝑠))−𝐵(𝑣(𝑠))⟩⟨𝑒𝑘, 𝑢(𝑠)− 𝑣(𝑠)⟩𝑑𝑠

+

∫ 𝑡

0

⟨𝑒𝑘,nΓ(𝑢(𝑠))⟩⟨𝑒𝑘, 𝑢(𝑠)− 𝑣(𝑠)⟩𝑑𝐿1
𝑠 −

∫ 𝑡

0

⟨𝑒𝑘,nΓ(𝑣(𝑠))⟩⟨𝑒𝑘, 𝑢(𝑠)− 𝑣(𝑠)⟩𝑑𝐿2
𝑠)

≤− 2

∫ 𝑡

0

⟨𝑒𝑘, 𝐵(𝑢(𝑠))−𝐵(𝑣(𝑠))⟩⟨𝑒𝑘, 𝑢(𝑠)− 𝑣(𝑠)⟩𝑑𝑠

− 2

∫ 𝑡

0

⟨𝑒𝑘,nΓ(𝑢(𝑠))⟩⟨𝑒𝑘, 𝑢(𝑠)− 𝑣(𝑠)⟩𝑑𝐿1
𝑠 + 2

∫ 𝑡

0

⟨𝑒𝑘,nΓ(𝑣(𝑠))⟩⟨𝑒𝑘, 𝑢(𝑠)− 𝑣(𝑠)⟩𝑑𝐿2
𝑠.

(2.4.15)

By the same argument as Theorem 2.4.11, we have the following 𝑃 − 𝑎.𝑠:

∑
𝑘≤𝑁

∫ 𝑡

0

⟨𝑒𝑘, 𝐵(𝑢(𝑠))−𝐵(𝑣(𝑠))⟩⟨𝑒𝑘, 𝑢(𝑠)− 𝑣(𝑠)⟩𝑑𝑠

→
∫ 𝑡

0

⟨𝐵(𝑢(𝑠))−𝐵(𝑣(𝑠)), 𝑢(𝑠)− 𝑣(𝑠)⟩𝑑𝑠 as 𝑁 → ∞,

∑
𝑘≤𝑁

∫ 𝑡

0

⟨𝑒𝑘,nΓ(𝑢(𝑠))⟩⟨𝑒𝑘, 𝑢(𝑠)− 𝑣(𝑠)⟩𝑑𝐿1
𝑠

→
∫ 𝑡

0

⟨nΓ(𝑢(𝑠)), 𝑢(𝑠)− 𝑣(𝑠)⟩𝑑𝐿1
𝑠 as 𝑁 → ∞,

and ∑
𝑘≤𝑁

∫ 𝑡

0

⟨𝑒𝑘,nΓ(𝑣(𝑠))⟩⟨𝑒𝑘, 𝑢(𝑠)− 𝑣(𝑠)⟩𝑑𝐿2
𝑠

→
∫ 𝑡

0

⟨nΓ(𝑣(𝑠)), 𝑢(𝑠)− 𝑣(𝑠)⟩𝑑𝐿2
𝑠 as 𝑁 → ∞.

Summing over 𝑘 ≤ 𝑁 in (2.4.15) and letting 𝑁 → ∞ yield that for all 𝑡 ≥ 0, 𝑃 −𝑎.𝑠

∣𝑢(𝑡)− 𝑣(𝑡)∣2 + 2

∫ 𝑡

0

⟨𝐵(𝑢(𝑠))−𝐵(𝑣(𝑠)), 𝑢(𝑠)− 𝑣(𝑠)⟩𝑑𝑠

≤ 2

∫ 𝑡

0

⟨nΓ(𝑢(𝑠)), 𝑣(𝑠)− 𝑢(𝑠)⟩𝑑𝐿1
𝑠 + 2

∫ 𝑡

0

⟨nΓ(𝑣(𝑠)), 𝑢(𝑠)− 𝑣(𝑠)⟩𝑑𝐿2
𝑠.
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By Remark 2.4.4 it follows that

∣𝑢(𝑡)− 𝑣(𝑡)∣2 + 2

∫ 𝑡

0

⟨𝐵(𝑢(𝑠))−𝐵(𝑣(𝑠)), 𝑢(𝑠)− 𝑣(𝑠)⟩𝑑𝑠 ≤ 0.

By (2.4.14) and Gronwall’s Lemma it follows that

𝑢(𝑡) = 𝑣(𝑡),

and thus

𝐿1(𝑡) = 𝐿2(𝑡).

□

Combining Theorem 2.4.16 and 2.4.18 with the Yamada-Watanabe Theorem, we

obtain the following:

Theorem 2.4.19 If Γ satisfies Hypothesis 2.4.1 and 𝐵 in (2.4.13) satisfies (2.4.14),

then there exists a Borel set 𝑀 ⊂ 𝐻 with 𝐼Γ ⋅ 𝜇(𝑀) = 𝜇(Γ) such that for every

𝑥 ∈ 𝑀 , (2.4.13) has a pathwise unique continuous strong solution in the sense

that for every probability space (Ω,ℱ ,ℱ𝑡, 𝑃 ) with an ℱ𝑡-Wiener process 𝑊 there

exists a unique pair of ℱ𝑡-adapted processes (𝑋,𝐿) satisfying Definition 2.4.17 and

𝑃 (𝑋0 = 𝑥) = 1. Moreover, 𝑋(𝑡) ∈𝑀 for all 𝑡 ≥ 0 𝑃 -a.s.

Proof The proof is completely analogous to that of Theorem 2.4.12. □

2.5 Reflected OU-processeses on a class of convex

sets

Below for a topological space 𝑋 we denote its Borel 𝜎-algebra by ℬ(𝑋). In this

section, we consider the case where 𝐻 := 𝐿2(0, 1), 𝜌 = 𝐼𝐾𝛼 , where 𝐾𝛼 := {𝑓 ∈
𝐻∣𝑓 ≥ −𝛼}, 𝛼 ≥ 0, and 𝐴 = −1

2
𝑑2

𝑑𝑟2
with Dirichlet boundary conditions on (0,1). So

in this case 𝑒𝑗 =
√
2 sin(𝑗𝜋𝑟), 𝑗 ∈ ℕ, is the corresponding eigenbases. We recall that

(cf [Za02]) we have 𝜇(𝐶0([0, 1])) = 1. In [Za02], L.Zambotti proved the following

integration by parts formulae in this situation:

For 𝛼 > 0,∫
𝐾𝛼

⟨𝑙, 𝐷𝜑⟩𝑑𝜇 = −
∫
𝐾𝛼

𝜑(𝑥)⟨𝑥, 𝑙′′⟩𝜇(𝑑𝑥)−
∫ 1

0

𝑑𝑟𝑙(𝑟)

∫
𝜑(𝑥)𝜎𝛼(𝑟, 𝑑𝑥), ∀𝑙 ∈ 𝐷(𝐴), 𝜑 ∈ 𝐶1

𝑏 (𝐻),
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for 𝛼 = 0,∫
𝐾0

⟨𝑙, 𝐷𝜑⟩𝑑𝜈 = −
∫
𝐾0

𝜑(𝑥)⟨𝑥, 𝑙′′⟩𝜈(𝑑𝑥)−
∫ 1

0

𝑑𝑟𝑙(𝑟)

∫
𝜑(𝑥)𝜎0(𝑟, 𝑑𝑥), ∀𝑙 ∈ 𝐷(𝐴), 𝜑 ∈ 𝐶1

𝑏 (𝐻),

(2.5.1)

where 𝜈 is the law of the Bessel Bridge of dimension 3 over [0, 1] which is zero at 0

and 1, 𝜎𝛼(𝑟, 𝑑𝑥) = 𝜎𝛼(𝑟)𝜇𝛼(𝑟, 𝑑𝑥), and for 𝛼 > 0, 𝜎𝛼 is a positive bounded function,

and for 𝛼 = 0, 𝜎0(𝑟) =
1√

2𝜋𝑟3(1−𝑟)3 , where 𝜇𝛼(𝑟, 𝑑𝑥), 𝛼 ≥ 0, are probability kernels

from (𝐻,ℬ(𝐻)) to ([0, 1],ℬ([0, 1])).

Remark 2.5.1 Since each 𝑙 in 𝐷(𝐴) has a second derivative in 𝐿2, its first deriva-

tive is bounded, hence 𝑙 goes faster than linear to zero at any point where 𝑙 is zero,

in particular at the boundary points 𝑟 = 0 and 𝑟 = 1. Hence the second integral in

the right hand side of the above equality is well-defined.

We know by (2.2.5) that for all 𝑙 ∈ 𝐷(𝐴)

𝐷∗(𝜑(⋅)𝑙) = −⟨𝑙, 𝐷𝜑⟩ − 𝜑⟨𝑙′′, ⋅⟩.

Hence for 𝛼 > 0,∫
𝐾𝛼

𝐷∗(𝜑(⋅)𝑙)𝑑𝜇 =

∫ 1

0

𝑙(𝑟)

∫
𝜑(𝑥)𝜎𝛼(𝑟, 𝑑𝑥)𝑑𝑟 ∀𝑙 ∈ 𝐷(𝐴), 𝜑 ∈ 𝐶1

𝑏 (𝐻). (2.5.2)

Now take

𝑐𝑗 :=

{
(𝑗𝜋)

1
2
+𝜀, if 𝛼 > 0

(𝑗𝜋)𝛽, if 𝛼 = 0,
(2.5.3)

where 𝜀 ∈ (0, 3
2
] and 𝛽 ∈ (3

2
, 2] respectively, and define

𝐻1 := {𝑥 ∈ 𝐻∣
∞∑
𝑗=1

⟨𝑥, 𝑒𝑗⟩2𝑐2𝑗 <∞},

equipped with the inner product

⟨𝑥, 𝑦⟩𝐻1 :=
∞∑
𝑗=1

𝑐2𝑗⟨𝑥, 𝑒𝑗⟩⟨𝑦, 𝑒𝑗⟩.

We note that 𝐷(𝐴) ⊂ 𝐻1 continuously for all 𝛼 ≥ 0, since 𝜀 ≤ 3
2
, 𝛽 ≤ 2. Further-

more, (𝐻1, ⟨, ⟩𝐻1) is a Hilbert space such that 𝐻1 ⊂ 𝐻 continuously and densely.

Identifying 𝐻 with its dual we obtain the continuous and dense embeddings

𝐻1 ⊂ 𝐻(≡ 𝐻∗) ⊂ 𝐻∗
1 .
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It follows that

𝐻1⟨𝑧, 𝑣⟩𝐻∗
1
= ⟨𝑧, 𝑣⟩𝐻∀𝑧 ∈ 𝐻1, 𝑣 ∈ 𝐻,

and that (𝐻1, 𝐻,𝐻
∗
1 ) is a Gelfand triple.

The following is the main result of this section.

Theorem 2.5.2 If 𝛼 > 0, then 𝐼𝐾𝛼 ∈ 𝐵𝑉 (𝐻,𝐻1) ∩H.

Proof First for 𝜎𝛼 as in (2.5.2) we show that for each 𝐵 ∈ ℬ(𝐻) the function

𝑟 7→ 𝜎𝛼(𝑟, 𝐵) is in 𝐻∗
1 and that the map 𝐵 7→ 𝜎𝛼(⋅, 𝐵) is in fact an 𝐻∗

1 -valued

measure of bounded variation, i.e

sup{
∞∑
𝑛=1

∥𝜎𝛼(⋅, 𝐵𝑛)∥𝐻∗
1
: 𝐵𝑛 ∈ ℬ(𝐻), 𝑛 ∈ ℕ, 𝐻 = ∪̇∞

𝑛=1𝐵𝑛} <∞,

that is,

sup{
∞∑
𝑛=1

(
∞∑
𝑗=1

𝑐−2
𝑗 (

∫ 1

0

𝜎𝛼(𝑟, 𝐵𝑛) sin(𝑗𝜋𝑟)𝑑𝑟)
2)1/2 : 𝐵𝑛 ∈ ℬ(𝐻), 𝑛 ∈ ℕ, 𝐻 = ∪̇∞

𝑛=1𝐵𝑛} <∞,

where ∪̇∞
𝑛=1𝐵𝑛 means disjoint union.

For 𝛼 > 0 we have

∞∑
𝑛=1

(
∞∑
𝑗=1

𝑐−2
𝑗 (

∫ 1

0

𝜎𝛼(𝑟, 𝐵𝑛) sin(𝑗𝜋𝑟)𝑑𝑟)
2)1/2

≤
∞∑
𝑛=1

(
∞∑
𝑗=1

𝑐−2
𝑗 (

∫ 1

0

𝜎𝛼(𝑟, 𝐵𝑛)𝑑𝑟)
2)1/2

≤𝐶
∞∑
𝑛=1

∫ 1

0

𝜎𝛼(𝑟, 𝐵𝑛)𝑑𝑟

=𝐶

∫ 1

0

𝜎𝛼(𝑟)𝑑𝑟 <∞.

Thus 𝜎𝛼 in (2.5.2) is of bounded variation as an 𝐻∗
1 -valued measure. Hence

by the theory of vector-valued measures (cf [AMMP10, Section 2.1]), there is a

unit vector field 𝑛𝛼 : 𝐻 → 𝐻∗
1 , such that 𝜎𝛼 = 𝑛𝛼∥𝜎𝛼∥, where ∥𝜎𝛼∥(𝐵) :=

sup{∑∞
𝑛=1 ∥𝜎𝛼(⋅, 𝐵𝑛)∥𝐻∗

1
: 𝐵𝑛 ∈ ℬ(𝐻), 𝑛 ∈ ℕ, 𝐵 = ∪̇∞

𝑛=1𝐵𝑛} is a nonnegative mea-

sure, which is finite by the above proof. So (2.5.2) becomes∫
𝐾𝛼

𝐷∗(𝜑(⋅)𝑙)𝑑𝜇 =

∫
𝐻1⟨𝜑(𝑥)𝑙, 𝑛𝛼(𝑥)⟩𝐻∗

1
∥𝜎𝛼∥(𝑑𝑥) ∀𝑙 ∈ 𝐷(𝐴), 𝜑 ∈ 𝐶1

𝑏 (𝐻),

which by linearity extends to all 𝐺 ∈ (𝐶1
𝑏 )𝐷(𝐴)∩𝐻1 . Thus by Theorem 2.2.1(iii), we
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get that 𝐼𝐾𝛼 ∈ 𝐵𝑉 (𝐻,𝐻1). 𝐼𝐾𝛼 ∈ H follows by Remark 2.3.1. □

Remark 2.5.3 It has been proved by Guan Qingyang that 𝐼𝐾𝛼 is not in𝐵𝑉 (𝐻,𝐻).

If we take 𝐻 = 𝐻1 = 𝐻∗
1 and define 𝐵𝑖

𝑛 := {𝑥 ∈ 𝐻 : inf𝑡∈[ 𝑖−1
𝑛
, 𝑖
𝑛
] 𝑥(𝑡) = −𝛼} for

𝑖 = 1, ..., 𝑛, then 𝜎𝛼(𝑟, 𝐵
𝑖
𝑛) = 𝐼[ 𝑖−1

𝑛
, 𝑖
𝑛
](𝑟). Thus ∥𝜎𝛼∥(𝐻) ≥ √

𝑛. Letting 𝑛 → ∞, we

have ∥𝜎𝛼∥(𝐻) → ∞. So 𝐼𝐾𝛼 is not in 𝐵𝑉 (𝐻,𝐻).

Theorem 2.5.4 For 𝛼 = 0, then there exist a positive finite measure ∥𝜎0∥ on 𝐻

and a Borel-measurable map 𝑛0 : 𝐻 → 𝐻∗
1 such that ∥𝑛0(𝑧)∥𝐻∗

1
= 1 ∥𝜎0∥− 𝑎.𝑒, and

for any 𝑙 ∈ 𝐷(𝐴), 𝜑 ∈ 𝐶1
𝑏 (𝐻)

−
∫
𝐾0

⟨𝑙, 𝐷𝜑⟩𝑑𝜈 −
∫
𝐾0

𝜑(𝑥)⟨𝑥, 𝑙′′⟩𝜈(𝑑𝑥) =
∫

𝐻1⟨𝜑(𝑥)𝑙, 𝑛0(𝑥)⟩𝐻∗
1
∥𝜎0∥(𝑑𝑥). (2.5.4)

Proof For 𝛼 = 0 using that ∣ sin(𝑗𝜋𝑟)∣ ≤ 2𝑗𝜋𝑟(1− 𝑟) ∀𝑟 ∈ [0, 1], we have

∞∑
𝑛=1

(
∞∑
𝑗=1

𝑐−2
𝑗 (

∫ 1

0

𝜎0(𝑟,𝐵𝑛) sin(𝑗𝜋𝑟)𝑑𝑟)
2)1/2

≤
∞∑
𝑛=1

(
∞∑
𝑗=1

𝑐−2
𝑗 (

∫ 1

0

𝜎0(𝑟,𝐵𝑛)2𝑗𝜋𝑟(1− 𝑟)𝑑𝑟)2)1/2

≤𝐶
∞∑
𝑛=1

∫ 1

0

𝜎0(𝑟, 𝐵𝑛)𝑟(1− 𝑟)𝑑𝑟

=𝐶

∫ 1

0

𝜎0(𝑟)𝑟(1− 𝑟)𝑑𝑟 <∞

Thus 𝜎0 in (2.5.1) is of bounded variation as an 𝐻∗
1 -valued measure. Hence by the

theory of vector-valued measures (cf [AMMP10, Section 2.1]), there is a unit vector

field 𝑛0 : 𝐻 → 𝐻∗
1 , such that 𝜎0 = 𝑛0∥𝜎𝛼∥, where ∥𝜎0∥(𝐵) := sup{∑∞

𝑛=1 ∥𝜎0(⋅, 𝐵𝑛)∥𝐻∗
1
:

𝐵𝑛 ∈ ℬ(𝐻), 𝑛 ∈ ℕ, 𝐵 = ∪̇∞
𝑛=1𝐵𝑛} is a nonnegative measure, which is finite by the

above proof. So the result follows by (2.5.1). □
Since here 𝜇(𝐾0) = 0, we have to change the reference measure of the Dirichlet

form. Consider

ℰ𝐾0(𝑢, 𝑣) =
1

2

∫
𝐾0

⟨𝐷𝑢,𝐷𝑣⟩𝑑𝜈, 𝑢, 𝑣 ∈ 𝐶1
𝑏 (𝐾0).

Since 𝐼𝐾0 ∈ H by Remark 2.3.1, the closure of (ℰ𝐼𝐾0 , 𝐶1
𝑏 (𝐾0)) is also a quasi-regular

local Dirichlet form on 𝐿2(𝐹 ; 𝜌 ⋅ 𝜈) in the sense of [MR92, IV Definition 3.1]. As

before, there exists a diffusion process 𝑀 𝐼𝐾0 = (Ω,ℳ, {ℳ𝑡}, 𝜃𝑡, 𝑋𝑡, 𝑃𝑧) on 𝐹 asso-

ciated with this Dirichlet form. 𝑀 𝐼𝐾0 will also be called distorted OU-process on

𝐾0. As before, 𝑀 𝐼𝐾0 is recurrent and conservative. As before, we also have the
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associated PCAF and the Revuz correspondence.

Combining these two cases: for 𝛼 > 0 by Theorem 2.2.2 and for 𝛼 = 0 by

the same argument as Theorem 2.2.2, since we have (2.5.4), we have the following

theorem.

Theorem 2.5.5 Let 𝜌 := 𝐼𝐾𝛼 , 𝛼 ≥ 0 and consider the measure ∥𝜎𝛼∥ and 𝑛𝛼
appearing in Theorem 2.5.2 and Theorem 2.5.4. Then there is an ℰ𝜌-exceptional
set 𝑆 ⊂ 𝐹 such that ∀𝑧 ∈ 𝐹∖𝑆, under 𝑃𝑧 there exists an ℳ𝑡- cylindrical Wiener

process 𝑊 𝑧, such that the sample paths of the associated distorted OU-process 𝑀𝜌

on 𝐹 satisfy the following: for 𝑙 ∈ 𝐷(𝐴)

⟨𝑙, 𝑋𝑡 −𝑋0⟩ =
∫ 𝑡

0

⟨𝑙, 𝑑𝑊𝑠⟩+ 1

2

∫ 𝑡

0
𝐻1⟨𝑙, 𝑛𝛼(𝑋𝑠)⟩𝐻∗

1
𝑑𝐿∥𝜎𝛼∥

𝑠 −
∫ 𝑡

0

⟨𝐴𝑙,𝑋𝑠⟩𝑑𝑠 𝑃𝑧 − 𝑎.𝑒.

(2.5.5)

Here 𝐿
∥𝜎𝛼∥
𝑡 is the real valued PCAF associated with ∥𝜎𝛼∥ by the Revuz correspon-

dence with respect to 𝑀𝜌, satisfying

𝐼{𝑋𝑠+𝛼 ∕=0}𝑑𝐿∥𝜎𝛼∥
𝑠 = 0, (2.5.6)

and for 𝑙 ∈ 𝐻1 with 𝑙(𝑟) ≥ 0 we have∫ 𝑡

0
𝐻1⟨𝑙, 𝑛𝛼(𝑋𝑠)⟩𝐻∗

1
𝑑𝐿∥𝜎𝛼∥

𝑠 ≥ 0. (2.5.7)

Furthermore, for all 𝑧 ∈ 𝐹

𝑃𝑧[𝑋𝑡 ∈ 𝐶0[0, 1] for a.e. 𝑡 ∈ [0,∞)] = 1. (2.5.8)

Proof For 𝛼 > 0, the first part of the assertion follows by Theorem 2.2.2 and the

uniqueness part of Theorem 2.2.1 (ii). For 𝛼 = 0, the assertion follows by the same

argument as in Theorem 2.2.2. (2.5.6) and (2.5.7) follow by the property of 𝜎𝛼 in

[Za02]. By [Pa67, p.135 Theorem 2.4], we have 𝐶0[0, 1] is a Borel subset of 𝐿2[0, 1].

By [FOT94, (5.1.13)], we have

𝐸𝜌𝜇[

∫ 𝑘

𝑘−1

1𝐹∖𝐶0[0,1](𝑋𝑠)𝑑𝑠] = 𝜌𝜇(𝐹 ∖ 𝐶0[0, 1]) = 0 ∀𝑘 ∈ ℕ,

hence

𝐸𝜌𝜇[

∫ ∞

0

1𝐹∖𝐶0[0,1](𝑋𝑠)𝑑𝑠] = 0.

Since 𝐸𝑥[
∫∞
0

1𝐹∖𝐶0[0,1](𝑋𝑠)𝑑𝑠] is a 0-excessive function in 𝑥 ∈ 𝐾𝛼, it is finely contin-
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uous with respect to the process 𝑋. Then for ℰ𝜌 − q.e. 𝑧 ∈ 𝐹 ,

𝐸𝑧[

∫ ∞

0

1𝐹∖𝐶0[0,1](𝑋𝑠)𝑑𝑠] = 0,

thus, for ℰ𝜌 − q.e. 𝑧 ∈ 𝐹 ,

𝑃𝑧[

∫ ∞

0

1𝐹∖𝐶0[0,1](𝑋𝑠)𝑑𝑠 = 0] = 1.

As a consequence, we have that Λ0 := {𝑋𝑡 ∈ 𝐶0[0, 1] for a.e. 𝑡 ∈ [0,∞)} is measur-

able and for ℰ𝜌 − q.e. 𝑧 ∈ 𝐹

𝑃𝑧(Λ0) = 1.

As Λ0 = ∩𝑡∈ℚ,𝑡>0𝜃
−1
𝑡 Λ0 and since by [ASZ09] we have that the semigroup associated

with 𝑋𝑡 is strong Feller, by the Markov property as in [DR02, Lemma 7.1], we obtain

that for any 𝑧 ∈ 𝐹, 𝑡 ∈ ℚ, 𝑡 > 0,

𝑃𝑧(𝜃
−1
𝑡 Λ0) = 1.

Hence for any 𝑧 ∈ 𝐹 we have

𝑃𝑧[𝑋𝑡 ∈ 𝐶0[0, 1] for a.e. 𝑡 ∈ [0,∞)] = 1.

□

Remark 2.5.6 We emphasize that in the present situation it was proved in [NR92,

Theorem 1.3] that for all initial conditions 𝑥 ∈ 𝐻, there exists a unique strong

solution to (1.1). By [Za02] the solution in [NP92] is associated to our Dirichlet

form, hence satisfies (2.5.5) by Theorem 2.5.5. Hence it follows that the solution in

[NP92, Theorem 1.3] is solution to an infinite-dimensional Skorohod problem.

2.6 Appendix

Another proof of Yamada-Watanabe theorem for Theorem 2.4.12’s use

We follow the same arguments as the proof of [RSZ08]:

We use the following spaces

𝔹𝐻 := {𝜔 ∈ 𝐶(ℝ+;𝐻),

∫ 𝑇

0

∣𝜔(𝑡)∣𝑑𝑡 <∞ for all 𝑇 ∈ [0,∞)}
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equipped with the metric

𝜌(𝜔1, 𝜔2) :=
∞∑
𝑘=1

2−𝑘[(
∫ 𝑘

0

∣𝜔1(𝑡)− 𝜔2(𝑡)∣𝑑𝑡+ sup
𝑡∈[0,𝑘]

∣𝜔1(𝑡)− 𝜔2(𝑡)∣) ∧ 1].

Obviously, (𝔹𝐻 , 𝜌) is a complete separable metric space. Let ℬ𝑡(𝔹𝐻) denote the 𝜎-

algebra generated by all maps 𝜋𝑠 : 𝔹𝐻 → 𝐻, 𝑠 ∈ [0, 𝑡] where 𝜋𝑠(𝜔) := 𝜔(𝑠), 𝜔 ∈ 𝔹𝐻 .

𝔹ℝ := {𝜔 ∈ 𝐶(ℝ+;ℝ), 𝜔(0) = 0,

∫ 𝑇

0

∣𝜔(𝑡)∣𝑑𝑡 <∞ for all 𝑇 ∈ [0,∞)}

equipped with the metric

𝜌(𝜔1, 𝜔2) :=
∞∑
𝑘=1

2−𝑘[(
∫ 𝑘

0

∣𝜔1(𝑡)− 𝜔2(𝑡)∣𝑑𝑡+ sup
𝑡∈[0,𝑘]

∣𝜔1(𝑡)− 𝜔2(𝑡)∣) ∧ 1].

Obviously, (𝔹ℝ, 𝜌) is a complete separable metric space. Let ℬ𝑡(𝔹ℝ) denote the 𝜎-

algebra generated by all maps 𝜋𝑠 : 𝔹ℝ → ℝ, 𝑠 ∈ [0, 𝑡] where 𝜋𝑠(𝜔) := 𝜔(𝑠), 𝜔 ∈ 𝔹ℝ.

By Theorem 2.4.3, we can choose a measurable set 𝑀 , such that 𝐼Γ ⋅ 𝜇(𝑀) = 1

and for every 𝑧 ∈ 𝑀 , there exists a process 𝑊 satisfying under 𝑃 𝑧, 𝑊𝑡 is a ℳ𝑡

cylindrical Wiener process, and any 𝑙 ∈ 𝐷(𝐴)

⟨𝑙, 𝑋𝑡(𝜔)−𝑋0(𝜔)⟩ = ⟨𝑙,𝑊𝑡(𝜔)−1

2

∫ 𝑡

0

nΓ(𝑋𝑠(𝜔))𝑑𝐿
∥∂Γ∥
𝑠 (𝜔)⟩−⟨𝐴𝑙,

∫ 𝑡

0

𝑋𝑠(𝜔)𝑑𝑠⟩, 𝑃 𝑧−𝑎.𝑒.

𝐿∥∂Γ∥ is an increasing process which enjoy the property∫ 𝑡

0

𝐼∂Γ(𝑋𝑠(𝜔))𝑑𝐿
∥∂Γ∥
𝑠 (𝜔) = 𝐿

∥∂Γ∥
𝑡 (𝜔), 𝑡 ≥ 0

and 𝑋(𝑡) ∈ 𝑀 for all 𝑡 ≥ 0 𝑃 𝑧-a.s. We can choose one-to-one Hilbert-Schmidt

operator 𝐽 from 𝐻 into another Hilbert space (𝑈, ⟨, ⟩𝑈) and �̄� (𝑡) :=
∑∞

𝑗=1 𝛽𝑘(𝑡)𝐽𝑒𝑘,

where 𝛽𝑘(𝑡) is independent ℳ𝑡-Brownian motions. Set

𝕎0 := {𝜔 ∈ 𝐶(ℝ+;𝑈), 𝜔(0) = 0}

equipped with the supremum norm and Borel 𝜎-algebra ℬ(𝕎0). Let ℬ𝑡(𝕎0) be the

𝜎-algebra generated by all maps 𝜋𝑠 : 𝕎0 → 𝑈, 𝑠 ∈ [0, 𝑡] where 𝜋𝑠(𝜔) := 𝜔(𝑠).

For fixed probability measure 𝜈 on (𝐻,ℬ(𝐻) with 𝜈(𝑀) = 1, define 𝑃 𝜈 :=∫
𝑃 𝑥𝜈(𝑑𝑥) and a probability measure 𝑃 𝜈 on (𝐻 × 𝔹𝐻 × 𝔹ℝ ×𝕎0,ℬ(𝐻)⊗ℬ(𝔹𝐻)⊗
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ℬ(𝔹ℝ)⊗ ℬ(𝕎0)), by

𝑃 𝜈 := 𝑃 𝜈 ∘ (𝑋(0), 𝑋, 𝐿∥∂Γ∥, �̄� )−1

and 𝑃 𝐽 denotes the distribution of �̄�𝑡 on (𝕎0,ℬ(𝕎0)).

[Step 1] There exists a family 𝐾𝜈((𝑥, 𝜔), 𝑑𝜔
1
1, 𝑑𝜔

2
1), 𝑥 ∈ 𝐻,𝜔 ∈ 𝕎0, of probability

measures on (𝔹𝐻 × 𝔹ℝ,ℬ(𝔹𝐻)⊗ ℬ(𝔹ℝ)) having the following properties:

(i) For every 𝐴 ∈ ℬ(𝔹𝐻)⊗ ℬ(𝔹ℝ) the map

𝐻 ×𝕎0 ∋ (𝑥, 𝜔) 7→ 𝐾𝜈((𝑥, 𝜔), 𝐴)

is ℬ(𝐻)⊗ ℬ(𝕎0)-measurable.

(ii) For every ℬ(𝐻) ⊗ ℬ(𝔹𝐻) ⊗ ℬ(𝔹ℝ) ⊗ ℬ(𝕎0)-measurable map 𝑓 : 𝐻 × 𝔹𝐻 ×
𝔹ℝ ×𝕎0 → [0,∞) we have∫

𝐻×𝔹𝐻×𝔹ℝ×𝕎0

𝑓(𝑥, 𝜔1
1, 𝜔

2
1, 𝜔)𝑃

𝜈𝑧(𝑑𝑥, 𝑑𝜔1
1, 𝑑𝜔

2
1, 𝑑𝜔)

=

∫
𝕎0

∫
𝔹𝐻×𝔹ℝ

𝑓(𝑧, 𝜔1
1, 𝜔

2
1, 𝜔)𝐾𝜈((𝑧, 𝜔), 𝑑𝜔

1
1, 𝑑𝜔

2
1)𝑃

𝐽(𝑑𝜔).

(iii) If 𝑡 ∈ [0,∞) and 𝑓 : 𝔹𝐻 × 𝔹ℝ → [0,∞) is ℬ𝑡(𝔹𝐻)⊗ ℬ𝑡(𝔹ℝ)-measurable, then

𝐻 ×𝕎0 ∋ (𝑥, 𝜔) 7→
∫
𝔹𝐻×𝔹ℝ

𝑓(𝜔1
1, 𝜔

2
1)𝐾𝜈((𝑥, 𝜔), 𝑑𝜔

1
1, 𝑑𝜔

2
1)

is ℬ(𝐻)⊗ ℬ𝑡(𝕎0)
𝜈⊗𝑃𝐽

-measurable, where ℬ(𝐻)⊗ ℬ𝑡(𝕎0)
𝜈⊗𝑃𝐽

denotes the comple-

tion with respect to 𝜈 ⊗ 𝑃 𝐽 in ℬ(𝐻)⊗ ℬ(𝕎0).

Let Π : 𝐻 × 𝔹𝐻 × 𝔹ℝ ×𝕎0 → 𝐻 ×𝕎0 be the canonical projection. Since 𝑋(0)

is ℱ0-measurable, hence 𝑃 𝜈-independent of 𝑊 , it follows that

𝑃 𝜈 ∘ Π−1 = 𝑃 𝜈 ∘ (𝑋(0), �̄� )−1 = 𝜈 ⊗ 𝑃 𝐽 .

Hence by the existence result on regular conditional distributions, the existence of

the family 𝐾𝜈((𝑥, 𝜔), 𝑑𝜔
1
1, 𝑑𝜔

2
1), 𝑥 ∈ 𝐻,𝜔 ∈ 𝕎0 satisfying (i) and (ii) follows.

To prove (iii) it suffices to show that for 𝑡 ∈ [0,∞) and for all 𝐴0 ∈ ℬ(𝐻), 𝐴1 ∈
ℬ𝑡(𝔹𝐻)⊗ ℬ𝑡(𝔹ℝ), 𝐴 ∈ ℬ𝑡(𝕎0) and

𝐴′ := {𝜋𝑟1−𝜋𝑡 ∈ 𝐵1, 𝜋𝑟2−𝜋𝑟1 ∈ 𝐵2, ..., 𝜋𝑟𝑘−𝜋𝑟𝑘−1
∈ 𝐵𝑘}, 𝑡 ≤ 𝑟1 < ... < 𝑟𝑘, 𝐵1, ..., 𝐵𝑘 ∈ ℬ(𝐻)
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∫
𝐴0

∫
𝕎0

1𝐴∩𝐴′(𝜔)𝐾𝜈((𝑥, 𝜔), 𝐴1)𝑃
𝐽(𝑑𝜔)𝜈(𝑑𝑥)

=

∫
𝐴0

∫
𝕎0

1𝐴∩𝐴′(𝜔)𝐸𝜈⊗𝑃𝐽 (𝐾𝜈(⋅, 𝐴1)∣ℬ(𝐻)⊗ ℬ𝑡(𝕎0))𝑃
𝐽(𝑑𝜔)𝜈(𝑑𝑥)

since the system of all 𝐴 ∩ 𝐴′, 𝐴 ∈ ℬ𝑡(𝕎0), 𝐴
′ as above generates ℬ(𝕎0). By (ii)

above, the left-hand side of above relation is equal to∫
𝐻×𝔹𝐻×𝔹ℝ×𝕎0

1𝐴0(𝑥)1𝐴∩𝐴′(𝜔)1𝐴1(𝑑𝜔
1
1, 𝑑𝜔

2
1)𝑃

𝜈(𝑑𝑥, 𝑑𝜔1
1, 𝑑𝜔

2
1, 𝑑𝜔)

=

∫
Ω

1𝐴0(𝑋(0))1𝐴1(𝑋,𝐿
∥∂Γ∥)1𝐴(�̄� )1𝐴′(�̄� )𝑑𝑃 𝜈

=

∫
Ω

1𝐴′(�̄� )𝑑𝑃 𝑧 ⋅
∫
Ω

1𝐴0(𝑋(0))1𝐴1(𝑋,𝐿
∥∂Γ∥)1𝐴(�̄� )𝑑𝑃 𝜈

=𝑃 𝐽(𝐴′)
∫
𝐻×𝔹𝐻×𝔹ℝ×𝕎0

1𝐴0(𝑥)1𝐴(𝜔)1𝐴1(𝑑𝜔
1
1, 𝑑𝜔

2
1)𝑃

𝜈(𝑑𝑥, 𝑑𝜔1
1, 𝑑𝜔

2
1, 𝑑𝜔)

=𝑃 𝐽(𝐴′)
∫
𝐴0

∫
𝐴

𝐾𝜈((𝑥, 𝜔), 𝐴1)𝑃
𝐽(𝑑𝜔)𝜈(𝑑𝑥)

=𝑃 𝐽(𝐴′)
∫
𝐴0

∫
𝐴

𝐸𝜈⊗𝑃𝐽 (𝐾𝜈(⋅, 𝐴1)∣ℬ(𝐻)⊗ ℬ𝑡(𝕎0))((𝑥, 𝜔))𝑃
𝐽(𝑑𝜔)𝜈(𝑑𝑥)

=

∫
𝐴0

∫
𝕎0

1𝐴∩𝐴′(𝜔)𝐸𝜈⊗𝑃𝐽 (𝐾𝜈(⋅, 𝐴1)∣ℬ(𝐻)⊗ ℬ𝑡(𝕎0))((𝑥, 𝜔))𝑃
𝐽(𝑑𝜔)𝜈(𝑑𝑥)

[step 2] For 𝑧 ∈ 𝐻 define a measure 𝑄𝑧 on

(𝐻 ×𝔹𝐻 ×𝔹ℝ×𝔹𝐻 ×𝔹ℝ×𝕎0,ℬ(𝐻)⊗ℬ(𝔹𝐻)⊗ℬ(𝔹ℝ)⊗ℬ(𝔹𝐻)⊗ℬ(𝔹ℝ)⊗ℬ(𝕎0))

by

𝑄𝑧(𝐴) :=

∫
𝐻

∫
𝔹𝐻×𝔹ℝ

∫
𝔹𝐻×𝔹ℝ

∫
𝕎0

1𝐴(𝑥, 𝜔
1
1, 𝜔

2
1, 𝜔

1
2, 𝜔

2
2, 𝜔)

𝐾𝜈((𝑥, 𝜔), 𝑑𝜔
1
1, 𝑑𝜔

2
1)𝐾𝜈((𝑥, 𝜔), 𝑑𝜔

1
2, 𝑑𝜔

2
2)𝑃

𝐽(𝑑𝜔)𝛿𝑧(𝑑𝑥)

Define the stochastic basis

Ω̃ := 𝐻 × 𝔹𝐻 × 𝔹ℝ × 𝔹𝐻 × 𝔹ℝ ×𝕎0

ℱ̃ 𝑧 := ℬ(𝐻)⊗ ℬ(𝔹𝐻)⊗ ℬ(𝔹ℝ)⊗ ℬ(𝔹𝐻)⊗ ℬ(𝔹ℝ)⊗ ℬ(𝕎0)
𝑄𝑧

ℱ̃ 𝑧
𝑡 := ∩𝜀>0𝜎(ℬ(𝐻)⊗ℬ𝑡+𝜀(𝔹𝐻)⊗ℬ𝑡+𝜀(𝔹ℝ)⊗ℬ𝑡+𝜀(𝔹𝐻)⊗ℬ𝑡+𝜀(𝔹ℝ)⊗ℬ𝑡+𝜀(𝕎0),𝒩𝑧),

where 𝒩𝑧 := {𝑁 ∈ ℱ̃ 𝑧, 𝑄𝑧(𝑁) = 0} and define maps

Π0 : Ω̃ → 𝐻, (𝑥, 𝜔1
1, 𝜔

2
1, 𝜔

1
2, 𝜔

2
2, 𝜔) 7→ 𝑥,
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Π𝑗
𝑖 : Ω̃ → 𝔹𝐻 or 𝔹ℝ, (𝑥, 𝜔

1
1, 𝜔

2
1, 𝜔

1
2, 𝜔

2
2, 𝜔) 7→ 𝜔𝑗𝑖 , 𝑖, 𝑗 = 1, 2,

Π3 : Ω̃ → 𝕎0, (𝑥, 𝜔
1
1, 𝜔

2
1, 𝜔

1
2, 𝜔

2
2, 𝜔) 7→ 𝜔 ∈ 𝕎0.

Then, obviously,

𝑄𝑧 ∘ Π−1
0 = 𝛿𝑧

and

𝑄𝑧 ∘ Π−1
3 = 𝑃 𝐽

By definition Π3 is (ℱ̃ 𝑧
𝑡 )-adapted. Furthermore, for 0 ≤ 𝑠 < 𝑡, 𝑦 ∈ 𝐻, and

𝐴0, 𝐴0 ∈ ℬ(𝐻), 𝐴𝑖 ∈ ℬ𝑠(𝔹𝐻)⊗ ℬ𝑠(𝔹ℝ), 𝑖 = 1, 2, 𝐴3 ∈ ℬ𝑠(𝕎0),∫
𝐴0

𝐸𝑄𝑧(exp(𝑖⟨𝑦,Π3(𝑡)− Π3(𝑠)⟩)1𝐴0×𝐴1×𝐴2×𝐴3)𝜈(𝑑𝑧)

=

∫
𝐴0

∫
𝕎0

exp(𝑖⟨𝑦, 𝜔(𝑡)− 𝜔(𝑠)⟩)1𝐴0(𝑥)1𝐴3(𝜔)𝐾𝜈((𝑥, 𝜔), 𝐴1)𝐾𝜈((𝑥, 𝜔), 𝐴2)𝑃
𝐽(𝑑𝜔)𝜈(𝑑𝑧)

=

∫
𝐴0

∫
𝕎0

exp(𝑖⟨𝑦, 𝜔(𝑡)− 𝜔(𝑠)⟩)𝑃 𝐽(𝑑𝜔)𝑄𝑧(𝐴0 × 𝐴1 × 𝐴2 × 𝐴3)𝜈(𝑑𝑧)

Now by a monotone class argument, we have that Π3 is an (ℱ̃ 𝑧
𝑡 )-Wiener process on

(Ω̃, ℱ̃ 𝑧, 𝑄𝑧).

Then we can conclude that there exists 𝑁0 ∈ ℬ(𝐻) with 𝜈(𝑁0) = 0 and for all

𝑥 ∈ 𝑁 𝑐
0 , Π3 is an (ℱ̃ 𝑧

𝑡 )-Wiener process on (Ω̃, ℱ̃ 𝑧, 𝑄𝑧).

[Step 3] There exists 𝑁1 ∈ ℬ(𝐻), 𝑁0 ⊂ 𝑁1, with 𝜈(𝑁1) = 0 such that for 𝑥 ∈ 𝑁 𝑐
1 ,

(Π1
1,Π

2
1, 𝐽

−1Π3) and (Π1
2,Π

2
2, 𝐽

−1Π3) with stochastic basis (Ω̃, ℱ̃ 𝑧, 𝑄𝑧, (ℱ̃ 𝑧
𝑡 )) satisfy

(i)(ii)(iii) in Definition 2.4.4 for 𝑋 = Π1
𝑖 , 𝐿 = Π2

𝑖 ,𝑊 = 𝐽−1Π3, 𝑖 = 1, 2 such that

Π1
1(0) = Π1

2(0) = 𝑧 𝑄𝑧 − 𝑎.𝑒.,

therefore, Π1
1 = Π1

2,Π
2
1 = Π2

2 𝑄
𝑧 − 𝑎.𝑒..

For this we need to consider the set 𝐴𝑖 ∈ ℱ̃ 𝑧 defined by

𝐴𝑖 :={⟨𝑙,Π1
𝑖 (𝑡)− Π0⟩ = ⟨𝑙, 𝐽−1Π3(𝑡)− 1

2

∫ 𝑡

0

nΓ(Π
1
𝑖 (𝑠))𝑑Π

2
𝑖 (𝑡)⟩ − ⟨𝐴𝑙,

∫ 𝑡

0

Π1
𝑖 (𝑡)𝑑𝑠⟩, 𝑙 ∈ 𝐷(𝐴)}

∩ {Π2
𝑖 (𝑡) is an increasing process ,

∫ 𝑡

0

𝐼∂Γ(Π
1
𝑖 (𝑠))𝑑Π

2
𝑖 (𝑠) = Π2

𝑖 (𝑡), 𝑡 ≥ 0}

Define 𝐴 ∈ ℬ(𝐻)⊗ℬ(𝔹𝐻)⊗ℬ(𝔹ℝ)⊗ℬ(𝕎0) analogously with Π1
𝑖 ,Π

2
𝑖 replaced by the

canonical projection from𝐻×𝔹𝐻×𝔹ℝ×𝕎0 onto the second and the third and Π0,Π3

by the canonical projection onto the first and the forth coordinate respectively. Then
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by step 1 (ii), for 𝑖 = 1, 2∫
𝐻

∫
𝕎0

∫
𝔹𝐻×𝔹ℝ

∫
𝔹𝐻×𝔹ℝ

1𝐴𝑖(𝑥, 𝜔
1
1, 𝜔

2
1, 𝜔

1
2, 𝜔

2
2, 𝜔)

𝐾𝜈((𝑥, 𝜔), 𝑑𝜔
1
1, 𝑑𝜔

2
1)𝐾𝜈((𝑥, 𝜔), 𝑑𝜔

1
2, 𝑑𝜔

2
2)𝑃

𝐽(𝑑𝜔)𝜈(𝑑𝑥)

=𝑃 𝜈(𝐴) = 𝑃 𝜈({(𝑋(0), 𝑋, 𝐿∥∂Γ∥, �̄� ) ∈ 𝐴}) = 1

Then we have for 𝜇-a.e. 𝑧 ∈ 𝐻 ∩𝑀

𝑄𝑧(𝐴𝑖) = 𝑄𝑧(𝐴𝑖,𝑧) = 1

where for 𝑖 = 1, 2

𝐴𝑖,𝑧 :={⟨𝑙,Π1
𝑖 (𝑡)− 𝑧⟩ = ⟨𝑙, 𝐽−1Π3(𝑡)− 1

2

∫ 𝑡

0

nΓ(Π
1
𝑖 (𝑠))𝑑Π

2
𝑖 (𝑡)⟩ − ⟨𝐴𝑙,

∫ 𝑡

0

Π1
𝑖 (𝑡)𝑑𝑠⟩, 𝑙 ∈ 𝐷(𝐴)}

∩ {Π2
𝑖 (𝑡) is an increasing process ,

∫ 𝑡

0

𝐼∂Γ(Π
1
𝑖 (𝑠))𝑑Π

2
𝑖 (𝑠) = Π2

𝑖 (𝑡), 𝑡 ≥ 0}

and have the results for [step 3].

[Step 4] There exists a ℬ(𝐻)⊗ ℬ(𝕎0)
𝜈⊗𝑃𝐽

/ℬ(𝔹𝐻)⊗ ℬ(𝔹ℝ)-measurable map

𝐹𝜈 : 𝐻 ×𝕎0 → ℬ(𝐻)× 𝔹ℝ

such that

𝐾𝜈((𝑧, 𝜔), ⋅) = 𝛿𝐹𝜈(𝑧,𝜔)

for 𝜈⊗𝑃 𝐽 -a.e. (𝑥, 𝜔) ∈ 𝐻×𝕎0. Furthermore, 𝐹𝜈 is ℬ(𝐻)⊗ ℬ𝑡(𝕎0)
𝜈⊗𝑃𝐽

/ℬ𝑡(𝔹𝐻)⊗
ℬ𝑡(𝔹ℝ)-measurable. Then we have

(𝑋,𝐿∥∂Γ∥) = 𝐹𝜈(𝑧, �̄� ) 𝑃 𝑧 − 𝑎.𝑒.

As for all 𝑧 ∈ 𝑁 𝑐
1 ,

1 = 𝑄𝑧({Π1
1 = Π1

2,Π
1
2 = Π2

2})
=

∫
𝕎0

∫
𝔹𝐻×𝔹ℝ

∫
𝔹𝐻×𝔹ℝ

1𝐷(𝜔
1
1, 𝜔

2
1, 𝜔

1
2, 𝜔

2
2)𝐾𝜈((𝑥, 𝜔), 𝑑𝜔

1
1, 𝑑𝜔

2
1)𝐾𝜈((𝑥, 𝜔), 𝑑𝜔

1
2, 𝑑𝜔

2
2)𝑃

𝐽(𝑑𝜔)

where 𝐷 := {(𝜔1
1, 𝜔

2
1, 𝜔

1
1, 𝜔

2
1) ∈ 𝔹𝐻 × 𝔹ℝ × 𝔹𝐻 × 𝔹ℝ∣(𝜔1

1, 𝜔
2
1) ∈ 𝔹𝐻 × 𝔹ℝ}. Hence by

[Ro10] Lemma 2.2, there exists 𝑁 ∈ ℬ(𝐻) ⊗ ℬ(𝑊0) such that 𝜈 ⊗ 𝑃 𝐽(𝑁) = 0 and

for all (𝑥, 𝜔) ∈ 𝑁 𝑐 there exists 𝐹𝜈(𝑧, 𝜔) ∈ 𝔹𝐻 × 𝔹ℝ such that

𝐾𝜈((𝑧, 𝜔), 𝑑𝜔
1
1, 𝑑𝜔

2
1) = 𝛿𝐹𝜈(𝑧,𝜔)(𝑑𝜔

1
1, 𝑑𝜔

2
1).
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Set 𝐹𝜈(𝑥, 𝜔) := 0, if (𝑥, 𝜔) ∈ 𝑁 . Then 𝐹𝜈 is ℬ(𝐻)⊗ ℬ𝑡(𝕎0)
𝛿𝑧⊗𝑃𝐽

/ℬ𝑡(𝔹𝐻)⊗ℬ𝑡(𝔹ℝ)-

measurable.

As

𝑃 𝜈({(𝑋,𝐿∥∂Γ∥) = 𝐹𝜈(𝑋(0), �̄� )})
=

∫
𝐻

∫
𝕎0

∫
𝔹𝐻×𝔹ℝ

1{(𝜔1
1,𝜔

2
1)=𝐹𝑧(𝑥,𝜔)}(𝑥, 𝜔

1
1, 𝜔

2
1, 𝜔)𝛿𝐹𝜈(𝑥,𝜔)(𝑑𝜔

1
1, 𝑑𝜔

2
1)𝑃

𝐽(𝑑𝜔)𝜈(𝑑𝑥)

=1

We have (𝑋,𝐿∥∂Γ∥) = 𝐹𝜈(𝑋(0), �̄� ) 𝑃 𝜈-a.e..

[step 5] Let𝑊 ′ be another standardWiener process on a stochastic basis (Ω′,ℱ ′, 𝑃 ′, (ℱ ′
𝑡))

and 𝜉 : Ω′ → 𝐻 an ℱ ′
0/ℬ(𝐻)-measurable map and 𝜈 := 𝑃 ′ ∘ 𝜉−1. Set (𝑋 ′, 𝐿′) :=

𝐹𝜈(𝑧, �̄�
′) then (𝑋 ′, 𝐿′,𝑊 ′) is a (weak) solution of (2.4.2) with 𝑋 ′(0) = 𝜉 𝑃 ′-a.s.

By the measurability properties of 𝐹𝜈 it follows that 𝑋 ′ is adapted. We have

𝑃 ′({𝑋 ′(0) = 𝜉}) =𝑃 ′({(𝜉, 0) = 𝐹𝜈(𝑧, �̄�
′)(0)})

=𝜈 ⊗ 𝑃 𝐽({(𝑥, 𝜔) ∈ 𝐻 ×𝕎0∣(𝑥, 0) = 𝐹𝜈(𝑥, 𝜔)(0)})
=𝑃 𝜈({(𝑋(0), 0) = 𝐹𝜈(𝑋(0), �̄� )(0)}) = 1

To see that (𝑋 ′, 𝐿′) is a solution of (2.4.2), we consider the set 𝐴 ∈ ℬ(𝐻)⊗ℬ(𝔹𝐻)⊗
ℬ(𝔹ℝ)⊗ ℬ(𝕎0) defined in the step 3. We have to show that

𝑃 ′({(𝑋 ′(0), 𝑋 ′, 𝐿′, �̄� ′) ∈ 𝐴}) = 1

We have ∫
1𝐴(𝑋

′(0), 𝐹𝜈(𝑋 ′(0), �̄� ′), �̄� ′)𝑑𝑃 ′

=

∫
𝐻

∫
𝕎0

1𝐴(𝑥, 𝐹𝜈(𝑥, 𝜔), 𝜔)𝑃
𝐽(𝑑𝜔)𝜈(𝑑𝑥)

=

∫
𝐻

∫
𝕎0

∫
𝔹𝐻×𝔹ℝ

1𝐴(𝑥, 𝜔
1
1, 𝜔

2
1, 𝜔)𝛿𝐹𝜈(𝑥,𝜔)(𝑑𝜔

1
1, 𝑑𝜔

2
1)𝑃

𝐽(𝑑𝜔)𝜈(𝑑𝑥)

=

∫
1𝐴(𝑥, 𝜔

1
1, 𝜔

2
1, 𝜔)𝑃

𝜈(𝑑𝑥, 𝑑𝜔1
1, 𝑑𝜔

2
1, 𝑑𝜔)

=𝑃 𝜈({(𝑋(0), 𝑋, 𝐿∥∂Γ∥, �̄� ) ∈ 𝐴}) = 1

Then we have the results.

[Step 6] Define 𝐹 (𝑥, 𝜔) := 𝐹𝛿𝑥(𝑥, 𝜔) for 𝑥 ∈ 𝑀,𝜔 ∈ 𝕎0 and 𝐹 (𝑥, 𝜔) := 0 for

𝑥 ∈ 𝐻∖𝑀,𝜔 ∈ 𝕎0. Then 𝜈 be a probability measure on (𝐻,ℬ(𝐻)) with 𝜈(𝑀) = 1
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and 𝐹𝜈 as constructed in [Step 4]. Then for 𝜈-a.e. 𝑥 ∈ 𝐻

𝐹 (𝑥, ⋅) = 𝐹𝜈(𝑥, ⋅) 𝑃 𝐽 − 𝑎.𝑒..

Furthermore, 𝐹 (𝑥, ⋅) is ℬ𝑡(𝕎0)
𝑃𝐽

/ℬ𝑡(𝔹𝐻) ⊗ ℬ𝑡(𝔹ℝ)-measurable for all 𝑥 ∈ 𝐻, 𝑡 ∈
[0,∞), where ℬ𝑡(𝕎0)

𝑃𝐽

denotes the completion of ℬ𝑡(𝕎0) with respect to 𝑃𝑊 in

ℬ(𝕎0).

For fixed 𝑧 ∈𝑀 ,

Ω̄ := 𝐻 × 𝔹𝐻 × 𝔹ℝ ×𝕎0

ℱ̄ 𝑧 := ℬ(𝐻)⊗ ℬ(𝔹𝐻)⊗ ℬ(𝔹ℝ)⊗ ℬ(𝕎0)
𝑄𝑧

Define a measure �̄�𝑧 on (Ω̄, ℱ̄) by

�̄�𝑧(𝐴) :=

∫
𝐻

∫
𝔹𝐻×𝔹ℝ

∫
𝕎0

1𝐴(𝑥, 𝜔
1, 𝜔2, 𝜔)𝐾𝜈((𝑥, 𝜔), 𝑑𝜔

1, 𝑑𝜔2)𝑃 𝐽(𝑑𝜔)𝛿𝑧(𝑑𝑥)

ℱ̄ 𝑧
𝑡 := ∩𝜀>0𝜎(ℬ(𝐻)⊗ ℬ𝑡+𝜀(𝔹𝐻)⊗ ℬ𝑡+𝜀(𝔹ℝ)⊗ ℬ𝑡+𝜀(𝕎0),𝒩𝑧),

where �̄�𝑧 := {𝑁, �̄�𝑧(𝑁) = 0} and define maps

Π0 : Ω̃ → 𝐻, (𝑥, 𝜔1, 𝜔2, 𝜔) 7→ 𝑥,

Π𝑗 : Ω̃ → 𝔹𝐻 or 𝔹ℝ, (𝑥, 𝜔
1, 𝜔2, 𝜔) 7→ 𝜔𝑗, 𝑗 = 1, 2,

Π3 : Ω̃ → 𝕎0, (𝑥, 𝜔
1, 𝜔2, 𝜔) 7→ 𝜔 ∈ 𝕎0.

As in [Step 3] one shows that (Π1,Π2,Π3) on (Ω̄, ℱ̄ 𝑧, �̄�𝑧, ℱ̄ 𝑧
𝑡 ) is a (weak) solution to

(2.4.2) with Π1(0) = 𝑧 �̄�𝑧-a.e.. And by [Step 5], (𝐹𝛿𝑧(𝑧,Π3),Π3) on the stochastic

basis (Ω̄, ℱ̄ 𝑧, �̄�𝑧, ℱ̄ 𝑧
𝑡 ) is a (weak) solution to (2.4.2) with 𝐹𝛿𝑧(𝑧,Π3)(0) = 𝑧. Hence,

it follows that 𝐹𝛿𝑧(𝑧,Π3) = (Π1,Π2) �̄�𝑧−a.s..

For 𝐴 ∈ ℬ(𝐻)⊗ ℬ(𝔹𝐻)⊗ ℬ(𝔹ℝ)⊗ ℬ(𝕎0)∫
𝑀

∫
𝕎0

∫
𝔹𝐻×𝔹ℝ

1𝐴(𝑥, 𝜔
1, 𝜔2, 𝜔)𝛿𝐹𝜈(𝑥,𝜔)(𝑑𝜔

1, 𝑑𝜔2)𝑃 𝐽(𝑑𝜔)𝜈(𝑑𝑥)

=

∫
𝑀

�̄�𝑥(𝐴)𝜈(𝑑𝑥)

=

∫
𝑀

∫
Ω̄

1𝐴(Π0, 𝐹𝛿𝑥(𝑥,Π3),Π3)𝑑�̄�
𝑥𝜈(𝑑𝑥)

=

∫
𝑀

∫
𝔹𝐻×𝔹ℝ

∫
𝕎0

1𝐴(𝑥, 𝜔
1, 𝜔2, 𝜔)𝛿𝐹𝛿𝑥 (𝑥,𝜔)(𝑑𝜔

1, 𝑑𝜔2)𝑃 𝐽(𝑑𝜔)𝜈(𝑑𝑥),

which implies the assertion. The last results follow by the same arguments as in

[PR07, Lemma E.1.16]. □





Chapter 3

BV functions for differentiable

measure

The main motivation of this chapter is to give a definition of BV functions which

can take BV functions in a Gelfand triple and BV functions in abstract Wiener

space as examples. So we introduce a definition of BV functions for differentiable

measure in a Gelfand triple by using Dirichlet form theory. We also give examples

of BV functions which cannot be BV functions in a Gelfand triple or BV functions

in abstract Wiener space. As an application, we consider the reflected stochastic

quantization problem associated with a self-adjoint operator 𝐴 and a cylindrical

Wiener process on a convex set Γ in a Hilbert space 𝐻. We prove the existence of

a martingale solution of this problem when Γ is a regular convex set.

3.1 The Dirichlet form and the associated dis-

torted process

In this section, we consider a special kind of Dirichlet form and its associated dis-

torted process. Let 𝐸 be a Banach space, and 𝐻 be a real separable Hilbert space

(with scalar product ⟨⋅, ⋅⟩ and norm denoted by ∣ ⋅ ∣) continuously and densely em-

bedded in 𝐸. We denote its Borel 𝜎-algebra by ℬ(𝐻). Here identifying 𝐻 with its

dual we obtain the continuous and dense embeddings

𝐸∗ ⊂ 𝐻(≡ 𝐻∗) ⊂ 𝐸.

It follows that

𝐸∗⟨𝑧, 𝑣⟩𝐸 = ⟨𝑧, 𝑣⟩𝐻∀𝑧 ∈ 𝐸∗, 𝑣 ∈ 𝐻.
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Let 𝐿𝑝(𝐸, 𝜇), 𝑝 ∈ [1,∞], denote the corresponding real 𝐿𝑝-spaces equipped with

the usual norms ∥ ⋅ ∥𝑝 and let 𝐿𝑝+(𝐸, 𝜇) denote the set of all non-negative elements

in 𝐿𝑝(𝐸, 𝜇). Assume that:

Hypothesis 3.1.1 𝑄 : 𝐻 → 𝐻 is a strictly positive linear bounded operator and

there exists an orthonormal basis {𝑒𝑗} in 𝐻 consisting of eigen-functions for 𝑄 with

corresponding eigenvalues 𝜆𝑗 ∈ ℝ+, 𝑗 ∈ ℕ, that is,

𝑄𝑒𝑗 = 𝜆𝑗𝑒𝑗, 𝑗 ∈ ℕ.

Also, {𝑒𝑗} ⊂ 𝐸∗.

Let

ℱ𝐶1
𝑏 = {𝑢 : 𝑢(𝑧) = 𝑓(𝐸∗⟨𝑙1, 𝑧⟩𝐸, 𝐸∗⟨𝑙2, 𝑧⟩𝐸, ..., 𝐸∗⟨𝑙𝑚, 𝑧⟩𝐸), 𝑧 ∈ 𝐸, 𝑙1, 𝑙2, ..., 𝑙𝑚 ∈ 𝐸∗, 𝑓 ∈ 𝐶1

𝑏 (ℝ𝑚)}.

Define for 𝑢 ∈ ℱ𝐶1
𝑏 and 𝑙 ∈ 𝐻,

∂𝑢

∂𝑙
(𝑧) :=

𝑑

𝑑𝑠
𝑢(𝑧 + 𝑠𝑙)∣𝑠=0, 𝑧 ∈ 𝐸,

that is,
∂𝑢

∂𝑙
=

𝑚∑
𝑗=1

∂𝑗𝑓(𝐸∗⟨𝑙1, 𝑧⟩𝐸, 𝐸∗⟨𝑙2, 𝑧⟩𝐸, ..., 𝐸∗⟨𝑙𝑚, 𝑧⟩𝐸)⟨𝑙𝑗, 𝑙⟩.

Denote by 𝐷𝑢 the 𝐻-derivative of 𝑢 ∈ ℱ𝐶1
𝑏 , namely, it is a map from 𝐸 to 𝐻 such

that

⟨𝐷𝑢, 𝑙⟩ = ∂𝑢

∂𝑙
.

Let 𝜇 be a finite positive Radon measure on 𝐸 has the following property: if a

function 𝜑 ∈ ℱ𝐶1
𝑏 is equal to zero 𝜇-almost everywhere, then ∂𝜑

∂𝑙
= 0 𝜇-almost

everywhere. In particular, this holds for a measure with a complete support. Now

we introduce the following definition from [Bo10].

Definition 3.1.2 A measure 𝜇 on 𝐸 is called differentiable along a vector 𝑣 in

the sense of Fomin if there exists a signed measure 𝑑𝑣𝜇 of bounded variation such

that for any 𝜑 ∈ ℱ𝐶1
𝑏 the following equality holds:∫

∂𝜑(𝑥)

∂𝑣
𝜇(𝑑𝑥) = −

∫
𝜑(𝑥)𝑑𝑣𝜇(𝑑𝑥),

and 𝑑𝑣𝜇 is absolutely continuous with respect to 𝜇.

If 𝑣 is a fixed vector, then the density of 𝑑𝑣𝜇 with respect to 𝜇 will be denoted
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by 𝛽𝑣. We denote by 𝐻(𝜇) the space

{ℎ ∈ 𝐸 : 𝜇 is differentiable along ℎ and ∥𝛽ℎ∥2 <∞},

endowed with the norm ∥ℎ∥𝐻(𝜇) = ∥𝛽ℎ∥2. The space 𝐻(𝜇) is a Hilbert space con-

tinuous embedded in E.

Let 𝜇 be a differentiable measure on 𝐸, and in the following we assume𝑄1/2(𝐻) ⊂
𝐻(𝜇).

For 𝜌 ∈ 𝐿1
+(𝐸, 𝜇) we consider

ℰ𝜌(𝑢, 𝑣) = 1

2

∞∑
𝑘=1

∫
𝐸

∂𝑢

∂𝑒𝑘

∂𝑣

∂𝑒𝑘
𝜌𝑑𝜇, 𝑢, 𝑣 ∈ ℱ𝐶1

𝑏 ,

where 𝐹 := 𝑆𝑢𝑝𝑝[𝜌 ⋅ 𝜇]. Let 𝑄𝑅(𝐸) be the set of all functions 𝜌 ∈ 𝐿1
+(𝐸, 𝜇)

such that (ℰ𝜌,ℱ𝐶1
𝑏 ) is closable on 𝐿2(𝐹, 𝜌⋅𝜇). Its closure is denoted by (ℰ𝜌,ℱ𝜌).

We denote by ℱ𝜌
𝑒 the extended Dirichlet space of (ℰ𝜌,ℱ𝜌), that is, 𝑢 ∈ ℱ𝜌

𝑒 if and

only if ∣𝑢∣ < ∞ 𝜌 ⋅ 𝜇 − 𝑎.𝑒. and there exists a sequence {𝑢𝑛} in ℱ𝜌 such that

ℰ𝜌(𝑢𝑚 − 𝑢𝑛, 𝑢𝑚 − 𝑢𝑛) → 0 as 𝑛 ≥ 𝑚→ ∞ and 𝑢𝑛 → 𝑢 𝜌 ⋅ 𝜇− 𝑎.𝑒. as 𝑛→ ∞.

Theorem 3.1.3 Let 𝜌 ∈ 𝑄𝑅(𝐸). Then (ℰ𝜌,ℱ𝜌) is a quasi-regular local Dirichlet

form on 𝐿2(𝐹 ; 𝜌 ⋅ 𝜇) in the sense of Definition 1.3.

Proof The assertion follows from the main result in [RS92]. □

By virtue of Theorem 3.1.3 and Theorem 1.4, there exists a diffusion process

𝑀𝜌 = (Ω,ℳ, {ℳ𝑡}, 𝜃𝑡, 𝑋𝑡, 𝑃𝑧) on 𝐹 associated with the Dirichlet form (ℰ𝜌,ℱ𝜌).

𝑀𝜌 will be called distorted process on 𝐹 . Since constant functions are in ℱ𝜌 and

ℰ𝜌(1, 1) = 0, 𝑀𝜌 is recurrent and conservative. We denote by A𝜌
+ the set of all

positive continuous additive functionals (PCAF in abbreviation) of 𝑀𝜌, and define

A𝜌 := A𝜌
+ − A𝜌

+. For 𝐴 ∈ A𝜌, its total variation process is denoted by {𝐴}. We

also define A𝜌
0 := {𝐴 ∈ A𝜌∣𝐸𝜌⋅𝜇({𝐴}𝑡) < ∞∀𝑡 > 0}. Each element in A𝜌

+ has a

corresponding positive ℰ𝜌-smooth measure on 𝐹 by the Revuz correspondence. The

set of all such measures will be denoted by 𝑆𝜌+. Accordingly, 𝐴𝑡 ∈ A𝜌 corresponds

to a 𝜈 ∈ 𝑆𝜌 := 𝑆𝜌+ − 𝑆𝜌+, the set of all ℰ𝜌-smooth signed measure in the sense

that 𝐴𝑡 = 𝐴1
𝑡 − 𝐴2

𝑡 for 𝐴𝑘𝑡 ∈ A𝜌
+, 𝑘 = 1, 2 whose Revuz measures are 𝜈𝑘, 𝑘 = 1, 2

and 𝜈 = 𝜈1 − 𝜈2 is the Hahn-Jordan decomposition of 𝜈 . The element of A𝜌

corresponding to 𝜈 ∈ 𝑆𝜌 will be denoted by𝐴𝜈 .

Note that for each 𝑙 ∈ 𝐸∗ the function 𝑢(𝑧) = 𝐸∗⟨𝑙, 𝑧⟩𝐸 belongs to the extended
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Dirichlet space ℱ𝜌
𝑒 and

ℰ𝜌(𝑙(⋅), 𝑣) = 1

2

∫
∂𝑣(𝑧)

∂𝑙
𝜌(𝑧)𝑑𝜇(𝑧) ∀𝑣 ∈ ℱ𝐶1

𝑏 . (3.1.1)

On the other hand, the AF 𝐸∗⟨𝑙, 𝑋𝑡 −𝑋0⟩𝐸 of 𝑀𝜌 admits a unique decomposition

into a sum of a martingale AF (𝑀𝑡) of finite energy and CAF (𝑁𝑡) of zero energy.

More precisely, for every 𝑙 ∈ 𝐸∗,

𝐸∗⟨𝑙, 𝑋𝑡 −𝑋0⟩𝐸 =𝑀 𝑙
𝑡 +𝑁 𝑙

𝑡 ∀𝑡 ≥ 0 𝑃𝑧 − 𝑎.𝑠. (3.1.2)

for ℰ𝜌-q.e. 𝑧 ∈ 𝐹 .

Now for 𝜌 ∈ 𝐿1(𝐸, 𝜇) and 𝑙 ∈ 𝐸∗, we say that 𝜌 ∈ 𝐵𝑉𝑙(𝐸) if there exists a

constant 𝐶𝑙 > 0,

∣
∫
𝐸

∂𝑣(𝑧)

∂𝑙
𝜌(𝑧)𝑑𝜇(𝑧)∣ ≤ 𝐶𝑙 ∥ 𝑣 ∥∞ ∀𝑣 ∈ ℱ𝐶1

𝑏 . (3.1.3)

By the same argument as in [FH01, Theorem 2.1], we obtain the following:

Theorem 3.1.4 Let 𝜌 ∈ 𝐿1
+ and 𝑙 ∈ 𝐸∗.

(1) The following two conditions are equivalent:

(i)𝜌 ∈ 𝐵𝑉𝑙(𝐸)

(ii) There exists a (unique) signed measure 𝜈𝑙 on 𝐹 of finite total variation such

that
1

2

∫
∂𝑣(𝑧)

∂𝑙
𝜌(𝑧)𝑑𝜇(𝑧) = −

∫
𝐹

𝑣(𝑧)𝜈𝑙(𝑑𝑧) ∀𝑣 ∈ ℱ𝐶1
𝑏 . (3.1.4)

In this case, 𝜈𝑙 necessarily belongs to 𝑆𝜌+1.

Suppose further that 𝜌 ∈ 𝑄𝑅(𝐸). Then the following condition is also equivalent

to the above:

(iii)𝑁 𝑙 ∈ A𝜌
0

In this case, 𝜈𝑙 ∈ 𝑆𝜌, and 𝑁 𝑙 = 𝐴𝜈𝑙

(2) 𝑀 𝑙 is a martingale AF with quadratic variation process

⟨𝑀 𝑙⟩𝑡 = 𝑡∣𝑙∣2, 𝑡 ≥ 0. (3.1.5)



3.2. BV functions and distorted processes in 𝐹 57

3.2 BV functions and distorted processes in 𝐹

We introduce BV functions in this section, by which we can get the Skorohod type

representation for the process.

Let 𝑐𝑗, 𝑗 ∈ ℕ, be a sequence in [1,∞). Define

𝐻1 := {𝑥 ∈ 𝐻∣
∞∑
𝑗=1

⟨𝑥, 𝑒𝑗⟩2𝑐2𝑗 <∞},

equipped with the inner product

⟨𝑥, 𝑦⟩𝐻1 :=
∞∑
𝑗=1

𝑐2𝑗⟨𝑥, 𝑒𝑗⟩⟨𝑦, 𝑒𝑗⟩.

Then clearly (𝐻1, ⟨, ⟩𝐻1) is a Hilbert space such that 𝐻1 ⊂ 𝐻 continuously and

densely. Identifying 𝐻 with its dual we obtain the continuous and dense embeddings

𝐻1 ⊂ 𝐻(≡ 𝐻∗) ⊂ 𝐻∗
1 .

It follows that

𝐻1⟨𝑧, 𝑣⟩𝐻∗
1
= ⟨𝑧, 𝑣⟩𝐻∀𝑧 ∈ 𝐻1, 𝑣 ∈ 𝐻,

and that (𝐻1, 𝐻,𝐻
∗
1 ) is a Gelfand triple. Furthermore, { 𝑒𝑗

𝑐𝑗
} and {𝑐𝑗𝑒𝑗} are orthonor-

mal bases of 𝐻1 and 𝐻∗
1 , respectively.

We also introduce a family of 𝐻-valued functions on 𝐸 by

(ℱ𝐶1
𝑏 )𝑄1/2(𝐻)∩𝐻1

:= {𝐺 : 𝐺(𝑧) =
𝑚∑
𝑗=1

𝑔𝑗(𝑧)𝑙
𝑗, 𝑧 ∈ 𝐸, 𝑔𝑗 ∈ ℱ𝐶1

𝑏 , 𝑙
𝑗 ∈ 𝑄1/2(𝐻) ∩𝐻1}.

Denote by 𝐷∗ the adjoint of 𝐷 : ℱ𝐶1
𝑏 ⊂ 𝐿2(𝐸, 𝜇) → 𝐿2(𝐸, 𝜇;𝐻). That is

𝐷𝑜𝑚(𝐷∗) := {𝐺 ∈ 𝐿2(𝐸, 𝜇;𝐻)∣𝐶1
𝑏 ∋ 𝑢 7→

∫
𝐸

⟨𝐺,𝐷𝑢⟩𝑑𝜇 is continuous with respect to 𝐿2(𝐸, 𝜇)}.

Obviously, (ℱ𝐶1
𝑏 )𝑄1/2(𝐻)∩𝐻1

⊂ 𝐷𝑜𝑚(𝐷∗). Then∫
𝐸

𝐷∗𝐺(𝑧)𝑓(𝑧)𝜇(𝑑𝑧) =
∫
𝐸

⟨𝐺(𝑧), 𝐷𝑓(𝑧)⟩𝜇(𝑑𝑧) ∀𝐺 ∈ (ℱ𝐶1
𝑏 )𝑄1/2(𝐻)∩𝐻1

, 𝑓 ∈ ℱ𝐶1
𝑏 .

(3.2.1)
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For 𝜌 ∈ 𝐿2(𝐸, 𝜇), we set

𝑉 (𝜌) := sup
𝐺∈(ℱ𝐶1

𝑏 )𝑄1/2(𝐻)∩𝐻1
,∥𝐺∥𝐻1

≤1

∫
𝐸

𝐷∗𝐺(𝑧)𝜌(𝑧)𝜇(𝑑𝑧). (3.2.2)

A function 𝜌 on 𝐸 is called an BV function in the Gelfand triple (𝐻1, 𝐻,𝐻
∗
1 )(𝜌 ∈

𝐵𝑉 (𝐻,𝐻1) in notation), if 𝜌 ∈ 𝐿2(𝐸, 𝜇) and 𝑉 (𝜌) is finite. We can prove the

following theorem by a modification of the proof of Theorem 2.2.1 in chapter 2.

Theorem 3.2.1 (i) 𝐵𝑉 (𝐻,𝐻1) ⊂
∩
𝑙∈𝑄1/2(𝐻)∩𝐻1∩𝐸∗ 𝐵𝑉𝑙(𝐸).

(ii) Suppose 𝜌 ∈ 𝐵𝑉 (𝐻,𝐻1)∩𝐿2
+(𝐸, 𝜇), then there exist a positive finite measure

∥𝑑𝜌∥ on 𝐸 and a Borel-measurable map 𝜎𝜌 : 𝐸 → 𝐻∗
1 such that ∥𝜎𝜌(𝑧)∥𝐻∗

1
=

1 ∥𝑑𝜌∥ − 𝑎.𝑒, ∥𝑑𝜌∥(𝐸) = 𝑉 (𝜌),∫
𝐸

𝐷∗𝐺(𝑧)𝜌(𝑧)𝜇(𝑑𝑧) =
∫
𝐸
𝐻1⟨𝐺(𝑧), 𝜎𝜌(𝑧)⟩𝐻∗

1
∥𝑑𝜌∥(𝑑𝑧) ∀𝐺 ∈ (ℱ𝐶1

𝑏 )𝑄1/2(𝐻)∩𝐻1

(3.2.3)

and ∥𝑑𝜌∥ ∈ 𝑆𝜌+1.

Furthermore, if 𝜌 ∈ 𝑄𝑅(𝐸), ∥𝑑𝜌∥ is ℰ𝜌-smooth in the sense that it charges no

set of zero ℰ𝜌1 -capacity. In particular, the domain of integration 𝐸 on both sides of

(3.2.3) can be replaced by 𝐹 , the topological support of 𝜌𝜇.

Also, 𝜎𝜌 and ∥𝑑𝜌∥ are uniquely determined, that is, if there are 𝜎′
𝜌 and ∥𝑑𝜌∥′

satisfying relation (3.2.3), then ∥𝑑𝜌∥ = ∥𝑑𝜌∥′ and 𝜎𝜌(𝑧) = 𝜎′
𝜌(𝑧) for ∥𝑑𝜌∥ − 𝑎.𝑒.𝑧

(iii) Conversely, if Eq.(3.2.3) holds for 𝜌 ∈ 𝐿2(𝐸, 𝜇) and for some positive finite

measure ∥𝑑𝜌∥ and a map 𝜎𝜌 with the stated properties, then 𝜌 ∈ 𝐵𝑉 (𝐻,𝐻1) and

𝑉 (𝜌) = ∥𝑑𝜌∥(𝐸).
(iv) Let 𝑊 1,2(𝐸) be the domain of the closure of (𝐷,ℱ𝐶1

𝑏 ) with norm

∥𝑓∥2 :=
∫
𝐸

(∣𝑓(𝑧)∣2 + ∣𝐷𝑓(𝑧)∣2)𝜇(𝑑𝑧).

Then 𝑊 1,2(𝐸) ⊂ 𝐵𝑉 (𝐻,𝐻) and Eq.(3.2.3) is satisfied for each 𝜌 ∈ 𝑊 1,2(𝐸). Fur-

thermore,

∥𝑑𝜌∥ = ∣𝐷𝜌∣ ⋅ 𝜇, 𝑉 (𝜌) =

∫
𝐸

∣𝐷𝜌∣𝜇(𝑑𝑧), 𝜎𝜌 = 1

∣𝐷𝜌∣𝐷𝜌𝐼{∣𝐷𝜌∣>0}.

Proof (i) Let 𝜌 ∈ 𝐵𝑉 (𝐻,𝐻1). Take 𝐺 ∈ (ℱ𝐶1
𝑏 )𝑄1/2(𝐻)∩𝐻1

of the type

𝐺(𝑧) = 𝑔(𝑧)𝑙, 𝑧 ∈ 𝐸, 𝑔 ∈ ℱ𝐶1
𝑏 , 𝑙 ∈ 𝑄1/2(𝐻) ∩𝐻1. (3.2.4)
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By (3.2.1)∫
𝐸

𝐷∗𝐺(𝑧)𝑓(𝑧)𝜇(𝑑𝑧) =
∫
𝐸

⟨𝐺(𝑧), 𝐷𝑓(𝑧)⟩𝜇(𝑑𝑧)

=−
∫
𝐸

⟨𝑙, 𝐷𝑔(𝑧)⟩𝑓(𝑧)𝜇(𝑑𝑧)−
∫
𝐸

𝛽𝑙(𝑧)𝑔(𝑧)𝑓(𝑧)𝜇(𝑑𝑧) ∀𝑓 ∈ ℱ𝐶1
𝑏 ;

consequently,

𝐷∗𝐺(𝑧) = −⟨𝑙, 𝐷𝑔(𝑧)⟩ − 𝑔(𝑧)𝛽𝑙(𝑧). (3.2.5)

Accordingly,∫
𝐸

⟨𝑙, 𝐷𝑔(𝑧)⟩𝜌(𝑧)𝜇(𝑑𝑧) = −
∫
𝐸

𝐷∗𝐺(𝑧)𝜌(𝑧)𝜇(𝑑𝑧)−
∫
𝐸

𝛽𝑙(𝑧)𝑔(𝑧)𝜌(𝑧)𝜇(𝑑𝑧). (3.2.6)

For any 𝑔 ∈ ℱ𝐶1
𝑏 , satisfying ∥𝑔∥∞ ≤ 1, by (3.2.2) the right hand side is dominated

by

𝑉 (𝜌)∥𝑙∥𝐻1 + ∥𝜌∥2∥𝛽𝑙∥2 <∞,

hence, 𝜌 ∈ 𝐵𝑉𝑙(𝐻).

(ii) Suppose 𝜌 ∈ 𝐿1
+(𝐸, 𝜇)

∩
𝐵𝑉 (𝐻,𝐻1). By (i) and Theorem 3.1.4 for each

𝑙 ∈ 𝑄1/2(𝐻) ∩ 𝐻1 ∩ 𝐸∗, there exists a finite signed measure 𝜈𝑙 on 𝐸 for which

Eq.(3.1.4) holds. Define

𝐷𝐴
𝑙 𝜌(𝑑𝑧) := 2𝜈𝑙(𝑑𝑧)− 𝛽𝑙(𝑧)𝜌(𝑧)𝜇(𝑑𝑧).

In view of (3.2.6), for any 𝐺 of type (3.2.4), we have∫
𝐸

𝐷∗𝐺(𝑧)𝜌(𝑧)𝜇(𝑑𝑧) =
∫
𝐸

𝑔(𝑧)𝐷𝐴
𝑙 𝜌(𝑑𝑧), (3.2.7)

which in turn implies

𝑉 (𝐷𝐴
𝑙 𝜌)(𝐸) = sup

𝑔∈ℱ𝐶1
𝑏 ,∥𝑔∥∞≤1

∫
𝐸

𝑔(𝑧)𝐷𝐴
𝑙 𝜌(𝑑𝑧) ≤ 𝑉 (𝜌)∥𝑙∥𝐻1 , (3.2.8)

where 𝑉 (𝐷𝐴
𝑙 𝜌) denotes the total variation measure of the signed measure 𝐷𝐴

𝑙 𝜌.

For the orthonormal basis { 𝑒𝑗
𝑐𝑗
} of 𝐻1, we set

𝛾𝐴𝜌 := Σ∞
𝑗=12

−𝑗𝑉 (𝐷𝐴
𝑒𝑗
𝑐𝑗

𝜌), 𝑣𝑗(𝑧) :=

𝑑𝐷𝐴
𝑒𝑗
𝑐𝑗

𝜌(𝑧)

𝑑𝛾𝐴𝜌 (𝑧)
, 𝑧 ∈ 𝐸, 𝑗 ∈ ℕ. (3.2.9)

𝛾𝐴𝜌 is a positive finite measure with 𝛾𝐴𝜌 (𝐸) ≤ 𝑉 (𝜌) and 𝑣𝑗 is Borel-measurable. Since
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𝐷𝐴
𝑒𝑗
𝑐𝑗

𝜌 belongs to 𝑆𝜌+1, so does 𝛾𝐴𝜌 . Then for

𝐺𝑛 :=
𝑛∑
𝑗=1

𝑔𝑗
𝑒𝑗
𝑐𝑗

∈ (ℱ𝐶1
𝑏 )𝑄1/2(𝐻)∩𝐻1

, 𝑛 ∈ ℕ, (3.2.10)

by (3.2.7) the following equation holds∫
𝐸

𝐷∗𝐺𝑛(𝑧)𝜌(𝑧)𝜇(𝑑𝑧) =
𝑛∑
𝑗=1

∫
𝐸

𝑔𝑗(𝑧)𝑣𝑗(𝑧)𝛾
𝐴
𝜌 (𝑑𝑧). (3.2.11)

Since ∣𝑣𝑗(𝑧)∣ ≤ 2𝑗 𝛾𝐴𝜌 -a.e. and ℱ𝐶1
𝑏 is dense in 𝐿1(𝐸, 𝛾𝐴𝜌 ), we can find 𝑣𝑗,𝑚 ∈ ℱ𝐶1

𝑏

such that

lim
𝑚→∞

𝑣𝑗,𝑚 = 𝑣𝑗 𝛾
𝐴
𝜌 − 𝑎.𝑒..

Substituting

𝑔𝑗,𝑚(𝑧) :=
𝑣𝑗,𝑚(𝑧)√∑𝑛

𝑘=1 𝑣𝑘,𝑚(𝑧)
2 + 1/𝑚

, (3.2.12)

for 𝑔𝑗(𝑧) in (3.2.10) and (3.2.11) we get a bound

𝑛∑
𝑗=1

∫
𝐸

𝑔𝑗,𝑚(𝑧)𝑣𝑗(𝑧)𝛾
𝐴
𝜌 (𝑑𝑧) ≤ 𝑉 (𝜌),

because ∥𝐺𝑛(𝑧)∥2𝐻1
=

∑𝑛
𝑗=1 𝑔𝑗,𝑚(𝑧)

2 ≤ 1 ∀𝑧 ∈ 𝐸. By letting 𝑚→ ∞, we obtain

∫
𝐸

√√√⎷ 𝑛∑
𝑗=1

𝑣𝑗(𝑧)2𝛾
𝐴
𝜌 (𝑑𝑧) ≤ 𝑉 (𝜌) ∀𝑛 ∈ ℕ.

Now we define

∥𝑑𝜌∥ :=

√√√⎷ ∞∑
𝑗=1

𝑣𝑗(𝑧)2𝛾
𝐴
𝜌 (𝑑𝑧) (3.2.13)

and 𝜎𝜌 : 𝐸 → 𝐻∗
1 by

𝜎𝜌(𝑧) =

{ ∑∞
𝑗=1

𝑣𝑗(𝑧)√∑∞
𝑘=1 𝑣𝑘(𝑧)

2
⋅ 𝑐𝑗𝑒𝑗, if 𝑧 ∈ {∑∞

𝑘=1 𝑣𝑘(𝑧)
2 > 0}

0 otherwise.
(3.2.14)

Then

∥𝑑𝜌∥(𝐸) ≤ 𝑉 (𝜌), ∥𝜎𝜌(𝑧)∥𝐻∗
1
= 1 ∥𝑑𝜌∥ − 𝑎.𝑒., (3.2.15)

∥𝑑𝜌∥ is 𝑆𝜌+1-smooth and 𝜎𝜌 is Borel-measurable. By (3.2.11) we see that the desired

equation (3.2.3) holds for 𝐺 = 𝐺𝑛 as in (3.2.10). It remains to prove (3.2.3) for any
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𝐺 of type (3.2.4), i.e. 𝐺 = 𝑔 ⋅ 𝑙, 𝑔 ∈ ℱ𝐶1
𝑏 , 𝑙 ∈ 𝑄1/2(𝐻) ∩ 𝐻1 . In view of (3.2.6),

Eq.(3.2.3) then reads

−
∫
𝐸

⟨𝑙, 𝐷𝑔(𝑧)⟩𝜌(𝑧)𝜇(𝑑𝑧)−
∫
𝐸

𝑔(𝑧)𝛽𝑙(𝑧)𝜌(𝑧)𝜇(𝑑𝑧) =

∫
𝐸

𝑔(𝑧)𝐻1⟨𝑙, 𝜎𝜌(𝑧)⟩𝐻∗
1
∥𝑑𝜌∥(𝑑𝑧).
(3.2.16)

We set

𝑘𝑛 :=
𝑛∑
𝑗=1

⟨𝑙, 𝑒𝑗⟩𝑒𝑗 =
𝑛∑
𝑗=1

⟨𝑙, 𝑒𝑗
𝑐𝑗
⟩𝐻1

𝑒𝑗
𝑐𝑗

=
𝑛∑
𝑗=1

⟨𝑙, 𝜆1/2𝑗 𝑒𝑗⟩𝑄1/2(𝐻)𝜆
1/2
𝑗 𝑒𝑗, 𝐺𝑛(𝑧) := 𝑔(𝑧)𝑘𝑛.

Thus 𝑘𝑛 → 𝑙 in 𝐻1 and 𝑘𝑛 → 𝑙 in 𝑄1/2(𝐻) as 𝑛 → ∞. So ∥𝛽𝑘𝑛 − 𝛽𝑙∥2 → 0. But

then also

lim
𝑛→∞

∫
𝐸

⟨𝐷𝑔, 𝑘𝑛⟩𝜌𝑑𝜇 =

∫
𝐸

⟨𝐷𝑔, 𝑙⟩𝜌𝑑𝜇,

and

∣
∫
𝐸

𝑔(𝑧)𝛽𝑘𝑛(𝑧)𝜌(𝑧)𝜇(𝑑𝑧)−
∫
𝐸

𝑔(𝑧)𝛽𝑙(𝑧)𝜌(𝑧)𝜇(𝑑𝑧)∣

≤ ∥𝑔∥∞∥𝜌∥2∥𝛽𝑘𝑛 − 𝛽𝑙∥2.

Furthermore,

lim
𝑛→∞

∫
𝐸

𝑔(𝑧)𝐻1⟨𝑘𝑛, 𝜎𝜌(𝑧)⟩𝐻∗
1
∥𝑑𝜌∥(𝑑𝑧) =

∫
𝐸

𝑔(𝑧)𝐻1⟨𝑙, 𝜎𝜌(𝑧)⟩𝐻∗
1
∥𝑑𝜌∥(𝑑𝑧).

So letting 𝑛→ ∞ yields (3.2.16).

If 𝜌 ∈ 𝑄𝑅(𝐸), we can get the claimed result by the same arguments as above.

Uniqueness follows by the same method as Theorem 2.2.1.

(iii) Suppose 𝜌 ∈ 𝐿2(𝐸, 𝜇) and that Eq.(3.2.3) holds for some positive finite

measure ∥𝑑𝜌∥ and some map 𝜎𝜌 with the properties stated in (ii). Then clearly

𝑉 (𝜌) ≤ ∥𝑑𝜌∥(𝐸)

and hence 𝜌 ∈ 𝐵𝑉 (𝐻,𝐻1). To obtain the converse inequality, set

𝜎𝑗(𝑧) := ⟨𝑐𝑗𝑒𝑗, 𝜎𝜌(𝑧)⟩𝐻∗
1
=𝐻1 ⟨

𝑒𝑗
𝑐𝑗
, 𝜎𝜌(𝑧)⟩𝐻∗

1
, 𝑗 ∈ ℕ.

Fix an arbitrary 𝑛. As in the proof of (ii) we can find functions

𝑣𝑗,𝑚 ∈ ℱ𝐶1
𝑏 , lim

𝑚→∞
𝑣𝑗,𝑚(𝑧) = 𝜎𝑗(𝑧) ∥𝑑𝜌∥ − 𝑎.𝑒.

Define 𝑔𝑗,𝑚(𝑧) by (3.2.12). Substituting𝐺𝑛,𝑚(𝑧) :=
∑𝑛

𝑗=1 𝑔𝑗,𝑚(𝑧)
𝑒𝑗
𝑐𝑗
for𝐺(𝑧) in (3.2.3)
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then yields
𝑛∑
𝑗=1

∫
𝐸

𝑔𝑗,𝑚(𝑧)𝜎𝑗(𝑧)∥𝑑𝜌∥(𝑑𝑧) ≤ 𝑉 (𝜌).

By letting 𝑚→ ∞, we get

∫
𝐸

√√√⎷ 𝑛∑
𝑗=1

𝜎𝑗(𝑧)2∥𝑑𝜌∥(𝑑𝑧) ≤ 𝑉 (𝜌) ∀𝑛 ∈ ℕ.

We finally let 𝑛→ ∞ to obtain ∥𝑑𝜌∥(𝐸) ≤ 𝑉 (𝜌).

(iv) Obviously the duality relation (3.2.1) extends to 𝜌 ∈ 𝑊 1,2(𝐸) replacing

𝑓 ∈ ℱ𝐶1
𝑏 . By defining ∥𝑑𝜌∥ and 𝜎𝜌(𝑧) in the stated way, the extended relation

(3.2.1) is exactly (3.2.3). □

Now we give the following examples of BV functions by using the result in [Pu98].

Now let 𝑓 satisfies the conditions in [Pu98, Section 4], i.e. there exists a 𝐶𝑎𝑝1,12-

quasi-continuous function 𝑓 ∈ 𝐻2,12(𝐸) such that ∣𝑄𝐷𝑓 ∣−1 ∈ 𝐿12(𝐸, 𝜇), 𝐷∗(𝑄𝐷𝑓) ∈
𝐿2(𝐸, 𝜇), and

𝑈 = 𝑓−1((−∞, 0)).

Here 𝐻2,12(𝐸) is the completion of the space ℱ𝐶∞
𝑏 with respect to the norm

∥𝜑∥122,12 =
∫
(𝜑2(𝑥) +

∑
𝑘

𝜆𝑘(
∂𝜑

∂𝑒𝑘
)2 +

∑
𝑘,ℎ

𝜆𝑘𝜆ℎ(
∂

∂𝑒𝑘

∂𝜑

∂𝑒ℎ
)2)6𝜇(𝑑𝑥).

𝐶𝑎𝑝1,12 is defined by the following:

𝐶𝑎𝑝1,12(𝑈) = inf{∥𝜑∥1,12 : 𝜑 ≥ 0, 𝜑 ≥ 1𝜇 almost everywhere on 𝑈} for open set𝑈,

𝐶𝑎𝑝1,12(𝐴) = inf{𝐶𝑎𝑝1,12(𝑈) : 𝑈 is open, 𝑈 ⊃ 𝐴} for arbitary set𝐴,

where

∥𝜑∥121,12 =
∫
(𝜑2(𝑥) +

∑
𝑘

𝜆𝑘(
∂𝜑

∂𝑒𝑘
)2)6𝑑𝜇.

The set Σ = 𝑓−1(0) will be called the surface of 𝑈 , denoted by ∂𝑈 . By [Pu98, Section

3], we have the finite measure 𝜈 on Σ (see [Pu98, Section 3] for the construction of

𝜈). Here we take 𝑄1/2𝐻 as the 𝐻 used in [Pu98]. Then by [Pu98 , Theorem 4.1],

we have the following theorem.

Theorem 3.2.2 Assume there exists a 𝐶𝑎𝑝1,12-quasi-continuous function 𝑓 ∈
𝐻2,12(𝐸) such that ∣𝑄𝐷𝑓 ∣−1 ∈ 𝐿12(𝐸, 𝜇), 𝐷∗(𝑄𝐷𝑓) ∈ 𝐿2(𝐸, 𝜇), then 𝐼𝑈 is an BV
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function with 𝐻∗
1 = 𝑄−1/2𝐻,𝐻1 = 𝑄1/2𝐻, and∫

𝑈

𝐷∗𝐺(𝑧))𝜇(𝑑𝑧) = −
∫
Σ
𝐻1⟨𝐺(𝑧), 𝑛𝑈(𝑧)⟩𝐻∗

1
∥𝑑𝜌∥(𝑑𝑧) ∀𝐺 ∈ (ℱ𝐶1

𝑏 )𝑄1/2(𝐻),

where 𝑛𝑈(𝑧) = 𝐷𝑓(𝑧)/∥𝐷𝑓(𝑧)∥𝐻∗
1
and ∥𝑑𝜌∥(𝑑𝑧) = ∥𝐷𝑓(𝑧)∥𝐻∗

1
𝜈(𝑑𝑧) is a finite mea-

sure on Σ. Moreover, if ∥𝐷𝑓(𝑧)∥𝐻∗
1
is finite on Σ for some 𝐻∗

1 ⊂ 𝑄−1/2𝐻, then

𝐼𝑈 ∈ 𝐵𝑉 (𝐻,𝐻1).

Theorem 3.2.3 Let 𝜌 ∈ 𝑄𝑅(𝐸)∩𝐵𝑉 (𝐻,𝐻1) and consider the measure ∥𝑑𝜌∥ and

𝜎𝜌 from Theorem 3.2.1(ii). Then for any smooth measure 𝛾 under 𝑃𝛾 there exists

an ℳ𝑡- cylindrical Wiener process 𝑊 , such that the sample paths of the associated

distorted process 𝑀𝜌 on 𝐹 satisfy the following: for 𝑙 ∈ 𝐻1 ∩ 𝐸∗ ∩𝑄1/2(𝐻)

𝐸∗⟨𝑙, 𝑋𝑡−𝑋0⟩𝐸 =

∫ 𝑡

0

⟨𝑙, 𝑑𝑊 𝑧
𝑠 ⟩+

1

2

∫ 𝑡

0
𝐻1⟨𝑙, 𝜎𝜌(𝑋𝑠)⟩𝐻∗

1
𝑑𝐿∥𝑑𝜌∥

𝑠 +
1

2

∫ 𝑡

0

𝛽𝑙(𝑋𝑠)𝑑𝑠 ∀𝑡 ≥ 0 𝑃𝛾−a.s..

(3.2.17)

Here 𝐿
∥𝑑𝜌∥
𝑡 is the real valued PCAF associated with ∥𝑑𝜌∥ by the Revuz correspon-

dence.

Proof Let {𝑒𝑗} be the orthonormal basis of 𝐻 introduced above. Define for all

𝑘 ∈ ℕ

𝑊𝑘(𝑡) := 𝐸∗⟨𝑒𝑘, 𝑋𝑡− 𝑧⟩𝐸 − 1

2

∫ 𝑡

0
𝐻1⟨𝑒𝑘, 𝜎𝜌(𝑋𝑠)⟩𝐻∗

1
𝑑𝐿∥𝑑𝜌∥

𝑠 − 1

2

∫ 𝑡

0

𝛽𝑒𝑘(𝑋𝑠)𝑑𝑠. (3.2.18)

By (3.1.1) and (3.2.16) we get for all 𝑘 ∈ ℕ

ℰ𝜌(𝑒𝑘(⋅), 𝑔) = −1

2

∫
𝐸

𝑔(𝑧)𝛽𝑒𝑘(𝑧)𝜌(𝑧)𝜇(𝑑𝑧)−
1

2

∫
𝐸

𝑔(𝑧)𝐻1⟨𝑒𝑘, 𝜎𝜌(𝑧)⟩𝐻∗
1
∥𝑑𝜌∥(𝑑𝑧) ∀𝑔 ∈ ℱ𝐶1

𝑏 .

By Theorem 3.1.4 it follows that for all 𝑘 ∈ ℕ

𝑁 𝑒𝑘
𝑡 =

1

2

∫ 𝑡

0
𝐻1⟨𝑒𝑘, 𝜎𝜌(𝑋𝑠)⟩𝐻∗

1
𝑑𝐿∥𝑑𝜌∥

𝑠 +
1

2

∫ 𝑡

0

𝛽𝑒𝑘(𝑋𝑠)𝑑𝑠. (3.2.19)

Here we get from (3.2.18), (3.2.19) and the uniqueness of decomposition (3.1.2) that,

𝑊𝑘(𝑡) =𝑀 𝑒𝑘
𝑡 ∀𝑡 ≥ 0 𝑃𝛾−a.s..

By Dirichlet form theory we get ⟨𝑀 𝑒𝑖 ,𝑀 𝑒𝑗⟩𝑡 = 𝑡𝛿𝑖𝑗. So𝑊𝑘 is an ℳ𝑡-Wiener process

under 𝑃𝛾. Thus, with 𝑊 being an ℳ𝑡- cylindrical Wiener process given by 𝑊 (𝑡) =

(𝑊𝑘(𝑡)𝑒𝑘)𝑘∈ℕ, (3.2.17) is satisfied for 𝑃𝛾 − 𝑎.𝑒.. □
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3.3 Examples

Now we want to give examples which cannot be covered by the BV functions in

abstract Wiener space and BV functions in a Gelfand triple and by using it, we can

consider the reflected stochastic quantization equation.

3.3.1 Reflected stochastic quantization equations with fi-

nite volume

In this section we apply our BV functions theory to the stochastic quantization of

(𝒫(𝜙)2−) field theory in finite volume. The stochastic quantization problem was

studied in [AR89], [AR91], [RZ92] and [LR98] by using the Dirichlet form theory

and get the existence and uniqueness of the martingale problem. And Da Prato and

Debussche in [DD03] proved the existence and uniqueness of a strong solution of this

problem. We consider the reflected problem in this case. Let 𝐻 = 𝐿2([0, 2𝜋]2), and

denote the complete orthonormal system by {𝑒𝑘 = 1
2𝜋
𝑒𝑖⟨𝑘,⋅⟩}𝑘∈ℤ2 . Define for 𝛼 ∈ ℝ+,

𝐻𝛼 := {𝑢 ∈ 𝐻 :
∑
𝑘

∣𝑘∣2𝛼⟨𝑢, 𝑒𝑘⟩2 <∞},

and for 𝛼 ∈ ℝ−, define 𝐻𝛼 be the dual of 𝐻−𝛼. Set 𝐸 = 𝐻−𝑠, 𝐸∗ = 𝐻𝑠 for some

𝑠 > 0. Also set 𝜇0 = 𝑁(0, (−△+1)−1) := 𝑁(0, 𝐶), where △ is Laplace operator on

[0, 2𝜋]2 with Dirichlet boundary condition. Then 𝜇0 is a measure supported on 𝐸.

Let us introduce the renormalized power. Set 𝑊𝑧(𝑥) = ⟨𝑥,𝐶−1/2𝑧⟩, for 𝑧 ∈
𝐶1/2(𝐻). We have for any 𝑁 ∈ ℕ,

𝑥𝑁(𝜉) :=
∑
∣𝑘∣≤𝑁

⟨𝑥, 𝑒𝑘⟩𝑒𝑘(𝜉) = 𝜌𝑁𝑊𝜂𝑁 (𝜉)(𝑥) for 𝑥𝜇− 𝑎.𝑒. in 𝐻,

where

𝜌𝑁 =
1

2𝜋
[
∑
∣𝑘∣≤𝑁

1

1 + ∣𝑘∣2 ]
1/2

and

𝜂𝑁(𝜉) =
1

𝜌𝑁

∑
∣𝑘∣≤𝑁

𝑒𝑘(𝜉)√
1 + ∣𝑘∣2 𝑒𝑘.

Now for any 𝑛 ∈ ℕ, we set

: 𝑥𝑛𝑁 : (𝜉) = 𝜌𝑛𝑁𝐻𝑛(𝑊𝜂𝑁 (𝜉)(𝑥)) for 𝑥𝜇− 𝑎.𝑒. in 𝐻.

Here 𝐻𝑛 are the Hermite polynomials, i.e. 𝐻𝑛(𝑡) =
∑[𝑛/2]

𝑚=0(−1)𝑚𝐶𝑛𝑚𝑡
𝑛−2𝑚 with
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𝐶𝑛𝑚 = 𝑛!/[(𝑛−2𝑚)!2𝑚𝑚!]. By [GJ86, Section 8.5], there exists an element : 𝑥𝑛 : (ℎ)

such that the sequence ⟨: 𝑥𝑛𝑁 :, ℎ⟩ →: 𝑥𝑛 : (ℎ) in 𝐿2(𝐸, 𝜇0), 𝑛 → ∞ for ℎ ∈ 𝐻. By

[DD03, Lemma 3.2], : 𝑥𝑛𝑁 : is bounded in 𝐿2(𝐸, 𝜇0, 𝐻
𝑟(𝐺)) for any 𝑟 < 0. Thus

ℎ ∈ 𝐻−𝑟 →: 𝑥𝑛 : (ℎ) ∈ 𝐿2(𝐸, 𝜇0) is continuous. So by [AR91, Proposition 6.9],

there exists a ℬ(𝐻−2+𝑟)/ℬ(𝐻−2+𝑟) measurable map : 𝑥𝑛 : 𝐻−2+𝑟 → 𝐻−2+𝑟 such

that : 𝑥𝑛 : (ℎ) =𝐻−2+𝑟 ⟨: 𝑥𝑛 :, ℎ⟩𝐻2−𝑟 . Finally, we set : 𝑃 (𝑥) :=
∑2𝑁

𝑛=0 𝑎𝑛 : 𝑥𝑛 :. Now

we assume that 𝑎𝑛 ∈ ℝ and 𝑎2𝑁 > 0.

Let

𝜇 =
exp (− ∫

[0,2𝜋]2
: 𝑃 (𝑥) : 𝑑𝑥)∫

exp (− ∫
[0,2𝜋]2

: 𝑃 (𝑥) : 𝑑𝑥)𝑑𝜇0

𝜇0.

Now set 𝑄𝑒𝑘 =
1

∣𝑘∣4+2𝑠 𝑒𝑘, so 𝑄
1/2(𝐻) = 𝐻2+𝑠. Then by [GlJ86, (9.1.32)] we have

the following:

Theorem 3.3.1 𝑄1/2(𝐻) ⊂ 𝐻(𝜇). Moreover for each 𝑙 ∈ 𝑄1/2𝐻, we have

𝛽𝑙(𝑥) =𝐻−𝑠−2 ⟨−
2𝑁∑
𝑛=1

𝑛𝑎𝑛 : 𝑥𝑛−1 :, 𝑙⟩𝐻2+𝑠 +𝐻𝑠 ⟨Δ𝑙 − 𝑙, 𝑥⟩𝐻−𝑠 .

Now fix 𝑘 ∈ ℕ, 𝑎 ∈ ℝ and take 𝑈 = {𝑥 ∈ 𝐻−𝑠 :𝐻−𝑠 ⟨𝑥, 𝑒𝑘⟩𝐻𝑠 ≤ 𝑎}, 𝜌 = 𝐼𝑈 . Then

by Theorem 3.2.2, 𝜌 is an BV function with 𝐻 = 𝐻1 = 𝐻∗
1 . Since 𝑈 is a convex

closed set, then 𝜌 ∈ 𝑄𝑅(𝐸). Thus we can apply Theorem 3.2.3 directly and by a

modification get the following:

Theorem 3.3.2 There is an ℰ𝜌-exceptional set 𝑆 ⊂ 𝐹 such that ∀𝑧 ∈ 𝐹∖𝑆 under

𝑃𝑧 there exists an ℳ𝑡- cylindrical Wiener process 𝑊 𝑧, such that the sample paths

of the associated distorted process 𝑀𝜌 on 𝐹 satisfy the following: for 𝑙 ∈ 𝐻2+𝑠

𝐸∗⟨𝑙, 𝑋𝑡 −𝑋0⟩𝐸 =

∫ 𝑡

0

⟨𝑙, 𝑑𝑊 𝑧
𝑠 ⟩ −

1

2

∫ 𝑡

0

⟨𝑙, 𝑛𝑈(𝑋𝑠)⟩𝑑𝐿∥𝑑𝜌∥
𝑠

+
1

2

∫ 𝑡

0
𝐻−𝑠−2⟨−

2𝑁∑
𝑛=1

𝑛𝑎𝑛 : 𝑋𝑛−1
𝑟 :, 𝑙⟩𝐻2+𝑠 +𝐻𝑠 ⟨Δ𝑙 − 𝑙, 𝑋𝑟⟩𝐻−𝑠𝑑𝑟 ∀𝑡 ≥ 0 𝑃𝑧−a.s..

Here 𝐿
∥𝑑𝜌∥
𝑡 is the real valued PCAF associated with ∥𝑑𝜌∥ by the Revuz correspon-

dence satisfying

𝐼∂𝑈(𝑋𝑠)𝑑𝐿
∥𝑑𝜌∥
𝑠 = 𝑑𝐿∥𝑑𝜌∥

𝑠 𝑃 − 𝑎.𝑠.

and 𝑛𝑈(𝑧) = 𝑒𝑘.

We can also take 𝑈 = {𝑥 ∈ 𝐸 : ∥𝑥∥𝐸 ≤ 1}, 𝜌 = 𝐼𝑈 . Then by Theorem 3.2.2,

𝜌 is an BV function with 𝐻1 = 𝐻∗
1 = 𝐻. Since 𝑈 is a convex closed set, then
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𝜌 ∈ 𝑄𝑅(𝐸). Thus as Theorem 3.3.2, we get the following:

Theorem 3.3.3 There is an ℰ𝜌-exceptional set 𝑆 ⊂ 𝐹 such that ∀𝑧 ∈ 𝐹∖𝑆 under

𝑃𝑧 there exists an ℳ𝑡- cylindrical Wiener process 𝑊 𝑧, such that the sample paths

of the associated distorted process 𝑀𝜌 on 𝐹 satisfy the following: for 𝑙 ∈ 𝐻2+𝑠

𝐸∗⟨𝑙, 𝑋𝑡 −𝑋0⟩𝐸 =

∫ 𝑡

0

⟨𝑙, 𝑑𝑊 𝑧
𝑠 ⟩ −

1

2

∫ 𝑡

0

⟨𝑙, 𝑛𝑈(𝑋𝑠)⟩𝑑𝐿∥𝑑𝜌∥
𝑠

+
1

2

∫ 𝑡

0
𝐻−2−𝑠⟨−

2𝑁∑
𝑛=1

𝑛𝑎𝑛 : 𝑋𝑛−1
𝑟 :, 𝑙⟩𝐻2+𝑠 +𝐻𝑠 ⟨Δ𝑙 − 𝑙, 𝑋𝑟⟩𝐻−𝑠𝑑𝑟 ∀𝑡 ≥ 0 𝑃𝑧−a.s..

Here 𝐿
∥𝑑𝜌∥
𝑡 is the real valued PCAF associated with ∥𝑑𝜌∥ by the Revuz correspon-

dence satisfying

𝐼∂𝑈(𝑋𝑠)𝑑𝐿
∥𝑑𝜌∥
𝑠 = 𝑑𝐿∥𝑑𝜌∥

𝑠 𝑃 − 𝑎.𝑠.

and 𝑛𝑈(𝑥) =
(−△)−𝑠𝑥
∣(−△)−𝑠𝑥∣ .

Now we want to construct an example which is an BV functions in Gelfand triple

with 𝐻 ∕= 𝐻1. Set 𝑧𝑛 =
∑𝑛

𝑘=1
1

∣𝑘∣𝑠 𝑒𝑘. Then it is obvious that 𝐸∗⟨𝑧𝑛, ⋅⟩𝐸 as a function

on 𝐸 converges to some function in𝐻2,12(𝐸, 𝜇). We will denote this function by 𝑧(𝑥).

By [RS92, Lemma 2.4], 𝑧(𝑥) has a 𝐶𝑎𝑝1,12-quasi-continuous versions. It is easy to

check the conditions in Theorem 3.2.2 are satisfied. We take 𝑈 = {𝑥 ∈ 𝐸 : 𝑧(𝑥) ≤ 𝑎}
for some 𝑎 ∈ ℝ such that 𝜇(𝑈) > 0, and 𝜌 = 𝐼𝑈 . Then by Theorem 3.2.2, 𝜌 is an

BV function with 𝐻1 = 𝐻1, 𝐻∗
1 = 𝐻−1. Since 𝑧(𝑥 + 𝑠𝑒𝑘) is continuous in 𝑠, we

have𝜌 ∈ 𝑄𝑅(𝐸). Thus as Theorem 3.3.2, we get the following:

Theorem 3.3.4 There is an ℰ𝜌-exceptional set 𝑆 ⊂ 𝐹 such that ∀𝑧 ∈ 𝐹∖𝑆 under

𝑃𝑧 there exists an ℳ𝑡- cylindrical Wiener process 𝑊 𝑧, such that the sample paths

of the associated distorted process 𝑀𝜌 on 𝐹 satisfy the following: for 𝑙 ∈ 𝐻2+𝑠

𝐸∗⟨𝑙, 𝑋𝑡 −𝑋0⟩𝐸 =

∫ 𝑡

0

⟨𝑙, 𝑑𝑊 𝑧
𝑠 ⟩ −

1

2

∫ 𝑡

0
𝐻1⟨𝑙, 𝑛𝑈(𝑋𝑠)⟩𝐻−1𝑑𝐿∥𝑑𝜌∥

𝑠

+
1

2

∫ 𝑡

0
𝐻−2−𝑠⟨−

2𝑁∑
𝑛=1

𝑛𝑎𝑛 : 𝑋𝑛−1
𝑟 :, 𝑙⟩𝐻2+𝑠 +𝐻𝑠 ⟨Δ𝑙 − 𝑙, 𝑋𝑟⟩𝐻−𝑠𝑑𝑟 ∀𝑡 ≥ 0 𝑃𝑧−a.s..

Here 𝐿
∥𝑑𝜌∥
𝑡 is the real valued PCAF associated with ∥𝑑𝜌∥ by the Revuz correspon-

dence satisfying

𝐼∂𝑈(𝑋𝑠)𝑑𝐿
∥𝑑𝜌∥
𝑠 = 𝑑𝐿∥𝑑𝜌∥

𝑠 𝑃 − 𝑎.𝑠.

and 𝑛𝑈(𝑥) =
∑
𝑘 𝑒𝑘/∣𝑘∣𝑠

∥∑𝑘 𝑒𝑘/∣𝑘∣𝑠∥𝐻−1
.

Remark 3.3.5 From above three theorems, we get martingale solutions to the
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reflected stochastic quantization equations. By the same argument as above, we can

also obtain martingale solution to the stochastic reflected OU equations with space

dimension 2.

3.3.2 Reflected stochastic quantization equations with infi-

nite volume

In this section, we consider the reflected stochastic quantization equations with

infinite volume. Let 𝒮 ′(ℝ2) be the space of tempered Schwartz distributions on ℝ2

and 𝒮(ℝ2) the associated test function space equipped with the usual topology. Let

𝜇0 be the mean zero Gaussian measure on (𝒮 ′(ℝ2),ℬ(𝒮 ′(ℝ2))) with covariance∫
𝒮⟨𝑘1, 𝑧⟩𝒮′𝒮⟨𝑘2, 𝑧⟩𝒮′𝜇0(𝑑𝑧) =

∫ ∫
(−△+ 1)−1(𝑥− 𝑦)𝑘1(𝑥)𝑘2(𝑦)𝑑𝑥𝑑𝑦 =: ⟨𝑘1, 𝑘2⟩𝐻2 ,

where (−△ + 1)−1) denotes the Green function of the operator (−△ + 1) on ℝ2.

Now for 𝑛 ∈ ℕ, let 𝒮−𝑛 denote the Hilbert subspace of 𝒮 ′(ℝ2) which is the dual of

𝒮𝑛 defined as the completion of 𝒮 w.r.t the norm

∥𝑘∥𝑛 := [
∑
∣𝑚∣≤𝑛

∫
ℝ2

(1 + ∣𝑥∣2)𝑛∣( ∂
𝑚1

∂𝑥𝑚1
1

,
∂𝑚2

∂𝑥𝑚2
2

)𝑘(𝑥)∣2𝑑𝑥]1/2.

For ℎ ∈ 𝐻2 we define 𝑋ℎ ∈ 𝐿2(𝒮 ′, 𝜇0) by 𝑋ℎ := lim𝑛→∞ 𝒮⟨𝑘𝑛, ⋅⟩𝒮′ in 𝐿2(𝒮 ′, 𝜇0)

where 𝑘𝑛 is any sequence in 𝒮 such that 𝑘𝑛 → ℎ in 𝐻2. We have the well-known

(Wiener-Itô) chaos decomposition

𝐿2(𝒮 ′, 𝜇0) =
⊕
𝑛≥0

ℋ𝑛.

For ℎ ∈ 𝐿2(ℝ2, 𝑑𝑥) and 𝑛 ∈ ℕ, define : 𝑧𝑛 : (ℎ) to be the unique element in ℋ𝑛 such

that∫
: 𝑧𝑛 : (ℎ) :

𝑛∏
𝑗=1

𝑋𝑘𝑗 :𝑛 𝑑𝜈 = 𝑛!

∫
ℝ2

𝑛∏
𝑗=1

(

∫
ℝ2

(−△+ 1)−1(𝑥− 𝑦𝑗)𝑘𝑗(𝑦𝑗)𝑑𝑦𝑗)ℎ(𝑥)𝑑𝑥

where 𝑘1, ..., 𝑘𝑛 ∈ 𝒮(ℝ2) and ::𝑛 means orthogonal projection onto ℋ𝑛 (see [S74, V.1]

for existence of : 𝑧𝑛 : (ℎ)).

From now on we fix 𝑁 ∈ ℕ, 𝑎𝑛 ∈ ℝ, 0 ≤ 𝑛 ≤ 2𝑁 , and define for ℎ ∈ 𝐿2(ℝ2, 𝑑𝑥)

: 𝑃 (𝑧) : (ℎ) :=
2𝑁∑
𝑛=0

𝑎𝑛 : 𝑧𝑛 : (ℎ) with 𝑎2𝑁 > 0.
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We have that exp(− : 𝑃 (𝑧) : (ℎ)) ∈ 𝐿𝑝(𝒮 ′, 𝜈) for all 𝑝 ∈ [1,∞) if ℎ ≥ 0 (cf.

[AR91, Section 7]), hence the following probability measures (called space-time cut-

off quantum fields) are well-defined for Λ ∈ ℬ(ℝ2),Λ bounded,

𝜇Λ :=
exp (− : 𝑃 (𝑧) : (1Λ))∫
exp (− : 𝑃 (𝑧) : (1Λ))𝑑𝜇0

𝜇0.

It has been proven that the weak limit

lim
Λ→ℝ2

𝜇Λ =: 𝜇

exists as a probability measure on (𝒮 ′(ℝ2),ℬ(𝒮 ′(ℝ2))) (see [AR91, Section 7]). In

particular, 𝜇(𝒮−𝑛) = 1 for some 𝑛 ∈ ℕ. Thus we take 𝐸 = 𝒮−𝑛, 𝐻 = 𝐿2(ℝ2, 𝑑𝑥) for

some 𝑛 big enough. Since the embedding 𝐻 ⊂ 𝐸 is Hilbert-Schmidt(cf. [H80, A.3]),

by [AR89, Proposition 3.9], there exists an orthonormal basis 𝑒𝑛 of 𝐻 and 𝑙𝑛 such

that 𝑙𝑛𝑒𝑛 is an orthonormal basis of 𝐸. Now take 𝑄1/2𝐻 = 𝒮𝑛. Then by [AR91,

Theorem 7.11], 𝑄1/2(𝐻) ⊂ 𝐻(𝜇) and for each 𝑙 ∈ 𝒮,

𝛽𝑙(𝑧) := −
2𝑁∑
𝑛=1

𝑛𝑎𝑛 : 𝑧𝑛−1 : (𝑙)− 𝒮𝑛⟨(−△+ 1)𝑙, 𝑧⟩𝒮−𝑛 , 𝑧 ∈ 𝒮−𝑛.

Then by the same argument as last section, we also obtain the following two theo-

rems.

Now fix 𝑘 ∈ ℕ, 𝑎 ∈ ℝ and take 𝑈 = {𝑥 ∈ 𝒮−𝑛 : 𝒮−𝑛⟨𝑥, 𝑒𝑘⟩𝒮𝑛 ≤ 𝑎}, 𝜌 = 𝐼𝑈 . Then

by Theorem 3.2.2, 𝜌 is an BV function with 𝐻 = 𝐻1 = 𝐻∗
1 . Since 𝑈 is a convex

closed set, then 𝜌 ∈ 𝑄𝑅(𝐸). Thus we can apply Theorem 3.2.3 directly and by a

modification get the following:

Theorem 3.3.6 There is an ℰ𝜌-exceptional set 𝑆 ⊂ 𝐹 such that ∀𝑧 ∈ 𝐹∖𝑆 under

𝑃𝑧 there exists an ℳ𝑡- cylindrical Wiener process 𝑊 𝑧, such that the sample paths

of the associated distorted process 𝑀𝜌 on 𝐹 satisfy the following: for 𝑙 ∈ 𝒮

𝐸∗⟨𝑙, 𝑋𝑡 −𝑋0⟩𝐸 =

∫ 𝑡

0

⟨𝑙, 𝑑𝑊 𝑧
𝑠 ⟩ −

1

2

∫ 𝑡

0

⟨𝑙, 𝑛𝑈(𝑋𝑠)⟩𝑑𝐿∥𝑑𝜌∥
𝑠

+
1

2

∫ 𝑡

0

−
2𝑁∑
𝑛=1

𝑛𝑎𝑛 : 𝑋𝑛−1
𝑟 : (𝑙) +𝒮𝑛 ⟨Δ𝑙 − 𝑙, 𝑋𝑟⟩𝒮−𝑛𝑑𝑟 ∀𝑡 ≥ 0 𝑃𝑧−a.s..

Here 𝐿
∥𝑑𝜌∥
𝑡 is the real valued PCAF associated with ∥𝑑𝜌∥ by the Revuz correspon-

dence satisfying

𝐼∂𝑈(𝑋𝑠)𝑑𝐿
∥𝑑𝜌∥
𝑠 = 𝑑𝐿∥𝑑𝜌∥

𝑠 𝑃 − 𝑎.𝑠.

and 𝑛𝑈(𝑧) = 𝑒𝑘.
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We can also take 𝑈 = {𝑥 ∈ 𝐸 : ∥𝑥∥𝐸 ≤ 1}, 𝜌 = 𝐼𝑈 . Then by Theorem 3.2.2,

𝜌 is an BV function with 𝐻1 = 𝐻∗
1 = 𝐻. Since 𝑈 is a convex closed set, then

𝜌 ∈ 𝑄𝑅(𝐸). Thus as Theorem 3.3.2, we get the following:

Theorem 3.3.7 There is an ℰ𝜌-exceptional set 𝑆 ⊂ 𝐹 such that ∀𝑧 ∈ 𝐹∖𝑆 under

𝑃𝑧 there exists an ℳ𝑡- cylindrical Wiener process 𝑊 𝑧, such that the sample paths

of the associated distorted process 𝑀𝜌 on 𝐹 satisfy the following: for 𝑙 ∈ 𝒮

𝐸∗⟨𝑙, 𝑋𝑡 −𝑋0⟩𝐸 =

∫ 𝑡

0

⟨𝑙, 𝑑𝑊 𝑧
𝑠 ⟩ −

1

2

∫ 𝑡

0
𝐸∗⟨𝑙, 𝑛𝑈(𝑋𝑠)⟩𝐸𝑑𝐿∥𝑑𝜌∥

𝑠

+
1

2

∫ 𝑡

0

−
2𝑁∑
𝑛=1

𝑛𝑎𝑛 : 𝑋𝑛−1
𝑟 : (𝑙) +𝒮𝑛 ⟨Δ𝑙 − 𝑙, 𝑋𝑟⟩𝒮−𝑛𝑑𝑟 ∀𝑡 ≥ 0 𝑃𝑧−a.s..

Here 𝐿
∥𝑑𝜌∥
𝑡 is the real valued PCAF associated with ∥𝑑𝜌∥ by the Revuz correspon-

dence satisfying

𝐼∂𝑈(𝑋𝑠)𝑑𝐿
∥𝑑𝜌∥
𝑠 = 𝑑𝐿∥𝑑𝜌∥

𝑠 𝑃 − 𝑎.𝑠.

and 𝑛𝑈(𝑥) =

∑
𝑘

1

𝑙2
𝑘

⟨𝑥,𝑒𝑘⟩𝑒𝑘
∣∑𝑘

1

𝑙2
𝑘

⟨𝑥,𝑒𝑘⟩𝑒𝑘∣ .

3.3.3 Other examples

Consider 𝜇 = 𝜑2𝜇0. Here 𝜇0 is the Gaussian measure in 𝐻 with mean 0 and

covariance operator𝑄 := 1
2
𝐴−1., where 𝐴 satisfies Hypothesis 2.1.1 in last chapter,

i.e.𝐴 : 𝐷(𝐴) ⊂ 𝐻 → 𝐻 is a linear self-adjoint operator on H such that ⟨𝐴𝑥, 𝑥⟩ ≥
𝛿∣𝑥∣2 ∀𝑥 ∈ 𝐷(𝐴) for some 𝛿 > 0 and 𝐴−1 is of trace class. Assume∫

𝐻

∣𝐷𝜑∣2𝑑𝜇0 <∞, 𝜑 > 0. (3.3.1)

Then by Young’s inequality we can deduce

𝜑(𝑥) ⋅ ⟨𝑒𝑘, 𝑥⟩ ∈ 𝐿2(𝐻,𝜇0),∀𝑘 ∈ ℕ.

By [MR92, II.3.d], for 𝑙 ∈ 𝐷(𝐴), we have

𝛽𝑙(𝑧) = −2⟨𝐴𝑙, 𝑧⟩+ 2⟨𝑙, 𝐷𝜑(𝑧)
𝜑(𝑧)

⟩.

We can use Theorem 3.2.3 get the following result.

Theorem 3.3.8 Let 𝜌 ∈ 𝑄𝑅(𝐻)∩𝐵𝑉 (𝐻,𝐻1) and consider the measure ∥𝑑𝜌∥ and

𝜎𝜌 from Theorem 3.2.1(ii). Then there is an ℰ𝜌-exceptional set 𝑆 ⊂ 𝐹 such that



70 Chapter 3. BV functions for differentiable measure

∀𝑧 ∈ 𝐹∖𝑆 under 𝑃𝑧 there exists an ℳ𝑡- cylindrical Wiener process 𝑊 𝑧, such that

the sample paths of the associated distorted process 𝑀𝜌 on 𝐹 satisfy the following:

for 𝑙 ∈ 𝐷(𝐴) ∩𝐻1

⟨𝑙, 𝑋𝑡−𝑋0⟩ =
∫ 𝑡

0

⟨𝑙, 𝑑𝑊 𝑧
𝑠 ⟩+

1

2

∫ 𝑡

0
𝐻1⟨𝑙, 𝜎𝜌(𝑋𝑠)⟩𝐻∗

1
𝑑𝐿∥𝑑𝜌∥

𝑠 −
∫ 𝑡

0

⟨𝐴𝑙,𝑋𝑠⟩𝑑𝑠+
∫ 𝑡

0

⟨𝑙, 𝐷𝜑(𝑋𝑠)

𝜑(𝑋𝑠)
⟩𝑑𝑠 𝑃𝑧−a.s..

Here 𝐿
∥𝑑𝜌∥
𝑡 is the real valued PCAF associated with ∥𝑑𝜌∥ by the Revuz correspon-

dence.

Assume 𝑓 satisfies the same conditions as in Theorem 3.2.2 and

𝑈 = 𝑓−1((−∞, 0)).

Theorem 3.3.9 Let 𝐼𝑈 ∈ 𝑄𝑅(𝐻) satisfying the same conditions as in Theorem

3.2.2 and ∣𝐷𝑓 ∣ is finite on ∂𝑈 , then there is an ℰ𝜌-exceptional set 𝑆 ⊂ 𝐹 such that

∀𝑧 ∈ 𝐹∖𝑆 under 𝑃𝑧 there exists an ℳ𝑡- cylindrical Wiener process 𝑊 𝑧, such that

the sample paths of the associated distorted process 𝑀𝜌 on 𝐹 satisfy the following:

for 𝑙 ∈ 𝐷(𝐴)

⟨𝑙, 𝑋𝑡−𝑋0⟩ =
∫ 𝑡

0

⟨𝑙, 𝑑𝑊 𝑧
𝑠 ⟩−

1

2

∫ 𝑡

0

⟨𝑙, 𝑛𝑈(𝑋𝑠)⟩𝑑𝐿∥𝑑𝜌∥
𝑠 −

∫ 𝑡

0

⟨𝐴𝑙,𝑋𝑠⟩𝑑𝑠+
∫ 𝑡

0

⟨𝑙, 𝐷𝜑(𝑋𝑠)

𝜑(𝑋𝑠)
⟩𝑑𝑠 𝑃𝑧−a.s..

Here 𝐿
∥𝑑𝜌∥
𝑡 is the real valued PCAF associated with ∥𝑑𝜌∥ by the Revuz correspon-

dence satisfying

𝐼∂𝑈(𝑋𝑠)𝑑𝐿
∥𝑑𝜌∥
𝑠 = 𝑑𝐿∥𝑑𝜌∥

𝑠 𝑃 − 𝑎.𝑠.

and 𝑛𝑈(𝑧) = 𝐷𝐹 (𝑧)/∣𝐷𝐹 (𝑧)∣ is the normal to Σ.

Now consider the following stochastic differential inclusion in the Hilbert space

𝐻, {
𝑑𝑋(𝑡) + (𝐴𝑋(𝑡)− 𝐷𝜑(𝑋𝑡)

𝜑(𝑋𝑡)
+𝑁𝑈(𝑋(𝑡)))𝑑𝑡 ∋ 𝑑𝑊 (𝑡),

𝑋(0) = 𝑥,
(3.3.2)

where 𝑊 (𝑡) is a cylindrical Wiener process in 𝐻 on a filtered probability space

(Ω,ℱ ,ℱ𝑡, 𝑃 ) and 𝑁𝑈(𝑥) is the normal cone to 𝑈 at 𝑥, i.e.

𝑁𝑈(𝑥) = {𝑧 ∈ 𝐻 : ⟨𝑧, 𝑦 − 𝑥⟩ ≤ 0 ∀𝑦 ∈ 𝑈}.

Definition 3.3.10 A pair of continuous 𝐻 ×ℝ-valued and ℱ𝑡-adapted processes

(𝑋(𝑡), 𝐿(𝑡)), 𝑡 ∈ [0, 𝑇 ], is called a solution of (3.3.2) if the following conditions hold.
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(i) 𝑋(𝑡) ∈ 𝑈 for all 𝑡 ∈ [0, 𝑇 ] 𝑃 − 𝑎.𝑠.;

(ii) 𝐿 is an increasing process with the property that

𝐼∂𝑈(𝑋𝑠)𝑑𝐿𝑠 = 𝑑𝐿𝑠 𝑃 − 𝑎.𝑠.

and for any 𝑙 ∈ 𝐷(𝐴) we have

⟨𝑙, 𝑋𝑡−𝑥⟩ =
∫ 𝑡

0

⟨𝑙, 𝑑𝑊𝑠⟩−
∫ 𝑡

0

⟨𝑙,n𝑈(𝑋𝑠)𝑑𝐿𝑠⟩−
∫ 𝑡

0

⟨𝐴𝑙,𝑋𝑠⟩𝑑𝑠+
∫ 𝑡

0

⟨𝑙, 𝐷𝜑(𝑋𝑠)

𝜑(𝑋𝑠)
⟩𝑑𝑠 ∀𝑡 ≥ 0 𝑃−𝑎.𝑠.

where n𝑈 is the exterior normal to 𝑈 .

Then by a modification of Theorem 2.4.11, we can get the pathwise uniqueness.

Theorem 3.3.11 Assume 𝑈 ⊂ 𝐻 satisfies the same conditions as in Theorem

3.3.9, and log𝜑 is a concave function. Then the stochastic inclusion (3.3.2) admits

at most one solution in the sense of Definition 3.3.9.

Combining Theorem 3.3.9 and 3.3.11 with the Yamada-Watanabe Theorem, we

now obtain the following:

Theorem 3.3.12 Assume 𝑈 satisfies the same conditions as in Theorem 3.3.9, and

log𝜑 is a concave function. Then there exists a Borel set 𝑀 ⊂ 𝐻 with 𝐼𝑈 ⋅ 𝜇(𝑀) =

𝜇(𝑈) such that for every 𝑥 ∈ 𝑀 , (3.3.2) has a pathwise unique continuous strong

solution in the sense that for every probability space (Ω,ℱ ,ℱ𝑡, 𝑃 ) with an ℱ𝑡-Wiener

process 𝑊 , there exists a unique pair of ℱ𝑡-adapted processes (𝑋,𝐿) satisfying

Definition 3.3.10 and 𝑃 (𝑋0 = 𝑥) = 1. Moreover 𝑋(𝑡) ∈𝑀 for all 𝑡 ≥ 0 𝑃 -a.s.

As an example, we can take 𝑓 = ⟨𝑥, 𝑥⟩ − 1, 𝜑(𝑥) = 𝑒−∣𝑥∣4 and log𝜑 is a concave

function. Then we can check that all the conditions in Theorem 3.3.12 is satisfied,

and by using Theorem 3.3.12, we get there exists a unique probabilistically strong

solution in the sense of Definition 3.3.10 for the following problem:{
𝑑𝑋(𝑡) + (𝐴𝑋(𝑡) + ∣𝑋𝑡∣2𝑋𝑡 +𝑁𝑈(𝑋(𝑡)))𝑑𝑡 ∋ 𝑑𝑊 (𝑡),

𝑋(0) = 𝑥.





Chapter 4

The stochastic quasi-geostrophic

equation

In this chapter we study the 2d stochastic quasi-geostrophic equation in 𝕋2 for gen-

eral parameter 𝛼 ∈ (0, 1) and multiplicative noise. We prove the existence of weak

solutions with regular additive noise and the existence of martingale solutions with

multiplicative noise and pathwise uniqueness under some condition in the general

case, i.e. for all 𝛼 ∈ (0, 1) . In the subcritical case 𝛼 > 1/2, we prove existence and

uniqueness of (probabilistically) strong solutions and construct a Markov family of

solutions. The large deviations principle in the subcritical case for multiplicative

noise has also been established. Part of result in this chapter has been included in

[RZZ12].

4.1 Notations and preliminaries

We consider the usual abstract form of equations (1.3)-(1.4). In the following, we

will restrict ourselves to flows which have zero average on the torus, i.e.∫
𝕋2

𝜃𝑑𝜉 = 0.

Thus (1.4) can be restated as

𝑢 = (− ∂𝜓

∂𝜉2
,
∂𝜓

∂𝜉1
) and (−△)1/2𝜓 = −𝜃.

Set 𝐻 = {𝑓 ∈ 𝐿2(𝕋2) :
∫
𝕋2 𝑓𝑑𝑥 = 0} and let ∣ ⋅ ∣ and ⟨., .⟩ denote the norm

and inner product in 𝐻 respectively. On the periodic domain 𝕋2, {sin(𝑘𝜉)∣𝑘 ∈
ℤ2

+} ∪ {cos(𝑘𝜉)∣𝑘 ∈ ℤ2
−} form an eigenbasis of −△. Here ℤ2

+ = {(𝑘1, 𝑘2) ∈ ℤ2∣𝑘2 >
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0} ∪ {(𝑘1, 0) ∈ ℤ2∣𝑘1 > 0},ℤ2
− = {(𝑘1, 𝑘2) ∈ ℤ2∣ − 𝑘 ∈ ℤ2

+}, 𝑥 ∈ 𝕋2, and the

corresponding eigenvalues are ∣𝑘∣2. Define

∥𝑓∥2𝐻𝑠 =
∑
𝑘

∣𝑘∣2𝑠⟨𝑓, 𝑒𝑘⟩2

and let 𝐻𝑠 denote the Sobolev space of all 𝑓 for which ∥𝑓∥𝐻𝑠 is finite. Set Λ =

(−△)1/2. Then

∥𝑓∥𝐻𝑠 = ∣Λ𝑠𝑓 ∣.

By the singular integral theory of Calderón and Zygmund (cf [St70, Chapter 3]),

for any 𝑝 ∈ (1,∞), there is a constant 𝐶 = 𝐶(𝑝), such that

(4.1.1) ∥𝑢∥𝐿𝑝 ≤ 𝐶(𝑝)∥𝜃∥𝐿𝑝 .

Fix 𝛼 ∈ (0, 1) and define the linear operator 𝐴 : 𝐷(𝐴) = 𝐻2𝛼(𝕋2) ⊂ 𝐻 → 𝐻

as 𝐴𝑢 := 𝜅(−△)𝛼𝑢. The operator 𝐴 is positive definite and selfadjoint with the

same eigenbasis as that of −△ mentioned above. Denote the eigenvalues of 𝐴 by

0 < 𝜆1 ≤ 𝜆2 ≤ ⋅ ⋅ ⋅ , and renumber the above eigenbasis correspondingly as 𝑒1, 𝑒2,....

We also set ∥𝑢∥ := ∣𝐴1/2𝑢∣, then ∥𝜃∥2 ≥ 𝜆1∣𝜃∣2.
First we recall the following important product estimates (cf. [Re95, Lemma

A.4]):

Lemma 4.1.1 Suppose that 𝑠 > 0 and 𝑝 ∈ (1,∞). If 𝑓, 𝑔 ∈ 𝒮, the Schwartz

class, then

∥Λ𝑠(𝑓𝑔)∥𝐿𝑝 ≤ 𝐶(∥𝑓∥𝐿𝑝1∥𝑔∥𝐻𝑠,𝑝2 + ∥𝑔∥𝐿𝑝3∥𝑓∥𝐻𝑠,𝑝4 ), (4.1.2)

with 𝑝𝑖 ∈ (1,∞), 𝑖 = 1, ..., 4 such that

1

𝑝
=

1

𝑝1
+

1

𝑝2
=

1

𝑝3
+

1

𝑝4
.

We shall use as well the following useful Sobolev inequality (cf. [St70, Chapter

V]):

Lemma 4.1.2 Suppose that 𝑞 > 1, 𝑝 ∈ [𝑞,∞) and

1

𝑝
+
𝜎

2
=

1

𝑞
.

Suppose that Λ𝜎𝑓 ∈ 𝐿𝑞, then 𝑓 ∈ 𝐿𝑝 and there is a constant 𝐶 ≥ 0 such that

∥𝑓∥𝐿𝑝 ≤ 𝐶∥Λ𝜎𝑓∥𝐿𝑞 .
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The following compact embedding results will be used later.

Lemma 4.1.3 ([FG95, Theorem 2.1]) Let 𝐵0 ⊂ 𝐵 ⊂ 𝐵1 be Banach spaces, 𝐵0

and 𝐵1 reflexive, with compact embedding of 𝐵0 in 𝐵. Let 𝑝 ∈ (1,∞) and 𝛼 ∈ (0, 1)

be given. Let 𝑋 be the space

𝑋 = 𝐿𝑝(0, 𝑇 ;𝐵0) ∩𝑊𝛼,𝑝(0, 𝑇 ;𝐵1)

endowed with the natural norm. Then the embedding of𝑋 in 𝐿𝑝(0, 𝑇 ;𝐵) is compact.

Lemma 4.1.4 ([FG95, Theorem 2.2]) If 𝐵1 ⊂ �̃� are two Banach spaces with

compact embedding, and the real numbers 𝛼 ∈ (0, 1), 𝑝 > 1 satisfy 𝛼𝑝 > 1, then

the space 𝑊 𝛼,𝑝(0, 𝑇 ;𝐵1) is compactly embedded into 𝐶([0, 𝑇 ]; �̃�). Similarly, if the

Banach spaces 𝐵1, ..., 𝐵𝑛 are compactly embedded into �̃� and the real numbers

𝛼1, ..., 𝛼𝑛 ∈ (0, 1), 𝑝1, ...𝑝𝑛 > 1 satisfy 𝛼𝑖𝑝𝑖 > 1, ∀𝑖 = 1, ..., 𝑛, then the space

𝑊 𝛼1,𝑝1(0, 𝑇 ;𝐵1) + ...+𝑊 𝛼𝑛,𝑝𝑛(0, 𝑇 ;𝐵𝑛)

is compactly embedded into 𝐶([0, 𝑇 ]; �̃�).

4.2 Existence of solutions for additive noise

In this section, we consider the abstract stochastic evolution equation in place of

Eqs (1.3)-(1.4),{
𝑑𝜃(𝑡) + 𝐴𝜃(𝑡)𝑑𝑡+ 𝑢(𝑡) ⋅ ∇𝜃(𝑡)𝑑𝑡 = 𝐺(𝜃(𝑡))𝑑𝑊 (𝑡),

𝜃(0) = 𝜃0 ∈ 𝐻,
(4.2.1)

where 𝑢 satisfies (1.4) and𝑊 (𝑡) is a cylindrical Wiener process in a separable Hilbert

space 𝐾 defined on a filtered probability space (Ω,ℱ , {ℱ𝑡}𝑡∈[0,𝑇 ], 𝑃 ). Here 𝐺 is a

measurable mapping from 𝐻𝛼 to 𝐿2(𝐾,𝐻).

Definition 4.2.1 (i) We say that there exists a (probabilistically) strong solution

to (4.2.1) over the time interval [0, 𝑇 ] if for every probability space (Ω,ℱ , {ℱ𝑡}𝑡∈[0,𝑇 ], 𝑃 )
with an ℱ𝑡-Wiener process𝑊 , there exists an ℱ𝑡-adapted process 𝜃 : [0, 𝑇 ]×Ω → 𝐻

such that for 𝑃 − 𝑎.𝑠. 𝜔 ∈ Ω

𝜃(⋅, 𝜔) ∈ 𝐿∞(0, 𝑇 ;𝐻) ∩ 𝐿2(0, 𝑇 ;𝐻𝛼) ∩ 𝐶([0, 𝑇 ];𝐻𝑤)
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and 𝑃 -a.s.

⟨𝜃(𝑡), 𝜑⟩+
∫ 𝑡

0

⟨𝐴1/2𝜃(𝑠), 𝐴1/2𝜑⟩𝑑𝑠−
∫ 𝑡

0

⟨𝑢(𝑠)⋅∇𝜑, 𝜃(𝑠)⟩𝑑𝑠 = ⟨𝜃0, 𝜑⟩+⟨
∫ 𝑡

0

𝐺(𝜃(𝑠))𝑑𝑊 (𝑠), 𝜑⟩,

for all 𝑡 ∈ [0, 𝑇 ] and all 𝜑 ∈ 𝐶1(𝕋2), (assuming also that all integrals in the equation

are defined). Here 𝐶([0, 𝑇 ];𝐻𝑤) denotes the space of 𝐻-valued weakly continuous

functions on [0, 𝑇 ].

(ii)If 𝜃 is not an ℱ𝑡-adapted process, then for additive noise the equation is still

defined. In this case we call 𝜃 a (probabilistically) weak solution.

Remark 4.2.2 Note that, because 𝑑𝑖𝑣𝑢 = 0 for regular functions 𝜃 and 𝑣, we

have

⟨𝑢(𝑠) ⋅ ∇(𝜃(𝑠) + 𝜓), 𝜃(𝑠) + 𝜓⟩ = 0,

so

⟨𝑢(𝑠) ⋅ ∇𝜃(𝑠), 𝜓⟩ = −⟨𝑢(𝑠) ⋅ ∇𝜓, 𝜃(𝑠)⟩.
Thus the integral equation in Definition 4.2.1 corresponds to equation (4.2.1).

Assumption 4.2.3 Assume that𝐺 does not depend on 𝜃 and Tr(Λ2(1+𝜎−𝛼)+𝜀GG∗) <
∞ for some 𝜀 > 0, where 𝜎 := (1− 2𝛼) ∨ 0.

Consider the OU equation

𝑑𝑧(𝑡) + 𝐴𝑧(𝑡)𝑑𝑡 = 𝐺𝑑𝑊 (𝑡).

It is known that the process

𝑧(𝑡) =

∫ 𝑡

0

𝑒−(𝑡−𝑠)𝐴𝐺𝑑𝑊 (𝑠)

is a solution with continuous trajectories.

By [DZ92], under Assumption 4.2.3, sup0≤𝑡≤𝑇 ∥∇𝑧(𝑡)∥𝐿𝑞 < ∞ 𝑃 − 𝑎.𝑠. with

𝑞 = ( 1
𝛼
+ 𝜀) ∨ 2 for some 𝜀 > 0.

Theorem 4.2.4 Let 𝛼 ∈ (0, 1) and suppose that Assumption 4.2.3 holds. Then

for each initial condition 𝜃0 ∈ 𝐻, there exists a weak solution 𝜃 of equation (4.2.1)

over [0, 𝑇 ] with initial condition 𝜃(0) = 𝜃0.

Proof By the classical change of variable 𝑣(𝑡) = 𝜃(𝑡)−𝑧(𝑡) we obtain the differential

equation
𝑑𝑣(𝑡)

𝑑𝑡
+ 𝐴𝑣(𝑡) + 𝑢(𝑡) ⋅ ∇(𝑣(𝑡) + 𝑧(𝑡)) = 0. (4.2.2)

For almost all given paths of the process 𝑧(𝑡) we study this equation as a determin-
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istic evolution equation.

Let 𝑃𝑛 be the orthogonal projection in 𝐻 onto the linear space spanned by

𝑒1, ...𝑒𝑛. Consider the ordinary differential equation

𝑑𝑣𝑛(𝑡)

𝑑𝑡
+ 𝐴𝑣𝑛(𝑡) + 𝑃𝑛(𝑢𝑛(𝑡) ⋅ ∇(𝑣𝑛(𝑡) + 𝑧(𝑡))) = 0,

with initial condition

𝑣𝑛(0) = 𝑃𝑛𝑣0.

Here 𝑢𝑛 satisfies (1.4) with 𝜃 replaced by 𝑣𝑛 + 𝑧.

Its solution satisfies

1

2

𝑑

𝑑𝑡
∣𝑣𝑛∣2 + ∥𝑣𝑛∥2 = ⟨−𝑢𝑛(𝑡) ⋅ ∇(𝑣𝑛(𝑡) + 𝑧(𝑡)), 𝑣𝑛(𝑡)⟩.

Here 𝜔 ∈ Ω is fixed. For simplicity, in the following estimate, we set 𝑣 = 𝑣𝑛
and 𝑢(𝑡) = 𝑢𝑣(𝑡) + 𝑢𝑧(𝑡), 𝑢𝑣 and 𝑢𝑧 satisfying (1.4) with 𝜃 replaced by 𝑣 and 𝑧,

respectively. So

∣⟨−𝑢(𝑡) ⋅ ∇(𝑣(𝑡) + 𝑧(𝑡)), 𝑣(𝑡)⟩∣ =∣⟨𝑢𝑣(𝑡) ⋅ ∇𝑧(𝑡), 𝑣(𝑡)⟩+ ⟨𝑢𝑧(𝑡) ⋅ ∇𝑧(𝑡), 𝑣(𝑡)⟩∣
≤𝐶∥∇𝑧∥𝐿𝑞∥𝑣∥2𝐿𝑝 + 𝐶∥∇𝑧∥𝐿𝑞∥𝑧∥𝐿𝑝∥𝑣∥𝐿𝑝 .

Here 1
𝑞
+ 2

𝑝
= 1. Since

∥𝑣∥2𝐿𝑝 ≤ 𝐶∥𝑣∥2𝐻𝛼−𝜀1 ≤ 𝐶∥𝑣∥2𝛽∣𝑣∣2(1−𝛽),

where 𝛽 = 𝛼−𝜀1
𝛼

, by Young’s inequality, we obtain

1

2

𝑑

𝑑𝑡
∣𝑣∣2 + ∥𝑣∥2 ≤ 𝜀∥𝑣∥2 + 𝐶(𝜀)∣𝑣∣2 + 𝐶(𝜀)∣𝑣∣2∥∇𝑧∥1/(1−𝛽)𝐿𝑞 + 𝐶∥∇𝑧∥4𝐿𝑞 .

Therefore, for all 𝑡 ∈ [0, 𝑇 ],

∣𝑣(𝑡)∣2 ≤ 𝑒
∫ 𝑡
0 𝐶(1+∥∇𝑧(𝑠)∥1/(1−𝛽)

𝐿𝑞
)𝑑𝑠∣𝑣0∣2 + 𝐶

∫ 𝑡

0

𝑒
∫ 𝑡
𝜏 𝐶(1+∥∇𝑧(𝑠)∥1/(1−𝛽)

𝐿𝑞
)𝑑𝑠∥∇𝑧(𝜏)∥4𝐿𝑞𝑑𝜏 ,

(4.2.3)

and for [𝑟, 𝑡] ⊂ [0, 𝑇 ],∫ 𝑡

𝑟

∥𝑣∥2𝑑𝜏 ≤ ∣𝑣(𝑟)∣2 + 𝐶

∫ 𝑡

𝑟

(∣𝑣∣2 + ∣𝑣∣2∥∇𝑧∥1/(1−𝛽)𝐿𝑞 + ∥∇𝑧∥4𝐿𝑞)𝑑𝜏 . (4.2.4)

Then by Assumption 4.2.3, all the terms in (4.2.3) and (4.2.4) containing 𝑧 are

uniformly bounded in 𝑡. Therefore, from (4.2.3) and (4.2.4) (which hold true for
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𝑣𝑛) we obtain that the sequence 𝑣𝑛 is bounded in 𝐿∞(0, 𝑇 ;𝐻) and in 𝐿2(0, 𝑇 ;𝐻𝛼).

It is obvious that there exists an element 𝑣 ∈ 𝐿∞(0, 𝑇 ;𝐻) ∩ 𝐿2(0, 𝑇 ;𝐻𝛼) and a

sub-sequence 𝑣′𝑚 such that

𝑣′𝑚 → 𝑣 in 𝐿2(0, 𝑇 ;𝐻𝛼) weakly, and in 𝐿∞(0, 𝑇 ;𝐻) weak-star, as 𝑚→ ∞.

In order to prove the strong convergence in 𝐿2(0, 𝑇 ;𝐻), we need to use Lemma

4.1.3. So we just need to prove that ∥𝑣𝑛∥𝑊 𝛾,2(0,𝑇,𝐻−3) is bounded for some 1/2 < 𝛾 <

1. Then by compact embedding, we have 𝑣′𝑚 → 𝑣 in 𝐿2(0, 𝑇 ;𝐻) ∩ 𝐶([0, 𝑇 ];𝐻−𝛽)
strongly for some 𝛽 > 3. Note that 𝑣𝑛 also satisfies

⟨𝑣𝑛(𝑡), 𝜓⟩+
∫ 𝑡

0

⟨𝐴1/2𝑣𝑛(𝑠), 𝐴
1/2𝜓⟩𝑑𝑠−

∫ 𝑡

0

⟨𝑢𝑛(𝑠) ⋅ ∇𝜓, 𝑣𝑛(𝑠) + 𝑧(𝑠)⟩𝑑𝑠 = ⟨𝑃𝑛𝑣0, 𝜓⟩,
(4.2.5)

for all 𝑡 ∈ [0, 𝑇 ] and all 𝜓 ∈ 𝐶1(𝕋2). Then taking the limit in (4.2.5), we obtain the

result.

Now decompose 𝑣𝑛 as

𝑣𝑛(𝑡) = 𝑃𝑛𝑣0 −
∫ 𝑡

0

𝐴𝑣𝑛(𝑠)𝑑𝑠−
∫ 𝑡

0

𝑃𝑛(𝑢𝑛(𝑠) ⋅ ∇(𝑣𝑛(𝑠) + 𝑧(𝑠)))𝑑𝑠.

By (4.2.4) we obtain

∥
∫ ⋅

0

𝐴𝑣𝑛(𝑠)𝑑𝑠∥𝑊 1,2(0,𝑇,𝐻−𝛼) ≤ 𝐶.

And by 𝐻2 ⊂ 𝐿∞, we have for 𝜃 ∈ 𝐻1, 𝜓 ∈ 𝐻3,

∣⟨𝑢 ⋅ ∇𝜃, 𝜓⟩∣ = ∣⟨𝑢 ⋅ ∇𝜓, 𝜃⟩∣ ≤ ∣𝜃∣2∥∇𝜓∥∞ ≤ ∣𝜃∣2∥𝜓∥𝐻3 .

Then

∥𝑃𝑛(𝑢𝑛 ⋅ ∇(𝑣𝑛 + 𝑧))∥𝐿2(0,𝑇 ;𝐻−3) ≤ 𝑇 1/2 sup
0≤𝑠≤𝑇

∣𝑣𝑛(𝑠) + 𝑧(𝑠)∣2 ≤ 𝐶,

whence

∥
∫ ⋅

0

𝑃𝑛(𝑢𝑛(𝑠) ⋅ ∇(𝑣𝑛(𝑠) + 𝑧(𝑠)))𝑑𝑠∥𝑊 1,2(0,𝑇,𝐻−3) ≤ 𝐶.

Clearly for a Banach space 𝐵, 𝑊 1,2(0, 𝑇 ;𝐵) ⊂ 𝑊 𝛾,2(0, 𝑇 ;𝐵). So we have proved

∥𝑣𝑛∥𝑊 𝛾,2(0,𝑇,𝐻−3) ≤ 𝐶.

Thus the assertion follows.

□
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4.3 Martingale solutions in the general case

In this section, we consider multiplicative noise in the general case 𝛼 ∈ (0, 1). First

we introduce the following definition of a martingale solution.

Definition 4.3.1 We say that there exists a martingale solution of the equation

(4.2.1) if there exists a stochastic basis (Ω,ℱ , {ℱ𝑡}𝑡∈[0,𝑇 ], 𝑃 ), a cylindrical Wiener

process𝑊 on the space𝐾 and a progressively measurable process 𝜃 : [0, 𝑇 ]×Ω → 𝐻,

such that for 𝑃 -a.e. 𝜔 ∈ 𝛺,

𝜃(⋅, 𝜔) ∈ 𝐿∞(0, 𝑇 ;𝐻) ∩ 𝐿2(0, 𝑇 ;𝐻𝛼) ∩ 𝐶([0, 𝑇 ];𝐻−𝛽),

where 𝛽 > 3, and such that 𝑃 -a.s.

⟨𝜃(𝑡), 𝜙⟩+
∫ 𝑡

0

⟨𝐴1/2𝜃(𝑠), 𝐴1/2𝜙⟩𝑑𝑠−
∫ 𝑡

0

⟨𝑢(𝑠)⋅∇𝜙, 𝜃(𝑠)⟩𝑑𝑠 = ⟨𝜃0, 𝜙⟩+⟨
∫ 𝑡

0

𝐺(𝜃(𝑠))𝑑𝑊 (𝑠), 𝜙⟩,
(4.3.1)

for 𝑡 ∈ [0, 𝑇 ] and all 𝜙 ∈ 𝐶1(𝕋2).

Let 𝑓𝑛, 𝑛 ∈ ℕ, be an ONB of 𝐾 and consider the following two conditions:

(G.1)(i) ∣𝐺(𝜃)∣2𝐿2(𝐾,𝐻) ≤ 𝜆0∣𝜃∣2 + 𝜌, 𝜃 ∈ 𝐻𝛼, for some positive real numbers 𝜆0
and 𝜌.

(ii) If 𝑦, 𝑦𝑛 ∈ 𝐻𝛼 such that 𝑦𝑛 → 𝑦 in𝐻, then lim𝑛→∞ ∥𝐺(𝑦𝑛)∗(𝑣)−𝐺(𝑦)∗(𝑣)∥𝐾 =

0 for all 𝑣 ∈ 𝐶∞(𝕋2).

(G.2)For 𝑦 ∈ 𝐾

𝐺(𝑢)𝑦 =
∞∑
𝑘=1

(𝑏𝑘Λ
𝛼𝑢+ 𝑐𝑘𝑢)⟨𝑦, 𝑓𝑘⟩𝐾 , 𝑢 ∈ 𝐻𝛼,

where 𝑏𝑘, 𝑐𝑘 ∈ 𝐶∞(𝕋2) satisfying
∑

𝑘 𝑏
2
𝑘(𝜉) < 2𝜅,

∑
𝑘 𝑐

2
𝑘(𝜉) < 𝑀, 𝜉 ∈ 𝕋2.

Theorem 4.3.2 Let 𝛼 ∈ (0, 1). Under Assumption (G.1), there exists a martin-

gale solution (Ω,ℱ , {ℱ𝑡}, 𝑃,𝑊, 𝜃) to (4.2.1).

Proof [Step 1] Let 𝑃𝑛 be the orthogonal projection in 𝐻 onto the space spanned

by 𝑒1, ...𝑒𝑛. Consider the Faedo-Galerkin approximation.{
𝑑𝜃𝑛(𝑡) + 𝐴𝜃𝑛(𝑡)𝑑𝑡+ 𝑃𝑛(𝑢𝑛(𝑡) ⋅ ∇𝜃𝑛(𝑡))𝑑𝑡 = 𝑃𝑛𝐺(𝜃𝑛(𝑡))𝑑𝑊 (𝑡),

𝜃𝑛(0) = 𝑃𝑛𝜃0,
(4.3.2)

where 𝑢𝑛 satisfy (1.4) with 𝜃 replaced by 𝜃𝑛. Since all the coefficients are smooth in

𝑃𝑛𝐻, this equation has a martingale solution 𝜃𝑛 ∈ 𝐿2(Ω;𝐶([0, 𝑇 ];𝑃𝑛𝐻)).
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Since we have

⟨𝑢𝑛(𝑡) ⋅ ∇𝜃𝑛(𝑡), 𝜃𝑛⟩ = 0,

by Itô’s formula, for all 𝑝 ≥ 2 we have

𝑑∣𝜃𝑛(𝑡)∣𝑝+𝑝∣𝜃𝑛(𝑡)∣𝑝−2∥𝜃𝑛∥2𝑑𝑡 ≤ 𝑝∣𝜃𝑛(𝑡)∣𝑝−2⟨𝐺(𝜃𝑛)𝑑𝑊 (𝑡), 𝜃𝑛⟩+1

2
𝑝(𝑝−1)∣𝜃𝑛∣𝑝−2∣𝑃𝑛𝐺(𝜃𝑛)∣2𝐿2(𝐾,𝐻)𝑑𝑡.

By classical arguments, we easily show that there exist positive constants 𝐶1(𝑝), 𝐶2,

for each 𝑝 ≥ 2, such that (cf [FG95, Appendix 1])

𝐸( sup
0≤𝑠≤𝑇

∣𝜃𝑛(𝑠)∣𝑝) ≤ 𝐶1(𝑝), (4.3.3)

and

𝐸

∫ 𝑇

0

∥𝜃𝑛(𝑠)∥2𝑑𝑠 ≤ 𝐶2. (4.3.4)

[Step 2] Now decompose 𝜃𝑛 as

𝜃𝑛(𝑡) = 𝑃𝑛𝜃0 −
∫ 𝑡

0

𝐴𝜃𝑛(𝑠)𝑑𝑠−
∫ 𝑡

0

𝑃𝑛(𝑢𝑛(𝑠) ⋅ ∇𝜃𝑛(𝑠))𝑑𝑠+
∫ 𝑡

0

𝑃𝑛𝐺(𝜃𝑛(𝑠))𝑑𝑊 (𝑠).

By (4.3.4) we obtain

𝐸∥
∫ 𝑡

0

𝐴𝜃𝑛(𝑠)𝑑𝑠∥𝑊 1,2(0,𝑇,𝐻−𝛼) ≤ 𝐶.

And by 𝐻2 ⊂ 𝐿∞ we have for 𝜃 ∈ 𝐻1, 𝑣 ∈ 𝐻3

∣⟨𝑢 ⋅ ∇𝜃, 𝑣⟩∣ = ∣⟨𝑢 ⋅ ∇𝑣, 𝜃⟩∣ ≤ ∣𝜃∣2∥∇𝑣∥∞ ≤ ∣𝜃∣2∥𝑣∥𝐻3 .

Then

𝐸∥𝑃𝑛(𝑢𝑛 ⋅ ∇𝜃𝑛)∥𝐿2(0,𝑇 ;𝐻−3) ≤ 𝑇 1/2𝐸[ sup
0≤𝑠≤𝑇

∣𝜃𝑛(𝑠)∣2] ≤ 𝐶,

whence

𝐸∥
∫ 𝑡

0

𝑃𝑛(𝑢𝑛(𝑠) ⋅ ∇𝜃𝑛)𝑑𝑠∥𝑊 1,2(0,𝑇,𝐻−3) ≤ 𝐶.

By [FG95, Lemma 2.1], Assumption (G.1), and (4.3.3), (4.3.4), we have

𝐸∥
∫ 𝑡

0

𝑃𝑛𝐺(𝜃𝑛(𝑠))𝑑𝑊 (𝑠)∥𝑊 𝛾,2(0,𝑇 ;𝐻) ≤ 𝐶.

Clearly, for a Banach space 𝐵, 𝑊 1,2(0, 𝑇 ;𝐵) ⊂ 𝑊 𝛾,2(0, 𝑇 ;𝐵) for 0 < 𝛾 < 1. So, we

have proved

𝐸∥𝜃𝑛∥𝑊 𝛾,2(0,𝑇,𝐻−3) ≤ 𝐶.
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Recalling (4.3.4), this implies that the laws ℒ(𝜃𝑛), 𝑛 ∈ ℕ are bounded in probability

in

𝐿2(0, 𝑇 ;𝐻𝛼) ∩𝑊 𝛾,2(0, 𝑇,𝐻−3)

and thus are tight in 𝐿2(0, 𝑇 ;𝐻) by Lemma 4.1.3.

Arguing similarly for the term
∫ 𝑡
0
𝑃𝑛𝐺(𝜃𝑛(𝑠))𝑑𝑊 (𝑠), on the basis of the estimate

(4.3.3), we apply Lemma 4.1.4 and have that the family ℒ(𝜃𝑛), 𝑛 ∈ ℕ, is tight in

𝐶([0, 𝑇 ];𝐻−𝛽), for all given 𝛽 > 3. Thus, we find a subsequence, still denoted by

𝜃𝑛, such that ℒ(𝜃𝑛) converges weakly in

𝐿2(0, 𝑇 ;𝐻) ∩ 𝐶(0, 𝑇,𝐻−𝛽).

By Skorohod’s embedding theorem, there exist a stochastic basis (Ω1,ℱ1, {ℱ1
𝑡 }𝑡∈[0,𝑇 ],

𝑃 1) and, on this basis, 𝐿2(0, 𝑇 ;𝐻)∩𝐶(0, 𝑇,𝐻−𝛽)-valued random variables 𝜃1, 𝜃1𝑛, 𝑛 ≥
1, such that 𝜃1𝑛 has the same law as 𝜃𝑛 on 𝐿

2(0, 𝑇 ;𝐻)∩𝐶(0, 𝑇,𝐻−𝛽), and 𝜃1𝑛 → 𝜃1 in

𝐿2(0, 𝑇 ;𝐻) ∩ 𝐶(0, 𝑇,𝐻−𝛽), 𝑃 1 -a.s. For 𝜃1𝑛 we also have (4.3.3) and (4.3.4). Hence

it follows that

𝜃1(⋅, 𝜔) ∈ 𝐿2(0, 𝑇 ;𝐻𝛼) ∩ 𝐿∞(0, 𝑇 ;𝐻) for 𝑃 1 − 𝑎.𝑒 𝜔 ∈ 𝛺.

For each 𝜃1𝑛 we have that 𝑢1𝑛 satisfies (1.4) with 𝜃 replaced by 𝜃1𝑛.

For each 𝑛 ≥ 1, define the process

𝑀1
𝑛(𝑡) := 𝜃1𝑛(𝑡)− 𝑃𝑛𝜃

1
0 +

∫ 𝑡

0

𝐴𝜃1𝑛(𝑠)𝑑𝑠+

∫ 𝑡

0

𝑃𝑛(𝑢
1
𝑛(𝑠) ⋅ ∇𝜃1𝑛(𝑠))𝑑𝑠.

In fact 𝑀1
𝑛 is a square integrable martingale with respect to the filtration

{𝒢1
𝑛}𝑡 = 𝜎{𝜃1𝑛(𝑠), 𝑠 ≤ 𝑡}

with quadratic variation

⟨⟨𝑀1
𝑛⟩⟩𝑡 =

∫ 𝑡

0

𝑃𝑛𝐺(𝜃
1
𝑛(𝑠))𝐺(𝜃

1
𝑛(𝑠))

∗𝑃𝑛𝑑𝑠.

For all 𝑠 ≤ 𝑡 ∈ [0, 𝑇 ], all bounded continuous functions on 𝐿2(0, 𝑠;𝐻) or 𝐶([0, 𝑠];𝐻−𝛽),
and all 𝑣, 𝑧 smooth, we have

𝐸(⟨𝑀1
𝑛(𝑡)−𝑀1

𝑛(𝑠), 𝑣⟩𝜙(𝜃1𝑛∣[0,𝑠])) = 0
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and
𝐸((⟨𝑀1

𝑛(𝑡), 𝑣⟩⟨𝑀1
𝑛(𝑡), 𝑧⟩ − ⟨𝑀1

𝑛(𝑠), 𝑣⟩⟨𝑀1
𝑛(𝑠), 𝑧⟩

−
∫ 𝑡

𝑠

⟨𝐺(𝜃1𝑛)∗𝑃𝑛𝑣,𝐺(𝜃1𝑛)∗𝑃𝑛𝑧⟩𝑑𝑟)𝜙(𝜃1𝑛∣[0,𝑠])) = 0.

Take the limit in the above equation, we obtain that for all 𝑠 ≤ 𝑡 ∈ [0, 𝑇 ], all

bounded continuous functions on 𝐿2(0, 𝑠;𝐻) or 𝐶([0, 𝑠];𝐻−𝛽), and all 𝑣, 𝑧 smooth,

we have

𝐸(⟨𝑀1(𝑡)−𝑀1(𝑠), 𝑣⟩𝜙(𝜃1∣[0,𝑠])) = 0

and

𝐸((⟨𝑀1(𝑡), 𝑣⟩⟨𝑀1(𝑡), 𝑧⟩−⟨𝑀1(𝑠), 𝑣⟩⟨𝑀1(𝑠), 𝑧⟩−
∫ 𝑡

𝑠

⟨𝐺(𝜃1)∗𝑣,𝐺(𝜃1)∗𝑧⟩𝑑𝑟)𝜙(𝜃1∣[0,𝑠])) = 0,

where

𝑀1(𝑡) := 𝜃1(𝑡)− 𝜃10 +

∫ 𝑡

0

𝐴𝜃1(𝑠)𝑑𝑠+

∫ 𝑡

0

(𝑢1(𝑠) ⋅ ∇𝜃1(𝑠))𝑑𝑠.

Thus the conclusion of the proof follows by a martingale representation theorem (cf.

[DZ92]). □

In order to get an estimate for the 𝐿𝑝 norm, we need to use another approxima-

tion.

Theorem 4.3.3 Let 𝛼 ∈ (0, 1). If 𝐺 ∈ 𝐿2(𝐾,𝐻) satisfies (G.1) and also the

following conditions: for all 𝜃 ∈ 𝐻𝛼 ∩ 𝐿𝑝(𝕋2),∫
(
∑
𝑗

∣𝐺(𝜃)(𝑓𝑗)∣2)𝑝/2𝑑𝜉 ≤ 𝐶(

∫
∣𝜃∣𝑝𝑑𝜉 + 1),∀𝑡 > 0, (4.3.5)

with 2 < 𝑝 <∞ for some constant 𝐶 := 𝐶(𝑝) > 0 and for all 𝜃1, 𝜃2 ∈ 𝐻𝛼 ∩ 𝐿𝑝(𝕋2),∫
(
∑
𝑗

∣(𝐺(𝜃1)−𝐺(𝜃2))(𝑓𝑗)∣2)𝑝/2𝑑𝜉 ≤ 𝐶

∫
∣𝜃1 − 𝜃2∣𝑝𝑑𝜉, (4.3.6)

then there exists a martingale solution (Ω,ℱ , {ℱ𝑡}, 𝑃,𝑊, 𝜃) to (4.2.1). Moreover, if

𝜃0 ∈ 𝐿𝑝(𝕋2) with 𝑝 > 2, then

𝐸 sup
𝑡∈[0,𝑇 ]

∥𝜃(𝑡)∥𝐿𝑝 <∞.

Remark 4.3.4 Typical examples for 𝐺 satisfying (4.3.5) have the following form:
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for 𝜃 ∈ 𝐻𝛼

𝐺(𝜃)𝑦 =
∞∑
𝑘=1

𝑏𝑘⟨𝑦, 𝑓𝑘⟩𝐾𝜃, 𝑦 ∈ 𝐾

where 𝑏𝑘 are 𝐶∞ functions on 𝕋2 satisfying
∑∞

𝑘=1 𝑏
2
𝑘(𝜉) ≤𝑀 .

Proof [Step 1] We first establish the existence of 𝐿𝑝-bounded solutions of the linear

equation:

𝑑𝜃(𝑡) + 𝐴𝜃(𝑡)𝑑𝑡+ 𝑤(𝑡) ⋅ ∇𝜃(𝑡)𝑑𝑡 = 𝑘𝛿 ∗𝐺(𝜃)𝑑𝑊 (𝑡), (4.3.7)

with a given coefficient function 𝑤(𝑡) which satisfies 𝑑𝑖𝑣𝑤(𝑡) = 0 and sup𝑡∈[0,𝑇 ] ∥𝑤(𝑡)∥𝐶3 ≤
𝐶. Here 𝑘𝛿 ∗ 𝐺(𝜃) means for 𝑦 ∈ 𝐾, 𝑘𝛿 ∗ 𝐺(𝜃)(𝑦) = 𝑘𝛿 ∗ (𝐺(𝜃)(𝑦)), where 𝑘𝛿 is the
periodic Poisson kernel in 𝕋2 given by 𝑘𝛿(𝜁) = 𝑒−𝛿∣𝜁∣, 𝜁 ∈ ℤ2. First, we consider 𝐺

not depending on 𝜃. Now take 𝑧 =
∫ 𝑡
0
𝑒−(𝑡−𝑠)𝐴𝑘𝛿 ∗𝐺𝑑𝑊 (𝑠), 𝑣 = 𝜃 − 𝑧. We have

𝑑𝑣(𝑡) + 𝐴𝑣(𝑡)𝑑𝑡+ 𝑤(𝑡) ⋅ ∇(𝑣 + 𝑧(𝑡))𝑑𝑡 = 0,

which is easily seen to have a solution 𝑣 ∈ 𝐶([0, 𝑇 ];𝐻)∩𝐿2([0, 𝑇 ];𝐻𝛼). We have for

any 𝑠 > 0,

𝑑

𝑑𝑡
∣Λ𝑠𝑣∣2 + 2∣Λ𝑠+𝛼𝑣∣2 ≤ 𝐶(∥𝑤∥𝐶3(𝕋2))∣Λ𝑠𝑣∣2 + ∣Λ𝑠+𝛼𝑣∣2 + 𝐶(∣Λ𝑠+𝛼𝑧∣).

By this estimate and a standard argument we prove that if 𝑣(𝑡0) ∈ 𝐻𝑠, then

𝑣 ∈ 𝐶([𝑡0, 𝑇 ], 𝐻
𝑠) ∩ 𝐿2([𝑡0, 𝑇 ], 𝐻

𝑠+𝛼). Then we obtain 𝑣 ∈ 𝐶((0, 𝑇 ];𝐻𝑠) for any

3 > 𝑠 > 0. Thus we get the existence of 𝐿𝑝-bounded solutions for additive noise.

Then consider the mapping Γ : 𝐿1(Ω, 𝐿∞([0, 𝑇 ], 𝐿𝑝)) → 𝐿1(Ω, 𝐿∞[0, 𝑇 ], 𝐿𝑝)) defined

by Γ(𝜃1) = 𝜃, where 𝜃 satisfies (4.3.7) with 𝐺(𝜃) replaced by 𝐺(𝜃1). Thus, by consid-

ering the norm [𝐸 sup𝑠∈[0,𝑇 ](𝑒
−𝛽𝑠∥𝜃(𝑠)∥𝑝𝐿𝑝)]1/𝑝 for suitable 𝛽 ∈ (0,∞) and a similar

calculation as (4.3.9) below, we obtain Γ maps 𝐿1(Ω, 𝐿∞[0, 𝑇 ], 𝐿𝑝)) into itself and is

a contraction. Thus, the equation 𝜃1 = Γ(𝜃1) has a unique solution. Hence (4.3.7)

has a unique 𝐿𝑝 bounded solution.

[Step 2] Now we construct an approximation of (4.2.1).

We pick a smooth 𝜙 ≥ 0, with supp𝜙 ⊂ [1, 2],
∫∞
0
𝜙 = 1, and for 𝛿 > 0 let

𝑈𝛿[𝜃](𝑡) :=

∫ ∞

0

𝜙(𝜏)(𝑘𝛿 ∗𝑅⊥𝜃)(𝑡− 𝛿𝜏)𝑑𝜏 ,

where 𝑘𝛿 is the periodic Poisson Kernel in 𝕋2 given by 𝑘𝛿(𝜁) = 𝑒−𝛿∣𝜁∣, 𝜁 ∈ ℤ2, and

we set 𝜃(𝑡) = 0, 𝑡 < 0. We take a zero sequence 𝛿𝑛 and consider the equation:

𝑑𝜃𝑛(𝑡) + 𝐴𝜃𝑛(𝑡)𝑑𝑡+ 𝑢𝑛(𝑡) ⋅ ∇𝜃𝑛(𝑡)𝑑𝑡 = 𝑘𝛿𝑛 ∗𝐺(𝜃)𝑑𝑊 (𝑡), (4.3.8)
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with initial data 𝜃𝑛(0) = 𝜃0 and 𝑢𝑛 = 𝑈𝛿𝑛 [𝜃𝑛]. For a fixed 𝑛, this is a linear equation

in 𝜃𝑛 on each subinterval [𝑡𝑘, 𝑡𝑘+1] with 𝑡𝑘 = 𝑘𝛿𝑛, since 𝑢𝑛 is determined by the

values of 𝜃𝑛 on the two previous subintervals. By [Step1], we obtain the existence

of a solution to (4.3.8).

[Step 3] It is sufficient to show that 𝜃𝑛 converge to the solution of (4.2.1). This

follows by similar arguments as in the proof of Theorem 4.3.2. Just as in Theorem

4.3.2, we only need to prove

𝐸∥𝜃𝑛∥𝑊 𝛾,2(0,𝑇,𝐻−3) ≤ 𝐶.

Here we can’t bound ∣𝑢𝑛∣ by ∣𝜃𝑛∣, pointwise in time. Instead, we have

sup
[0,𝑡]

∣𝑢𝑛∣ ≤ 𝐶 sup
[0,𝑡]

∣𝜃𝑛∣.

Thus by a small modification of the proof of Theorem 4.3.2, we get the martingale

solution (Ω,ℱ , {ℱ𝑡}, 𝑃,𝑊, 𝜃) to (4.2.1).

[Step 4] Now we prove the last statement. It is sufficient to prove that

𝐸 sup
𝑡∈[0,𝑇 ]

∥𝜃𝑛(𝑡)∥𝑝𝐿𝑝 ≤ 𝐶.

We write for simplicity 𝜃(𝑡) = 𝜃𝑛(𝑡, 𝜉). By [Kr10, Lemma 5.1], we have

∥𝜃(𝑡)∥𝑝𝐿𝑝 =∥𝜃0∥𝑝𝐿𝑝 +
∫ 𝑡

0

[−𝑝
∫
𝕋2

∣𝜃(𝑠)∣𝑝−2𝜃(𝑠)(Λ2𝛼𝜃(𝑠) + 𝑢(𝑠) ⋅ ∇𝜃(𝑠))𝑑𝜉

+
1

2
𝑝(𝑝− 1)

∫
𝕋2

∣𝜃(𝑠)∣𝑝−2(
∑
𝑗

∣𝑘𝛿𝑛 ∗𝐺(𝜃(𝑠))(𝑓𝑗)∣2)𝑑𝜉]𝑑𝑠

+𝑝

∫ 𝑡

0

∫
𝕋2

∣𝜃(𝑠)∣𝑝−2𝜃(𝑠)𝑘𝛿𝑛 ∗𝐺(𝜃(𝑠))𝑑𝜉𝑑𝑊 (𝑠)

≤∥𝜃0∥𝑝𝐿𝑝 +
∫ 𝑡

0

1

2
𝑝(𝑝− 1)

∫
𝕋2

∣𝜃(𝑠)∣𝑝−2(
∑
𝑗

∣𝑘𝛿𝑛 ∗𝐺(𝜃(𝑠))(𝑓𝑗)∣2)𝑑𝜉𝑑𝑠

+𝑝

∫ 𝑡

0

∫
𝕋2

∣𝜃(𝑠)∣𝑝−2𝜃(𝑠)𝑘𝛿𝑛 ∗𝐺(𝜃(𝑠))𝑑𝜉𝑑𝑊 (𝑠)

≤∥𝜃0∥𝑝𝐿𝑝 +
∫ 𝑡

0

(𝜀

∫
𝕋2

∣𝜃(𝑠)∣𝑝𝑑𝜉 + 𝐶(𝜀)

∫
(
∑
𝑗

∣𝑘𝛿𝑛 ∗𝐺(𝜃(𝑠))(𝑓𝑗)∣2)𝑝/2𝑑𝜉)𝑑𝑠

+𝑝

∫ 𝑡

0

∫
𝕋2

∣𝜃(𝑠)∣𝑝−2𝜃(𝑠)𝑘𝛿𝑛 ∗𝐺(𝜃(𝑠))𝑑𝜉𝑑𝑊 (𝑠).

Then by the Burkholder-Davis-Gundy inequality, Minkowski’s inequality and the
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same estimate as in the proof of (6.4) in [Kr10] and (4.3.1) we have

𝐸 sup
𝑠∈[0,𝑡]

∥𝜃(𝑠)∥𝑝𝐿𝑝 ≤𝐸∥𝜃0∥𝑝𝐿𝑝 + 𝐸

∫ 𝑡

0

(𝜀

∫
𝕋2

∣𝜃(𝑠)∣𝑝𝑑𝜉 + 𝐶

∫
(
∑
𝑗

∣𝑘𝛿𝑛 ∗𝐺(𝜃(𝑠))(𝑓𝑗)∣2)𝑝/2𝑑𝜉)𝑑𝑠

+𝑝𝐸(

∫ 𝑡

0

(

∫
𝕋2

∣𝜃(𝑠)∣𝑝−1(
∑
𝑗

∣𝑘𝛿𝑛 ∗𝐺(𝜃(𝑠))(𝑓𝑗)∣2)1/2𝑑𝜉)2𝑑𝑠)1/2

≤𝐸∥𝜃0∥𝑝𝐿𝑝 + 𝐸

∫ 𝑡

0

(𝜀

∫
𝕋2

∣𝜃(𝑠)∣𝑝𝑑𝜉 + 𝐶

∫
(
∑
𝑗

∣𝑘𝛿𝑛 ∗𝐺(𝜃(𝑠))(𝑓𝑗)∣2)𝑝/2𝑑𝜉)𝑑𝑠

+𝑝𝐸 sup
𝑠∈[0,𝑡]

∥𝜃(𝑠)∥𝑝−1
𝐿𝑝 (

∫ 𝑡

0

(

∫
𝕋2

(
∑
𝑗

∣𝑘𝛿𝑛 ∗𝐺(𝜃(𝑠))(𝑓𝑗)∣2)𝑝/2𝑑𝜉)2/𝑝𝑑𝑠)1/2

≤𝐸∥𝜃0∥𝑝𝐿𝑝 + 𝐸

∫ 𝑡

0

(𝜀

∫
𝕋2

∣𝜃(𝑠)∣𝑝𝑑𝜉 + 𝐶

∫
(
∑
𝑗

∣𝐺(𝜃(𝑠))(𝑓𝑗)∣2)𝑝/2𝑑𝜉)𝑑𝑠

+𝐶(𝑇 )𝐸 sup
𝑠∈[0,𝑡]

∥𝜃(𝑠)∥𝑝−1
𝐿𝑝 (

∫ 𝑡

0

(

∫
𝕋2

(
∑
𝑗

∣𝐺(𝜃(𝑠))(𝑓𝑗)∣2)𝑝/2𝑑𝜉)𝑑𝑠)1/𝑝

≤𝐸∥𝜃0∥𝑝𝐿𝑝 + 𝜀𝐸 sup
𝑠∈[0,𝑡]

∥𝜃(𝑠)∥𝑝𝐿𝑝 + 𝐶1𝐸

∫ 𝑡

0

∥𝜃(𝑠)∥𝑝𝐿𝑝𝑑𝑠+ 𝐶2

≤𝐸∥𝜃0∥𝑝𝐿𝑝 + 𝜀𝐸 sup
𝑠∈[0,𝑡]

∥𝜃(𝑠)∥𝑝𝐿𝑝 + 𝐶1

∫ 𝑡

0

𝐸 sup
𝑠∈[0,𝜎]

∥𝜃(𝑠)∥𝑝𝐿𝑝𝑑𝜎 + 𝐶2.

(4.3.9)

By Gronwall’s lemma, the assertion follows. □

Theorem 4.3.5 Let 𝛼 ∈ (0, 1). Under Assumption (G.2), there exists a martin-

gale solution (Ω,ℱ , {ℱ𝑡}, 𝑃,𝑊, 𝜃) to (4.2.1).

Proof The proof is similar to the one for Theorem 4.3.2. The only difference is the

proof of 𝜃(⋅, 𝜔) ∈ 𝐶([0, 𝑇 ];𝐻−𝛽). Here by Aldous’ criterion it suffices to check that

for all stopping times 𝜏𝑛 ≤ 𝑇 and 𝛿𝑛 → 0,

lim
𝑛
𝐸∥𝜃𝑛(𝜏𝑛 + 𝛿𝑛)− 𝜃𝑛(𝜏𝑛)∥𝐻−𝛽 = 0.

This can however be checked easily. □

4.4 Uniqueness of solutions

In this section, we will prove pathwise uniqueness for equation (4.2.1). First we

prove uniqueness in the subcritical case.
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Theorem 4.4.1 Assume 𝛼 > 1
2
. If 𝐺 satisfies the following condition

∥Λ−1/2(𝐺(𝑢)−𝐺(𝑣))∥2𝐿2(𝐾,𝐻) ≤ 𝛽∣Λ−1/2(𝑢− 𝑣)∣2 + 𝛽1∣Λ𝛼−
1
2 (𝑢− 𝑣)∣2, (4.4.1)

for all 𝑢, 𝑣 ∈ 𝐻𝛼, for some 𝛽 ∈ ℝ independent of 𝑢, 𝑣, and 𝛽1 < 2𝜅, then (4.2.1)

admits at most one probabilistically strong solution in the sense of Definition 4.2.1

such that

sup
𝑡∈[0,𝑇 ]

∥𝜃(𝑡)∥𝐿𝑞 <∞, 𝑃 − 𝑎.𝑠.,

with 0 < 1/𝑞 < 𝛼− 1
2
, and

𝐸 sup
𝑡∈[0.𝑇 ]

∣Λ−1/2𝜃(𝑡)∣2 <∞.

Remark If in Remark 4.3.4 𝑏𝑘 = 𝜇𝑘𝑒𝑘 for 𝜇𝑘 ∈ ℝ , then (4.4.1) is satisfied.

Proof Let 𝜃1, 𝜃2 be two solutions of (4.2.1), and let {𝑒𝑘}𝑘∈ℕ be the eigenbasis of 𝐴

from above. Then their difference 𝜃 = 𝜃1 − 𝜃2 satisfies

⟨𝜓, 𝜃(𝑡)⟩ −
∫ 𝑡

0

⟨𝑢 ⋅ ∇𝜓, 𝜃1⟩𝑑𝑠−
∫ 𝑡

0

⟨𝑢2 ⋅ ∇𝜓, 𝜃⟩𝑑𝑠+ 𝜅

∫ 𝑡

0

⟨𝜃,Λ2𝛼𝜓⟩𝑑𝑠

=

∫ 𝑡

0

⟨𝜓, (𝐺(𝜃1)−𝐺(𝜃2))𝑑𝑊 (𝑠)⟩.
(4.4.2)

Now set 𝜙𝑘 = ⟨𝑒𝑘, 𝜃(𝑡)⟩, 𝜑𝑘 = ⟨Λ−1𝑒𝑘, 𝜃(𝑡)⟩. Itô’s formula and (4.4.2) yield

𝜙𝑘𝜑𝑘 =

∫ 𝑡

0

𝜙𝑘𝑑𝜑𝑘 +

∫ 𝑡

0

𝜑𝑘𝑑𝜙𝑘 + ⟨𝜑𝑘, 𝜙𝑘⟩(𝑡)

=2

∫ 𝑡

0

⟨𝑢 ⋅ ∇𝑒𝑘, 𝜃1⟩⟨Λ−1𝜃, 𝑒𝑘⟩+ ⟨𝑢2 ⋅ ∇𝑒𝑘, 𝜃⟩⟨Λ−1𝜃, 𝑒𝑘⟩ − 𝜅⟨Λ2𝛼𝑒𝑘, 𝜃⟩⟨Λ−1𝜃, 𝑒𝑘⟩𝑑𝑠

+2

∫ 𝑡

0

⟨Λ−1𝜃, 𝑒𝑘⟩⟨𝑒𝑘, (𝐺(𝜃1)−𝐺(𝜃2))𝑑𝑊 (𝑠)⟩

+

∫ 𝑡

0

⟨(𝐺(𝜃1)−𝐺(𝜃2))
∗𝑒𝑘, (𝐺(𝜃1)−𝐺(𝜃2))

∗Λ−1𝑒𝑘⟩𝑑𝑠.
(4.4.3)

The dominated theorem implies:

∑
𝑘≤𝑁

∫ 𝑡

0

⟨𝑢 ⋅ ∇𝑒𝑘, 𝜃1⟩⟨Λ−1𝜃, 𝑒𝑘⟩𝑑𝑠→
∫ 𝑡

0
𝐻−1⟨𝑢 ⋅ ∇𝜃1,Λ−1𝜃⟩𝐻1𝑑𝑠,𝑁 → ∞,

∑
𝑘≤𝑁

∫ 𝑡

0

⟨𝑢2 ⋅ ∇𝑒𝑘, 𝜃⟩⟨Λ−1𝜃, 𝑒𝑘⟩𝑑𝑠→
∫ 𝑡

0
𝐻−1⟨𝑢2 ⋅ ∇𝜃,Λ−1𝜃⟩𝐻1𝑑𝑠,𝑁 → ∞,



4.4. Uniqueness of solutions 87

and ∑
𝑘≤𝑁

∫ 𝑡

0

⟨Λ2𝛼𝑒𝑘, 𝜃⟩⟨Λ−1𝜃, 𝑒𝑘⟩𝑑𝑠→
∫ 𝑡

0

⟨𝜃,Λ2𝛼−1𝜃⟩𝑑𝑠,𝑁 → ∞.

Furthermore, since∫ 𝑡

0

∣Λ−1/2𝜃∣2∥Λ−1/2(𝐺(𝜃1)−𝐺(𝜃2))∥2𝐿2(𝐾,𝐻)𝑑𝑠

≤ 𝐶 sup
𝑠≤𝑡

∣𝜃(𝑠)∣2
∫ 𝑡

0

∥Λ−1/2(𝐺(𝜃1)−𝐺(𝜃2))∥2𝐿2(𝐾,𝐻)𝑑𝑠 <∞,

we obtain ∑
𝑘≤𝑁

∫ 𝑡

0

⟨Λ−1𝜃, 𝑒𝑘⟩⟨𝑒𝑘, (𝐺(𝜃1)−𝐺(𝜃2))𝑑𝑊 (𝑠)⟩ →

𝑀𝑡 :=

∫ 𝑡

0

⟨Λ−1/2𝜃,Λ−1/2(𝐺(𝜃1)−𝐺(𝜃2))𝑑𝑊 (𝑠)⟩, 𝑁 → ∞.

Finally, the following inequality holds:

∑
𝑘≤𝑁

∫ 𝑡

0

⟨(𝐺(𝜃1)−𝐺(𝜃2))∗𝑒𝑘, (𝐺(𝜃1)−𝐺(𝜃2))∗Λ−1𝑒𝑘⟩𝑑𝑠 ≤
∫ 𝑡

0

∥Λ−1/2(𝐺(𝜃1)−𝐺(𝜃2))∥2𝐿2(𝐾,𝐻)𝑑𝑠.

Thus, summing up over 𝑘 ≤ 𝑁 in (4.4.3) and letting 𝑁 → ∞ we obtain

∣Λ−1/2𝜃∣2 + 2𝜅

∫ 𝑡

0

∣Λ𝛼− 1
2 𝜃∣2𝑑𝑠

≤2𝑀(𝑡) + 2

∫ 𝑡

0
𝐻−1⟨𝑢 ⋅ ∇𝜃1,Λ−1𝜃⟩𝐻1 + 𝐻−1⟨𝑢2 ⋅ ∇𝜃,Λ−1𝜃⟩𝐻1𝑑𝑠

+

∫ 𝑡

0

∥Λ−1/2(𝐺(𝜃1)−𝐺(𝜃2))∥2𝐿2(𝐾,𝐻)𝑑𝑠.

By [Re95] we have

𝐻−1⟨𝑢 ⋅ ∇𝜃1,Λ−1𝜃⟩𝐻1 = 0,

and

∣𝐻−1⟨𝑢2 ⋅ ∇𝜃,Λ−1𝜃⟩𝐻1 ∣ ≤∥𝑢2∥𝐿𝑞∥𝜃∥𝐿𝑝∥∇Λ−1𝜃∥𝐿𝑝 ≤ 𝐶∥𝑢2∥𝐿𝑞∥𝜃∥𝐻1/𝑞∥∇Λ−1𝜃∥𝐻1/𝑞

≤𝐶∥𝜃2∥𝐿𝑞∥Λ−1𝜃∥2
𝐻

1+1
𝑞
≤ 𝐶∥𝜃2∥𝐿𝑞∥Λ−1𝜃∥2/𝑁

𝐻1/2∥Λ−1𝜃∥2(1−
1
𝑁
)

𝐻
1
2+𝛼

≤𝜀∣Λ𝛼− 1
2 𝜃∣2 + 𝐶∥𝜃2∥𝑁𝐿𝑞 ∣Λ−1/2𝜃∣2.

Here 1
𝑞
+ 2

𝑝
= 1 for 0 ≤ 1/𝑞 < 𝛼 − 1/2, 𝑁 = 𝛼

𝛼− 1
2
− 1
𝑞

and we use 𝐻1/𝑞 ↪→ 𝐿𝑝

continuously.
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Now by (4.4.1) we have

∣Λ−1/2𝜃∣2 ≤𝑀(𝑡) +

∫ 𝑡

0

𝐶∥𝜃2∥𝑁𝐿𝑞 ∣Λ−1/2𝜃∣2𝑑𝑠+ 𝛽

∫ 𝑡

0

∣Λ−1/2(𝜃1 − 𝜃2)∣2𝑑𝑠.

Let

𝜏 1𝑛 := inf{𝑡 > 0, ∥𝜃2(𝑡)∥𝐿𝑞 > 𝑛}.
Then by the weak continuity of 𝜃2, 𝜏

1
𝑛 are stopping times with respect to ℱ𝑡+, (ℱ𝑡+ :=

∩𝑠>𝑡ℱ𝑠)and ∥𝜃2(𝑡 ∧ 𝜏 1𝑛)∥𝐿𝑞 ≤ 𝑛 for large 𝑛. Also let 𝜏 2𝑛 be a localizing sequence of

stopping times for 𝑀 and 𝜏𝑛 := 𝜏 1𝑛∧ 𝜏 2𝑛. Then, since 𝑀(𝑡∧ 𝜏𝑛) is a martingale with

respect to ℱ𝑡+, we get

𝐸∣Λ−1/2𝜃(𝑡 ∧ 𝜏𝑛)∣2 ≤𝐶𝑛𝑁𝐸
∫ 𝑡∧𝜏𝑛

0

∣Λ−1/2𝜃∣2𝑑𝑠+ 𝛽𝐸

∫ 𝑡∧𝜏𝑛

0

∣Λ−1/2𝜃∣2𝑑𝑠

=𝐶(𝑛)

∫ 𝑡

0

𝐸∣Λ−1/2𝜃(𝑠 ∧ 𝜏𝑛)∣2𝑑𝑠+ 𝛽

∫ 𝑡

0

𝐸∣Λ−1/2𝜃(𝑠 ∧ 𝜏𝑛)∣2𝑑𝑠.

By Gronwall’s inequality, we get ∣Λ−1/2𝜃(𝑡 ∧ 𝜏𝑛)∣2 = 0 𝑃 − 𝑎.𝑠., and recalling that

𝜏𝑛 → 𝑇 as 𝑛→ ∞, we obtain that 𝜃(𝑡) = 0 𝑃 − 𝑎.𝑠. for 𝑡 ≤ 𝑇 , thus completing the

proof. □

From the proof we immediately obtain the following result.

Corollary 4.4.2 Assume 𝛼 > 1
2
. If there exists a probabilistically strong solution

𝜃2 in the sense of Definition 4.2.1 such that

sup
𝑡∈[0,𝑇 ]

∥𝜃2(𝑡)∥𝐿𝑞 <∞, 𝑃 − 𝑎.𝑠.

for some 𝑞 with 0 < 1/𝑞 < 𝛼− 1
2
and 𝐺 satisfies (4.4.1), then 𝜃2 is the only solution

to (4.2.1) such that

𝐸 sup
𝑡∈[0,𝑇 ]

∣Λ−1/2𝜃2(𝑡)∣2 <∞.

Thus, combining Theorem 4.4.1, Theorem 4.3.3 and the Yamada-Watanabe The-

orem in [Ku07], we get the following existence and uniqueness result.

Theorem 4.4.3 Assume 𝛼 > 1
2
and that 𝐺 satisfies (4.4.1), (G.1) (4.3.5) and

(4.3.6) for some 𝑝 with 0 < 1/𝑝 < 𝛼 − 1
2
. Then for each initial condition 𝜃0 ∈ 𝐿𝑝 ,

there exists a pathwise unique probabilistically strong solution 𝜃 of equation (4.2.1)

over [0, 𝑇 ] with initial condition 𝜃(0) = 𝜃0 such that

sup
𝑡∈[0,𝑇 ]

∥𝜃(𝑡)∥𝐿𝑝 <∞, 𝑃 − 𝑎.𝑠,
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and

𝐸 sup
𝑡∈[0,𝑇 ]

∣Λ−1/2𝜃(𝑡)∣2 <∞.

Combining Theorem 4.4.3 and Corollary 4.4.2, we obtain the following more

general existence and uniqueness result.

Theorem 4.4.4 Assume 𝛼 > 1
2
and that 𝐺 satisfies (4.4.1), (G.1), (4.3.5) and

(4.3.6) with 0 < 1/𝑝 < 𝛼 − 1
2
. Then for each initial condition 𝜃0 ∈ 𝐿𝑝, there exists

a pathwise unique probabilistically strong solution 𝜃 of equation (4.2.1) over [0, 𝑇 ]

with initial condition 𝜃(0) = 𝜃0 such that

𝐸 sup
𝑡∈[0,𝑇 ]

∣Λ−1/2𝜃(𝑡)∣2 <∞.

Moreover, the solution satisfies

sup
𝑡∈[0,𝑇 ]

∥𝜃(𝑡)∥𝐿𝑝 <∞, 𝑃 − 𝑎.𝑠..

Theorem 4.4.5 (Markov property) Assume 𝛼 > 1
2
and that𝐺 satisfies (G.1),(4.4.1)

and (4.3.5),(4.3.6) with 0 < 1/𝑝 < 𝛼− 1
2
. If 𝜃0 ∈ 𝐿𝑝 , then for every bounded, ℬ(𝐻)-

measurable 𝐹 : 𝐻 → ℝ, and all 𝑠, 𝑡 ∈ [0, 𝑇 ], 𝑠 ≤ 𝑡

𝐸(𝐹 (𝜃(𝑡))∣ℱ𝑠)(𝜔) = 𝐸(𝐹 (𝜃(𝑡, 𝑠, 𝜃(𝑠)(𝜔)))) for 𝑃 − 𝑎.𝑠.𝜔 ∈ Ω.

Here 𝜃(𝑡, 𝑠, 𝜃(𝑠)(𝜔)) denotes the solution to (4.2.1) starting from 𝜃(𝑠) at time 𝑠

satisfying

𝐸 sup
𝑡∈[𝑠,𝑇 ]

∣Λ−1/2𝜃(𝑡)∣2 <∞.

Proof By Theorem 4.4.4, we have 𝜃(𝑡) = 𝜃(𝑡, 𝑠, 𝜃(𝑠)) 𝑃 -a.s.. Then by the same

arguments as in [PR07, Proposition 4.3.3] and the Yamada-Watanabe Theorem in

[RSZ08], the assertion follows. □

Set

𝑝𝑡(𝑥, 𝑑𝑦) := 𝑃 ∘ (𝜃(𝑡, 𝑥))−1(𝑑𝑦), 0 ≤ 𝑡 ≤ 𝑇, 𝑥 ∈ 𝐻.

Here and in the following, we use 𝜃(𝑡, 𝑥) to denote a solution with initial value 𝑥.

We set for ℬ(𝐻)-measurable 𝐹 : 𝐻 → ℝ, and 𝑡 ∈ [0, 𝑇 ], 𝑥 ∈ 𝐻

𝑃𝑡𝐹 (𝑥) :=

∫
𝐹 (𝑦)𝑝𝑡(𝑥, 𝑑𝑦),
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provided 𝐹 is 𝑝𝑡(𝑥, 𝑑𝑦)-integrable. Then by Theorem 4.4.5, we have for 𝐹 : 𝐻 → ℝ,
bounded and ℬ(𝐻)-measurable, 𝑠, 𝑡 ≥ 0,

𝑃𝑠(𝑃𝑡𝐹 )(𝑥) = 𝑃𝑠+𝑡𝐹 (𝑥), 𝑥 ∈ 𝐿𝑝 with 0 < 1/𝑝 < 𝛼− 1

2
.

Theorem 4.4.6 Let 𝛼 ∈ (0, 1). If 𝐺 satisfies the Lipschitz condition

∥𝐺(𝑢)−𝐺(𝑣)∥2𝐿2(𝐾,𝐻) ≤ 𝛽∣𝑢− 𝑣∣2 + 𝛽1∥𝑢− 𝑣∥2𝐻𝛼 (4.4.4)

for all 𝑢, 𝑣 ∈ 𝐻𝛼, for some 𝛽 ∈ ℝ independent of 𝑢, 𝑣, and 𝛽1 < 2𝜅, then (4.2.1)

admits at most one solution in the sense of Definition 4.2.1 such that

𝐸 sup
𝑡∈[0,𝑇 ]

∣𝜃(𝑡)∣4 <∞

and

∫ 𝑇

0

∥Λ1−𝛼+𝜀𝜃(𝑡)∥𝑞𝐿𝑝𝑑𝑡 <∞,
1

𝑝
+
𝛼

𝑞
=
𝛼+ 𝜀

2
𝑃 − 𝑎.𝑠.,

where 𝜀 ∈ (0, 𝛼] and 𝑞 <∞.

Proof By the same argument as in the proof of Theorem 4.4.1, we get (4.4.2). Set

𝜙𝑘 := ⟨𝑒𝑘, 𝜃(𝑡)⟩. Then Itô’s formula and (4.4.2) yield

𝜙2
𝑘 =2

∫ 𝑡

0

𝜙𝑘𝑑𝜙𝑘 + [𝜙𝑘](𝑡)

=2

∫ 𝑡

0

⟨𝑢 ⋅ ∇𝑒𝑘, 𝜃1⟩⟨𝜃, 𝑒𝑘⟩+ ⟨𝑢2 ⋅ ∇𝑒𝑘, 𝜃⟩⟨𝜃, 𝑒𝑘⟩ − 𝜅⟨Λ2𝛼𝑒𝑘, 𝜃⟩⟨𝜃, 𝑒𝑘⟩𝑑𝑠

+2

∫ 𝑡

0

⟨𝜃, 𝑒𝑘⟩⟨𝑒𝑘, (𝐺(𝜃1)−𝐺(𝜃2))𝑑𝑊 (𝑠)⟩

+

∫ 𝑡

0

⟨(𝐺(𝜃1)−𝐺(𝜃2))
∗𝑒𝑘, (𝐺(𝜃1)−𝐺(𝜃2))

∗𝑒𝑘⟩𝑑𝑠.

(4.4.5)

Since

∣⟨𝑢2 ⋅ ∇𝜃, 𝜑⟩∣ ≤∥Λ1−𝛼+𝜀𝜑∥𝐿𝑝1∥Λ𝛼−𝜀(𝑢2𝜃)∥𝐿𝑝′1
≤𝐶∥Λ1−𝛼+𝜀𝜑∥𝐿𝑝1 (∥𝜃2∥𝐿𝑞1∥Λ𝛼−𝜀𝜃∥𝐿𝑞2 + ∥𝜃∥𝐿𝑞1∥Λ𝛼−𝜀𝜃2∥𝐿𝑞2 )
≤𝐶∥Λ1−𝛼+𝜀𝜑∥𝐿𝑝1 (∣𝜃2∣+ ∣𝜃1∣)2−𝛽−𝛾(∣Λ𝛼𝜃1∣+ ∣Λ𝛼𝜃2∣)𝛽+𝛾

≤𝐶∥Λ1−𝛼+𝜀𝜑∥𝑝′2𝐿𝑝1 (∣𝜃2∣2 + ∣𝜃1∣2) + ∣Λ𝛼𝜃2∣2 + ∣Λ𝛼𝜃1∣2,

the term 𝑢2 ⋅ ∇𝜃 can be considered as an element in (𝐻1−𝛼+𝜀,𝑝1)′. Here 1
𝑞1
+ 1

𝑞2
= 1

𝑝′1
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and 𝛽 + 𝛾 = 1
𝛼
(𝛼− 𝜀+ 2

𝑝1
), 𝑝2 = 2/(𝛽 + 𝛾).

By a similar calculation for ⟨𝑢 ⋅ ∇𝜃1, 𝜃⟩, the dominated convergence theorem

yields the following:

∑
𝑘≤𝑁

∫ 𝑡

0

⟨𝑢 ⋅ ∇𝑒𝑘, 𝜃1⟩⟨𝜃, 𝑒𝑘⟩𝑑𝑠→
∫ 𝑡

0
(𝐻1−𝛼+𝜀,𝑝1 )′⟨𝑢 ⋅ ∇𝜃1, 𝜃⟩𝐻1−𝛼+𝜀,𝑝1𝑑𝑠,𝑁 → ∞,

∑
𝑘≤𝑁

∫ 𝑡

0

⟨𝑢2 ⋅ ∇𝑒𝑘, 𝜃⟩⟨𝜃, 𝑒𝑘⟩𝑑𝑠→
∫ 𝑡

0
(𝐻1−𝛼+𝜀,𝑝1 )′⟨𝑢2 ⋅ ∇𝜃, 𝜃⟩𝐻1−𝛼+𝜀,𝑝1𝑑𝑠,𝑁 → ∞,

and ∑
𝑘≤𝑁

∫ 𝑡

0

⟨Λ2𝛼𝑒𝑘, 𝜃⟩⟨𝜃, 𝑒𝑘⟩𝑑𝑠→
∫ 𝑡

0

⟨𝜃,Λ2𝛼𝜃⟩𝑑𝑠,𝑁 → ∞.

Furthermore, since∫ 𝑡

0

∣𝜃∣2∥𝐺(𝑢)−𝐺(𝑣)∥2𝐿2(𝐾,𝐻)𝑑𝑠 ≤ 𝐶 sup
𝑠≤𝑡

∣𝜃(𝑠)∣2
∫ 𝑡

0

∥𝐺(𝑢)−𝐺(𝑣)∥2𝐿2(𝐾,𝐻)𝑑𝑠 <∞,

we obtain∑
𝑘≤𝑁

∫ 𝑡

0

⟨𝜃, 𝑒𝑘⟩⟨𝑒𝑘, (𝐺(𝜃1)−𝐺(𝜃2))𝑑𝑊 (𝑠)⟩ →𝑀𝑡 :=

∫ 𝑡

0

⟨𝜃, (𝐺(𝜃1)−𝐺(𝜃2))𝑑𝑊 (𝑠)⟩, 𝑁 → ∞.

Finally, the following inequality holds:

∑
𝑘≤𝑁

∫ 𝑡

0

⟨(𝐺(𝜃1)−𝐺(𝜃2))
∗𝑒𝑘, (𝐺(𝜃1)−𝐺(𝜃2))𝑒𝑘⟩𝑑𝑠 ≤

∫ 𝑡

0

∥𝐺(𝜃1)−𝐺(𝜃2)∥2𝐿2(𝐾,𝐻)𝑑𝑠.

Thus, summing up over 𝑘 ≤ 𝑁 in (4.4.5) and letting 𝑁 → ∞ we obtain

∣𝜃(𝑡)∣2 + 2𝜅

∫ 𝑡

0

∣Λ𝛼𝜃∣2𝑑𝑠 ≤2𝑀(𝑡) + 2

∫ 𝑡

0

⟨𝑢 ⋅ ∇𝜃1, 𝜃⟩+ ⟨𝑢2 ⋅ ∇𝜃, 𝜃⟩𝑑𝑠

+

∫ 𝑡

0

∥(𝐺(𝜃1)−𝐺(𝜃2))∥2𝐿2(𝐾,𝐻)𝑑𝑠.

We have

⟨𝑢2 ⋅ ∇𝜃, 𝜃⟩ = 0,

and by a similar calculation as in the proof of [Ju05, Theorem 3.3], we have

∣⟨𝑢 ⋅ ∇𝜃1, 𝜃⟩∣ ≤∥Λ1−𝛼+𝜀𝜃1∥𝐿𝑝1∥Λ𝛼−𝜀(𝑢𝜃)∥𝐿𝑝′1 ≤ 𝐶∥Λ1−𝛼+𝜀𝜃1∥𝐿𝑝1∥𝜃∥𝐿𝑞1∥Λ𝛼−𝜀𝜃∥𝐿𝑞2
≤𝐶∥Λ1−𝛼+𝜀𝜃1∥𝐿𝑝1 ∣𝜃∣2−𝛽−𝛾∣Λ𝛼𝜃∣𝛽+𝛾

≤𝜀∣Λ𝛼𝜃∣2 + 𝐶∥Λ1−𝛼+𝜀𝜃1∥𝑝
′
2
𝐿𝑝1 ∣𝜃∣2.
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Here 1
𝑞1
+ 1

𝑞2
= 1

𝑝′1
and 𝛽 + 𝛾 = 1

𝛼
(𝛼− 𝜀+ 2

𝑝1
), 𝑝2 = 2/(𝛽 + 𝛾).

Now by (4.4.4) we have

∣𝜃(𝑡)∣2 ≤𝑀(𝑡) +

∫ 𝑡

0

𝐶∥Λ1−𝛼+𝜀𝜃1∥𝑝
′
2
𝐿𝑝1 ∣𝜃∣2𝑑𝑠+ 𝛽

∫ 𝑡

0

∣(𝜃1 − 𝜃2)∣2𝑑𝑠.

Define the stopping time

𝜏𝑛 := inf{𝑡 > 0,

∫ 𝑡

0

∥Λ1−𝛼+𝜀𝜃1∥𝑝
′
2
𝐿𝑝1𝑑𝑠 > 𝑛}.

Applying Gronwall’s lemma, we have

∣𝜃(𝑡 ∧ 𝜏𝑛)∣2 ≤ ∣𝑀(𝑡 ∧ 𝜏𝑛)∣𝑒
∫ 𝑡∧𝜏𝑛
0 𝐶∥Λ1−𝛼+𝜀𝜃1∥𝑝

′
2
𝐿𝑝1

𝑑𝑠+𝛽𝑡 ≤ ∣𝑀(𝑡 ∧ 𝜏𝑛)∣𝑒𝐶𝑛+𝛽𝑡.

Consequently,

𝐸∣𝜃(𝑡 ∧ 𝜏𝑛)∣4 ≤𝑒2𝐶𝑛+2𝛽𝑡𝐸

∫ 𝑡∧𝜏𝑛

0

∣𝜃∣2∥𝐺(𝜃1)−𝐺(𝜃2)∥2𝐿2(𝐾,𝐻)𝑑𝑠

≤𝛽2𝑒2𝐶𝑛+2𝛽𝑡

∫ 𝑡

0

𝐸∣𝜃(𝑠 ∧ 𝜏𝑛)∣4𝑑𝑠.

By Gronwall’s lemma, we get ∣𝜃(𝑡∧ 𝜏𝑛)∣2 = 0 𝑃 −𝑎.𝑠., and recalling that 𝜏𝑛 → 𝑇 as

𝑛→ ∞, we obtain that 𝜃(𝑡) = 0 𝑃 − 𝑎.𝑠. for 𝑡 ≤ 𝑇 , thus completing the proof. □

Remark 4.4.7 For 𝛼 = 1/2, consider

𝑑𝜃 = [𝐴𝜃 + 𝑢 ⋅ ∇𝜃)]𝑑𝑡+
𝑚∑
𝑗=1

𝑏𝑗𝜃 ∘ 𝑑𝑤𝑗(𝑡), (4.4.6)

for 𝑏𝑗 ∈ ℝ, and independent 1-dimensional Brownian motions 𝑤𝑗. Consider the

process

𝛽(𝑡) = 𝑒−
∑𝑚
𝑗=1 𝑏𝑗𝑤𝑗(𝑡).

Then, the process 𝑣(𝑡) defined by transformation

𝑣(𝑡) = 𝛽(𝑡)𝜃(𝑡),

satisfies the equation (which depends on a random parameter)

𝑑𝑣

𝑑𝑡
= 𝐴𝑣 + 𝛽−1𝑢𝑣 ⋅ ∇𝑣. (4.4.7)

Then by the same argument as in the proof of [CC04, Theorem 3.1], we obtain the
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local existence and uniqueness of smooth solutions starting from 𝐻1 periodic initial

data. More precisely, for 𝑃 -almost every 𝜔 ∈ Ω, there exists a time 𝑡(𝜔, ∣Λ𝜃0∣), such
that 𝑣 ∈ 𝐶((0, 𝑡), 𝐻𝑚) for any 𝑚 > 0. On the other hand, by the same arguments

as in [CV06, Section 2], we obtain for any 𝑇 > 0, there exists 𝑀(𝜔, ∣Λ𝜃0∣) such that

∥𝑣(𝑡, ⋅)∥∞ ≤𝑀 for 𝑡 ∈ [0, 𝑇 ].

Then

∥𝛽−1𝑢𝑣(𝑡, ⋅)∥BMO ≤𝑀1(𝜔, ∣Λ𝜃0∣, 𝑇 ) for 𝑡 ∈ [0, 𝑇 ].

Hence by [KN09, Theorem 1.1], we obtain that there exists 𝛾(𝜔, ∣Λ𝜃0∣, 𝑇 ) > 0, such

that

∥𝑣(⋅, 𝑡)∥𝐶𝛾(𝕋2) ≤ 𝐶(𝜔, ∣Λ𝜃0∣, 𝑇 ).
Then by the same arguments as in the proofs of [CW07, Theorem 3.1] and [CV06,

Theorem 10], we obtain

∥𝑣(⋅, 𝑡)∥𝐶1(𝕋2) ≤ 𝐶1(𝜔, ∣Λ𝜃0∣, 𝑇 ) for 𝑡 ∈ [0, 𝑇 ].

By this a-priori bound and the local existence, we obtain a global regular solution

𝑣 for 𝑃 -almost every 𝜔 ∈ Ω. Define

𝜃(𝑡, 𝜉) := 𝛽(𝑡)−1𝑣(𝑡, 𝜉).

Then we obtain a solution 𝜃 such that

sup
𝑡∈[0,𝑇 ]

∥Λ1−𝛼+𝜀𝜃∥𝐿𝑝 <∞,
1

𝑝
≤ 𝛼+ 𝜀

2
𝑃 − 𝑎.𝑠..

So, for this special linear multiplicative noise, we obtain a solution satisfying the

condition in Theorem 4.4.6. Unfortunately, we don’t get this result for more general

noise and 𝛼 = 1
2
since the results and the method in the deterministic case (e.g.

[CV06], [KNV07], [KN09]) cannot be applied directly.

4.5 The large deviations result for small noise in

the subcritical case

In this section, for 𝛼 > 1/2 we want to consider the large deviation principle for small

noise stochastic quasi-geostrophic equation. Here we will use the weak convergence

approach established by Budhiraja and Dupuis in [BD00]. Let us first recall some

standard definitions and results from the large deviation theory. Let {𝑋𝜀} be a
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family of random variables defined on a probability space (Ω,ℱ , 𝑃 ) and taking

values in some Polish space 𝐸.

Definition 4.5.1 (Rate function) A function 𝐼 : 𝐸 → [0,∞] is called a rate

function if 𝐼 is lower semicontinuous. A rate function 𝐼 is called a good rate function

if the level set {𝑥 ∈ 𝐸 : 𝐼(𝑥) ≤ 𝐾} is compact for each 𝐾 <∞.

Definition 4.5.2 (I). (Large deviation principle) The sequence {𝑋𝜀} is said to

satisfy the large deviation principle with rate function 𝐼 if for each Borel subset 𝐴

of 𝐸

− inf
𝑥∈𝐴𝑜

𝐼(𝑥) ≤ lim inf
𝜀→0

𝜀2 log𝑃 (𝑋𝜀 ∈ 𝐴) ≤ lim sup
𝜀→0

𝜀2 log𝑃 (𝑋𝜀 ∈ 𝐴) ≤ − inf
𝑥∈𝐴

𝐼(𝑥),

where 𝐴𝑜 and 𝐴 are respectively the interior and the closure of 𝐴 in 𝐸.

(II). (Laplace principle) The sequence {𝑋𝜀} is said to satisfy the Laplace principle

with rate function 𝐼 if for each bounded continuous real-valued function ℎ defined

on 𝐸

lim
𝜀→0

𝜀2 log𝐸{exp[− 1

𝜀2
ℎ(𝑋𝜀)]} = inf

𝑥∈𝐸
{ℎ(𝑥) + 𝐼(𝑥)}.

Suppose 𝑊 (𝑡) is an cylindrical Wiener process on Hilbert space 𝐾 (with the

inner product ⟨⋅, ⋅⟩0, and norm ∣ ⋅ ∣0) defined on a probability space (Ω,ℱ ,ℱ𝑡, 𝑃 ),(i.e.

the path of 𝑊 take values in 𝐶([0, 𝑇 ], 𝐻1), where 𝐻1 is another Hilbert space such

that the embedding 𝐾 ⊂ 𝐻1 is Hilbert-Schmidt.) Let 𝒜 denote the class of 𝐾

valued {ℱ𝑡}-predictable processes 𝜙 which satisfy
∫ 𝑇
0
∣𝜙(𝑠)∣20𝑑𝑠 <∞ a.s. and 𝑆𝑁 :=

{𝑣 ∈ 𝐿2([0, 𝑇 ], 𝐾) :
∫ 𝑇
0
∣𝑣(𝑠)∣20𝑑𝑠 ≤ 𝑁}. Define 𝒜𝑁 := {𝜙 ∈ 𝒜 : 𝜙(𝜔) ∈ 𝑆𝑁 , 𝑃 − 𝑎.𝑠}.

Suppose 𝑔𝜀 : 𝐶([0, 𝑇 ], 𝐻1) → 𝐸 is a measurable map and 𝑋𝜀 = 𝑔𝜀(𝑊 ). We are

interested in the large deviation principle for 𝑋𝜀 as 𝜀 → 0. Consider the following

Hypothesis:

Hypothesis 4.5.3 There exists a measurable map 𝑔0 : 𝐶([0, 𝑇 ], 𝐻1) → 𝐸 such

that the following hold:

1. Let {𝑣𝜀 : 𝜀 > 0} ⊂ 𝒜𝑀 for some 𝑀 < ∞. If 𝑣𝜀 converge to 𝑣 as 𝑆𝑀 -

valued random elements in distribution, then 𝑔𝜀(𝑊 (⋅) + 1√
𝜀

∫ ⋅
0
𝑣𝜀(𝑠)𝑑𝑠) converge in

distribution to 𝑔0(
∫ ⋅
0
𝑣(𝑠)𝑑𝑠).

2. For every 𝑀 < ∞, the set 𝐾𝑀 = {𝑔0(∫ ⋅
0
𝑣(𝑠)𝑑𝑠) : 𝑣 ∈ 𝑆𝑀} is a compact

subset of 𝐸.

The following theorem was proven in [BD00].

Theorem 4.5.4 If {𝑔𝜀} satisfies Hypothesis 4.5.3, then {𝑋𝜀} satisfies the Laplace

principle (hence large deviation principle) on 𝐸 with the good rate function 𝐼 given
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by

𝐼(𝑓) = inf
{𝑣∈𝐿2([0,𝑇 ],𝐾):𝑓=𝑔0(

∫ ⋅
0 𝑣(𝑠)𝑑𝑠)}

{1
2

∫ 𝑇

0

∣𝑣(𝑠)∣20𝑑𝑠}. (4.5.1)

In this section, we consider the abstract stochastic evolution equation in place

of Eqs (1.3)-(1.4),{
𝑑𝜃(𝑡) + 𝐴𝜃(𝑡)𝑑𝑡+ 𝑢(𝑡) ⋅ ∇𝜃(𝑡)𝑑𝑡 = 𝐺(𝜃)𝑑𝑊 (𝑡),

𝜃(0) = 𝜃0,
(4.5.2)

where 𝑢 satisfies (1.4).

Hypothesis 4.5.5 Assume 𝐺 satisfies the following conditions:

i) 𝐺 : 𝐻 → 𝐿2(𝐾,𝐻) is continuous and ∣𝐺(𝜃)∣2𝐿2(𝐾,𝐻) ≤ 𝜆0∣𝜃∣2 + 𝜌, 𝜃 ∈ 𝐻, for

some positive real numbers 𝜆0 and 𝜌.

ii)For some 𝑝 with 0 < 1/𝑝 < 𝛼− 1
2
,∫

(
∑
𝑗

∣𝐺(𝜃)(𝑒𝑗)∣2)𝑝/2𝑑𝜉 ≤ 𝐶(

∫
∣𝜃∣𝑝𝑑𝜉 + 1), (4.5.3)

and ∫
(
∑
𝑗

∣(𝐺(𝜃1)−𝐺(𝜃2))(𝑒𝑗)∣2)𝑝/2𝑑𝜉 ≤ 𝐶

∫
∣𝜃1 − 𝜃2∣𝑝𝑑𝜉. (4.5.4)

iii)

∥Λ−1/2(𝐺(𝑢)−𝐺(𝑣))∥2𝐿2(𝐾,𝐻) ≤ 𝐶∣Λ−1/2(𝑢− 𝑣)∣2 + 𝛽1∣Λ𝛼−
1
2 (𝑢− 𝑣)∣2, (4.5.5)

for some 𝛽1 < 2𝜅.

Under Hypothesis 4.5.5, by Theorem 4.4.4, for 𝜃0 ∈ 𝐿𝑝, there exists a pathwise

unique strong solution of (4.5.2) in 𝐿∞([0, 𝑇 ], 𝐻) ∩ 𝐿2([0, 𝑇 ], 𝐻𝛼) ∩ 𝐶([0, 𝑇 ], 𝐻−𝛽),
where 𝛽 > 3. The main difficulty lies in dealing with the nonlinear term since the

solution to the stochastic quasi-geostrophic equation is not as regular as in the 2D

Navier-Stokes case. To estimate the nonlinear term, we use Galerkin approximations

and using the method in [GK96] we prove that these approximations converge in

probability to the solution.

Lemma 4.5.6 ([GK96, Lemma 1.1]) Let 𝑍𝑛 be a sequence of random elements

in a Polish space (𝐸, 𝜌) equipped with the Borel 𝜎-algebra. Then 𝑍𝑛 converges in

probability to an 𝐸-valued random element if and only if for every pair of subse-

quences 𝑍𝑙 and 𝑍𝑚 there exists a subsequence 𝑣𝑘 := (𝑍𝑙(𝑘), 𝑍𝑚(𝑘)) converging weakly

to a random element 𝑣 supported on the diagonal {(𝑥, 𝑦) ∈ 𝐸 × 𝐸 : 𝑥 = 𝑦}.
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Theorem 4.5.7 Assume Hypothesis 4.5.5, then 𝜃𝑛 converge to 𝜃 in probability.

Proof In Theorem 4.3.3, we proved that 𝜃𝑛 is tight in 𝐿
2([0, 𝑇 ], 𝐻)∩𝐶([0, 𝑇 ], 𝐻−𝛽).

In order to use Lemma 4.5.6, we now take two subsequences 𝜃𝑙, 𝜃𝑚 of 𝜃𝑛. Then

obviously (𝜃𝑙, 𝜃𝑚,𝑊 ) is tight in

𝐿2([0, 𝑇 ], 𝐻) ∩ 𝐶([0, 𝑇 ], 𝐻−𝛽)× 𝐿2([0, 𝑇 ], 𝐻) ∩ 𝐶([0, 𝑇 ], 𝐻−𝛽)× 𝐶([0, 𝑇 ], 𝐻1).

Then by Skorokhod’s embedding theorem, there exists subsequences 𝑙𝑗,𝑚𝑗, a proba-

bility space (Ω̂, ℱ̂ , 𝑃 ) carrying on �̂�𝑙𝑗 , �̄�𝑚𝑗 , �̂�𝑗 such that the distribution of (�̂�𝑙𝑗 , �̄�𝑚𝑗 , �̂�𝑗)

and (𝜃𝑙𝑗 , 𝜃𝑚𝑗 ,𝑊 ) coincide, and for 𝑃 a.e.

�̂�𝑙𝑗 → �̂�, �̄�𝑙𝑗 → �̄�, �̂�𝑗 → �̂�

in the corresponding topology.

Thus (�̂�, �̂� ) and (�̄�, �̂� ) are the solutions of (4.5.2). Then by pathwise unique-

ness, we have �̂� = �̄�. Thus the result follows from Lemma 4.5.6. □

Consider the stochastic quasi-geostrophic equation with multiplicative noise given

by

𝑑𝜃𝜀(𝑡) + 𝐴𝜃𝜀(𝑡)𝑑𝑡+ 𝑢𝜀(𝑡) ⋅ ∇𝜃𝜀(𝑡)𝑑𝑡 = √
𝜀𝐺(𝜃𝜀)𝑑𝑊 (𝑡) (4.5.6)

with 𝜃𝜀(0) = 𝜃0 ∈ 𝐿𝑝 . By Theorem 4.4.5, under Hypothesis 4.5.5, there exists

a pathwise unique strong solution of (4.5.6) in 𝐿∞([0, 𝑇 ], 𝐻) ∩ 𝐿2([0, 𝑇 ], 𝐻𝛼) ∩
𝐶([0, 𝑇 ], 𝐻−𝛽), for 𝛽 > 3. Therefore, there exists a Borel-measurable function

𝑔𝜀 : 𝐶([0, 𝑇 ], 𝐻1) → 𝐿∞([0, 𝑇 ], 𝐻)∩𝐿2([0, 𝑇 ], 𝐻𝛼)∩𝐶([0, 𝑇 ], 𝐻−𝛽) such that 𝜃𝜀(⋅) =
𝑔𝜀(𝑊 (⋅)) a.s..

Now the aim is to prove the large deviation principle for 𝜃𝜀. For this purpose we

need to impose the following assumptions on 𝐺.

Hypothesis 4.5.8 Assume 𝐺 satisfies the following conditions:

i) 𝐺(𝜃) is a bounded operator from 𝐾 to 𝐻𝛿 with 𝛿 > 𝑟 := (2 − 2𝛼) ∨ 𝛼 such

that

∥𝐺(𝜃)∥𝐿(𝐾,𝐻1−𝛼) ≤ 𝐶(∥𝜃∥𝐻1 + 1), ∥𝐺(𝜃)∥𝐿(𝐾,𝐻𝛿) ≤ 𝐶(∥𝜃∥𝐻1+𝛼 + 1). (4.5.7)

ii)

∥𝐺(𝑢)−𝐺(𝑣)∥𝐿2(𝐾,𝐻) ≤ 𝐶∥𝑢− 𝑣∥𝐻𝛼 .
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Remark (4.5.7) can also be changed to

∥𝐺(𝜃)∥𝐿(𝐾,𝐻𝛿) ≤ 𝐶(∥𝜃∥𝐻𝛿+𝛼 + 1).

Let 𝜃𝑣 be the solution of

𝑑𝜃𝑣(𝑡) + 𝐴𝜃𝑣(𝑡)𝑑𝑡+ 𝑢𝑣(𝑡) ⋅ ∇𝜃𝑣(𝑡)𝑑𝑡 = 𝐺(𝜃𝑣)𝑣(𝑡)𝑑𝑡 (4.5.8)

with 𝜃𝑣(0) = 𝜃0 and 𝑣 ∈ 𝐿2([0, 𝑇 ], 𝐾). By Hypothesis 4.5.5 and 4.5.8, we obtain

∥𝐺(𝜃)𝑣∥𝐿𝑝 ≤ 𝐶∣𝑣∣0(∥𝜃∥𝐿𝑝 + 1),

∥𝐺(𝜃)𝑣∥𝐻1−𝛼 ≤ 𝐶∣𝑣∣0(∥𝜃∥𝐻1 + 1),

∣Λ−1/2(𝐺(𝜃1)−𝐺(𝜃2))𝑣∣ ≤ 𝐶∣𝑣∣0∣Λ−1/2(𝜃1 − 𝜃2)∣.
By [Re95, Theorems 3.5, 3.7], we know that there exists a unique solution 𝜃𝑣 ∈
𝐿∞([0, 𝑇 ], 𝐻1) ∩ 𝐿2([0, 𝑇 ], 𝐻1+𝛼) ∩ 𝐶([0, 𝑇 ], 𝐻−𝛽) for (4.5.8).

Define 𝑔0 : 𝐶([0, 𝑇 ], 𝐻1) → 𝐿∞([0, 𝑇 ], 𝐻) ∩ 𝐿2([0, 𝑇 ], 𝐻𝛼) ∩ 𝐶([0, 𝑇 ], 𝐻−𝛽) by

𝑔0(ℎ) =

{
𝜃𝑣, if ℎ =

∫ ⋅
0
𝑣(𝑠)𝑑𝑠 for some 𝑣 ∈ 𝐿2([0, 𝑇 ], 𝐾),

0, otherwise.

The following result shows that 𝑔𝜀 satisfies Hypothesis 4.5.3 so that Theorem 4.5.4

is applicable to establish the large deviation principle for 𝜃𝜀.

Theorem 4.5.9 Suppose Hypothesis 4.5.5 and 4.5.8 hold, then {𝜃𝜀} satisfies the

Laplace principle (hence large deviation principle) on

𝐿∞([0, 𝑇 ], 𝐻) ∩ 𝐿2([0, 𝑇 ], 𝐻𝛼) ∩ 𝐶([0, 𝑇 ], 𝐻−𝛽)

with a good rate function given by (4.5.1).

Proof To prove the theorem, it suffices to verify the two conditions in Hypothesis

4.5.3.

[Step 1] First we show that the set 𝐾𝑀 = {𝑔0(∫ ⋅
0
𝑣(𝑠)𝑑𝑠) : 𝑣 ∈ 𝑆𝑀} is a compact

subset of 𝐿∞([0, 𝑇 ], 𝐻) ∩ 𝐿2([0, 𝑇 ], 𝐻𝛼) ∩𝐶([0, 𝑇 ], 𝐻−𝛽). Let {𝜃𝑛} be a sequence in

𝐾𝑀 where 𝜃𝑛 corresponds to the solution of (4.5.8) with 𝑣𝑛 ∈ 𝑆𝑀 in place of 𝑣. By

the weak compactness of 𝑆𝑀 , there exists a subsequence of {𝑣𝑛} which converges to

a limit 𝑣 weakly in 𝐿2([0, 𝑇 ], 𝐾). Let 𝑤𝑛 = 𝜃𝑛 − 𝜃𝑣. It suffices to show that 𝑤𝑛 → 0

in 𝐿∞([0, 𝑇 ], 𝐻) ∩ 𝐿2([0, 𝑇 ], 𝐻𝛼) ∩ 𝐶([0, 𝑇 ], 𝐻−𝛽) as 𝑛→ ∞.
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By [Re95] we have

⟨𝑢𝑛 ⋅ ∇𝑤𝑛, 𝑤𝑛⟩ = 0.

By Lemma 4.1.2 and (4.1.1) we get

∣⟨(𝑢𝑛 − 𝑢𝑣) ⋅ ∇𝜃𝑣, 𝑤𝑛⟩∣ ≤ ∣Λ𝜃𝑣∣∣𝑤𝑛∣2𝐿4 ≤ 𝐶∣Λ𝜃𝑣∣∣𝑤𝑛∣2(1− 1
2𝛼

)∣Λ𝛼𝑤𝑛∣ 1𝛼
≤𝜅
2
∣Λ𝛼𝑤𝑛∣2 + 𝐶∣Λ𝜃𝑣∣2𝛼/(2𝛼−1)∣𝑤𝑛∣2.

(4.5.9)

Thus

∣𝑤𝑛(𝑡)∣2 + 2𝜅

∫ 𝑡

0

∣Λ𝛼𝑤𝑛∣2𝑑𝑠 =2

∫ 𝑡

0

−⟨𝑢𝑛 ⋅ ∇𝜃𝑛, 𝑤𝑛⟩+ ⟨𝑢𝑣 ⋅ ∇𝜃𝑣, 𝑤𝑛⟩𝑑𝑠

+

∫ 𝑡

0

⟨𝐺(𝜃𝑛)𝑣𝑛(𝑠)−𝐺(𝜃𝑣)𝑣(𝑠), 𝑤𝑛(𝑠)⟩𝑑𝑠

=− 2

∫ 𝑡

0

⟨(𝑢𝑛 − 𝑢𝑣) ⋅ ∇𝜃𝑣, 𝑤𝑛⟩𝑑𝑠

+

∫ 𝑡

0

⟨(𝐺(𝜃𝑛)−𝐺(𝜃𝑣))𝑣𝑛(𝑠), 𝑤𝑛(𝑠)⟩𝑑𝑠

+

∫ 𝑡

0

⟨𝐺(𝜃𝑣)(𝑣𝑛(𝑠)− 𝑣(𝑠)), 𝑤𝑛(𝑠)⟩𝑑𝑠

≤
∫ 𝑡

0

𝜅∣Λ𝛼𝑤𝑛∣2 + 𝐶(∣Λ𝜃𝑣∣2𝛼/(2𝛼−1) + ∣𝑣𝑛∣20)∣𝑤𝑛∣2

+⟨𝐺(𝜃𝑣)(𝑣𝑛(𝑠)− 𝑣(𝑠)), 𝑤𝑛(𝑠)⟩𝑑𝑠.

Define

ℎ𝑛(𝑡) =

∫ 𝑡

0

𝐺(𝜃𝑣)(𝑣𝑛(𝑠)− 𝑣(𝑠))𝑑𝑠.

Since 𝐻𝛿 ⊂ 𝐻𝑟 is compact and 𝑣𝑛 → 𝑣 weakly in 𝐿2([0, 𝑇 ];𝐾), by (4.5.7), it is easy

to show that ℎ𝑛 → 0 in 𝐶([0, 𝑇 ], 𝐻𝑟)(cf. [Li09, Lemma 3.2]) by using the Arzèla-

Ascoli theorem(more precisely, this convergence may only hold for a subsequence,

but it is enough for our use and we denote the convergent subsequence still by ℎ𝑛).

Also we have∫ 𝑡

0

⟨𝐺(𝜃𝑣)(𝑣𝑛(𝑠)− 𝑣(𝑠)), 𝑤𝑛(𝑠)⟩𝑑𝑠 = ⟨𝑤𝑛(𝑡), ℎ𝑛(𝑡)⟩ −
∫ 𝑡

0

⟨𝑤′
𝑛(𝑠), ℎ𝑛(𝑠)⟩𝑑𝑠

=⟨𝑤𝑛(𝑡), ℎ𝑛(𝑡)⟩+
∫ 𝑡

0

⟨𝐴𝑤𝑛(𝑠) + 𝑢𝑛 ⋅ ∇𝜃𝑛 − 𝑢𝑣 ⋅ ∇𝜃𝑣, ℎ𝑛(𝑠)⟩𝑑𝑠

−
∫ 𝑡

0

⟨𝐺(𝜃𝑣𝑛)𝑣𝑛(𝑠)−𝐺(𝜃𝑣)𝑣(𝑠)), ℎ𝑛(𝑠)⟩𝑑𝑠

=:𝐼1 + 𝐼2 + 𝐼3
(4.5.10)
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Note that

𝐼1 ≤ 𝜀∣𝑤𝑛(𝑡)∣2 + 𝐶∣ℎ𝑛(𝑡)∣2;
𝐼3 ≤ 𝐶 sup

𝑠∈[0,𝑇 ]
∥ℎ𝑛(𝑠)∥𝐻𝑠 .

For 𝜑 ∈ 𝐻2−2𝛼, by Lemma 4.1.1 and (4.1.1), we obtain

∣⟨𝑢𝑛⋅∇𝜃𝑛−𝑢𝑣⋅∇𝜃𝑣, 𝜑⟩∣ ≤ 𝐶∣Λ2𝛼−1(𝑢𝑛𝜃𝑛−𝑢𝑣𝜃𝑣)∣∣Λ2−2𝛼𝜑∣ ≤ (∣Λ𝛼𝜃𝑛∣2+∣Λ𝛼𝜃𝑣∣2)∣Λ2−2𝛼𝜑∣,

hence

∥𝑢𝑛 ⋅ ∇𝜃𝑛 − 𝑢𝑣 ⋅ ∇𝜃𝑣∥𝐻−(2−2𝛼) ≤ ∣Λ𝛼𝜃𝑛∣2 + ∣Λ𝛼𝜃𝑣∣2.
Therefore,

𝐼2 ≤
∫ 𝑡

0

(∥𝐴𝑤𝑛(𝑠)∥𝐻−𝛼 + ∥𝑢𝑛 ⋅ ∇𝜃𝑛 − 𝑢𝑣 ⋅ ∇𝜃𝑣∥𝐻−(2−2𝛼))∥ℎ𝑛(𝑠)∥𝐻𝑟𝑑𝑠

≤𝐶 sup
𝑠∈[0,𝑇 ]

∥ℎ𝑛(𝑠)∥𝐻𝑟

∫ 𝑡

0

(∥𝑤𝑛∥𝐻𝛼 + ∥𝜃𝑛∥2𝐻𝛼 + ∥𝜃𝑣∥2𝐻𝛼)𝑑𝑠

≤𝐶 sup
𝑠∈[0,𝑇 ]

∥ℎ𝑛(𝑠)∥𝐻𝑟 .

By the Gronwall lemma and (4.5.10) we have

∣𝑤𝑛(𝑡)∣2 + 𝜅

2

∫ 𝑡

0

∣Λ𝛼𝑤𝑛∣2𝑑𝑠 ≤ 𝐶 sup
𝑠∈[0,𝑇 ]

∥ℎ𝑛(𝑠)∥𝐻𝑠𝑒𝐶
∫ 𝑡
0 ∣Λ𝜃𝑣 ∣2𝛼/(2𝛼−1)+∣𝑣𝑛∣20𝑑𝑠.

Since 𝜃𝑣 ∈ 𝐿∞([0, 𝑇 ], 𝐻1) ∩ 𝐿2([0, 𝑇 ], 𝐻1+𝛼), we obtain

sup
𝑡∈[0,𝑇 ]

∣𝑤𝑛(𝑡)∣2 + 𝜅

2

∫ 𝑇

0

∣Λ𝛼𝑤𝑛∣2𝑑𝑠→ 0, 𝑛→ ∞.

[Step 2] Let 𝑣𝜀 converge to 𝑣 as 𝑆𝑀 -valued random elements in distribution. By

the Girsanov Theorem 𝜃𝑣𝜀 = 𝑔𝜀(𝑊 (⋅) + 1√
𝜀

∫ ⋅
0
𝑣𝜀(𝑠)𝑑𝑠) solves the following equation

𝑑𝜃𝑣𝜀(𝑡) +𝐴𝜃𝑣𝜀(𝑡)𝑑𝑡+ 𝑢𝑣𝜀(𝑡) ⋅ ∇𝜃𝑣𝜀(𝑡)𝑑𝑡 = 𝐺(𝜃𝑣𝜀)𝑣𝜀(𝑡)𝑑𝑡+
√
𝜀𝐺(𝜃𝑣𝜀)𝑑𝑊 (𝑡). (4.5.11)

Since 𝑆𝑀 is Polish space, by the Skorokhod theorem, we can construct processes

(𝑣𝜀, 𝑣, �̃�𝜀) such that the joint distribution of (𝑣𝜀, �̃�𝜀) is the same as that of (𝑣𝜀,𝑊 ),

and the distribution of 𝑣 coincides with that of 𝑣, and 𝑣𝜀 → 𝑣 a.s. in the topology.

Set 𝑤𝜀(𝑡) := 𝜃𝑣𝜀 − 𝜃𝑣. It suffices to prove that 𝑤𝜀 → 0 in probability in

𝐿∞([0, 𝑇 ], 𝐻) ∩ 𝐿2([0, 𝑇 ], 𝐻𝛼) ∩ 𝐶([0, 𝑇 ], 𝐻−𝛽).

Let 𝜃𝑛𝑣𝜀 be the solution of the Galerkin approximations to (4.5.11). Then by
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Theorem 4.5.7, we know that 𝜃𝑛𝑣𝜀 converge in probability to 𝜃𝑣𝜀 as elements in

𝐿2([0, 𝑇 ], 𝐻). Also let 𝜃𝑛𝑣 be the solution of Galerkin approximation to (4.5.8),

then 𝜃𝑛𝑣 → 𝜃𝑣 𝑃 − 𝑎.𝑠. as element in 𝐿2([0, 𝑇 ], 𝐻).

Set 𝑤𝑛𝜀 (𝑡) := 𝜃𝑛𝑣𝜀 − 𝜃𝑛𝑣 , then Itô’s formula and (4.5.9) implies that

∣𝑤𝑛𝜀 (𝑡)∣2 + 2𝜅

∫ 𝑡

0

∣Λ𝛼𝑤𝑛𝜀 ∣2𝑑𝑠 =2

∫ 𝑡

0

−⟨𝑢𝑛𝑣𝜀 ⋅ ∇𝜃𝑛𝑣𝜀 , 𝑤𝑛𝜀 ⟩+ ⟨𝑢𝑛𝑣 ⋅ ∇𝜃𝑛𝑣 , 𝑤𝑛𝜀 ⟩𝑑𝑠

+

∫ 𝑡

0

⟨𝑃𝑛𝐺(𝜃𝑛𝑣𝜀(𝑠))𝑣𝜀(𝑠)− 𝑃𝑛𝐺(𝜃
𝑛
𝑣 (𝑠))𝑣(𝑠), 𝑤

𝑛
𝜀 (𝑠)⟩𝑑𝑠

+
√
𝜀

∫ 𝑡

0

⟨𝑤𝑛𝜀 , 𝑃𝑛𝐺(𝜃𝑛𝑣𝜀)𝑑𝑊 ⟩+ 𝜀

2

∫ 𝑡

0

∥𝑃𝑛𝐺(𝜃𝑛𝑣𝜀)∥2𝐿2(𝐾,𝐻)𝑑𝑠

=− 2

∫ 𝑡

0

⟨𝑢𝑤𝑛𝜀 ⋅ ∇𝜃𝑛𝑣 , 𝑤𝑛𝜀 ⟩𝑑𝑠

+

∫ 𝑡

0

⟨(𝐺(𝜃𝑛𝑣𝜀(𝑠))−𝐺(𝜃𝑛𝑣 (𝑠)))𝑣𝜀(𝑠), 𝑤
𝑛
𝜀 (𝑠)⟩𝑑𝑠

+

∫ 𝑡

0

⟨𝐺(𝜃𝑛𝑣 (𝑠))(𝑣𝜀(𝑠)− 𝑣(𝑠)), 𝑤𝑛𝜀 (𝑠)⟩𝑑𝑠

+
√
𝜀

∫ 𝑡

0

⟨𝑤𝑛𝜀 , 𝐺(𝜃𝑛𝑣𝜀)𝑑𝑊 ⟩+ 𝜀

2

∫ 𝑡

0

∥𝑃𝑛𝐺(𝜃𝑛𝑣𝜀)∥2𝐿2(𝐾,𝐻)𝑑𝑠

≤
∫ 𝑡

0

𝜅∣Λ𝛼𝑤𝑛𝜀 ∣2 + 𝐶(∣Λ𝜃𝑛𝑣 ∣2𝛼/(2𝛼−1) + ∣𝑣𝜀∣20)∣𝑤𝑛𝜀 ∣2𝑑𝑠

+

∫ 𝑡

0

⟨𝐺(𝜃𝑛𝑣 (𝑠))(𝑣𝜀(𝑠)− 𝑣(𝑠)), 𝑤𝑛𝜀 (𝑠)⟩𝑑𝑠

+
√
𝜀

∫ 𝑡

0

⟨𝑤𝑛𝜀 , 𝐺(𝜃𝑛𝑣𝜀)𝑑𝑊 ⟩+ 𝜀

2

∫ 𝑡

0

∥𝑃𝑛𝐺(𝜃𝑛𝑣𝜀)∥2𝐿2(𝐾,𝐻)𝑑𝑠.

Here we write 𝑣𝜀 = 𝑣𝜀 for simplicity. Now let 𝑛→ ∞, we obtain

∣𝑤𝜀(𝑡)∣2 + 𝜅

∫ 𝑡

0

∣Λ𝛼𝑤𝜀∣2𝑑𝑠 ≤
∫ 𝑡

0

𝐶(sup
𝑛

∣Λ𝜃𝑛𝑣 ∣2𝛼/(2𝛼−1) + ∣𝑣𝜀∣20)∣𝑤𝜀∣2𝑑𝑠

+

∫ 𝑡

0

⟨𝐺(𝜃𝑣(𝑠))(𝑣𝜀(𝑠)− 𝑣(𝑠)), 𝑤𝜀(𝑠)⟩𝑑𝑠+
√
𝜀

∫ 𝑡

0

⟨𝑤𝜀, 𝐺(𝜃𝑣𝜀)𝑑𝑊 ⟩

+
𝜀

2

∫ 𝑡

0

∥𝐺(𝜃𝑣𝜀)∥2𝐿2(𝐾,𝐻)𝑑𝑠.

(4.5.12)

Similarly we define

ℎ𝜀(𝑡) =

∫ 𝑡

0

𝐺(𝜃𝑣(𝑠))(𝑣𝜀(𝑠)− 𝑣(𝑠))𝑑𝑠.

Then ℎ𝜀(𝑡) → 0 in 𝐶([0, 𝑇 ], 𝐻𝑟). By Itô’s formula and the same arguments as
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(4.5.10), we have∫ 𝑡

0

⟨𝐺(𝜃𝑣(𝑠))(𝑣𝜀(𝑠)− 𝑣(𝑠)), 𝑤𝜀(𝑠)⟩𝑑𝑠 ≤𝜀∣𝑤𝜀(𝑡)∣2 + 𝐶(1 +

∫ 𝑡

0

∣Λ𝛼𝜃𝑣𝜀 ∣2𝑑𝑠) sup
𝑠∈[0,𝑇 ]

∥ℎ𝜀(𝑠)∥𝐻𝑠

−√
𝜀

∫ 𝑡

0

⟨ℎ𝜀, 𝐺(𝜃𝑣𝜀)𝑑𝑊 ⟩.

By the Burkhölder-Davis-Gundy inequality one has

√
𝜀𝐸 sup

𝑡∈[0,𝑇 ]
∣
∫ 𝑡

0

⟨𝑤𝜀 − ℎ𝜀, 𝐺(𝜃𝑣𝜀)𝑑𝑊 ⟩∣ ≤2
√
𝜀𝐸(

∫ 𝑇

0

∣𝑤𝜀 − ℎ𝜀∣2∥𝐺(𝜃𝑣𝜀)∥2𝐿2(𝐾,𝐻)𝑑𝑠)
1/2

≤𝐶√𝜀

Combining the above estimates with (4.5.12) and applying the Gronwall lemma we

have

sup
𝑠∈[0,𝑡]

∣𝑤𝜀(𝑠)∣2 + 𝜅

2

∫ 𝑡

0

∣Λ𝛼𝑤𝜀∣2𝑑𝑠 ≤
(
𝐶(1 +

∫ 𝑡

0

∣Λ𝛼𝜃𝑣𝜀∣2𝑑𝑠) sup
𝑠∈[0,𝑇 ]

∥ℎ𝜀(𝑠)∥𝐻𝑠

+
√
𝜀 sup
𝑡∈[0,𝑇 ]

∣
∫ 𝑡

0

⟨𝑤𝜀 − ℎ𝜀, 𝐺(𝜃𝑣𝜀)𝑑𝑊 ⟩∣

+
𝜀

2

∫ 𝑡

0

∥𝐺(𝜃𝑣𝜀)∥2𝐿2(𝐾,𝐻)𝑑𝑠
)
𝑒𝐶

∫ 𝑇
0 sup𝑛 ∣Λ𝜃𝑛𝑣 ∣2𝛼/(2𝛼−1)+∣𝑣𝜀∣20𝑑𝑟.

Define

𝜏𝑁,𝜀 := 𝑇 ∧ inf{𝑡 :
∫ 𝑡

0

∣Λ𝛼𝜃𝑣𝜀(𝑠)∣2𝑑𝑠 > 𝑁}.

Then we have

sup
𝑡∈[0,𝜏𝑁,𝜀]

∣𝑤𝜀(𝑡)∣2 + 𝜅

2

∫ 𝜏𝑁,𝜀

0

∣Λ𝛼𝑤𝜀∣2𝑑𝑠→ 0

in probability as 𝜀→ 0.

Let 𝑁 be fixed. It is easy to show that for a suitable constant 𝐶

lim inf
𝜀→0

𝑃 (𝜏𝑁,𝜀 = 𝑇 ) ≥ 1− 𝐶

𝑁
.

Therefore,

sup
𝑡∈[0,𝑇 ]

∣𝑤𝜀(𝑡)∣2 + 𝜅

2

∫ 𝑇

0

∣Λ𝛼𝑤𝜀∣2𝑑𝑠→ 0

in probability as 𝜀→ 0. □
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4.6 The small time large deviations result in the

subcritical case

In this section, we consider the small time large deviations result. The approach

is similar to [XZ09]. We consider again the stochastic quasi-geostrophic equation

(4.5.2) and 𝐺 satisfies Hypothesis 4.5.5, then by Theorem 4.4.4, for 𝜃0 ∈ 𝐿𝑝, there

exists a pathwise unique strong solution of (4.5.2) in 𝐿∞([0, 𝑇 ], 𝐻)∩𝐿2([0, 𝑇 ], 𝐻𝛼)∩
𝐶([0, 𝑇 ], 𝐻−𝛽), for 𝛽 > 3.

Moreover, we consider the following conditions:

A.1) There exists a constant 𝐿 such that ∥𝐺(𝜃)∥2𝐿2(𝐾,𝐻1) ≤ 𝐿(1 + ∥𝜃∥2𝐻1) for all

𝜃 ∈ 𝐻1.

A.2) There exists a constant 𝐿1 such that ∥𝐺(𝜃)−𝐺(𝜃1)∥2𝐿2(𝐾,𝐻1) ≤ 𝐿1∥𝜃−𝜃1∥2𝐻1

for all 𝜃, 𝜃1 ∈ 𝐻1.

Let 𝜀 > 0, by the scaling property of the Brownian motion, it is easy to see that

𝜃(𝜀𝑡) coincides in law with the solution of the following equation:

𝑑𝜃𝜀(𝑡) + 𝜀𝐴𝜃𝜀(𝑡)𝑑𝑡+ 𝜀𝑢𝜀(𝑡) ⋅ ∇𝜃𝜀(𝑡)𝑑𝑡 = √
𝜀𝐺(𝜃𝜀)𝑑𝑊 (𝑡) (4.6.1)

with 𝜃𝜀(0) = 𝜃0. Let 𝜇
𝜀 be the law of 𝜃𝜀 on 𝐿∞([0, 𝑇 ], 𝐻−1/2).

Remark 4.6.1 Since the solution is not as regular as in for 2D Navier-Stokes

equation, we cannot deal with the nonlinear term as in the 2D Navier-Stokes case.

So we cannot consider the problem on 𝐿∞(0, 𝑇,𝐻) as Xu and Zhang did in [XZ09].

Here we can only obtain the large deviation principle on 𝐿∞([0, 𝑇 ], 𝐻−1/2).

Theorem 4.6.2 Suppose Hypothesis 4.5.3, A.1), A.2) holds, then for 𝜃0 ∈ 𝐿𝑝,

𝜇𝜀 satisfies a large deviation principle on 𝐿∞([0, 𝑇 ], 𝐻−1/2) with the rate function 𝐼

given by

𝐼(𝑓) = inf
{𝑣∈𝐿2([0,𝑇 ],𝐾):𝑓=𝜃0+

∫ 𝑡
0 𝐺(𝑓(𝑠))𝑣(𝑠)𝑑𝑠)}

{1
2

∫ 𝑇

0

∣𝑣(𝑠)∣20𝑑𝑠}. (4.6.2)

Proof Let 𝑣𝜀 be the solution of the stochastic equation

𝑣𝜀(𝑡) = 𝜃0 +
√
𝜀

∫ 𝑡

0

𝐺(𝑣𝜀(𝑠))𝑑𝑊 (𝑠),

and 𝜈𝜀 be the law of 𝑣𝜀 on 𝐿∞([0, 𝑇 ], 𝐻−1/2). Then by [Li09], we know that 𝜈𝜀

satisfies a large deviation principle with the rate function 𝐼. Our main task is

to show that two families of the probability measures 𝜇𝜀 and 𝜈𝜀 are exponentially
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equivalent, that is, for any 𝛿 > 0,

lim
𝜀→0

𝜀 log𝑃 ( sup
0≤𝑡≤𝑇

∣Λ−1/2(𝜃𝜀(𝑡)− 𝑣𝜀(𝑡))∣2 > 𝛿) = −∞. (4.6.3)

Then Theorem 4.6.2 follows from [DZ93, Theorem 4.2.13].

Now we prove the following Lemmas.

Lemma 4.6.3

lim
𝑀→∞

sup
0<𝜀≤1

𝜀 log𝑃 ( sup
0≤𝑡≤𝑇

∥𝜃𝜀(𝑡)∥𝑝𝐿𝑝 > 𝑀) = −∞.

Proof Now consider the approximation 𝜃𝜀,𝑛 to 𝜃𝜀 as in Theorem 4.3.3 and by [Kr10,

Lemma 5.1], we have

∥𝜃(𝑡)∥𝑝𝐿𝑝 =∥𝜃0∥𝑝𝐿𝑝 + 𝜀

∫ 𝑡

0

[−𝑝
∫
𝕋2

∣𝜃(𝑠)∣𝑝−2𝜃(𝑠)(Λ2𝛼𝜃(𝑠) + 𝑢(𝑠) ⋅ ∇𝜃(𝑠))𝑑𝑥

+
1

2
𝑝(𝑝− 1)𝜀

∫
𝕋2

∣𝜃(𝑠)∣𝑝−2(
∑
𝑗

∣𝐺(𝜃(𝑠))(𝑒𝑗)∣2)𝑑𝑥]𝑑𝑠

+ 𝑝
√
𝜀

∫ 𝑡

0

∫
𝕋2

∣𝜃(𝑠)∣𝑝−2𝜃(𝑠)𝐺(𝜃(𝑠))𝑑𝑥𝑑𝑊 (𝑠)

≤ ∥𝜃0∥𝑝𝐿𝑝 +
∫ 𝑡

0

1

2
𝑝(𝑝− 1)𝜀

∫
𝕋2

∣𝜃(𝑠)∣𝑝−2(
∑
𝑗

∣𝐺(𝜃(𝑠))(𝑒𝑗)∣2)𝑑𝑥𝑑𝑠

+ 𝑝
√
𝜀

∫ 𝑡

0

∫
𝕋2

∣𝜃(𝑠)∣𝑝−2𝜃(𝑠)𝐺(𝜃(𝑠))𝑑𝑥𝑑𝑊 (𝑠)

≤ ∥𝜃0∥𝑝𝐿𝑝 + 𝜀

∫ 𝑡

0

(

∫
𝕋2

∣𝜃(𝑠)∣𝑝𝑑𝑥+ 𝐶

∫
(
∑
𝑗

∣𝐺(𝜃(𝑠))(𝑒𝑗)∣2)𝑝/2𝑑𝑥)𝑑𝑠

+ 𝑝
√
𝜀

∫ 𝑡

0

∫
𝕋2

∣𝜃(𝑠)∣𝑝−2𝜃(𝑠)𝐺(𝜃(𝑠))𝑑𝑥𝑑𝑊 (𝑠).

Here we write for simplicity 𝜃(𝑡) = 𝜃𝜀,𝑛(𝑡, 𝑥).

Then by Hypothesis 4.5.5 (ii), we have

sup
𝑡∈[0,𝑇 ]

∥𝜃(𝑡)∥𝑝𝐿𝑝 ≤∥𝜃0∥𝑝𝐿𝑝 + 𝜀𝐶𝑇 + 𝐶𝜀

∫ 𝑇

0

sup
𝑡∈[0,𝑠]

∥𝜃(𝑡)∥𝑝𝐿𝑝𝑑𝑠

+𝑝
√
𝜀 sup
0≤𝑡≤𝑇

∣
∫ 𝑡

0

∫
𝕋2

∣𝜃(𝑠)∣𝑝−2𝜃(𝑠)𝐺(𝜃(𝑠))𝑑𝑥𝑑𝑊 (𝑠)∣.
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Hence, for 𝑞 ≥ 2 we obtain

(𝐸( sup
𝑡∈[0,𝑇 ]

∥𝜃(𝑡)∥𝑝𝑞𝐿𝑝))1/𝑞 ≤∥𝜃0∥𝑝𝐿𝑝 + 𝜀𝐶𝑇 + 𝐶𝜀(𝐸(

∫ 𝑇

0

sup
𝑡∈[0,𝑠]

∥𝜃(𝑡)∥𝑝𝐿𝑝𝑑𝑠)𝑞)1/𝑞

+𝑝
√
𝜀(𝐸 sup

0≤𝑡≤𝑇
∣
∫ 𝑡

0

∫
𝕋2

∣𝜃(𝑠)∣𝑝−2𝜃(𝑠)𝐺(𝜃(𝑠))𝑑𝑥𝑑𝑊 (𝑠)∣𝑞)1/𝑞.

To estimate the stochastic integral term, we will use the following result from [BY82]

and [Da76] that there exists a universal constant 𝑐 such that for any 𝑞 ≥ 2 and for

any continuous martingale 𝑀𝑡 with 𝑀0 = 0, one has

∥𝑀∗
𝑡 ∥𝐿𝑞 ≤ 𝑐𝑞1/2∥⟨𝑀⟩1/2𝑡 ∥𝐿𝑞 , (4.6.4)

where 𝑀∗
𝑡 = sup0≤𝑠≤𝑡 ∣𝑀𝑠∣.

Using this result and Minkowski’s inequality we have

𝑝
√
𝜀(𝐸 sup

0≤𝑡≤𝑇
∣
∫ 𝑡

0

∫
𝕋2

∣𝜃(𝑠)∣𝑝−2𝜃(𝑠)𝐺(𝜃(𝑠))𝑑𝑥𝑑𝑊 (𝑠)∣𝑞)1/𝑞

≤ 𝑝𝑐
√
𝑞𝜀(𝐸(

∫ 𝑇

0

(

∫
𝕋2

∣𝜃(𝑠)∣𝑝−1(
∑
𝑗

∣𝐺(𝜃(𝑠))(𝑒𝑗)∣2)1/2𝑑𝑥)2𝑑𝑠)𝑞/2)1/𝑞

≤ 𝑝𝑐
√
𝑞𝜀(𝐸( sup

𝑠∈[0,𝑇 ]
∥𝜃(𝑠)∥𝑝−1

𝐿𝑝 (

∫ 𝑇

0

(

∫
𝕋2

(
∑
𝑗

∣𝐺(𝜃(𝑠))(𝑒𝑗)∣2)𝑝/2𝑑𝑥)2/𝑝𝑑𝑠)1/2)𝑞)1/𝑞

≤ 𝑝𝑐
√
𝑞𝜀(𝐸( sup

𝑠∈[0,𝑇 ]
∥𝜃(𝑠)∥𝑝−1

𝐿𝑝 (

∫ 𝑇

0

(

∫
𝕋2

(
∑
𝑗

∣𝐺(𝜃(𝑠))(𝑒𝑗)∣2)𝑝/2𝑑𝑥)𝑑𝑠)1/𝑝)𝑞)1/𝑞

≤ 1

2
(𝐸 sup

𝑠∈[0,𝑇 ]
∥𝜃(𝑠)∥𝑝𝑞𝐿𝑝)1/𝑞 + 𝑐(𝑝)(𝑞𝜀)𝑝/2(𝐸(

∫ 𝑇

0

(

∫
𝕋2

(
∑
𝑗

∣𝐺(𝜃(𝑠))(𝑒𝑗)∣2)𝑝/2𝑑𝑥)𝑑𝑠)𝑞)1/𝑞

≤ 1

2
(𝐸 sup

𝑠∈[0,𝑇 ]
∥𝜃(𝑠)∥𝑝𝑞𝐿𝑝)1/𝑞 + 𝑐(𝑝)(𝑞𝜀)𝑝/2(

∫ 𝑇

0

1 + (𝐸∥𝜃(𝑠)∥𝑝𝑞𝐿𝑝)1/𝑞𝑑𝑠).

Thus

(𝐸( sup
𝑡∈[0,𝑇 ]

∥𝜃(𝑡)∥𝑝𝑞𝐿𝑝))1/𝑞 ≤2∥𝜃0∥𝑝𝐿𝑝 + 𝜀𝐶𝑇 + 𝐶𝜀

∫ 𝑇

0

(𝐸 sup
𝑡∈[0,𝑠]

∥𝜃(𝑡)∥𝑝𝑞𝐿𝑝)1/𝑞𝑑𝑠

+𝑐(𝑝)(𝑞𝜀)𝑝/2(

∫ 𝑇

0

1 + (𝐸∥𝜃(𝑠)∥𝑝𝑞𝐿𝑝)1/𝑞𝑑𝑠).

Applying Gronwall’s lemma we obtain

(𝐸( sup
𝑡∈[0,𝑇 ]

∥𝜃(𝑡)∥𝑝𝑞𝐿𝑝))1/𝑞 ≤ (2∥𝜃0∥𝑝𝐿𝑝 + 𝜀𝐶𝑇 + 𝑐(𝑝)(𝑞𝜀)𝑝/2𝑇 ) exp(𝐶𝜀+ 𝑐(𝑝)(𝑞𝜀)𝑝/2).
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Let 𝑛→ ∞ we have

(𝐸( sup
𝑡∈[0,𝑇 ]

∥𝜃𝜀(𝑡)∥𝑝𝑞𝐿𝑝))1/𝑞 ≤ (2∥𝜃0∥𝑝𝐿𝑝 + 𝜀𝐶𝑇 + 𝑐(𝑝)(𝑞𝜀)𝑝/2𝑇 ) exp(𝐶𝜀+ 𝑐(𝑝)(𝑞𝜀)𝑝/2).

Since

𝑃 ( sup
0≤𝑡≤𝑇

∥𝜃𝜀(𝑡)∥𝑝𝐿𝑝 > 𝑀) ≤𝑀−𝑞𝐸( sup
𝑡∈[0,𝑇 ]

∥𝜃𝜀(𝑡)∥𝑝𝑞𝐿𝑝),

let 𝑞 = 2/𝜀 we get

𝜀 log𝑃 ( sup
0≤𝑡≤𝑇

∥𝜃𝜀(𝑡)∥𝑝𝐿𝑝 > 𝑀) ≤ −2 log𝑀 + 2 log(𝐸( sup
𝑡∈[0,𝑇 ]

∥𝜃𝜀(𝑡)∥𝑝𝑞𝐿𝑝))1/𝑞

≤− 2 log𝑀 + 2 log(2∥𝜃0∥𝑝𝐿𝑝 + 𝜀𝐶𝑇 + 𝐶𝑇 ) + 2𝐶𝜀+ 2𝐶,

hence the proof is complete. □

Since 𝐻1 is dense in 𝐻, there exists a sequence 𝜃𝑛0 ⊂ 𝐻1 such that lim𝑛 ∣𝜃𝑛0−𝜃0∣ =
0. Let 𝜃𝜀𝑛 be the solution of (4.6.2) with the initial value 𝜃𝑛0 . From the proof of Lemma

4.6.3, it follows that

lim
𝑀→∞

sup
𝑛

sup
0<𝜀≤1

𝜀 log𝑃 ( sup
0≤𝑡≤𝑇

∥𝜃𝜀𝑛(𝑡)∥𝑝𝐿𝑝 > 𝑀) = −∞. (4.6.5)

Let 𝑣𝜀𝑛 be the solution of (4.6.3) with the initial value 𝜃𝑛0 . We have the following

result whose proof is very similar to (but simpler than) Lemma 4.6.3.

Lemma 4.6.4 For any 𝑛 ∈ ℤ+,

lim
𝑀→∞

sup
0<𝜀≤1

𝜀 log𝑃 ( sup
0≤𝑡≤𝑇

∥𝑣𝜀𝑛(𝑡)∥2𝐻1 > 𝑀) = −∞.

Lemma 4.6.5 For any 𝛿 > 0,

lim
𝑛→∞

sup
0<𝜀≤1

𝜀 log𝑃 ( sup
0≤𝑡≤𝑇

∥𝜃𝜀𝑛(𝑡)− 𝜃𝜀(𝑡)∥2𝐻−1/2 > 𝛿) = −∞.

Proof For 𝑀 > 0, we define the following stopping times with respect to ℱ+
𝑡 ,

𝜏 𝜀,𝑀 = inf{𝑡 : ∥𝜃𝜀(𝑡)∥𝑝𝐿𝑝 > 𝑀}.

Clearly,
𝑃 ( sup

0≤𝑡≤𝑇
∥𝜃𝜀𝑛(𝑡)− 𝜃𝜀(𝑡)∥2𝐻1/2 > 𝛿, sup

0≤𝑡≤𝑇
∥𝜃𝜀(𝑡)∥𝑝𝐿𝑝 ≤𝑀)

≤𝑃 ( sup
0≤𝑡≤𝑇∧𝜏𝜀,𝑀

∥𝜃𝜀𝑛(𝑡)− 𝜃𝜀(𝑡)∥2𝐻−1/2 > 𝛿).
(4.6.6)
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Let 𝑘 be a positive constant and 𝑁 = 𝛼
𝛼− 1

2
− 1
𝑝

.

Applying Ito’s formula to 𝑒−𝑘𝜀
∫ 𝑡∧𝜏𝜀,𝑀
0 ∥𝜃𝜀(𝑠)∥𝑁

𝐿𝑝
𝑑𝑠∣Λ−1/2(𝜃𝜀(𝑡∧𝜏 𝜀,𝑀)−𝜃𝜀𝑛(𝑡∧𝜏 𝜀,𝑀))∣2,

we get

𝑒−𝑘𝜀
∫ 𝑡∧𝜏𝜀,𝑀
0 ∥𝜃𝜀(𝑠)∥𝑁

𝐿𝑝
𝑑𝑠∣Λ−1/2(𝜃𝜀(𝑡 ∧ 𝜏 𝜀,𝑀)− 𝜃𝜀𝑛(𝑡 ∧ 𝜏 𝜀,𝑀))∣2

+2𝜀𝜅

∫ 𝑡∧𝜏𝜀,𝑀

0

𝑒−𝑘𝜀
∫ 𝑠
0 ∥𝜃𝜀(𝑟)∥𝑁

𝐿𝑝
𝑑𝑟∣Λ𝛼− 1

2 (𝜃𝜀(𝑠)− 𝜃𝜀𝑛(𝑠))∣2𝑑𝑠

=∣Λ− 1
2 (𝜃0 − 𝜃𝑛0 )∣2 − 𝑘𝜀

∫ 𝑡∧𝜏𝜀,𝑀

0

𝑒−𝑘𝜀
∫ 𝑠
0 ∥𝜃𝜀∥𝑁

𝐿𝑃
𝑑𝑟∥𝜃𝜀∥𝑁𝐿𝑃 ∣Λ− 1

2 (𝜃𝜀(𝑠)− 𝜃𝜀𝑛(𝑠))∣2𝑑𝑠

−2𝜀

∫ 𝑡∧𝜏𝜀,𝑀

0

𝑒−𝑘𝜀
∫ 𝑠
0 ∥𝜃𝜀∥𝑁

𝐿𝑃
𝑑𝑟⟨𝑢𝜀 ⋅ ∇𝜃𝜀 − 𝑢𝜀𝑛 ⋅ ∇𝜃𝜀𝑛,Λ−1(𝜃𝜀 − 𝜃𝜀𝑛)⟩𝑑𝑠

+2
√
𝜀

∫ 𝑡∧𝜏𝜀,𝑀

0

𝑒−𝑘𝜀
∫ 𝑠
0 ∥𝜃𝜀∥𝑁

𝐿𝑃
𝑑𝑟⟨Λ−1/2(𝜃𝜀 − 𝜃𝜀𝑛),Λ

−1/2(𝐺(𝜃𝜀)−𝐺(𝜃𝜀𝑛))𝑑𝑊 (𝑠)⟩

+𝜀

∫ 𝑡∧𝜏𝜀,𝑀

0

𝑒−𝑘𝜀
∫ 𝑠
0 ∥𝜃𝜀∥𝑁

𝐿𝑃
𝑑𝑟∥Λ−1/2(𝐺(𝜃𝜀)−𝐺(𝜃𝜀𝑛))∥2𝐿2(𝐾,𝐻)𝑑𝑠.

Notice that

⟨𝑢𝜀⋅∇𝜃𝜀−𝑢𝜀𝑛⋅∇𝜃𝜀𝑛,Λ−1(𝜃𝜀−𝜃𝜀𝑛)⟩ = ⟨(𝑢𝜀𝑛−𝑢𝜀)⋅∇𝜃𝜀𝑛,Λ−1(𝜃𝜀𝑛−𝜃𝜀)⟩+⟨𝑢𝜀⋅∇(𝜃𝜀𝑛−𝜃𝜀),Λ−1(𝜃𝜀𝑛−𝜃𝜀)⟩.

By [Re95], we have

⟨(𝑢𝜀𝑛 − 𝑢𝜀) ⋅ ∇𝜃𝜀𝑛,Λ−1(𝜃𝜀𝑛 − 𝜃𝜀)⟩ = 0, (4.6.7)

and

∣⟨𝑢𝜀 ⋅ ∇(𝜃𝜀𝑛 − 𝜃𝜀),Λ−1(𝜃𝜀𝑛 − 𝜃𝜀)⟩∣ ≤∥𝑢𝜀∥𝐿𝑝∥𝜃𝜀𝑛 − 𝜃𝜀∥𝐿𝑝′∥∇Λ−1(𝜃𝜀𝑛 − 𝜃𝜀)∥𝐿𝑝′
≤𝐶∥𝑢𝜀∥𝐿𝑝∥(𝜃𝜀𝑛 − 𝜃𝜀)∥𝐻1/𝑝∥∇Λ−1(𝜃𝜀𝑛 − 𝜃𝜀)∥𝐻1/𝑝

≤𝐶∥𝑢𝜀∥𝐿𝑝∥Λ−1(𝜃𝜀𝑛 − 𝜃𝜀)∥2
𝐻

1+ 1
𝑝

≤𝐶∥𝜃𝜀∥𝐿𝑝∥Λ−1(𝜃𝜀𝑛 − 𝜃𝜀)∥2/𝑁
𝐻1/2∥Λ−1(𝜃𝜀𝑛 − 𝜃𝜀)∥2(1−

1
𝑁
)

𝐻
1
2+𝛼

≤𝜅∣Λ𝛼− 1
2 (𝜃𝜀𝑛 − 𝜃𝜀)∣2 + 𝐶∥𝜃𝜀∥𝑁𝐿𝑝 ∣Λ−1/2(𝜃𝜀𝑛 − 𝜃𝜀)∣2.

(4.6.8)

Here 1
𝑝
+ 2

𝑝′ = 1 for 0 ≤ 1/𝑝 < 𝛼− 1/2, and we use 𝐻1/𝑝 ↪→ 𝐿𝑝
′
. Therefore,

𝑒−𝑘𝜀
∫ 𝑡∧𝜏𝜀,𝑀
0 ∥𝜃𝜀(𝑠)∥𝑁

𝐿𝑝
𝑑𝑠∣Λ−1/2(𝜃𝜀(𝑡 ∧ 𝜏 𝜀,𝑀)− 𝜃𝜀𝑛(𝑡 ∧ 𝜏 𝜀,𝑀))∣2

+2𝜀𝜅

∫ 𝑡∧𝜏𝜀,𝑀

0

𝑒−𝑘𝜀
∫ 𝑠
0 ∥𝜃𝜀(𝑟)∥𝑁

𝐿𝑝
𝑑𝑟∣Λ𝛼− 1

2 (𝜃𝜀(𝑠)− 𝜃𝜀𝑛(𝑠))∣2𝑑𝑠

≤∣Λ− 1
2 (𝜃0 − 𝜃𝑛0 )∣2 − 𝑘𝜀

∫ 𝑡∧𝜏𝜀,𝑀

0

𝑒−𝑘𝜀
∫ 𝑠
0 ∥𝜃𝜀∥𝑁

𝐿𝑃
𝑑𝑟∥𝜃𝜀∥𝑁𝐿𝑃 ∣Λ− 1

2 (𝜃𝜀(𝑠)− 𝜃𝜀𝑛(𝑠))∣2𝑑𝑠
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+2𝜀

∫ 𝑡∧𝜏𝜀,𝑀

0

𝑒−𝑘𝜀
∫ 𝑠
0 ∥𝜃𝜀∥𝑁

𝐿𝑃
𝑑𝑟𝜅∣Λ𝛼− 1

2 (𝜃𝜀𝑛 − 𝜃𝜀)∣2 + 𝐶∥𝜃𝜀∥𝑁𝐿𝑝 ∣Λ−1/2(𝜃𝜀𝑛 − 𝜃𝜀)∣2𝑑𝑠

+2
√
𝜀

∫ 𝑡∧𝜏𝜀,𝑀

0

𝑒−𝑘𝜀
∫ 𝑠
0 ∥𝜃𝜀∥𝑁

𝐿𝑃
𝑑𝑟⟨Λ−1/2(𝜃𝜀 − 𝜃𝜀𝑛),Λ

−1/2(𝐺(𝜃𝜀)−𝐺(𝜃𝜀𝑛))𝑑𝑊 (𝑠)⟩

+𝐶𝜀

∫ 𝑡∧𝜏𝜀,𝑀

0

𝑒−𝑘𝜀
∫ 𝑠
0 ∥𝜃𝜀∥𝑁

𝐿𝑃
𝑑𝑟∣Λ−1/2(𝜃𝜀 − 𝜃𝜀𝑛)∣2𝑑𝑠.

Choosing 𝑘 > 2𝐶 and using (4.6.4), we have

(𝐸[ sup
0≤𝑠≤𝑡∧𝜏𝜀,𝑀

𝑒−𝑘𝜀
∫ 𝑠
0 ∥𝜃𝜀(𝑟)∥𝑁

𝐿𝑝
𝑑𝑟∣Λ−1/2(𝜃𝜀(𝑠)− 𝜃𝜀𝑛(𝑠))∣2]𝑞)2/𝑞

≤2∣Λ− 1
2 (𝜃0 − 𝜃𝑛0 )∣4

+𝐶(𝑞𝜀+ 𝜀2)

∫ 𝑡

0

(𝐸[ sup
0≤𝑟≤𝑠∧𝜏𝜀,𝑀

𝑒−𝑘𝜀
∫ 𝑠
0 ∥𝜃𝜀(𝑟)∥𝑁

𝐿𝑝
𝑑𝑟∣Λ−1/2(𝜃𝜀(𝑠)− 𝜃𝜀𝑛(𝑠))∣2]𝑞)2/𝑞𝑑𝑠.

Applying Gronwall’s lemma, one obtains,

(𝐸[ sup
0≤𝑠≤𝑇∧𝜏𝜀,𝑀

𝑒−𝑘𝜀
∫ 𝑠
0 ∥𝜃𝜀(𝑟)∥𝑁

𝐿𝑝
𝑑𝑟∣Λ−1/2(𝜃𝜀(𝑠)− 𝜃𝜀𝑛(𝑠))∣2]𝑞)2/𝑞

≤2∣Λ− 1
2 (𝜃0 − 𝜃𝑛0 )∣4𝑒𝐶(𝑞𝜀+𝜀2).

Hence,
(𝐸[ sup

0≤𝑠≤𝑇∧𝜏𝜀,𝑀
∣Λ−1/2(𝜃𝜀(𝑠)− 𝜃𝜀𝑛(𝑠))∣2]𝑞)2/𝑞

≤2𝑒2𝑘𝑀
𝑁/𝑝𝑇 ∣Λ− 1

2 (𝜃0 − 𝜃𝑛0 )∣4𝑒𝐶(𝑞𝜀+𝜀2).

Fix 𝑀 , and take 𝑞 = 2/𝜀 to get

sup
0<𝜀≤1

𝜀 log𝑃 ( sup
0≤𝑡≤𝑇

∥𝜃𝜀𝑛(𝑡)− 𝜃𝜀(𝑡)∥𝐻−1/2 > 𝛿)

≤ sup
0<𝜀≤1

𝜀 log
𝐸[sup0≤𝑠≤𝑇∧𝜏𝜀,𝑀 ∣Λ−1/2(𝜃𝜀(𝑠)− 𝜃𝜀𝑛(𝑠))∣2𝑞]

𝛿𝑞

≤2𝑘𝑀𝑁/𝑝𝑇 + log 2∣Λ− 1
2 (𝜃0 − 𝜃𝑛0 )∣4 − 2 log 𝛿 + 𝐶 → −∞, as 𝑛→ ∞.

(4.6.9)

By Lemma 4.6.3, for any 𝑅 > 0, there exists a constant 𝑀 such that for any

𝜀 ∈ (0, 1], the following inequality holds

𝑃 ( sup
0≤𝑡≤𝑇

∥𝜃𝜀(𝑡)∥𝑝𝐿𝑝 > 𝑀) ≤ 𝑒−𝑅/𝜀. (4.6.10)

For such 𝑀 , by (4.6.6), and (4.6.9), there exists a constant 𝑁0 such that for any

𝑛 ≥ 𝑁0,

sup
0<𝜀≤1

𝜀 log𝑃 ( sup
0≤𝑡≤𝑇

∥𝜃𝜀𝑛(𝑡)− 𝜃𝜀(𝑡)∥𝐻1/2 > 𝛿, sup
0≤𝑡≤𝑇

∥𝜃𝜀(𝑡)∥𝑝𝐿𝑝) ≤ −𝑅. (4.6.11)
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Putting (4.6.10) and (4.6.11) together, one sees that there exists a positive integer

𝑁0 such that for any 𝑛 ≥ 𝑁0, 𝜀 ∈ (0, 1]

𝑃 ( sup
0≤𝑡≤𝑇

∥𝜃𝜀𝑛(𝑡)− 𝜃𝜀(𝑡)∥2𝐻−1/2 > 𝛿) ≤ 2𝑒−𝑅/𝜀.

Since 𝑅 is arbitrary, the conculsion in the lemma follows. □

The next lemma can be proved similarly as Lemma 4.6.5.

Lemma 4.6.6 For any 𝛿 > 0,

lim
𝑛→∞

sup
0<𝜀≤1

𝜀 log𝑃 ( sup
0≤𝑡≤𝑇

∥𝑣𝜀𝑛(𝑡)− 𝑣𝜀(𝑡)∥2𝐻−1/2 > 𝛿) = −∞.

Lemma 4.6.7 For any 𝛿 > 0,

lim
𝜀→0

𝜀 log𝑃 ( sup
0≤𝑡≤𝑇

∣Λ−1/2(𝜃𝜀𝑛(𝑡)− 𝑣𝜀𝑛(𝑡))∣2 > 𝛿) = −∞.

Proof For 𝑀 > 0, we define the following stopping times:

𝜏𝑛𝜀,𝑀 = inf{𝑡 : ∥𝑣𝜀𝑛(𝑡)∥2𝐻1 > 𝑀}.

Then we have

𝑃 ( sup
0≤𝑡≤𝑇

∥𝜃𝜀𝑛(𝑡)− 𝑣𝜀𝑛(𝑡)∥2𝐻−1/2 > 𝛿, sup
0≤𝑡≤𝑇

∥𝑣𝜀(𝑡)∥2𝐻1 ≤𝑀)

≤𝑃 ( sup
0≤𝑡≤𝑇∧𝜏𝑛𝜀,𝑀

∥𝜃𝜀𝑛(𝑡)− 𝑣𝜀𝑛(𝑡)∥2𝐻−1/2 > 𝛿).
(4.6.12)

Applying Ito’s formula to ∣Λ−1/2(𝑣𝜀𝑛(𝑡 ∧ 𝜏𝑛𝜀,𝑀)− 𝜃𝜀𝑛(𝑡 ∧ 𝜏 𝜀,𝑀))∣2, we get

∣Λ−1/2(𝑣𝜀𝑛(𝑡 ∧ 𝜏𝑛𝜀,𝑀)− 𝜃𝜀𝑛(𝑡 ∧ 𝜏𝑛𝜀,𝑀))∣2 + 2𝜀𝜅

∫ 𝑡∧𝜏𝑛𝜀,𝑀

0

∣Λ𝛼− 1
2 (𝑣𝜀𝑛(𝑠)− 𝜃𝜀𝑛(𝑠))∣2𝑑𝑠

=2𝜀

∫ 𝑡∧𝜏𝑛𝜀,𝑀

0

⟨𝐴𝑣𝜀𝑛(𝑠),Λ−1(𝑣𝜀𝑛(𝑠)− 𝜃𝜀𝑛(𝑠))⟩𝑑𝑠+ 2𝜀

∫ 𝑡∧𝜏𝑛𝜀,𝑀

0

⟨𝑢𝜀𝑛 ⋅ ∇𝜃𝜀𝑛,Λ−1(𝑣𝜀𝑛 − 𝜃𝜀𝑛)⟩𝑑𝑠

+2
√
𝜀

∫ 𝑡∧𝜏𝑛𝜀,𝑀

0

⟨Λ−1/2(𝑣𝜀𝑛 − 𝜃𝜀𝑛),Λ
−1/2(𝐺(𝑣𝜀𝑛)−𝐺(𝜃𝜀𝑛))𝑑𝑊 (𝑠)⟩

+𝜀

∫ 𝑡∧𝜏𝑛𝜀,𝑀

0

∥Λ−1/2(𝐺(𝑣𝜀𝑛)−𝐺(𝜃𝜀𝑛))∥2𝐿2(𝐾,𝐻)𝑑𝑠.
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Notice that by the similar argument as (4.6.7) and (4.6.8), we have

∣⟨𝑢𝜀𝑛 ⋅ ∇𝜃𝜀𝑛,Λ−1(𝑣𝜀𝑛 − 𝜃𝜀𝑛)⟩∣ =∣⟨(𝑢𝜀𝑛 − 𝑢𝜀𝑣𝑛) ⋅ ∇𝜃𝜀𝑛,Λ−1(𝜃𝜀𝑛 − 𝑣𝜀𝑛)⟩
+⟨𝑢𝜀𝑣𝑛 ⋅ ∇(𝜃𝜀𝑛 − 𝑣𝜀𝑛),Λ

−1(𝜃𝜀𝑛 − 𝑣𝜀𝑛)⟩
+⟨𝑢𝜀𝑣𝑛 ⋅ ∇𝑣𝜀𝑛,Λ−1(𝜃𝜀𝑛 − 𝑣𝜀𝑛)⟩∣
≤𝜅
2
∣Λ𝛼− 1

2 (𝜃𝜀𝑛 − 𝑣𝜀𝑛)∣2

+𝐶∥𝑣𝜀𝑛∥𝑁𝐿𝑝 ∣Λ−1/2(𝜃𝜀𝑛 − 𝑣𝜀𝑛)∣2 + 𝐶∥𝑣𝜀𝑛∥4𝐿4 .

Thus

∣Λ−1/2(𝑣𝜀𝑛(𝑡 ∧ 𝜏𝑛𝜀,𝑀)− 𝜃𝜀𝑛(𝑡 ∧ 𝜏𝑛𝜀,𝑀))∣2 + 2𝜀𝜅

∫ 𝑡∧𝜏𝑛𝜀,𝑀

0

∣Λ𝛼− 1
2 (𝑣𝜀𝑛(𝑠)− 𝜃𝜀𝑛(𝑠))∣2𝑑𝑠

≤2𝜀

∫ 𝑡∧𝜏𝑛𝜀,𝑀

0

𝜅

2
∣Λ𝛼− 1

2 (𝑣𝜀𝑛(𝑠)− 𝜃𝜀𝑛(𝑠))∣2 + 𝐶∣Λ𝛼− 1
2 𝑣𝜀𝑛∣2𝑑𝑠

+2𝜀

∫ 𝑡∧𝜏𝑛𝜀,𝑀

0

𝜅

2
∣Λ𝛼− 1

2 (𝜃𝜀𝑛 − 𝑣𝜀𝑛)∣2 + 𝐶∥𝑣𝜀𝑛∥𝑁𝐿𝑝∣Λ−1/2(𝜃𝜀𝑛 − 𝑣𝜀𝑛)∣2 + 𝐶∥𝑣𝜀𝑛∥4𝐿4𝑑𝑠

+2
√
𝜀

∫ 𝑡∧𝜏𝑛𝜀,𝑀

0

⟨Λ−1/2(𝑣𝜀𝑛 − 𝜃𝜀𝑛),Λ
−1/2(𝐺(𝑣𝜀𝑛)−𝐺(𝜃𝜀𝑛))𝑑𝑊 (𝑠)⟩

+𝜀𝐶

∫ 𝑡∧𝜏𝑛𝜀,𝑀

0

∣Λ−1/2(𝑣𝜀𝑛 − 𝜃𝜀𝑛)∣2𝑑𝑠.

Using Gronwall’s lemma, we obtain

∣Λ−1/2(𝑣𝜀𝑛(𝑡 ∧ 𝜏𝑛𝜀,𝑀)− 𝜃𝜀𝑛(𝑡 ∧ 𝜏𝑛𝜀,𝑀))∣2

≤(2𝜀

∫ 𝑡∧𝜏𝑛𝜀,𝑀

0

𝐶∣Λ𝛼− 1
2 𝑣𝜀𝑛∣2 + 𝐶∥𝑣𝜀𝑛∥4𝐿4𝑑𝑠+

2
√
𝜀∣
∫ 𝑡∧𝜏𝑛𝜀,𝑀

0

⟨Λ−1/2(𝑣𝜀𝑛 − 𝜃𝜀𝑛),Λ
−1/2(𝐺(𝑣𝜀𝑛)−𝐺(𝜃𝜀𝑛))𝑑𝑊 (𝑠)⟩∣)𝑒𝜀𝐶

∫ 𝑡∧𝜏𝑛𝜀,𝑀
0 ∥𝑣𝜀𝑛∥𝑁𝐿𝑝𝑑𝑠+𝐶𝑡𝜀.

Using (4.6.4), we have

(𝐸[ sup
0≤𝑠≤𝑡∧𝜏𝑛𝜀,𝑀

∣Λ−1/2(𝑣𝜀𝑛(𝑠)− 𝜃𝜀𝑛(𝑠))∣2]𝑞)2/𝑞

≤𝐶𝑒𝜀𝐶𝑀𝑁/2+𝐶𝑡𝜀(𝜀𝑀 + 𝜀𝑀2 + 𝑞𝜀

∫ 𝑡

0

(𝐸[ sup
0≤𝑟≤𝑠∧𝜏𝜀,𝑀

∣Λ−1/2(𝑣𝜀𝑛(𝑟)− 𝜃𝜀𝑛(𝑟))∣2]𝑞)2/𝑞𝑑𝑠).

Applying Gronwall’s lemma, one obtains,

(𝐸[ sup
0≤𝑠≤𝑇∧𝜏𝜀,𝑀

∣Λ−1/2(𝑣𝜀𝑛(𝑠)− 𝜃𝜀𝑛(𝑠))∣2]𝑞)2/𝑞

≤𝐶𝑒𝜀𝐶𝑀𝑁/2+𝐶𝑡𝜀(𝜀𝑀 + 𝜀𝑀2) exp𝐶𝑞𝑇𝜀𝑒𝜀𝐶𝑀
𝑁/2+𝐶𝑡𝜀.
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Fix 𝑀 , and take 𝑞 = 2/𝜀 we have

𝜀 log𝑃 ( sup
0≤𝑡≤𝑇

∥𝜃𝜀𝑛(𝑡)− 𝑣𝜀𝑛(𝑡)∥2𝐻−1/2 > 𝛿)

≤𝜀 log 𝐸[sup0≤𝑠≤𝑇∧𝜏𝜀,𝑀 ∣Λ−1/2(𝑣𝜀𝑛(𝑠)− 𝜃𝜀𝑛(𝑠))∣2𝑞]
𝛿𝑞

≤ log𝐶(𝜀𝑀 + 𝜀𝑀2)− 2 log 𝛿 + 𝐶𝑒𝜀𝐶𝑀
𝑁/2+𝐶𝑡𝜀 + 𝜀𝐶𝑀𝑁/2 + 𝐶𝑡𝜀→ −∞, as 𝜀→ 0.

(4.6.13)

Thus, there exists a 𝜀0 such that for any 𝜀 satisfying 0 < 𝜀 ≤ 𝜀0,

𝑃 ( sup
0≤𝑡≤𝑇

∥𝜃𝜀𝑛(𝑡)− 𝑣𝜀𝑛(𝑡)∥2𝐻−1/2 > 𝛿, sup
0≤𝑡≤𝑇

∥𝑣𝜀(𝑡)∥2𝐻1 ≤𝑀) ≤ 𝑒−𝑅/𝜀. (4.6.14)

By Lemma 4.6.4 and (4.6.14), one sees that there exists 𝜀0 such that for any 𝜀

satisfying 0 < 𝜀 ≤ 𝜀0,

𝑃 ( sup
0≤𝑡≤𝑇

∥𝜃𝜀𝑛(𝑡)− 𝑣𝜀𝑛(𝑡)∥2𝐻−1/2 > 𝛿) ≤ 2𝑒−𝑅/𝜀.

Since 𝑅 is arbitrary, the conculsion in the lemma holds. □

By Lemmas 4.6.5, 4.6.6, we have for any 𝑅 > 0, there exists 𝑁0 satisfying

𝑃 ( sup
0≤𝑡≤𝑇

∥𝜃𝜀𝑁0
(𝑡)− 𝜃𝜀(𝑡)∥2𝐻−1/2 > 𝛿) ≤ 𝑒−𝑅/𝜀. for any 𝜀 ∈ (0, 1],

and

𝑃 ( sup
0≤𝑡≤𝑇

∥𝑣𝜀𝑁0
(𝑡)− 𝑣𝜀(𝑡)∥2𝐻−1/2 > 𝛿) ≤ 𝑒−𝑅/𝜀. for any 𝜀 ∈ (0, 1].

By Lemma 4.6.7, for such𝑁0, there exists 𝜀0 such that for any 𝜀 satisfying 0 < 𝜀 ≤ 𝜀0,

𝑃 ( sup
0≤𝑡≤𝑇

∥𝜃𝜀𝑁0
(𝑡)− 𝑣𝜀𝑁0

(𝑡)∥2𝐻−1/2 > 𝛿) ≤ 𝑒−𝑅/𝜀.

Thus, for any 𝜀 satisfying 0 < 𝜀 ≤ 𝜀0,

𝑃 ( sup
0≤𝑡≤𝑇

∥𝜃𝜀(𝑡)− 𝑣𝜀(𝑡)∥2𝐻−1/2 > 𝛿) ≤ 3𝑒−𝑅/𝜀.

Since 𝑅 is arbitrary, we conclude that

lim
𝜀→0

𝜀 log𝑃 ( sup
0≤𝑡≤𝑇

∣Λ−1/2(𝜃𝜀(𝑡)− 𝑣𝜀(𝑡))∣2 > 𝛿) = −∞.

□
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[RZZ11] M. Röckner, R. Zhu and X. Zhu, The stochastic reflection problem on an

infinite dimensional convex set and BV functions in a Gelfand triple, to appear

in Annals of Probability.
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