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Abstract

In this thesis the following three related problems are considered.

1. We consider the following quasi-linear parabolic system of backward partial

differential equations

(∂𝑡 + 𝐿)𝑢+ 𝑓(⋅, ⋅, 𝑢,∇𝑢𝜎) = 0 on [0, 𝑇 ]× ℝ𝑑 𝑢𝑇 = 𝜙,

where 𝐿 is a possibly degenerate second order differential operator with merely mea-

surable coefficients. We solve this system in the framework of generalized Dirichlet

forms and employ the stochastic calculus associated to the Markov process with

generator 𝐿 to obtain a probabilistic representation of the solution 𝑢 by solving the

corresponding backward stochastic differential equation. The solution satisfies the

corresponding mild equation which is equivalent to being a generalized solution of

the PDE. A further main result is the generalization of the martingale representation

theorem using the stochastic calculus associated to the generalized Dirichlet form

given by 𝐿. The nonlinear term 𝑓 satisfies a monotonicity condition with respect to

𝑢 and a Lipschitz condition with respect to ∇𝑢.

2. We consider the following quasi-linear parabolic system of backward partial

differential equations on a Banach space 𝐸

(∂𝑡 + 𝐿)𝑢+ 𝑓(⋅, ⋅, 𝑢, 𝐴1/2∇𝑢) = 0 on [0, 𝑇 ]× 𝐸, 𝑢𝑇 = 𝜙,

where 𝐿 is a possibly degenerate second order differential operator with merely

measurable coefficients. The results in 1 can be concluded in this case.

3. We study the 2D stochastic quasi-geostrophic equation in 𝕋2 for general

parameter 𝛼 ∈ (0, 1) and multiplicative noise. We prove it is uniquely ergodic

provided the noise is non-degenerate for 𝛼 > 2
3
. In this case, the convergence to the

(unique) invariant measure is exponentially fast. In the general case, we prove the

existence of Markov selections.
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4.5.4 Hörmander’s systems . . . . . . . . . . . . . . . . . . . . . . . 185

4.5.5 Proof of Lemma 4.5.11 . . . . . . . . . . . . . . . . . . . . . . 187

4.5.6 Controllability and support . . . . . . . . . . . . . . . . . . . 189

Bibliography 193



Chapter 0

Introduction

This thesis is devoted to stochastic differential equations (SDE) and backward

stochastic differential equations (BSDE) on Hilbert spaces. In the mid 1940s Itô

introduced the stochastic integral and stochastic integral equations. Since then,

motivated by the demand from modern applications (e.g. physics, chemistry, biol-

ogy and control theory), the theory of SDE has been well developed.

Roughly speaking, the solution of a stochastic differential equation is an adapted

process 𝑋 satisfying

𝑑𝑋𝑡 = 𝑏(𝑡,𝑋𝑡)𝑑𝑡+ 𝜎(𝑡,𝑋𝑡)𝑑𝑊𝑡; 𝑋0 = 𝜉,

where𝑊 is a Brownian motion. This is similar to the Cauchy problem of an ordinary

differential equation. However, if we consider the terminal value problem for this

stochastic equation and just take the time reversal of the solution of the SDE as a

solution, the main problem lies in the adaptedness of the solution, which is essential

to the definition of stochastic integral with respect to Brownian motion. This does

not happen in the deterministic case. To solve this problem, Pardoux and Peng

in [PP90] introduced the solution of a BSDE, which consists of a pair of adapted

processes (𝑌, 𝑍) satisfying

−𝑑𝑌𝑡 = 𝑓(𝑡, 𝑌𝑡, 𝑍𝑡)𝑑𝑡− 𝑍𝑡𝑑𝑊𝑡; 𝑌𝑇 = 𝜉,

where 𝜉 is the terminal condition. Since this type of equation appears in numerous

problems in finance, the subject has become increasingly important and popular.

The existence and uniqueness of the solution of the BSDE with Lipschitz coef-

ficients has been obtained by Pardoux and Peng in [PP90]. Later on, there have

been a series of papers (c.f. [Pa99], [BDHPS03], [FT02], [BC08] and the references

therein) extending their results for more general coefficients and more general state
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spaces. Important results concerning the link between those BSDEs and PDEs are

also stated in Pardoux and Peng ([PP92]) (see below). The first aim of this thesis

is to generalize their results in the framework of generalized Dirichlet forms.

BSDE and generalized Dirichlet forms: finite dimensional
case

In Chapter 2 we consider the following quasi-linear parabolic system of backward

partial differential equations

(∂𝑡 + 𝐿)𝑢+ 𝑓(⋅, ⋅, 𝑢,∇𝑢𝜎) = 0 on [0, 𝑇 ]× ℝ𝑑 𝑢𝑇 = 𝜙, (1.1)

where 𝐿 is a second order linear differential operator and 𝑓 is monotone in 𝑢 and

Lipschitz in ∇𝑢 and 𝜎 is the diffusion coefficient for the process associated with

𝐿. If 𝐿 has sufficiently regular coefficients there is a well-known theory to obtain a

probabilistic representation of the solutions to (1.1), using corresponding backward

stochastic differential equations (BSDE) and also to solve BSDE with the help of

(1.1), originally due to E. Pardoux and S. Peng ([PP92]). The main aim of this

chapter is to implement this approach for a very general class of linear operators 𝐿,

which are possibly degenerate, have merely measurable cofficients and are in general

non-symmetric. Solving (1.1) for such general 𝐿 is the first main task of this chapter

(see Theorem 2.2.8). The second main contribution is to prove the martingale repre-

sentation theorem (Theorem 2.3.8) for the underlying reference diffusions generated

by such general operators 𝐿.

If 𝑓 and the coefficients of the second-order differential operator 𝐿 are sufficiently

smooth, the PDE has a classical solution 𝑢. Consider 𝑌 𝑠,𝑥
𝑡 := 𝑢(𝑡,𝑋𝑠,𝑥

𝑡 ), 𝑍𝑠,𝑥
𝑡 :=

∇𝑢𝜎(𝑡,𝑋𝑠,𝑥
𝑡 ) where 𝑋𝑠,𝑥

𝑡 , 𝑠 ≤ 𝑡 ≤ 𝑇 , is the diffusion process with infinitesimal

generator 𝐿 which starts from 𝑥 at time 𝑠 and 𝜎 is the diffusion coefficient of 𝑋.

Then, using Itô’s formula one checks that (𝑌 𝑠,𝑥
𝑡 , 𝑍𝑠,𝑥

𝑡 )𝑠≤𝑡≤𝑇 solves the BSDEs

𝑌 𝑠,𝑥
𝑡 = 𝜙(𝑋𝑠,𝑥

𝑇 ) +

∫ 𝑇

𝑡

𝑓(𝑟,𝑋𝑠,𝑥
𝑟 , 𝑌 𝑠,𝑥

𝑟 , 𝑍𝑠,𝑥
𝑟 )𝑑𝑟 −

∫ 𝑇

𝑡

𝑍𝑠,𝑥
𝑟 𝑑𝐵𝑟. (1.2)

Conversely, by standard methods one can prove that (1.2) has a unique solution

(𝑌 𝑠,𝑥
𝑡 , 𝑍𝑠,𝑥

𝑡 )𝑠≤𝑡≤𝑇 and then 𝑢(𝑠, 𝑥) := 𝑌 𝑠,𝑥
𝑠 is a solution to PDE (1.1). If 𝑓 and the

coefficients of 𝐿 are Lipschitz continuous then a series of papers (e.g. [BPS05],

[Pa99] and the reference therein) prove that the above relation between PDE (1.1)

and BSDE (1.2) remains true, if one considers viscosity solutions to PDE (1.1). In

both these approaches, since the coefficients are Lipschitz continuous, the Markov

process 𝑋 with infinitesimal operator 𝐿 is a diffusion process which satisfies an SDE

and so one may use its associated stochastic calculus.
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In [BPS05] Bally, Pardoux and Stoica consider a semi-elliptic symmetric second-

order differential operator 𝐿 ( which is written in divergence form ) with measurable

coefficients. They prove that the above system of PDE has a unique solution 𝑢 in

some functional space. Then using the theory of symmetric Dirichlet forms and its

associated stochastic calculus, they prove that the solution 𝑌 𝑠.𝑥 of the BSDE yields

a precised version of the solution 𝑢 so that, moreover, one has 𝑌 𝑠,𝑥
𝑡 = 𝑢(𝑡,𝑋𝑡−𝑠), 𝑃

𝑥-

a.s. In [S09], the analytic part of [BPS05] has been generalized to a non-symmetric

case with 𝐿 satisfying the weak sector condition. Here the weak sector condition

means

((1− 𝐿)𝑢, 𝑣) ≤ 𝐾((1− 𝐿)𝑢, 𝑢)1/2((1− 𝐿)𝑣, 𝑣)1/2, for 𝑢, 𝑣 ∈ 𝒟(𝐿),

for some constant 𝐾 > 0, i.e. the non-symmetric part of the operator 𝐿 can be

dominated by the symmetric part. In [L01], A.Lejay considers the generator 𝐿 =
1
2

∑𝑑
𝑖,𝑗=1

∂
∂𝑥𝑖

(𝑎𝑖𝑗
∂

∂𝑥𝑗
) +

∑𝑑
𝑖=1 𝑏𝑖(𝑥)

∂
∂𝑥𝑖

for bounded 𝑎, 𝑏. In [ZR11], T.S. Zhang and

Q.K.Ran (see also [Z]) consider 𝐿 of a more general form, but 𝑎 = (𝑎𝑖𝑗) is required

to be uniformly elliptic and 𝑏 ∈ 𝐿𝑝 for 𝑝 > 𝑑. Anyway, since 𝐿 satisfies the weak

sector condition in these cases, it generates a sectorial ( i.e. a small perturbation of

a symmetric) Dirichlet form, so the theory of Dirichlet forms from [MR92] can be

applied in [L01], [Z], [ZR11].

In [St2] Stannat extends the known framework of Dirichlet forms to the class

of generalized Dirichlet forms. By this we can analyze differential operators where

the second order part may be degenerate and at the same time the first order part

may be unbounded satisfying no global 𝐿𝑝-condition for 𝑝 ≥ 𝑑. The motivation for

the first chapter is to extend the results in [BPS05] to the case, where 𝐿 generates

a generalized Dirichlet form so that we can allow the coefficients of 𝐿 to be more

general.

In Chapter 2, we consider PDE (1.1) for a non-symmetric second order differen-

tial operator 𝐿, which is associated to the bilinear form

ℰ(𝑢, 𝑣) :=
𝑑∑

𝑖,𝑗=1

∫
𝑎𝑖𝑗(𝑥)

∂𝑢

∂𝑥𝑖
(𝑥)

∂𝑣

∂𝑥𝑗
(𝑥)𝑚(𝑑𝑥) +

∫
𝑐(𝑥)𝑢(𝑥)𝑣(𝑥)𝑚(𝑑𝑥)

+
𝑑∑

𝑖=1

∫ 𝑑∑
𝑗=1

𝑎𝑖𝑗(𝑥)(𝑏𝑗(𝑥) + �̂�𝑗(𝑥))
∂𝑢

∂𝑥𝑖
𝑣(𝑥)𝑚(𝑑𝑥) ∀𝑢, 𝑣 ∈ 𝐶∞

0 (ℝ𝑑).

(1.3)

where 𝐶∞
0 (ℝ𝑑) denotes the space of infinitely differentiable functions with compact

support. We stress that (𝑎𝑖𝑗) is not necessarily assumed to be (locally) strictly

positive definite, but may be degenerate in general. When 𝑏 ≡ 0, the bilinear form

ℰ satisfies the weak sector condition. For the perturbation term given by 𝑏 we need
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𝑏𝜎 ∈ 𝐿2(ℝ𝑑;ℝ𝑑,𝑚), where 𝜎𝜎∗ = 𝑎 and 𝜎∗ is the transpose of the matrix of 𝜎. That

implies that we do not have the weak sector condition for the bilinear form. We

use the theory of generalized Dirichlet forms and its associated stochastic calculus

( cf [St1, St2, Tr1, Tr2]) to generalize the results in [BPS05]. Here 𝑚 is a finite

measure or Lebesgue measure on ℝ𝑑. If 𝐷 is a bounded open domain, we choose 𝑚

as 1𝐷(𝑥)𝑑𝑥. Then in certain cases the solution of PDE (1.1) satisfies the Neumann

boundary condition. If we replace 𝐶∞
0 (ℝ𝑑) by 𝐶∞

0 (𝐷), the solution of PDE (1.1)

satisfies the Dirichlet boundary condition.

In the analytic part of Chapter 2, we do not need ℰ to be a generalized Dirichlet

form. We start from a semigroup (𝑃𝑡) satisfying conditions (A1)-(A4), specified in

Section 2.1 below. Such a semigroup can, however, be constructed from a generalized

Dirichlet form. It can also be constructed by other methods (see e.g. [DR02]). Under

conditions (A1)-(A4), the coefficients of 𝐿 may be quite singular and only very broad

assumptions on 𝑎 and 𝑏 are needed (see the examples in Sections 2.3 and 2.4).

Chapter 2 is organized as follows. In Sections 2.1 and 2.2, we use functional

analytical methods to solve PDE (1.1) (see Theorems 2.2.8 and 2.2.11) in the sense

of Definition 2.1.5, i.e. there are sequences {𝑢𝑛} which are strong solutions with

data (𝜙𝑛, 𝑓𝑛) such that

∥𝑢𝑛 − 𝑢∥𝑇 → 0, ∥𝜙𝑛 − 𝜙∥2 → 0, lim
𝑛→∞

𝑓𝑛 = 𝑓 in 𝐿1([0, 𝑇 ];𝐿2).

Here ∥ ⋅ ∥𝑇 := (sup𝑡≤𝑇 ∥ ⋅ ∥22+
∫ 𝑇

0
ℰ𝑎,�̂�
𝑐2+1(⋅)𝑑𝑡)1/2, where ℰ𝑎,�̂� is the summand in the left

hand side of (1.3) with 𝑏 ≡ 0. The above definition for the solution is equivalent to

that of the following mild equation in 𝐿2-sense

𝑢(𝑡, 𝑥) = 𝑃𝑇−𝑡𝜙(𝑥) +

∫ 𝑇

𝑡

𝑃𝑠−𝑡𝑓(𝑠, ⋅, 𝑢𝑠, 𝐷𝜎𝑢𝑠)(𝑥)𝑑𝑠,

(see Proposition 2.1.9). If we use the definition of weak solution to define our

solution as in [BPS05], uniqueness of the solution cannot be obtained since only

∣𝑏𝜎∣ ∈ 𝐿2(ℝ𝑑;𝑚). Furthermore, the function 𝑓 in PDE (1.1) need not to be Lipschitz

continuous with respect to the third variable; monotonicity suffices. And 𝜇 which

appears in the monotonicity conditions (see condition (H2) in Section 2.2.2 below)

can depend on 𝑡. 𝑓 is, however, assumed to be Lipschitz continuous with respect to

the last variable. We emphasize that the first order term of 𝐿 cannot be incorporated

into 𝑓 without the condition that 𝑏 is bounded. Hence we are forced to take it as

part of 𝐿 and hence have to consider a diffusion process𝑋 in (1.2) which is generated

by an operator 𝐿 associated with a (in general non-sectorial) generalized Dirichlet

form. We also emphasize that under our conditions, PDE (1.1) cannot be tackled
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by standard monotonicity methods (see e.g. [Ba10]) because of the lack of a suitable

Gelfand triple 𝑉 ⊂ 𝐻 ⊂ 𝑉 ∗ with 𝑉 being a reflexive Banach space.

In Section 2.3, we extend the stochastic calculus of generalized Dirichlet forms in

order to generalize the martingale representation theorem. In order to treat BSDE,

we show in Theorem 2.3.8 that there exists a set of null capacity 𝒩 outside of

which the following representation result holds : for every bounded ℱ∞-measurable

random variable 𝜉, there exists a predictable process (𝜙1, ..., 𝜙𝑑) : [0,∞)× Ω → ℝ𝑑,

such that for each probability measure 𝜈, supported by ℝ𝑑 ∖ 𝒩 , one has

𝜉 = 𝐸𝜈(𝜉∣ℱ0) +
𝑑∑

𝑖=0

∫ ∞

0

𝜙𝑖
𝑠𝑑𝑀

(𝑖)
𝑠 𝑃 𝜈 − 𝑎.𝑠..

where 𝑀 𝑖, 𝑖 = 1, ..., 𝑑 are the coordinate martingales associated with the process 𝑋.

As a result, one can choose the exceptional set 𝒩 such that if the process 𝑋 starts

from a point of 𝒩 𝑐, it remains always in this set. As a consequence we deduce the

existence of solutions for the BSDE using the existence for PDE (1.1) in the usual

way, however, only under 𝑃𝑚, because of our general coefficients of 𝐿 (c.f. Theorem

2.3.12).

In Section 2.4, we employ the martingale representation to deduce existence and

uniqueness for the solutions of BSDE (1.2). As a consequence, in Theorem 2.4.7,

the existence and uniqueness of solutions for PDE (1.1), not covered by our analytic

results in Section 2.2, is obtained by 𝑢(𝑠, 𝑥) = 𝑌 𝑠
𝑠 , where 𝑌

𝑠
𝑡 is the solution of the

BSDE. Moreover we have, 𝑌 𝑠
𝑡 = 𝑢(𝑡,𝑋𝑡−𝑠), 𝑃

𝑥-a.s., 𝑥 ∈ ℝ𝑑∖𝒩 . Further examples

are given in Section 2.5.

BSDE and generalized Dirichlet form: infinite dimensional
case

In Chapter 3, we consider the following quasi-linear parabolic system of backward

partial differential equations on a (real) Banach space 𝐸

(∂𝑡 + 𝐿)𝑢+ 𝑓(⋅, ⋅, 𝑢, 𝐴1/2∇𝑢) = 0 on [0, 𝑇 ]× 𝐸, 𝑢𝑇 = 𝜙, (1.4)

where 𝐿 is a second order differential operator with measurable coefficients, ∇𝑢 is

the𝐻-gradient of 𝑢 and (𝐻, ⟨⋅, ⋅⟩𝐻) is a separable real Hilbert space such that𝐻 ⊂ 𝐸

densely and continuously. 𝐴 is a symmetric, positive-definite and bounded operator

on 𝐻. This equation is also called nonlinear Kolmogorov equation on an infinite

dimensional space. In fact, in this chapter we study systems of PDE of type (1.4),

i.e. 𝑢 takes values in ℝ𝑙 for some fixed 𝑙 ∈ ℕ. For simplicity, in this introductory

section we explain our results in the case 𝑙 = 1.
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Various concepts of solution are known for (linear and) nonlinear parabolic equa-

tions in infinite dimensions. In Chapter 3 we will consider solutions in the sense of

Definition 3.1.4, i.e. there is a sequence {𝑢𝑛} of strong solutions with data (𝜙𝑛, 𝑓𝑛)

such that

∥𝑢𝑛 − 𝑢∥𝑇 → 0, ∥𝜙𝑛 − 𝜙∥2 → 0 and lim
𝑛→∞

𝑓𝑛 = 𝑓 in 𝐿1([0, 𝑇 ];𝐿2).

We will prove the above definition for solution is equivalent to being a solution of

the following mild equation in 𝐿2 sense

𝑢(𝑡, 𝑥) = 𝑃𝑇−𝑡𝜙(𝑥) +

∫ 𝑇

𝑡

𝑃𝑠−𝑡𝑓(𝑠, ⋅, 𝑢𝑠, 𝐴1/2∇𝑢𝑠)(𝑥)𝑑𝑠, (1.5)

(see Proposition 3.1.7). This formula is meaningful provided 𝑢 is even only once

differentiable with respect to 𝑥. Thus, the solutions we consider are in a sense

intermediate between classical and viscosity solutions.

The notion of viscosity solution, developed by many authors, in particular M.

Crandall and P. L. Lions and their collaborators, is not discussed here. Gen-

erally speaking, the class of equations that can be treated by this method (c.f.

[L88,L89,L92] ) is much more general than those considered in this paper: it in-

cludes fully nonlinear operators. However, none of these results are applicable to

our situation because the coefficients of the operator 𝐿 are only measurable in our

case.

In [FT02], mild solutions of the above PDE (1.4) have been considered, and

a probabilistic technique, based on backward stochastic differential equations, has

been used to prove the existence and uniqueness for the mild solution. Furthermore,

their results has been extended in [BC08] and [M11]. All these results need some

regular conditions for the coefficients of 𝐿 and 𝑓 to make sure that the process 𝑋

has regular dependence on parameters, which are not required for our results. In

Chapter 3, we will prove the existence and uniqueness of a solution 𝑢 of (1.4) for a

general non-symmetric operator 𝐿 by methods from functional analysis (Theorem

3.2.8). In fact Chapter 3 is an extension of Chapter 2 to the infinite dimensional

case. Though Chapter 2 serves as guideline, serious obstacles appear at various

places if 𝐸 is infinite dimensional, which we overcome in this work.

The connection between backward stochastic equations and nonlinear partial

differential equations was proved for the finite dimensional case e.g. in [BPS05],

[PP92] ( see also the references therein). A further motivation of Chapter 3 is to

give a probabilistic interpretation for the solutions of the above PDE’s, i.e. in this

infinite dimensional case.
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If 𝐸 is a Hilbert space, which equals to 𝐻, 𝑓 and the coefficients of the second-

order differential operator 𝐿 are sufficiently regular, then PDE (1.4) has a classical

solution and one may construct the pair of processes 𝑌 𝑡,𝑥
𝑠 := 𝑢(𝑠,𝑋 𝑡,𝑥

𝑠 ), 𝑍𝑡,𝑥
𝑠 :=

𝐴1/2∇𝑢(𝑠,𝑋 𝑡,𝑥
𝑠 ) where 𝑋 𝑡,𝑥

𝑠 , 𝑡 ≤ 𝑠 ≤ 𝑇 , is the diffusion process with infinitesimal

operator 𝐿 which starts from 𝑥 at time 𝑡 and 𝐴 is the diffusion coefficient for 𝑋.

Then, using Itô’s formula one checks that (𝑌 𝑡,𝑥
𝑠 , 𝑍𝑡,𝑥

𝑠 )𝑡≤𝑠≤𝑇 solves the BSDE

𝑌 𝑡,𝑥
𝑠 = 𝜙(𝑋 𝑡,𝑥

𝑇 ) +

∫ 𝑇

𝑠

𝑓(𝑟,𝑋 𝑡,𝑥
𝑟 , 𝑌 𝑡,𝑥

𝑟 , 𝑍𝑡,𝑥
𝑟 )𝑑𝑟 −

∫ 𝑇

𝑠

⟨𝑍𝑡,𝑥
𝑟 , 𝑑𝑊𝑟⟩𝐻 , (1.6)

where𝑊𝑟 is a cylindrical Wiener process in 𝐻. Conversely, for regular coefficients by

standard methods one can prove that (1.6) has a unique solution (𝑌 𝑠,𝑥
𝑡 , 𝑍𝑠,𝑥

𝑡 )𝑠≤𝑡≤𝑇

and then 𝑢(𝑠, 𝑥) := 𝑌 𝑠,𝑥
𝑠 is a solution to PDE (1.4). If 𝑓 and the coefficients of

𝐿 are Lipschitz continuous then in [FT02] the authors prove that the probabilis-

tic interpretation above remains true, if one considers mild solutions to PDE (1.4).

There are many papers that study forward-backward systems in infinite dimension

(cf [FT02], [FH07] and the references therein). In these approaches, since the coef-

ficients are Lipschitz continuous, the Markov process 𝑋 with infinitesimal operator

𝐿 is a diffusion process which satisfies an SDE and so one can use its associated

stochastic calculus to conclude the results.

In Chapter 3, we consider PDE (1.4) for a non-symmetric second order differen-

tial operator 𝐿 in infinite dimensions, which is associated to the bilinear form

ℰ(𝑢, 𝑣) =
∫

⟨𝐴(𝑧)∇𝑢(𝑧),∇𝑣(𝑧)⟩𝐻𝑑𝜇(𝑧)+
∫

⟨𝐴(𝑧)𝑏(𝑧),∇𝑢(𝑧)⟩𝐻𝑣(𝑧)𝑑𝜇(𝑧), 𝑢, 𝑣 ∈ ℱ𝐶∞
𝑏 ,

where ℱ𝐶∞
𝑏 will be defined in Section 3.1. Here we only need ∣𝐴1/2𝑏∣𝐻 ∈ 𝐿2(𝐸;𝜇).

That is to say, in general the above bilinear form ℰ does not satisfy any weak sector

condition. We use the theory of generalized Dirichlet forms and the associated

stochastic calculus( cf. [St1, St2, Tr1, Tr2]) to generalize the results in [BPS05].

In the analytic part of Chapter 3, we don’t need ℰ to be a generalized Dirichlet

form. We start from a semigroup (𝑃𝑡) satisfying conditions (A1)-(A3), specified in

Section 3.1 below. Such a semigroup can e.g. be constructed from a generalized

Dirichlet form. It can also be constructed by other methods (see e.g. [DR02]).

Under conditions (A1)-(A3), the coefficients of 𝐿 may be quite singular and only

very broad assumptions on 𝐴 and 𝑏 are needed.

Chapter 3 is organized as follows. In Sections 3.1 and 3.2, we use functional an-

alytical methods to solve PDE (1.4) (see Theorem 3.2.8) in the sense of Definition

3.1.4 or equivalently in the sense of (1.5). Here the function 𝑓 need not to be Lip-

schitz continuous with respect to 𝑦; monotonicity suffices. And 𝜇 which appears in
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the monotonicity conditions (see condition (H2) in Section 3.2.2 below) can depend

on 𝑡. 𝑓 is, however, assumed to be Lipschitz continuous with respect to the last

variable. We emphasize that the first order term with coefficient 𝐴𝑏 of 𝐿 cannot

be incorporated into 𝑓 unless it is bounded. Hence we are forced to take it as a

part of 𝐿 and hence we have to consider a diffusion process 𝑋 which is generated

by an operator 𝐿 which is the generator of a (in general non-sectorial) generalized

Dirichlet form. We also emphasize that under our conditions PDE (1.4) cannot be

tackled by standard monotonicity methods (see e.g. [Ba10]) because of lack of a

suitable Gelfand triple 𝒱 ⊂ ℋ ⊂ 𝒱∗ with 𝒱 being a reflexive Banach space.

In Section 3.3, we assume that ℰ is a generalized Dirichlet form and is associated

with a strong Markov process 𝑋 = (Ω,ℱ∞,ℱ𝑡, 𝑋𝑡, 𝑃
𝑥). Such a process can be

constructed if ℰ is quasi-regular. We extend the stochastic calculus for the Markov

process in order to generalize the martingale representation theorem. More precisely,

in order to treat BSDE’s, in Theorem 3.3.3 we show that there is a set 𝒩 of null

capacity outside of which the following representation theorem holds : for every

bounded ℱ∞-measurable random variable 𝜉, there exists a predictable process 𝜙 :

[0,∞)×Ω → 𝐻, such that for each probability measure 𝜈, supported by 𝐸 ∖𝒩 , one

has

𝜉 = 𝐸𝜈(𝜉∣ℱ0) +
∞∑
𝑖=0

∫ ∞

0

𝜙𝑖
𝑠𝑑𝑀

𝑖
𝑠 𝑃 𝜈 − 𝑎.𝑒.,

where 𝑀 𝑖, 𝑖 ∈ ℕ are the coordinate martingales associated with the process 𝑋. In

fact, one may choose the exceptional set 𝒩 such that if the process 𝑋 starts from

a point of 𝒩 𝑐, it remains always in 𝒩 𝑐. As a consequence we deduce the existence

of solutions for the BSDE using the existence of solutions for PDE (1.4) in the

usual way, however, only under 𝑃 𝜇, because of our very general coefficients of 𝐿 (c.f.

Theorem 3.3.7).

In Section 3.4, we employ the above results to deduce existence and uniqueness

for the solutions of the BSDE under 𝑃 𝑥 for 𝑥 ∈ 𝒩 𝑐. As a consequence, in Theorem

3.4.4 one finds a version of the solution to PDE (1.4) which satisfies the mild equation

pointwise, i.e. for the solution 𝑌 𝑠 of the BSDE, we have 𝑌 𝑠
𝑡 = 𝑢(𝑡,𝑋𝑡−𝑠), 𝑃

𝑥-a.s. In

particular, 𝑌 𝑡
𝑡 is 𝑃 𝑥-a.s. equal to 𝑢(𝑡, 𝑥).

In Section 3.5, we give some examples of the operator 𝐿 satisfying our general

conditions (A1)-(A5). In Section 3.6, we consider an application of our results to a

control problem. An admissible control 𝜃(𝑡, 𝜔) is a progressively measurable process

with respect to the filtration (ℱ𝑡)𝑡≥0 and takes values in some metric space 𝐾. Given

a measurable function 𝑐 : [0, 𝑇 ]×𝐸 ×𝐾 → 𝐻 and a admissible control 𝜃, we define

𝑁 𝜃
𝑡 =

∫ 𝑡

0
𝑐𝑠(𝑋𝑠, 𝜃𝑠).𝑑𝑀𝑠,Γ

𝜃
𝑡 = exp(𝑁 𝜃

𝑡 − 1
2
⟨𝑁 𝜃⟩𝑡), and 𝑃 𝜃,𝑥 = Γ𝜃.𝑃 𝑥. The aim is to

choose a control process 𝜃, within a set of admissible controls, to minimize a cost
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functional of the form:

𝐽𝜃(𝑥) = 𝐸𝜃,𝑥[𝜙(𝑋𝑇 ) +

∫ 𝑇

0

ℎ(𝑠,𝑋𝑠, 𝜃𝑠)𝑑𝑠],

where 𝜙 and ℎ are measurable functions and 𝐸𝜃,𝑥 means taking expectation under

𝑃 𝜃,𝑥. There is a vast literature on such control problems in infinite dimensions if

𝑋 is a solution of an SDE on a Hilbert space (c.f. [FT02] [G96] and the reference

therein). In our case, the process 𝑋 is generated by a linear operator 𝐿 with merely

measurable coefficients as above and 𝑋 does not need to satisfy an SDE. As the

coefficients of 𝐿 are very general, 𝑋 doesnot have regular dependence on parameters,

which is essential in [FT02]. Moreover, we also donot need that 𝜙 and ℎ are Gâteaux

differentiable with respect to 𝑥. By the results in Sections 3 and 5, we directly

provide a mild solution of the Hamilton-Jacobi-Bellman equation.

Ergodicity of the stochastic quasi-geostrophic equation

Up to the early 1960s, most works on SDE has been confined to ordinary dif-

ferential equation. Later on, a large number of models were found that could be

described by partial differential equations with random parameters, such as the co-

efficients or the forcing term. As a result, the study of SDE in infinite dimensional

space has begun to attract a lot of attention of many researchers. In this thesis,

we are concerned with the long time behavior of the stochastic quasi-geostrophic

equation, which is an interesting SDE in infinite dimensional space.

In Chapter 4, we study the long time behavior of the stochastic partial differen-

tial equation by proving the uniqueness of invariant measures and strong asymptotic

stability, i.e. the law of the process converges to the invariant measure in total varia-

tion norm. In order to have uniqueness of the invariant measure, the Markov process

should satisfy some irreducibility property, together with some regularity. Here we

prove the strong Feller property and the irreducibility of the associated Markov

process. Then the classical results in the ergodic theory of Markov processes, as de-

veloped by Doob, Khas’minskii and others, can be applied to obtain the uniqueness

of invariant measures as well as the strong asymptotic stability ( see e.g. [DZ96]).

Consider the following 2D stochastic quasi-geostrophic equation in the periodic

domain 𝕋2 = ℝ2/(2𝜋ℤ)2:

∂𝜃(𝑡, 𝜉)

∂𝑡
= −𝑢(𝑡, 𝜉) ⋅ ∇𝜃(𝑡, 𝜉)− 𝜅(−△)𝛼𝜃(𝑡, 𝜉) + (𝐺(𝜃)𝜂)(𝑡, 𝜉), (1.7)

with initial condition

𝜃(0, 𝜉) = 𝜃0(𝜉), (1.2)
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where 𝜃(𝑡, 𝜉) is a real-valued function of 𝜉 ∈ 𝕋2 and 𝑡 ≥ 0, 0 < 𝛼 < 1, 𝜅 > 0 are

real numbers. 𝑢 is determined by 𝜃 through a stream function 𝜓 via the following

relations:

𝑢 = (𝑢1, 𝑢2) = (−𝑅2𝜃, 𝑅1𝜃). (1.9)

Here 𝑅𝑗 is the 𝑗-th periodic Riesz transform and 𝜂(𝑡, 𝜉) is a Gaussian random

field, white noise in time, subject to the restrictions imposed below. The case 𝛼 = 1
2

is called the critical case, the case 𝛼 > 1
2
sub-critical and the case 𝛼 < 1

2
super-

critical.

This equation is an important model in geophysical fluid dynamics. The case

𝛼 = 1/2 exhibits similar features (singularities) as the 3D Navier-Stokes equations

and can therefore serve as a model case for the latter. In the deterministic case this

equation has been intensively investigated because of both its mathematical impor-

tance and its background in geophysical fluid dynamics, (see for instance [CV06],

[Re95], [CW99], [Ju03], [Ju04], [KNV07] and the references therein). In the deter-

ministic case, the global existence of weak solutions has been obtained in [Re95] and

one most remarkable result by [CV06] proves the existence of a classical solution for

𝛼 = 1/2 and the other by [KNV07] proves solutions for 𝛼 = 1/2 with periodic 𝐶∞

data remain 𝐶∞ for all the time.

In Chapter 4 we study the 2D stochastic quasi-geostrophic equation in 𝕋2 for

general parameter 𝛼 ∈ (0, 1) and multiplicative noise. First using an abstract result

for obtaining Markov selections from [GRZ09], we prove the existence of an a.s.

Markov family for general parameter 𝛼 ∈ (0, 1) (see Theorem 4.2.5).

Then we prove the ergodicity of the solution in the subcritical case, provided that

the noise is non-degenerate and regular (see Theorem 4.3.10). The proof follows

from employing the weak-strong uniqueness principle in [FR08] (Theorem 4.3.4)

and as usual first establishing the strong Feller property (Theorem 4.3.3). Though

one would expect to get ergodicity for 𝛼 > 1
2
, surprisingly it turns out that one

needs 𝛼 > 2
3
. As the dynamics exists only in the martingale sense and standard

tools of stochastic analysis are not available, the computations are made for an

approximating cutoff dynamics, which is equal to the original dynamics on a small

random time interval. As the noise is non-degenerate, we can use the Bismut-

Elworthy-Li formula to prove the strong Feller property. Since in our case 𝛼 < 1,

it is more difficult to use the 𝐻𝛼-norm to control the nonlinear term even though

the equation is on 𝕋2. To prove the weak-strong uniqueness principle we need some

regularity for the trajectories of the noise. Therefore, we need conditions on 𝐺 so

that it is enough regularizing. However, in order to apply the Bismut-Elworthy-Li

formula, we also need 𝐺−1 to be regularizing enough. As a result, 𝛼 > 2/3 is required

(see Remark 4.3.2 below). It seems difficult to use the Kolmogorov equation method
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as in [DD03], [DO06] or a coupling approach as in [O08] in our situation (see Remark

4.3.2 below).

In order to prove the exponential convergence, we need to show decay of the

solution’s 𝐿𝑝-norm for suitable 𝑝. To prove it, we have to improve the crucial

positivity lemma from [Re95] ( see Lemma 4.4.1 below).

Chapter 4 is organized as follows. For the general case the existence of Markov

selections is obtained in Section 4.2. In Section 4.3, we prove the ergodicity of the

solution for 𝛼 > 2/3 provided the noise is non-degenerate. The exponential conver-

gence to the (unique) invariant measure is shown in Section 4.4 (Theorem 4.4.5). We

also consider the ergodicity of the equation driven by the mildly degenerate noise

following the idea of [EH01] in Section 4.5 (Theorem 4.5.17).





Chapter 1

Preliminaries

In this chapter, we collect some results about the generalized Dirichlet form and the

associated stochastic calculus for the following chapters. We omit all proofs and refer

the reader to [St2, Tr1, Tr2] for details. In the first part, we recall the definitions of

a generalized Dirichlet form and a quasi-regular generalized Dirichlet form. In the

second part, we collect some useful results about the stochastic calculus associated

with the generalized Dirichlet form, such as the Fukushima decomposition.

1.1 Some basic concepts for Generalized Dirichlet

forms

Let us recall the definition of a generalized Dirichlet form from [St2]. Let 𝐸 be a

Hausdorff topological space and assume that its Borel 𝜎-algebra ℬ(𝐸) is generated
by the set 𝐶(𝐸) of all continuous functions on 𝐸. Let 𝑚 be a 𝜎-finite measure on

(𝐸,ℬ(𝐸)) such that ℋ := 𝐿2(𝐸,𝑚) is a separable (real) Hilbert space. Let (𝒜,𝒱)
be a coercive closed form on ℋ in the sense of [MR92], i.e. 𝒱 is a dense linear

subspace of ℋ, 𝒜 : 𝒱 × 𝒱 → ℝ is a positive definite bilinear map, 𝒱 is a Hilbert

space with inner product 𝒜1(𝑢, 𝑣) :=
1
2
(𝒜(𝑢, 𝑣) +𝒜(𝑣, 𝑢)) + (𝑢, 𝑣)ℋ, and 𝒜 satisfies

the weak sector condition

∣𝒜1(𝑢, 𝑣)∣ ≤ 𝐾𝒜1(𝑢, 𝑢)
1/2𝒜1(𝑣, 𝑣)

1/2,

𝑢, 𝑣 ∈ 𝒱 , with sector constant 𝐾. We will always denote the corresponding norm

by ∥ ⋅ ∥𝒱 . Identifying ℋ with its dual ℋ′ we obtain that 𝒱 → ℋ ∼= ℋ′ → 𝒱 ′ densely
and continuously.

Let (Λ, 𝐷(Λ,ℋ)) be a linear operator on ℋ satisfying the following assumptions:

(i) (Λ, 𝐷(Λ,ℋ)) generates a 𝐶0-semigroup of contractions (𝑈𝑡)𝑡≥0 on ℋ.
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(ii) 𝒱 is Λ-admissible, i.e. (𝑈𝑡)𝑡≥ can be restricted to a 𝐶0-semigroup on 𝒱 .
Let (Λ,ℱ) with corresponding norm ∥⋅∥ℱ be the closure of Λ : 𝐷(Λ,ℋ)∩𝒱 → 𝒱 ′

as an operator from 𝒱 to 𝒱 ′ and (Λ̂, ℱ̂) be its dual operator.

Let

ℰ(𝑢, 𝑣) =
{

𝒜(𝑢, 𝑣)− ⟨Λ𝑢, 𝑣⟩ if 𝑢 ∈ ℱ , 𝑣 ∈ 𝒱
𝒜(𝑢, 𝑣)− ⟨Λ̂𝑣, 𝑢⟩ if 𝑢 ∈ 𝒱 , 𝑣 ∈ ℱ̂ ,

where ⟨⋅, ⋅⟩ denotes the dualization between 𝒱 ′ and 𝒱 and ⟨⋅, ⋅⟩ coincides with the

inner product (⋅, ⋅)𝐻 in 𝐻 when restricted to 𝐻 × 𝒱 . Define ℰ𝛼(𝑢, 𝑣) := ℰ(𝑢, 𝑣) +
𝛼(𝑢, 𝑣)ℋ for 𝛼 > 0. We call ℰ the bilinear form associated with (𝒜,𝒱) and (Λ, 𝐷(Λ,ℋ)).

Definition 1.1 The bilinear form ℰ associated with (𝒜,𝒱) and (Λ, 𝐷(Λ,ℋ)) is

called a generalized Dirichlet form, if

𝑢 ∈ ℱ ⇒ 𝑢+ ∧ 1 ∈ 𝒱 and ℰ(𝑢, 𝑢− 𝑢+ ∧ 1) ≥ 0.

We also recall the definition of semi-Dirichlet form from [MOR95]. For the

closed coercive form (𝒜,𝒱) is called a semi-Dirichlet form if 𝑢 ∈ 𝒱 , 𝑢+ ∧ 1 ∈ 𝒱 and

𝒜(𝑢+ 𝑢+ ∧ 1, 𝑢− 𝑢+ ∧ 1) ≥ 0.

Suppose the adjoint semigroup (�̂�𝑡)𝑡≥0 of (𝑈𝑡)𝑡≥0 can also be restricted to a 𝐶0-

semigroup on 𝒱 . Let (Λ̂, 𝐷(Λ̂,ℋ)) denote the generator of (�̂�𝑡)𝑡≥0 on ℋ, 𝒜(𝑢, 𝑣) :=

𝒜(𝑣, 𝑢), 𝑢, 𝑣 ∈ 𝒱 and let the coform ℰ̂ be defined as the bilinear form associated

with (𝒜,𝒱) and (Λ̂, 𝐷(Λ̂,ℋ)).

In [St2, Section I.3], they construct the resolvent (𝐺𝛼)𝛼>0 such that for all 𝛼 > 0,

ℰ(𝐺𝛼𝑓, 𝑣) = (𝑓, 𝑣)ℋ, ∀𝑓 ∈ ℋ, 𝑣 ∈ 𝒱 . The resolvent (𝐺𝛼)𝛼>0 is called the resolvent

associated with ℰ . Let (�̂�𝛼)𝛼>0 be the adjoint of (𝐺𝛼)𝛼>0 in ℋ. (�̂�𝛼)𝛼>0 is called

the coresolvent associated with ℰ . By [St2, Proposition 3.6] (𝐺𝛼)𝛼>0 is a strongly

continuous contraction resolvent on ℋ.

For the generalized Dirichlet form, we also have the concept of the quasi-regular

generalized Dirichlet form. By this we can construct a strong Markov process asso-

ciated with it. This will be used in the probabilistic part of this chapter (see Section

2.3). We recall the definition of the quasi-regular generalized Dirichlet form here.

For this reason we introduce some useful notations.

An element of 𝑢 of ℋ is called 1-excessive (resp. 1-coexcessive) if 𝛽𝐺𝛽+1𝑢 ≤ 𝑢

(resp. 𝛽�̂�𝛽+1𝑢 ≤ 𝑢) for all 𝛽 ≥ 0. Let 𝒫 (resp. 𝒫) denote the 1-excessive (resp.

1-coexcessive) elements of 𝒱 .
Definition 1.2 (i) An increasing sequence of closed subset (𝐹𝑘)𝑘≥1 is called an

ℰ-nest, if for every function 𝑢 ∈ 𝒫 ∩ ℱ , 𝑢𝐹 𝑐
𝑘
→ 0 in ℋ and weakly in 𝒱, where

𝑢𝐹 𝑐
𝑘
:= 𝑒𝑢⋅1𝐹𝑐

𝑘
is the 1-reduced function defined in [St2, Definition III.1.8].
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(ii) A subset 𝑁 ⊂ 𝐸 is called ℰ-exceptional if there is an ℰ-nest (𝐹𝑘)𝑘≥1 such

that 𝑁 ⊂ ∩𝑘≥1𝐸∖𝐹𝑘.

(iii) A property of points in 𝐸 holds ℰ-quasi-everywhere(ℰ − 𝑞.𝑒.) if the property
holds outside some ℰ-exceptional set.

(iv) A function 𝑓 defined up to some ℰ-exceptional set 𝑁 ⊂ 𝐸 is called ℰ-quasi-
continuous (ℰ-q.c.) if there exists an ℰ-nest (𝐹𝑘)𝑘≥1, such that ∪𝑘≥1𝐹𝑘 ⊂ 𝐸∖𝑁 and

𝑓 ∣𝐹𝑘
is continuous for all 𝑘.

Definition 1.3 The generalized Dirichlet form ℰ is called quasi-regular if:

(i) There exists an ℰ-nest consisting of compact sets.

(ii) There exists a dense subset of ℱ whose elements have ℰ-quasi-continuous
m-versions.

(iii) There exist 𝑢𝑛 ∈ ℱ , 𝑛 ∈ ℕ, having ℰ-quasi-continuous m-versions �̃�𝑛, 𝑛 ∈ ℕ,
and an ℰ-exceptional set 𝑁 ⊂ 𝐸 such that {�̃�𝑛∣𝑛 ∈ ℕ} separates the points of 𝐸∖𝑁 .

1.2 Stochastic calculus associated with General-

ized Dirichlet forms

In this section we assume that an 𝑚-tight special standard process ([MR92, IV

Definition 1.13])𝑋 = (Ω,ℱ∞,ℱ𝑡, 𝑋𝑡, 𝑃
𝑥) is properly associated in the resolvent sense

with the quasi-regular generalized Dirichlet form ℰ , i.e. 𝑅𝛼𝑓 := 𝐸𝑥
∫∞
0
𝑒−𝛼𝑡𝑓(𝑋𝑡)𝑑𝑡

is an ℰ-quasi-continuous𝑚-version of 𝐺𝛼𝑓 , where 𝐺𝛼, 𝛼 > 0 is the resolvent of ℰ and

𝑓 ∈ ℬ𝑏(ℝ𝑑) ∩ 𝐿2(ℝ𝑑;𝑚). The coform ℰ̂ introduced in Section 1.1 is a generalized

Dirichlet form with the associated resolvent (�̂�𝛼)𝛼>0 and there exists an 𝑚-tight

special standard process properly associated in the resolvent sense with ℰ̂ . In this

section we will obtain the results under this assumption.

Now we recall [Tr2, Theorem 1.9], which give a description of the ℰ-exceptional
set and will be used for the proof of the martingale representation theorem. 𝑃�̂�1𝑏ℋ+

denotes the set of all 1-coexcessive elements in 𝒱 which are dominated by elements

of �̂�1𝑏ℋ+, where �̂�1𝑏ℋ+ := {�̂�1ℎ∣ℎ ∈ 𝑏ℋ+}. 𝒫ℱ denotes the set of all the ℰ-q.e.
𝑚-versions of 1-excessive elements in 𝒱 which are dominated by elements of ℱ .

By [Tr2, Theorem 1.4], we obtain for �̂� ∈ 𝑃�̂�1𝑏ℋ+ , there exists a unique 𝜎-finite

and positive measure 𝜇�̂� on (𝐸,ℬ(𝐸)) charging no ℰ-exceptional set such that for

all 𝑓 ∈ 𝒫ℱ − 𝒫ℱ , ∫
𝑓𝑑𝜇�̂� = lim

𝛼→∞
ℰ1(𝑓, 𝛼�̂�𝛼+1�̂�).
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Define

𝑆00 := {𝜇�̂�∣�̂� ∈ 𝑃�̂�1𝑏ℋ+ and 𝜇�̂�(𝐸) <∞}.
Then we have the following results from [Tr2, Theorem 1.9].

Theorem 1.4 For 𝐵 ∈ ℬ(𝐸), 𝐵 is ℰ-exceptional if and only if 𝜈(𝐵) = 0,∀𝜈 ∈ 𝑆00.

Definition 1.5 A positive measure 𝜇 on (𝐸,ℬ(𝐸)) is said to be of finite 1-order

co-energy integral if there exists �̂�1𝜇 ∈ 𝒱 , such that∫
𝐸

𝐺1ℎ𝑑𝜇 = ℰ1(𝐺1ℎ, �̂�1𝜇),

for all ℎ ∈ ℋ and for all ℰ-q.c. 𝑚-versions 𝐺1ℎ of 𝐺1ℎ. The measures of finite

1-order co-energy integral are denoted by 𝑆0.

By [Tr2, Section 1.3], 𝑆00 ⊂ 𝑆0.

Now we introduce the spaces which will be relevant for our further investigations.

Definition 1.6 A family (𝐴𝑡)𝑡≥0 of extended real valued functions on Ω is called

an additive functional of 𝑋 if:

(i) 𝐴𝑡(⋅) is ℱ𝑡-measurable for all 𝑡 ≥ 0.

(ii) There exists a defining set Λ ∈ ℱ∞ and an ℰ-exceptional set𝑁 ⊂ 𝐸, such that

𝑃 𝑧[Λ] = 1 for all 𝑧 ∈ 𝐸∖𝑁, 𝜃𝑡(Λ) ⊂ Λ for all 𝑡 > 0 and for each 𝜔 ∈ Λ, 𝑡 7→ 𝐴𝑡(𝜔) is

right continuous on [0,∞) and has left limits on (0, 𝜁(𝜔)), 𝐴0(𝜔) = 0, ∣𝐴𝑡(𝜔)∣ < ∞
for 𝑡 < 𝜁(𝜔), 𝐴𝑡(𝜔) = 𝐴𝜁(𝜔) for 𝑡 ≥ 𝜁(𝜔) and 𝐴𝑡+𝑠(𝜔) = 𝐴𝑡(𝜔)+𝐴𝑠(𝜃𝑡𝜔) for 𝑠, 𝑡 ≥ 0.

Define

ℳ := {𝑀 ∣𝑀 is a finite additive functional, 𝐸𝑧[𝑀2
𝑡 ] <∞, 𝐸𝑧[𝑀𝑡] = 0

for ℰ − 𝑞.𝑒.𝑧 ∈ 𝐸 and all 𝑡 ≥ 0}.

𝑀 ∈ ℳ is called a martingale additive functional(MAF). Furthermore, define

ℳ̇ = {𝑀 ∈ ℳ∣𝑒(𝑀) <∞}.

Here 𝑒(𝑀) = 1
2
lim𝛼→∞ 𝛼2𝐸𝑚[

∫∞
0
𝑒−𝛼𝑡𝑀2

𝑡 𝑑𝑡]. The elements of ℳ̇ are called mar-

tingale additive functional’s (MAF) of finite energy. Let 𝑀 ∈ ℳ. There exists

an ℰ-exceptional set 𝑁 , such that (𝑀𝑡,ℱ𝑡, 𝑃𝑧)𝑡≥0 is a square integrable martin-

gale for all 𝑧 ∈ 𝐸∖𝑁 . Moreover, there exists a unique (up to equivalence) posi-

tive continuous additive functional ⟨𝑀⟩, called the sharp bracket of 𝑀 , such that

(𝑀2
𝑡 − ⟨𝑀⟩𝑡,ℱ𝑡, 𝑃𝑧)𝑡≥0 is a martingale for all 𝑧 ∈ 𝐸∖𝑁 . By [Tr1, Theorem 2.10] ℳ̇

is a real Hilbert space with inner product 𝑒. It now follows that one half of the total

mass of the Revuz measure 𝜇⟨𝑀⟩ associated to the sharp bracket of 𝑀 ∈ ℳ is equal
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to the energy of 𝑀 , i.e.

𝑒(𝑀) =
1

2

∫
𝑑𝜇⟨𝑀⟩.

For 𝑀,𝐿 ∈ ℳ̇ let

⟨𝑀,𝐿⟩𝑡 = 1

2
(⟨𝑀 + 𝐿⟩𝑡 − ⟨𝑀⟩𝑡 − ⟨𝐿⟩𝑡).

Then the finite signed measure 𝜇⟨𝑀,𝐿⟩ defined by 𝜇⟨𝑀,𝐿⟩ =
1
2
(𝜇⟨𝑀+𝐿⟩ − 𝜇⟨𝑀⟩ − 𝜇⟨𝐿⟩)

is the Revuz measure related to ⟨𝑀,𝐿⟩. We also define

𝑒(𝑀,𝐿) =
1

2
lim
𝛼→∞

𝛼2𝐸𝑚[

∫ ∞

0

𝑒−𝛼𝑡𝑀𝑡𝐿𝑡𝑑𝑡].

Define the following space:

𝒩𝑐 := {𝑁 ∣𝑁 is a finite continuous additive functional, 𝑒(𝑁) = 0, 𝐸𝑧[∣𝑁𝑡∣] <∞
for ℰ − 𝑞.𝑒.𝑧 ∈ 𝐸 and all 𝑡 ≥ 0}.

Now we recall the well-known Fukushima decomposition in the framework of

generalized Dirichlet forms.

Theorem 1.7 ([Tr1, Theorem 4.5]) If �̂�𝛼 is sub-Markovian and strongly contin-

uous on 𝒱 , then for 𝑢 ∈ ℱ , there exists a unique 𝑀 [𝑢] ∈ ℳ̇ and a unique 𝑁 [𝑢] ∈ 𝒩𝑐

such that

𝑢(𝑋)− 𝑢(𝑋0) =𝑀 [𝑢] +𝑁 [𝑢].

Furthermore, by [Tr2, Lemma 2.12], we obtain that for 𝑓 ∈ ℬ𝑏(ℝ𝑑) and 𝑀 ∈ ℳ̇,

there exists a unique element denoted by 𝑓 ⋅𝑀 ∈ ℳ̇ such that for all 𝐿 ∈ ℳ̇
1

2

∫
𝑓𝑑𝜇⟨𝑀,𝐿⟩ = 𝑒(𝑓 ⋅𝑀,𝐿).





Chapter 2

BSDE and generalized Dirichlet

form: finite dimensional case

In this chapter we establish that the relation between PDE (1.1) and BSDE (1.2)

mentioned in introduction holds under the condition that the operator 𝐿 is associ-

ated with a generalized Dirichlet form. In Section 2.1 we give some basic assumptions

on the operator 𝐿 and prove some basic relations for linear equation. In Section 2.2,

we use analytic methods to solve PDE (1.1). In Section 2.3, we prove the martingale

representation theorem for the process associated with the operator 𝐿. By this we

obtain the existence and uniqueness of solution of BSDE (1.2) in Section 2.4. The

relation between PDE and BSDE is also established in this section. Further exten-

sions and examples are given in Section 2.5. The main results of this chapter have

already been submitted for publication, see [Zhu a].

2.1 Preliminaries

Let 𝜎 : ℝ𝑑 7→ ℝ𝑑 ⊗ ℝ𝑘 be a measurable map. Then there exists a measurable map

𝜏 : ℝ𝑑 7→ ℝ𝑘 ⊗ ℝ𝑑 such that

𝜎𝜏 = 𝜏 ∗𝜎∗, 𝜏𝜎 = 𝜎∗𝜏 ∗, 𝜎𝜏𝜎 = 𝜎,

where 𝜎∗ is the transpose of the matrix of 𝜎(see e.g. [BPS05, Lemma A.1]). Then

𝑎 := 𝜎𝜎∗ = (𝑎𝑖𝑗)1≤𝑖,𝑗≤𝑑 takes values in the space of symmetric non-negative definite

matrices. Let also 𝑏 : ℝ𝑑 → ℝ𝑑 be measurable. Assume that the basic measure

𝑚(𝑑𝑥) for the generalized Dirichlet form, to be defined below, is a finite measure or

Lebesgue measure on ℝ𝑑.

Denote the Euclidean norm and the scalar product in ℝ𝑑 by ∣ ⋅ ∣, ⟨⋅, ⋅⟩ respec-
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tively, while on the space of matrices ℝ𝑑 ⊗ ℝ𝑘 we use the trace scalar product

and its associated norm, i.e., for 𝑧 = (𝑧𝑖𝑗) ∈ ℝ𝑑 ⊗ ℝ𝑘, ⟨𝑧1, 𝑧2⟩ = trace(z1z
∗
2), ∣z∣ =

(
∑d

i=1

∑k
j=1 z

2
ij)

1/2. Let 𝐿2, 𝐿2(ℝ𝑑;ℝ𝑘) denote 𝐿2(ℝ𝑑,𝑚), 𝐿2(ℝ𝑑,𝑚;ℝ𝑘) respectively.

(⋅, ⋅) denotes the 𝐿2-inner product. For 1 ≤ 𝑝 ≤ ∞, ∥ ⋅ ∥𝑝 denotes the usual norm in

𝐿𝑝(ℝ𝑑;𝑚). If 𝑊 is a function space, we use 𝑏𝑊 to denote the bounded function in

𝑊 .

Furthermore, let 𝑎𝑖𝑗,
∑𝑑

𝑗=1 𝑎𝑖𝑗𝑏𝑗,
∑𝑑

𝑗=1 𝑎𝑖𝑗 �̂�𝑗 ∈ 𝐿1
loc(ℝ𝑑,𝑚) and 𝑐 ∈ 𝐿1

loc(ℝ𝑑,ℝ+;𝑚).

We introduce the bilinear form

ℰ(𝑢, 𝑣) :=
𝑑∑

𝑖,𝑗=1

∫
𝑎𝑖𝑗(𝑥)

∂𝑢

∂𝑥𝑖
(𝑥)

∂𝑣

∂𝑥𝑗
(𝑥)𝑚(𝑑𝑥) +

∫
𝑐(𝑥)𝑢(𝑥)𝑣(𝑥)

+
𝑑∑

𝑖=1

∫ 𝑑∑
𝑗=1

𝑎𝑖𝑗(𝑥)(𝑏𝑗(𝑥) + �̂�𝑗(𝑥))
∂𝑢

∂𝑥𝑖
𝑣(𝑥)𝑚(𝑑𝑥) ∀𝑢, 𝑣 ∈ 𝐶∞

0 (ℝ𝑑).

Consider the following conditions:

(A1) The bilinear form

ℰ𝑎(𝑢, 𝑣) =
𝑑∑

𝑖,𝑗=1

∫
𝑎𝑖𝑗(𝑥)

∂𝑢

∂𝑥𝑖
(𝑥)

∂𝑣

∂𝑥𝑗
(𝑥)𝑚(𝑑𝑥) ∀𝑢, 𝑣 ∈ 𝐶∞

0 (ℝ𝑑),

is closable on 𝐿2(ℝ𝑑,𝑚).

Define ℰ𝑎
1 (⋅, ⋅) := ℰ𝑎(⋅, ⋅) + (⋅, ⋅). The closure of 𝐶∞

0 (ℝ𝑑) with respect to ℰ𝑎
1

is denoted by 𝐹 𝑎. Then (ℰ𝑎, 𝐹 𝑎) is a well-defined symmetric Dirichlet form on

𝐿2(ℝ𝑑,𝑚).

For the bilinear form

ℰ𝑎,�̂�(𝑢, 𝑣) : =
𝑑∑

𝑖,𝑗=1

∫
𝑎𝑖𝑗(𝑥)

∂𝑢

∂𝑥𝑖
(𝑥)

∂𝑣

∂𝑥𝑗
(𝑥)𝑚(𝑑𝑥) +

∫
𝑐(𝑥)𝑢(𝑥)𝑣(𝑥)

+
𝑑∑

𝑖=1

∫ 𝑑∑
𝑗=1

𝑎𝑖𝑗(𝑥)�̂�𝑗(𝑥)
∂𝑢

∂𝑥𝑖
𝑣(𝑥)𝑚(𝑑𝑥),

we consider the following conditions:

(A2) There exists a constant 𝑐2 ≥ 0 such that ℰ𝑎,�̂�
𝑐2

(⋅, ⋅) := ℰ𝑎,�̂�(⋅, ⋅)+ 𝑐2(⋅, ⋅) is a semi-

Dirichlet form (see Section 1.1) with domain 𝐹 := 𝐶∞
0 (ℝ𝑑)

ℰ̃𝑎,�̂�
𝑐2+1 , and there exist
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constants 𝑐1, 𝑐3 > 0 such that for 𝑢 ∈ 𝐶∞
0 (ℝ𝑑)

(2.1.1) 𝑐1ℰ𝑎(𝑢, 𝑢) ≤ ℰ𝑎,�̂�
𝑐2

(𝑢, 𝑢),

and

(2.1.2)

∫
𝑐𝑢2𝑑𝑚 ≤ 𝑐3ℰ𝑎,�̂�

𝑐2+1(𝑢, 𝑢),

where ℰ̃𝑎,�̂�(𝑢, 𝑣) := ℰ𝑎,�̂�(𝑢, 𝑣) + ℰ𝑎,�̂�(𝑣, 𝑢).

By (2.1.1) we have that 𝐹 ⊂ 𝐹 𝑎 and that for 𝑢 ∈ 𝐹 (2.1.1) and (2.1.2) are

satisfied.

(A3) ∣𝑏𝜎∣ ∈ 𝐿2(ℝ𝑑;𝑚) and there exists 𝛼 ≥ 0 such that

(2.1.3)

∫
⟨𝑏𝜎, (∇𝑢2)𝜎⟩𝑑𝑚 ≥ −𝛼∥𝑢∥22, 𝑢 ∈ 𝐶∞

0 (ℝ𝑑).

(A4) There exists a positivity preserving 𝐶0-semigroup 𝑃𝑡 on 𝐿
1(ℝ𝑑;𝑚) such that

for any 𝑡 ∈ [0, 𝑇 ],∃𝐶𝑇 > 0

∥𝑃𝑡𝑓∥∞ ≤ 𝐶𝑇∥𝑓∥∞.
Then for 0 ≤ 𝑡 ≤ 𝑇 , 𝑃𝑡 extends to a semigroup on 𝐿𝑝(ℝ𝑑;𝑚) for all 𝑝 ∈ [1,∞) by the

Riesz-Thorin Interpolation Theorem (denoted by 𝑃𝑡 for simplicity) which is strongly

continuous on 𝐿𝑝(ℝ𝑑;𝑚). We denote its 𝐿2-generator by (𝐿,𝒟(𝐿)) and assume that

𝑏𝒟(𝐿) ⊂ 𝑏𝐹 and for any 𝑢 ∈ 𝑏𝐹 there exists uniformly bounded 𝑢𝑛 ∈ 𝒟(𝐿) such

that ℰ̃𝑎,�̂�
𝑐2+1(𝑢𝑛 − 𝑢) → 0 and that it is associated with the bilinear form in the sense

that ℰ(𝑢, 𝑣) = −(𝐿𝑢, 𝑣) for 𝑢, 𝑣 ∈ 𝑏𝒟(𝐿).

We emphasize that in contrast to previous work 𝑃𝑡 in (A4) is no longer analytic

on 𝐿2(ℝ𝑑;𝑚). By (A4) there exist constants 𝑀0, 𝑐0 such that

(2.1.4) ∥𝑃𝑡𝑓∥2 ≤𝑀0𝑒
𝑐0𝑡∥𝑓∥2, ∀𝑓 ∈ 𝐿2(ℝ𝑑;𝑚).

To obtain a semigroup 𝑃𝑡 satisfying the above conditions, we can use generalized

Dirichlet forms (Definition 1.1).

Remark 2.1.1 (i) Some general criteria imposing conditions on 𝑎 in order that

ℰ𝑎 to be closable are e.g. given in [FOT94, Section 3.1] and [MR92, Chap II, Section

2].

(ii) There are examples considered in [MR92, Chap. II, Subsection 2d] satisfying
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(A2). Assume the Sobolev inequality

∥𝑢∥𝑞 ≤ 𝐶(ℰ𝑎(𝑢, 𝑢) + ∥𝑢∥22)1/2, ∀𝑢 ∈ 𝐶∞
0 (ℝ𝑑),

is satisfied, where 1
𝑞
+ 1

𝑑
= 1

2
and ∥ ⋅ ∥𝑞 denotes the usual norm in 𝐿𝑞. If ∣�̂�𝜎∣ ∈

𝐿𝑑(ℝ𝑑;𝑚) + 𝐿∞(ℝ𝑑;𝑚) and 𝑐 ∈ 𝐿𝑑/2(ℝ𝑑;𝑚) + 𝐿∞(ℝ𝑑;𝑚), then (A2) is satisfied

(see [MOR95] ). In [ZR11] they consider the bilinear form 𝑄(𝑢, 𝑣) = ℰ𝑎,�̂�(𝑢, 𝑣) +∫ ⟨𝑑1(𝑥),∇𝑣(𝑥)⟩𝑢(𝑥)𝑑𝑚, where 𝑑1 ∈ 𝐿𝑞(ℝ𝑑), 𝑞 > 𝑑. In their case, the result for the

existence of the solution of the nonlinear PDE can be obtained by [PR07, Theorem

4.2.4] since the nonlinear part is Lipschitz in 𝑢 and ∇𝑢. In our case, we have more

general conditions on 𝑏 and 𝑓 , so that we cannot find a suitable Gelfand triple

𝑉 ⊂ 𝐻 ⊂ 𝑉 ∗ with 𝑉 being a reflexive Banach space and use monotonicity methods

as in [PR07].

(iii) We can construct a semigroup 𝑃𝑡 satisfying (A4) by the theory of generalized

Dirichlet forms. More precisely, suppose there exists a constant 𝑐 ≥ 0 such that

ℰ𝑐(⋅, ⋅) := ℰ(⋅, ⋅) + 𝑐(⋅, ⋅) is a generalized Dirichlet form with domain ℱ ×𝒱 in one of

the following three senses:

(a)(𝐸,ℬ(𝐸),𝑚) = (ℝ𝑑,ℬ(ℝ𝑑),𝑚),

(ℰ𝑎,�̂�
𝑐2
, 𝐹 ) = (𝒜,𝒱),

−⟨Λ𝑢, 𝑣⟩−(𝑐−𝑐2)(𝑢, 𝑣) =
∑𝑑

𝑖

∫ ∑𝑑
𝑗=1 𝑎𝑖𝑗(𝑥)𝑏𝑗(𝑥)

∂𝑢
∂𝑥𝑖𝑣(𝑥)𝑚(𝑑𝑥) for 𝑢, 𝑣 ∈ 𝐶∞

0 (𝑅𝑑);

(b)(𝐸,ℬ(𝐸),𝑚) = (ℝ𝑑,ℬ(ℝ𝑑),𝑚),

𝒜 ≡ 0 and 𝒱 = 𝐿2(ℝ𝑑,𝑚),

−⟨Λ𝑢, 𝑣⟩ = ℰ𝑐(𝑢, 𝑣) for 𝑢, 𝑣 ∈ 𝐶∞
0 (ℝ𝑑) and 𝐶∞

0 (ℝ𝑑) ⊂ 𝒟(𝐿);

(c) ℰ𝑐 = 𝒜, Λ ≡ 0 (In this case (ℰ𝑐,𝒱) is a sectorial Dirichlet form in the sense

of [MR92]).

Then there exists a sub-Markovian 𝐶0-semigroup of contractions 𝑃 𝑐
𝑡 associated

with the generalized Dirichlet form ℰ𝑐. Define 𝑃𝑡 := 𝑒𝑐𝑡𝑃 𝑐
𝑡 . If it is a 𝐶0-semigroup

on 𝐿1 then it satisfies (A4). Then we have

𝒟(𝐿) ⊂ ℱ ⊂ 𝐹.

(iv) The semigroup can be also constructed by other methods. (see e.g. [DR02],

[BDR09]).

(v) By (A3) we have that ℰ is positivity preserving i.e.

ℰ(𝑢, 𝑢+) ≥ 0 ∀𝑢 ∈ 𝒟(𝐿),

which can be obtained by the same arguments as [St2, Proposition 4.4].
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(vi) The condition that for any 𝑢 ∈ 𝑏𝐹 there exists uniformly bounded 𝑢𝑛 ∈ 𝒟(𝐿)

such that ℰ̃𝑎,�̂�
𝑐2+1(𝑢𝑛 − 𝑢) → 0 is satisfied if 𝐶∞

0 (ℝ𝑑) ⊂ 𝒟(𝐿). It can also be satisfied

in the case of (iii) by the theory of generalized Dirichlet form.

(vii) All the conditions are satisfied by the bilinear form considered in [DR02],

[L01], [St1, Section 1 (a)] and the following example which is considered in [St2].

Example 2.1.2 Let 𝑏𝑖 ∈ 𝐿2(ℝ𝑑; 𝑑𝑥), 1 ≤ 𝑖 ≤ 𝑑. Consider the bilinear form

ℰ(𝑢, 𝑣) :=
𝑑∑

𝑖,𝑗=1

∫
ℝ𝑑

∂𝑢

∂𝑥𝑖

∂𝑣

∂𝑥𝑗
𝑑𝑥−

𝑑∑
𝑖=1

∫
𝑏𝑖
∂𝑢

∂𝑥𝑖
𝑣𝑑𝑥;𝑢, 𝑣 ∈ 𝐶∞

0 (ℝ𝑑)

Assume there exist constants 𝑐, 𝐿 ≥ 0 such that∫
⟨𝑏,∇𝑢⟩𝑑𝑥 ≤ 2𝑐∥𝑢∥1 for all 𝑢 ∈ 𝐶∞

0 (ℝ𝑑), 𝑢 ≥ 0,

−
𝑑∑

𝑖,𝑗=1

∫
𝑏𝑖
∂𝑢

∂𝑥𝑗
𝑑𝑥ℎ𝑖ℎ𝑗 ≤ 𝐿∥𝑢∥1∣ℎ∣2,

for all 𝑢 ∈ 𝐶∞
0 (ℝ𝑑), 𝑢 ≥ 0, ℎ ∈ ℝ𝑑,

(or equivalently, 𝑏 is quasi-monotone, i.e.

⟨𝑏(𝑥)− 𝑏(𝑦), 𝑥− 𝑦⟩ ≤ 𝐿∣𝑥− 𝑦∣2,∀𝑥, 𝑦 ∈ ℝ𝑑, )

and for some continuous, monotone increasing function 𝑓 : [0,∞) → [1,∞) with∫∞
0

𝑑𝑟
𝑓(𝑟)

= ∞ we have that

∣𝑏(𝑥)∣ ≤ 𝑓(∣𝑥∣), 𝑥 ∈ ℝ𝑑.

Then in [St2, Subsection II.2] it is proved that there exists a generalized Dirichlet

form in 𝐿2(ℝ𝑑) extending ℰ𝑐. We denote the semigroup associated with ℰ𝑐 by 𝑃 𝑐
𝑡 .

If we define 𝑃𝑡 := 𝑒𝑐𝑡𝑃 𝑐
𝑡 , then it is the semigroup associated with ℰ . By the compu-

tation in [St2, Subsection II.2], 𝑃𝑡 is sub-Markovian. So it satisfies the conditions

(A1)-(A4).

Further examples are presented in Section 2.3 (see Examples 2.3.2 and 2.3.3) and

Sections 2.4, 2.5.

Then we use the same notations 𝐹 , 𝒞𝑇 , ∥ ⋅ ∥𝑇 associated with ℰ𝑎,�̂� as in [BPS05]:

𝒞𝑇 = 𝐶1([0, 𝑇 ];𝐿2) ∩ 𝐿2([0, 𝑇 ];𝐹 ), which turns out to be the appropriate space of
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test functions, i.e.

𝒞𝑇 = {𝜑 : [0, 𝑇 ]× ℝ𝑑 → ℝ∣𝜑𝑡 ∈ 𝐹 for almost each 𝑡,

∫ 𝑇

0

ℰ𝑎,�̂�(𝜑𝑡)𝑑𝑡 <∞,

𝑡→ 𝜑𝑡 is differentiable in 𝐿2and 𝑡→ ∂𝑡𝜑𝑡 is 𝐿
2 − continuous on [0, 𝑇 ]}.

Here and below we set ℰ𝑎,�̂�(𝑢) for ℰ𝑎,�̂�(𝑢, 𝑢). We also set 𝒞[𝑎,𝑏] = 𝐶1([𝑎, 𝑏];𝐿2) ∩
𝐿2([𝑎, 𝑏];𝐹 ). For 𝜑 ∈ 𝒞𝑇 , we define

∥𝜑∥𝑇 := (sup
𝑡≤𝑇

∥𝜑𝑡∥22 +
∫ 𝑇

0

ℰ𝑎,�̂�
𝑐2

(𝜑𝑡)𝑑𝑡)
1/2.

𝐹 is the completion of 𝒞𝑇 with respect to ∥ ⋅ ∥𝑇 . By [BPS05], 𝐹 = 𝐶([0, 𝑇 ];𝐿2) ∩
𝐿2(0, 𝑇 ;𝐹 ). Define the space 𝐹 𝑎 w.r.t. ℰ𝑎

1 analogous to 𝐹 . Then we have 𝐹 ⊂ 𝐹 𝑎.

We also introduce the following space

𝑊 1,2([0, 𝑇 ];𝐿2(ℝ𝑑)) = {𝑢 ∈ 𝐿2([0, 𝑇 ];𝐿2); ∂𝑡𝑢 ∈ 𝐿2([0, 𝑇 ];𝐿2)},

where ∂𝑡𝑢 is the derivative of 𝑢 in the weak sense (see e.g. [Ba10]).

2.1.1 Linear Equations

Consider the linear equation

(2.1.5)
(∂𝑡 + 𝐿)𝑢+ 𝑓 = 0, 0 ≤ 𝑡 ≤ 𝑇,

𝑢𝑇 (𝑥) = 𝜙(𝑥), 𝑥 ∈ ℝ𝑑,

where 𝑓 ∈ 𝐿1([0, 𝑇 ];𝐿2), 𝜙 ∈ 𝐿2.

As in [BPS05] we set 𝐷𝜎𝜑 := (∇𝜑)𝜎 for any 𝜑 ∈ 𝐶∞
0 (ℝ𝑑), define 𝑉0 = {𝐷𝜎𝜑 :

𝜑 ∈ 𝐶∞
0 (ℝ𝑑)}, and let 𝑉 be the closure of 𝑉0 in 𝐿2(ℝ𝑑;ℝ𝑘). Then we have the

following results:

Proposition 2.1.3 Assume (A1)-(A3) hold. Then:

(i) For every 𝑢 ∈ 𝐹 𝑎 there is a unique element of 𝑉 , which we denote by 𝐷𝜎𝑢,

such that

ℰ𝑎(𝑢) =

∫
⟨𝐷𝜎𝑢(𝑥), 𝐷𝜎𝑢(𝑥)⟩𝑚(𝑑𝑥).

(ii) Furthermore, if 𝑢 ∈ 𝐹 𝑎, then there exists a measurable function 𝜙 : [0, 𝑇 ]×
ℝ𝑑 7→ ℝ𝑑 such that ∣𝜙𝜎∣ ∈ 𝐿2((0, 𝑇 )× ℝ𝑑) and 𝐷𝜎𝑢𝑡 = 𝜙𝑡𝜎 for almost all 𝑡 ∈ [0, 𝑇 ].

(iii)Let 𝑢𝑛, 𝑢 ∈ 𝐹 𝑎 be such that 𝑢𝑛 → 𝑢 in 𝐿2((0, 𝑇 )×ℝ𝑑) and (𝐷𝜎𝑢
𝑛)𝑛 is Cauchy
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in 𝐿2([0, 𝑇 ] × ℝ𝑑;ℝ𝑘). Then 𝐷𝜎𝑢
𝑛 → 𝐷𝜎𝑢 in 𝐿2((0, 𝑇 ) × ℝ𝑑;ℝ𝑘), i.e. 𝐷𝜎 is closed

as an operator from 𝐹 𝑎 into 𝐿2((0, 𝑇 )× ℝ𝑑).

Proof See [BPS05, Proposition 2.3]. □

For 𝑢 ∈ 𝐹, 𝑣 ∈ 𝑏𝐹 , we define

ℰ(𝑢, 𝑣) := ℰ𝑎,�̂�(𝑢, 𝑣) +

∫
⟨𝑏𝜎,𝐷𝜎𝑢⟩𝑣𝑚(𝑑𝑥).

Notation We denote by ∇̃𝑢 the set of all measurable functions 𝜙 : ℝ𝑑 → ℝ𝑑 such

that 𝜙𝜎 = 𝐷𝜎𝑢 as elements of 𝐿2(ℝ𝑑,ℝ𝑘).

2.1.2 Solution of the Linear Equation

We recall the following standard notions.

Definition 2.1.4 (strong solutions) A function 𝑢 ∈ 𝐹 ∩𝐿1((0, 𝑇 );𝒟(𝐿)) is called

a strong solution of equation (2.1.5) with data 𝜙, 𝑓 , if 𝑡 7→ 𝑢𝑡 = 𝑢(𝑡, ⋅) is 𝐿2-

differentiable on [0, 𝑇 ], ∂𝑡𝑢𝑡 ∈ 𝐿1((0, 𝑇 );𝐿2) and the equalities in (2.1.5) hold 𝑚-a.e..

Definition 2.1.5 (generalized solutions) A function 𝑢 ∈ 𝐹 is called a generalized

solution of equation (2.1.5), if there are sequences {𝑢𝑛} which are strong solutions

with data (𝜙𝑛, 𝑓𝑛) such that

∥𝑢𝑛 − 𝑢∥𝑇 → 0, ∥𝜙𝑛 − 𝜙∥2 → 0, lim
𝑛→∞

𝑓𝑛 = 𝑓 in 𝐿1([0, 𝑇 ];𝐿2).

Proposition 2.1.6 Assume (A3)-(A4) hold.

(i) Let 𝑓 ∈ 𝐶1([0, 𝑇 ];𝐿𝑝) for 𝑝 ∈ [1,∞). Then

𝑤𝑡 :=

∫ 𝑇

𝑡

𝑃𝑠−𝑡𝑓𝑠𝑑𝑠 ∈ 𝐶1([0, 𝑇 ];𝐿𝑝),

and

∂𝑡𝑤𝑡 = −𝑃𝑇−𝑡𝑓𝑇 +

∫ 𝑇

𝑡

𝑃𝑠−𝑡∂𝑠𝑓𝑠𝑑𝑠.

(ii) Assume that 𝜙 ∈ 𝒟(𝐿), 𝑓 ∈ 𝐶1([0, 𝑇 ];𝐿2) and for each 𝑡 ∈ [0, 𝑇 ], 𝑓𝑡 ∈ 𝒟(𝐿).

Define

𝑢𝑡 := 𝑃𝑇−𝑡𝜙+

∫ 𝑇

𝑡

𝑃𝑠−𝑡𝑓𝑠𝑑𝑠.

Then 𝑢 is a strong solution of (2.1.5) and, moreover, 𝑢 ∈ 𝐶1([0, 𝑇 ];𝐿2).
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Proof By the same arguments as in the proof of [BPS05, Proposition 2.6] the results

follow. □

Remark 2.1.7 Compared to [BPS05, Proposition 2.6], in (ii) we add the as-

sumption 𝜙 ∈ 𝒟(𝐿) and 𝑓𝑡 ∈ 𝒟(𝐿), 𝑡 ∈ [0, 𝑇 ], as we cannot deduce 𝑃𝑡𝜙 ∈ 𝒟(𝐿) for

𝜙 ∈ 𝐿2, since (𝑃𝑡) might not be analytic.

Proposition 2.1.8 Suppose (A4) holds. If 𝑢 is a strong solution for (2.1.5), it is

a mild solution for (2.1.5) i.e.

𝑢𝑡 = 𝑃𝑇−𝑡𝜙+

∫ 𝑇

𝑡

𝑃𝑠−𝑡𝑓𝑠𝑑𝑠.

Proof For fixed 𝑡, 𝜑 ∈ 𝒟(�̂�)

(𝑢𝑇 , 𝑃𝑇−𝑡𝜑)− (𝑢𝑡, 𝜑) =

∫ 𝑇

𝑡

(−𝐿𝑢𝑠 − 𝑓𝑠, 𝑃𝑠−𝑡𝜑)𝑑𝑠+

∫ 𝑇

𝑡

(𝑢𝑠, �̂�𝑃𝑠−𝑡𝜑)𝑑𝑠,

where �̂�, 𝑃𝑡 denote the adjoints on 𝐿2(ℝ𝑑,𝑚) of 𝐿, 𝑃𝑡 respectively. As 𝑢 is a strong

solution, we can deduce that

(𝑢𝑡, 𝜑) = (𝑃𝑇−𝑡𝜙+

∫ 𝑇

𝑡

𝑃𝑠−𝑡𝑓𝑠𝑑𝑠, 𝜑).

Since 𝒟(�̂�) is dense in 𝐿2, the result follows. □

Proposition 2.1.9 Suppose that conditions (A1)-(A4) hold, 𝑓 ∈ 𝐿1([0, 𝑇 ];𝐿2)

and 𝜙 ∈ 𝐿2. Then equation (2.1.5) has a unique generalized solution 𝑢 ∈ 𝐹 and

(2.1.6) 𝑢𝑡 = 𝑃𝑇−𝑡𝜙+

∫ 𝑇

𝑡

𝑃𝑠−𝑡𝑓𝑠𝑑𝑠.

The solution satisfies the three relations:

(2.1.7)

∥𝑢𝑡∥22 + 2

∫ 𝑇

𝑡

ℰ𝑎,�̂�(𝑢𝑠)𝑑𝑠 ≤ 2

∫ 𝑇

𝑡

(𝑓𝑠, 𝑢𝑠)𝑑𝑠+ ∥𝜙∥22 + 2𝛼

∫ 𝑇

𝑡

∥𝑢𝑠∥22𝑑𝑠, 0 ≤ 𝑡 ≤ 𝑇.

(2.1.8) ∥𝑢∥2𝑇 ≤𝑀𝑇 (∥𝜙∥22 + (

∫ 𝑇

0

∥𝑓𝑡∥2𝑑𝑡)2).
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(2.1.9)∫ 𝑇

𝑡0

((𝑢𝑡, ∂𝑡𝜑𝑡)+ℰ𝑎,�̂�(𝑢𝑡, 𝜑𝑡)+

∫
⟨𝑏𝜎,𝐷𝜎𝑢𝑡⟩𝜑𝑡𝑑𝑚)𝑑𝑡 =

∫ 𝑇

𝑡0

(𝑓𝑡, 𝜑𝑡)𝑑𝑡+(𝜙, 𝜑𝑇 )−(𝑢𝑡0 , 𝜑𝑡0),

for any 𝜑 ∈ 𝑏𝒞𝑇 , 𝑡0 ∈ [0, 𝑇 ]. 𝑀𝑇 is a constant depending on 𝑇 . (2.1.9) can be

extended easily for 𝜑 ∈ 𝑏𝑊 1,2([0, 𝑇 ];𝐿2) ∩ 𝐿2([0, 𝑇 ];𝐹 ).

Moreover, if 𝑢 ∈ 𝐹 is bounded and satisfies (2.1.9) for any 𝜑 ∈ 𝑏𝒞𝑇 with bounded

𝑓, 𝜙, then 𝑢 is a generalized solution given by (2.1.6).

Proof [Existence] Define 𝑢 by (2.1.6). First assume that 𝜙, 𝑓 are bounded and

satisfy the conditions of Proposition 2.1.6 (ii). Then, since 𝑢 is bounded and by

Proposition 2.1.6 we know that 𝑢 is a strong solution of (2.1.5), hence it obviously

satisfies (2.1.9). Furthermore, 𝑢 ∈ 𝐶1([0, 𝑇 ];𝐿2). Hence, actually 𝑢 ∈ 𝑏𝒞𝑇 and

consequently, for 𝑡 ∈ [0, 𝑇 ]∫ 𝑇

𝑡

((𝑢𝑠, ∂𝑡𝑢𝑠)+ℰ𝑎,�̂�(𝑢𝑠, 𝑢𝑠)+

∫
⟨𝑏𝜎,𝐷𝜎𝑢𝑠⟩𝑢𝑠𝑑𝑚)𝑑𝑠 =

∫ 𝑇

𝑡

(𝑓𝑠, 𝑢𝑠)𝑑𝑠+(𝜙, 𝑢𝑇 )−(𝑢𝑡, 𝑢𝑡).

By (2.1.3) we have
∫ ⟨𝑏𝜎,𝐷𝜎𝑢𝑠⟩𝑢𝑠𝑑𝑚 ≥ −𝛼∥𝑢𝑠∥22. Hence

∥𝑢𝑡∥22 + 2

∫ 𝑇

𝑡

ℰ𝑎,�̂�(𝑢𝑠)𝑑𝑠 ≤ 2

∫ 𝑇

𝑡

(𝑓𝑠, 𝑢𝑠)𝑑𝑠+ ∥𝜙∥22 + 2𝛼

∫ 𝑇

𝑡

∥𝑢𝑠∥22𝑑𝑠, 0 ≤ 𝑡 ≤ 𝑇.

As ∫ 𝑇

𝑡

(𝑓𝑠, 𝑢𝑠)𝑑𝑠 =

∫ 𝑇

𝑡

((𝑓𝑠, 𝑃𝑇−𝑠𝜙) + (𝑓𝑠,

∫ 𝑇

𝑠

𝑃𝑟−𝑠𝑓𝑟𝑑𝑟))𝑑𝑠

≤
∫ 𝑇

𝑡

∥𝑓𝑠∥2∥𝑃𝑇−𝑠𝜙∥2𝑑𝑠+
∫ 𝑇

𝑡

∥𝑓𝑠∥2∥
∫ 𝑇

𝑠

𝑃𝑟−𝑠𝑓𝑟𝑑𝑟∥2𝑑𝑠

≤𝑀0𝑒
𝑇−𝑡(∥𝜙∥2

∫ 𝑇

𝑡

∥𝑓𝑠∥2𝑑𝑠+
∫ 𝑇

𝑡

(∥𝑓𝑠∥2
∫ 𝑇

𝑠

∥𝑓𝑟∥2𝑑𝑟)𝑑𝑠),

and ∫ 𝑇

𝑡

∥𝑢𝑠∥22𝑑𝑠 ≤𝑀𝑇−𝑡(∥𝜙∥22 + (

∫ 𝑇

0

∥𝑓𝑡∥2𝑑𝑡)2),

we get

∥𝑢𝑡∥22 +
∫ 𝑇

𝑡

ℰ𝑎,�̂�(𝑢𝑠)𝑑𝑠 ≤𝑀𝑇−𝑡(∥𝜙∥22 + (

∫ 𝑇

0

∥𝑓𝑡∥2𝑑𝑡)2).

Hence, it follows that

(2.1.10) ∥𝑢∥2𝑇 ≤𝑀𝑇 (∥𝜙∥22 + (

∫ 𝑇

0

∥𝑓𝑡∥2𝑑𝑡)2).
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Here𝑀𝑇−𝑡 can change from line to line and is independent of 𝑓, 𝜙. Now we will prove

the result for general data 𝜙 and 𝑓 . Let (𝑓𝑛)𝑛∈ℕ be a sequence of bounded function

in 𝐶1([0, 𝑇 ];𝐿2) such that 𝑓𝑡 ∈ 𝒟(𝐿) for a.e. 𝑡 ∈ [0, 𝑇 ] and
∫ 𝑇

0
∥𝑓𝑛

𝑡 − 𝑓𝑡∥2𝑑𝑡 → 0

(This sequence can be obtained since {𝛼𝑡𝑔(𝑥);𝛼𝑡 ∈ 𝐶∞
0 [0, 𝑇 ], 𝑔 ∈ 𝑏𝒟(𝐿)} is dense

in 𝐿1([0, 𝑇 ];𝐿2)). Take bounded functions (𝜙𝑛)𝑛∈ℕ ⊂ 𝒟(𝐿) such that 𝜙𝑛 → 𝜙 in 𝐿2.

Let 𝑢𝑛 denote the solution given by (2.1.6) with 𝑓 = 𝑓𝑛, 𝜙 = 𝜙𝑛.

By linearity, 𝑢𝑛 − 𝑢𝑚 is associated with (𝜙𝑛 − 𝜙𝑚, 𝑓𝑛 − 𝑓𝑚). Since by (2.1.10)

∥𝑢𝑛 − 𝑢𝑚∥2𝑇 ≤𝑀𝑇 (∥𝜙𝑛 − 𝜙𝑚∥22 + (

∫ 𝑇

0

∥𝑓𝑛
𝑡 − 𝑓𝑚

𝑡 ∥2𝑑𝑡)2),

we deduce that (𝑢𝑛)𝑛∈ℕ is a Cauchy sequence in 𝐹 . Hence 𝑢 = lim𝑛→∞ 𝑢𝑛 in ∥ ⋅ ∥𝑇
is the generalized solution of (2.1.5) and we have

𝑢𝑡 = 𝑃𝑇−𝑡𝜙+

∫ 𝑇

𝑡

𝑃𝑠−𝑡𝑓𝑠𝑑𝑠.

Next we prove (2.1.7)(2.1.8) (2.1.9) for 𝑢. We have (2.1.9) for 𝑢𝑛 with 𝑓𝑛, 𝜙𝑛 and

𝜑 ∈ 𝑏𝒞𝑇 , i.e.∫ 𝑇

0

((𝑢𝑛𝑡 , ∂𝑡𝜑𝑡)+ℰ𝑎,�̂�(𝑢𝑛𝑡 , 𝜑𝑡)+

∫
⟨𝑏𝜎,𝐷𝜎𝑢

𝑛
𝑡 ⟩𝜑𝑡𝑑𝑚)𝑑𝑡 =

∫ 𝑇

0

(𝑓𝑛
𝑡 , 𝜑𝑡)𝑑𝑡+(𝜙𝑛, 𝜑𝑇 )−(𝑢𝑛0 , 𝜑0).

Since we have

∣
∫ 𝑇

0

ℰ𝑎,�̂�(𝑢𝑛𝑡 − 𝑢𝑡, 𝜑𝑡)𝑑𝑡∣ ≤𝐾(

∫ 𝑇

0

ℰ𝑎,�̂�
𝑐2+1(𝑢

𝑛
𝑡 − 𝑢𝑡)𝑑𝑡)

1
2 (

∫ 𝑇

0

ℰ𝑎,�̂�
𝑐2+1(𝜑𝑡)𝑑𝑡)

1
2

+

∫ 𝑇

0

(𝑐2 + 1)(𝑢𝑛𝑡 − 𝑢𝑡, 𝜑𝑡)𝑑𝑡

→0, as 𝑛→ ∞,

and

∣
∫ 𝑇

0

∫
⟨𝑏𝜎,𝐷𝜎(𝑢

𝑛
𝑡 − 𝑢𝑡)⟩𝜑𝑡𝑑𝑚𝑑𝑡∣ ≤ ∥𝜑∥∞(

∫ 𝑇

0

∫
∣𝑏𝜎∣2𝑑𝑚𝑑𝑡) 1

2 (

∫ 𝑇

0

∫
∣𝐷𝜎(𝑢

𝑛
𝑡 − 𝑢𝑡)∣2𝑑𝑚𝑑𝑡) 1

2

= ∥𝜑∥∞(

∫ 𝑇

0

∫
∣𝑏𝜎∣2𝑑𝑚𝑑𝑡) 1

2 (

∫ 𝑇

0

ℰ𝑎(𝑢𝑛𝑡 − 𝑢𝑡)𝑑𝑡)
1
2

→ 0, as 𝑛→ ∞,

we deduce that∫ 𝑇

0

((𝑢𝑡, ∂𝑡𝜑𝑡)+ℰ𝑎,�̂�(𝑢𝑡, 𝜑𝑡)+

∫
⟨𝑏𝜎,𝐷𝜎𝑢𝑡⟩𝜑𝑡𝑑𝑚)𝑑𝑡 =

∫ 𝑇

0

(𝑓𝑡, 𝜑𝑡)𝑑𝑡+(𝜙, 𝜑𝑇 )−(𝑢0, 𝜑0),
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for any 𝜑 ∈ 𝑏𝒞𝑇 .

The relations (2.1.7), (2.1.8) hold for the approximating functions:

∥𝑢𝑛𝑡 ∥22+2

∫ 𝑇

𝑡

ℰ𝑎,�̂�(𝑢𝑛𝑠 )𝑑𝑠 ≤ 2

∫ 𝑇

𝑡

(𝑓𝑛
𝑠 , 𝑢

𝑛
𝑠 )𝑑𝑠+∥𝜙𝑛∥22+2𝛼

∫ 𝑇

𝑡

∥𝑢𝑛𝑠∥22𝑑𝑠, 0 ≤ 𝑡 ≤ 𝑇,

and

∥𝑢𝑛∥2𝑇 ≤𝑀𝑇 (∥𝜙𝑛∥22 + (

∫ 𝑇

0

∥𝑓𝑛
𝑡 ∥2𝑑𝑡)2).

Since ∥𝑢𝑛𝑡 ∥𝑇 → ∥𝑢𝑡∥𝑇 , 𝑛→ ∞, we conclude

lim
𝑛→∞

∫ 𝑇

0

ℰ𝑎,�̂�(𝑢𝑛𝑡 )𝑑𝑡 =

∫ 𝑇

0

ℰ𝑎,�̂�(𝑢𝑡)𝑑𝑡.

It is easy to see that lim𝑛→∞
∫ 𝑇

𝑡
(𝑓𝑛

𝑠 , 𝑢
𝑛
𝑠 )𝑑𝑠 =

∫ 𝑇

𝑡
(𝑓𝑠, 𝑢𝑠)𝑑𝑠. Then by passing to the

limit in the above relations, (2.1.7) and (2.1.8) hold for 𝑢.

[Uniqueness] Let 𝑣 ∈ 𝐹 be another generalized solution of (2.1.5) and (𝑣𝑛)𝑛∈ℕ,
(�̃�

𝑛
)𝑛∈ℕ, (𝑓𝑛)𝑛∈ℕ be the corresponding approximating sequences in the definition of

generalized solutions. By Proposition 2.1.8

sup
𝑡∈[0,𝑇 ]

∥𝑢𝑛𝑡 − 𝑣𝑛𝑡 ∥22 ≤𝑀𝑇 (∥𝜙𝑛 − �̃�
𝑛∥22 + (

∫ 𝑇

0

∥𝑓𝑛
𝑡 − 𝑓𝑛

𝑡 ∥2𝑑𝑡)2).

Letting 𝑛→ ∞, this implies 𝑢 = 𝑣.

For the last result we note that ∀𝑡0 ∈ [0, 𝑇 ], 𝜑 ∈ 𝑏𝒞𝑇
(2.1.11)∫ 𝑇

𝑡0

((𝑢𝑡, ∂𝑡𝜑𝑡)+ℰ𝑎,�̂�(𝑢𝑡, 𝜑𝑡)+

∫
⟨𝑏𝜎,𝐷𝜎𝑢𝑡⟩𝜑𝑡𝑑𝑚)𝑑𝑡 =

∫ 𝑇

𝑡0

(𝑓𝑡, 𝜑𝑡)𝑑𝑡+(𝜙, 𝜑𝑇 )−(𝑢𝑡0 , 𝜑𝑡0).

For 𝑡 ≥ 1
𝑛
, define

𝑢𝑛𝑡 := 𝑛

∫ 1
𝑛

0

𝑢𝑡−𝑠𝑑𝑠, 𝑓𝑛
𝑡 := 𝑛

∫ 1
𝑛

0

𝑓𝑡−𝑠𝑑𝑠, 𝜙𝑛 := 𝑛

∫ 1
𝑛

0

𝑢𝑇−𝑠𝑑𝑠.

Let us check that each 𝑢𝑛 also fulfills (2.1.11) with 𝑓𝑛, 𝜙𝑛. We set 𝜑𝑠
𝑟 := 𝜑𝑟+𝑠 for

0 ≤ 𝑠+ 𝑟 ≤ 𝑇 . Then for fixed 𝑡0 ∈ (0, 𝑇 ], and 𝑛 ≥ 1
𝑡0
,∫ 𝑇

𝑡0

((𝑢𝑛𝑡 , ∂𝑡𝜑𝑡) + ℰ𝑎,�̂�(𝑢𝑛𝑡 , 𝜑𝑡) +

∫
⟨𝑏𝜎,𝐷𝜎𝑢

𝑛
𝑡 ⟩𝜑𝑡𝑑𝑚)𝑑𝑡

=𝑛

∫ 1
𝑛

0

∫ 𝑇

𝑡0

(𝑢𝑡−𝑠, ∂𝑡𝜑𝑡) + ℰ𝑎,�̂�(𝑢𝑡−𝑠, 𝜑𝑡) +

∫
⟨𝑏𝜎,𝐷𝜎𝑢𝑡−𝑠⟩𝜑𝑡𝑑𝑚𝑑𝑡𝑑𝑠
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=𝑛

∫ 1
𝑛

0

∫ 𝑇−𝑠

𝑡0−𝑠

(𝑢𝑡, ∂𝑡𝜑
𝑠
𝑡) + ℰ𝑎,�̂�(𝑢𝑡, 𝜑

𝑠
𝑡) +

∫
⟨𝑏𝜎,𝐷𝜎𝑢𝑡⟩𝜑𝑠

𝑡𝑑𝑚𝑑𝑡𝑑𝑠

=𝑛

∫ 1
𝑛

0

[

∫ 𝑇−𝑠

𝑡0−𝑠

(𝑓𝑡, 𝜑
𝑠
𝑡)𝑑𝑡+ (𝑢𝑇 , 𝜑

𝑠
𝑇−𝑠)− (𝑢𝑡0−𝑠, 𝜑

𝑠
𝑡0−𝑠)]𝑑𝑠

=𝑛

∫ 1
𝑛

0

[

∫ 𝑇

𝑡0

(𝑓𝑡−𝑠, 𝜑𝑡)𝑑𝑡+ (𝑢𝑇−𝑠, 𝜑𝑇 )− (𝑢𝑡0−𝑠, 𝜑𝑡0)]𝑑𝑠

=

∫ 𝑇

𝑡0

(𝑓𝑛
𝑡 , 𝜑𝑡)𝑑𝑡+ (𝜙𝑛, 𝜑𝑇 )− (𝑢𝑛𝑡0 , 𝜑𝑡0).

For the mild solution 𝑣 associated with 𝑓, 𝜙, the above relation also holds with 𝑣𝑛

replacing 𝑢𝑛. Hence we have∫ 𝑇

𝑡0

(((𝑢− 𝑣)𝑛𝑡 , ∂𝑡𝜑𝑡) + ℰ𝑎,�̂�((𝑢− 𝑣)𝑛𝑡 , 𝜑𝑡) +

∫
⟨𝑏𝜎,𝐷𝜎(𝑢− 𝑣)𝑛𝑡 ⟩𝜑𝑡𝑑𝑚)𝑑𝑡

=− ((𝑢− 𝑣)𝑛𝑡0 , 𝜑𝑡0).

Since (𝑢 − 𝑣)𝑛𝑡 ∈ 𝑏𝒞[ 1
𝑛
,𝑇 ] the above equation holds with (𝑢 − 𝑣)𝑛𝑡 as a test function,

i.e. for 𝑛 ≥ 1
𝑡0∫ 𝑇

𝑡0

(((𝑢− 𝑣)𝑛𝑡 , ∂𝑡(𝑢− 𝑣)𝑛𝑡 ) + ℰ𝑎,�̂�((𝑢− 𝑣)𝑛𝑡 , (𝑢− 𝑣)𝑛𝑡 ) +

∫
⟨𝑏𝜎,𝐷𝜎(𝑢− 𝑣)𝑛𝑡 ⟩(𝑢− 𝑣)𝑛𝑡 𝑑𝑚)𝑑𝑡

=− ((𝑢− 𝑣)𝑛𝑡0 , (𝑢− 𝑣)𝑛𝑡0).

So we have

∥(𝑢− 𝑣)𝑛𝑡0∥22 + 2

∫ 𝑇

𝑡

ℰ𝑎,�̂�((𝑢− 𝑣)𝑛𝑡 , (𝑢− 𝑣)𝑛𝑡 )𝑑𝑡 ≤ 2𝛼

∫ 𝑇

𝑡0

∥(𝑢− 𝑣)𝑛𝑡 ∥22𝑑𝑡.

By Gronwall’s lemma it follows that

∥(𝑢− 𝑣)𝑛𝑡0∥22 = 0.

Letting 𝑛→ ∞, we have ∥𝑢𝑡0−𝑣𝑡0∥2 = 0. Then letting 𝑡0 → 0, we have ∥𝑢0−𝑣0∥ = 0.

Then 𝑢𝑡 = 𝑃𝑇−𝑡𝜙+
∫ 𝑇

𝑡
𝑃𝑠−𝑡𝑓𝑠𝑑𝑠 is a generalized solution for (2.1.5). □

2.1.3 Basic Relations for the Linear Equation

In this section we assume that (A1)-(A4) hold.

Lemma 2.1.10 If 𝑢 is a bounded generalized solution of equation (2.1.5) with

some function 𝜙 ≥ 0, 𝜙 ∈ 𝐿2 ∩ 𝐿∞, then 𝑢+ satisfies the following relation for
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0 ≤ 𝑡1 < 𝑡2 ≤ 𝑇

∥𝑢+𝑡1∥22 ≤ 2

∫ 𝑡2

𝑡1

(𝑓𝑠, 𝑢
+
𝑠 )𝑑𝑠+ ∥𝑢+𝑡2∥22.

Proof Choose the approximation sequence 𝑢𝑛 for 𝑢 as in the existence proof of

Proposition 2.1.9. Denote its related data by 𝑓𝑛, 𝜙𝑛 .

We have the following equations:

lim
𝑛→∞

sup
𝑡∈[0,𝑇 ]

∥𝑢𝑛𝑡 − 𝑢𝑡∥2 = 0, lim
𝑛→∞

∫ 𝑇

0

ℰ𝑎,�̂�(𝑢𝑛𝑡 − 𝑢𝑡)𝑑𝑡 = 0,

lim
𝑛→∞

∫ 𝑇

0

∥𝑓𝑛
𝑡 − 𝑓𝑡∥2𝑑𝑡 = 0, lim

𝑛→∞
∥𝜙𝑛 − 𝜙∥2 = 0.

Suppose that the following holds

(2.1.12) ∥(𝑢𝑛𝑡1)+∥22 ≤ 2

∫ 𝑡2

𝑡1

(𝑓𝑛
𝑠 , (𝑢

𝑛
𝑠 )

+)𝑑𝑠+ ∥(𝑢𝑛𝑡2)+∥22,

where 0 ≤ 𝑡1 ≤ 𝑡2 ≤ 𝑇 . Since ∥𝑢𝑛∥2 are uniformly bounded, we obtain

lim
𝑛→∞

∫ 𝑡2

𝑡1

(𝑓𝑛
𝑠 , (𝑢

𝑛
𝑠 )

+)𝑑𝑠 =

∫ 𝑡2

𝑡1

(𝑓𝑠, 𝑢
+
𝑠 )𝑑𝑠.

By passing 𝑛 to the limit in equation (2.1.12) we get for 0 ≤ 𝑡1 ≤ 𝑡2 ≤ 𝑇 ,

∥𝑢+𝑡1∥22 ≤ 2

∫ 𝑡2

𝑡1

(𝑓𝑠, 𝑢
+
𝑠 )𝑑𝑠+ ∥𝑢+𝑡2∥22.

Therefore, the problem is reduced to the case that 𝑢 belongs to 𝑏𝒞𝑇 ; in the

remainder we assume 𝑢 ∈ 𝑏𝒞𝑇 . (2.1.9), written with 𝑢+ ∈ 𝑏𝑊 1,2([0, 𝑇 ];𝐿2) ∩
𝐿2([0, 𝑇 ];𝐹 ) as test function, takes the form

(2.1.13)

∫ 𝑡2

𝑡1

(𝑢𝑡, ∂𝑡(𝑢
+
𝑡 ))𝑑𝑡+

∫ 𝑡2

𝑡1

ℰ𝑎,�̂�(𝑢𝑡, 𝑢
+
𝑡 )𝑑𝑡+

∫ 𝑡2

𝑡1

∫
⟨𝑏𝜎,𝐷𝜎𝑢𝑡⟩𝑢+𝑡 𝑑𝑚𝑑𝑡

=

∫ 𝑡2

𝑡1

(𝑓𝑡, 𝑢
+
𝑡 )𝑑𝑡+ (𝑢𝑡2 , 𝑢

+
𝑡2
))− (𝑢𝑡1 , 𝑢

+
𝑡1
)).

By [Ba10, Theorem 1.19] we obtain∫ 𝑡2

𝑡1

(𝑢𝑡, ∂𝑡(𝑢
+
𝑡 ))𝑑𝑡 =

1

2
(∥𝑢+𝑡2∥22 − ∥𝑢+𝑡1∥22).
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Then

(2.1.14)

∥𝑢+𝑡1∥22 + 2

∫ 𝑡2

𝑡1

ℰ𝑎,�̂�(𝑢𝑡, 𝑢
+
𝑡 )𝑑𝑡+ 2

∫ 𝑡2

𝑡1

∫
⟨𝑏𝜎,𝐷𝜎𝑢𝑡⟩𝑢+𝑡 𝑑𝑚𝑑𝑡

=2

∫ 𝑡2

𝑡1

(𝑓𝑡, 𝑢
+
𝑡 )𝑑𝑡+ ∥𝑢+𝑡2∥22.

Next we prove for 𝑢 ∈ 𝑏𝐹

(2.1.15) ℰ(𝑢, 𝑢+) ≥ 0.

By Remark 2.1.1 (v), we have the above relation for 𝑢 ∈ 𝒟(𝐿). For 𝑢 ∈ 𝑏𝐹 ,

by (A4) we can choose a uniformly bounded sequence {𝑢𝑛} ⊂ 𝒟(𝐿) such that

ℰ𝑎,�̂�
𝑐2+1(𝑢𝑛 − 𝑢) → 0. Then we have

∣
∫
⟨𝑏𝜎,𝐷𝜎𝑢⟩𝑢+𝑑𝑚−

∫
⟨𝑏𝜎,𝐷𝜎𝑢𝑛⟩𝑢+𝑛 𝑑𝑚∣

≤∣
∫
⟨𝑏𝜎,𝐷𝜎𝑢𝑛 −𝐷𝜎𝑢⟩𝑢+𝑛 𝑑𝑚∣+ ∣

∫
⟨𝑏𝜎,𝐷𝜎𝑢⟩(𝑢+𝑛 − 𝑢+)𝑑𝑚∣

≤𝑀(

∫
∣𝐷𝜎𝑢𝑛 −𝐷𝜎𝑢∣2𝑑𝑚)

1
2 + ∣

∫
⟨𝑏𝜎,𝐷𝜎𝑢⟩(𝑢+𝑛 − 𝑢+)𝑑𝑚∣

→0.

By (A2) and [MOR95] ℰ𝑎,�̂�(𝑢+) ≤ 4𝐾2ℰ𝑎,�̂�(𝑢), sup𝑛 ℰ𝑎,�̂�(𝑢+𝑛 ) ≤ 4𝐾2 sup𝑛 ℰ𝑎,�̂�(𝑢𝑛) <

∞, we also have

∣ℰ𝑎,�̂�(𝑢𝑛, (𝑢𝑛)
+)− ℰ𝑎,�̂�(𝑢, 𝑢+)∣

≤∣ℰ𝑎,�̂�
𝑐2+1(𝑢𝑛 − 𝑢, (𝑢𝑛)

+) + ℰ𝑎,�̂�
𝑐2+1(𝑢, (𝑢𝑛)

+ − 𝑢+)∣
+ (𝑐2 + 1)∣(𝑢𝑛 − 𝑢, (𝑢𝑛)

+)∣+ (𝑐2 + 1)∣(𝑢, (𝑢𝑛)+ − 𝑢+)∣
≤𝐾(ℰ𝑎,�̂�

𝑐2+1(𝑢𝑛 − 𝑢))
1
2 (ℰ𝑎,�̂�

𝑐2+1((𝑢𝑛)
+))

1
2 + ∣ℰ𝑎,�̂�

𝑐2+1(𝑢, (𝑢𝑛)
+ − 𝑢+)∣

+ (𝑐2 + 1)(∥(𝑢𝑛)+∥2∥𝑢𝑛 − 𝑢∥2 + (𝑐2 + 1)∥(𝑢𝑛)+ − 𝑢+∥2∥𝑢∥2)
→0.

As a result, we obtain (2.1.15) for 𝑢 ∈ 𝑏𝐹 . Then the assertion follows. □

To extend the class of solutions we are working with to allow 𝑓 ∈ 𝐿1(𝑑𝑡× 𝑑𝑚),

we need the following proposition. It is a modified version of the above lemma.

Lemma 2.1.11 Let 𝑢 ∈ 𝑏𝐹 and 𝑓 ∈ 𝐿1(𝑑𝑡 × 𝑑𝑚) satisfying the weak relation

(2.1.9) with test functions in 𝑏𝒞𝑇 and some function 𝜙 ≥ 0, 𝜙 ∈ 𝐿2 ∩ 𝐿∞. Then 𝑢+
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satisfies the following relation with 0 ≤ 𝑡1 < 𝑡2 ≤ 𝑇

∥𝑢+𝑡1∥22 ≤ 2

∫ 𝑡2

𝑡1

(𝑓𝑠, 𝑢
+
𝑠 )𝑑𝑠+ ∥𝑢+𝑡2∥22.

Proof First note that we can prove analogously to the proof of Lemma 2.1.10 that

for each 𝑢 ∈ 𝑏𝒞𝑇 satisfying the weak relation (2.1.9) with data (𝜙, 𝑓) over the interval

[𝑡1, 𝑡2], where 𝜀 ≤ 𝑡1 ≤ 𝑡2 ≤ 𝑇 for 𝜀 > 0, the following holds

∥𝑢+𝑡1∥22 ≤ 2

∫ 𝑡2

𝑡1

(𝑓𝑡, 𝑢
+
𝑡 )𝑑𝑡+ ∥𝑢+𝑡2∥22.

For 𝑢 ∈ 𝐹 we take approximating functions 𝑢𝑛 and (𝜙𝑛, 𝑓𝑛) as in the last part of

the proof of Proposition 2.1.9 . Then we have that 𝑢𝑛 satisfies the weak relation

(2.1.9) for the data 𝜙𝑛, 𝑓𝑛 with test functions in 𝑏𝒞𝑇 over the interval [𝜀, 𝑡2] and
1
𝑛
≤ 𝜀 ≤ 𝑡2 ≤ 𝑇 . Note

lim
𝑛→∞

∫ 𝑇

𝜀

∥𝑓𝑛
𝑡 − 𝑓𝑡∥1𝑑𝑡 = 0.

Then we obtain

∥(𝑢𝑛𝑡1)+∥22 ≤ 2

∫ 𝑡2

𝑡1

(𝑓𝑛
𝑡 , (𝑢

𝑛
𝑡 )

+)𝑑𝑡+ ∥(𝑢𝑛𝑡2)+∥22,

where 𝜀 ≤ 𝑡1 ≤ 𝑡2 ≤ 𝑇 for 𝜀 > 0. The convergence of all terms, which does not

depend on 𝑓 , follows by the same arguments as the proof of Lemma 2.1.10. Since 𝑢

is bounded, it is easy to see that 𝑢𝑛 is uniformly bounded. Then we have

lim
𝑛→∞

∣
∫ 𝑡2

𝑡1

(𝑓𝑛
𝑠 , (𝑢

𝑛
𝑠 )

+)𝑑𝑠−
∫ 𝑡2

𝑡1

(𝑓𝑠, 𝑢
+
𝑠 )𝑑𝑠∣

≤𝑀 lim
𝑛→∞

∫ 𝑡2

𝑡1

∥𝑓𝑛
𝑠 − 𝑓𝑠∥1𝑑𝑠+ lim

𝑛→∞

∫ 𝑡2

𝑡1

(𝑓𝑠, (𝑢
𝑛
𝑠 )

+ − 𝑢+𝑠 )𝑑𝑠

=0.

Finally, we obtain

∥𝑢+𝑡1∥22 ≤ 2

∫ 𝑡2

𝑡1

(𝑓𝑡, 𝑢
+
𝑡 )𝑑𝑡+ ∥𝑢+𝑡2∥22,

where 𝜀 ≤ 𝑡1 ≤ 𝑡2 ≤ 𝑇 for 𝜀 > 0. Letting 𝜀→ 0, the assertion follows. □

The next proposition is a modification of [BPS05, Proposition 2.9]. It represents

a version of the maximum principle.

Proposition 2.1.12 Let 𝑢 ∈ 𝑏𝐹 and 𝑓 ∈ 𝐿1(𝑑𝑡× 𝑑𝑚), 𝑓 ≥ 0, satisfying the weak
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relation (2.1.9) with test functions in 𝑏𝒞𝑇 and some function 𝜙 ≥ 0, 𝜙 ∈ 𝐿2 ∩ 𝐿∞.

Then 𝑢 ≥ 0 and it is represented by the following relation:

𝑢𝑡 = 𝑃𝑇−𝑡𝜙+

∫ 𝑇

𝑡

𝑃𝑠−𝑡𝑓𝑠𝑑𝑠.

Here we use 𝑃𝑡 is a 𝐶0-semigroup on 𝐿1(ℝ𝑑;𝑚) to make 𝑃𝑠−𝑡𝑓𝑠 meaningful.

Proof Let (𝑓𝑛)𝑛∈ℕ be a sequence of bounded functions such that

0 ≤ 𝑓𝑛 ≤ 𝑓𝑛+1 ≤ 𝑓, lim
𝑛→∞

𝑓𝑛 = 𝑓.

Since 𝑓𝑛 is bounded, we have 𝑓𝑛 ∈ 𝐿1([0, 𝑇 ];𝐿2). Define

𝑢𝑛𝑡 := 𝑃𝑇−𝑡𝜙+

∫ 𝑇

𝑡

𝑃𝑠−𝑡𝑓
𝑛
𝑠 𝑑𝑠.

Then by Proposition 2.1.9, 𝑢𝑛 ∈ 𝐹 is a unique generalized solution for the data

(𝜙, 𝑓𝑛). Clearly 0 ≤ 𝑢𝑛 ≤ 𝑢𝑛+1 for 𝑛 ∈ ℕ. Define 𝑦 := 𝑢𝑛 − 𝑢 and 𝑓 := 𝑓𝑛 − 𝑓 .

Then 𝑓 ≤ 0 and 𝑦 satisfies the weak relation (2.1.9) for the data (0, 𝑓). Therefore

by Lemma 2.1.11, we have for 𝑡1 ∈ [0, 𝑇 ]

∥𝑦+𝑡1∥22 ≤ 2

∫ 𝑇

𝑡1

(𝑓𝑠, 𝑦
+
𝑠 )𝑑𝑠 ≤ 0.

We conclude that ∥𝑦+𝑡1∥22 = 0. Therefore, 𝑢 ≥ 𝑢𝑛 ≥ 0 for 𝑛 ∈ ℕ. Set 𝑣 := lim𝑛→∞ 𝑢𝑛.

By (2.1.7) we have

∥𝑢𝑛𝑡 ∥22 + 2

∫ 𝑇

𝑡

ℰ𝑎,�̂�(𝑢𝑛𝑠 )𝑑𝑠 ≤ 2

∫ 𝑇

𝑡

(𝑓𝑛
𝑠 , 𝑢

𝑛
𝑠 )𝑑𝑠+ ∥𝜙∥22 + 2𝛼

∫ 𝑇

𝑡

∥𝑢𝑛𝑠∥22𝑑𝑠,

which implies that

∥𝑢𝑛𝑡 ∥22 + 2

∫ 𝑇

𝑡

ℰ𝑎,�̂�(𝑢𝑛𝑠 )𝑑𝑠 ≤ 2𝑀

∫ 𝑇

𝑡

∫
∣𝑓𝑛

𝑠 ∣𝑑𝑚𝑑𝑠+ ∥𝜙∥22 + 2𝛼

∫ 𝑇

𝑡

∥𝑢𝑛𝑠∥22𝑑𝑠.

By Gronwall’s lemma, we have sup𝑛 sup𝑡∈[0,𝑇 ] ∥𝑢𝑛𝑡 ∥22 ≤const. We obtain lim𝑛→∞ ∥𝑢𝑛𝑡 −
𝑣𝑡∥22 = 0 and

lim
𝑛→∞

∣
∫ 𝑇

𝑡

∫
(𝑓𝑛

𝑠 𝑢
𝑛
𝑠 − 𝑓𝑠𝑣𝑠)𝑑𝑚𝑑𝑠∣ = 0.

By [MR92, Lemma 2.12] we obtain∫ 𝑇

𝑡

ℰ𝑎,�̂�
𝑐2+1(𝑣𝑠)𝑑𝑠 ≤

∫ 𝑇

𝑡

lim inf
𝑛→∞

ℰ𝑎,�̂�
𝑐2+1(𝑢

𝑛
𝑠 )𝑑𝑠 ≤ lim inf

𝑛→∞

∫ 𝑇

𝑡

ℰ𝑎,�̂�
𝑐2+1(𝑢

𝑛
𝑠 )𝑑𝑠.
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Finally, for 𝑡 ∈ [0, 𝑇 ] we get

∥𝑣𝑡∥22 + 2

∫ 𝑇

𝑡

ℰ𝑎,�̂�(𝑣𝑠)𝑑𝑠 ≤ lim
𝑛→∞

∥𝑢𝑛𝑡 ∥22 + lim inf
𝑛→∞

∫ 𝑇

𝑡

ℰ𝑎,�̂�(𝑢𝑛𝑠 )𝑑𝑠

≤ lim
𝑛→∞

(2

∫ 𝑇

𝑡

(𝑓𝑛
𝑠 , 𝑢

𝑛
𝑠 )𝑑𝑠+ ∥𝜙∥22) + lim

𝑛→∞
2𝛼

∫ 𝑇

𝑡

∥𝑢𝑛𝑠∥22𝑑𝑠

=2

∫ 𝑇

𝑡

(𝑓𝑠, 𝑣𝑠)𝑑𝑠+ ∥𝜙∥22 + 2𝛼

∫ 𝑇

𝑡

∥𝑣𝑠∥22𝑑𝑠.

Since the right hand side of this inequality is finite and 𝑡 7→ 𝑣𝑡 is 𝐿
2-continuous, it

follows that 𝑣 ∈ 𝐹 .

Now we show that 𝑣 satisfies the weak relation (2.1.9) for the data (𝜙, 𝑓). As

𝜑𝑛(𝑡) := ∥𝑢𝑛𝑡 − 𝑣𝑡∥2 is continuous and decreasing, we conclude by Dini’s theorem

lim
𝑛→∞

sup
𝑡∈[0,𝑇 ]

∥𝑢𝑛𝑡 − 𝑣𝑡∥2 = 0,

and therefore

lim
𝑛→∞

∫ 𝑇

0

∥𝑢𝑛𝑡 − 𝑣𝑡∥22 = 0.

Furthermore, there exists 𝐾 ∈ ℝ+ and a subsequence (𝑛𝑘)𝑘∈ℕ such that

∣
∫ 𝑇

0

ℰ𝑎,�̂�
𝑐2+1(𝑢

𝑛𝑘
𝑠 )𝑑𝑠∣ ≤ 𝐾 ∀𝑘 ∈ ℕ.

in particular ∫ 𝑇

0

∫
∣𝐷𝜎𝑢

𝑛𝑘
𝑠 ∣2𝑑𝑚𝑑𝑠 ≤ 𝐾

𝑐1
∀𝑘 ∈ ℕ.

We obtain

lim
𝑘→∞

∫ 𝑇

0

ℰ𝑎,�̂�(𝑢𝑛𝑘
𝑠 , 𝜑𝑠)𝑑𝑠 =

∫ 𝑇

0

ℰ𝑎,�̂�(𝑣𝑠, 𝜑𝑠)𝑑𝑠,

and

lim
𝑘→∞

∫ 𝑇

0

∫
⟨𝑏𝜎,𝐷𝜎𝑢

𝑛𝑘
𝑠 ⟩𝜑𝑠𝑑𝑚𝑑𝑠 =

∫ 𝑇

0

∫
⟨𝑏𝜎,𝐷𝜎𝑣𝑠⟩𝜑𝑠𝑑𝑚𝑑𝑠,

which implies (2.1.9) for 𝑣 associated to (𝜙, 𝑓). Clearly 𝑢 − 𝑣 satisfies (2.1.9) with

data (0, 0) for 𝜑 ∈ 𝑏𝒞𝑇 . By Proposition 2.1.9 we have 𝑢− 𝑣 = 0. Since

𝑣𝑡 = 𝑃𝑇−𝑡𝜙+

∫ 𝑇

𝑡

𝑃𝑠−𝑡𝑓𝑠𝑑𝑠,

the assertion follows. □

Corollary 2.1.13 Let 𝑢 ∈ 𝑏𝐹 and 𝑓 ∈ 𝐿1(𝑑𝑡×𝑑𝑚) satisfy the weak relation (2.1.9)
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with test functions in 𝑏𝒞𝑇 and some function 𝜙 ∈ 𝐿2∩𝐿∞. Let 𝑔 ∈ 𝐿1(𝑑𝑡×𝑑𝑚) be a

bounded function such that 𝑓 ≤ 𝑔. Then 𝑢 is represented by the following relation:

𝑢𝑡 = 𝑃𝑇−𝑡𝜙+

∫ 𝑇

𝑡

𝑃𝑠−𝑡𝑓𝑠𝑑𝑠.

Proof Define 𝑓𝑛 := (𝑓 ∨ (−𝑛)) ∧ 𝑔, 𝑛 ∈ ℕ. Then (𝑓𝑛)𝑛∈ℕ is a sequence of bounded

functions such that 𝑓𝑛 ↓ 𝑓 and 𝑓𝑛 ≤ 𝑔 then by the same arguments as the proof of

Proposition 2.1.12, the assertion follows. □

The following proposition is a modification of [BPS05, Proposition 2.10] . It is

essential for the analytic treatment of the non-linear equation (1.1) which is done in

the next section.

Proposition 2.1.14 Let 𝑢 = (𝑢1, ..., 𝑢𝑙) be a vector valued function where each

component is a generalized solution of the linear equation (2.1.5) associated to cer-

tain data 𝑓 𝑖, 𝜙𝑖, which are bounded and satisfy the conditions in Proposition 2.1.6

(ii) for 𝑖 = 1, ..., 𝑙. Denote by 𝜙, 𝑓 the vectors 𝜙 = (𝜙1, ..., 𝜙𝑙), 𝑓 = (𝑓1, ..., 𝑓 𝑙) and

by 𝐷𝜎𝑢 the matrix whose rows consist of the row vectors 𝐷𝜎𝑢
𝑖. Then the following

relations hold 𝑚-almost everywhere

(2.1.16) ∣𝑢𝑡∣2 + 2

∫ 𝑇

𝑡

𝑃𝑠−𝑡(∣𝐷𝜎𝑢𝑠∣2 + 1

2
𝑐∣𝑢𝑠∣2)𝑑𝑠 = 𝑃𝑇−𝑡∣𝜙∣2 + 2

∫ 𝑇

𝑡

𝑃𝑠−𝑡⟨𝑢𝑠, 𝑓𝑠⟩𝑑𝑠.

(2.1.17) ∣𝑢𝑡∣ ≤ 𝑃𝑇−𝑡∣𝜙∣+
∫ 𝑇

𝑡

𝑃𝑠−𝑡⟨�̂�𝑠, 𝑓𝑠⟩𝑑𝑠.

Here we write �̂� = 𝑥/∣𝑥∣, for 𝑥 ∈ ℝ𝑙, 𝑥 ∕= 0 and �̂� = 0, if 𝑥 = 0.

Proof By Proposition 2.1.6 (ii) we have 𝑢 ∈ 𝑏𝒞𝑇 .
First we assume 𝑙 = 1. If we can check that 𝑢2 satisfies (2.1.9) with data

(2𝑢𝑓 − 2∣𝐷𝜎𝑢∣2 − 𝑐𝑢2, 𝜙2) for 𝜑 ∈ 𝑏𝒞𝑇 , then (2.1.16) will follow by Corollary 2.1.13.

We have the following relations:∫ 𝑇

0

(𝑢2𝑡 , ∂𝑡𝜑𝑡)𝑑𝑡 = 2

∫ 𝑇

0

(𝑢𝑡, ∂𝑡(𝑢𝑡𝜑𝑡))𝑑𝑡+ (𝑢20, 𝜑0)− (𝑢2𝑇 , 𝜑𝑇 ),

ℰ𝑎,�̂�(𝑢2𝑡 , 𝜑𝑡) = 2ℰ𝑎,�̂�(𝑢𝑡, 𝑢𝑡𝜑𝑡)− (2∣𝐷𝜎𝑢𝑡∣2 + 𝑐𝑢2𝑡 , 𝜑𝑡),

and ∫
⟨𝑏𝜎,𝐷𝜎(𝑢

2
𝑡 )⟩𝜑𝑡𝑑𝑚 = 2

∫
⟨𝑏𝜎,𝐷𝜎𝑢𝑡⟩𝑢𝑡𝜑𝑡𝑑𝑚.
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For the second relation we use (2.1.2). Since 𝑢 is a generalized solution of (2.1.5),

we obtain ∫ 𝑇

0

(𝑢𝑡, ∂𝑡(𝑢𝑡𝜑𝑡))𝑑𝑡− (𝑢𝑇 , 𝑢𝑇𝜑𝑇 ) + (𝑢0, 𝑢0𝜑0)−
∫ 𝑇

0

(𝑓𝑡, 𝑢𝑡𝜑𝑡)𝑑𝑡

=−
∫ 𝑇

0

ℰ𝑎,�̂�(𝑢𝑡, 𝑢𝑡𝜑𝑡)𝑑𝑡−
∫ 𝑇

0

∫
⟨𝑏𝜎,𝐷𝜎𝑢𝑡⟩𝑢𝑡𝜑𝑡𝑑𝑚𝑑𝑡.

By the above relations we have

(2.1.18)∫ 𝑇

0

(𝑢2𝑡 , ∂𝑡𝜑𝑡)𝑑𝑡+ (𝑢20, 𝜑0)− (𝑢2𝑇 , 𝜑𝑇 ) +

∫ 𝑇

0

(ℰ𝑎,�̂�(𝑢2𝑡 , 𝜑𝑡) +

∫
⟨𝑏𝜎,𝐷𝜎(𝑢

2
𝑡 )⟩𝜑𝑡𝑑𝑚)𝑑𝑡

=2

∫ 𝑇

0

(𝑓𝑡𝑢𝑡, 𝜑𝑡)𝑑𝑡−
∫ 𝑇

0

(2∣𝐷𝜎𝑢𝑡∣2 + 𝑐∣𝑢𝑡∣2, 𝜑𝑡)𝑑𝑡.

Hence, by Corollary 2.1.13 (2.1.16) holds in the case 𝑙 = 1. To deduce this relation

in the case 𝑙 > 1, it suffices to add the relations corresponding to the components

∣𝑢𝑖𝑡∣2, 𝑖 = 1, ..., 𝑙. For (2.1.17), define for 𝜀 > 0, ℎ𝜀(𝑡) :=
√
𝑡+ 𝜀−√

𝜀 for 𝑡 ≥ 0. Then

by integration by parts we have

ℰ𝑎,�̂�(ℎ𝜀(∣𝑢∣2), 𝜑) =ℰ𝑎,�̂�(∣𝑢∣2, ℎ′𝜀(∣𝑢∣2)𝜑)− (ℎ′′𝜀(∣𝑢∣2)∣𝐷𝜎(∣𝑢∣2)∣2, 𝜑)
+ (𝑐(ℎ𝜀(∣𝑢∣2)− ∣𝑢∣2ℎ′𝜀(∣𝑢∣2)), 𝜑),

and∫ 𝑇

0

(ℎ𝜀(∣𝑢𝑡∣2), ∂𝑡𝜑𝑡)𝑑𝑡 =

∫ 𝑇

0

(∣𝑢𝑡∣2, ∂𝑡(𝜑𝑡ℎ
′
𝜀(∣𝑢𝑡∣2)))𝑑𝑡− (∣𝑢𝑇 ∣2, 𝜑𝑇ℎ

′
𝜀(∣𝑢𝑇 ∣2))

+ (∣𝑢0∣2, 𝜑0ℎ
′
𝜀(∣𝑢0∣2)) + (ℎ𝜀(∣𝑢𝑇 ∣2), 𝜑𝑇 )− (ℎ𝜀(∣𝑢∣20), 𝜑0).

If we choose 𝜑ℎ′𝜀(∣𝑢∣2) as test function in (2.1.18), we obtain∫ 𝑇

0

(∣𝑢𝑡∣2, ∂𝑡(𝜑𝑡ℎ
′
𝜀(∣𝑢𝑡∣2)))𝑑𝑡+ (∣𝑢0∣2, 𝜑0ℎ

′
𝜀(∣𝑢0∣2))− (∣𝑢𝑇 ∣2, 𝜑𝑇ℎ

′
𝜀(∣𝑢𝑇 ∣2))

+

∫ 𝑇

0

(ℰ𝑎,�̂�(∣𝑢𝑡∣2, 𝜑𝑡ℎ
′
𝜀(∣𝑢𝑡∣2)) +

∫
⟨𝑏𝜎,𝐷𝜎(∣𝑢𝑡∣2)⟩𝜑𝑡ℎ

′
𝜀(∣𝑢𝑡∣2)𝑑𝑚)𝑑𝑡

=2

∫ 𝑇

0

(⟨𝑓𝑡, 𝑢𝑡⟩, 𝜑𝑡ℎ
′
𝜀(∣𝑢𝑡∣2))𝑑𝑡−

∫ 𝑇

0

(2∣𝐷𝜎𝑢𝑡∣2 + 𝑐∣𝑢𝑡∣2, 𝜑𝑡ℎ
′
𝜀(∣𝑢𝑡∣2))𝑑𝑡.
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By the above relations we have∫ 𝑇

0

(ℎ𝜀(∣𝑢𝑡∣2), ∂𝑡𝜑𝑡)𝑑𝑡− (ℎ𝜀(∣𝑢𝑇 ∣2), 𝜑𝑇 ) + (ℎ𝜀(∣𝑢0∣2), 𝜑0)

+

∫ 𝑇

0

(ℰ𝑎,�̂�(ℎ𝜀(∣𝑢𝑡∣2), 𝜑𝑡) +

∫
⟨𝑏𝜎,𝐷𝜎(ℎ𝜀(∣𝑢𝑡∣2))⟩𝜑𝑡𝑑𝑚)𝑑𝑡

=

∫ 𝑇

0

−(ℎ′′𝜀(∣𝑢𝑡∣2)∣𝐷𝜎(∣𝑢𝑡∣2)∣2, 𝜑𝑡) + (𝑐(ℎ𝜀(∣𝑢∣2)− ∣𝑢∣2ℎ′𝜀(∣𝑢∣2)), 𝜑)𝑑𝑡

+ 2

∫ 𝑇

0

(⟨𝑓𝑡, 𝑢𝑡⟩ℎ′𝜀(∣𝑢𝑡∣2), 𝜑𝑡)𝑑𝑡−
∫ 𝑇

0

(ℎ′𝜀(∣𝑢𝑡∣2)(2∣𝐷𝜎𝑢𝑡∣2 + 𝑐∣𝑢𝑡∣2, 𝜑𝑡)𝑑𝑡.

As

∣𝐷𝜎(∣𝑢∣2)∣2 = 4⟨𝑢,𝐷𝜎𝑢(𝐷𝜎𝑢)
∗𝑢⟩,

we deduce

2⟨𝑓, 𝑢⟩ℎ′𝜀(∣𝑢∣2)− 2ℎ′𝜀(∣𝑢∣2)∣𝐷𝜎𝑢∣2 − ℎ′′𝜀(∣𝑢∣2)∣𝐷𝜎(∣𝑢∣2)∣2

=
⟨𝑓, 𝑢⟩ − ∣𝐷𝜎𝑢∣2
(∣𝑢∣2 + 𝜀)

1
2

+
∣𝑢∣2⟨�̂�, 𝐷𝜎𝑢(𝐷𝜎𝑢)

∗�̂�⟩
(∣𝑢∣2 + 𝜀)

3
2

=
⟨𝑓, 𝑢⟩

(∣𝑢∣2 + 𝜀)
1
2

− 𝜀∣𝐷𝜎𝑢∣2 + ∣𝑢∣2(∣𝐷𝜎𝑢∣2 − ⟨�̂�, 𝐷𝜎𝑢(𝐷𝜎𝑢)
∗�̂�⟩)

(∣𝑢∣2 + 𝜀)
3
2

≤ ⟨𝑓, 𝑢⟩
(∣𝑢∣2 + 𝜀)

1
2

.

By Proposition 2.1.14 and since 𝑐(ℎ𝜀(∣𝑢𝑠∣2)− 2∣𝑢𝑠∣2ℎ′𝜀(∣𝑢𝑠∣2)) ≤ 0, we deduce

ℎ𝜀(∣𝑢𝑡∣2) ≤ 𝑃𝑇−𝑡ℎ𝜀(∣𝜙∣2) +
∫ 𝑇

𝑡

𝑃𝑠−𝑡
⟨𝑓𝑠, 𝑢𝑠⟩

(∣𝑢𝑠∣2 + 𝜀)
1
2

𝑑𝑠.

Letting 𝜀→ 0 the results follow. □

The next corollary is a version of the above proposition for general data, where

we use 𝑃𝑡 is a 𝐶0-semigroup on 𝐿1.

Corollary 2.1.15 Let 𝑢 = (𝑢1, ..., 𝑢𝑙) be a vector-valued function, where each

component is a generalized solution of the linear equation (2.1.5) associated to cer-

tain data 𝑓 𝑖 ∈ 𝐿1([0, 𝑇 ];𝐿2), 𝜙𝑖 ∈ 𝐿2 for 𝑖 = 1, ..., 𝑙. Denote by 𝜙, 𝑓 the vectors

𝜙 = (𝜙1, ..., 𝜙𝑙), 𝑓 = (𝑓 1, ..., 𝑓 𝑙) and by 𝐷𝜎𝑢 the matrix whose rows consist of the

row vectors 𝐷𝜎𝑢
𝑖. Then the following relations hold 𝑚-almost everywhere

(2.1.19) ∣𝑢𝑡∣2 + 2

∫ 𝑇

𝑡

𝑃𝑠−𝑡(∣𝐷𝜎𝑢∣2 + 1

2
𝑐∣𝑢𝑠∣2)𝑑𝑠 = 𝑃𝑇−𝑡∣𝜙∣2 + 2

∫ 𝑇

𝑡

𝑃𝑠−𝑡⟨𝑢𝑠, 𝑓𝑠⟩𝑑𝑠.
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(2.1.20) ∣𝑢𝑡∣ ≤ 𝑃𝑇−𝑡∣𝜙∣+
∫ 𝑇

𝑡

𝑃𝑠−𝑡⟨�̂�𝑠, 𝑓𝑠⟩𝑑𝑠.

Proof Analogously to the proof of Proposition 2.1.14 it is enough to verify (2.1.19)

for 𝑙 = 1. For 𝜙 ∈ 𝐿2, 𝑓 ∈ 𝐿1([0, 𝑇 ], 𝐿2), take 𝜙𝑛, 𝑓𝑛 as in the proof of Proposition

2.1.9, then we have

(a). 𝑢𝑛,𝑡 := 𝑃𝑇−𝑡𝜙𝑛 +
∫ 𝑇

𝑡
𝑃𝑠−𝑡𝑓𝑛,𝑠𝑑𝑠 is a generalized solution ,

(b). lim𝑛→∞
∫ 𝑇

𝑡
∥𝑓𝑛,𝑠 − 𝑓𝑠∥2𝑑𝑠 = 0,

(c). lim𝑛→∞ ∥𝜙𝑛 − 𝜙∥2 = 0,

(d). lim𝑛→∞ ∥𝑢𝑛 − 𝑢∥𝑇 = 0.

By Proposition 2.1.14 we have

(2.1.21)

∣𝑢𝑛,𝑡∣2 + 2

∫ 𝑇

𝑡

𝑃𝑠−𝑡(∣𝐷𝜎𝑢𝑛,𝑠∣2 + 1

2
𝑐∣𝑢𝑛,𝑠∣2)𝑑𝑠 = 𝑃𝑇−𝑡∣𝜙𝑛∣2 + 2

∫ 𝑇

𝑡

𝑃𝑠−𝑡⟨𝑢𝑛,𝑠, 𝑓𝑛,𝑠⟩𝑑𝑠.

By (b) and (d) we obtain

∥
∫ 𝑇

𝑡

𝑃𝑠−𝑡((𝑢𝑛,𝑠, 𝑓𝑛,𝑠)− (𝑢𝑠, 𝑓𝑠))𝑑𝑠∥1

≤𝐶
∫ 𝑇

𝑡

(∥𝑢𝑛,𝑠∥2∥𝑓𝑛,𝑠 − 𝑓𝑠∥2 + ∥𝑓𝑠∥2∥𝑢𝑛,𝑠 − 𝑢𝑠∥2)𝑑𝑠

≤𝐶( sup
𝑠∈[0,𝑇 ]

∥𝑢𝑛,𝑠∥2
∫ 𝑇

𝑡

∥𝑓𝑛,𝑠 − 𝑓𝑠∥2𝑑𝑠+ sup
𝑠∈[0,𝑇 ]

∥𝑢𝑛,𝑠 − 𝑢𝑠∥
∫ 𝑇

𝑡

∥𝑓𝑠∥2𝑑𝑠)

→0, as 𝑛→ ∞.

Here we used that 𝑃𝑡 is a 𝐶0-semigroup on 𝐿1(ℝ𝑑;𝑚). By (d) we conclude that∫ 𝑇

𝑡

∥∣𝐷𝜎𝑢𝑛,𝑠∣2 − ∣𝐷𝜎𝑢𝑠∣2∥1𝑑𝑠

≤((

∫ 𝑇

𝑡

∥𝐷𝜎𝑢𝑛,𝑠∥22𝑑𝑠)
1
2 + (

∫ 𝑇

𝑡

∥𝐷𝜎𝑢𝑠∥22𝑑𝑠)
1
2 )(

∫ 𝑇

𝑡

∥𝐷𝜎𝑢𝑛,𝑠 −𝐷𝜎𝑢𝑠∥22𝑑𝑠)
1
2

=((

∫ 𝑇

𝑡

ℰ𝑎(𝑢𝑛,𝑠)𝑑𝑠)
1
2 + (

∫ 𝑇

𝑡

ℰ𝑎(𝑢𝑠)𝑑𝑠)
1
2 )(

∫ 𝑇

𝑡

ℰ𝑎(𝑢𝑛,𝑠 − 𝑢𝑠)𝑑𝑠)
1
2

→0, as 𝑛→ ∞,
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and that∫ 𝑇

𝑡

∥∣𝑐𝑢𝑛,𝑠∣2 − ∣𝑐𝑢𝑠∣2∥1𝑑𝑠

≤((

∫ 𝑇

𝑡

∥𝑐1/2𝑢𝑛,𝑠∥22𝑑𝑠)
1
2 + (

∫ 𝑇

𝑡

∥𝑐1/2𝑢𝑠∥22𝑑𝑠)
1
2 )(

∫ 𝑇

𝑡

∥𝑐1/2𝑢𝑛,𝑠 − 𝑐1/2𝑢𝑠∥22𝑑𝑠)
1
2

≤𝑀((

∫ 𝑇

𝑡

ℰ𝑎,�̂�
𝑐2+1(𝑢𝑛,𝑠)𝑑𝑠)

1
2 + (

∫ 𝑇

𝑡

ℰ𝑎,�̂�
𝑐2+1(𝑢𝑠)𝑑𝑠)

1
2 )(

∫ 𝑇

𝑡

ℰ𝑎,�̂�
𝑐2+1(𝑢𝑛,𝑠 − 𝑢𝑠)𝑑𝑠)

1
2

→0, as 𝑛→ ∞,

where we used (2.1.1) and (2.1.2) in the second inequality. Thus, we obtain

lim
𝑛→∞

∫ 𝑇

𝑡

𝑃𝑠−𝑡(∣𝐷𝜎𝑢𝑛,𝑠∣2)𝑑𝑠 =
∫ 𝑇

𝑡

𝑃𝑠−𝑡∣𝐷𝜎𝑢𝑠∣2𝑑𝑠,

and

lim
𝑛→∞

∫ 𝑇

𝑡

𝑃𝑠−𝑡(∣𝑐𝑢𝑛,𝑠∣2)𝑑𝑠 =
∫ 𝑇

𝑡

𝑃𝑠−𝑡∣𝑐𝑢𝑠∣2𝑑𝑠.

Passing to the limit 𝑛→ ∞ in equation (2.1.21) (2.1.19) follows. (2.1.20) also follows

by using the same method. □

Lemma 2.1.16 If 𝑓, 𝑔 ∈ 𝐿1([0, 𝑇 ];𝐿2) and 𝜙 ∈ 𝐿2, then:

(2.1.22)

∫ 𝑇

𝑡

𝑃𝑠−𝑡(𝑓𝑠𝑃𝑇−𝑠𝜙)𝑑𝑠 ≤ 1

2
𝑃𝑇−𝑡𝜙

2 +

∫ 𝑇

𝑡

∫ 𝑇

𝑠

𝑃𝑠−𝑡(𝑓𝑠𝑃𝑟−𝑠𝑓𝑟)𝑑𝑟𝑑𝑠, 𝑚− 𝑎.𝑒.

Proof Define

ℎ𝑡 := 𝑃𝑇−𝑡𝜙, 𝑣𝑡 :=

∫ 𝑇

𝑡

𝑃𝑠−𝑡𝑓𝑠𝑑𝑠.

By (2.1.19) we deduce

ℎ2𝑡 + 2

∫ 𝑇

𝑡

𝑃𝑠−𝑡(∣𝐷𝜎ℎ𝑠∣2 + 1

2
𝑐∣ℎ𝑠∣2)𝑑𝑠 = 𝑃𝑇−𝑡𝜙

2,

𝑣2𝑡 + 2

∫ 𝑇

𝑡

𝑃𝑠−𝑡(∣𝐷𝜎𝑣𝑠∣2 + 1

2
𝑐∣𝑣𝑠∣2)𝑑𝑠 = 2

∫ 𝑇

𝑡

𝑃𝑠−𝑡(𝑓𝑠

∫ 𝑇

𝑠

𝑃𝑟−𝑠𝑓𝑟𝑑𝑟)𝑑𝑠,

and

ℎ𝑡𝑣𝑡 + 2

∫ 𝑇

𝑡

𝑃𝑠−𝑡(⟨𝐷𝜎ℎ𝑠, 𝐷𝜎𝑣𝑠⟩+ 1

2
𝑐ℎ𝑠𝑣𝑠)𝑑𝑠 =

∫ 𝑇

𝑡

𝑃𝑠−𝑡(𝑓𝑠𝑃𝑇−𝑠𝜙)𝑑𝑠.
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So, we obtain∫ 𝑇

𝑡

𝑃𝑠−𝑡(𝑓𝑠𝑃𝑇−𝑠𝜙)𝑑𝑠 =ℎ𝑡𝑣𝑡 + 2

∫ 𝑇

𝑡

𝑃𝑠−𝑡(⟨𝐷𝜎ℎ𝑠, 𝐷𝜎𝑣𝑠⟩+ 1

2
𝑐ℎ𝑠𝑣𝑠)𝑑𝑠

≤1

2
(ℎ2𝑡 + 𝑣2𝑡 ) +

∫ 𝑇

𝑡

𝑃𝑠−𝑡(∣𝐷𝜎ℎ𝑠∣2 + ∣𝐷𝜎𝑣𝑠∣2 + 1

2
𝑐∣𝑣𝑠∣2 + 1

2
𝑐∣ℎ𝑠∣2)𝑑𝑠

=
1

2
𝑃𝑇−𝑡𝜙

2 +

∫ 𝑇

𝑡

∫ 𝑇

𝑠

𝑃𝑠−𝑡(𝑓𝑠𝑃𝑟−𝑠𝑓𝑟)𝑑𝑟𝑑𝑠.

□

2.2 The Non-linear Equation

In this section, we solve the non-linear equation (2.2.1). In the case of non-linear

equations, we are going to consider systems of equations, with the unknown functions

and their first-order derivatives mixed in the non-linear term of the equation. The

non-linear term is a given measurable function 𝑓 : [0, 𝑇 ]×ℝ𝑑 ×ℝ𝑙 ×ℝ𝑙 ⊗ℝ𝑘 → ℝ𝑙,

𝑙 ∈ ℕ. We are going to treat the following system of equations.

(2.2.1) (∂𝑡 + 𝐿)𝑢+ 𝑓(⋅, ⋅, 𝑢,𝐷𝜎𝑢) = 0 𝑢𝑇 = 𝜙.

Here 𝜙 ∈ 𝐿2(ℝ𝑑, 𝑑𝑚;ℝ𝑙).

Definition 2.2.1 (Generalized solutions of the nonlinear equation) A generalized

solution of equation (2.2.1) is a system 𝑢 = (𝑢1, 𝑢2, ..., 𝑢𝑙) of 𝑙 elements in 𝐹 with

the property that 𝑓 𝑖(⋅, ⋅, 𝑢,𝐷𝜎𝑢) belongs to 𝐿1([0, 𝑇 ];𝐿2) and there are sequences

{𝑢𝑛} which are strong solutions of (2.2.1) with data (𝜙𝑛, 𝑓𝑛) such that

∥𝑢𝑛−𝑢∥𝑇 → 0, ∥𝜙𝑛−𝜙∥2 → 0, and lim
𝑛→∞

𝑓𝑛(⋅, ⋅, 𝑢𝑛, 𝐷𝜎𝑢𝑛) = 𝑓(⋅, ⋅, 𝑢,𝐷𝜎𝑢) in 𝐿
1([0, 𝑇 ];𝐿2).

Definition 2.2.2 (Mild equation) A mild solution of equation (2.2.1) is a system

𝑢 = (𝑢1, 𝑢2, ..., 𝑢𝑙) of 𝑙 elements in 𝐹 , which has the property that each function

𝑓 𝑖(⋅, ⋅, 𝑢,𝐷𝜎𝑢) belongs to 𝐿
1([0, 𝑇 ];𝐿2(𝑚)) and such that for every 𝑖 ∈ {1, ..., 𝑙},

(2.2.2) 𝑢𝑖(𝑡, 𝑥) = 𝑃𝑇−𝑡𝜙
𝑖(𝑥) +

∫ 𝑇

𝑡

𝑃𝑠−𝑡𝑓
𝑖(𝑠, ⋅, 𝑢𝑠, 𝐷𝜎𝑢𝑠)(𝑥)𝑑𝑠,𝑚− 𝑎.𝑒..

Lemma 2.2.3 𝑢 is a generalized solution of the nonlinear equation (2.2.1) if and

only if it solves the mild equation (2.2.2).
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Proof The assertion follows by Proposition 2.1.9. □

We will use the following notations:

∥𝜙∥22 =
𝑙∑

𝑖=1

∥𝜙𝑖∥22, 𝜙 ∈ 𝐿2(ℝ𝑑;ℝ𝑙),

ℰ(𝑢, 𝑣) =
𝑙∑

𝑖=1

ℰ(𝑢𝑖, 𝑣𝑖), ℰ𝑎(𝑢, 𝑣) =
𝑙∑

𝑖=1

ℰ𝑎(𝑢𝑖, 𝑣𝑖), 𝑢, 𝑣 ∈ 𝐹 𝑙,

ℰ𝑎,�̂�(𝑢, 𝑣) =
𝑙∑

𝑖=1

ℰ𝑎,�̂�(𝑢𝑖, 𝑣𝑖), 𝑢, 𝑣 ∈ 𝐹 𝑙,

∥𝑢∥2𝑇 := sup
𝑡≤𝑇

∥𝑢𝑡∥22 +
∫ 𝑇

0

ℰ𝑎,�̂�
𝑐2+1(𝑢𝑡)𝑑𝑡, 𝑢 ∈ 𝐹 𝑙.

2.2.1 The Case of Lipschitz Conditions

In this subsection we consider a measurable function 𝑓 : [0, 𝑇 ]×ℝ𝑑×ℝ𝑙×ℝ𝑙⊗ℝ𝑘 → ℝ𝑙

such that

(2.2.3) ∣𝑓(𝑡, 𝑥, 𝑦, 𝑧)− 𝑓(𝑡, 𝑥, 𝑦′, 𝑧′)∣ ≤ 𝐶(∣𝑦 − 𝑦′∣+ ∣𝑧 − 𝑧′∣),

with 𝑡, 𝑥, 𝑦, 𝑦′, 𝑧, 𝑧′ arbitrary and 𝐶 is a constant independent of 𝑡, 𝑥. Set 𝑓 0(𝑡, 𝑥) :=

𝑓(𝑡, 𝑥, 0, 0).

Proposition 2.2.4 Suppose that the conditions (A1)-(A4) hold and that 𝑓 sat-

isfies condition (2.2.3), 𝑓0 ∈ 𝐿2([0, 𝑇 ] × ℝ𝑑, 𝑑𝑡 × 𝑑𝑚;ℝ𝑙) and 𝜙 ∈ 𝐿2(ℝ𝑑;ℝ𝑙). Then

the equation (2.2.1) admits a unique generalized solution 𝑢 ∈ 𝐹 𝑙 and it satisfies the

following estimate

∥𝑢∥2𝑇 ≤ 𝑒
𝑇 (1+2𝐶+𝐶2

𝑐1
+2𝛼+𝑐2)(∥𝜙∥22 + ∥𝑓 0∥2𝐿2([0,𝑇 ]×ℝ𝑑)).

Proof If 𝑢 ∈ 𝐹 𝑙, then by relation (2.2.3) we have

∣𝑓(⋅, ⋅, 𝑢,𝐷𝜎𝑢)∣ ≤ ∣𝑓(⋅, ⋅, 𝑢,𝐷𝜎𝑢)− 𝑓(⋅, ⋅, 0, 0)∣+ ∣𝑓(⋅, ⋅, 0, 0)∣
≤ 𝐶(∣𝑢∣+ ∣𝐷𝜎𝑢∣) + ∣𝑓 0∣.

As 𝑓 0 ∈ 𝐿2([0, 𝑇 ]× ℝ𝑑, 𝑑𝑡× 𝑑𝑚;ℝ𝑙) and ∣𝐷𝜎𝑢∣ is an element of 𝐿2([0, 𝑇 ]× ℝ𝑑), we

get 𝑓(⋅, ⋅, 𝑢,𝐷𝜎𝑢) ∈ 𝐿2([0, 𝑇 ]× ℝ𝑑;ℝ𝑙).
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Now we define the operator 𝐴 : 𝐹 𝑙 → 𝐹 𝑙 by

(𝐴𝑢)𝑖𝑡 := 𝑃𝑇−𝑡𝜙
𝑖 +

∫ 𝑇

𝑡

𝑃𝑠−𝑡𝑓
𝑖(𝑠, ⋅, 𝑢𝑠, 𝐷𝜎𝑢𝑠)𝑑𝑠, 𝑖 = 1, ..., 𝑙.

Then Proposition 2.1.9 implies that 𝐴𝑢 ∈ 𝐹 𝑙. In the following we write 𝑓 𝑖
𝑢,𝑠 :=

𝑓 𝑖(𝑠, ⋅, 𝑢𝑠, 𝐷𝜎𝑢𝑠). Since (𝐴𝑢)𝑖𝑡 − (𝐴𝑣)𝑖𝑡 =
∫ 𝑇

𝑡
𝑃𝑠−𝑡(𝑓

𝑖
𝑢,𝑠 − 𝑓 𝑖

𝑣,𝑠)𝑑𝑠 is the mild solution

with data (𝑓 𝑖
𝑢 − 𝑓 𝑖

𝑣, 0), by the same arguments as in the proof of Proposition 2.1.9

we have

∥
∫ 𝑇

𝑡

𝑃𝑠−𝑡(𝑓
𝑖
𝑢,𝑠 − 𝑓 𝑖

𝑣,𝑠)𝑑𝑠∥2[𝑡,𝑇 ] ≤𝑀𝑇 (

∫ 𝑇

𝑡

∥𝑓𝑢,𝑠 − 𝑓𝑣,𝑠∥2𝑑𝑠)2

≤𝑀𝑇 (𝑇 − 𝑡)

∫ 𝑇

𝑡

∥𝑓𝑢,𝑠 − 𝑓𝑣,𝑠∥22𝑑𝑠

≤𝑀𝑇 (𝑇 − 𝑡)

∫ 𝑇

𝑡

(∥𝑢𝑠 − 𝑣𝑠∥22 + ∥𝐷𝜎𝑢𝑠 −𝐷𝜎𝑣𝑠∥22)𝑑𝑠

≤𝑀𝑇 (𝑇 − 𝑡)∥𝑢− 𝑣∥2[𝑡,𝑇 ],

where 𝑀𝑇 can change from line to line. Here ∥𝑢∥[𝑇𝑎,𝑇𝑏] := (sup𝑡∈[𝑇𝑎,𝑇𝑏]
∥𝑢𝑡∥22 +∫ 𝑇𝑏

𝑇𝑎
ℰ𝑎,�̂�
𝑐2+1(𝑢𝑡)𝑑𝑡)

1
2 , where 0 ≤ 𝑇𝑎 ≤ 𝑇𝑏 ≤ 𝑇 . Fix 𝑇1 sufficiently small such that

𝛾 :=𝑀𝑇 (𝑇 − 𝑇1) < 1. Then we have :

∥𝐴𝑢− 𝐴𝑣∥2[𝑇1,𝑇 ] ≤ 𝛾∥𝑢− 𝑣∥2[𝑇1,𝑇 ].

Then there exists a unique 𝑢1 ∈ 𝐹[𝑇1,𝑇 ] such that 𝐴𝑢1 = 𝑢1 where 𝐹[𝑇𝑎,𝑇𝑏] :=

𝐶([𝑇𝑎, 𝑇𝑏];𝐿
2) ∩ 𝐿2((𝑇𝑎, 𝑇𝑏);𝐹 ) for 𝑇𝑎 ∈ [0, 𝑇 ] and 𝑇𝑏 ∈ [𝑇𝑎, 𝑇 ].

We define the operator 𝐴1 : 𝐹 𝑙 → 𝐹 𝑙 by

(𝐴1𝑢)𝑖𝑡 := 𝑃𝑇1−𝑡𝑢
𝑖
1,𝑇1

+

∫ 𝑇1

𝑡

𝑃𝑠−𝑡𝑓
𝑖(𝑠, ⋅, 𝑢𝑠, 𝐷𝜎𝑢𝑠)𝑑𝑠, 𝑖 = 1, ..., 𝑙.

Then by the same method as above, we get

∥𝐴1𝑢− 𝐴1𝑣∥2[𝑡,𝑇1]
≤𝑀𝑇 (𝑇1 − 𝑡)∥𝑢− 𝑣∥2[𝑡,𝑇1]

.

Now we choose 𝑇2 < 𝑇1 such that 𝑀𝑇 (𝑇1 − 𝑡) < 1. We obtain that there exists a

unique 𝑢2 ∈ 𝐹[𝑇2,𝑇1] such that 𝐴1𝑢2 = 𝑢2. If we define 𝑢 := 𝑢11[𝑇1,𝑇 ]+𝑢21[𝑇2,𝑇1), then

for 𝑇2 ≤ 𝑡 ≤ 𝑇1

𝑃𝑇−𝑡𝜙
𝑖 +

∫ 𝑇

𝑡

𝑃𝑠−𝑡𝑓
𝑖(𝑠, ⋅, 𝑢𝑠, 𝐷𝜎𝑢𝑠)𝑑𝑠
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= 𝑃𝑇−𝑡𝜙
𝑖 +

∫ 𝑇1

𝑡

𝑃𝑠−𝑡𝑓
𝑖(𝑠, ⋅, 𝑢𝑠, 𝐷𝜎𝑢𝑠)𝑑𝑠+

∫ 𝑇

𝑇1

𝑃𝑠−𝑡𝑓
𝑖(𝑠, ⋅, 𝑢1,𝑠, 𝐷𝜎𝑢1,𝑠)𝑑𝑠

= 𝑃𝑇−𝑡𝜙
𝑖 +

∫ 𝑇1

𝑡

𝑃𝑠−𝑡𝑓
𝑖(𝑠, ⋅, 𝑢𝑠, 𝐷𝜎𝑢𝑠)𝑑𝑠+ 𝑃𝑇1−𝑡(𝑢

𝑖
1,𝑇1

− 𝑃𝑇−𝑇1𝜙
𝑖)

= 𝑃𝑇−𝑡𝜙
𝑖 +

∫ 𝑇1

𝑡

𝑃𝑠−𝑡𝑓
𝑖(𝑠, ⋅, 𝑢𝑠, 𝐷𝜎𝑢𝑠)𝑑𝑠+ 𝑃𝑇1−𝑡𝑢

𝑖
1,𝑇1

− 𝑃𝑇−𝑡𝜙
𝑖

= 𝑢𝑖2,𝑡.

If 𝑡 > 𝑇1,

(𝐴𝑢)𝑖𝑡 = 𝑃𝑇−𝑡𝜙
𝑖 +

∫ 𝑇

𝑡

𝑃𝑠−𝑡𝑓
𝑖(𝑠, ⋅, 𝑢1,𝑠, 𝐷𝜎𝑢1,𝑠)𝑑𝑠

= 𝑢𝑖1,𝑡,

Therefore, we can construct a solution over the interval [𝑇2, 𝑇 ]. Clearly there exists

𝑛 ∈ ℕ such that 𝑇 < 𝑛(𝑇 − 𝑇1). Hence, the construction is done after 𝑛 steps.

In order to obtain the estimate in the statement, we write

∣
∫ 𝑇

𝑡

(𝑓𝑢,𝑠, 𝑢𝑠)𝑑𝑠∣

≤
∫ 𝑇

𝑡

∥𝑓 0
𝑠 ∥2∥𝑢𝑠∥2𝑑𝑠+ 𝐶

∫ 𝑇

𝑡

∥𝑢𝑠∥22𝑑𝑠+ 𝐶

∫ 𝑇

𝑡

∥𝐷𝜎𝑢𝑠∥2∥𝑢𝑠∥2𝑑𝑠

≤1

2

∫ 𝑇

𝑡

∥𝑓0
𝑠 ∥22𝑑𝑠+ (

1

2
+ 𝐶 +

1

2𝑐1
𝐶2)

∫ 𝑇

𝑡

∥𝑢𝑠∥22𝑑𝑠+
𝑐1
2

∫ 𝑇

𝑡

ℰ𝑎(𝑢𝑠)𝑑𝑠.

By relation (2.1.7) of Proposition 2.1.9 it follows that

∥𝑢𝑡∥22 + 2

∫ 𝑇

𝑡

ℰ𝑎,�̂�(𝑢𝑠)𝑑𝑠 ≤2

∫ 𝑇

𝑡

(𝑓𝑢,𝑠, 𝑢𝑠)𝑑𝑠+ ∥𝜙∥22 + 2𝛼

∫ 𝑇

𝑡

∥𝑢𝑠∥22𝑑𝑠

≤∥𝜙∥22 +
∫ 𝑇

𝑡

∥𝑓 0
𝑠 ∥22𝑑𝑠+ (1 + 2𝐶 +

𝐶2

𝑐1
+ 2𝛼+ 𝑐2)

∫ 𝑇

𝑡

∥𝑢𝑠∥22𝑑𝑠

+

∫ 𝑇

𝑡

ℰ𝑎,�̂�(𝑢𝑠)𝑑𝑠.

Now by Gronwall’s lemma the desired estimate follows.

[Uniqueness] Let 𝑢1 and 𝑢2 be two solutions of equation (2.2.1). By using (2.1.7)

for the difference 𝑢1 − 𝑢2 we get

∥𝑢1,𝑡 − 𝑢2,𝑡∥22 + 2

∫ 𝑇

𝑡

ℰ𝑎,�̂�(𝑢1,𝑠 − 𝑢2,𝑠)𝑑𝑠

≤2

∫ 𝑇

𝑡

(𝑓(𝑠, ⋅, 𝑢1,𝑠, 𝐷𝜎𝑢1,𝑠)− 𝑓(𝑠, ⋅, 𝑢2,𝑠, 𝐷𝜎𝑢2,𝑠), 𝑢1,𝑠 − 𝑢2,𝑠)𝑑𝑠+ 2𝛼

∫ 𝑇

𝑡

∥𝑢1,𝑠 − 𝑢2,𝑠∥22𝑑𝑠
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≤2

∫ 𝑇

𝑡

𝐶(∣𝐷𝜎𝑢1,𝑠 −𝐷𝜎𝑢2,𝑠∣, ∣𝑢1,𝑠 − 𝑢2,𝑠∣)𝑑𝑠+ (2𝛼+ 𝐶)

∫ 𝑇

𝑡

∥𝑢1,𝑠 − 𝑢2,𝑠∥22𝑑𝑠

≤(
𝐶2

𝑐1
+ 𝑐2 + 2𝛼+ 𝐶)

∫ 𝑇

𝑡

∥𝑢1,𝑠 − 𝑢2,𝑠∥22𝑑𝑠+
∫ 𝑇

𝑡

ℰ𝑎,�̂�(𝑢1,𝑠 − 𝑢2,𝑠)𝑑𝑠.

By Gronwall’s lemma it follows that

∥𝑢1,𝑡 − 𝑢2,𝑡∥22 = 0,

hence 𝑢1 = 𝑢2. □

2.2.2 The Case of Monotonicity Conditions

Let 𝑓 : [0, 𝑇 ]×ℝ𝑑×ℝ𝑙×ℝ𝑙⊗ℝ𝑘 → ℝ𝑙 be a measurable function and 𝜙 ∈ 𝐿2(ℝ𝑑,𝑚;ℝ𝑙)

be the final condition of (2.2.1). We impose the following conditions:

(H1) (Lipschitz condition in 𝑧) There exists a fixed constant 𝐶 > 0 such that for

𝑡, 𝑥, 𝑦, 𝑧, 𝑧′ arbitrary

∣𝑓(𝑡, 𝑥, 𝑦, 𝑧)− 𝑓(𝑡, 𝑥, 𝑦, 𝑧′)∣ ≤ 𝐶∣𝑧 − 𝑧′∣.

(H2) (Monotonicity condition in 𝑦) For 𝑥, 𝑦, 𝑦′, 𝑧 arbitrary, there exists a function

𝜇𝑡 ∈ 𝐿1([0, 𝑇 ];ℝ) such that

⟨𝑦 − 𝑦′, 𝑓(𝑡, 𝑥, 𝑦, 𝑧)− 𝑓(𝑡, 𝑥, 𝑦′, 𝑧)⟩ ≤ 𝜇𝑡∣𝑦 − 𝑦′∣2.

We set 𝛼𝑡 :=
∫ 𝑡

0
𝜇𝑠𝑑𝑠.

(H3) (Continuity condition in 𝑦) For 𝑡, 𝑥 and 𝑧 fixed, the map

𝑦 7→ 𝑓(𝑡, 𝑥, 𝑦, 𝑧)

is continuous.

We need the following notations:

𝑓 0(𝑡, 𝑥) := 𝑓(𝑡, 𝑥, 0, 0), 𝑓 ′(𝑡, 𝑥, 𝑦) := 𝑓(𝑡, 𝑥, 𝑦, 0)− 𝑓(𝑡, 𝑥, 0, 0),

𝑓
′,𝑟(𝑡, 𝑥) := sup

∣𝑦∣≤𝑟

∣𝑓 ′(𝑡, 𝑥, 𝑦)∣.

(H4) For each 𝑟 > 0, 𝑓
′,𝑟 ∈ 𝐿1([0, 𝑇 ];𝐿2).

(H5) ∥𝜙∥∞ <∞, ∥𝑓 0∥∞ <∞, ∣𝜙∣ ∈ 𝐿2, ∣𝑓0∣ ∈ 𝐿2([0, 𝑇 ];𝐿2).

If 𝑚(ℝ𝑑) < ∞ the last two conditions in (H5) are ensured by the boundedness

of 𝜙 and 𝑓0. The conditions (H1), (H4), and (H5) imply that if 𝑢 ∈ 𝑏𝐹 , then
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∣𝑓(𝑢,𝐷𝜎𝑢)∣ ∈ 𝐿1([0, 𝑇 ];𝐿2). It seems impossible to apply general monotonicity

methods to the map 𝒱 ∋ 𝑢 7→ 𝑓(𝑡, ⋅, 𝑢(⋅), 𝐷𝜎𝑢) ∈ 𝒱 ′ because of lack of a suitable

reflexive Banach space 𝒱 such that 𝒱 ⊂ ℋ ⊂ 𝒱 ′. Therefore, also here we proceed

developing a hands-on approach to prove existence and uniqueness of solutions for

equation (2.2.1) as done in [BPS05].

Lemma 2.2.5 In (H2) without loss of generality we can assume that 𝜇𝑡 ≡ 0.

Proof Let us make the change 𝑢∗𝑡 = exp(𝛼𝑡)𝑢𝑡 and

𝜙∗ = exp(𝛼𝑇 )𝜙, 𝑓 ∗
𝑡 (𝑦, 𝑧) = exp(𝛼𝑡)𝑓𝑡(exp(−𝛼𝑡)𝑦, exp(−𝛼𝑡)𝑧)− 𝜇𝑡𝑦,

for the data. Next we will prove that 𝑢 is a generalized solution associated to the

data (𝜙, 𝑓) if and only if 𝑢∗ is a solution associated to the data (𝜙∗, 𝑓 ∗). Hence we

can write

𝑢𝑖𝑡 = 𝑃𝑇−𝑡𝜙
𝑖(𝑥) +

∫ 𝑇

𝑡

𝑃𝑠−𝑡𝑓
𝑖(𝑠, ⋅, 𝑢𝑠, 𝐷𝜎𝑢𝑠)(𝑥)𝑑𝑠,

equivalently as

𝑢𝑖,∗𝑡 =exp(𝛼𝑡)𝑃𝑇−𝑡𝜙
𝑖(𝑥) + exp(𝛼𝑡)

∫ 𝑇

𝑡

𝑃𝑠−𝑡𝑓
𝑖(𝑠, ⋅, 𝑢𝑠, 𝐷𝜎𝑢𝑠)(𝑥)𝑑𝑠

=exp(𝛼𝑇 )𝑃𝑇−𝑡𝜙
𝑖(𝑥) + (exp(𝛼𝑡)− exp(𝛼𝑇 ))𝑃𝑇−𝑡𝜙

𝑖(𝑥)

+

∫ 𝑇

𝑡

(exp(𝛼𝑡)− exp(𝛼𝑠))𝑃𝑠−𝑡𝑓
𝑖(𝑠, ⋅, 𝑢𝑠, 𝐷𝜎𝑢𝑠)(𝑥)𝑑𝑠

+

∫ 𝑇

𝑡

exp(𝛼𝑠)𝑃𝑠−𝑡𝑓
𝑖(𝑠, ⋅, 𝑢𝑠, 𝐷𝜎𝑢𝑠)(𝑥)𝑑𝑠

=𝑃𝑇−𝑡𝜙
𝑖,∗(𝑥) +

∫ 𝑇

𝑡

𝑃𝑠−𝑡(exp(𝛼𝑠)𝑓
𝑖(𝑠, ⋅, 𝑢𝑠, 𝐷𝜎𝑢𝑠)(𝑥))𝑑𝑠

−
∫ 𝑇

𝑡

𝜇𝑠 exp(𝛼𝑠)𝑃𝑇−𝑡𝜙
𝑖(𝑥)𝑑𝑠−

∫ 𝑇

𝑡

∫ 𝑙

𝑡

𝜇𝑠 exp(𝛼𝑠)𝑃𝑙−𝑡𝑓
𝑖(𝑙, ⋅, 𝑢𝑙, 𝐷𝜎𝑢𝑙)𝑑𝑠𝑑𝑙

=𝑃𝑇−𝑡𝜙
𝑖,∗(𝑥) +

∫ 𝑇

𝑡

𝑃𝑠−𝑡(exp(𝛼𝑠)𝑓
𝑖(𝑠, ⋅, exp(𝛼𝑠)𝑢

∗
𝑠, exp(𝛼𝑠)𝐷𝜎𝑢

∗
𝑠)(𝑥))𝑑𝑠

−
∫ 𝑇

𝑡

𝑃𝑠−𝑡(𝜇𝑠 exp(𝛼𝑠)𝑃𝑇−𝑠𝜙
𝑖(𝑥) +

∫ 𝑇

𝑠

𝜇𝑠 exp(𝛼𝑠)𝑃𝑙−𝑠𝑓
𝑖(𝑙, ⋅, 𝑢𝑙, 𝐷𝜎𝑢𝑙)𝑑𝑙)𝑑𝑠

=𝑃𝑇−𝑡𝜙
𝑖,∗(𝑥) +

∫ 𝑇

𝑡

𝑃𝑠−𝑡𝑓
𝑖,∗(𝑠, ⋅, 𝑢∗𝑠, 𝐷𝜎𝑢

∗
𝑠)(𝑥)𝑑𝑠.

Next we prove 𝑓 ∗ satisfies (H1)-(H5). It is obvious that (H1), (H3)-(H5) are satisfied.
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Let us prove that 𝑓 ∗ satisfies (H2) with 𝜇𝑡 ≡ 0. We have

⟨𝑦 − 𝑦′, 𝑓 ∗(𝑡, 𝑥, 𝑦, 𝑧)− 𝑓∗(𝑡, 𝑥, 𝑦′, 𝑧)⟩
=⟨𝑦 − 𝑦′, 𝜇𝑡𝑦

′ − 𝜇𝑡𝑦⟩
+ (exp(𝛼𝑡))

2⟨exp(−𝛼𝑡)𝑦 − exp(−𝛼𝑡)𝑦
′, 𝑓(𝑡, 𝑥, exp(−𝛼𝑡)𝑦, exp(−𝛼𝑡)𝑧)⟩

− (exp(𝛼𝑡))
2⟨exp(−𝛼𝑡)𝑦 − exp(−𝛼𝑡)𝑦

′, 𝑓(𝑡, 𝑥, exp(−𝛼𝑡)𝑦
′, exp(−𝛼𝑡)𝑧)⟩

≤ − ∣𝑦 − 𝑦′∣2𝜇𝑡 + 𝜇𝑡(exp(𝛼𝑡))
2∣ exp(−𝛼𝑡)𝑦 − exp(−𝛼𝑡)𝑦

′∣2
=0.

Thus, by making the transformation 𝑓 → 𝑓 ∗, we can assume that 𝜇𝑡 ≡ 0. □

Lemma 2.2.6 Suppose that conditions (A1)-(A4), (H1) and the following weaker

form of condition (H2) (with 𝜇𝑡 ≡ 0) hold:

(H2’) ⟨𝑦, 𝑓 ′(𝑡, 𝑥, 𝑦)⟩ ≤ 0 for all 𝑡, 𝑥, 𝑦.

If 𝑢 is a generalized solution of (2.2.1), then there exists a constant 𝐾 depending on

𝐶, 𝜇𝑡, 𝑇, 𝛼 such that

(2.2.4) ∥𝑢∥2𝑇 ≤ 𝐾(∥𝜙∥22 +
∫ 𝑇

0

∥𝑓 0
𝑡 ∥22𝑑𝑡).

Proof Since 𝑢 is a solution of (2.2.1), by Proposition 2.1.9 we have

∥𝑢𝑡∥22 + 2

∫ 𝑇

𝑡

ℰ𝑎,�̂�(𝑢𝑠)𝑑𝑠 ≤ 2

∫ 𝑇

𝑡

(𝑓𝑠, 𝑢𝑠)𝑑𝑠+ ∥𝑢𝑇∥22 + 2𝛼

∫ 𝑇

𝑡

∥𝑢𝑠∥22𝑑𝑠.

Conditions (H1) and (H2’) yield

⟨𝑓𝑠(𝑢𝑠, 𝐷𝜎𝑢𝑠), 𝑢𝑠⟩ =⟨𝑓𝑠(𝑢𝑠, 𝐷𝜎𝑢𝑠)− 𝑓𝑠(𝑢𝑠, 0) + 𝑓 ′
𝑠(𝑢𝑠) + 𝑓 0

𝑠 , 𝑢𝑠⟩
≤∣𝑓𝑠(𝑢𝑠, 𝐷𝜎𝑢𝑠)− 𝑓𝑠(𝑢𝑠, 0)∣∣𝑢𝑠∣+ ⟨𝑓 ′

𝑠(𝑢𝑠), 𝑢𝑠⟩+ ∣𝑓 0
𝑠 ∣∣𝑢𝑠∣

≤(𝐶∣𝐷𝜎𝑢𝑠∣+ ∣𝑓 0
𝑠 ∣)∣𝑢𝑠∣.

Hence, it follows that

∥𝑢𝑡∥22 + 2

∫ 𝑇

𝑡

ℰ𝑎,�̂�(𝑢𝑠)𝑑𝑠 ≤2

∫ 𝑇

𝑡

∫
(𝐶∣𝐷𝜎𝑢𝑠∣+ ∣𝑓0

𝑠 ∣)∣𝑢𝑠∣𝑑𝑚𝑑𝑠+ ∥𝑢𝑇∥22 + 2𝛼

∫ 𝑇

𝑡

∥𝑢𝑠∥22𝑑𝑠

≤
∫ 𝑇

𝑡

ℰ𝑎,�̂�(𝑢𝑠)𝑑𝑠+ (
𝐶2

𝑐1
+ 1 + 2𝛼+ 𝑐2)

∫ 𝑇

𝑡

∥𝑢𝑠∥22𝑑𝑠+
∫ 𝑇

𝑡

∥𝑓0
𝑠 ∥22𝑑𝑠

+ ∥𝑢𝑇∥22.
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Then Gronwall’s lemma yields

∥𝑢∥2𝑇 ≤ 𝐾(∥𝜙∥22 +
∫ 𝑇

0

∥𝑓 0
𝑡 ∥22𝑑𝑡).

□

By a modification of the arguments in [BPS05, Lemma 3.3] we obtain the fol-

lowing estimates.

Lemma 2.2.7 Suppose that conditions (A1)-(A4), (H1) and (H2’) hold. If 𝑢 is

a generalized solution of (2.2.1), there exists a constant 𝐾, which depends on 𝐶, 𝜇

and 𝑇 , such that

(2.2.5) ∥𝑢∥∞ ≤ 𝐾(∥𝜙∥∞ + ∥𝑓 0∥∞).

Proof By Corollary 2.1.15 we have

(2.2.6) ∣𝑢𝑡∣2 + 2

∫ 𝑇

𝑡

𝑃𝑠−𝑡(∣𝐷𝜎𝑢∣2) ≤ 𝑃𝑇−𝑡∣𝜙∣2 + 2

∫ 𝑇

𝑡

𝑃𝑠−𝑡⟨𝑢𝑠, 𝑓𝑠(𝑢𝑠, 𝐷𝜎𝑢𝑠)⟩𝑑𝑠.

Following the same arguments as the proof of Lemma 2.2.6 we deduce

⟨𝑓𝑠(𝑢𝑠, 𝐷𝜎𝑢𝑠), 𝑢𝑠⟩ ≤ (𝐶∣𝐷𝜎𝑢𝑠∣+ ∣𝑓 0
𝑠 ∣)∣𝑢𝑠∣.

By Corollary 2.1.15 (2.1.20) we obtain

∣𝑢𝑠∣ ≤ 𝑃𝑇−𝑠∣𝜙∣+
∫ 𝑇

𝑠

𝑃𝑟−𝑠(𝐶∣𝐷𝜎𝑢𝑟∣+ ∣𝑓0
𝑟 ∣)𝑑𝑟.

Then we have∫ 𝑇

𝑡

𝑃𝑠−𝑡⟨𝑓𝑠(𝑢𝑠, 𝐷𝜎𝑢𝑠), 𝑢𝑠⟩𝑑𝑠

≤
∫ 𝑇

𝑡

𝑃𝑠−𝑡[(𝑃𝑇−𝑠∣𝜙∣+
∫ 𝑇

𝑠

𝑃𝑟−𝑠(𝐶∣𝐷𝜎𝑢𝑟∣+ ∣𝑓 0
𝑟 ∣)𝑑𝑟)(𝐶∣𝐷𝜎𝑢𝑠∣+ ∣𝑓0

𝑠 ∣)]𝑑𝑠.

So, by (2.2.6) and Lemma 2.1.16 we obtain

∣𝑢𝑡∣2 + 2

∫ 𝑇

𝑡

𝑃𝑠−𝑡(∣𝐷𝜎𝑢𝑠∣2)𝑑𝑠

≤𝑃𝑇−𝑡∣𝜙∣2 + 2(

∫ 𝑇

𝑡

𝑃𝑠−𝑡[(𝑃𝑇−𝑠∣𝜙∣+
∫ 𝑇

𝑠

𝑃𝑟−𝑠(𝐶∣𝐷𝜎𝑢𝑟∣+ ∣𝑓0
𝑟 ∣)𝑑𝑟)(𝐶∣𝐷𝜎𝑢𝑠∣+ ∣𝑓 0

𝑠 ∣)]𝑑𝑠)
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≤3𝑃𝑇−𝑡∣𝜙∣2 + 2𝐶2

∫ 𝑇

𝑡

∫ 𝑇

𝑠

𝑃𝑠−𝑡(∣𝐷𝜎𝑢𝑠∣𝑃𝑟−𝑠∣𝐷𝜎𝑢𝑟∣)𝑑𝑟𝑑𝑠+ 2

∫ 𝑇

𝑡

∫ 𝑇

𝑠

𝑃𝑠−𝑡(∣𝑓 0
𝑠 ∣𝑃𝑟−𝑠∣𝑓 0

𝑟 ∣)𝑑𝑟𝑑𝑠

+ 2

∫ 𝑇

𝑡

∫ 𝑇

𝑠

𝑃𝑠−𝑡[𝑃𝑟−𝑠(𝐶∣𝐷𝜎𝑢𝑟∣+ ∣𝑓 0
𝑟 ∣)(𝐶∣𝐷𝜎𝑢𝑠∣+ ∣𝑓0

𝑠 ∣)]𝑑𝑟𝑑𝑠.

Since ∫ 𝑇

𝑡

∫ 𝑇

𝑠

𝑃𝑠−𝑡[𝑃𝑟−𝑠(𝐶∣𝐷𝜎𝑢𝑟∣+ ∣𝑓0
𝑟 ∣)(𝐶∣𝐷𝜎𝑢𝑠∣+ ∣𝑓0

𝑠 ∣)]𝑑𝑟𝑑𝑠

≤1

2

∫ 𝑇

𝑡

∫ 𝑇

𝑠

[𝑃𝑠−𝑡(𝐶∣𝐷𝜎𝑢𝑠∣+ ∣𝑓0
𝑠 ∣)2] + 𝑃𝑠−𝑡[(𝑃𝑟−𝑠(𝐶∣𝐷𝜎𝑢𝑟∣+ ∣𝑓0

𝑟 ∣))2]𝑑𝑟𝑑𝑠

≤
∫ 𝑇

𝑡

∫ 𝑇

𝑠

𝐶2𝑃𝑠−𝑡∣𝐷𝜎𝑢𝑠∣2 + 𝑃𝑠−𝑡∣𝑓 0
𝑠 ∣2 +

1

2
𝑃𝑟−𝑡(𝐶∣𝐷𝜎𝑢𝑟∣+ ∣𝑓 0

𝑟 ∣)2𝑑𝑟𝑑𝑠

≤2𝐶2(𝑇 − 𝑡)

∫ 𝑇

𝑡

𝑃𝑠−𝑡∣𝐷𝜎𝑢𝑠∣2𝑑𝑠+ 2(𝑇 − 𝑡)

∫ 𝑇

𝑡

𝑃𝑠−𝑡∣𝑓 0
𝑠 ∣2𝑑𝑠,

and by Schwartz’s inequality one has∫ 𝑇

𝑡

∫ 𝑇

𝑠

𝑃𝑠−𝑡(∣𝐷𝜎𝑢𝑠∣𝑃𝑟−𝑠∣𝐷𝜎𝑢𝑟∣)𝑑𝑟𝑑𝑠

≤
∫ 𝑇

𝑡

∫ 𝑇

𝑠

1

2
(𝑃𝑠−𝑡∣𝐷𝜎𝑢𝑠∣2)𝑑𝑟𝑑𝑠+

∫ 𝑇

𝑡

∫ 𝑇

𝑠

1

2
(𝑃𝑟−𝑡∣𝐷𝜎𝑢𝑟∣2)𝑑𝑟𝑑𝑠

≤(𝑇 − 𝑡)

∫ 𝑇

𝑡

𝑃𝑠−𝑡∣𝐷𝜎𝑢𝑠∣2𝑑𝑠,

we conclude

∣𝑢𝑡∣2 + 2

∫ 𝑇

𝑡

𝑃𝑠−𝑡(∣𝐷𝜎𝑢𝑠∣2)𝑑𝑠

≤3𝑃𝑇−𝑡∣𝜙∣2 + 6𝐶2(𝑇 − 𝑡)

∫ 𝑇

𝑡

𝑃𝑠−𝑡∣𝐷𝜎𝑢𝑠∣2𝑑𝑠+ 6(𝑇 − 𝑡)

∫ 𝑇

𝑡

𝑃𝑠−𝑡∣𝑓 0
𝑠 ∣2𝑑𝑠.

So we can deduce by iteration the estimate over the interval [0, 𝑇 ] and obtain

∣𝑢𝑡∣2 ≤ sup
𝑡∈[0,𝑇 ]

sup
𝑥∈ℝ𝑑

�̃�(𝑃𝑇−𝑡∣𝜙∣2 + (𝑇 − 𝑡)

∫ 𝑇

𝑡

𝑃𝑠−𝑡∣𝑓 0
𝑠 ∣2𝑑𝑠)

≤ sup
𝑡∈[0,𝑇 ]

�̃�(∥𝜙2∥∞ + 𝑇 2∥𝑓 0∥2∞)

≤𝐾2(∥𝜙∥2∞ + ∥𝑓 0∥2∞),

which implies (2.2.5). □

By the same methods as in [BPS05, Theorem 3.2], we obtain the following results.

As the method is similar as in the proof of [BPS05, Theorem 3.2], we will give the
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proof in the Appendix A.

Theorem 2.2.8 Suppose that𝑚(𝑑𝑥) is a finite measure and that conditions (A1)-

(A4), (H1)-(H5) hold. Then there exists a unique generalized solution of equation

(2.2.1) and it satisfies the following estimates for some 𝐾1 and 𝐾2 independent of

𝑢, 𝜙, 𝑓

∥𝑢∥2𝑇 ≤ 𝐾1(∥𝜙∥22 +
∫ 𝑇

0

∥𝑓0
𝑡 ∥22𝑑𝑡).

∥𝑢∥∞ ≤ 𝐾2(∥𝜙∥∞ + ∥𝑓0∥∞).

The following lemma is essential to the case that 𝑚(𝑑𝑥) = 𝑑𝑥.

Lemma 2.2.9 Assume conditions (A1)-(A4),(H1)-(H5) hold. If 𝑢 ∈ 𝐹 is bounded

and for 𝜑 ∈ 𝑏𝒞𝑇 satisfies∫ 𝑇

0

ℰ(𝑢𝑡, 𝜑𝑡) + (𝑢𝑡, ∂𝑡𝜑𝑡)𝑑𝑡 =

∫ 𝑇

0

(𝑓𝑡(𝑢𝑡, 𝐷𝜎𝑢𝑡), 𝜑𝑡)𝑑𝑡+ (𝑢𝑇 , 𝜑𝑇 )− (𝑢0, 𝜑0).

Then we have

∥𝑢𝑡∥22+2

∫ 𝑇

𝑡

ℰ𝑎,�̂�(𝑢𝑠)𝑑𝑠 ≤ 2

∫ 𝑇

𝑡

(𝑓𝑠(𝑢𝑠, 𝐷𝜎𝑢𝑠), 𝑢𝑠)𝑑𝑠+∥𝜙∥22+2𝛼

∫ 𝑇

𝑡

∥𝑢𝑠∥22𝑑𝑠, 0 ≤ 𝑡 ≤ 𝑇.

Proof Define 𝑢ℎ𝑡 = 1
2ℎ

∫ 𝑡+ℎ

𝑡−ℎ
𝑢𝑠𝑑𝑠. Choose 𝜙𝑡 = 𝑢ℎ𝑡 , then we have for 𝑡0 ∈ [0, 𝑇 ]

∫ 𝑇

𝑡0

ℰ(𝑢𝑡, 𝑢ℎ𝑡 )+
1

2ℎ
(𝑢𝑡, 𝑢𝑡+ℎ)− 1

2ℎ
(𝑢𝑡, 𝑢𝑡−ℎ)𝑑𝑡 =

∫ 𝑇

𝑡0

(𝑓𝑡(𝑢𝑡, 𝐷𝜎𝑢𝑡), 𝑢
ℎ
𝑡 )𝑑𝑡+(𝑢𝑇 , 𝑢

ℎ
𝑇 )−(𝑢𝑡0 , 𝑢

ℎ
𝑡0
).

That is to say,

(2.2.7)

1

2ℎ

∫ 𝑇

𝑇−ℎ

(𝑢𝑡, 𝑢𝑡+ℎ)𝑑𝑡− 1

2ℎ

∫ 𝑡0

𝑡0−ℎ

(𝑢𝑡, 𝑢𝑡+ℎ)𝑑𝑡+

∫ 𝑇

𝑡0

ℰ(𝑢𝑡, 𝑢ℎ𝑡 )𝑑𝑡

=

∫ 𝑇

𝑡0

(𝑓𝑡(𝑢𝑡, 𝐷𝜎𝑢𝑡), 𝑢
ℎ
𝑡 )𝑑𝑡+ (𝑢𝑇 , 𝑢

ℎ
𝑇 )− (𝑢𝑡0 , 𝑢

ℎ
𝑡0
).

Letting ℎ→ 0 in (2.2.7), the assertion follows . □

For the case 𝑚(𝑑𝑥) = 𝑑𝑥, we will use a weight function of the form 𝜋(𝑥) =

exp[−𝜌𝜃(𝑥)], with 𝜃 ∈ 𝐶1(ℝ𝑑) being a fixed function such that 0 ≤ 𝜃(𝑥) ≤ ∣𝑥∣, and
𝜃(𝑥) = ∣𝑥∣ if ∣𝑥∣ ≥ 1, and 𝜌 ∈ ℝ+. If one chooses 𝜌 > 0, then clearly one has

𝑚(ℝ𝑑) < ∞. We denote the generalized Dirichlet form, function spaces and the

generator associated with 𝜌 > 0 by ℰ𝜌, 𝐹 𝜌, 𝒞𝜌
𝑇 , 𝐿𝜌 respectively. In the case 𝜌 = 0,

we drop 𝜌 in the notation, i.e. ℰ = ℰ0. And for the case 𝜌 = 0, we need the following
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condition.

(A2’) (Sobolev inequality) For 𝜌 = 0, 𝜎 is a bounded measurable field in ℝ𝑑 and

∥𝑢∥𝑞 ≤ 𝐶ℰ𝑎(𝑢, 𝑢)1/2, ∀𝑢 ∈ 𝐶∞
0 (ℝ𝑑),

where 1
𝑞
+ 1

𝑑
= 1

2
and ∥ ⋅ ∥𝑞 denotes the usual norm in 𝐿𝑞. And ∣�̂�𝜎∣ ∈ 𝐿𝑑(ℝ𝑑; 𝑑𝑥) +

𝐿∞(ℝ𝑑; 𝑑𝑥), 𝑐 ∈ 𝐿𝑑/2(ℝ𝑑; 𝑑𝑥) + 𝐿∞(ℝ𝑑; 𝑑𝑥).

If (A2’), (A3) are satisfied, for 𝑢, 𝑣 ∈ 𝑏𝐹 , we have

ℰ𝜌(𝑢, 𝑣) =

∫
⟨𝐷𝜎𝑢,𝐷𝜎𝑣⟩𝑑𝑚+

∫
𝑐𝑢𝑣𝑑𝑚+

∫
⟨(𝑏𝜎 + �̂�𝜎,𝐷𝜎𝑢⟩𝑣𝑑𝑚.

If 𝜌 = 0, we additionally have

ℰ𝑎,�̂�(𝑢, 𝑢) ≤ 𝐶ℰ𝑎
1 (𝑢, 𝑢),

and that 𝐹 = 𝐹 𝑎. We consider the following condition,which is a technical condition

for our proof:

(H6). ℰ𝑎(𝑢) <∞, 𝑢 ∈ 𝐿2 ⇒ 𝑢 ∈ 𝐹.

The Sobolev inequality and (H6) are satisfied if 𝑎 is uniformly elliptic. By [S09,

Lemma 4.20] we have:

Lemma 2.2.10 Assume conditions (A2’), (A3) and (H6) hold. Let 𝜌 > 0. Then

it holds

ℰ𝜌(𝑢, 𝜑) = ℰ(𝑢, 𝜑 exp(−𝜃𝜌)) + (𝑀𝜌𝑢, 𝜑)𝜌,

for 𝑢 ∈ 𝐹𝜌, 𝜑 ∈ 𝑏𝐹𝜌, where 𝑀𝜌𝑢 = 𝜌⟨𝐷𝜎𝜃,𝐷𝜎𝑢⟩.

Theorem 2.2.11 Suppose that𝑚(𝑑𝑥) = 𝑑𝑥 and that the conditions (A1),(A2’),(A3),

(A4) (H1)-(H5), (H6) hold. Then there exists a unique generalized solution of equa-

tion (2.2.1) and it satisfies the following estimates with constants 𝐾1 and 𝐾2 inde-

pendent of 𝑢, 𝜙, 𝑓

∥𝑢∥2𝑇 ≤ 𝐾1(∥𝜙∥22 +
∫ 𝑇

0

∥𝑓0
𝑡 ∥22𝑑𝑡).

∥𝑢∥∞ ≤ 𝐾2(∥𝜙∥∞ + ∥𝑓0∥∞).
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Proof Set for 𝜌 > 0

𝑓𝜌(𝑡, 𝑥, 𝑦, 𝑧) := 𝑓(𝑡, 𝑥, 𝑦, 𝑧) + 𝜌
𝑘∑

𝑙=1

𝑑∑
𝑖=1

𝜎𝑖
𝑙(𝑥)∂𝑖𝜃(𝑥)𝑧𝑙(𝑥),

and consider

(2.2.8) (∂𝑡 + 𝐿𝜌)𝑢+ 𝑓𝜌(𝑢,𝐷𝜎𝑢) = 0, 𝑢𝑇 = 𝜙.

The associated weak equation has the form ∀𝜑 ∈ 𝑏𝒞𝜌
𝑇

(2.2.9)∫ 𝑇

0

ℰ𝜌(𝑢𝑡, 𝜑𝑡) + (𝑢𝑡, ∂𝑡𝜑𝑡)𝜌𝑑𝑡 =

∫ 𝑇

0

(𝑓𝜌
𝑡 (𝑢𝑡, 𝐷𝜎𝑢𝑡), 𝜑𝑡)𝜌𝑑𝑡+ (𝑢𝑇 , 𝜑𝑇 )𝜌 − (𝑢0, 𝜑0)𝜌.

As 𝑓𝜌 satisfies conditions (H1)-(H5), we have a generalized solution 𝑢𝜌 of (2.2.8).

Fix 𝜌 > 0 and take 𝑓𝑛 ∈ 𝐶∞
0 (ℝ𝑑) such that 𝑓𝑛(𝑥) = 1 for 𝑥 ∈ 𝐵𝑛(0), 𝑓𝑛(𝑥) = 0

for 𝑥 ∈ 𝐵𝑐
2𝑛(0), ∂𝑥𝑖

𝑓𝑛(𝑥) are uniformly bounded and ∂𝑥𝑖
𝑓𝑛(𝑥) → 0 as 𝑛 → ∞. If

𝜑 ∈ 𝑏𝒞𝑇 , then 𝜑𝑓𝑛 exp(𝜃𝜌) ∈ 𝑏𝒞𝜌
𝑇 . As∫ 𝑇

0

ℰ𝜌(𝑢𝜌𝑡 , 𝜑𝑡𝑓𝑛 exp(𝜃𝜌)) + (𝑢𝜌𝑡 , ∂𝑡𝜑𝑡𝑓𝑛)𝑑𝑡

=

∫ 𝑇

0

(𝑓𝜌
𝑡 (𝑢

𝜌
𝑡 , 𝐷𝜎𝑢

𝜌
𝑡 ), 𝑓𝑛𝜑𝑡)𝑑𝑡+ (𝑢𝜌𝑇 , 𝑓𝑛𝜑𝑇 )− (𝑢𝜌0, 𝑓𝑛𝜑0),

by Lemma 2.2.10 we have

(2.2.10)∫ 𝑇

0

ℰ(𝑢𝜌𝑡 , 𝜑𝑡𝑓𝑛)+(𝑢𝜌𝑡 , ∂𝑡𝜑𝑡𝑓𝑛)𝑑𝑡 =

∫ 𝑇

0

(𝑓𝑡(𝑢
𝜌
𝑡 , 𝐷𝜎𝑢

𝜌
𝑡 ), 𝑓𝑛𝜑𝑡)𝑑𝑡+(𝑢𝜌𝑇 , 𝑓𝑛𝜑𝑇 )−(𝑢𝜌0, 𝑓𝑛𝜑0).

If 𝑢 ∈ 𝐹�̃� satisfies (2.2.10) for fixed �̃� with test function 𝜑 ∈ 𝑏𝒞𝑇 , then 𝑢 satisfies

(2.2.9) for 𝜌 ≥ �̃�, with test functions 𝜑 where 𝜑 ∈ 𝑏𝒞𝜌
𝑇 .

Now fix 𝜌1 > 0. Then there exists a solution 𝑢𝜌1 of (2.2.8) associated to 𝜌1. We

conclude that 𝑢𝜌1 satisfies the weak equation (2.2.9) for all 𝜌 > 𝜌1 with 𝜑 ∈ 𝑏𝒞𝜌
𝑇 .

Then by Lemma 2.2.9 and the same arguments as the uniqueness proof of Theorem

2.2.8 we have 𝑢𝜌1 = 𝑢𝜌 for all 𝜌 > 𝜌1.

Finally, we deduce that a solution 𝑢�̃� of (2.2.8) associated to �̃� is a solution of

(2.2.8) for all 𝜌 > 0. Then by Theorem 2.2.8, we have

∥𝑢�̃�∥2𝑇,𝜌 ≤ 𝐾1(∥𝜙∥22,𝜌 +
∫ 𝑇

0

∥𝑓 0
𝑡 ∥22,𝜌𝑑𝑡).
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Letting 𝜌→ 0, by Fatou’s Lemma, we obtain

∥𝑢�̃�∥2𝑇 = lim
𝜌→0

∥𝑢�̃�∥2𝑇,𝜌

≤ lim
𝜌→0

𝐾1(∥𝜙∥22,𝜌 +
∫ 𝑇

0

∥𝑓 0
𝑡 ∥22,𝜌𝑑𝑡)

= 𝐾1(∥𝜙∥22 +
∫ 𝑇

0

∥𝑓 0
𝑡 ∥22𝑑𝑡),

and

∥𝑢�̃�∥∞ ≤ 𝐾2(∥𝜙∥∞ + ∥𝑓0∥∞).

By (H6), we have 𝑢�̃� ∈ 𝐿2((0, 𝑇 ), 𝐹 ). For 𝑢�̃� ∈ 𝐹 𝜌 for 𝜌 > 0, we obtain for any

ℎ𝑛 → 0,

∥𝑢�̃�𝑡+ℎ𝑛
− 𝑢�̃�𝑡∥2,𝜌 → 0.

Then there exists a subsequence such that 𝑢�̃�𝑡+ℎ𝑛𝑘
→ 𝑢�̃�𝑡 for 𝑚𝜌-almost every 𝑥.

Hence, 𝑢�̃�𝑡+ℎ𝑛𝑘
→ 𝑢�̃�𝑡 for 𝑑𝑥-almost every 𝑥. Then by the same arguments as the

proof of Lemma 2.2.9, we have

∣∥𝑢�̃�𝑡∥22,𝜌 − ∥𝑢�̃�𝑡+ℎ∥22,𝜌∣ ≤2[∣
∫ 𝑡+ℎ

𝑡

(𝑢�̃�𝑠, 𝑓
𝜌
𝑠 )𝜌𝑑𝑠∣+ ∣

∫ 𝑡+ℎ

𝑡

ℰ𝑎,�̂�(𝑢�̃�𝑠)𝑑𝑠∣+ 𝛼

∫ 𝑡+ℎ

𝑡

∥𝑢�̃�𝑠∥22,𝜌𝑑𝑠]

≤𝑀
∫ 𝑡+ℎ

𝑡

∥𝑓𝑠∥2,𝜌𝑑𝑠+𝑀

∫ 𝑡+ℎ

𝑡

ℰ𝑎,�̂�
𝑐2+1(𝑢

�̃�
𝑠)𝑑𝑠.

Letting 𝜌→ 0, we get

∣∥𝑢�̃�𝑡∥22 − ∥𝑢�̃�𝑡+ℎ∥22∣ ≤𝑀

∫ 𝑡+ℎ

𝑡

∥𝑓𝑠∥2𝑑𝑠+𝑀

∫ 𝑡+ℎ

𝑡

ℰ𝑎,�̂�
𝑐2+1(𝑢

�̃�
𝑠)𝑑𝑠.

Hence we have 𝑢�̃�𝑡+ℎ𝑛𝑘
→ 𝑢�̃�𝑡 in 𝐿

2(ℝ𝑑, 𝑑𝑥). Since this reason holds for every sequence

ℎ𝑛 → 0, we have 𝑢�̃� ∈ 𝒞([0, 𝑇 ], 𝐿2), hence 𝑢�̃� ∈ 𝐹 . By the above arguments, we

deduce that∫ 𝑇

0

ℰ(𝑢�̃�𝑡 , 𝜑𝑡𝑓𝑛)+(𝑢�̃�𝑡 , ∂𝑡𝜑𝑡𝑓𝑛)𝑑𝑡 =

∫ 𝑇

0

(𝑓𝑡(𝑢
�̃�
𝑡 , 𝐷𝜎𝑢

�̃�
𝑡 ), 𝑓𝑛𝜑𝑡)𝑑𝑡+(𝑢�̃�𝑇 , 𝑓𝑛𝜑𝑇 )−(𝑢�̃�0, 𝑓𝑛𝜑0).

Letting 𝑛→ ∞, we conclude that∫ 𝑇

0

ℰ(𝑢�̃�𝑡 , 𝜑𝑡) + (𝑢�̃�𝑡 , ∂𝑡𝜑𝑡)𝑑𝑡 =

∫ 𝑇

0

(𝑓𝑡(𝑢
�̃�
𝑡 , 𝐷𝜎𝑢

�̃�
𝑡 ), 𝜑𝑡)𝑑𝑡+ (𝑢�̃�𝑇 , 𝜑𝑇 )− (𝑢�̃�0, 𝜑0).

Since 𝑓𝑡(𝑢
�̃�
𝑡 , 𝐷𝜎𝑢

�̃�
𝑡 ) ∈ 𝐿1([0, 𝑇 ];𝐿2), we can choose (𝑓𝑛)𝑛∈ℕ ⊂ 𝐶∞

0 ([0, 𝑇 ]×ℝ𝑑) such

that
∫ 𝑇

0
∥𝑓𝑛

𝑡 − 𝑓𝑡(𝑢
�̃�
𝑡 , 𝐷𝜎𝑢

�̃�
𝑡 )∥2𝑑𝑡 → 0. Let 𝑣𝑛 be the generalized solution associated
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with (𝑓𝑛, 𝜙). Then 𝑣𝑛 is bounded. For

𝑣𝑡 := 𝑃𝑇−𝑡𝜙(𝑥) +

∫ 𝑇

𝑡

𝑃𝑠−𝑡𝑓(𝑠, ⋅, 𝑢�̃�𝑠, 𝐷𝜎𝑢
�̃�
𝑠)(𝑥)𝑑𝑠,

we have ∥𝑣𝑛 − 𝑣∥𝑇 → 0. On the other hand, by Lemma 2.2.9 we have

∥𝑢�̃�𝑡 − 𝑣𝑛𝑡 ∥22 + 2

∫ 𝑇

𝑡

ℰ𝑎,�̂�(𝑢�̃�𝑠 − 𝑣𝑛𝑠 )𝑑𝑠

≤2

∫ 𝑇

𝑡

(𝑓𝑠(𝑢
�̃�
𝑠, 𝐷𝜎𝑢

�̃�
𝑠)− 𝑓𝑛

𝑠 , 𝑢
�̃�
𝑠 − 𝑣𝑛𝑠 )𝑑𝑠+ 2𝛼

∫ 𝑇

𝑡

∥𝑢�̃�𝑠 − 𝑣𝑛𝑠 ∥22𝑑𝑠

≤2𝑀

∫ 𝑇

𝑡

∥𝑓𝑠(𝑢�̃�𝑠, 𝐷𝜎𝑢
�̃�
𝑠)− 𝑓𝑛

𝑠 ∥2𝑑𝑠+ 2𝛼

∫ 𝑇

𝑡

∥𝑢�̃�𝑠 − 𝑣𝑛𝑠 ∥22𝑑𝑠.

By Gronwall’s lemma we obtain ∥𝑣𝑛 − 𝑢�̃�∥𝑇 → 0, as 𝑛 → ∞. Therefore, we have

𝑢�̃�𝑡 = 𝑣𝑡. That is to say 𝑢�̃� is a mild solution of (2.2.1). □

2.3 Martingale representation for the processes

The Brownian motion has the martingale representation property : any martingale

with respect to the filtration generated by the Brownian motion can be expressed

as an Itô integral against the Brownian motion. In classic case, this property is

essential to the existence of the solution of a BSDE.

The martingale representation property of a family of martingales has been stud-

ied in a huge of literature. Several general results have been obtained, for example,

Jacod and Yor [JY77] have discovered the equivalence between the martingale rep-

resentation property and the extremal property of martingale measures. However,

when applied to specific situation, further work and hard estimates are often re-

quired. Recently, a lot of work (see e.g. [BPS05], [QY10], [Zh]) extend the martin-

gale representation property to Markov processes associated with Dirichlet forms. In

this section, we extend the martingale representation theorem under the framework

of generalized Dirichlet forms.

2.3.1 Representation under 𝑃 𝑥

In order to obtain the results for the probabilistic part, we need ℰ to be a quasi-

regular generalized Dirichlet form (Definition 1.3) in the sense of Remark 2.1.1 (iii)

with 𝑐2, 𝑐 ≡ 0 and 𝑐 ≡ 0. The Markov process 𝑋 = (Ω,ℱ∞,ℱ𝑡, 𝑋𝑡, 𝑃
𝑥) with shift

operator (𝜃𝑡)𝑡≥0 is properly associated in the resolvent sense with ℰ , i.e. 𝑅𝛼𝑓 :=

𝐸𝑥
∫∞
0
𝑒−𝛼𝑡𝑓(𝑋𝑡)𝑑𝑡 is an ℰ-quasi-continuous 𝑚-version of 𝐺𝛼𝑓 , where 𝐺𝛼, 𝛼 > 0
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is the resolvent of ℰ and 𝑓 ∈ ℬ𝑏(ℝ𝑑) ∩ 𝐿2(ℝ𝑑;𝑚). The coform ℰ̂ introduced in

Section 1.1 is a generalized Dirichlet form with the associated resolvent (�̂�𝛼)𝛼>0 and

there exists an 𝑚-tight special standard process properly associated in the resolvent

sense with ℰ̂ . We always assume that (ℱ𝑡)𝑡≥0 is the (universally completed) natural

filtration of 𝑋𝑡. From now on, we obtain all the results under the above assumption.

For the concepts related to additive functionals that we used in this section, we

refer to Section 1.2. We consider the following conditions:

(A5) 𝑋 is a continuous conservative Hunt process in the state space ℝ𝑑 ∪ {∂}.
�̂�𝛼 is strongly continuous on 𝒱 and ℰ̂ is quasi-regular. 𝐶∞

0 (ℝ𝑑) ⊂ ℱ and for 𝑢 ∈ ℱ ,

there exists a sequence {𝑢𝑛} ⊂ 𝐶∞
0 (ℝ𝑑) such that ℰ(𝑢𝑛 − 𝑢, 𝑢𝑛 − 𝑢) → 0, 𝑛 → ∞.

𝐹𝑘 := {𝑥 ∈ ℝ𝑑, ∣𝑥∣ ≤ 𝑘} is an ℰ-nest (Definition 1.2).

Remark 2.3.1 The last two conditions in (A5) are satisfied if 𝐶∞
0 (ℝ𝑑) is dense

in ℱ . It is easy to verify the condition (A5), if ℰ satisfies the weak sector condition.

The following two examples satisfy (A5) and they don’t satisfy the weak sector

condition.

Example 2.3.2 Consider 𝑏 = (𝑏𝑖) : ℝ𝑑 → ℝ𝑑 be a Borel-measurable vector field.

Let us define

𝐿𝑢 = Δ𝑢+ ⟨𝑏,∇𝑢⟩, ∀𝑢 ∈ 𝐶∞
𝑏 (ℝ𝑑).

Assume that

lim
∣𝑥∣→∞

⟨𝑏(𝑥), 𝑥⟩ = −∞,

and that there exist 𝐶1, 𝐶2,𝑚 ∈ [0,∞) such that

∣𝑏(𝑥)∣ ≤ 𝐶1 + 𝐶2∣𝑥∣𝑚 𝑥 ∈ ℝ𝑑.

Then by [BR95, Theorem 5.3], there exists a probability measure 𝜇 on ℝ𝑑 such

that ∫
ℝ𝑑

𝐿𝑢𝑑𝜇 = 0 ∀𝑢 ∈ 𝐶∞
𝑏 (ℝ𝑑)

and

𝑏 ∈ 𝐿2(𝜇).

By [BR95, Theorem 3.1] we have 𝑑𝜇 is absolutely continuous w.r.t. 𝑑𝑥 and the

density admits a representation 𝜑2, where 𝜑 ∈ 𝐻1,2(ℝ𝑑, 𝑑𝑥). The closure of

ℰ0(𝑢, 𝑣) =
1

2

∫
⟨∇𝑢,∇𝑣⟩𝑑𝜇; 𝑢, 𝑣 ∈ 𝐶∞

0 (ℝ𝑑),



56 Chapter 2. BSDE and generalized Dirichlet form: finite dimensional case

on 𝐿2(ℝ𝑑, 𝜇) is a Dirichlet form. Denote 𝑏0 := 2∇𝜑/𝜑 and 𝛽 := 𝑏−𝑏0. Then we have

𝛽 ∈ 𝐿2(ℝ𝑑;ℝ𝑑, 𝜇). Then by [St1, Proposition 1.10 and Proposition 2.4] (𝐿,𝐶∞
0 (ℝ𝑑))

is 𝐿1-unique. Then by the proof of [St1, Proposition 2.4] for 𝑢 ∈ 𝑏ℱ there exists a

sequence {𝑢𝑛} ⊂ 𝐶∞
0 (ℝ𝑑) such that ℰ(𝑢𝑛 − 𝑢, 𝑢𝑛 − 𝑢) → 0, 𝑛→ ∞.

Consider the bilinear form

ℰ(𝑢, 𝑣) = 1

2

∫
⟨∇𝑢,∇𝑣⟩𝑑𝜇−

∫
⟨1
2
𝛽,∇𝑢⟩𝑣𝑑𝜇 𝑢, 𝑣 ∈ 𝐶∞

0 (ℝ𝑑).

Then by the computation in [Tr2, Section 4d] we have that conditions (A1)-(A5)

hold for the bilinear form ℰ .

Example 2.3.3 Consider 𝑑 ≥ 2, 𝐴 = (𝑎𝑖𝑗) a Borel-measurable mapping on ℝ𝑑

with values in the non-negative symmetric matrices on ℝ𝑑, and let 𝑏 = (𝑏𝑖) : ℝ𝑑 → ℝ𝑑

be a Borel-measurable vector field. Consider the operator

𝐿𝐴,𝑏𝜓 = ∂𝑖(𝑎
𝑖𝑗∂𝑗𝜓) + 𝑏𝑖∂𝑖𝜓, ∀𝜓 ∈ 𝐶∞

0 (ℝ𝑑),

where we use the standard summation rule for repeated indices. By 𝐻1,𝑝(ℝ𝑑, 𝑑𝑥) we

denote the standard Sobolev space of functions on ℝ𝑑 whose first order derivatives

are in 𝐿𝑝(ℝ𝑑, 𝑑𝑥). Assume that for 𝑝 > 𝑑

(C1)𝑎𝑖𝑗 ∈ 𝐻1,𝑝
loc (ℝ𝑑, 𝑑𝑥), (𝑎𝑖𝑗) is uniformly strictly elliptic in ℝ𝑑.

(C2)𝑏𝑖 ∈ 𝐿𝑝
loc(ℝ𝑑, 𝑑𝑥).

Here by 𝐻1,𝑝
𝑙𝑜𝑐 (ℝ𝑑, 𝑑𝑥) we denote the class of all functions 𝑓 on ℝ𝑑 such that

𝑓𝜒 ∈ 𝐻1,𝑝(ℝ𝑑, 𝑑𝑥) for all 𝜒 ∈ 𝐶∞
0 (ℝ𝑑). And 𝐿𝑝

loc(ℝ𝑑, 𝑑𝑥) denotes the class of all

functions 𝑓 on ℝ𝑑 such that 𝑓𝜒 ∈ 𝐿𝑝(ℝ𝑑) for all 𝜒 ∈ 𝐶∞
0 (ℝ𝑑). Assume that there

exists 𝑉 ∈ 𝐶2(ℝ𝑑) (”Lyapunov function”) such that

lim
∣𝑥∣→∞

𝑉 (𝑥) = +∞, lim
∣𝑥∣→∞

𝐿𝐴,𝑏𝑉 (𝑥) = −∞.

Examples of 𝑉 can be found in [BRS00] and the reference therein.

Then by [BRS00, Theorem 2.2] there exists a probability measure 𝜇 on ℝ𝑑 such

that ∫
ℝ𝑑

𝐿𝐴,𝑏𝜓𝑑𝜇 = 0 ∀𝜓 ∈ 𝐶∞
0 (ℝ𝑑).

Then by [BRS00, Theorem 2.1] we have 𝑑𝜇 is absolutely continuous w.r.t. 𝑑𝑥

and that the density admits a representation 𝜑2, where 𝜑2 ∈ 𝐻1,𝑝
𝑙𝑜𝑐 (ℝ𝑑, 𝑑𝑥). The

closure of

ℰ0(𝑢, 𝑣) =
1

2

∫
⟨∇𝑢𝑎,∇𝑣⟩𝑑𝜇; 𝑢, 𝑣 ∈ 𝐶∞

0 (ℝ𝑑),
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on 𝐿2(ℝ𝑑, 𝜇) is a Dirichlet form.

If in addition, there is a positive Borel function 𝜃 on [0,∞) such that lim𝑡→∞ 𝜃(𝑡) =

+∞ and

𝐿𝐴,𝑏𝑉 (𝑥) ≤ 𝑐1 − 𝑐2𝜃(∣𝑏𝐴− 1
2 ∣)∣𝑏𝐴− 1

2 ∣2

outside some ball, then by [BKR06, Theorem 2.6] 𝑏 ∈ 𝐿2(ℝ𝑑;ℝ𝑑, 𝜇). Set 𝑏0 =

(𝑏01, ..., 𝑏
0
𝑑), where 𝑏

0
𝑖 := 2

∑𝑑
𝑗=1 𝑎

𝑖𝑗∂𝑗𝜑/𝜑, 𝑖 = 1, ..., 𝑑and 𝛽 := 𝑏 − 𝑏0. By [BKR06,

Theorem 2.6] 𝛽 ∈ 𝐿2(ℝ𝑑;ℝ𝑑, 𝜇). Then by [St1, Proposition 1.10 and Proposition 2.4]

(𝐿,𝐶∞
0 (ℝ𝑑)) is 𝐿1-unique. Then by the proof of [St1, Proposition 2.4] for 𝑢 ∈ 𝑏ℱ

there exists a sequence {𝑢𝑛} ⊂ 𝐶∞
0 (ℝ𝑑) such that ℰ(𝑢𝑛 − 𝑢, 𝑢𝑛 − 𝑢) → 0, 𝑛→ ∞.

Consider the bilinear form

ℰ(𝑢, 𝑣) = 1

2

∫
⟨∇𝑢𝑎,∇𝑣⟩𝑑𝜇−

∫
⟨1
2
𝛽,∇𝑢⟩𝑣𝑑𝜇 𝑢, 𝑣 ∈ 𝐶∞

0 (ℝ𝑑).

Then by the computation in [Tr2, Section 4d] we have that conditions (A1)-(A5)

hold for the bilinear form ℰ .

For an initial distribution 𝜇 ∈ 𝒫(ℝ𝑑), here 𝒫(ℝ𝑑) denotes all the probabilities

on ℝ𝑑, we prove the Fukushima reprensentation property mentioned in [QY10] holds

for 𝑋, i.e. there is an algebra 𝐾(ℝ𝑑) ⊂ ℬ𝑏(ℝ𝑑) which generates the Borel 𝜎-algebra

ℬ(ℝ𝑑) and is invariant under 𝑅𝛼 for 𝛼 > 0, and there are finitely many continuous

martingales 𝑀1, ...,𝑀𝑑 over (Ω,ℱ𝜇,ℱ𝜇
𝑡 , 𝑃

𝜇) such that for any potential 𝑢 = 𝑅𝛼𝑓 ,

where 𝛼 > 0 and 𝑓 ∈ 𝐾(ℝ𝑑), the martingale part 𝑀 [𝑢] of the semimartingale

𝑢(𝑋𝑡) − 𝑢(𝑋0) has the martingale representation in terms of (𝑀1, ...,𝑀𝑑), that is,

there are predictable processes 𝐹1, ..., 𝐹𝑑 on (Ω,ℱ𝜇,ℱ𝜇
𝑡 ) such that

𝑀
[𝑢]
𝑡 =

𝑑∑
𝑗=1

∫ 𝑡

0

𝐹 𝑗
𝑠 𝑑𝑀

𝑗
𝑠 𝑃 𝜇 − 𝑎.𝑠..

Let us first calculate the energy measure related to ⟨𝑀 [𝑢]⟩, 𝑢 ∈ 𝐶∞
0 (ℝ𝑑). By [Tr2,

(23)], for bounded 𝑔 ∈ 𝐿1(ℝ𝑑,𝑚), we have∫
�̂�𝛾𝑔𝑑𝜇⟨𝑀 [𝑢]⟩

= lim
𝛼→∞

𝛼(𝑈𝛼+𝛾

⟨𝑀 [𝑢]⟩1, �̂�𝛾𝑔)

= lim
𝛼→∞

lim
𝑡→∞

𝐸�̂�𝛾𝑔⋅𝑚(𝛼𝑒
−(𝛾+𝛼)𝑡⟨𝑀 [𝑢]⟩𝑡) + lim

𝛼→∞
𝐸�̂�𝛾𝑔⋅𝑚(

∫ ∞

0

⟨𝑀 [𝑢]⟩𝑡𝛼(𝛾 + 𝛼)𝑒−(𝛾+𝛼)𝑡𝑑𝑡)

= lim
𝛼→∞

lim
𝑡→∞

𝛼⟨𝜇⟨𝑀 [𝑢]⟩, 𝑒
−(𝛾+𝛼)𝑡

∫ 𝑡

0

𝑃𝑠�̂�𝛾𝑔𝑑𝑠⟩
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+ lim
𝛼→∞

𝛼(𝛾 + 𝛼)(

∫ ∞

0

𝑒−(𝛾+𝛼)𝑡𝐸�̂�𝛾𝑔⋅𝑚((𝑢(𝑋𝑡)− 𝑢(𝑋0)−𝑁
[𝑢]
𝑡 )2)𝑑𝑡)

= lim
𝛼→∞

𝛼(𝛾 + 𝛼)(

∫ ∞

0

𝑒−(𝛾+𝛼)𝑡𝐸�̂�𝛾𝑔⋅𝑚((𝑢(𝑋𝑡)− 𝑢(𝑋0))
2)𝑑𝑡)

= lim
𝛼→∞

2𝛼(𝑢− 𝛼𝐺𝛼𝑢, 𝑢�̂�𝛾𝑔)− 𝛼(𝑢2, �̂�𝛾𝑔 − 𝛼�̂�𝛼�̂�𝛾𝑔)

=2(−𝐿𝑢, 𝑢�̂�𝛾𝑔)− (−𝐿𝑢2, �̂�𝛾𝑔)

=2ℰ(𝑢, 𝑢�̂�𝛾𝑔)− ℰ(𝑢2, �̂�𝛾𝑔)

=2ℰ𝑎,�̂�(𝑢, 𝑢�̂�𝛾𝑔)− ℰ𝑎,�̂�(𝑢2, �̂�𝛾𝑔) + 2

∫
⟨𝑏𝜎,𝐷𝜎𝑢⟩𝑢�̂�𝛾𝑔𝑚(𝑑𝑥)−

∫
⟨𝑏𝜎,𝐷𝜎𝑢

2⟩�̂�𝛾𝑔𝑚(𝑑𝑥)

=2ℰ𝑎(𝑢, 𝑢�̂�𝛾𝑔)− ℰ𝑎(𝑢2, �̂�𝛾𝑔)

=2

∫
⟨𝐷𝜎𝑢,𝐷𝜎(𝑢�̂�𝛾𝑔)⟩𝑑𝑚−

∫
⟨𝐷𝜎𝑢

2, 𝐷𝜎(�̂�𝛾𝑔)⟩𝑑𝑚

=2

∫
⟨𝐷𝜎𝑢,𝐷𝜎𝑢⟩�̂�𝛾𝑔𝑑𝑚.

Thus, by [Tr2, Theorem 2.5] we obtain

𝜇⟨𝑀 [𝑢]⟩ = 2⟨𝐷𝜎𝑢,𝐷𝜎𝑢⟩ ⋅ 𝑑𝑚.

So, for 𝑢, 𝑣 ∈ 𝐶∞
0 (ℝ𝑑), for q.e. 𝑥 under 𝑃 𝑥,

(2.3.1) ⟨𝑀 [𝑢],𝑀 [𝑣]⟩𝑡 = 2

∫ 𝑡

0

⟨𝐷𝜎𝑢,𝐷𝜎𝑣⟩(𝑋𝑠)𝑑𝑠.

Then by (A5) and [Tr1, Theorem 4.4], we deduce (2.3.1) for every 𝑢, 𝑣 ∈ ℱ .

By (A5) 𝐹𝑘 = {𝑥 ∈ ℝ𝑑, ∣𝑥∣ ≤ 𝑘}, 𝑘 ∈ ℕ is an ℰ-nest. By [Tr2, Theorem 3.6], for

𝑢𝑖(𝑥) = 𝑥𝑖, we have the Fukushima decomposition for 𝐴[𝑢𝑖] := 𝑢𝑖(𝑋)− 𝑢𝑖(𝑋0), and

let 𝑀 (𝑖) ∈ ℳ̇𝑙𝑜𝑐,(𝐹𝑘)𝑘∈ℕ be the associated local martingale additive functional. Here

ℳ̇𝑙𝑜𝑐,(𝐹𝑘)𝑘∈ℕ means that there exists (𝑀𝑘)𝑘∈ℕ ⊂ ℳ̇ such that for any 𝑘

𝑀𝑡 =𝑀𝑘
𝑡 ∀𝑡 ≤ 𝜎𝐹 𝑐

𝑘
,

where 𝜎𝐹 𝑐
𝑘
= inf{𝑡 > 0∣𝑋𝑡 ∈ 𝐹 𝑐

𝑘}.
We define the stochastic integral 𝑓 ⋅ 𝑀 (𝑖) ∈ ℳ̇ for 𝑓 ∈ 𝐿2(ℝ𝑑;𝜇⟨𝑀(𝑖)⟩) as in

[FOT94, p243], and for 𝐿 ∈ ℳ̇ we have

⟨𝑓 ⋅𝑀 (𝑖), 𝐿⟩ = 𝑓 ⋅ ⟨𝑀 (𝑖), 𝐿⟩,

where 𝑓 ⋅ ⟨𝑀 (𝑖), 𝐿⟩𝑡 =
∫ 𝑡

0
𝑓(𝑋𝑠)𝑑⟨𝑀 (𝑖), 𝐿⟩𝑠.

Theorem 2.3.4 Suppose (A5) holds. Let 𝑢 ∈ 𝐶1
0(ℝ𝑑), where 𝐶1

0(ℝ𝑑) denotes
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the continuous function with compact support and continuous first order derivative.

Then for q.e. 𝑥 under 𝑃 𝑥,

𝑀 [𝑢] =
𝑑∑

𝑖=1

𝑢𝑥𝑖
⋅𝑀 (𝑖).

Proof By [Tr2, Theorem 3.6] we obtain that for q.e. 𝑥 under 𝑃 𝑥, for 𝑡 ≥ 0

⟨𝑀 [𝑢] −
𝑑∑

𝑖=1

𝑢𝑥𝑖
⋅𝑀 (𝑖)⟩𝑡 =

𝑛∑
𝑖,𝑗=1

∫ 𝑡

0

𝑢𝑥𝑖
(𝑋𝑠)𝑢𝑥𝑗

(𝑋𝑠)𝑑⟨𝑀 (𝑖),𝑀 (𝑗)⟩𝑠

− 2
𝑛∑

𝑖,𝑗=1

∫ 𝑡

0

𝑢𝑥𝑖
(𝑋𝑠)𝑢𝑥𝑗

(𝑋𝑠)𝑑⟨𝑀 (𝑖),𝑀 (𝑗)⟩𝑠

+
𝑛∑

𝑖,𝑗=1

∫ 𝑡

0

𝑢𝑥𝑖
(𝑋𝑠)𝑢𝑥𝑗

(𝑋𝑠)𝑑⟨𝑀 (𝑖),𝑀 (𝑗)⟩𝑠

=0.

Then the assertion follows. □

Then by [Tr2, Lemma 2.4, Lemma 1.18], we have for q.e. 𝑥 under 𝑃 𝑥,

(2.3.2) ⟨𝑀 (𝑖),𝑀 (𝑗)⟩𝑡 = 2

∫ 𝑡

0

𝑘∑
𝑙=1

𝜎𝑖
𝑙(𝑋𝑠)𝜎

𝑗
𝑙 (𝑋𝑠)𝑑𝑠.

Lemma 2.3.5 Suppose (A5) holds. Let 𝒞1 be a uniformly dense subset of 𝐶0(ℝ𝑑).

Here 𝐶0(ℝ𝑑) denotes the continuous function with compact support. Then the family

{𝑓 ⋅𝑀 [𝑢] : 𝑓 ∈ 𝒞1, 𝑢 ∈ 𝐶∞
0 (ℝ𝑑)} of stochastic integrals is dense in (ℳ̇, 𝑒).

Proof Suppose that an MAF 𝑀 ∈ ℳ̇ is 𝑒-orthogonal to the above family, namely,∫
𝑋
𝑓𝑑𝜇⟨𝑀,𝑀 [𝑢]⟩ = 0, ∀𝑓 ∈ 𝒞1, 𝑢 ∈ 𝐶∞

0 (ℝ𝑑). This identity extends to all 𝑢 ∈ ℱ by

[Tr1, (13)] and (A5). Hence,

⟨𝑀,𝑀 [𝑢]⟩ = 0 ∀𝑢 ∈ ℱ .

In particular, this holds for 𝑢 = 𝐺𝛼𝑔, 𝛼 > 0, ∀𝑔 ∈ 𝐶0(ℝ𝑑). By [FOT94, Theorem

A.3.20] we deduce that 𝑀 = 0. □

Theorem 2.3.6 Suppose (A5) holds. Then the space ℳ̇ can be represented by

stochastic integrals based on 𝑀 (𝑖) =𝑀 [𝑥𝑖], 1 ≤ 𝑖 ≤ 𝑑:

(2.3.3) ℳ̇ = {
𝑑∑

𝑖=1

𝑓𝑖 ⋅𝑀 (𝑖) :
𝑑∑

𝑖,𝑗=1

𝑘∑
𝑙=1

∫
ℝ𝑑

(𝑓𝑖𝑓𝑗𝜎
𝑙
𝑖𝜎

𝑙
𝑗)(𝑥)𝑚(𝑑𝑥) <∞},
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and

𝑒(
𝑑∑

𝑖=1

𝑓𝑖 ⋅𝑀 (𝑖)) =
𝑑∑

𝑖,𝑗=1

𝑘∑
𝑙=1

∫
ℝ𝑑

(𝑓𝑖𝑓𝑗𝜎
𝑙
𝑖𝜎

𝑙
𝑗)(𝑥)𝑚(𝑑𝑥).

Proof The space of the right hand side of (2.3.3) is dense in (ℳ̇, 𝑒), since it contains

the set

{𝑓 ⋅𝑀 [𝑢] =
𝑑∑

𝑖=1

(𝑓𝑢𝑥𝑖
) ⋅𝑀 (𝑖); 𝑓 ∈ 𝐶0(ℝ𝑑), 𝑢 ∈ 𝐶1

0(ℝ𝑑)},

which is dense in (ℳ̇, 𝑒) by Lemma 2.3.5. Hence, it is enough to show that the right

hand side of (2.3.3) is closed in (ℳ̇, 𝑒).

Suppose that lim𝑛→∞ 𝑒(𝑀𝑛 −𝑀) = 0, where

𝑀𝑛 =
𝑑∑

𝑖=1

𝑓
(𝑛)
𝑖 ⋅𝑀 (𝑖),

𝑑∑
𝑖,𝑗=1

∫
ℝ𝑑

𝑎𝑖𝑗𝑓
(𝑛)
𝑖 𝑓

(𝑛)
𝑗 𝑑𝑚 <∞,𝑀 ∈ ℳ̇.

Set 𝑓𝑛 := (𝑓𝑛
1 , ..., 𝑓

𝑛
𝑑 ). Since

𝑒(𝑀𝑛 −𝑀𝑚) =

∫
ℝ𝑑

∣(𝑓𝑛 − 𝑓𝑚)𝜎∣2𝑑𝑚,

we deduce that 𝑓𝑛𝜎 converges in 𝐿2(ℝ𝑑,ℝ𝑘;𝑚) to some function ℎ ∈ 𝐿2(ℝ𝑑,ℝ𝑘;𝑚)

Let 𝑓 = ℎ𝜏 , where 𝜏 is the matrix that we have introduced at the beginning of

Section 2.1 and 𝑀 ′ =
∑𝑑

𝑖=1 𝑓𝑖 ⋅𝑀 (𝑖), then

𝑒(𝑀𝑛 −𝑀 ′) =
∫
𝐷

∣(𝑓𝑛 − 𝑓)𝜎∣2𝑑𝑚

=

∫
𝐷

∣𝑓𝑛𝜎 − ℎ∣2𝑑𝑚.

which converges to zero as 𝑛→ ∞. Therefore, we have 𝑀 =𝑀 ′ and

𝑒(𝑀) =
𝑑∑

𝑖,𝑗=1

𝑘∑
𝑙=1

∫
ℝ𝑑

(𝑓𝑖𝑓𝑗𝜎
𝑙
𝑖𝜎

𝑙
𝑗)(𝑥)𝑚(𝑑𝑥) <∞.

□

As a consequence, 𝑋 satisfies Fukushima representation theorem mentioned be-

fore. To prove main results in this section we need the following lemma which is

proved by Meyer in [M67] (see also [QY10, Lemma 2.2]).

Lemma 2.3.7 Let 𝐾(ℝ𝑑) ⊂ ℬ𝑏(ℝ𝑑) be an algebra, which generates the Borel

𝜎-algebra ℬ(ℝ𝑑), and 𝒞0 be all 𝜉 = 𝜉1 ⋅ ⋅ ⋅ 𝜉𝑛, 𝑛 ∈ ℕ, 𝜉𝑗 =
∫∞
0
𝑒−𝛼𝑗𝑡𝑓𝑗(𝑋𝑡)𝑑𝑡, where
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𝛼𝑗 ∈ ℚ+, 𝑓𝑗 ∈ 𝐾(ℝ𝑑), 𝑗 = 1, ..., 𝑛. Then the completion of the 𝜎-algebra generated

by 𝒞0 is ℱ∞.

Moreover, by an analogous method to the proof of [QY10, Theorem 3.1] we have

the martingale representation theorem for 𝑋.

Theorem 2.3.8 Suppose (A5) holds. Then there exists some ℰ-exceptional set
𝒩 such that the following representation result holds: For every bounded ℱ∞-

measurable random variable 𝜉, there exists an predictable process (𝜙1, ..., 𝜙𝑑) :

[0,∞) × Ω → ℝ𝑑, such that for each probability measure 𝜈, supported by ℝ𝑑 ∖ 𝒩 ,

one has

𝜉 = 𝐸𝜈(𝜉∣ℱ0) +
𝑑∑

𝑖=0

∫ ∞

0

𝜙𝑖
𝑠𝑑𝑀

(𝑖)
𝑠 𝑃 𝜈 − 𝑎.𝑠.,

and

𝐸𝜈

∫ ∞

0

∣𝜙𝑠𝜎(𝑋𝑠)∣2𝑑𝑠 ≤ 1

2
𝐸𝜈𝜉2.

If another predictable process 𝜙′ = (𝜙′
1, ..., 𝜙

′
𝑑) satisfies the same relations under a

certain measure 𝑃 𝜈 , then one has 𝜙′
𝑡𝜎(𝑋𝑡) = 𝜙𝑡𝜎(𝑋𝑡), 𝑑𝑡× 𝑑𝑃 𝜈 − 𝑎.𝑠..

Proof Suppose that 𝒩 is some fixed exceptional set. By 𝒦 we denote the class of

bounded random variables for which the statement holds outside this set. First we

prove that if (𝜉𝑛) ⊂ 𝒦 is a uniformly bounded increasing sequence and 𝜉 = lim𝑛→∞ 𝜉𝑛
then 𝜉 ∈ 𝒦.

Indeed, since 𝜉 and 𝜉0 are bounded, 𝐸
𝑥∣𝜉𝑛−𝜉∣2 → 0. Denoting by 𝜙𝑛 the process

which represents 𝜉𝑛, we obtain

𝐸𝑥

∫ ∞

0

∣(𝜙𝑝
𝑠 − 𝜙𝑛

𝑠 )𝜎(𝑋𝑠)∣2𝑑𝑠 ≤ 𝐸𝑥(𝜉𝑝 − 𝜉𝑛)
2 → 0, as 𝑛, 𝑝→ ∞.

Now we want to pass to the limit with 𝜙𝑛 pointwise, so that the limit be pre-

dictable. In order to obtain a sequence of representable variables that converges

rapidly enough under all measures 𝑃 𝑥, 𝑥 ∈ 𝒩 𝑐, we are going to construct them as

follows. For each 𝑙 = 0, 1, ... set 𝑛𝑙(𝑥) = inf{𝑛∣𝐸𝑥(𝜉 − 𝜉𝑛)
2 < 1

2𝑙
}, �̄�𝑙 = 𝜉𝑛𝑙(𝑥)

. The

process which represents 𝜉𝑙 is simply obtained by the formula �̄�
𝑙
= 𝜙𝑛𝑙(𝑋0). With

this sequence we may pass to the limit and define 𝜓𝑠 = lim sup𝑙→∞ �̄�
𝑙
𝑠𝜎(𝑋𝑠) (where

limsup is taken on each coordinate) and 𝜙𝑠 = 𝜓𝑠𝜏(𝑋𝑠) where 𝜏 is the matrix that

we have introduced in the beginning of Section 2.1. Then we obatin

𝐸𝑥

∫ ∞

0

∣(�̄�𝑙
𝑠 − 𝜙𝑠)𝜎(𝑋𝑠)∣2𝑑𝑠→ 0, as 𝑙 → ∞.

By this we obtain 𝜉 ∈ 𝒦.
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Let 𝐾(ℝ𝑑) ⊂ ℬ𝑏(ℝ𝑑) be a countable set which is closed under multiplication,

generates the Borel 𝜎-algebra ℬ(ℝ𝑑) and 𝑅𝛼(𝐾(ℝ𝑑)) ⊂ 𝐾(ℝ𝑑) for each 𝛼 ∈ ℚ+.

Such 𝐾(ℝ𝑑) can be constructed as follows. Choose 𝑁0 ⊂ ℬ𝑏(ℝ𝑑) to be a count-

able set which generates the Borel 𝜎-algebra ℬ(ℝ𝑑). For 𝑙 ≥ 1 define 𝑁𝑙+1 =

{𝑔1...𝑔𝑘, 𝑅𝛼𝑓𝑔1...𝑔𝑘, 𝑓, 𝑔𝑖 ∈ 𝑁𝑙, 𝑘 ∈ ℕ ∪ {0}, 𝛼 ∈ 𝑄+} and 𝐾(ℝ𝑑) := ∪∞
𝑙=0𝑁𝑙.

Let 𝒞0 be all 𝜉 = 𝜉1 ⋅ ⋅ ⋅ 𝜉𝑛, 𝑛 ∈ ℕ, 𝜉𝑗 =
∫∞
0
𝑒−𝛼𝑗𝑡𝑓𝑗(𝑋𝑡)𝑑𝑡, where 𝛼𝑗 ∈ ℚ+,

𝑓𝑗 ∈ 𝐾(ℝ𝑑), 𝑗 = 1, ..., 𝑛. By Lemma 2.3.7 the completion of the 𝜎-algebra generated

by 𝒞0 is ℱ∞ . By the first part of our proof a monotone class argument reduces the

proof to the representation of a random variable in 𝒞0.

Let 𝜉 ∈ 𝒞0. By Markov property of the process 𝑋, we obtain the following result

(see e.g. [QY10, Theorem 3.1])

𝑁𝑡 = 𝐸𝑥(𝜉∣ℱ𝑡) =
∑
𝑚

𝑍𝑚
𝑡 ,

where the sum is a finite one, and for each 𝑚, 𝑍𝑚 = 𝑍𝑡 has the following form

𝑍𝑡 = 𝑉𝑡𝑢(𝑋𝑡),

(the superscript 𝑚 will be dropped if no confusion may arise), where 𝑉𝑡 =
∏𝑘′

𝑖=1∫ 𝑡

0
𝑒−𝛽𝑖𝑠𝑔𝑖(𝑋𝑠)𝑑𝑠 and 𝑢(𝑥) = 𝑅𝛽1+...+𝛽𝑘

(ℎ1(𝑅𝛽2+...+𝛽𝑘
ℎ2...(𝑅𝛽𝑘

ℎ𝑘)...) for 𝛽𝑖 ∈ ℚ+, 𝑔𝑖, ℎ𝑖 ∈
𝐾(ℝ𝑑). We have 𝑢 ∈ 𝐾(ℝ𝑑). Hence, by the Fukushima decomposition and the

Fukushima representation we obtain

(2.3.4) 𝑢(𝑋𝑡)− 𝑢(𝑋0) =𝑀
[𝑢]
𝑡 + 𝐴

[𝑢]
𝑡 =

𝑑∑
𝑗=1

∫ 𝑡

0

𝐺𝑗
𝑠𝑑𝑀

(𝑗)
𝑠 + 𝐴

[𝑢]
𝑡 𝑃 𝑥 − 𝑎.𝑠..

for some predictable processes 𝐺𝑗. Then by Itô’s formula, we obtain

𝑍𝑡 = 𝑍0 +

∫ 𝑡

0

𝑢(𝑋𝑠)𝑑𝑉𝑠 +

∫ 𝑡

0

𝑉𝑠𝑑𝐴
[𝑢]
𝑡 +

𝑑∑
𝑗=1

∫ 𝑡

0

𝑉𝑠 ⋅𝐺𝑗
𝑠𝑑𝑀

(𝑗)
𝑠 𝑃 𝑥 − 𝑎.𝑠..

Hence the martingale part of 𝑍𝑡 is
∑𝑑

𝑗=1

∫ 𝑡

0
𝑉𝑠 ⋅𝐺𝑗

𝑠𝑑𝑀
(𝑗)
𝑠 . We deduce that

𝑁𝑡 =
𝑑∑

𝑖=1

∫ 𝑡

0

∑
𝑚

𝑉 𝑚
𝑠 ⋅𝐺𝑚,𝑖

𝑠 𝑑𝑀 (𝑖)
𝑠 𝑃 𝑥 − 𝑎.𝑠..

As a result, the representation holds for 𝜉 ∈ 𝒞0. As (2.3.4) holds for every 𝑥 outside

a set of zero capacity. Then we take the exceptional set 𝒩 in the assertion to be

the union of all these exceptional sets corresponding to 𝑢 ∈ 𝐾(ℝ𝑑). □
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One may represent separately the positive and the negative parts and then we

have the following corollary.

Corollary 2.3.9 Suppose (A5) holds. Let 𝒩 be the set obtained in the preceding

theorem. Then for any ℱ∞-measurable nonnegative random variable 𝜉 ≥ 0 there

exists a predictable process 𝜙 = (𝜙1, ..., 𝜙𝑑) : [0,∞)×Ω → ℝ𝑑 such that the following

holds

𝜉 = 𝐸𝑥(𝜉∣ℱ0) +
𝑑∑

𝑖=0

∫ ∞

0

𝜙𝑖
𝑠𝑑𝑀

(𝑖)
𝑠 𝑃 𝑥 − 𝑎.𝑠.,

and

𝐸𝑥

∫ ∞

0

∣𝜙𝑠𝜎(𝑋𝑠)∣2𝑑𝑠 ≤ 1

2
𝐸𝑥𝜉2,

for each point 𝑥 ∈ 𝒩 𝑐 such that 𝐸𝑥𝜉 <∞.

If another predictable process 𝜙′ = (𝜙′
1, ..., 𝜙

′
𝑑) satisfies the same relations under

a certain measure 𝑃 𝑥, then one has 𝜙′
𝑡𝜎(𝑋𝑡) = 𝜙𝑡𝜎(𝑋𝑡), 𝑑𝑡× 𝑑𝑃 𝑥 − 𝑎.𝑠.

2.3.2 Representation under 𝑃𝑚

In the following, we use the notation
∫ 𝑡

0
𝜓(𝑠,𝑋𝑠).𝑑𝑀𝑠 :=

∑𝑑
𝑖=1

∫ 𝑡

0
𝜓𝑖(𝑠,𝑋𝑠)𝑑𝑀

(𝑖)
𝑠 .

Lemma 2.3.10 Suppose (A1)-(A5) hold. If 𝑢 ∈ 𝒟(𝐿) and 𝜓 ∈ ∇̃𝑢, then

𝑢(𝑋𝑡)− 𝑢(𝑋0) =

∫ 𝑡

0

𝜓(𝑋𝑠).𝑑𝑀𝑠 +

∫ 𝑡

0

𝐿𝑢(𝑋𝑠)𝑑𝑠 𝑃𝑚 − 𝑎.𝑠..

Proof The assertion follows by the Fukushima decomposition, (2.3.1), (2.3.2) and

Theorem 2.3.6. □

The aim of the rest of this section is to extend this representation to time de-

pendent function 𝑢(𝑡, 𝑥).

Lemma 2.3.11 Suppose (A1)-(A5) hold. Let 𝑢 : [0, 𝑇 ]× ℝ𝑑 → ℝ be such that

(i) ∀𝑠, 𝑢𝑠 ∈ 𝒟(𝐿) and 𝑠→ 𝐿𝑢𝑠 is continuous in 𝐿
2.

(ii) 𝑢 ∈ 𝐶1([0, 𝑇 ];𝐿2).

Then clearly 𝑢 ∈ 𝒞𝑇 . Moreover, for any 𝜓 ∈ ∇̃𝑢 and any 𝑠, 𝑡 > 0 such that

𝑠+ 𝑡 < 𝑇 , the following relation holds 𝑃𝑚-a.s.

𝑢(𝑠+ 𝑡,𝑋𝑡)− 𝑢(𝑠,𝑋0) =

∫ 𝑡

0

𝜓(𝑠+ 𝑟,𝑋𝑟).𝑑𝑀𝑟 +

∫ 𝑡

0

(∂𝑠 + 𝐿)𝑢(𝑠+ 𝑟,𝑋𝑟)𝑑𝑟.

Proof We prove the above relation with 𝑠 = 0, the general case being similar. Let
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0 = 𝑡0 < 𝑡1 < ... < 𝑡𝑝 = 𝑡 be a partition of the interval [0, 𝑡] and write

𝑢(𝑡,𝑋𝑡)− 𝑢(0, 𝑋0) =

𝑝−1∑
𝑛=0

(𝑢(𝑡𝑛+1, 𝑋𝑡𝑛+1)− 𝑢(𝑡𝑛, 𝑋𝑡𝑛)).

Then, on account of the preceding lemma, each term of the sum is expressed as

𝑢(𝑡𝑛+1, 𝑋𝑡𝑛+1)− 𝑢(𝑡𝑛, 𝑋𝑡𝑛)

=𝑢(𝑡𝑛+1, 𝑋𝑡𝑛+1)− 𝑢(𝑡𝑛+1, 𝑋𝑡𝑛) + 𝑢(𝑡𝑛+1, 𝑋𝑡𝑛)− 𝑢(𝑡𝑛, 𝑋𝑡𝑛)

=

∫ 𝑡𝑛+1

𝑡𝑛

𝜓𝑛+1(𝑋𝑠).𝑑𝑀𝑠 +

∫ 𝑡𝑛+1

𝑡𝑛

𝐿𝑢𝑡𝑛+1(𝑋𝑠)𝑑𝑠+

∫ 𝑡𝑛+1

𝑡𝑛

∂𝑠𝑢𝑠(𝑋𝑡𝑛)𝑑𝑠,

where 𝜓𝑛+1 = (𝜓𝑛+1
1 , ..., 𝜓𝑛+1

𝑑 ) ∈ ∇̃𝑢𝑡𝑛+1 and the last integral is obtained by using

the Leibnitz-Newton formula for the 𝐿2-valued function 𝑠 → 𝑢𝑠. Below we esti-

mate in 𝐿2 the differences between each term in the last expression and the similar

terms corresponding to the formula we have to prove. Here we use 𝑚𝑃𝑡 ≤ 𝑚 i.e.∫
𝑃𝑡𝑓𝑑𝑚 ≤ ∫

𝑓𝑑𝑚 for 𝑓 ∈ ℬ+. This holds since 𝑃𝑡 is sub-Markovian. Then we have

𝐸𝑚(

∫ 𝑡𝑛+1

𝑡𝑛

𝜓𝑛+1(𝑋𝑠).𝑑𝑀𝑠 −
∫ 𝑡𝑛+1

𝑡𝑛

𝜓(𝑠,𝑋𝑠).𝑑𝑀𝑠)
2

=𝐸𝑚

∫ 𝑡𝑛+1

𝑡𝑛

∣(𝜓𝑛+1(𝑋𝑠)− 𝜓(𝑠,𝑋𝑠))𝜎(𝑋𝑠)∣2𝑑𝑠

≤
∫ 𝑡𝑛+1

𝑡𝑛

ℰ𝑎(𝑢𝑡𝑛+1 − 𝑢𝑠)𝑑𝑠.

Since 𝑠 → 𝐿𝑢𝑠 is continuous in 𝐿2, it follows that 𝑠 → 𝑢𝑠 is continuous w.r.t. ℰ𝑎
1 -

norm. Hence the difference appearing in the last integral ℰ𝑎(𝑢𝑡𝑛+1 −𝑢𝑠) is uniformly

small, provided the partition is fine enough. From this one deduces that

𝑝−1∑
𝑛=0

∫ 𝑡𝑛+1

𝑡𝑛

𝜓𝑛+1(𝑋𝑠).𝑑𝑀𝑠 →
∫ 𝑡

0

𝜓(𝑠+ 𝑟,𝑋𝑟).𝑑𝑀𝑟.

The next difference is estimated by using Minkowski’s inequality

(𝐸𝑚(

𝑝−1∑
𝑛=0

∫ 𝑡𝑛+1

𝑡𝑛

(𝐿𝑢𝑡𝑛+1 − 𝐿𝑢𝑠)(𝑋𝑠)𝑑𝑠)
2)1/2

≤
𝑝−1∑
𝑛=0

∫ 𝑡𝑛+1

𝑡𝑛

(𝐸𝑚(𝐿𝑢𝑡𝑛+1 − 𝐿𝑢𝑠)
2(𝑋𝑠))

1/2𝑑𝑠

≤
𝑝−1∑
𝑛=0

∫ 𝑡𝑛+1

𝑡𝑛

∥𝐿𝑢𝑡𝑛+1 − 𝐿𝑢𝑠∥2𝑑𝑠,
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so that it is similarly expressed as in integral of a uniformly small quantity.

For the last difference we write

(𝐸𝑚(

𝑝−1∑
𝑛=0

∫ 𝑡𝑛+1

𝑡𝑛

(∂𝑠𝑢𝑠(𝑋𝑡𝑛)− ∂𝑠𝑢𝑠(𝑋𝑠))𝑑𝑠)
2)1/2

≤
𝑝−1∑
𝑛=0

∫ 𝑡𝑛+1

𝑡𝑛

(𝐸𝑚(∂𝑠𝑢𝑠(𝑋𝑡𝑛)− ∂𝑠𝑢𝑠(𝑋𝑠))
2)1/2𝑑𝑠

=

𝑝−1∑
𝑛=0

∫ 𝑡𝑛+1

𝑡𝑛

(𝐸𝑚(∂𝑠𝑢𝑠(𝑋𝑡𝑛)
2 + 𝑃𝑠−𝑡𝑛(∂𝑠𝑢𝑠)

2(𝑋𝑡𝑛)− 2∂𝑠𝑢𝑠(𝑋𝑡𝑛)(𝑃𝑠−𝑡𝑛∂𝑠𝑢)(𝑋𝑡𝑛)))
1/2𝑑𝑠

=

𝑝−1∑
𝑛=0

∫ 𝑡𝑛+1

𝑡𝑛

(𝐸𝑚((∂𝑠𝑢𝑠(𝑋𝑡𝑛)− (𝑃𝑠−𝑡𝑛∂𝑠𝑢𝑠)(𝑋𝑡𝑛))
2

+ (𝑃𝑠−𝑡𝑛(∂𝑠𝑢𝑠)
2(𝑋𝑡𝑛)− ((𝑃𝑠−𝑡𝑛∂𝑠𝑢𝑠)(𝑋𝑡𝑛))

2)))1/2𝑑𝑠

≤
𝑝−1∑
𝑛=0

(

∫ 𝑡𝑛+1

𝑡𝑛

∫
(∂𝑠𝑢𝑠 − 𝑃𝑠−𝑡𝑛∂𝑠𝑢𝑠)

2 + 𝑃𝑠−𝑡𝑛(∂𝑠𝑢𝑠)
2 − (𝑃𝑠−𝑡𝑛∂𝑠𝑢𝑠)

2𝑑𝑚))1/2𝑑𝑠.

From the hypotheses it follows that this will tend also to zero if the partition is fine

enough. Hence the assertions follow. □

Theorem 2.3.12 Suppose (A1)-(A5) hold. Let 𝑓 ∈ 𝐿1([0, 𝑇 ];𝐿2) and 𝜙 ∈ 𝐿2(ℝ𝑑)

and define

𝑢𝑡 := 𝑃𝑇−𝑡𝜙+

∫ 𝑇

𝑡

𝑃𝑠−𝑡𝑓𝑠𝑑𝑠.

Then for each 𝜓 ∈ ∇̃𝑢 and for each 𝑠 ∈ [0, 𝑇 ], the following relation holds 𝑃𝑚-a.s.

𝑢(𝑠+ 𝑡,𝑋𝑡)− 𝑢(𝑠,𝑋0) =

∫ 𝑡

0

𝜓(𝑠+ 𝑟,𝑋𝑟).𝑑𝑀𝑟 −
∫ 𝑡

0

𝑓(𝑠+ 𝑟,𝑋𝑟)𝑑𝑟.

In particular, if 𝑢 is a generalized solution of PDE (2.2.1), for each 𝑡 ∈ [𝑠, 𝑇 ] the

following BSDE holds 𝑃𝑚-a.s.

𝑢(𝑡,𝑋𝑡−𝑠) = 𝜙(𝑋𝑇−𝑠)+

∫ 𝑇

𝑡

𝑓(𝑟,𝑋𝑟−𝑠, 𝑢(𝑟,𝑋𝑟−𝑠), 𝐷𝜎𝑢(𝑟,𝑋𝑟−𝑠))𝑑𝑟−
∫ 𝑇−𝑠

𝑡−𝑠

𝜓(𝑠+𝑟,𝑋𝑟).𝑑𝑀𝑟.

Proof Assume first that 𝜙 and 𝑓 satisfy the conditions in Proposition 2.1.6 (ii).

Then we have 𝑢 satisfies the conditions in Lemma 2.3.11. Then by Lemma 2.3.11,

the assertion follows. For the general case we choose 𝑢𝑛 associated (𝑓𝑛, 𝜙𝑛) as in
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Proposition 2.1.9. Then we obtain that if 𝑛→ ∞, ∥𝑢𝑛 − 𝑢∥𝑇 → 0. For 𝑢𝑛 we have

(2.3.5) 𝑢𝑛(𝑠+ 𝑡,𝑋𝑡)− 𝑢𝑛(𝑠,𝑋0) =

∫ 𝑡

0

𝜓𝑛(𝑠+ 𝑟,𝑋𝑟).𝑑𝑀𝑟 −
∫ 𝑡

0

𝑓𝑛(𝑠+ 𝑟,𝑋𝑟)𝑑𝑟.

As

𝐸𝑚∣
∫ 𝑡

0

(𝜓𝑛(𝑠+ 𝑟,𝑋𝑟)− 𝜓𝑝(𝑠+ 𝑟,𝑋𝑟).𝑑𝑀𝑟∣2

≤𝐸𝑚

∫ 𝑡

0

∣(𝜓𝑛(𝑠+ 𝑟,𝑋𝑟)− 𝜓𝑝(𝑠+ 𝑟,𝑋𝑟))𝜎(𝑋𝑟)∣2𝑑𝑟

≤
∫ 𝑡

0

ℰ𝑎(𝑢𝑛𝑠+𝑟 − 𝑢𝑝𝑠+𝑟)𝑑𝑟,

letting 𝑛→ ∞ in (2.3.5) we obtain the assertion. □

2.4 BSDE’s and Generalized Solutions

The set 𝒩 obtained in Theorem 2.3.8 will be fixed throughout this section. By

Theorem 2.3.8 we can solve BSDE’s under all measures 𝑃 𝑥, 𝑥 ∈ 𝒩 𝑐, at the same

time. We will treat systems of 𝑙 equations, 𝑙 ∈ ℕ, associated to ℝ𝑙-valued functions

𝑓 : [0, 𝑇 ] × Ω × ℝ𝑙 × ℝ𝑙 ⊗ ℝ𝑘 7→ ℝ𝑙. These functions are assumed to depend on

the past in general and it turns out that a good theory is developed assuming that

they are predictable. This means that we consider the map (𝑠, 𝜔) 7→ 𝑓(𝑠, 𝜔, ⋅, ⋅) as
a predictable process with respect to the canonical filtration of our process (ℱ𝑡).

Lemma 2.4.1 Suppose (A5) holds. Let 𝜉 be an ℱ𝑇 -measurable random variable

and 𝑓 : [0, 𝑇 ]×Ω 7→ ℝ an (ℱ𝑡)𝑡≥0-predictable process. Let 𝐴 be the set of all points

𝑥 ∈ 𝒩 𝑐 for which the following integrability condition holds

𝐸𝑥(∣𝜉∣+
∫ 𝑇

0

∣𝑓(𝑠, 𝜔)∣𝑑𝑠)2 <∞.

Then there exists a pair (𝑌𝑡, 𝑍𝑡)0≤𝑡≤𝑇 of predictable processes 𝑌 : [0, 𝑇 )×Ω 7→ ℝ, 𝑍 :

[0, 𝑇 ) × Ω 7→ ℝ𝑑, such that under all measures 𝑃 𝑥, 𝑥 ∈ 𝐴, they have the following

properties:

(i) 𝑌 is continuous,

(ii) 𝑍 satisfy the integrability condition∫ 𝑇

0

∣𝑍𝑡𝜎(𝑋𝑡)∣2𝑑𝑡 <∞, 𝑃 𝑥 − 𝑎.𝑠.,

(iii) The local martingale
∫ 𝑡

0
𝑍𝑠.𝑑𝑀𝑠, obtained by integrating 𝑍 against the coordi-



2.4. BSDE’s and Generalized Solutions 67

nate martingales, is a uniformly integrable martingale,

(iv) they satisfy the equation

𝑌𝑡 = 𝜉 +

∫ 𝑇

𝑡

𝑓(𝑠, 𝜔)𝑑𝑠−
∫ 𝑇

𝑡

𝑍𝑠.𝑑𝑀𝑠, 𝑃 𝑥 − 𝑎.𝑠., 0 ≤ 𝑡 ≤ 𝑇.

If another pair (𝑌 ′
𝑡 , 𝑍

′
𝑡) of predictable processes satisfies the above conditions (i),(ii),(iii),(iv),

under a certain measure 𝑃 𝜈 with the initial distribution 𝜈 supported by 𝐴, then one

has 𝑌. = 𝑌.′, 𝑃 𝜈 − 𝑎.𝑠. and 𝑍𝑡𝜎(𝑋𝑡) = 𝑍 ′
𝑡𝜎(𝑋𝑡), 𝑑𝑡× 𝑃 𝜈 − 𝑎.𝑠..

Proof The representation of the positive and negative parts of the random variable

𝜉 +
∫ 𝑇

0
𝑓𝑠𝑑𝑠 give us the predictable process 𝑍 such that

𝜉 +

∫ 𝑇

0

𝑓𝑠𝑑𝑠 = 𝐸𝑋0(𝜉 +

∫ 𝑇

0

𝑓𝑠𝑑𝑠) +

∫ 𝑇

0

𝑍𝑠.𝑑𝑀𝑠.

Then we get the process 𝑌 by the formula

𝑌𝑡 = 𝐸𝑋0(𝜉 +

∫ 𝑇

0

𝑓𝑠𝑑𝑠) +

∫ 𝑡

0

𝑍𝑠.𝑑𝑀𝑠 −
∫ 𝑡

0

𝑓𝑠𝑑𝑠.

□

Definition 2.4.2 Let 𝜉 be an ℝ𝑙-valued, ℱ𝑇 -measurable, random variable and

𝑓 : [0, 𝑇 ] × Ω × ℝ𝑙 × ℝ𝑙 ⊗ ℝ𝑘 7→ ℝ𝑙 a measurable ℝ𝑙-valued function such that

(𝑠, 𝜔) 7→ 𝑓(𝑠, 𝜔, ⋅, ⋅) as a process is predictable. Let 𝑝 > 1 and 𝜈 be a probability

measure supported by 𝒩 𝑐 such that 𝐸𝜈 ∣𝜉∣𝑝 < ∞. We say that a pair (𝑌𝑡, 𝑍𝑡)0≤𝑡≤𝑇

of predictable processes 𝑌 : [0, 𝑇 )× Ω 7→ ℝ𝑙, 𝑍 : [0, 𝑇 )× Ω 7→ ℝ𝑙 ⊗ ℝ𝑑 is a solution

of the BSDE (2.4.1) in 𝐿𝑝(𝑃 𝜈) with data (𝜉, 𝑓) provided that 𝑌 is continuous under

𝑃 𝜈 and satisfies both the integrability conditions∫ 𝑇

0

∣𝑓(𝑡, ⋅, 𝑌𝑡, 𝑍𝑡𝜎(𝑋𝑡))∣𝑑𝑡 <∞, 𝑃 𝜈 − 𝑎.𝑠.,

𝐸𝜈(

∫ 𝑇

0

∣𝑍𝑡𝜎(𝑋𝑡)∣2𝑑𝑡)𝑝/2 <∞,

and the following equation, with 0 ≤ 𝑡 ≤ 𝑇 ,

(2.4.1) 𝑌𝑡 = 𝜉 +

∫ 𝑇

𝑡

𝑓(𝑠, 𝜔, 𝑌𝑠, 𝑍𝑠𝜎(𝑋𝑠))𝑑𝑠−
∫ 𝑇

𝑡

𝑍𝑠.𝑑𝑀𝑠, 𝑃 𝜈 − 𝑎.𝑠..

Let 𝑓 : [0, 𝑇 ]×Ω×ℝ𝑙 ×ℝ𝑙 ⊗ℝ𝑘 7→ ℝ𝑙 be a measurable ℝ𝑙-valued function such

that (𝑠, 𝜔) 7→ 𝑓(𝑠, 𝜔, ⋅, ⋅) is predictable and satisfies the following conditions:
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(Ω1) (Lipschitz condition in 𝑧) There exists a constant 𝐶 > 0 such that for all

𝑡, 𝜔, 𝑦, 𝑧, 𝑧′

∣𝑓(𝑡, 𝜔, 𝑦, 𝑧)− 𝑓(𝑡, 𝜔, 𝑦, 𝑧′)∣ ≤ 𝐶∣𝑧 − 𝑧′∣.
(Ω2) (Monotonicity condition in 𝑦) There exists a function 𝜇𝑡 ∈ 𝐿1([0, 𝑇 ],ℝ) such
that for all 𝜔, 𝑦, 𝑦′, 𝑧,

⟨𝑦 − 𝑦′, 𝑓(𝑡, 𝜔, 𝑦, 𝑧)− 𝑓(𝑡, 𝜔, 𝑦′, 𝑧)⟩ ≤ 𝜇𝑡∣𝑦 − 𝑦′∣2,

and 𝛼𝑡 :=
∫ 𝑡

0
𝜇𝑠𝑑𝑠 <∞.

(Ω3) (Continuity condition in 𝑦) For 𝑡, 𝜔 and 𝑧 fixed, the map

𝑦 7→ 𝑓(𝑡, 𝜔, 𝑦, 𝑧),

is continuous.

We need the following notation

𝑓0(𝑡, 𝜔) := 𝑓(𝑡, 𝜔, 0, 0), 𝑓 ′(𝑡, 𝜔, 𝑦) := 𝑓(𝑡, 𝜔, 𝑦, 0)− 𝑓(𝑡, 𝜔, 0, 0),

𝑓
′,𝑟(𝑡, 𝜔) := sup

∣𝑦∣≤𝑟

∣𝑓 ′(𝑡, 𝜔, 𝑦)∣.

Let 𝜉 be an ℝ𝑙-valued, ℱ𝑇 -measurable, random variable and, for each 𝑝 > 0 denote

by 𝐴𝑝 the set of all points 𝑥 ∈ 𝒩 𝑐 for which the following integrability conditions

hold,

(2.4.2) 𝐸𝑥

∫ 𝑇

0

𝑓
′,𝑟
𝑡 𝑑𝑡 <∞, ∀𝑟 ≥ 0,

𝐸𝑥(∣𝜉∣𝑝 + (

∫ 𝑇

0

∣𝑓0(𝑠, 𝜔)∣𝑑𝑠)𝑝) <∞.

Denote by 𝐴∞ the set of points 𝑥 ∈ 𝒩 𝑐 for which (2.4.2) holds and with the property

that ∣𝜉∣, ∣𝑓0∣ ∈ 𝐿∞(𝑃 𝑥).

Proposition 2.4.3 Under the conditions (A5), (Ω1), (Ω2), (Ω3), there exists a

pair (𝑌𝑡, 𝑍𝑡)0≤𝑡≤𝑇 of predictable processes 𝑌 : [0, 𝑇 ) × Ω 7→ ℝ𝑙, 𝑍 : [0, 𝑇 ) × Ω 7→
ℝ𝑙 ⊗ ℝ𝑑 that forms a solution of the BSDE (2.4.1) in 𝐿𝑝(𝑃 𝑥) with data (𝜉, 𝑓) for

each point 𝑥 ∈ 𝐴𝑝. Moreover, the following estimate holds with some constant 𝐾

that depends only on 𝐶, 𝜇 and 𝑇 ,

𝐸𝑥( sup
𝑡∈[0,𝑇 ]

∣𝑌𝑡∣𝑝+(

∫ 𝑇

0

∣𝑍𝑡𝜎(𝑋𝑡)∣2𝑑𝑡)𝑝/2) ≤ 𝐾𝐸𝑥(∣𝜉∣𝑝+(

∫ 𝑇

0

∣𝑓 0(𝑠, 𝜔)∣𝑑𝑠)𝑝), 𝑥 ∈ 𝐴𝑝.
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If 𝑥 ∈ 𝐴∞, then sup𝑡∈[0,𝑇 ] ∣𝑌𝑡∣ ∈ 𝐿∞(𝑃 𝑥).

If (𝑌 ′
𝑡 , 𝑍

′
𝑡) is another solution in 𝐿𝑝(𝑃 𝑥), for some point 𝑥 ∈ 𝐴𝑝, then one has

𝑌𝑡 = 𝑌 ′
𝑡 and 𝑍𝑡𝜎(𝑋𝑡) = 𝑍 ′

𝑡𝜎(𝑋𝑡), 𝑑𝑡× 𝑃 𝑥 − 𝑎.𝑠..

The proof is based on more or less standard methods. Therefore, we include it

not here, but in the appendix below.

We shall now look at the connection between the solutions of BSDE’s introduced

in this section and PDE’s studied in Section 2.2. In order to do this we have to

consider BSDE’s over time intervals like [𝑠, 𝑇 ], with 0 ≤ 𝑠 ≤ 𝑇 . Since the present

approach is based on the theory of Markov processes, which is a time homogeneous

theory, we have to discuss solutions over the interval [𝑠, 𝑇 ], while the process and

the coordinate martingales are indexed by a parameter in the interval [0, 𝑇 − 𝑠].

Let us give a formal definition for the natural notion of solution over a time

interval [𝑠, 𝑇 ]. Let 𝜉 be an ℱ𝑇−𝑠-measurable, ℝ𝑙-valued, random variable and 𝑓 :

[𝑠, 𝑇 ] × Ω × ℝ𝑙 × ℝ𝑙 ⊗ ℝ𝑘 → ℝ𝑙 an ℝ𝑙-valued, measurable map such that (𝑓(𝑠 +

𝑙, 𝜔, ⋅, ⋅))𝑙∈[0,𝑇−𝑠] is predictable with respect to (ℱ𝑙)𝑙∈[0,𝑇−𝑠]. Let 𝜈 be a probability

measure supported by 𝒩 𝑐 such that 𝐸𝜈 ∣𝜉∣𝑝 < ∞. We say a pair (𝑌𝑡, 𝑍𝑡)𝑠≤𝑡≤𝑇 of

processes 𝑌 : [𝑠, 𝑇 ] × Ω → ℝ𝑙, 𝑍 : [𝑠, 𝑇 ] × Ω → ℝ𝑙 ⊗ ℝ𝑑 is a solution in 𝐿𝑝(𝑃 𝜈) of

the BSDE (2.4.3) over the interval [𝑠, 𝑇 ] with data (𝜉, 𝑓), provided that they have

the property that reindexed as (𝑌𝑠+𝑙, 𝑍𝑠+𝑙)𝑙∈[0,𝑇−𝑠] these processes are (ℱ𝑙)𝑙∈[0,𝑇−𝑠]-

predictable, 𝑌 is continuous and together they satisfy the integrability conditions∫ 𝑇

𝑠

∣𝑓(𝑡, ⋅, 𝑌𝑡, 𝑍𝑡𝜎(𝑋𝑡−𝑠))∣𝑑𝑡 <∞, 𝑃 𝜈 − 𝑎.𝑠..

𝐸𝜈(

∫ 𝑇

𝑠

∣𝑍𝑡𝜎(𝑋𝑡−𝑠)∣2𝑑𝑡)𝑝/2 <∞.

and the following equation under 𝑃 𝜈 ,

(2.4.3) 𝑌𝑡 = 𝜉 +

∫ 𝑇

𝑡

𝑓(𝑟, 𝑌𝑟, 𝑍𝑟𝜎(𝑋𝑟−𝑠))𝑑𝑟 −
∫ 𝑇−𝑠

𝑡−𝑠

𝑍𝑠+𝑙.𝑑𝑀𝑙, 𝑠 ≤ 𝑡 ≤ 𝑇.

The next result gives a probabilistic interpretation of Theorem 2.2.8. Let us assume

that 𝑓 : [0, 𝑇 ]×ℝ𝑑×ℝ𝑙×ℝ𝑙⊗ℝ𝑘 → ℝ𝑙 is the measurable function appearing in the

basic equation (2.2.1). Let 𝜙 : ℝ𝑑 → ℝ𝑙 be measurable and for each 𝑝 > 1, denote

by 𝐴𝑝 the set of points (𝑠, 𝑥) ∈ [0, 𝑇 )×𝒩 𝑐 with the following properties

(2.4.4) 𝐸𝑥

∫ 𝑇

𝑠

𝑓
′,𝑟(𝑡,𝑋𝑡−𝑠)𝑑𝑡 <∞, ∀𝑟 ≥ 0.
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𝐸𝑥(∣𝜙∣𝑝(𝑋𝑇−𝑠) + (

∫ 𝑇

𝑠

∣𝑓 0(𝑡,𝑋𝑡−𝑠)∣𝑑𝑠)𝑝) <∞.

Set 𝐴 = ∪𝑝>1𝐴𝑝, 𝐴𝑝,𝑠 = {𝑥 ∈ 𝒩 𝑐, (𝑠, 𝑥) ∈ 𝐴𝑝}, and 𝐴𝑠 = ∪𝑝>1𝐴𝑝,𝑠, 𝑠 ∈ [0, 𝑇 ). By

the same arguments as in [BPS05, Theorem 5.4], we have the following results. In

particular, we can reconstruct solutions to PDE (2.2.1) using Proposition 2.4.3.

Theorem 2.4.4 Assume that (A5) holds and 𝑓 satisfies conditions (H1),(H2),(H3).

Then there exist nearly Borel measurable functions (𝑢, 𝜓), 𝑢 : 𝐴→ ℝ𝑙, 𝜓 : 𝐴→ ℝ𝑙⊗
ℝ𝑑, such that, for each 𝑠 ∈ [0, 𝑇 ) and each 𝑥 ∈ 𝐴𝑝,𝑠, the pair (𝑢(𝑡,𝑋𝑡−𝑠), 𝜓(𝑡,𝑋𝑡−𝑠))𝑠≤𝑡≤𝑇

solves the BSDE (2.4.3) in 𝐿𝑝(𝑃 𝑥) with data (𝜙(𝑋𝑇−𝑠), 𝑓(𝑡,𝑋𝑡−𝑠, 𝑦, 𝑧)) over the in-

terval [𝑠, 𝑇 ].

In particular, the functions 𝑢, 𝜓 satisfy the following estimates, for (𝑠, 𝑥) ∈ 𝐴𝑝,

𝐸𝑥( sup
𝑡∈[𝑠,𝑇 ]

∣𝑢(𝑡,𝑋𝑡−𝑠)∣𝑝+(

∫ 𝑇

𝑠

∣𝜓𝜎(𝑡,𝑋𝑡−𝑠)∣2𝑑𝑡)𝑝/2) ≤ 𝐾𝐸𝑥(∣𝜙(𝑋𝑇−𝑠)∣𝑝+(

∫ 𝑇

𝑠

∣𝑓0(𝑡,𝑋𝑡−𝑠)∣𝑑𝑡)𝑝).

Moreover, suppose (A1)-(A4) hold, and the conditions in Theorem 2.2.11 hold when

𝑚(𝑑𝑥) = 𝑑𝑥. If 𝑓 and 𝜙 satisfy the conditions (H4) and (H5) then the complement

of 𝐴2.𝑠 is 𝑚-negligible (i.e. 𝑚(𝐴𝑐
2,𝑠) = 0) for each 𝑠 ∈ [0, 𝑇 ), the class of 𝑢1𝐴2 is an

element of 𝐹 𝑙 which is a generalized solution of PDE (2.2.1), 𝜓𝜎 represents a version

of 𝐷𝜎𝑢 and the following relations hold for each (𝑠, 𝑥) ∈ 𝐴 and 1 ≤ 𝑖 ≤ 𝑙,

(2.4.5) 𝑢𝑖(𝑠, 𝑥) = 𝐸𝑥(𝜙𝑖(𝑋𝑇−𝑠)) +

∫ 𝑇

𝑠

𝐸𝑥𝑓 𝑖(𝑡,𝑋𝑡−𝑠, 𝑢(𝑡,𝑋𝑡−𝑠), 𝐷𝜎𝑢(𝑡,𝑋𝑡−𝑠))𝑑𝑡.

Proof We will assume that 𝜙 and 𝑓 0 are bounded; the general case is then obtained

by approximation. Then the sets 𝐴𝑝, 𝑝 > 0, are all equal. We construct the functions

(𝑢, 𝜓) on 𝐴 as follows. For 𝑠 ∈ [0, 𝑇 ), denote by (𝑌 𝑠
𝑡 , 𝑍

𝑠
𝑡 )𝑠≤𝑡≤𝑇 the solution in

Proposition 2.4.3, of the BSDE (2.4.3) over the interval [𝑠, 𝑇 ], in 𝐿2(𝑃 𝑥), 𝑥 ∈ 𝐴𝑠 with

data (𝜙(𝑋𝑇−𝑠(𝜔)), 𝑓(𝑡,𝑋𝑡−𝑠(𝜔), 𝑦, 𝑧)). Since 𝑋𝑟 ∈ 𝐴𝑠+𝑟, 𝑃
𝑥-a.s., by the uniqueness

part of that proposition one deduces that

𝑌 𝑠+𝑟
𝑡 ∘ 𝜃𝑟 = 𝑌 𝑠

𝑡 , 𝑡 ∈ [𝑠+ 𝑟, 𝑇 ), 𝑃 𝑥 − 𝑎.𝑠.,

(𝑍𝑠+𝑟
𝑡 𝜎(𝑋𝑡−𝑠−𝑟)) ∘ 𝜃𝑟 = 𝑍𝑠

𝑡 𝜎(𝑋𝑡−𝑠), 𝑑𝑡× 𝑃 𝑥 − 𝑎.𝑠.

for each fixed 𝑟 ∈ [0, 𝑇 − 𝑠) and all measures 𝑃 𝑥, 𝑥 ∈ 𝐴𝑠. In particular, if we define

𝑢(𝑠, 𝑥) := 𝐸𝑥(𝑌 𝑠
𝑠 ),
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we will have, for any 𝑥 ∈ 𝐴𝑠,

𝑢(𝑡,𝑋𝑡−𝑠) = 𝐸𝑋𝑡−𝑠(𝑌 𝑡
𝑡 ) = 𝐸𝑥(𝑌 𝑡

𝑡 ∘ 𝜃𝑡−𝑠∣ℱ𝑡−𝑠) = 𝑌 𝑠
𝑡 𝑃 𝑥 − 𝑎.𝑠..

Set 𝑊𝑙(𝑠, 𝜔) := 𝑍𝑠
𝑙+𝑠𝜎(𝑋𝑙)(𝜔), for (𝑠, 𝜔) ∈ [0, 𝑇 ) × Ω and 𝑙 ∈ [0, 𝑇 − 𝑠). One has

𝑊𝑙(𝑟+𝑠, 𝜃𝑟(𝜔)) = 𝑊𝑙+𝑟(𝑠, 𝜔), 𝑑𝑙×𝑃 𝑥−𝑎.𝑠. In terms of the time-space Markov process

�̂� ( see e.g. [BPS05, Section 4.2]), we have 𝑊𝑙(�̂�𝑟(𝑠, 𝜔)) = 𝑊𝑙+𝑟(𝑠, 𝜔). Therefore,

𝑡 → 𝑈 𝑖
𝑗,𝑡(𝑠, 𝜔) =

∫ 𝑡∧𝑇
0

𝑊 𝑖
𝑗,𝑙(𝑠, 𝜔)𝑑𝑙, with 1 ≤ 𝑖 ≤ 𝑙 and 1 ≤ 𝑗 ≤ 𝑘, represents an

additive functional for the time-space process �̂�. By [Sh88, Theorem 66.2 ] we

deduce that there exists a nearly Borel measurable function �̃�
𝑖

𝑗 : [0, 𝑇 ) × ℝ𝑑 → 𝑅,

such that �̃�
𝑖

𝑗(𝑡,𝑋𝑡−𝑠(𝜔)) = 𝑊 𝑖
𝑗,𝑡−𝑠(𝑠, 𝜔), 𝑑𝑡× 𝑃 𝑥-a.s. for each 𝑥 ∈ 𝐴𝑠. Define

𝜓 := �̃�𝜏 .

Then we have 𝑍𝑠
𝑡 𝜎(𝑋𝑡−𝑠) = 𝜓𝜎(𝑡,𝑋𝑡−𝑠)𝑑𝑡× 𝑃 𝑥 − 𝑎.𝑠.,∀𝑥 ∈ 𝐴𝑠. Now we have

𝑢𝑖(𝑠, 𝑥) = 𝐸𝑥(𝜙𝑖(𝑋𝑇−𝑠)) +

∫ 𝑇

𝑠

𝐸𝑥𝑓 𝑖(𝑡,𝑋𝑡−𝑠, 𝑢(𝑡,𝑋𝑡−𝑠), 𝜓𝜎(𝑡,𝑋𝑡−𝑠))𝑑𝑡,

since 𝜙 and 𝑓 0 are bounded. In particular, we have that 𝑡 → 𝑢(𝑡,𝑋𝑡−𝑠) is con-

tinuous 𝑃 𝑥-a.s. for each 𝑥 ∈ 𝐴𝑠, because 𝑢 may be written as the difference of

two �̂�-excessive functions with regular potential part (cf. [BG68]). This implies

𝑢(⋅, 𝑋⋅−𝑠) = 𝑌 𝑠
⋅ . 𝑢(⋅, 𝑋⋅−𝑠), 𝜓(⋅, 𝑋⋅−𝑠) solves the BSDE (2.4.3) in 𝐿𝑝(𝑃 𝑥) over the

time interval [𝑠, 𝑇 ]. By Theorem 2.3.12, we have that 𝑢 is a generalized solution of

(2.2.1) and that 𝜓𝜎 represents a version of 𝐷𝜎𝑢. □

Remark 2.4.5 In the above theorem, we need the analytic results, i.e. the

existence of a generalized solution of nonlinear equation (2.2.1), to obtain the above

results. In the following example, we drop the conditions (A1)-(A4), in particular, we

don’t need ∣𝑏𝜎∣ ∈ 𝐿2(ℝ𝑑;𝑚) and use the results that the existence of the solution of

BSDE (2.4.3) to obtain the existence of a generalized solution of nonlinear equation

(2.2.1), which is not covered by our analytic results in Section 2.2.

Example 2.4.6 Consider 𝑑 ≥ 2, 𝐴 = (𝑎𝑖𝑗) a Borel-measurable mapping on ℝ𝑑

with values in the non-negative symmetric matrices on ℝ𝑑, and let 𝑏 = (𝑏𝑖) : ℝ𝑑 → ℝ𝑑

be a Borel-measurable vector field. Consider the operator

𝐿𝐴,𝑏𝜓 = 𝑎𝑖𝑗∂𝑖∂𝑗𝜓 + 𝑏𝑖∂𝑖𝜓, ∀𝜓 ∈ 𝐶∞
0 (ℝ𝑑),

where we use the standard summation rule for repeated indices. By 𝐻1,𝑝(ℝ𝑑, 𝑑𝑥) we

denote the standard Sobolev space of functions on ℝ𝑑 whose first order derivatives



72 Chapter 2. BSDE and generalized Dirichlet form: finite dimensional case

are in 𝐿𝑝(ℝ𝑑, 𝑑𝑥). Assume that for 𝑝 > 𝑑

(C1)𝑎𝑖𝑗 = 𝑎𝑗𝑖 ∈ 𝐻1,𝑝
loc (ℝ𝑑, 𝑑𝑥), 1 ≤ 𝑖, 𝑗 ≤ 𝑑.

(C2)𝑏𝑖 ∈ 𝐿𝑝
loc(ℝ𝑑, 𝑑𝑥).

(C3) for all 𝑉 relatively compact in ℝ𝑑 there exist 𝜈𝑉 > 0 such that

𝜈−1
𝑉 ∣ℎ∣2 ≤ ⟨ℎ𝑎, ℎ⟩ ≤ 𝜈𝑉 ∣ℎ∣2 for all ℎ ∈ ℝ𝑑, 𝑥 ∈ 𝑉

Here by 𝐻1,𝑝
𝑙𝑜𝑐 (ℝ𝑑, 𝑑𝑥) we denote the class of all functions 𝑓 on ℝ𝑑 such that

𝑓𝜒 ∈ 𝐻1,𝑝(ℝ𝑑, 𝑑𝑥) for all 𝜒 ∈ 𝐶∞
0 (ℝ𝑑). And 𝐿𝑝

loc(ℝ𝑑, 𝑑𝑥) denotes the class of all

functions 𝑓 on ℝ𝑑 such that 𝑓𝜒 ∈ 𝐿𝑝(ℝ𝑑) for all 𝜒 ∈ 𝐶∞
0 (ℝ𝑑). Assume that there

exists 𝑉 ∈ 𝐶2(ℝ𝑑) (”Lyapunov function”) such that

lim
∣𝑥∣→∞

𝑉 (𝑥) = +∞, lim
∣𝑥∣→∞

𝐿𝐴,𝑏𝑉 (𝑥) = −∞.

Examples of 𝑉 can be found in [BRS00] and the reference therein.

Then by [BRS00, Theorem 2.2] there exists a probability measure 𝜇 on ℝ𝑑 such

that ∫
ℝ𝑑

𝐿𝐴,𝑏𝜓𝑑𝜇 = 0 ∀𝜓 ∈ 𝐶∞
0 (ℝ𝑑).

Then by [BRS00, Theorem 2.1] we have 𝑑𝜇 is absolutely continuous w.r.t. 𝑑𝑥

and that the density admits a representation 𝜑2, where 𝜑2 ∈ 𝐻1,𝑝
𝑙𝑜𝑐 (ℝ𝑑, 𝑑𝑥). The

closure of

ℰ0(𝑢, 𝑣) =
1

2

∫
⟨∇𝑢𝑎,∇𝑣⟩𝑑𝜇; 𝑢, 𝑣 ∈ 𝐶∞

0 (ℝ𝑑),

on 𝐿2(ℝ𝑑, 𝜇) is a Dirichlet form.

Set 𝑏0 = (𝑏01, ..., 𝑏
0
𝑑), where 𝑏

0
𝑖 :=

∑𝑑
𝑗=1(∂𝑗𝑎𝑖𝑗 + 2𝑎𝑖𝑗∂𝑗𝜑/𝜑), 𝑖 = 1, ..., 𝑑, and 𝛽 :=

𝑏 − 𝑏0. Then, 𝛽 ∈ 𝐿2
loc(ℝ𝑑;ℝ𝑑, 𝜇). By [St1, Proposition 1.10 and Proposition 2.4]

(𝐿,𝐶∞
0 (ℝ𝑑)) is 𝐿1-unique. By the proof of [St1, Proposition 2.4] we conclude that

for 𝑢 ∈ 𝑏ℱ there exists a sequence {𝑢𝑛} ⊂ 𝐶∞
0 (ℝ𝑑) such that ℰ(𝑢𝑛 − 𝑢, 𝑢𝑛 − 𝑢) →

0, 𝑛→ ∞.

Consider the bilinear form

ℰ(𝑢, 𝑣) = 1

2

∫
⟨∇𝑢𝑎,∇𝑣⟩𝑑𝜇−

∫
⟨1
2
𝛽,∇𝑢⟩𝑣𝑑𝜇 𝑢, 𝑣 ∈ 𝐶∞

0 (ℝ𝑑).

Then by the computation in [Tr2, Section 4d] we have that conditions (A5) hold for

the bilinear form ℰ . Then we can use the first part of Theorem 2.4.4 to obtain the

following results.

Theorem 2.4.7 Consider the bilinear form obtained in Example 2.4.6. If 𝑓 satis-
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fies conditions (H1),(H2),(H3). Then there exist nearly Borel measurable functions

(𝑢, 𝜓), 𝑢 : 𝐴→ ℝ𝑙, 𝜓 : 𝐴→ ℝ𝑙⊗ℝ𝑑, such that, for each 𝑠 ∈ [0, 𝑇 ) and each 𝑥 ∈ 𝐴𝑝,𝑠,

the pair (𝑢(𝑡,𝑋𝑡−𝑠), 𝜓(𝑡,𝑋𝑡−𝑠))𝑠≤𝑡≤𝑇 solves the BSDE (2.4.3) in 𝐿𝑝(𝑃 𝑥) with data

(𝜙(𝑋𝑇−𝑠), 𝑓(𝑡,𝑋𝑡−𝑠, 𝑦, 𝑧)) over the interval [𝑠, 𝑇 ].

In particular, the functions 𝑢, 𝜓 satisfy the following estimates, for (𝑠, 𝑥) ∈ 𝐴𝑝,

𝐸𝑥( sup
𝑡∈[𝑠,𝑇 ]

∣𝑢(𝑡,𝑋𝑡−𝑠)∣𝑝+(

∫ 𝑇

𝑠

∣𝜓𝜎(𝑡,𝑋𝑡−𝑠)∣2𝑑𝑡)𝑝/2) ≤ 𝐾𝐸𝑥(∣𝜙(𝑋𝑇−𝑠)∣𝑝+(

∫ 𝑇

𝑠

∣𝑓0(𝑡,𝑋𝑡−𝑠)∣𝑑𝑡)𝑝).

Moreover, suppose 𝑓 and 𝜙 satisfy the conditions (H4) and (H5) then the comple-

ment of 𝐴2.𝑠 is 𝜇-negligible (i.e. 𝜇(𝐴
𝑐
2,𝑠) = 0) for each 𝑠 ∈ [0, 𝑇 ), the class of 𝑢1𝐴2 is

an element of 𝐹 𝑙 which is the unique generalized solution of (2.2.1), 𝜓𝜎 represents

a version of 𝐷𝜎𝑢 and the following relations hold for each (𝑠, 𝑥) ∈ 𝐴 and 1 ≤ 𝑖 ≤ 𝑙,

𝑢𝑖(𝑠, 𝑥) = 𝐸𝑥(𝜙𝑖(𝑋𝑇−𝑠)) +

∫ 𝑇

𝑠

𝐸𝑥𝑓 𝑖(𝑡,𝑋𝑡−𝑠, 𝑢(𝑡,𝑋𝑡−𝑠), 𝐷𝜎𝑢(𝑡,𝑋𝑡−𝑠))𝑑𝑡.

Proof By [St1, Lemma 3.1] we have that for 𝑢 ∈ 𝐷(𝐿𝐴,𝑏), 𝑢 ∈ 𝐷(ℰ0) and ℰ0(𝑢, 𝑢) ≤
− ∫

𝐿𝑢𝑢𝑑𝜇. Hence the first part of proof in Proposition 2.1.9 hold in this case i.e.

the mild solution is equivalent to the generalized solution and (2.1.7), (2.1.8) hold.

Hence, the uniqueness of the solution (2.2.1) follows by the same arguments as the

uniqueness proof of Theorem 2.2.8. Moreover, the results in Theorem 2.3.12 hold.

By the same arguments as in the proof of Theorem 2.4.4 the assertion follows. □

2.5 Further Examples

The following two examples discuss the case where PDE satisfies some boundary

conditions.

Example 2.5.1 . Let 𝐷 ⊂ ℝ𝑑 be a bounded domain. We choose 𝑚(𝑑𝑥) =

1𝐷(𝑥)𝑑𝑥. If ℰ is a sectorial Dirichlet form, it is associated to a reflecting diffusion 𝑋

in the state space 𝐷. Then by Theorem 2.2.8 there exists a solution to the non-linear

parabolic equation

(∂𝑡 + 𝐿)𝑢+ 𝑓(𝑡, 𝑥, 𝑢,𝐷𝜎𝑢) = 0, 0 ≤ 𝑡 ≤ 𝑇,

𝑢𝑇 (𝑥) = 𝜙(𝑥), 𝑥 ∈ ℝ𝑑,

∂𝑢(𝑡, ⋅)
∂𝜈

∣∂𝐷 = 0, 𝑡 > 0,

where ∂
∂𝜈

denotes the normal derivative. Then Theorem 2.4.4 provides a probabilistic
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interpretation for this equation.

Example 2.5.2 . Let 𝐷 ⊂ ℝ𝑑 be a bounded domain satisfying the cone condition.

We choose 𝑚(𝑑𝑥) = 1𝐷(𝑥)𝑑𝑥 and replace 𝐶∞
0 (ℝ𝑑) by 𝐶∞

0 (𝐷). Then the results in

Theorem 2.2.8 apply and there exists a solution 𝑢1 ∈ 𝐹 = 𝐻1
0 (𝐷) to the following

non-linear parabolic equation:

(∂𝑡 + 𝐿)𝑢+ 𝑓(𝑡, 𝑥, 𝑢,𝐷𝜎𝑢) = 0, 0 ≤ 𝑡 ≤ 𝑇,

𝑢𝑇 (𝑥) = 𝜙(𝑥), 𝑥 ∈ ℝ𝑑.

Assume ℰ satisfies the weak sector condition. Let 𝑋0 denote the diffusion asso-

ciated with ℰ𝑅, where ℰ𝑅 denotes the Dirichlet form which has the same form as ℰ
with the reference measure 𝑚(𝑑𝑥) replaced by 𝑑𝑥. Then define

𝑋𝑡 :=

{
𝑋0

𝑡 , if 𝑡 < 𝜏,

Δ otherwise,

where 𝜏 = inf{𝑡 ≥ 0, 𝑋0
𝑡 ∈ 𝐷𝑐 ∪Δ}. Assume (A5) holds for 𝑋0. We use Theorem

2.4.4 for 𝑋0 with the data (𝜙(𝑋0
𝑇−𝑠)1{𝑇−𝑠<𝜏}, 1[0,𝜏+𝑠](𝑟)𝑓(𝑟,𝑋

0
𝑟−𝑠, 𝑌𝑟, 𝑍𝑟𝜎(𝑋

0
𝑟−𝑠)).

Then there exist nearly Borel measurable functions (𝑢, 𝜓), 𝑢 : 𝐴→ ℝ𝑙, 𝜓 : 𝐴→ ℝ𝑙⊗
ℝ𝑑, such that, for each 𝑠 ∈ [0, 𝑇 ) and each 𝑥 ∈ 𝐴𝑝,𝑠, the pair (𝑢(𝑡,𝑋

0
𝑡−𝑠), 𝜓(𝑡,𝑋

0
𝑡−𝑠))𝑠≤𝑡≤𝑇

solves the BSDE

𝑌𝑡 = 𝜙(𝑋0
𝑇−𝑠)1{𝑇−𝑠<𝜏}+

∫ 𝑇∧(𝜏+𝑠)

𝑡∧(𝜏+𝑠)

𝑓(𝑟,𝑋0
𝑟−𝑠, 𝑌𝑟, 𝑍𝑟𝜎(𝑋

0
𝑟−𝑠))𝑑𝑟−

∫ 𝑇−𝑠

𝑡−𝑠

𝑍𝑠+𝑙.𝑑𝑀𝑙, 𝑠 ≤ 𝑡 ≤ 𝑇.

Then by [Pa99, Proposition 2.6] we have

𝑌𝑡 = 0, 𝑍𝑡 = 0 when 𝑡 ∈ [𝜏 + 𝑠, 𝑇 ],

and the pair (𝑢(𝑡,𝑋𝑡−𝑠), 𝜓(𝑡,𝑋𝑡−𝑠))𝑠≤𝑡≤𝑇 solves the BSDE

𝑌𝑡 = 𝜙(𝑋𝑇−𝑠) +

∫ 𝑇

𝑡

𝑓(𝑟,𝑋𝑟−𝑠, 𝑌𝑟, 𝑍𝑟𝜎(𝑋𝑟−𝑠))𝑑𝑟 −
∫ 𝑇−𝑠

𝑡−𝑠

𝑍𝑠+𝑙.𝑑𝑀𝑙, 𝑠 ≤ 𝑡 ≤ 𝑇.

In particular, the functions 𝑢, 𝜓 satisfy the following estimates, for (𝑠, 𝑥) ∈ 𝐴𝑝,

𝐸𝑥( sup
𝑡∈[𝑠,𝑇 ]

∣𝑢(𝑡,𝑋𝑡−𝑠)∣𝑝+(

∫ 𝑇

𝑠

∣𝜓𝜎(𝑡,𝑋𝑡−𝑠)∣2𝑑𝑡)𝑝/2) ≤ 𝐾𝐸𝑥(∣𝜙(𝑋𝑇−𝑠)∣𝑝+(

∫ 𝑇

𝑠

∣𝑓0(𝑡,𝑋𝑡−𝑠)∣𝑑𝑡)𝑝).

The class of 𝑢1𝐴2 is an element in 𝐹 𝑙 which is an 𝑚-version of 𝑢1, 𝜓𝜎 represents a
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version of 𝐷𝜎𝑢 and the following relations hold for each (𝑠, 𝑥) ∈ 𝐴 and 1 ≤ 𝑖 ≤ 𝑙,

(2.5.1)

𝑢𝑖(𝑠, 𝑥) = 𝐸𝑥(𝜙𝑖(𝑋𝑇−𝑠)) +

∫ 𝑇

𝑠

𝐸𝑥𝑓 𝑖(𝑡,𝑋𝑡−𝑠, 𝑢(𝑡,𝑋𝑡−𝑠), 𝜓(𝑡,𝑋𝑡−𝑠)𝜎(𝑋𝑡−𝑠))𝑑𝑡.

2.6 Appendix

2.6.1 Appendix A. Proof of Theorem 2.2.8

[Uniqueness]

Let 𝑢1 and 𝑢2 be two solutions of equation (2.2.1). By using (2.1.7) for the

difference 𝑢1 − 𝑢2 we get

∥𝑢1,𝑡 − 𝑢2,𝑡∥22 + 2

∫ 𝑇

𝑡

ℰ𝑎,�̂�(𝑢1,𝑠 − 𝑢2,𝑠)𝑑𝑠

≤2

∫ 𝑇

𝑡

(𝑓(𝑠, ⋅, 𝑢1,𝑠, 𝐷𝜎𝑢1,𝑠)− 𝑓(𝑠, ⋅, 𝑢2,𝑠, 𝐷𝜎𝑢2,𝑠), 𝑢1,𝑠 − 𝑢2,𝑠)𝑑𝑠+ 2𝛼

∫ 𝑇

𝑡

∥𝑢1,𝑠 − 𝑢2,𝑠∥22𝑑𝑠

≤2

∫ 𝑇

𝑡

𝐶(∣𝐷𝜎𝑢1,𝑠 −𝐷𝜎𝑢2,𝑠∣, ∣𝑢1,𝑠 − 𝑢2,𝑠∣)𝑑𝑠+ 2𝛼

∫ 𝑇

𝑡

∥𝑢1,𝑠 − 𝑢2,𝑠∥22𝑑𝑠

≤(
𝐶2

𝑐1
+ 𝑐2 + 2𝛼)

∫ 𝑇

𝑡

∥𝑢1,𝑠 − 𝑢2,𝑠∥22𝑑𝑠+
∫ 𝑇

𝑡

ℰ𝑎,�̂�(𝑢1,𝑠 − 𝑢2,𝑠)𝑑𝑠.

By Gronwall’s lemma it follows that

∥𝑢1,𝑡 − 𝑢2,𝑡∥22 = 0,

hence 𝑢1 = 𝑢2.

[Existence] The existence will be proved in four steps.

Step 1: Suppose there exists 𝑟 ∈ ℝ such that

𝑟 ≥ 1 +𝐾(∥𝜙∥∞ + ∥𝑓0∥∞ + ∥𝑓 ′,1∥∞),

where 𝐾 is the constant appearing in Lemma 2.2.7 (2.2.5), and 𝑓 is uniformly

bounded on the set

𝐴𝑟 = [0, 𝑇 ]× ℝ𝑑 × {∣𝑦∣ ≤ 𝑟} × ℝ𝑙 ⊗ ℝ𝑘.

Define

𝑀 := sup{∣𝑓(𝑡, 𝑥, 𝑦, 𝑧)∣ : (𝑡, 𝑥, 𝑦, 𝑧) ∈ 𝐴𝑟} <∞.
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Next we regularize 𝑓 with respect to the variable 𝑦 by convolution

𝑓𝑛(𝑡, 𝑥, 𝑦, 𝑧) = 𝑛𝑙

∫
𝑅𝑙

𝑓(𝑡, 𝑥, 𝑦′, 𝑧)𝜑(𝑛(𝑦 − 𝑦′))𝑑𝑦′,

where 𝜑 is a smooth nonnegative function with support contained in the ball {∣𝑦∣ ≤
1} such that

∫
𝜑 = 1. Then 𝑓 = lim𝑛→∞ 𝑓𝑛 and for each 𝑛, ∂𝑦𝑖𝑓𝑛 are uniformly

bounded on 𝐴𝑟−1. Set

ℎ𝑛(𝑡, 𝑥, 𝑦, 𝑧) := 𝑓𝑛(𝑡, 𝑥,
𝑟 − 1

∣𝑦∣ ∨ (𝑟 − 1)
𝑦, 𝑧).

Then each ℎ𝑛 satisfies the Lipschitz condition with respect to both 𝑦 and 𝑧. Thus

by Proposition 2.2.4 each ℎ𝑛 determines a solution 𝑢𝑛 ∈ 𝐹 𝑙 of (2.2.1) with data

(𝜙, ℎ𝑛). By the same arguments as in [S09, Theorem 4.19], we have that ℎ𝑛 satisfies

conditions (H1) and (H2’) with the same constants (𝐶 > 0 and 𝜇 = 0). As 𝑚 is a

finite measure and 𝑓
′,1 ∈ 𝐿∞([0, 𝑇 ]× ℝ𝑑), we have 𝑓

′,1 ∈ 𝐿2([0, 𝑇 ];𝐿2). Since

∣ℎ𝑛(𝑡, 𝑥, 0, 0) =∣𝑓𝑛(𝑡, 𝑥, 0, 0)∣
≤𝑛𝑙

∫
𝑅𝑙

∣𝑓(𝑡, 𝑥, 𝑦′)− 𝑓 0(𝑡, 𝑥) + 𝑓0(𝑡, 𝑥)∣∣𝜑(𝑛(−𝑦′))∣𝑑𝑦′

≤∣𝑓 0(𝑡, 𝑥)∣+ 𝑓
′,1(𝑡, 𝑥),

one deduces from Lemma 2.2.7 that ∥𝑢𝑛∥∞ ≤ 𝑟−1 and ∥𝑢𝑛∥𝑇 ≤ 𝐾𝑇 . Since ℎ𝑛 = 𝑓𝑛
on 𝐴𝑟−1, it follows that 𝑢𝑛 satisfies (2.2.1) with data (𝜙, 𝑓𝑛).

Now for 𝑏 > 0, set

𝑑𝑛,𝑏(𝑡, 𝑥) := sup
∣𝑦∣≤𝑟−1,∣𝑧∣≤𝑏

∣𝑓(𝑡, 𝑥, 𝑦, 𝑧)− 𝑓𝑛(𝑡, 𝑥, 𝑦, 𝑧)∣.

Obviously one has ∣𝑑𝑛,𝑏∣ ≤ 2𝑀 . Moreover, on account of the 𝑦-continuity and of the

uniform 𝑧-continuity, one sees that for fixed 𝑡, 𝑥, 𝑏, the family of functions

{𝑓(𝑡, 𝑥, ⋅, 𝑧)∣∣𝑧∣ ≤ 𝑏},

is equicontinuous and then compact in 𝒞({∣𝑦∣ ≤ 𝑟 − 1}). Since the convolution

operators approach the identity uniformly on such a compact set, we get

lim
𝑛→∞

𝑑𝑛,𝑏(𝑡, 𝑥) = 0,

which implies lim𝑛→∞ 𝑑𝑛,𝑏(𝑡, 𝑥) = 0 in 𝐿2(𝑑𝑡 ×𝑚) because of our assumption that
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𝑚(ℝ𝑑) <∞. Moreover, for 𝑢 ∈ 𝐹 𝑙, ∣𝑢∣ ≤ 𝑟 − 1

∣𝑓(𝑢,𝐷𝜎𝑢)− 𝑓𝑛(𝑢,𝐷𝜎𝑢)∣ ≤1{∣𝐷𝜎𝑢∣≤𝑏}𝑑𝑛,𝑏 + 2𝑀1{∣𝐷𝜎𝑢∣>𝑏}

≤𝑑𝑛,𝑏 + 2𝑀

𝑏
∣𝐷𝜎𝑢∣.

Next we will show that (𝑢𝑛)𝑛∈ℕ is a ∥ ⋅ ∥𝑇 -Cauchy sequence. By (2.1.7) for the

difference 𝑢𝑙 − 𝑢𝑛, we have

∥𝑢𝑙,𝑡 − 𝑢𝑛,𝑡∥22 + 2

∫ 𝑇

𝑡

ℰ𝑎,�̂�(𝑢𝑙,𝑠 − 𝑢𝑛,𝑠)𝑑𝑠

≤2

∫ 𝑇

𝑡

(𝑓𝑙(𝑠, ⋅, 𝑢𝑙,𝑠, 𝐷𝜎𝑢𝑙,𝑠)− 𝑓𝑛(𝑠, ⋅, 𝑢𝑛,𝑠, 𝐷𝜎𝑢𝑛,𝑠), 𝑢𝑙,𝑠 − 𝑢𝑛,𝑠)𝑑𝑠+ 2𝛼

∫ 𝑇

𝑡

∥𝑢𝑙,𝑠 − 𝑢𝑛,𝑠∥22𝑑𝑠

≤2

∫ 𝑇

𝑡

(∣𝑓𝑙(𝑠, ⋅, 𝑢𝑙,𝑠, 𝐷𝜎𝑢𝑙,𝑠)− 𝑓(𝑠, ⋅, 𝑢𝑙,𝑠, 𝐷𝜎𝑢𝑙,𝑠)∣, ∣𝑢𝑙,𝑠 − 𝑢𝑛,𝑠∣)𝑑𝑠

+ 2

∫ 𝑇

𝑡

(∣𝑓𝑛(𝑠, ⋅, 𝑢𝑛,𝑠, 𝐷𝜎𝑢𝑛,𝑠)− 𝑓(𝑠, ⋅, 𝑢𝑛,𝑠, 𝐷𝜎𝑢𝑛,𝑠)∣, ∣𝑢𝑙,𝑠 − 𝑢𝑛,𝑠∣)𝑑𝑠

+ 2

∫ 𝑇

𝑡

(∣𝑓(𝑠, ⋅, 𝑢𝑙,𝑠, 𝐷𝜎𝑢𝑙,𝑠)− 𝑓(𝑠, ⋅, 𝑢𝑙,𝑠, 𝐷𝜎𝑢𝑛,𝑠)∣, ∣𝑢𝑙,𝑠 − 𝑢𝑛,𝑠∣)𝑑𝑠

+ 2

∫ 𝑇

𝑡

(𝑓(𝑠, ⋅, 𝑢𝑙,𝑠, 𝐷𝜎𝑢𝑛,𝑠)− 𝑓(𝑠, ⋅, 𝑢𝑛,𝑠, 𝐷𝜎𝑢𝑛,𝑠), 𝑢𝑙,𝑠 − 𝑢𝑛,𝑠)𝑑𝑠+ 2𝛼

∫ 𝑇

𝑡

∥𝑢𝑙,𝑠 − 𝑢𝑛,𝑠∥22𝑑𝑠

≤2

∫ 𝑇

𝑡

(∣𝑓𝑙(𝑠, ⋅, 𝑢𝑙,𝑠, 𝐷𝜎𝑢𝑙,𝑠)− 𝑓(𝑠, ⋅, 𝑢𝑙,𝑠, 𝐷𝜎𝑢𝑙,𝑠)∣, ∣𝑢𝑙,𝑠 − 𝑢𝑛,𝑠∣)𝑑𝑠

+ 2

∫ 𝑇

𝑡

(∣𝑓𝑛(𝑠, ⋅, 𝑢𝑛,𝑠, 𝐷𝜎𝑢𝑛,𝑠)− 𝑓(𝑠, ⋅, 𝑢𝑛,𝑠, 𝐷𝜎𝑢𝑛,𝑠)∣, ∣𝑢𝑙,𝑠 − 𝑢𝑛,𝑠∣)𝑑𝑠

+ 2

∫ 𝑇

𝑡

𝐶(∣𝐷𝜎𝑢𝑙,𝑠 −𝐷𝜎𝑢𝑛,𝑠∣, ∣𝑢𝑙,𝑠 − 𝑢𝑛,𝑠∣)𝑑𝑠+ 2𝛼

∫ 𝑇

𝑡

∥𝑢𝑙,𝑠 − 𝑢𝑛,𝑠∥22𝑑𝑠

≤2

∫ 𝑇

𝑡

(𝑑𝑙,𝑏(𝑠, ⋅) + 𝑑𝑛,𝑏(𝑠, ⋅), ∣𝑢𝑙,𝑠 − 𝑢𝑛,𝑠∣)𝑑𝑠+ 2

∫ 𝑇

𝑡

2𝑀

𝑏
(∣𝐷𝜎𝑢𝑙,𝑠∣+ ∣𝐷𝜎𝑢𝑛,𝑠∣, ∣𝑢𝑙,𝑠 − 𝑢𝑛,𝑠∣)𝑑𝑠

+ 2

∫ 𝑇

𝑡

𝐶(∣𝐷𝜎𝑢𝑙,𝑠 −𝐷𝜎𝑢𝑛,𝑠∣, ∣𝑢𝑙,𝑠 − 𝑢𝑛,𝑠∣)𝑑𝑠+ 2𝛼

∫ 𝑇

𝑡

∥𝑢𝑙,𝑠 − 𝑢𝑛,𝑠∥22𝑑𝑠

≤
∫ 𝑇

𝑡

∥𝑑𝑙,𝑏(𝑠, ⋅)∥22𝑑𝑠+
∫ 𝑇

𝑡

∥𝑑𝑛,𝑏(𝑠, ⋅)∥22𝑑𝑠+
1

𝑏2

∫ 𝑇

𝑡

(∥𝐷𝜎𝑢𝑙,𝑠∥22 + ∥𝐷𝜎𝑢𝑛,𝑠∥22)𝑑𝑠

+ (1 + 4𝑀2 +
𝐶2

𝑐1
+ 2𝛼+ 𝑐2)

∫ 𝑇

𝑡

∥𝑢𝑙,𝑠 − 𝑢𝑛,𝑠∥22𝑑𝑠+
∫ 𝑇

𝑡

ℰ𝑎,�̂�(𝑢𝑙,𝑠 − 𝑢𝑛,𝑠)𝑑𝑠.

Since ∥𝑢𝑛∥𝑇 ≤ 𝐾𝑇 , we have ∫ 𝑇

0

∥𝐷𝜎𝑢𝑙,𝑠∥22𝑑𝑠 ≤
𝐾𝑇

𝑐1
,
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where the 𝐾𝑇 is independent of 𝑙 and 𝑏. Thus, for 𝑏, 𝑙, 𝑛 large enough, for arbitrary

𝜀 > 0 we get

∥𝑢𝑙,𝑡 − 𝑢𝑛,𝑡∥22 +
∫ 𝑇

𝑡

ℰ𝑎,�̂�(𝑢𝑙,𝑠 − 𝑢𝑛,𝑠)𝑑𝑠 ≤ 𝜀+ �̃�

∫ 𝑇

𝑡

∥𝑢𝑙,𝑡 − 𝑢𝑛,𝑡∥22𝑑𝑠,

where �̃� depends on 𝐶,𝑀, 𝜇, 𝛼. It is easy to see that Gronwall’s lemma implies that

(𝑢𝑛)𝑛∈ℕ is a Cauchy-sequence in 𝐹 . Define 𝑢 := lim𝑛→∞ 𝑢𝑛 and take a subsequence

(𝑛𝑘)𝑘∈ℕ such that 𝑢𝑛𝑘
→ 𝑢 a.e. We have

𝑓(⋅, ⋅, 𝑢𝑛𝑘
, 𝐷𝜎𝑢) → 𝑓(⋅, ⋅, 𝑢,𝐷𝜎𝑢) in 𝐿

2(𝑑𝑡×𝑚).

Since ∥𝑢𝑛𝑘
− 𝑢∥𝑇 → 0, we obtain

∥𝐷𝜎𝑢−𝐷𝜎𝑢𝑛𝑘
∥𝐿2(𝑑𝑡×𝑚) → 0.

Then by (H1), it follows that

lim
𝑘→∞

∥𝑓(⋅, ⋅, 𝑢𝑛𝑘
, 𝐷𝜎𝑢)− 𝑓(⋅, ⋅, 𝑢𝑛𝑘

, 𝐷𝜎𝑢𝑛𝑘
)∥𝐿2(𝑑𝑡×𝑚)

≤ lim
𝑘→∞

𝐶∥𝐷𝜎𝑢−𝐷𝜎𝑢𝑛𝑘
∥𝐿2(𝑑𝑡×𝑚)

=0.

We also have

∥𝑓(⋅, ⋅, 𝑢𝑛𝑘
, 𝐷𝜎𝑢𝑛𝑘

)− 𝑓𝑛𝑘
(⋅, ⋅, 𝑢𝑛𝑘

, 𝐷𝜎𝑢𝑛𝑘
)∥𝐿2(𝑑𝑡×𝑚)

≤∣∣𝑑𝑛𝑘,𝑏∥𝐿2(𝑑𝑡×𝑚) +
2𝑀

𝑏
∥𝐷𝜎𝑢𝑛𝑘

∥𝐿2(𝑑𝑡×𝑚).

Letting 𝑘 → ∞ and then 𝑏 → ∞ the above equality converges to zero. Finally, we

conclude
lim
𝑘→∞

∥𝑓𝑛𝑘
(𝑢𝑛𝑘

, 𝐷𝜎𝑢𝑛𝑘
)− 𝑓(𝑢,𝐷𝜎𝑢)∥𝐿2(𝑑𝑡×𝑚)

≤ lim
𝑘→∞

∥𝑓𝑛𝑘
(𝑢𝑛𝑘

, 𝐷𝜎𝑢𝑛𝑘
)− 𝑓(𝑢𝑛𝑘

, 𝐷𝜎𝑢𝑛𝑘
)∥𝐿2(𝑑𝑡×𝑚)

+ lim
𝑘→∞

∥𝑓(𝑢𝑛𝑘
, 𝐷𝜎𝑢𝑛𝑘

)− 𝑓(𝑢𝑛𝑘
, 𝐷𝜎𝑢)∥𝐿2(𝑑𝑡×𝑚)

+ lim
𝑘→∞

∥𝑓(𝑢𝑛𝑘
, 𝐷𝜎𝑢)− 𝑓(𝑢,𝐷𝜎𝑢)∥𝐿2(𝑑𝑡×𝑚)

=0.

By passing to the limit in the mild equation associated to 𝑢𝑛𝑘
with data (𝜙, 𝑓𝑛𝑘

), it

follows that 𝑢 is the solution associated to (𝜙, 𝑓).

Step 2: In this step we will prove the assertion under the assumption that there



2.6. Appendix 79

exists some constant 𝑟 such that 𝑓
′,𝑟 is uniformly bounded and

𝑟 ≥ 1 +𝐾(∥𝜙∥∞ + ∥𝑓0∥∞ + ∥𝑓 ′,1∥∞),

where 𝐾 is the constant appearing in Lemma 2.2.7 (2.2.5). Define

𝑓𝑛(𝑡, 𝑥, 𝑦, 𝑧) := 𝑓(𝑡, 𝑥, 𝑦,
𝑛

∣𝑧∣ ∨ 𝑛𝑧).

𝑓𝑛 ≤ 𝐶𝑛 + ∥𝑓 ′,𝑟∥∞ + ∥𝑓0∥∞ on 𝐴𝑟. Each of the functions 𝑓𝑛 satisfies the same

conditions as 𝑓 and by Step 1, there exists a solution 𝑢𝑛 associated to the data

(𝜙, 𝑓𝑛). One has ∥𝑢𝑛∥∞ ≤ 𝑟 − 1, ∥𝑢𝑛∥𝑇 ≤ 𝐾𝑇 . Conditions (H1) and (H2) yield

∣(𝑓𝑙(𝑢𝑙, 𝐷𝜎𝑢𝑙)− 𝑓𝑛(𝑢𝑛, 𝐷𝜎𝑢𝑛), 𝑢𝑙 − 𝑢𝑛)∣
≤𝐶(∣𝐷𝜎𝑢𝑙 −𝐷𝜎𝑢𝑛∣, ∣𝑢𝑙 − 𝑢𝑛∣) + ∣(𝑓𝑙(𝑢𝑛, 𝐷𝜎𝑢𝑛)− 𝑓𝑛(𝑢𝑛, 𝐷𝜎𝑢𝑛), 𝑢𝑙 − 𝑢𝑛)∣.

Since 𝑓𝑛(𝑡, 𝑥, 𝑦, 𝑧)1∣𝑧∣≤𝑛 = 𝑓(𝑡, 𝑥, 𝑦, 𝑧)1∣𝑧∣≤𝑛, and for 𝑛 ≤ 𝑙, ∣𝑓𝑙−𝑓𝑛∣1∣𝑧∣≥𝑛 ≤ 2𝐶∣𝑧∣1∣𝑧∣≥𝑛,

we have

∣(𝑓𝑙(𝑢𝑛, 𝐷𝜎𝑢𝑛)− 𝑓𝑛(𝑢𝑛, 𝐷𝜎𝑢𝑛), 𝑢𝑙 − 𝑢𝑛)∣ ≤ ∣(2𝐶∣𝐷𝜎𝑢𝑛∣1{∣𝐷𝜎𝑢𝑛∣≥𝑛}, ∣𝑢𝑙 − 𝑢𝑛∣)∣.

Then,

∥𝑢𝑙,𝑡 − 𝑢𝑛,𝑡∥22 + 2

∫ 𝑇

𝑡

ℰ𝑎,�̂�(𝑢𝑙,𝑠 − 𝑢𝑛,𝑠)𝑑𝑠

≤2

∫ 𝑇

𝑡

(𝑓𝑙(𝑢𝑙,𝑠, 𝐷𝜎𝑢𝑙,𝑠)− 𝑓𝑛(𝑢𝑛,𝑠, 𝐷𝜎𝑢𝑛,𝑠), 𝑢𝑙,𝑠 − 𝑢𝑛,𝑠)𝑑𝑠+ 2𝛼

∫ 𝑇

𝑡

∥𝑢𝑙,𝑠 − 𝑢𝑛,𝑠∥22𝑑𝑠

≤2

∫ 𝑇

𝑡

𝐶(∣𝐷𝜎𝑢𝑙 −𝐷𝜎𝑢𝑛∣, ∣𝑢𝑙 − 𝑢𝑛∣)𝑑𝑠+ 2

∫ 𝑇

𝑡

∣(2𝐶∣𝐷𝜎𝑢𝑛∣1{∣𝐷𝜎𝑢𝑛∣≥𝑛}, ∣𝑢𝑙 − 𝑢𝑛∣)∣𝑑𝑠

+ 2𝛼

∫ 𝑇

𝑡

∥𝑢𝑙,𝑠 − 𝑢𝑛,𝑠∥22𝑑𝑠

≤(
𝐶2

𝑐1
+ 2𝛼+ 𝑐2)

∫ 𝑇

𝑡

∥𝑢𝑙 − 𝑢𝑛∥22𝑑𝑠+
∫ 𝑇

𝑡

ℰ𝑎,�̂�(𝑢𝑙 − 𝑢𝑛)𝑑𝑠

+ 8𝐶(𝑟 − 1)

∫ 𝑇

𝑡

∫
∣𝐷𝜎𝑢𝑛∣1{∣𝐷𝜎𝑢𝑛∣≥𝑛}𝑑𝑚𝑑𝑠

≤(
𝐶2

𝑐1
+ 2𝛼+ 𝑐2)

∫ 𝑇

𝑡

∥𝑢𝑙 − 𝑢𝑛∥22𝑑𝑠+
∫ 𝑇

𝑡

ℰ𝑎,�̂�(𝑢𝑙 − 𝑢𝑛)𝑑𝑠

+ 8𝐶(𝑟 − 1)(

∫ 𝑇

𝑡

∥1{∣𝐷𝜎𝑢𝑛∣≥𝑛}∥22𝑑𝑠)
1
2 (

∫ 𝑇

𝑡

∥𝐷𝜎𝑢𝑛∥22𝑑𝑠)
1
2 .
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As ∥𝑢𝑛∥2𝑇 ≤ 𝐾𝑇 , we have
∫ 𝑇

0
∥𝐷𝜎𝑢𝑛∥22𝑑𝑠 ≤ 𝐾𝑇

𝑐1
. Hence,

𝑛2

∫ 𝑇

𝑡

∥1{∣𝐷𝜎𝑢𝑛∣≥𝑛}∥22𝑑𝑠 ≤
∫ 𝑇

𝑡

∥𝐷𝜎𝑢𝑛1{∣𝐷𝜎𝑢𝑛∣≥𝑛}∥22𝑑𝑠 ≤
𝐾𝑇

𝑐1
.

Therefore, for 𝑛 big enough

∥𝑢𝑙,𝑡 − 𝑢𝑛,𝑡∥22 +
∫ 𝑇

𝑡

ℰ𝑎,�̂�(𝑢𝑙,𝑠 − 𝑢𝑛,𝑠)𝑑𝑠 ≤ (
𝐶2

𝑐1
+ 2𝛼+ 𝑐2)

∫ 𝑇

𝑡

∥𝑢𝑙 − 𝑢𝑛∥22𝑑𝑠+ 𝜀.

By Gronwalls’ lemma it follows that (𝑢𝑛)𝑛∈ℕ is a Cauchy sequence in 𝐹 𝑙. Hence,

𝑢 := lim𝑛→∞ 𝑢𝑛 is well defined. We can find a subsequence such that (𝑢𝑛𝑘
, 𝐷𝜎𝑢𝑛𝑘

) →
(𝑢,𝐷𝜎𝑢) a.e. and conclude

∣𝑓𝑛𝑘
(𝑢𝑛𝑘

, 𝐷𝜎𝑢𝑛𝑘
)−𝑓(𝑢,𝐷𝜎𝑢)∣ ≤ 𝐶∣ 𝑛𝑘

∣𝐷𝜎𝑢𝑛𝑘
∣ ∨ 𝑛𝑘

𝐷𝜎𝑢𝑛𝑘
−𝐷𝜎𝑢∣+∣𝑓(𝑢𝑛𝑘

, 𝐷𝜎𝑢)−𝑓(𝑢,𝐷𝜎𝑢)∣ → 0.

Since

∣𝑓𝑛𝑘
(𝑢𝑛𝑘

, 𝐷𝜎𝑢𝑛𝑘
)− 𝑓(𝑢,𝐷𝜎𝑢)∣

≤∣𝑓(𝑢, 0)− 𝑓(𝑢,𝐷𝜎𝑢)∣+ ∣𝑓𝑛𝑘
(𝑢𝑛𝑘

, 𝐷𝜎𝑢𝑛𝑘
)− 𝑓𝑛𝑘

(𝑢𝑛𝑘
, 0)∣+ ∣𝑓𝑛𝑘

(𝑢𝑛𝑘
, 0)− 𝑓0∣+ ∣𝑓0 − 𝑓(𝑢, 0)∣

≤𝐶(∣𝐷𝜎𝑢∣+ ∣𝐷𝜎𝑢𝑛𝑘
∣) + 2𝑓

′,𝑟,

we have

𝑓𝑛𝑘
(𝑢𝑛𝑘

, 𝐷𝜎𝑢𝑛𝑘
) → 𝑓(𝑢,𝐷𝜎𝑢) in 𝐿

1([0, 𝑇 ], 𝐿2).

We conclude that 𝑢 is a solution of (2.2.1) associated to the data (𝜙, 𝑓).

Step 3: Now we only suppose that 𝑓
′,1 is bounded. Hence, we can choose a

constant 𝑟 such that

𝑟 ≥ 1 +𝐾(∥𝜙∥∞ + ∥𝑓0∥∞ + ∥𝑓 ′,1∥∞),

where 𝐾 is the constant appearing in Lemma 2.2.7 (2.2.5). Let us define

𝑓𝑛 :=
𝑛

𝑓 ′,𝑟 ∨ 𝑛(𝑓 − 𝑓 0) + 𝑓 0.

Easily we see that the 𝑓𝑛 have the same properties as 𝑓 . Since 𝑓𝑛(𝑡, 𝑥, 𝑦, 𝑧) =

𝑓(𝑡, 𝑥, 𝑦, 𝑧) for 𝑓
′,𝑟 ≤ 𝑛, we have

lim
𝑛→∞

𝑓𝑛 = 𝑓.
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We introduce the following notation:

𝑓
′,𝑟
𝑛 (𝑡, 𝑥) := sup

∣𝑦∣≤𝑟

∣𝑓 ′
𝑛(𝑡, 𝑥, 𝑦)∣, and 𝑓 ′

𝑛(𝑡, 𝑥, 𝑦) := 𝑓𝑛(𝑡, 𝑥, 𝑦, 0)− 𝑓 0(𝑡, 𝑥).

By the same arguments as in [S09, Theorem 4.19] we have

∣𝑓 ′,𝑟
𝑛 ∣ ≤ 𝑛 ∧ ∣𝑓 ′,𝑟∣.

Hence, by Step 2 we obtain that there exists a solution 𝑢𝑛 associated to the data

(𝜙, 𝑓𝑛) such that ∥𝑢𝑛∥∞ ≤ 𝑟− 1, ∥𝑢𝑛∥𝑇 ≤𝑀 , where 𝑀 is a constant. For 𝑛 ≤ 𝑙, we

obtain

∣𝑓𝑙 − 𝑓𝑛∣ ≤ (𝐶∣𝑧∣+ ∣𝑓 ′∣)∣ 𝑙

𝑓 ′,𝑟 ∨ 𝑙 −
𝑛

𝑓 ′,𝑟 ∨ 𝑛 ∣ ≤ (𝐶∣𝑧∣+ ∣𝑓 ′∣)1{𝑓 ′,𝑟>𝑛}.

Hence∫ 𝑇

𝑡

∣(𝑓𝑙(𝑢𝑛, 𝐷𝜎𝑢𝑛)−𝑓𝑛(𝑢𝑛, 𝐷𝜎𝑢𝑛), 𝑢𝑙−𝑢𝑛)∣𝑑𝑠 ≤ 2(𝑟−1)

∫ 𝑇

𝑡

∫
{𝑓 ′,𝑟>𝑛}

(𝐶∣𝐷𝜎𝑢𝑛∣+𝑓 ′,𝑟)𝑑𝑚𝑑𝑠.

We obtain as in the preceding steps:

∥𝑢𝑙,𝑡 − 𝑢𝑛,𝑡∥22 + 2

∫ 𝑇

𝑡

ℰ𝑎,�̂�(𝑢𝑙,𝑠 − 𝑢𝑛,𝑠)𝑑𝑠

≤2

∫ 𝑇

𝑡

(𝑓𝑙(𝑢𝑙,𝑠, 𝐷𝜎𝑢𝑙,𝑠)− 𝑓𝑛(𝑢𝑛,𝑠, 𝐷𝜎𝑢𝑛,𝑠), 𝑢𝑙,𝑠 − 𝑢𝑛,𝑠)𝑑𝑠+ 2𝛼

∫ 𝑇

𝑡

∥𝑢𝑙,𝑠 − 𝑢𝑛,𝑠∥22𝑑𝑠

≤2

∫ 𝑇

𝑡

𝐶(∣𝐷𝜎𝑢𝑙 −𝐷𝜎𝑢𝑛∣, ∣𝑢𝑙 − 𝑢𝑛∣)𝑑𝑠+ 2

∫ 𝑇

𝑡

∣(𝑓𝑙(𝑢𝑛, 𝐷𝜎𝑢𝑛)− 𝑓𝑛(𝑢𝑛, 𝐷𝜎𝑢𝑛), 𝑢𝑙 − 𝑢𝑛)∣𝑑𝑠

+ 2𝛼

∫ 𝑇

𝑡

∥𝑢𝑙,𝑠 − 𝑢𝑛,𝑠∥22𝑑𝑠

≤(
𝐶2

𝑐1
+ 2𝛼+ 𝑐2)

∫ 𝑇

𝑡

∥𝑢𝑙 − 𝑢𝑛∥22𝑑𝑠+
∫ 𝑇

𝑡

ℰ𝑎,�̂�(𝑢𝑙 − 𝑢𝑛)𝑑𝑠

+ 4(𝑟 − 1)

∫ 𝑇

𝑡

∫
{𝑓 ′,𝑟>𝑛}

(𝐶∣𝐷𝜎𝑢𝑛∣+ 𝑓
′,𝑟)𝑑𝑚𝑑𝑠.

As

lim
𝑛→∞

∫ 𝑇

𝑡

∫
{𝑓 ′,𝑟>𝑛}

𝑓
′,𝑟𝑑𝑚𝑑𝑠 = 0,

and ∫ 𝑇

𝑡

∫
{𝑓 ′,𝑟>𝑛}

∣𝐷𝜎𝑢𝑛∣𝑑𝑚𝑑𝑡 ≤ ∥1{𝑓 ′,𝑟>𝑛}∥𝐿2(𝑑𝑡×𝑚)∥𝐷𝜎𝑢𝑛∥𝐿2(𝑑𝑡×𝑚) → 0,

we have as above that (𝑢𝑛)𝑛∈ℕ is a Cauchy sequence in 𝐹 𝑙. Hence, 𝑢 := lim𝑛→∞ 𝑢𝑛
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exists in 𝐹 𝑙. We can find a subsequence such that (𝑢𝑛𝑘
, 𝐷𝜎𝑢𝑛𝑘

) → (𝑢,𝐷𝜎𝑢) a.e. and

we have that

∣𝑓𝑛𝑘
(𝑢𝑛𝑘

, 𝐷𝜎𝑢𝑛𝑘
)− 𝑓(𝑢,𝐷𝜎𝑢)∣

≤1{𝑓 ′,𝑟≤𝑛𝑘}∣𝑓(𝑢,𝐷𝜎𝑢)− 𝑓(𝑢𝑛𝑘
, 𝐷𝜎𝑢𝑛𝑘

)∣+ 1{𝑓 ′,𝑟>𝑛𝑘}[∣𝑓(𝑢,𝐷𝜎𝑢)− 𝑓 0∣+ ∣𝑓(𝑢,𝐷𝜎𝑢)

− 𝑓(𝑢𝑛𝑘
, 𝐷𝜎𝑢𝑛𝑘

)∣]
≤∣𝑓(𝑢,𝐷𝜎𝑢)− 𝑓(𝑢𝑛𝑘

, 𝐷𝜎𝑢𝑛𝑘
)∣+ 1{𝑓 ′,𝑟>𝑛𝑘}∣𝑓(𝑢,𝐷𝜎𝑢)− 𝑓 0∣

≤∣𝑓(𝑢𝑛𝑘
, 𝐷𝜎𝑢)− 𝑓(𝑢𝑛𝑘

, 𝐷𝜎𝑢𝑛𝑘
)∣+ ∣𝑓(𝑢𝑛𝑘

, 𝐷𝜎𝑢)− 𝑓(𝑢,𝐷𝜎𝑢)∣+ 1{𝑓 ′,𝑟>𝑛𝑘}∣𝑓(𝑢,𝐷𝜎𝑢)− 𝑓 0∣.

As in the above proof we have

𝑓𝑛𝑘
(𝑢𝑛𝑘

, 𝐷𝜎𝑢𝑛𝑘
) → 𝑓(𝑢,𝐷𝜎𝑢),

in 𝐿1([0, 𝑇 ], 𝐿2). We conclude that 𝑢 is a solution of (2.2.1) associated to the data

(𝜙, 𝑓).

Step 4: Now we prove the theorem without additional conditions. Define

𝑓𝑛 :=
𝑛

𝑓 ′,1 ∨ 𝑛(𝑓 − 𝑓 0) + 𝑓 0.

Since 𝑓𝑛(𝑡, 𝑥, 𝑦, 𝑧) = 𝑓(𝑡, 𝑥, 𝑦, 𝑧) for 𝑓
′,1 ≤ 𝑛, we have

lim
𝑛→∞

𝑓𝑛 = 𝑓.

Introduce the following notation:

𝑓
′,1
𝑛 (𝑡, 𝑥) := sup

∣𝑦∣≤1

∣𝑓 ′
𝑛(𝑡, 𝑥, 𝑦)∣ and 𝑓 ′

𝑛(𝑡, 𝑥, 𝑦) := 𝑓𝑛(𝑡, 𝑥, 𝑦, 0)− 𝑓 0(𝑡, 𝑥).

As in Step 3 we have

∣𝑓 ′,1
𝑛 ∣ ≤ 𝑛 ∧ ∣𝑓 ′,1∣.

Since 𝑓
′,1
𝑛 is uniformly bounded, we can apply Step 3. Then we get a solution 𝑢𝑛 for

the data (𝜙, 𝑓𝑛). The convergence of 𝑢𝑛 can be shown analogously to Step 3. □

2.6.2 Appendix B. Proof of Proposition 2.4.3

Let𝑀𝑝
𝑥(ℝ𝑙) denote the set of (equivalence classes of )predictable processes {𝜙𝑡}𝑡∈[0,𝑇 ]

with values in ℝ𝑙 such that

∥𝜙∥𝑀𝑝
𝑥
:= (𝐸𝑥[(

∫ 𝑇

0

∣𝜙𝑟∣2𝑑𝑟)𝑝/2])1/𝑝 <∞.
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𝑀𝑝
𝜎,𝑥(ℝ𝑙 ⊗ ℝ𝑑) denotes the set of (equivalence classes of) predictable processes

{𝜙𝑡}𝑡∈[0,𝑇 ] with values in ℝ𝑙 ⊗ ℝ𝑑 such that

∥𝜙∥𝑀𝑝
𝜎,𝑥

:= (𝐸𝑥[(

∫ 𝑇

0

∣𝜙𝑟𝜎(𝑋𝑟)∣2𝑑𝑟)𝑝/2])1/𝑝 <∞.

Fix 𝑥 ∈ 𝐴𝑝.

We note that (𝑌, 𝑍) solves the BSDE (2.4.1) with data (𝜉, 𝑓) iff

(𝑌𝑡, 𝑍𝑡) := (𝑒𝛼𝑡𝑌𝑡, 𝑒
𝛼𝑡𝑍𝑡),

solve the BSDE (2.4.1) with data (𝑒𝛼𝑇 𝜉, 𝑓 ′), where

𝑓 ′(𝑡, 𝑦, 𝑧) := 𝑒𝛼𝑡𝑓(𝑡, 𝑒−𝛼𝑡𝑦, 𝑒−𝛼𝑡𝑧)− 𝜇𝑡𝑦.

Therefore, we may replace (Ω2) by

⟨𝑦 − 𝑦′, 𝑓(𝑡, 𝜔, 𝑦, 𝑧)− 𝑓(𝑡, 𝜔, 𝑦′, 𝑧)⟩ ≤ 0, for all 𝑡, 𝑥, 𝑦, 𝑦′, 𝑧.

Step 1 Assume that 𝑓 is Lipschitz continuous with respect to both 𝑦 and 𝑧.

Define a mapping Φ from 𝐵2
𝑥 :=𝑀2

𝑥(ℝ𝑙)×𝑀2
𝜎,𝑥(ℝ𝑙⊗ℝ𝑑) into itself as follows. Given

(𝑈, 𝑉 ) ∈ 𝐵2
𝑥, we can set Φ(𝑈, 𝑉 ) := (𝑌, 𝑍), where (𝑌, 𝑍) is the solution of the BSDE

(2.4.1) associated with data (𝜉, 𝑓(𝑈, 𝑉 𝜎(𝑋))) given by Lemma 2.4.1. Then by Itô’s

formula and BDG inequality we get

𝐸𝑥[ sup
𝑡∈[0,𝑇 ]

∣𝑌𝑡∣2] <∞.

Let (𝑈, 𝑉 ), (𝑈 ′, 𝑉 ′) ∈ 𝐵2
𝑥, (𝑌, 𝑍) = Φ(𝑈, 𝑉 ), (𝑌 ′, 𝑍 ′) = Φ(𝑈 ′, 𝑉 ′), (�̄� , 𝑉 ) = (𝑈 −

𝑈 ′, 𝑉 − 𝑉 ′), (𝑌 , 𝑍) = (𝑌 − 𝑌 ′, 𝑍 − 𝑍 ′). It follows from Itô’s formula that for each

𝛾 ∈ ℝ,

𝑒𝛾𝑡𝐸𝑥∣𝑌𝑡∣2 + 𝐸𝑥

∫ 𝑇

𝑡

𝑒𝛾𝑠(𝛾∣𝑌𝑠∣2 + ∣𝑍𝑠𝜎(𝑋𝑠)∣2)𝑑𝑠

≤2𝐾𝐸𝑥

∫ 𝑇

𝑡

𝑒𝛾𝑠∣𝑌𝑠∣(∣�̄�𝑠∣+ ∣𝑉𝑠𝜎(𝑋𝑠)∣)𝑑𝑠

≤4𝐾2𝐸𝑥

∫ 𝑇

𝑡

𝑒𝛾𝑠∣𝑌𝑠∣2 + 1

2
𝐸𝑥

∫ 𝑇

𝑡

𝑒𝛾𝑠(∣�̄�𝑠∣2 + ∣𝑉𝑠𝜎(𝑋𝑠)∣2)𝑑𝑠,

where 𝐾 is the Lipschitz constant of 𝑓 . We choose 𝛾 = 1 + 4𝐾2. Then

𝐸𝑥

∫ 𝑇

0

𝑒𝛾𝑠(∣𝑌𝑠∣2 + ∣𝑍𝑠𝜎(𝑋𝑠)∣2)𝑑𝑠 ≤ 1

2
𝐸𝑥

∫ 𝑇

0

𝑒𝛾𝑠(∣�̄�𝑠∣2 + ∣𝑉𝑠𝜎(𝑋𝑠)∣2)𝑑𝑠,
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from which it follows that Φ is a strict contraction on 𝐵2
𝑥 equipped with the norm:

∣∣∣(𝑌, 𝑍)∣∣∣𝑥𝛾 = (𝐸𝑥

∫ 𝑇

0

𝑒𝛾𝑡(∣𝑌𝑡∣2 + ∣𝑍𝑡𝜎(𝑋𝑡)∣2)𝑑𝑡)1/2.

Define a sequence (𝑌 𝑛, 𝑍𝑛) by (𝑌 𝑛+1, 𝑍𝑛+1) := Φ(𝑌 𝑛, 𝑍𝑛). We have for 𝛾 =

1 + 4𝐾2

𝐸𝑥

∫ 𝑇

0

𝑒𝛾𝑠(∣𝑌 𝑛
𝑠 − 𝑌 𝑛+1

𝑠 ∣2 + ∣(𝑍𝑛
𝑠 − 𝑍𝑛+1

𝑠 )𝜎(𝑋𝑠)∣2)𝑑𝑠

≤ 1

2𝑛
𝐸𝑥

∫ 𝑇

0

𝑒𝛾𝑠(∣𝑌 0
𝑠 − 𝑌 1

𝑠 ∣2 + ∣(𝑍0
𝑠 − 𝑍1

𝑠 )𝜎(𝑋𝑠)∣2)𝑑𝑠.

Then we have the a.s. pointwise convergence of (𝑌 𝑛
𝑠 , 𝑍

𝑛
𝑠 𝜎(𝑋𝑠)) under each measure

𝑃 𝑥, 𝑥 ∈ 𝐴2. Denote the limit by (𝑌𝑠, 𝑍𝑠𝜎(𝑋𝑠)). Then this is the fixed point of Φ

under the norm ∣∣∣(𝑌, 𝑍)∣∣∣𝑥𝛾. So we have (𝑌𝑠, 𝑍𝑠) is the solution of BSDE (2.4.1).

Step 2 We assume that 𝑓, 𝜉 are bounded.

We need the following proposition.

Proposition B.1 Assume condition (A5). Given 𝑉 ∈ ∩𝑥𝑀
2
𝜎,𝑥(ℝ𝑙 ⊗ ℝ𝑑), there

exists a unique pair of predictable processes (𝑌𝑡, 𝑍𝑡) ∈𝑀2
𝑥 ×𝑀2

𝜎,𝑥(ℝ𝑙⊗ℝ𝑑),∀𝑥 ∈ 𝒩 𝑐

satisfying under all 𝑃 𝑥, 𝑥 ∈ 𝒩 𝑐

𝑌𝑡 = 𝜉 +

∫ 𝑇

𝑡

𝑓(𝑠, 𝑌𝑠, 𝑉𝑠)𝑑𝑠−
∫ 𝑇

𝑡

𝑍𝑠𝑑𝑀𝑠, 0 ≤ 𝑡 ≤ 𝑇.

Using Proposition B.1, we can construct a mapping Φ from 𝐵2
𝑥 into itself as

follows. For any (𝑈, 𝑉 ) ∈ 𝐵2
𝑥, (𝑌, 𝑍) = Φ(𝑈, 𝑉 ) is the solution of the BSDE

𝑌𝑡 = 𝜉 +

∫ 𝑇

𝑡

𝑓(𝑠, 𝑌𝑠, 𝑉𝑠)𝑑𝑠−
∫ 𝑇

𝑡

𝑍𝑠𝑑𝑀𝑠, 0 ≤ 𝑡 ≤ 𝑇.

Then as in Step 1, we have

𝑒𝛾𝑡𝐸𝑥∣𝑌𝑡∣2 + 𝐸𝑥

∫ 𝑇

𝑡

𝑒𝛾𝑠(𝛾∣𝑌𝑠∣2 + ∣𝑍𝑠𝜎(𝑋𝑠)∣2)𝑑𝑠

=2𝐸𝑥

∫ 𝑇

𝑡

𝑒𝛾𝑠⟨𝑌𝑠, 𝑓(𝑌𝑠, 𝑉𝑠𝜎(𝑋𝑠))− 𝑓(𝑌 ′
𝑠 , 𝑉

′
𝑠𝜎(𝑋𝑠))⟩𝑑𝑠

≤2𝐾𝐸𝑥

∫ 𝑇

𝑡

𝑒𝛾𝑠∣𝑌𝑠∣ × ∣𝑉𝑠𝜎(𝑋𝑠)∣𝑑𝑠

≤𝐸𝑥

∫ 𝑇

𝑡

𝑒𝛾𝑠(2𝐾2∣𝑌𝑠∣2 + 1

2
∣𝑉𝑠𝜎(𝑋𝑠)∣2)𝑑𝑠.
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Then by the same arguments as in Step 1, we obtain the assertion of Proposition

2.4.3 if 𝑓, 𝜉 are bounded.

Proof of Proposition B.1 We write 𝑓(𝑠, 𝑦) for 𝑓(𝑠, 𝑦, 𝑉𝑠).

By 𝐶 we denote the constant satifying ∣𝜉∣2 + sup𝑡 ∣𝑓(𝑡, 0)∣2 ≤ 𝐶 a.s.. Define

𝑓𝑛(𝑡, 𝑦) := (𝜌𝑛 ∗ 𝑓(𝑡, ⋅))(𝑦),

where 𝜌𝑛 : ℝ𝑙 7→ ℝ+ is a sequence of smooth functions with compact support

satisfying
∫
𝜌𝑛(𝑧)𝑑𝑧 = 1, which approximate the Dirac measure at 0. Then each 𝑓𝑛

is locally Lipschitz in 𝑦, uniformly with respect to 𝑠 and 𝜔.

Define for each 𝑚 ∈ ℕ,

𝑓𝑛,𝑚(𝑡, 𝑦) := 𝑓𝑛(𝑡,
inf(𝑚, ∣𝑦∣)

∣𝑦∣ 𝑦).

Then 𝑓𝑛,𝑚 is globally Lipschitz and bounded, uniformly w.r.t. (𝑡, 𝜔). As in Step 1,

we have a unique pair (𝑌 𝑛,𝑚
𝑡 , 𝑍𝑛,𝑚

𝑡 ) ∈𝑀2
𝑥 ×𝑀2

𝜎,𝑥(ℝ𝑙 ⊗ ℝ𝑑) such that

𝑌 𝑛,𝑚
𝑡 = 𝜉 +

∫ 𝑇

𝑡

𝑓𝑛,𝑚(𝑠, 𝑌 𝑛,𝑚
𝑠 )𝑑𝑠−

∫ 𝑇

𝑡

𝑍𝑛,𝑚
𝑠 𝑑𝑀𝑠, 0 ≤ 𝑡 ≤ 𝑇.

By Itô’s formula we have

∣𝑌 𝑛,𝑚
𝑡 ∣2 ≤ 𝑒𝑇𝐶, 0 ≤ 𝑡 ≤ 𝑇.

Consequently, for 𝑚2 > 𝑒𝑇𝐶, (𝑌 𝑛,𝑚
𝑡 , 𝑍𝑛,𝑚

𝑡 ) does not depend on 𝑚. Therefore, we

denote it by (𝑌 𝑛
𝑡 , 𝑍

𝑛
𝑡 ). Then by the same arguments as [BDHPS03, Proposition 3.2]

we have

𝐸𝑥( sup
0≤𝑡≤𝑇

∣𝑌 𝑘
𝑡 −𝑌 𝑙

𝑡 ∣2)+𝐸𝑥(

∫ 𝑇

0

∣(𝑍𝑘
𝑡 −𝑍 𝑙

𝑡)𝜎(𝑋𝑡)∣2𝑑𝑡) ≤ 𝐾𝐸𝑥[

∫ 𝑇

0

∣𝑓𝑘(𝑡, 𝑌 𝑘
𝑡 )−𝑓 𝑙(𝑡, 𝑌 𝑘

𝑡 )∣2𝑑𝑡].

By a similar argument as in the proof of Theorem 2.2.8, we obtain for fixed 𝜔,

sup
𝑘>𝑙

∫ 𝑇

0

∣𝑓𝑘(𝑡, 𝑌 𝑘
𝑡 )− 𝑓 𝑙(𝑡, 𝑌 𝑘

𝑡 )∣2𝑑𝑡→ 0, as 𝑙 → ∞.

Then we have

sup
𝑘>𝑙

𝐸𝑥

∫ 𝑇

0

∣𝑓𝑘(𝑡, 𝑌 𝑘
𝑡 )−𝑓 𝑙(𝑡, 𝑌 𝑘

𝑡 )∣2𝑑𝑡 ≤ 𝐸𝑥 sup
𝑘>𝑙

∫ 𝑇

0

∣𝑓𝑘(𝑡, 𝑌 𝑘
𝑡 )−𝑓 𝑙(𝑡, 𝑌 𝑘

𝑡 )∣2𝑑𝑡→ 0, 𝑙 → ∞.

and we can obtain a sequence of representable variables that converges rapidly
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enough under all measures 𝑃 𝑥, 𝑥 ∈ 𝒩 𝑐. For each 𝑙 = 0, 1, ... set

𝑛𝑙(𝑥) = inf{𝑛 > 𝑛𝑙−1(𝑥); sup
𝑘≥𝑛

𝐸𝑥[

∫ 𝑇

0

∣𝑓𝑘(𝑡, 𝑌 𝑘
𝑡 )− 𝑓𝑛(𝑡, 𝑌 𝑘

𝑡 )∣2𝑑𝑡] <
1

2𝑙
},

𝑌 𝑙 = 𝑌 𝑛𝑙(𝑋0), 𝑍 𝑙 = 𝑍𝑛𝑙(𝑋0).

With this sequence one may pass to the limit and define 𝑍 ′
𝑠 = lim sup𝑙→∞ 𝑍 𝑙

𝑠𝜎(𝑋𝑠)

and 𝑍𝑠 = 𝑍 ′
𝑠𝜏(𝑋𝑠). Then we obtain the claimed results. □

So far we have proved the assertion when 𝜉, 𝑓 are bounded. Then by the same

arguments as in [BDHPS03, Theorem 4.2], one proves the general case. □



Chapter 3

BSDE and generalized Dirichlet

form: Infinite dimensional case

In this chapter we extend results in the previous chapter to infinite dimensional

case. In Section 3.1 we give some basic assumptions on the operator 𝐿 and prove

some basic relations for linear equation. In Section 3.2, we use analytic methods to

solve PDE (1.4). In Section 3.3, we prove the martingale representation theorem

for the process associated with the operator 𝐿. By this we obtain the existence and

uniqueness of the solution of BSDE (1.6) in Section 3.4. The relation between PDE

and BSDE is also established in this section. Examples are given in Section 3.5. In

Section 3.6, we use our results to a control problem for an application. The main

results of this chapter have already been submitted for publication, see [Zhu b].

3.1 Preliminaries

Let 𝐸 be a separable real Banach space and (𝐻, ⟨⋅, ⋅⟩𝐻) a separable real Hilbert

space such that 𝐻 ⊂ 𝐸 densely and continuously. Identifying 𝐻 with its topological

dual 𝐻 ′ we obtain that 𝐸 ′ ⊂ 𝐻 ⊂ 𝐸 densely and continuously and 𝐸′⟨⋅, ⋅⟩𝐸 = ⟨⋅, ⋅⟩𝐻
on 𝐸 ′ ×𝐻. Define the linear space of finitely based smooth functions on 𝐸 by

ℱ𝐶∞
𝑏 := {𝑓(𝑙1, ..., 𝑙𝑚)∣𝑚 ∈ ℕ, 𝑓 ∈ 𝐶∞

𝑏 (ℝ𝑚), 𝑙1, ..., 𝑙𝑚 ∈ 𝐸 ′}.

Here 𝐶∞
𝑏 (ℝ𝑚) denotes the set of all infinitely differentiable (real-valued) functions

with all partial derivatives bounded. For 𝑢 ∈ ℱ𝐶∞
𝑏 and 𝑘 ∈ 𝐸 let

∂𝑢

∂𝑘
(𝑧) :=

𝑑

𝑑𝑠
𝑢(𝑧 + 𝑠𝑘)∣𝑠=0, 𝑧 ∈ 𝐸,
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be the Gâteaux derivative of 𝑢 in direction 𝑘. It follows that for 𝑢 = 𝑓(𝑙1, ..., 𝑙𝑚) ∈
ℱ𝐶∞

𝑏 and 𝑘 ∈ 𝐻 we have that

∂𝑢

∂𝑘
(𝑧) =

𝑚∑
𝑖=1

∂𝑓

∂𝑥𝑖
(𝑙1(𝑧), ..., 𝑙𝑚(𝑧))⟨𝑙𝑖, 𝑘⟩𝐻 , 𝑧 ∈ 𝐸.

Consequently, 𝑘 7→ ∂𝑢
∂𝑘
(𝑧) is continuous on 𝐻 and we can define ∇𝑢(𝑧) ∈ 𝐻 by

⟨∇𝑢(𝑧), 𝑘⟩𝐻 =
∂𝑢

∂𝑘
(𝑧).

Let 𝜇 be a finite positive measure on (𝐸,ℬ(𝐸)). By 𝐿𝑠𝑦𝑚(𝐻) we denote the linear

space of all symmetric and bounded linear operators on 𝐻 equipped with usual oper-

ator norm ∥⋅∥𝐿∞(𝐻). Let 𝐴 : 𝐸 7→ 𝐿𝑠𝑦𝑚(𝐻) be measurable such that ⟨𝐴(𝑧)ℎ, ℎ⟩𝐻 ≥ 0

for all 𝑧 ∈ 𝐸, ℎ ∈ 𝐻 and let 𝑏 : 𝐸 → 𝐻 be ℬ(𝐸)/ℬ(𝐻)-measurable. Suppose the

Pseudo inverse 𝐴−1 of 𝐴 is measurable.

We denote by ∣ ⋅ ∣𝐻 the 𝐻-norm and set ∥𝑢(𝑧)∥22 :=
∫ ∣𝑢(𝑧)∣2𝑑𝜇(𝑧) for 𝑢 ∈

𝐿2(𝐸, 𝜇). We also denote (𝑢, 𝑣)𝐿2(𝐸,𝜇) by (𝑢, 𝑣) for 𝑢, 𝑣 ∈ 𝐿2(𝐸, 𝜇). For 𝑝 ≥ 1, let

𝐿𝑝(𝜇), 𝐿𝑝(𝜇;𝐻) denote 𝐿𝑝(𝐸, 𝜇), 𝐿𝑝(𝐸, 𝜇;𝐻) respectively. If 𝑊 is a function space,

we will use 𝑏𝑊 to denote set of all the bounded functions in 𝑊 .

Furthermore, we introduce the bilinear form

(3.1.1)

ℰ(𝑢, 𝑣) :=
∫

⟨𝐴(𝑧)∇𝑢(𝑧),∇𝑣(𝑧)⟩𝐻𝑑𝜇(𝑧)+
∫

⟨𝐴(𝑧)𝑏(𝑧),∇𝑢(𝑧)⟩𝐻𝑣(𝑧)𝑑𝜇(𝑧), 𝑢, 𝑣 ∈ ℱ𝐶∞
𝑏 .

We introduce the following conditions,

(A1) ⟨𝐴(⋅)𝑘, 𝑘⟩ ∈ 𝐿1(𝜇) for 𝑘 ∈ 𝐻 and the bilinear form

ℰ𝐴(𝑢, 𝑣) =

∫
⟨𝐴(𝑧)∇𝑢(𝑧),∇𝑣(𝑧)⟩𝐻𝑑𝜇(𝑧);𝑢, 𝑣 ∈ ℱ𝐶∞

𝑏 ,

is closable on 𝐿2(𝐸;𝜇).

The closure of ℱ𝐶∞
𝑏 with respect to ℰ𝐴

1 := ℰ𝐴 + ⟨⋅, ⋅⟩𝐻 is denoted by 𝐹 . Then

(ℰ𝐴, 𝐹 ) is a well-defined symmetric Dirichlet form on 𝐿2(𝐸, 𝜇). Set ℰ𝐴
1 (𝑢) :=

ℰ𝐴
1 (𝑢, 𝑢), 𝑢 ∈ 𝐹.

(A2) Let 𝐴1/2𝑏 ∈ 𝐿2(𝐸;𝐻,𝜇), i.e.
∫ ∣𝐴1/2𝑏∣2𝐻𝑑𝜇 < ∞, and there exists 𝛼 ≥ 0 such

that

(3.1.2)

∫
⟨𝐴𝑏,∇𝑢2⟩𝐻𝑑𝜇 ≥ −𝛼∥𝑢∥22, 𝑢 ∈ ℱ𝐶∞

𝑏 ,∀𝑢 ≥ 0.
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Obviously, ℰ from (3.1.1) immediately extends to all 𝑢 ∈ 𝐹, 𝑣 ∈ 𝑏𝐹 .

(A3) There exists a positivity preserving 𝐶0-semigroup 𝑃𝑡 on 𝐿
2(𝐸;𝜇) such that for

any 𝑡 ∈ [0, 𝑇 ], ∃𝐶𝑇 > 0 such that

∥𝑃𝑡𝑓∥∞ ≤ 𝐶𝑇∥𝑓∥∞,

and such that its 𝐿2-generator (𝐿,𝒟(𝐿)) has the following properties: 𝑏𝒟(𝐿) ⊂ 𝑏𝐹

and for any 𝑢 ∈ 𝑏𝐹 there exists uniformly bounded 𝑢𝑛 ∈ 𝒟(𝐿) such that ℰ𝐴
1 (𝑢𝑛 −

𝑢) → 0 as 𝑛→ ∞ and that it is associated with the bilinear form ℰ in (3.1.1) in the

sense that ℰ(𝑢, 𝑣) = −(𝐿𝑢, 𝑣) for 𝑢, 𝑣 ∈ 𝑏𝒟(𝐿).

To obtain a semigroup 𝑃𝑡 satisfying the above conditions, we can use generalized

Dirichlet forms as introduced in Section 1.1.

Remark 3.1.1 (i) Some general criteria imposing conditions on 𝐴 and 𝜇 in order

that ℰ𝐴 be closable are e.g. given in [MR92, Chap II, Section 2] and [AR90].

(ii)In our case, due to our general conditions on 𝑏 and 𝑓 , we can’t find a suitable

Gelfand triple 𝑉 ⊂ 𝐻 ⊂ 𝑉 ∗ with 𝑉 being a reflexive Banach space to apply the

monotonicity method as in [Ba10] or [PR07].

(iii) We can construct a semigroup 𝑃𝑡 satisfying (A3) by the theory of generalized

Dirichlet forms. More precisely, if there exists a constant 𝑐 ≥ 0 such that ℰ𝑐(⋅, ⋅) :=
ℰ(⋅, ⋅) + 𝑐(⋅, ⋅) is a generalized Dirichlet form on a Hausdorff space 𝐸1 with domain

ℱ × 𝒱 in one of the following three senses:

(a)(𝐸1,ℬ(𝐸1),𝑚) = (𝐸,ℬ(𝐸), 𝜇),
(𝒜,𝒱) = (ℰ𝐴, 𝐹 ),

−⟨Λ𝑢, 𝑣⟩ − 𝑐(𝑢, 𝑣) =
∫ ⟨𝐴(𝑧)𝑏(𝑧),∇𝑢(𝑧)⟩𝐻𝑣(𝑧)𝑑𝜇(𝑧) for 𝑢, 𝑣 ∈ ℱ𝐶∞

𝑏 ;

(b)(𝐸1,ℬ(𝐸1),𝑚) = (𝐸,ℬ(𝐸), 𝜇),
𝒜 ≡ 0 and 𝒱 = 𝐿2(𝐸, 𝜇),

−⟨Λ𝑢, 𝑣⟩ = ℰ𝑐(𝑢, 𝑣) for 𝑢, 𝑣 ∈ 𝐷, where 𝐷 ⊂ ℱ𝐶∞
𝑏 densely w.r.t. ℰ𝐴

1 -norm and

𝐷 ⊂ 𝒟(𝐿);

(c) ℰ𝑐 = 𝒜, Λ ≡ 0 (In this case (ℰ𝑐,𝒱) is a sectorial Dirichlet form in the sense

of [MR92]);

then there exists a sub-Markovian 𝐶0-semigroup of contraction 𝑃 𝑐
𝑡 associated

with the generalized Dirichlet form ℰ𝑐. Then 𝑃𝑡 := 𝑒𝑐𝑡𝑃 𝑐
𝑡 satisfies (A3) and we have

𝒟(𝐿) ⊂ ℱ ⊂ 𝐹.

(iv)The semigroup can also be constructed by other methods. (see e.g. [DR02],
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[BDR09]).

(v) By (A3) we have that ℰ is positivity preserving, i.e.

ℰ(𝑢, 𝑢+) ≥ 0 ∀𝑢 ∈ 𝒟(𝐿),

which can be obtained by the same arguments as in [St2, I Proposition 4.4]. By

(3.1.2) and (A3), we have for 𝑢 ∈ 𝑏𝒟(𝐿), 𝑢 ≥ 0∫
𝐿𝑢𝑑𝜇 = −ℰ(𝑢, 1) = −

∫
⟨𝐴𝑏,∇𝑢⟩𝐻𝑑𝜇 = −

∫
⟨𝐴𝑏,∇(𝑢+𝜀)⟩𝐻𝑑𝜇 ≤ −𝛼

∫
(𝑢+𝜀)𝑑𝜇.

Letting 𝜀 → 0, we have
∫
𝐿𝑢𝑑𝜇 ≤ −𝛼 ∫

𝑢𝑑𝜇. (𝑃𝑡)𝑡∈[0,𝑇 ] is a 𝐶0-semigroup on

𝐿1(𝐸;𝜇).

(vi) All the conditions are satisfied by the bilinear form considered in [St1, Section

4] and the operator in [D04, Chapter II,III,IV] (see Section 3.5 below).

(vii) The notion of quasi-regularity for generalized Dirichlet forms analogously

to [MR92] has been introduced in [St2]. By this and a technical assumption an asso-

ciated 𝑚-tight special standard process can be constructed. We will use stochastic

calculus associated with this process to conclude our probabilistic results (see Section

3.3 below).

Let us recall the notations 𝐹, 𝒞𝑇 , ∥ ⋅ ∥𝑇 associated with ℰ𝐴 from [BPS05]: 𝒞𝑇 :=

𝐶1((0, 𝑇 );𝐿2) ∩ 𝐿2(0, 𝑇 ;𝐹 ), which turns out to be the appropriate space of test

functions, i.e.

𝒞𝑇 = {𝜑 : [0, 𝑇 ]× 𝐸 → ℝ∣𝜑𝑡 ∈ 𝐹 for almost each 𝑡,

∫ 𝑇

0

ℰ𝐴(𝜑𝑡, 𝜑𝑡)𝑑𝑡 <∞,

𝑡→ 𝜑𝑡 is differentiable in 𝐿2and 𝑡→ ∂𝑡𝜑𝑡 is 𝐿
2 − continuous on [0, 𝑇 ]}.

We also set 𝒞[𝑎,𝑏] := 𝐶1([𝑎, 𝑏];𝐿2) ∩ 𝐿2([𝑎, 𝑏];𝐹 ). For 𝜑 ∈ 𝒞𝑇 , we define

∥𝜑∥𝑇 := (sup
𝑡≤𝑇

∥𝜑𝑡∥22 +
∫ 𝑇

0

ℰ𝐴(𝜑𝑡)𝑑𝑡)
1/2.

𝐹 is the completion of 𝒞𝑇 with respect to ∥ ⋅ ∥𝑇 . By [BPS05], 𝐹 = 𝐶([0, 𝑇 ];𝐿2) ∩
𝐿2(0, 𝑇 ;𝐹 ), and for every 𝑢 ∈ 𝐹 there exists a sequence 𝑢𝑛 ∈ ℱ𝐶∞,𝑇

𝑏 , 𝑛 ∈ ℕ, such
that

∫ 𝑇

0
ℰ𝐴
1 (𝑢𝑡 − 𝑢𝑛𝑡 )𝑑𝑡→ 0, where

ℱ𝐶∞,𝑇
𝑏 := {𝑓(𝑡, 𝑙1, ..., 𝑙𝑚)∣𝑚 ∈ ℕ, 𝑓 ∈ 𝐶∞

𝑏 ([0, 𝑇 ]× ℝ𝑚), 𝑙1, ..., 𝑙𝑚 ∈ 𝐸 ′}.
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We also introduce the following space

𝑊 1,2([0, 𝑇 ];𝐿2(𝐸)) = {𝑢 ∈ 𝐿2([0, 𝑇 ];𝐿2); ∂𝑡𝑢 ∈ 𝐿2([0, 𝑇 ];𝐿2)},

where ∂𝑡𝑢 is the derivative of 𝑢 in the weak sense (see e.g. [Ba10]).

3.1.1 Linear Equations

We consider the linear equation

(3.1.3)
(∂𝑡 + 𝐿)𝑢+ 𝑓 = 0, 0 ≤ 𝑡 ≤ 𝑇

𝑢𝑇 (𝑥) = 𝜙(𝑥), 𝑥 ∈ 𝐸

where 𝑓 ∈ 𝐿1([0, 𝑇 ];𝐿2(𝐸, 𝜇)), 𝜙 ∈ 𝐿2(𝐸, 𝜇).

By [BPS05] we set 𝐷𝐴1/2𝜑 := 𝐴1/2∇𝜑 for any 𝜑 ∈ ℱ𝐶∞
𝑏 , define 𝑉0 = {𝐷𝐴1/2𝜑 :

𝜑 ∈ ℱ𝐶∞
𝑏 }, and let 𝑉 be the closure of 𝑉0 in 𝐿2(𝐸;𝐻,𝜇). Then we have the

following results.

Proposition 3.1.2 Assume (A1) holds.

(i) For every 𝑢 ∈ 𝐹 there is a unique element of 𝑉 , which we denote by 𝐷𝐴1/2𝑢

such that

ℰ𝐴(𝑢, 𝜑) =

∫
⟨𝐷𝐴1/2𝑢(𝑥), 𝐷𝐴1/2𝜑(𝑥)⟩𝐻𝜇(𝑑𝑥), ∀𝜑 ∈ ℱ𝐶∞

𝑏 .

One has 𝐴1/2𝐴−1/2𝐷𝐴1/2𝑢(𝑥) = 𝐷𝐴1/2𝑢(𝑥). Moreover, the above formula extends to

𝑢, 𝑣 ∈ 𝐹 ,

ℰ𝐴(𝑢, 𝑣) =

∫
⟨𝐷𝐴1/2𝑢(𝑥), 𝐷𝐴1/2𝑣(𝑥)⟩𝐻𝜇(𝑑𝑥).

(ii) Furthermore, if 𝑢 ∈ 𝐹 , there exists a measurable function 𝜙 : [0, 𝑇 ]×𝐸 7→ 𝐻

such that ∣𝐴1/2𝜙∣𝐻 ∈ 𝐿2([0, 𝑇 ]× 𝐸) and 𝐷𝐴1/2𝑢𝑡 = 𝐴1/2𝜙𝑡 for almost all 𝑡 ∈ [0, 𝑇 ].

(iii)Let 𝑢𝑛, 𝑢 ∈ 𝐹 be such that 𝑢𝑛 → 𝑢 in 𝐿2((0, 𝑇 ) × 𝐸) and (𝐷𝐴1/2𝑢𝑛)𝑛 is a

Cauchy-sequence in 𝐿2([0, 𝑇 ]×𝐸;𝐻). Then 𝐷𝐴1/2𝑢𝑛 → 𝐷𝐴1/2𝑢 in 𝐿2((0, 𝑇 )×𝐸;𝐻),

i.e. 𝐷𝐴1/2 is closable as an operator from 𝐹 into 𝐿2((0, 𝑇 )× 𝐸;𝐻).

Proof (i) Since ℰ𝐴 is closable on 𝐿2(𝐸;𝜇), the assertion follows.

(ii)If 𝑢 ∈ 𝐹 , we have 𝑢𝑛 ∈ ℱ𝐶∞,𝑇
𝑏 , 𝑛 ∈ ℕ, such that

∫ 𝑇

0
ℰ𝐴
1 (𝑢

𝑛 − 𝑢)𝑑𝑡 → 0.

Hence, we define 𝜑 := lim𝑛→∞𝐷𝐴1/2𝑢𝑛 in 𝐿2((0, 𝑇 ) × 𝐸;𝐻) and 𝜙 := 𝐴−1/2𝜑.

Since 𝐴1/2𝐴−1/2𝐴1/2 = 𝐴1/2 and ∥𝐴−1/2𝐴1/2∥ ≤ 1, 𝐷𝐴1/2𝑢𝑛 = 𝐴1/2𝐴−1/2𝐴1/2∇𝑢𝑛 →
𝐴1/2𝐴−1/2𝜑 = 𝐴1/2𝜙 in 𝐿2([0, 𝑇 ] × 𝐸;𝐻). Passing to a subsequence we may find a

set Λ ⊂ [0, 𝑇 ] such that [0, 𝑇 ] ∖Λ is negligible and for every 𝑡 ∈ Λ, ℰ𝐴
1 (𝑢

𝑛
𝑡 − 𝑢𝑡) → 0
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and ∥𝐷𝐴1/2𝑢𝑛𝑡 − 𝐴1/2𝜙𝑡∥𝐿2(𝐸;𝐻) → 0. Then we have

ℰ𝐴(𝑢𝑡, 𝜑) =

∫
⟨𝐴1/2𝜙𝑡(𝑥), 𝐷𝐴1/2𝜑(𝑥)⟩𝐻𝜇(𝑑𝑥).

(iii) Let 𝑣 = lim𝑛𝐷𝐴1/2𝑢𝑛. Passing to a subsequence we assume for almost every

𝑡 ∈ [0, 𝑇 ], ∥𝑣𝑡−𝐷𝐴1/2𝑢𝑛𝑡 ∥𝐿2(𝐸;𝐻) → 0. We take 𝜑 ∈ 𝒟(𝐿𝐴) where 𝐿𝐴 is the generator

associated to (ℰ𝐴, 𝐹 ). Then∫
⟨𝑣𝑡, 𝐷𝐴1/2𝜑⟩𝐻𝑑𝜇 = lim

𝑛→∞

∫
⟨𝐷𝐴1/2𝑢𝑛𝑡 , 𝐷𝐴1/2𝜑⟩𝐻𝑑𝜇 = lim

𝑛
ℰ𝐴(𝑢𝑛𝑡 , 𝜑) = − lim

𝑛
(𝑢𝑛𝑡 , 𝐿

𝐴𝜑)

=− (𝑢𝑡, 𝐿
𝐴𝜑) = ℰ𝐴(𝑢𝑡, 𝜑) =

∫
⟨𝐷𝐴1/2𝑢𝑡, 𝐷𝐴1/2𝜑⟩𝐻𝑑𝜇.

It follows that 𝑣𝑡 = 𝐷𝐴1/2𝑢𝑡. □

For 𝑢 ∈ 𝐹, 𝑣 ∈ 𝑏𝐹 we denote

ℰ(𝑢, 𝑣) :=
∫

⟨𝐷𝐴1/2𝑢(𝑥), 𝐷𝐴1/2𝑣(𝑥)⟩𝐻𝜇(𝑑𝑥) +
∫
⟨𝐴1/2𝑏,𝐷𝐴1/2𝑢⟩𝐻𝑣𝜇(𝑑𝑥).

Notation By ∇̃𝑢 we denote the set of all measurable functions 𝜙 : 𝐸 → 𝐻, such

that 𝐴1/2𝜙 = 𝐷𝐴1/2𝑢 as elements of 𝐿2(𝜇;𝐻).

3.1.2 Solution of the Linear Equation

Definition 3.1.3 [strong solution] A function 𝑢 ∈ 𝐹 ∩ 𝐿1((0, 𝑇 );𝒟(𝐿)) is called

a strong solution of equation (3.1.3) with data (𝜙, 𝑓), if 𝑡 7→ 𝑢𝑡 = 𝑢(𝑡, ⋅) is 𝐿2-

differentiable on [0, 𝑇 ], ∂𝑡𝑢𝑡 ∈ 𝐿1((0, 𝑇 );𝐿2) and the equalities in (3.1.3) hold in

𝐿2(𝜇).

Definition 3.1.4 [generalized solution] A function 𝑢 ∈ 𝐹 is called a generalized

solution of equation (3.1.3), if there exists a sequence of {𝑢𝑛} consisting of strong

solutions with data (𝜙𝑛, 𝑓𝑛) such that

∥𝑢𝑛 − 𝑢∥𝑇 → 0, ∥𝜙𝑛 − 𝜙∥2 → 0, lim
𝑛→∞

𝑓𝑛 = 𝑓 in 𝐿1([0, 𝑇 ];𝐿2(𝜇)).

By (A3) and Remark 3.1.1 (v), for 0 ≤ 𝑡 ≤ 𝑇 , 𝑃𝑡, as 𝐶0-semigroup on 𝐿1(𝐸;𝜇),

can be restricted to a semigroup on 𝐿𝑝(𝐸;𝜇) for all 𝑝 ∈ [1,∞) by the Riesz-Thorin

Interpolation Theorem and the restricted semigroup (denoted again by 𝑃𝑡 for sim-

plicity) is strongly continuous on 𝐿𝑝(𝐸;𝜇).

Proposition 3.1.5 Assume that (A1)-(A3) hold.
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(i) Let 𝑓 ∈ 𝐶1([0, 𝑇 ];𝐿𝑝) for 𝑝 ∈ [1,∞). Then

𝑤𝑡 :=

∫ 𝑇

𝑡

𝑃𝑠−𝑡𝑓𝑠𝑑𝑠 ∈ 𝐶1([0, 𝑇 ];𝐿𝑝),

and

∂𝑡𝑤𝑡(𝑥) = −𝑃𝑇−𝑡𝑓𝑇 (𝑥) +

∫ 𝑇

𝑡

𝑃𝑠−𝑡∂𝑠𝑓𝑠(𝑥)𝑑𝑠.

(ii) Assume that 𝜙 ∈ 𝒟(𝐿), 𝑓 ∈ 𝐶1([0, 𝑇 ];𝐿2) and for each 𝑡 ∈ [0, 𝑇 ], 𝑓𝑡 ∈ 𝒟(𝐿).

Define

𝑢𝑡 := 𝑃𝑇−𝑡𝜙+

∫ 𝑇

𝑡

𝑃𝑠−𝑡𝑓𝑠𝑑𝑠.

Then 𝑢 is a strong solution of (3.1.5) and, moreover, 𝑢 ∈ 𝐶1([0, 𝑇 ];𝐿2).

Proof See the proof of [BPS05, Proposition 2.6]. □

Proposition 3.1.6 Suppose that conditions (A1)-(A3) hold. If 𝑢 is a strong

solution for (3.1.3), it is a mild solution for (3.1.3) i.e.

𝑢𝑡 = 𝑃𝑇−𝑡𝜙+

∫ 𝑇

𝑡

𝑃𝑠−𝑡𝑓𝑠𝑑𝑠.

Proof For fixed 𝑡, 𝜑 ∈ 𝒟(�̂�)

(𝑢𝑇 , 𝑃𝑇−𝑡𝜑)− (𝑢𝑡, 𝜑) =

∫ 𝑇

𝑡

(−𝐿𝑢𝑠 − 𝑓𝑠, 𝑃𝑠−𝑡𝜑)𝑑𝑠+

∫ 𝑇

𝑡

(𝑢𝑠, �̂�𝑃𝑠−𝑡𝜑)𝑑𝑠,

where �̂�, 𝑃𝑡 denote the adjoints on 𝐿2(𝐸, 𝜇) of 𝐿 and 𝑃𝑡 respectively. As 𝑢 is a

strong solution, we deduce that

(𝑢𝑡, 𝜑) = (𝑃𝑇−𝑡𝜙+

∫ 𝑇

𝑡

𝑃𝑠−𝑡𝑓𝑠𝑑𝑠, 𝜑).

Since 𝒟(�̂�) is dense in 𝐿2, we have the result. □

Proposition 3.1.7 Suppose that conditions (A1)-(A3) hold, 𝑓 ∈ 𝐿1([0, 𝑇 ];𝐿2)

and 𝜙 ∈ 𝐿2. Then the equation (3.1.3) has a unique generalized solution 𝑢 ∈ 𝐹

(3.1.4) 𝑢𝑡 = 𝑃𝑇−𝑡𝜙+

∫ 𝑇

𝑡

𝑃𝑠−𝑡𝑓𝑠𝑑𝑠.
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The solution satisfies the three relations:

(3.1.5)

∥𝑢𝑡∥22 + 2

∫ 𝑇

𝑡

ℰ𝐴(𝑢𝑠)𝑑𝑠 ≤ 2

∫ 𝑇

𝑡

(𝑓𝑠, 𝑢𝑠)𝑑𝑠+ ∥𝜙∥22 + 2𝛼

∫ 𝑇

𝑡

∥𝑢𝑠∥22𝑑𝑠, 0 ≤ 𝑡 ≤ 𝑇,

(3.1.6) ∥𝑢∥2𝑇 ≤𝑀𝑇 (∥𝜙∥22 + (

∫ 𝑇

0

∥𝑓𝑡∥2𝑑𝑡)2),

(3.1.7)∫ 𝑇

0

((𝑢𝑡, ∂𝑡𝜑𝑡)+ℰ𝐴(𝑢𝑡, 𝜑𝑡)+

∫
⟨𝐴1/2𝑏,𝐷𝐴1/2𝑢𝑡⟩𝐻𝜑𝑡𝑑𝜇)𝑑𝑡 =

∫ 𝑇

0

(𝑓𝑡, 𝜑𝑡)𝑑𝑡+(𝜙, 𝜑𝑇 )−(𝑢0, 𝜑0),

for any 𝜑 ∈ 𝑏𝒞𝑇 , where 𝑀𝑇 is a constant depending on 𝑇 . (3.1.7) can be extended

easily to 𝜑 ∈ 𝑏𝑊 1,2([0, 𝑇 ];𝐿2) ∩ 𝐿2([0, 𝑇 ];𝐹 ).

Moreover, if 𝑢 ∈ 𝐹 is bounded and satisfies (3.1.7) for any 𝜑 ∈ 𝑏𝒞𝑇 with bounded

(𝑓, 𝜙), then 𝑢 is a weak solution given by (3.1.4).

Proof Define 𝑢 by (3.1.4). First assume that 𝜙, 𝑓 are bounded and satisfy the

conditions of Proposition 3.1.5 (ii). Then, since 𝑢 is bounded and by Proposition

3.1.5 we know that 𝑢 is a strong solution of (3.1.3), hence it obviously satisfies

(3.1.7). Furthermore, 𝑢 ∈ 𝐶1([0, 𝑇 ];𝐿2). Hence, actually 𝑢 ∈ 𝑏𝒞𝑇 and consequently,

for 𝑡0 ∈ [0, 𝑇 ]∫ 𝑇

𝑡0

((𝑢𝑡, ∂𝑡𝑢𝑡)+ℰ𝐴(𝑢𝑡, 𝑢𝑡)+

∫
⟨𝐴1/2𝑏,𝐷𝐴1/2𝑢𝑡⟩𝐻𝑢𝑡𝑑𝜇)𝑑𝑡 =

∫ 𝑇

𝑡0

(𝑓𝑡, 𝑢𝑡)𝑑𝑡+(𝜙, 𝑢𝑇 )−(𝑢𝑡0 , 𝑢𝑡0).

By (3.1.2) we have
∫ ⟨𝐴1/2𝑏,𝐷𝐴1/2𝑢𝑡⟩𝐻𝑢𝑡𝑑𝜇 ≥ −𝛼∥𝑢𝑡∥22 then we have

(3.1.8)

∥𝑢𝑡∥22 + 2

∫ 𝑇

𝑡

ℰ𝐴(𝑢𝑠)𝑑𝑠 ≤ 2

∫ 𝑇

𝑡

(𝑓𝑠, 𝑢𝑠)𝑑𝑠+ ∥𝜙∥22 + 2𝛼

∫ 𝑇

𝑡

∥𝑢𝑠∥22𝑑𝑠, 0 ≤ 𝑡 ≤ 𝑇.

As ∫ 𝑇

𝑡

(𝑓𝑠, 𝑢𝑠)𝑑𝑠 =

∫ 𝑇

𝑡

((𝑓𝑠, 𝑃𝑇−𝑠𝜙) + (𝑓𝑠,

∫ 𝑇

𝑠

𝑃𝑟−𝑠𝑓𝑟𝑑𝑟))𝑑𝑠

≤
∫ 𝑇

𝑡

∥𝑓𝑠∥2∥𝑃𝑇−𝑠𝜙∥2𝑑𝑠+
∫ 𝑇

𝑡

∥𝑓𝑠∥2∥
∫ 𝑇

𝑠

𝑃𝑟−𝑠𝑓𝑟𝑑𝑟∥2𝑑𝑠

≤𝑀0𝑒
𝑇−𝑡(∥𝜙∥2

∫ 𝑇

𝑡

∥𝑓𝑠∥2𝑑𝑠+
∫ 𝑇

𝑡

(∥𝑓𝑠∥2
∫ 𝑇

𝑠

∥𝑓𝑟∥2𝑑𝑟)𝑑𝑠),

and ∫ 𝑇

𝑡

∥𝑢𝑠∥22𝑑𝑠 ≤𝑀𝑇−𝑡(∥𝜙∥22 + (

∫ 𝑇

0

∥𝑓𝑡∥2𝑑𝑡)2),
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we obtain

∥𝑢𝑡∥22 +
∫ 𝑇

𝑡

ℰ𝐴(𝑢𝑠)𝑑𝑠 ≤𝑀𝑇−𝑡(∥𝜙∥22 + (

∫ 𝑇

0

∥𝑓𝑡∥2𝑑𝑡)2).

Hence, it follows that

(3.1.9) ∥𝑢∥2𝑇 ≤𝑀𝑇 (∥𝜙∥22 + (

∫ 𝑇

0

∥𝑓𝑡∥2𝑑𝑡)2).

Here the constant 𝑀𝑇−𝑡 may change from line to line, but it is independent of

𝑓, 𝜙. Next we will prove the result for general data 𝜙 and 𝑓 . Let (𝑓𝑛)𝑛∈ℕ be a

sequence of functions in 𝑏𝐶1([0, 𝑇 ];𝐿2(𝜇)) such that 𝑓𝑡 ∈ 𝒟(𝐿) for a.e. 𝑡 ∈ [0, 𝑇 ]

and
∫ 𝑇

0
∥𝑓𝑛

𝑡 − 𝑓𝑡∥2𝑑𝑡→ 0. (Such a sequence exists, since {𝛼𝑡𝑔(𝑥);𝛼𝑡 ∈ 𝐶∞
0 [0, 𝑇 ], 𝑔 ∈

𝑏𝒟(𝐿)} is dense in 𝐿1([0, 𝑇 ];𝐿2)). Take functions (𝜙𝑛)𝑛∈ℕ ⊂ 𝑏𝒟(𝐿) such that 𝜙𝑛 → 𝜙

in 𝐿2. Let 𝑢𝑛 denote the solution given by (3.1.4) with 𝑓 = 𝑓𝑛, 𝜙 = 𝜙𝑛.

By linearity, 𝑢𝑛−𝑢𝑚 is associated with (𝜙𝑛−𝜙𝑚, 𝑓𝑛−𝑓𝑚). Since (3.1.9) implies

that

∥𝑢𝑛 − 𝑢𝑚∥2𝑇 ≤𝑀𝑇 (∥𝜙𝑛 − 𝜙𝑚∥22 + (

∫ 𝑇

0

∥𝑓𝑛
𝑡 − 𝑓𝑚

𝑡 ∥2𝑑𝑡)2),

we deduce that (𝑢𝑛)𝑛∈ℕ is a Cauchy sequence in 𝐹 . Then 𝑢 = lim𝑛→∞ 𝑢𝑛 in ∥ ⋅ ∥𝑇 is

a generalized solution of (3.1.3) and we have

𝑢𝑡 = 𝑃𝑇−𝑡𝜙+

∫ 𝑇

𝑡

𝑃𝑠−𝑡𝑓𝑠𝑑𝑠.

Next we prove (3.1.5) (3.1.6) (3.1.7) for 𝑢. For 𝜑 ∈ 𝑏𝒞𝑇 , we have

(3.1.10)∫ 𝑇

0

((𝑢𝑛𝑡 , ∂𝑡𝜑𝑡)+ℰ𝐴(𝑢𝑛𝑡 , 𝜑𝑡)+

∫
⟨𝐴1/2𝑏,𝐷𝐴1/2𝑢𝑛𝑡 ⟩𝐻𝜑𝑡𝑑𝜇)𝑑𝑡 =

∫ 𝑇

0

(𝑓𝑛
𝑡 , 𝜑𝑡)𝑑𝑡+(𝜙𝑛, 𝜑𝑇 )−(𝑢𝑛0 , 𝜑0).

Since we have

∣
∫ 𝑇

0

ℰ𝐴(𝑢𝑛𝑡 − 𝑢𝑡, 𝜑𝑡)𝑑𝑡∣ ≤ (

∫ 𝑇

0

ℰ𝐴(𝑢𝑛𝑡 − 𝑢𝑡)𝑑𝑡)
1
2 (

∫ 𝑇

0

ℰ𝐴(𝜑𝑡)𝑑𝑡)
1
2 → 0, as 𝑛→ ∞,

and

∣
∫ 𝑇

0

∫
⟨𝐴1/2𝑏,𝐷𝐴1/2(𝑢𝑛𝑡 − 𝑢𝑡)⟩𝐻𝜑𝑡𝑑𝜇𝑑𝑡∣

≤∥𝜑∥∞(

∫ 𝑇

0

∫
∣𝐴1/2𝑏∣2𝐻𝑑𝜇𝑑𝑡)

1
2 (

∫ 𝑇

0

∫
∣𝐷𝐴1/2(𝑢𝑛𝑡 − 𝑢𝑡)∣2𝐻𝑑𝜇𝑑𝑡)

1
2

=∥𝜑∥∞(

∫ 𝑇

0

∫
∣𝐴1/2𝑏∣2𝐻𝑑𝜇𝑑𝑡)

1
2 (

∫ 𝑇

0

ℰ𝐴(𝑢𝑛𝑡 − 𝑢𝑡)𝑑𝑡)
1
2

→0, as 𝑛→ ∞,
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we deduce that∫ 𝑇

0

((𝑢𝑡, ∂𝑡𝜑𝑡)+ℰ𝐴(𝑢𝑡, 𝜑𝑡)+

∫
⟨𝐴1/2𝑏,𝐷𝐴1/2𝑢𝑡⟩𝐻𝜑𝑡𝑑𝜇)𝑑𝑡 =

∫ 𝑇

0

(𝑓𝑡, 𝜑𝑡)𝑑𝑡+(𝜙, 𝜑𝑇 )−(𝑢0, 𝜑0),

for any 𝜑 ∈ 𝑏𝒞𝑇 .

The relations (3.1.5) (3.1.6) hold for the approximating functions:

∥𝑢𝑛𝑡 ∥22 +2

∫ 𝑇

𝑡

ℰ𝐴(𝑢𝑛𝑠 )𝑑𝑠 ≤ 2

∫ 𝑇

𝑡

(𝑓𝑛
𝑠 , 𝑢

𝑛
𝑠 )𝑑𝑠+ ∥𝜙𝑛∥22 +2𝛼

∫ 𝑇

𝑡

∥𝑢𝑛𝑠∥22𝑑𝑠, 0 ≤ 𝑡 ≤ 𝑇.

∥𝑢𝑛∥2𝑇 ≤𝑀𝑇 (∥𝜙𝑛∥22 + (

∫ 𝑇

0

∥𝑓𝑛
𝑡 ∥2𝑑𝑡)2).

Since ∥𝑢𝑛𝑡 ∥𝑇 → ∥𝑢𝑡∥𝑇 , 𝑛→ ∞, we conclude

lim
𝑛→∞

∫ 𝑇

0

ℰ𝐴(𝑢𝑛𝑡 )𝑑𝑡 =

∫ 𝑇

0

ℰ𝐴(𝑢𝑡)𝑑𝑡.

It is easy to see that lim𝑛→∞
∫ 𝑇

𝑡
(𝑓𝑛

𝑠 , 𝑢
𝑛
𝑠 )𝑑𝑠 =

∫ 𝑇

𝑡
(𝑓𝑠, 𝑢𝑠)𝑑𝑠. Then by passing to the

limit, 𝑛→ ∞ in the above relations, we get (3.1.5) and (3.1.6) for 𝑢.

[Uniqueness] Let 𝑣 ∈ 𝐹 be another generalized solution of (3.1.3) and let (𝑣𝑛)𝑛∈ℕ,
(�̃�

𝑛
)𝑛∈ℕ, (𝑓𝑛)𝑛∈ℕ be the corresponding approximating sequences in the definition of

the generalized solution. By Proposition 3.1.6

sup
𝑡∈[0,𝑇 ]

∥𝑢𝑛𝑡 − 𝑣𝑛𝑡 ∥22 ≤𝑀𝑇 (∥𝜙𝑛 − �̃�
𝑛∥22 + (

∫ 𝑇

0

∥𝑓𝑛
𝑡 − 𝑓𝑛

𝑡 ∥2𝑑𝑡)2).

Letting 𝑛→ ∞, this implies 𝑢 = 𝑣.

For the last result we have ∀𝑡0 ∈ [0, 𝑇 ], 𝜑 ∈ 𝑏𝒞𝑇
(3.1.11)∫ 𝑇

𝑡0

((𝑢𝑡, ∂𝑡𝜑𝑡)+ℰ𝐴(𝑢𝑡, 𝜑𝑡)+

∫
⟨𝐴1/2𝑏,𝐷𝐴1/2𝑢𝑡⟩𝜑𝑡𝑑𝑚)𝑑𝑡 =

∫ 𝑇

𝑡0

(𝑓𝑡, 𝜑𝑡)𝑑𝑡+(𝜙, 𝜑𝑇 )−(𝑢𝑡0 , 𝜑𝑡0).

For 𝑡 ≥ 1
𝑛
, define

𝑢𝑛𝑡 := 𝑛

∫ 1
𝑛

0

𝑢𝑡−𝑠𝑑𝑠, 𝑓𝑛
𝑡 := 𝑛

∫ 1
𝑛

0

𝑓𝑡−𝑠𝑑𝑠, 𝜙𝑛 := 𝑛

∫ 1
𝑛

0

𝑢𝑇−𝑠𝑑𝑠.

By a similar argument as the proof of Proposition 2.1.9, 𝑢𝑛 also fulfills (3.1.11) with

𝑓𝑛, 𝜙𝑛. For the mild solution 𝑣 associated with 𝑓, 𝜙, the above relation also holds
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with 𝑣𝑛 replacing 𝑢𝑛. Hence we have∫ 𝑇

𝑡0

(((𝑢−𝑣)𝑛𝑡 , ∂𝑡𝜑𝑡)+ℰ𝐴((𝑢−𝑣)𝑛𝑡 , 𝜑𝑡)+

∫
⟨𝐴1/2𝑏,𝐷𝐴1/2(𝑢−𝑣)𝑛𝑡 ⟩𝜑𝑡𝑑𝑚)𝑑𝑡 = −((𝑢−𝑣)𝑛𝑡0 , 𝜑𝑡0).

Since (𝑢− 𝑣)𝑛𝑡 ∈ 𝑏𝒞[ 1
𝑛
,𝑇 ], the above equation holds with (𝑢− 𝑣)𝑛𝑡 as a test function.

So we have

∥(𝑢− 𝑣)𝑛𝑡0∥22 + 2

∫ 𝑇

𝑡0

ℰ𝐴((𝑢− 𝑣)𝑛𝑡 , (𝑢− 𝑣)𝑛𝑡 )𝑑𝑡 ≤ 2𝛼

∫ 𝑇

𝑡0

∥(𝑢− 𝑣)𝑛𝑡 ∥22𝑑𝑡.

By Gronwall’s lemma it follows that

∥(𝑢− 𝑣)𝑛𝑡0∥22 = 0.

Letting 𝑛→ ∞, we have ∥𝑢𝑡0−𝑣𝑡0∥2 = 0. Then letting 𝑡0 → 0, we have ∥𝑢0−𝑣0∥ = 0.

Therefore, 𝑢𝑡 = 𝑃𝑇−𝑡𝜙+
∫ 𝑇

𝑡
𝑃𝑠−𝑡𝑓𝑠𝑑𝑠 is a generalized solution for (3.1.3). □

3.1.3 Basic Relations for the Linear Equation

In this section we assume that (A1)-(A3) hold.

Lemma 3.1.8 If 𝑢 is a bounded generalized solution of equation (3.1.3) with

some function 𝜙 ≥ 0, 𝜙 ∈ 𝐿2 ∩ 𝐿∞, then 𝑢+ satisfies the following relation with

0 ≤ 𝑡1 < 𝑡2 ≤ 𝑇

∥𝑢+𝑡1∥22 ≤ 2

∫ 𝑡2

𝑡1

(𝑓𝑠, 𝑢
+
𝑠 )𝑑𝑠+ ∥𝑢+𝑡2∥22.

Proof Choose the approximation sequence 𝑢𝑛 for 𝑢 as in the existence proof of

Proposition 3.1.7. Denote its related data by 𝑓𝑛, 𝜙𝑛 .

We have the following equations:

lim
𝑛→∞

sup
𝑡∈[0,𝑇 ]

∥𝑢𝑛𝑡 − 𝑢𝑡∥2 = 0, lim
𝑛→∞

∫ 𝑇

0

ℰ𝐴(𝑢𝑛𝑡 − 𝑢𝑡)𝑑𝑡 = 0,

lim
𝑛→∞

∫ 𝑇

0

∥𝑓𝑛
𝑡 − 𝑓𝑡∥2𝑑𝑡 = 0, lim

𝑛→∞
∥𝜙𝑛 − 𝜙∥2 = 0.

Suppose that the following holds

(3.1.12) ∥(𝑢𝑛𝑡1)+∥22 ≤ 2

∫ 𝑡2

𝑡1

(𝑓𝑛
𝑠 , (𝑢

𝑛
𝑠 )

+)𝑑𝑠+ ∥(𝑢𝑛𝑡2)+∥22,
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where 0 ≤ 𝑡1 ≤ 𝑡2 ≤ 𝑇 . Since ∥𝑢𝑛∥2 are uniformly bounded, we have

lim
𝑛→∞

∫ 𝑡2

𝑡1

(𝑓𝑛
𝑠 , (𝑢

𝑛
𝑠 )

+)𝑑𝑠 =

∫ 𝑡2

𝑡1

(𝑓𝑠, 𝑢
+
𝑠 )𝑑𝑠.

By letting 𝑛→ ∞ in equation (3.1.12) we get for 0 ≤ 𝑡1 ≤ 𝑡2 ≤ 𝑇 ,

∥𝑢+𝑡1∥22 ≤ 2

∫ 𝑡2

𝑡1

(𝑓𝑠, 𝑢
+
𝑠 )𝑑𝑠+ ∥𝑢+𝑡2∥22.

Therefore, the problem is reduced to the case where 𝑢 belongs to 𝑏𝒞𝑇 ; in the

remainder we assume 𝑢 ∈ 𝑏𝒞𝑇 . (3.1.7), written with 𝑢+ ∈ 𝑏𝑊 1,2([0, 𝑇 ];𝐿2) ∩
𝐿2([0, 𝑇 ];𝐹 ) as test functions, takes the form

(3.1.13)

∫ 𝑡2

𝑡1

(𝑢𝑡, ∂𝑡(𝑢
+
𝑡 ))𝑑𝑡+

∫ 𝑡2

𝑡1

ℰ𝐴(𝑢𝑡, 𝑢
+
𝑡 )𝑑𝑡+

∫ 𝑡2

𝑡1

∫
⟨𝐴1/2𝑏,𝐷𝐴1/2𝑢𝑡⟩𝑢+𝑡 𝑑𝜇𝑑𝑡

=

∫ 𝑡2

𝑡1

(𝑓𝑡, 𝑢
+
𝑡 )𝑑𝑡+ (𝑢𝑡2 , 𝑢

+
𝑡2
))− (𝑢𝑡1 , 𝑢

+
𝑡1
)).

By [Ba10, Theorem 1.19] we obtain∫ 𝑡2

𝑡1

(𝑢𝑡, ∂𝑡(𝑢
+
𝑡 ))𝑑𝑡 =

1

2
(∥𝑢+𝑡2∥22 − ∥𝑢+𝑡1∥22).

Then

(3.1.14)

∥𝑢+𝑡1∥22 + 2

∫ 𝑡2

𝑡1

ℰ𝐴(𝑢𝑡, 𝑢
+
𝑡 )𝑑𝑡+ 2

∫ 𝑡2

𝑡1

∫
⟨𝐴1/2𝑏,𝐷𝐴1/2𝑢𝑡⟩𝐻𝑢+𝑡 𝑑𝜇𝑑𝑡

=2

∫ 𝑡2

𝑡1

(𝑓𝑡, 𝑢
+
𝑡 )𝑑𝑡+ ∥𝑢+𝑡2∥22.

Next we prove for 𝑢 ∈ 𝑏𝐹

(3.1.15) ℰ(𝑢, 𝑢+) ≥ 0.

We have the above relation for 𝑢 ∈ 𝒟(𝐿). For 𝑢 ∈ 𝑏𝐹 , by (A3) we choose a uniformly

bounded sequence {𝑢𝑛} ⊂ 𝒟(𝐿) such that ℰ𝐴
1 (𝑢𝑛 − 𝑢) → 0, 𝑛→ ∞. Then we have

∣
∫

⟨𝐴1/2𝑏,𝐷𝐴1/2𝑢⟩𝐻𝑢+𝑑𝜇−
∫

⟨𝐴1/2𝑏,𝐷𝐴1/2𝑢𝑛⟩𝐻𝑢+𝑛 𝑑𝜇∣

≤∣
∫

⟨𝐴1/2𝑏,𝐷𝐴1/2𝑢𝑛 −𝐷𝐴1/2𝑢⟩𝐻𝑢+𝑛 𝑑𝜇∣+ ∣
∫
⟨𝐴1/2𝑏,𝐷𝐴1/2𝑢⟩𝐻(𝑢+𝑛 − 𝑢+)𝑑𝜇∣
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≤𝑀(

∫
∣𝐷𝐴1/2𝑢𝑛 −𝐷𝐴1/2𝑢∣2𝐻𝑑𝜇)

1
2 + ∣

∫
⟨𝐴1/2𝑏,𝐷𝐴1/2𝑢⟩𝐻(𝑢+𝑛 − 𝑢+)𝑑𝜇∣

→0, as 𝑛→ ∞.

Since ℰ𝐴(𝑢+) ≤ ℰ𝐴(𝑢), sup𝑛 ℰ𝐴(𝑢+𝑛 ) ≤ sup𝑛 ℰ𝐴(𝑢𝑛) <∞, we also have

∣ℰ𝐴(𝑢𝑛, (𝑢𝑛)
+)− ℰ𝐴(𝑢, 𝑢+)∣

≤∣ℰ𝐴
1 (𝑢𝑛 − 𝑢, (𝑢𝑛)

+) + ℰ𝐴
1 (𝑢, (𝑢𝑛)

+ − 𝑢+)∣
+ ∣(𝑢𝑛 − 𝑢, (𝑢𝑛)

+)∣+ ∣(𝑢, (𝑢𝑛)+ − 𝑢+)∣
≤(ℰ𝐴

1 (𝑢𝑛 − 𝑢))
1
2 (ℰ0

1 ((𝑢𝑛)
+))

1
2 + ∣ℰ𝐴

1 (𝑢, (𝑢𝑛)
+ − 𝑢+)∣

+ (∥(𝑢𝑛)+∥2∥𝑢𝑛 − 𝑢∥2 + ∥(𝑢𝑛)+ − 𝑢+∥2∥𝑢∥2)
→0, as 𝑛→ ∞.

As a result we obtain (3.1.15) for bounded 𝑢 ∈ 𝐹 . So we have

∥𝑢+𝑡1∥22 ≤ 2

∫ 𝑡2

𝑡1

(𝑓𝑡, 𝑢
+
𝑡 )𝑑𝑡+ ∥𝑢+𝑡2∥22.

□

To extend the class of solutions we are working with, to allow 𝑓 to belong to

𝐿1(𝑑𝑡× 𝑑𝜇), we need the following proposition. It is a modified version of the above

lemma.

Lemma 3.1.9 Let 𝑢 ∈ 𝐹 be bounded and 𝑓 ∈ 𝐿1(𝑑𝑡 × 𝑑𝜇), be such that the

weak relation (3.1.7) is satisfied with test functions in 𝑏𝒞𝑇 and some function 𝜙 ≥ 0,

𝜙 ∈ 𝐿2 ∩ 𝐿∞. Then 𝑢+ satisfies the following relation for 0 ≤ 𝑡1 < 𝑡2 ≤ 𝑇

∥𝑢+𝑡1∥22 ≤ 2

∫ 𝑡2

𝑡1

(𝑓𝑠, 𝑢
+
𝑠 )𝑑𝑠+ ∥𝑢+𝑡2∥22.

Proof First note that we prove analogously to the proof of Lemma 3.1.8 that for

each 𝑢 ∈ 𝑏𝒞𝑇 satisfying the weak relation (3.1.7) with data (𝜙, 𝑓) over the interval

[𝑡1, 𝑡2], where 𝜀 ≤ 𝑡1 ≤ 𝑡2 ≤ 𝑇 for 𝜀 > 0, the following holds:

∥𝑢+𝑡1∥22 ≤ 2

∫ 𝑡2

𝑡1

(𝑓𝑡, 𝑢
+
𝑡 )𝑑𝑡+ ∥𝑢+𝑡2∥22.

For 𝑢 ∈ 𝐹 we take approximating functions 𝑢𝑛 with data (𝜙𝑛, 𝑓𝑛) as in the last

proof of Proposition 3.1.7. Then 𝑢𝑛 satisfies the weak relation (3.1.7) for the data

𝜙𝑛, 𝑓𝑛 with test functions in 𝑏𝒞𝑇 over the interval [𝜀, 𝑡2] and
1
𝑛
≤ 𝜀 ≤ 𝑡2 ≤ 𝑇 . Note
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that

lim
𝑛→∞

∫ 𝑇

𝜀

∥𝑓𝑛
𝑡 − 𝑓𝑡∥1𝑑𝑡 = 0.

We have

∥(𝑢𝑛𝑡1)+∥22 ≤ 2

∫ 𝑡2

𝑡1

(𝑓𝑛
𝑡 , (𝑢

𝑛
𝑡 )

+)𝑑𝑡+ ∥(𝑢𝑛𝑡2)+∥22,

where 𝜀 ≤ 𝑡1 ≤ 𝑡2 ≤ 𝑇 for 𝜀 > 0. The convergence of all terms, which do not

depend on 𝑓 , follows by the same arguments as the proof of Lemma 3.1.8. Since 𝑢

is bounded, it is easy to see that 𝑢𝑛 is uniformly bounded. Then we have

lim
𝑛→∞

∣
∫ 𝑡2

𝑡1

(𝑓𝑛
𝑠 , (𝑢

𝑛
𝑠 )

+)𝑑𝑠−
∫ 𝑡2

𝑡1

(𝑓𝑠, 𝑢
+
𝑠 )𝑑𝑠∣

≤𝑀 lim
𝑛→∞

∫ 𝑡2

𝑡1

∥𝑓𝑛
𝑠 − 𝑓𝑠∥1𝑑𝑠+ lim

𝑛→∞

∫ 𝑡2

𝑡1

(𝑓𝑠, (𝑢
𝑛
𝑠 )

+ − 𝑢+𝑠 )𝑑𝑠

=0.

Finally, we obtain that

∥𝑢+𝑡1∥22 ≤ 2

∫ 𝑡2

𝑡1

(𝑓𝑡, 𝑢
+
𝑡 )𝑑𝑡+ ∥𝑢+𝑡2∥22,

where 𝜀 ≤ 𝑡1 ≤ 𝑡2 ≤ 𝑇 for 𝜀 > 0. Letting 𝜀→ 0 the results follows. □

The next proposition is a modification of [BPS05, Proposition 2.9]. It represents

a version of the maximum principle.

Proposition 3.1.10 Let 𝑢 ∈ 𝐹 be bounded and 𝑓 ∈ 𝐿1(𝑑𝑡 × 𝑑𝜇), 𝑓 ≥ 0, be

such that the weak relation (3.1.7) is satisfied with test functions in 𝑏𝒞𝑇 and some

function 𝜙 ≥ 0, 𝜙 ∈ 𝐿2 ∩ 𝐿∞. Then 𝑢 ≥ 0 and it is represented by the following

relation:

𝑢𝑡 = 𝑃𝑇−𝑡𝜙+

∫ 𝑇

𝑡

𝑃𝑠−𝑡𝑓𝑠𝑑𝑠,

where we use 𝑃𝑡 is a 𝐶0-semigroup on 𝐿1(𝐸;𝜇) to make 𝑃𝑠−𝑡𝑓𝑠 meaningful.

Proof Let (𝑓𝑛)𝑛∈ℕ be a sequence of bounded functions on [0, 𝑇 ]× 𝐸 such that

0 ≤ 𝑓𝑛 ≤ 𝑓𝑛+1 ≤ 𝑓, lim
𝑛→∞

𝑓𝑛 = 𝑓.

Since 𝑓𝑛 is bounded, we have 𝑓𝑛 ∈ 𝐿1([0, 𝑇 ];𝐿2). Next we define

𝑢𝑛𝑡 = 𝑃𝑇−𝑡𝜙+

∫ 𝑇

𝑡

𝑃𝑠−𝑡𝑓
𝑛
𝑠 𝑑𝑠.
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Then 𝑢𝑛 ∈ 𝐹 is the unique generalized solution for the data (𝜙, 𝑓𝑛) by Proposition

3.1.7. Clearly 0 ≤ 𝑢𝑛 ≤ 𝑢𝑛+1 for 𝑛 ∈ ℕ. Define 𝑦 := 𝑢𝑛 − 𝑢 and 𝑓 := 𝑓𝑛 − 𝑓 .

Then 𝑓 ≤ 0 and 𝑦 satisfies the weak relation (3.1.7) for the data (0, 𝑓). Therefore

by Lemma 3.1.9, we have for 𝑡1 ∈ [0, 𝑇 ]

∥𝑦+𝑡1∥22 ≤ 2

∫ 𝑇

𝑡1

(𝑓𝑠, 𝑦
+
𝑠 )𝑑𝑠 ≤ 0.

We conclude that ∥𝑦+𝑡1∥22 = 0. Therefore, 𝑢 ≥ 𝑢𝑛 ≥ 0 for 𝑛 ∈ ℕ. Set 𝑣 := lim𝑛→∞ 𝑢𝑛.

By relation (3.1.5) for 𝑢𝑛 and 𝑓𝑛 we have

∥𝑢𝑛𝑡 ∥22 + 2

∫ 𝑇

𝑡

ℰ𝐴(𝑢𝑛𝑠 )𝑑𝑠 ≤ 2

∫ 𝑇

𝑡

(𝑓𝑛
𝑠 , 𝑢

𝑛
𝑠 )𝑑𝑠+ ∥𝜙∥22 + 2𝛼

∫ 𝑇

𝑡

∥𝑢𝑛𝑠∥2𝑑𝑠,

which implies that

∥𝑢𝑛𝑡 ∥22 + 2

∫ 𝑇

𝑡

ℰ𝐴(𝑢𝑛𝑠 )𝑑𝑠 ≤ 2𝑀

∫ 𝑇

𝑡

∫
∣𝑓𝑛

𝑠 ∣𝑑𝜇𝑑𝑠+ ∥𝜙∥22 + 2𝛼

∫ 𝑇

𝑡

∥𝑢𝑛𝑠∥22𝑑𝑠.

By Gronwall’s lemma we have sup𝑛 sup𝑡∈[0,𝑇 ] ∥𝑢𝑛𝑡 ∥22 ≤const. We obtain that lim𝑛→∞ ∥𝑢𝑛𝑡 −
𝑣𝑡∥22 = 0 and

lim
𝑛→∞

∣
∫ 𝑇

𝑡

∫
(𝑓𝑛

𝑠 𝑢
𝑛
𝑠 − 𝑓𝑠𝑣𝑠)𝑑𝜇𝑑𝑠∣ = 0.

By [MR92, Lemma 2.12] we have∫ 𝑇

𝑡

ℰ𝐴(𝑣𝑠)𝑑𝑠 ≤
∫ 𝑇

𝑡

lim inf
𝑛→∞

ℰ𝐴(𝑢𝑛𝑠 )𝑑𝑠 ≤ lim inf
𝑛→∞

∫ 𝑇

𝑡

ℰ𝐴(𝑢𝑛𝑠 )𝑑𝑠.

Finally, we get for 𝑡 ∈ [0, 𝑇 ]

∥𝑣𝑡∥22 + 2

∫ 𝑇

𝑡

ℰ𝐴(𝑣𝑠)𝑑𝑠 ≤ lim
𝑛→∞

∥𝑢𝑛𝑡 ∥22 + 2 lim inf
𝑛→∞

∫ 𝑇

𝑡

ℰ𝐴(𝑢𝑛𝑠 )𝑑𝑠

≤ lim
𝑛→∞

(2

∫ 𝑇

𝑡

(𝑓𝑛
𝑠 , 𝑢

𝑛
𝑠 )𝑑𝑠+ ∥𝜙∥22 + 2𝛼

∫ 𝑇

𝑡

∥𝑢𝑛𝑠∥2𝑑𝑠)

=2

∫ 𝑇

𝑡

(𝑓𝑠, 𝑣𝑠)𝑑𝑠+ ∥𝜙∥22 + 2𝛼

∫ 𝑇

𝑡

∥𝑣𝑠∥2𝑑𝑠.

Since the right side of this inequality is finite and 𝑡 7→ 𝑣𝑡 is 𝐿
2-continuous, it follows

that 𝑣 ∈ 𝐹 .

Now we show that 𝑣 satisfies the weak relation (3.1.7) for the data (𝜙, 𝑓). As
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𝜑𝑛(𝑡) := ∥𝑢𝑛𝑡 −𝑣𝑡∥2 is continuous and decreasing to 0, we conclude by Dini’s theorem

lim
𝑛→∞

sup
𝑡∈[0,𝑇 ]

∥𝑢𝑛𝑡 − 𝑣𝑡∥2 = 0,

and therefore

lim
𝑛→∞

∫ 𝑇

0

∥𝑢𝑛𝑡 − 𝑣𝑡∥22 = 0.

Furthermore, there exists 𝐾 ∈ ℝ+ and a subsequence (𝑛𝑘)𝑘∈ℕ such that

∣
∫ 𝑇

0

ℰ𝐴(𝑢𝑛𝑘
𝑠 )𝑑𝑠∣ ≤ 𝐾 ∀𝑘 ∈ ℕ.

In particular, ∫ 𝑇

0

∫
∣𝐷𝐴1/2𝑢𝑛𝑘

𝑠 ∣2𝐻𝑑𝜇𝑑𝑠 ≤ 𝐾 ∀𝑘 ∈ ℕ.

We obtain

lim
𝑘→∞

∫ 𝑇

0

ℰ𝐴(𝑢𝑛𝑘
𝑠 , 𝜑𝑠)𝑑𝑠 =

∫ 𝑇

0

ℰ𝐴(𝑣𝑠, 𝜑𝑠)𝑑𝑠,

and

lim
𝑘→∞

∫ 𝑇

0

∫
⟨𝐴1/2𝑏,𝐷𝐴1/2𝑢𝑛𝑘

𝑠 ⟩𝐻𝜑𝑠𝑑𝜇𝑑𝑠 =

∫ 𝑇

0

∫
⟨𝐴1/2𝑏,𝐷𝐴1/2𝑣𝑠⟩𝐻𝜑𝑠𝑑𝜇𝑑𝑠,

which implies (3.1.7) for 𝑣 associated to (𝜙, 𝑓). Clearly 𝑢 − 𝑣 satisfies (3.1.7) with

data (0, 0) for 𝜑 ∈ 𝑏𝒞𝑇 . By Proposition 3.1.7 we have 𝑢− 𝑣 = 0. Since

𝑣𝑡 = 𝑃𝑇−𝑡𝜙+

∫ 𝑇

𝑡

𝑃𝑠−𝑡𝑓𝑠𝑑𝑠,

the assertion follows. □

Corollary 3.1.11 Let 𝑢 ∈ 𝐹 be bounded and 𝑓 ∈ 𝐿1(𝑑𝑡 × 𝑑𝜇) be such that

the weak relation (3.1.7) is satisfied with test functions in 𝑏𝒞𝑇 and some function

𝜙 ∈ 𝐿2 ∩ 𝐿∞. Assume there exists 𝑔 ∈ 𝑏𝐿1(𝑑𝑡 × 𝑑𝜇) such that 𝑓 ≤ 𝑔. Then 𝑢 has

the following representation:

𝑢𝑡 = 𝑃𝑇−𝑡𝜙+

∫ 𝑇

𝑡

𝑃𝑠−𝑡𝑓𝑠𝑑𝑠.

Proof Define 𝑓𝑛 := (𝑓 ∨ (−𝑛)) ∧ 𝑔, 𝑛 ∈ ℕ. Then (𝑓𝑛)𝑛∈ℕ is a sequence of bounded

functions such that 𝑓𝑛 ↓ 𝑓 and 𝑓𝑛 ≤ 𝑔 then by the same arguments as the proof of

Proposition 3.1.10, the assertion follows. □



3.1. Preliminaries 103

The following proposition is a modification of [BPS05, Proposition 2.10] . It is

essential for the analytical treatment of the non-linear equation (1.4) which is done

in the next section.

Proposition 3.1.12 Let 𝑢 = (𝑢1, ..., 𝑢𝑙) be a vector valued function where each

component is a generalized solution of the linear equation (3.1.3) associated to data

(𝑓 𝑖, 𝜙𝑖), which are assumed to be bounded and to satisfy the condition in Proposition

3.1.5 (ii) for 𝑖 = 1, ..., 𝑙. Let 𝜙, 𝑓 denote the vectors 𝜙 = (𝜙1, ..., 𝜙𝑙), 𝑓 = (𝑓 1, ..., 𝑓 𝑙)

and 𝐷𝐴1/2𝑢 denote the matrix whose rows consist of 𝐷𝐴1/2𝑢𝑖. Then the following

relations hold 𝜇-almost everywhere:

(3.1.16) ∣𝑢𝑡∣2 + 2

∫ 𝑇

𝑡

𝑃𝑠−𝑡(∣𝐷𝐴1/2𝑢𝑠∣2𝐻)𝑑𝑠 = 𝑃𝑇−𝑡∣𝜙∣2 + 2

∫ 𝑇

𝑡

𝑃𝑠−𝑡⟨𝑢𝑠, 𝑓𝑠⟩𝑑𝑠,

and

(3.1.17) ∣𝑢𝑡∣ ≤ 𝑃𝑇−𝑡∣𝜙∣+
∫ 𝑇

𝑡

𝑃𝑠−𝑡⟨�̂�𝑠, 𝑓𝑠⟩𝑑𝑠.

Here we write �̂� = 𝑥/∣𝑥∣, for 𝑥 ∈ ℝ𝑙, 𝑥 ∕= 0 and �̂� = 0, if 𝑥 = 0.

Proof By Proposition 3.1.5 (ii) we have 𝑢 ∈ 𝑏𝒞𝑇 .

First we assume 𝑙 = 1. If we check that 𝑢2 satisfies (3.1.7) with data (2𝑢𝑓 −
2∣𝐷𝐴1/2𝑢∣2𝐻 , 𝜙2) for 𝜑 ∈ 𝑏𝒞𝑇 , then (3.1.16) will follow by Corollary 3.1.11. We have

the following relations:∫ 𝑇

0

(𝑢2𝑡 , ∂𝑡𝜑𝑡)𝑑𝑡 = 2

∫ 𝑇

0

(𝑢𝑡, ∂𝑡(𝑢𝑡𝜑𝑡))𝑑𝑡+ (𝑢20, 𝜑0)− (𝑢2𝑇 , 𝜑𝑇 ),

ℰ𝐴(𝑢2𝑡 , 𝜑𝑡) = 2ℰ𝐴(𝑢𝑡, 𝑢𝑡𝜑𝑡)− 2(∣𝐷𝐴1/2𝑢𝑡∣2𝐻 , 𝜑𝑡),

and ∫
⟨𝐴1/2𝑏,𝐷𝐴1/2(𝑢2𝑡 )⟩𝐻𝜑𝑡𝑑𝜇 = 2

∫
⟨𝐴1/2𝑏,𝐷𝐴1/2𝑢𝑡⟩𝐻𝑢𝑡𝜑𝑡𝑑𝜇.

Since 𝑢 is a generalized solution of (3.1.3), we have∫ 𝑇

0

(𝑢𝑡, ∂𝑡(𝑢𝑡𝜑𝑡))𝑑𝑡− (𝑢𝑇 , 𝑢𝑇𝜑𝑇 ) + (𝑢0, 𝑢0𝜑0)−
∫ 𝑇

0

(𝑓𝑡, 𝑢𝑡𝜑𝑡)𝑑𝑡

=−
∫ 𝑇

0

ℰ𝐴(𝑢𝑡, 𝑢𝑡𝜑𝑡)𝑑𝑡−
∫ 𝑇

0

⟨𝐴1/2𝑏,𝐷𝐴1/2𝑢𝑡⟩𝐻𝑢𝑡𝜑𝑡𝑑𝜇𝑑𝑡.
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By the above relation, we obtain

(3.1.18)∫ 𝑇

0

(𝑢2𝑡 , ∂𝑡𝜑𝑡)𝑑𝑡+ (𝑢20, 𝜑0)− (𝑢2𝑇 , 𝜑𝑇 ) +

∫ 𝑇

0

(ℰ𝐴(𝑢2𝑡 , 𝜑𝑡) + ⟨𝐴1/2𝑏,𝐷𝐴1/2(𝑢2𝑡 )⟩𝐻𝜑𝑡𝑑𝜇)𝑑𝑡

=2

∫ 𝑇

0

(𝑓𝑡𝑢𝑡, 𝜑𝑡)𝑑𝑡−
∫ 𝑇

0

2(∣𝐷𝐴1/2𝑢𝑡∣2𝐻 , 𝜑𝑡)𝑑𝑡.

Hence, by Corollary 3.1.11, (3.1.16) holds in the case 𝑙 = 1. To deduce this relation

in the case 𝑙 > 1 it suffices to add the relations corresponding to the components

∣𝑢𝑖𝑡∣2, 𝑖 = 1, ..., 𝑙. For (3.1.17), let us define for 𝜀 > 0, ℎ𝜀(𝑡) :=
√
𝑡+ 𝜀−√

𝜀 for 𝑡 ≥ 0.

We have the following relations by integration by parts:

ℰ𝐴(ℎ𝜀(∣𝑢∣2), 𝜑) = ℰ𝐴(∣𝑢∣2, ℎ′𝜀(∣𝑢∣2)𝜑)− (ℎ′′𝜀(∣𝑢∣2)∣𝐷𝐴1/2(∣𝑢∣2)∣2𝐻 , 𝜑),∫ 𝑇

0

(ℎ𝜀(∣𝑢𝑡∣2), ∂𝑡𝜑𝑡)𝑑𝑡 =

∫ 𝑇

0

(∣𝑢𝑡∣2, ∂𝑡(𝜑𝑡ℎ
′
𝜀(∣𝑢𝑡∣2)))𝑑𝑡− (∣𝑢𝑇 ∣2, 𝜑𝑇ℎ

′
𝜀(∣𝑢𝑇 ∣2))

+ (∣𝑢0∣2, 𝜑0ℎ
′
𝜀(∣𝑢0∣2)) + (ℎ𝜀(∣𝑢𝑇 ∣2), 𝜑𝑇 )− (ℎ𝜀(∣𝑢0∣2), 𝜑0).

If we choose 𝜑ℎ′𝜀(∣𝑢∣2) as a test function in (3.1.18), we have∫ 𝑇

0

(∣𝑢𝑡∣2, ∂𝑡(𝜑𝑡ℎ
′
𝜀(∣𝑢𝑡∣2)))𝑑𝑡+ (∣𝑢0∣2, 𝜑0ℎ

′
𝜀(∣𝑢0∣2))− (∣𝑢𝑇 ∣2, 𝜑𝑇ℎ

′
𝜀(∣𝑢𝑇 ∣2))

+

∫ 𝑇

0

(ℰ𝐴(∣𝑢𝑡∣2, 𝜑𝑡ℎ
′
𝜀(∣𝑢∣2𝑡 )) +

∫
⟨𝐴1/2𝑏,𝐷𝐴1/2(∣𝑢𝑡∣2)⟩𝐻𝜑𝑡ℎ

′
𝜀(∣𝑢𝑡∣2)𝑑𝜇)𝑑𝑡

=2

∫ 𝑇

0

(⟨𝑓𝑡, 𝑢𝑡⟩, 𝜑𝑡ℎ
′
𝜀(∣𝑢𝑡∣2))𝑑𝑡−

∫ 𝑇

0

2(∣𝐷𝐴1/2𝑢𝑡∣2𝐻 , 𝜑𝑡ℎ
′
𝜀(∣𝑢𝑡∣2))𝑑𝑡.

By the above relations we have∫ 𝑇

0

(ℎ𝜀(∣𝑢𝑡∣2), ∂𝑡𝜑𝑡)𝑑𝑡− (ℎ𝜀(∣𝑢𝑇 ∣2), 𝜑𝑇 ) + (ℎ𝜀(∣𝑢0∣2), 𝜑0)

+

∫ 𝑇

0

(ℰ𝐴(ℎ𝜀(∣𝑢𝑡∣2), 𝜑𝑡) +

∫
⟨𝐴1/2𝑏,𝐷𝐴1/2(ℎ𝜀(∣𝑢𝑡∣2))⟩𝐻𝜑𝑡𝑑𝜇)𝑑𝑡

=−
∫ 𝑇

0

(ℎ′′𝜀(∣𝑢𝑡∣2)∣𝐷𝐴1/2(∣𝑢𝑡∣2)∣2𝐻 , 𝜑𝑡)𝑑𝑡+ 2

∫ 𝑇

0

(⟨𝑓𝑡, 𝑢𝑡⟩ℎ′𝜀(∣𝑢𝑡∣2), 𝜑𝑡)𝑑𝑡

−
∫ 𝑇

0

2(ℎ′𝜀(∣𝑢𝑡∣2)∣𝐷𝐴1/2𝑢𝑡∣2𝐻 , 𝜑𝑡)𝑑𝑡.

As

∣𝐷𝐴1/2(∣𝑢∣2)∣2𝐻 = 4∣
∑
𝑖

𝑢𝑖𝐷𝐴1/2𝑢𝑖∣2𝐻 ≤ 4(
∑
𝑖

∣𝑢𝑖∣⋅∣𝐷𝐴1/2𝑢𝑖∣𝐻)2 ≤ 4(
∑
𝑖

(𝑢𝑖)2)(
∑
𝑖

∣𝐷𝐴1/2𝑢𝑖∣2𝐻),
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we deduce

2⟨𝑓, 𝑢⟩ℎ′𝜀(∣𝑢∣2)− 2ℎ′𝜀(∣𝑢∣2)∣𝐷𝐴1/2𝑢∣2𝐻 − ℎ′′𝜀(∣𝑢∣2)∣𝐷𝐴1/2(∣𝑢∣2)∣2𝐻
=
⟨𝑓, 𝑢⟩ − ∣𝐷𝐴1/2𝑢∣2𝐻

(∣𝑢∣2 + 𝜀)
1
2

+
∣∑𝑖 𝑢

𝑖𝐷𝐴1/2𝑢𝑖∣2𝐻
(∣𝑢∣2 + 𝜀)

3
2

≤ ⟨𝑓, 𝑢⟩
(∣𝑢∣2 + 𝜀)

1
2

− 𝜀∣𝐷𝐴1/2𝑢∣2𝐻 + ∣𝑢∣2∣𝐷𝐴1/2𝑢∣2𝐻 −∑
𝑖(𝑢

𝑖)2
∑

𝑖⟨𝐷𝐴1/2𝑢𝑖, 𝐷𝐴1/2𝑢𝑖⟩𝐻
(∣𝑢∣2 + 𝜀)

3
2

≤ ⟨𝑓, 𝑢⟩
(∣𝑢∣2 + 𝜀)

1
2

.

By Proposition 3.1.10 we deduce that

ℎ𝜀(∣𝑢𝑡∣2) ≤ 𝑃𝑇−𝑡ℎ𝜀(∣𝜙∣2) +
∫ 𝑇

𝑡

𝑃𝑠−𝑡
⟨𝑓𝑠, 𝑢𝑠⟩

(∣𝑢𝑠∣2 + 𝜀)
1
2

𝑑𝑠.

Letting 𝜀→ 0, the assertion follows. □

The next corollary is a version of the above proposition for general data. Here

we use 𝑃𝑡 is a 𝐶0-semigroup on 𝐿1.

Corollary 3.1.13 Let 𝑢 = (𝑢1, ..., 𝑢𝑙) be a vector valued function where each

component is a generalized solution of the linear equation (3.1.3) associated to

data 𝑓 𝑖 ∈ 𝐿1([0, 𝑇 ];𝐿2), 𝜙𝑖 ∈ 𝐿2 for 𝑖 = 1, ..., 𝑙. Let 𝜙, 𝑓 denote the vectors

𝜙 = (𝜙1, ..., 𝜙𝑙), 𝑓 = (𝑓1, ..., 𝑓 𝑙) and 𝐷𝐴1/2𝑢 denote the matrix whose rows consist

of 𝐷𝐴1/2𝑢𝑖. Then the following relations hold 𝜇-almost everywhere

(3.1.19) ∣𝑢𝑡∣2 + 2

∫ 𝑇

𝑡

𝑃𝑠−𝑡(∣𝐷𝐴1/2𝑢𝑠∣2𝐻)𝑑𝑠 = 𝑃𝑇−𝑡∣𝜙∣2 + 2

∫ 𝑇

𝑡

𝑃𝑠−𝑡⟨𝑢𝑠, 𝑓𝑠⟩𝑑𝑠,

and

(3.1.20) ∣𝑢𝑡∣ ≤ 𝑃𝑇−𝑡∣𝜙∣+
∫ 𝑇

𝑡

𝑃𝑠−𝑡⟨�̂�𝑠, 𝑓𝑠⟩𝑑𝑠.

Proof Analogously to the proof of Proposition 3.1.12 it is enough to verify (3.1.19)

for 𝑙 = 1. For 𝜙 ∈ 𝐿2, 𝑓 ∈ 𝐿1([0, 𝑇 ], 𝐿2), take 𝜙𝑛, 𝑓𝑛 as in Proposition 3.1.7. Then

we have

(a). 𝑢𝑛,𝑡 := 𝑃𝑇−𝑡𝜙𝑛 +
∫ 𝑇

𝑡
𝑃𝑠−𝑡𝑓𝑛,𝑠𝑑𝑠 is a generalized solution ,

(b). lim𝑛→∞
∫ 𝑇

𝑡
∥𝑓𝑛,𝑠 − 𝑓𝑠∥2𝑑𝑠 = 0,

(c). lim𝑛→∞ ∥𝜙𝑛 − 𝜙∥2 = 0,

(d). lim𝑛→∞ ∥𝑢𝑛 − 𝑢∥𝑇 = 0.
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By Proposition 3.1.12 we have

(3.1.21) ∣𝑢𝑛,𝑡∣2 + 2

∫ 𝑇

𝑡

𝑃𝑠−𝑡(∣𝐷𝐴1/2𝑢𝑛,𝑠∣2𝐻)𝑑𝑠 = 𝑃𝑇−𝑡∣𝜙𝑛∣2 + 2

∫ 𝑇

𝑡

𝑃𝑠−𝑡⟨𝑢𝑛,𝑠, 𝑓𝑛,𝑠⟩𝑑𝑠.

By (b) and (d) we obtain

∥
∫ 𝑇

𝑡

𝑃𝑠−𝑡((𝑢𝑛,𝑠, 𝑓𝑛,𝑠)− (𝑢𝑠, 𝑓𝑠))𝑑𝑠∥1

≤𝐶
∫ 𝑇

𝑡

(∥𝑢𝑛,𝑠∥2∥𝑓𝑛,𝑠 − 𝑓𝑠∥2 + ∥𝑓𝑠∥2∥𝑢𝑛,𝑠 − 𝑢𝑠∥2)𝑑𝑠

≤𝐶( sup
𝑠∈[0,𝑇 ]

∥𝑢𝑛,𝑠∥2
∫ 𝑇

𝑡

∥𝑓𝑛,𝑠 − 𝑓𝑠∥2𝑑𝑠+ sup
𝑠∈[0,𝑇 ]

∥𝑢𝑛,𝑠 − 𝑢𝑠∥
∫ 𝑇

𝑡

∥𝑓𝑠∥2𝑑𝑠)

→0, as 𝑛→ ∞.

Here we used 𝑃𝑡 is a 𝐶0-semigroup on 𝐿1(𝐸;𝜇). By (d) we obtain∫ 𝑇

𝑡

∥∣𝐷𝐴1/2𝑢𝑛,𝑠∣2𝐻 − ∣𝐷𝐴1/2𝑢𝑠∣2𝐻∥1𝑑𝑠

≤((

∫ 𝑇

𝑡

∥∣𝐷𝐴1/2𝑢𝑛,𝑠∣𝐻∥22𝑑𝑠)
1
2 + (

∫ 𝑇

𝑡

∥∣𝐷𝐴1/2𝑢𝑠∣𝐻∥22𝑑𝑠)
1
2 )(

∫ 𝑇

𝑡

∥∣𝐷𝐴1/2𝑢𝑛,𝑠 −𝐷𝐴1/2𝑢𝑠∣𝐻∥22𝑑𝑠)
1
2

=((

∫ 𝑇

𝑡

ℰ𝐴(𝑢𝑛,𝑠)𝑑𝑠)
1
2 + (

∫ 𝑇

𝑡

ℰ𝐴(𝑢𝑠)𝑑𝑠)
1
2 )(

∫ 𝑇

𝑡

ℰ𝐴(𝑢𝑛,𝑠 − 𝑢𝑠)𝑑𝑠)
1
2

→0, as 𝑛→ ∞,

and obtain

lim
𝑛→∞

∫ 𝑇

𝑡

𝑃𝑠−𝑡(∣𝐷𝐴1/2𝑢𝑛,𝑠∣2𝐻)𝑑𝑠 =
∫ 𝑇

𝑡

𝑃𝑠−𝑡∣𝐷𝐴1/2𝑢𝑠∣2𝐻𝑑𝑠.

Passing to the limit in equation (3.1.21) we obtain (3.1.19). (3.1.20) follows by the

same method. □

Lemma 3.1.14 If 𝑓, 𝑔 ∈ 𝐿1([0, 𝑇 ];𝐿2) and 𝜙 ∈ 𝐿2, then the following relations

hold 𝜇-a.e.:

(3.1.22)

∫ 𝑇

𝑡

𝑃𝑠−𝑡(𝑓𝑠𝑃𝑇−𝑠𝜙)𝑑𝑠 ≤ 1

2
𝑃𝑇−𝑡𝜙

2 +

∫ 𝑇

𝑡

∫ 𝑇

𝑠

𝑃𝑠−𝑡(𝑓𝑠𝑃𝑟−𝑠𝑓𝑟)𝑑𝑟𝑑𝑠.

Proof Define

ℎ𝑡 = 𝑃𝑇−𝑡𝜙, 𝑣𝑡 =

∫ 𝑇

𝑡

𝑃𝑠−𝑡𝑓𝑠𝑑𝑠.
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By (3.1.19) we deduce

ℎ2𝑡 + 2

∫ 𝑇

𝑡

𝑃𝑠−𝑡∣𝐷𝐴1/2ℎ𝑠∣2𝐻𝑑𝑠 = 𝑃𝑇−𝑡𝜙
2,

𝑣2𝑡 + 2

∫ 𝑇

𝑡

𝑃𝑠−𝑡∣𝐷𝐴1/2𝑣𝑠∣2𝐻𝑑𝑠 = 2

∫ 𝑇

𝑡

𝑃𝑠−𝑡(𝑓𝑠

∫ 𝑇

𝑠

𝑃𝑟−𝑠𝑓𝑟𝑑𝑟)𝑑𝑠,

and

ℎ𝑡𝑣𝑡 + 2

∫ 𝑇

𝑡

𝑃𝑠−𝑡⟨𝐷𝐴1/2ℎ𝑠, 𝐷𝐴1/2𝑣𝑠⟩𝐻𝑑𝑠 =
∫ 𝑇

𝑡

𝑃𝑠−𝑡(𝑓𝑠𝑃𝑇−𝑠𝜙)𝑑𝑠.

So, we have∫ 𝑇

𝑡

𝑃𝑠−𝑡(𝑓𝑠𝑃𝑇−𝑠𝜙)𝑑𝑠 = ℎ𝑡𝑣𝑡 + 2

∫ 𝑇

𝑡

𝑃𝑠−𝑡⟨𝐷𝐴1/2ℎ𝑠, 𝐷𝐴1/2𝑣𝑠⟩𝐻𝑑𝑠

≤1

2
(ℎ2𝑡 + 𝑣2𝑡 ) +

∫ 𝑇

𝑡

𝑃𝑠−𝑡(∣𝐷𝐴1/2ℎ𝑠∣2𝐻 + ∣𝐷𝐴1/2𝑣𝑠∣2𝐻)𝑑𝑠

=
1

2
𝑃𝑇−𝑡𝜙

2 +

∫ 𝑇

𝑡

∫ 𝑇

𝑠

𝑃𝑠−𝑡(𝑓𝑠𝑃𝑟−𝑠𝑓𝑟)𝑑𝑟𝑑𝑠.

□

3.2 The Non-linear Equation

In the case of non-linear equations, we are going to treat systems of equations, with

the unknown functions and their first-order derivatives mixed in the non-linear term

of the equation. The non-linear term is a given measurable function 𝑓 : [0, 𝑇 ]×𝐸×
ℝ𝑙 ×𝐻 𝑙 → ℝ𝑙, 𝑙 ∈ ℕ. We are going to treat the following system of equations.

(3.2.1) (∂𝑡 + 𝐿)𝑢+ 𝑓(⋅, ⋅, 𝑢,𝐷𝐴1/2𝑢) = 0, 𝑢𝑇 = 𝜙.

The function 𝜙 is assumed to be in 𝐿2(𝐸, 𝑑𝜇;ℝ𝑙).

Definition 3.2.1 [Generalized solution of the nonlinear equation] A generalized

solution of equation (3.2.1) is a system 𝑢 = (𝑢1, 𝑢2, ..., 𝑢𝑙) of 𝑙 elements in 𝐹 , which

has the property that each function 𝑓 𝑖(⋅, ⋅, 𝑢,𝐷𝐴1/2𝑢) belongs to 𝐿1([0, 𝑇 ];𝐿2(𝜇)) and

such that there is a sequence {𝑢𝑛} which consists of strong solutions to (3.2.1) with

data (𝜙𝑛, 𝑓𝑛) such that

∥𝑢𝑛 − 𝑢∥𝑇 → 0, ∥𝜙𝑛 − 𝜙∥2 → 0,
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and

lim
𝑛→∞

𝑓𝑛(⋅, ⋅, 𝑢𝑛, 𝐷𝐴1/2𝑢𝑛) = 𝑓(⋅, ⋅, 𝑢,𝐷𝐴1/2𝑢) in 𝐿1([0, 𝑇 ];𝐿2(𝜇)).

Definition 3.2.2 [Mild solution] A mild solution of equation (3.2.1) is a system

𝑢 = (𝑢1, 𝑢2, ..., 𝑢𝑙) of 𝑙 elements in 𝐹 , which has the property that each function

𝑓 𝑖(⋅, ⋅, 𝑢,𝐷𝐴1/2𝑢) belongs to 𝐿1([0, 𝑇 ];𝐿2(𝜇)) and such that for every 𝑖 ∈ {1, ..., 𝑙},
the following equation holds

(3.2.2) 𝑢𝑖(𝑡, 𝑥) = 𝑃𝑇−𝑡𝜙
𝑖(𝑥) +

∫ 𝑇

𝑡

𝑃𝑠−𝑡𝑓
𝑖(𝑠, ⋅, 𝑢𝑠, 𝐷𝐴1/2𝑢𝑠)(𝑥)𝑑𝑠, 𝜇− 𝑎.𝑒..

Lemma 3.2.3 𝑢 is a generalized solution of the nonlinear equation (3.2.1) if and

only if it is a mild solution of equation (3.2.1).

Proof The assertion follows by Proposition 3.1.7. □

We will use the following notation:

∣𝑢∣𝐻 :=
∑

∣𝑢𝑖∣𝐻 , 𝑢 ∈ 𝐿2(𝐸;𝐻 𝑙, 𝑑𝜇),

∥𝜙∥22 :=
𝑙∑

𝑖=1

∥𝜙𝑖∥22, 𝜙 ∈ 𝐿2(𝐸, 𝑑𝜇;ℝ𝑙),

ℰ(𝑢, 𝑣) :=
𝑙∑

𝑖=1

ℰ(𝑢𝑖, 𝑣𝑖), ℰ𝐴(𝑢, 𝑣) :=
𝑙∑

𝑖=1

ℰ𝐴(𝑢𝑖, 𝑣𝑖), 𝑢, 𝑣 ∈ 𝐹 𝑙,

∥𝑢∥2𝑇 := sup
𝑡≤𝑇

∥𝑢𝑡∥22 +
∫ 𝑇

0

ℰ𝐴(𝑢𝑡)𝑑𝑡, 𝑢 ∈ 𝐹 𝑙.

3.2.1 The Case of Lipschitz Conditions

In this subsection we consider a measurable function 𝑓 : [0, 𝑇 ]×𝐸 ×ℝ𝑙 ×𝐻 𝑙 → ℝ𝑙

such that

(3.2.3) ∣𝑓(𝑡, 𝑥, 𝑦, 𝑧)− 𝑓(𝑡, 𝑥, 𝑦′, 𝑧′)∣ ≤ 𝐶(∣𝑦 − 𝑦′∣+ ∣𝑧 − 𝑧′∣𝐻),

with 𝑡, 𝑥, 𝑦, 𝑦′, 𝑧, 𝑧′ arbitrary and 𝐶 a constant independent of 𝑡, 𝑥. We set 𝑓 0(𝑡, 𝑥) :=

𝑓(𝑡, 𝑥, 0, 0).

Proposition 3.2.4 Suppose that conditions (A1)-(A3) hold and 𝑓 satisfies con-

dition (3.2.3), 𝑓 0 ∈ 𝐿2([0, 𝑇 ]×𝐸, 𝑑𝑡×𝑑𝜇;ℝ𝑙) and 𝜙 ∈ 𝐿2(𝐸;ℝ𝑙). Then the equation
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(3.2.1) admits a unique solution 𝑢 ∈ 𝐹 𝑙 and it satisfies the following estimate

∥𝑢∥2𝑇 ≤ 𝑒𝑇 (1+2𝐶+𝐶2+2𝛼)(∥𝜙∥22 + ∥𝑓 0∥2𝐿2([0,𝑇 ]×𝐸)).

Proof If 𝑢 ∈ 𝐹 𝑙, then by relation (3.2.3) we have

∣𝑓(⋅, ⋅, 𝑢,𝐷𝐴1/2𝑢)∣ ≤ ∣𝑓(⋅, ⋅, 𝑢,𝐷𝐴1/2𝑢)− 𝑓(⋅, ⋅, 0, 0)∣+ ∣𝑓(⋅, ⋅, 0, 0)∣
≤ 𝐶(∣𝑢∣+ ∣𝐷𝐴1/2𝑢∣𝐻) + ∣𝑓 0∣.

As 𝑓 0 ∈ 𝐿2([0, 𝑇 ]×𝐸, 𝑑𝑡× 𝑑𝜇;ℝ𝑙) and ∣𝐷𝐴1/2𝑢∣𝐻 is an element of 𝐿2([0, 𝑇 ]×𝐸), we

get 𝑓(⋅, ⋅, 𝑢,𝐷𝐴1/2𝑢) ∈ 𝐿2([0, 𝑇 ]× 𝐸;ℝ𝑙).

Now we define the operator 𝐴 : 𝐹 𝑙 → 𝐹 𝑙 by

(𝐴𝑢)𝑖(𝑡, 𝑥) = 𝑃𝑇−𝑡𝜙
𝑖(𝑥) +

∫ 𝑇

𝑡

𝑃𝑠−𝑡𝑓
𝑖(𝑠, ⋅, 𝑢𝑠, 𝐷𝐴1/2𝑢𝑠)(𝑥)𝑑𝑠, 𝑖 = 1, ..., 𝑙.

Then Proposition 3.1.7 implies that 𝐴𝑢 ∈ 𝐹 𝑙. In the following we write 𝑓 𝑖
𝑢,𝑠 :=

𝑓 𝑖(𝑠, ⋅, 𝑢𝑠, 𝐷𝐴1/2𝑢𝑠). Since (𝐴𝑢)
𝑖
𝑡 − (𝐴𝑣)𝑖𝑡 =

∫ 𝑇

𝑡
𝑃𝑠−𝑡(𝑓

𝑖
𝑢,𝑠 − 𝑓 𝑖

𝑣,𝑠)𝑑𝑠 is the mild solution

with data (𝑓 𝑖
𝑢 − 𝑓 𝑖

𝑣, 0), by the same argument as the proof of Proposition 3.1.7 we

have

∥
∫ 𝑇

𝑡

𝑃𝑠−𝑡(𝑓
𝑖
𝑢,𝑠 − 𝑓 𝑖

𝑣,𝑠)𝑑𝑠∥2[𝑡,𝑇 ] ≤𝑀𝑇 (

∫ 𝑇

𝑡

∥𝑓𝑢,𝑠 − 𝑓𝑣,𝑠∥2𝑑𝑠)2

≤𝑀𝑇 (𝑇 − 𝑡)

∫ 𝑇

𝑡

∥𝑓𝑢,𝑠 − 𝑓𝑣,𝑠∥22𝑑𝑠

≤𝑀𝑇 (𝑇 − 𝑡)

∫ 𝑇

𝑡

(∥𝑢𝑠 − 𝑣𝑠∥22 + ∥∣𝐷𝐴1/2𝑢𝑠 −𝐷𝐴1/2𝑣𝑠∣𝐻∥22)𝑑𝑠

≤𝑀𝑇 (𝑇 − 𝑡)∥𝑢− 𝑣∥2[𝑡,𝑇 ],

where 𝑀𝑇 may change from line to line. Here

∥𝑢∥[𝑇𝑎,𝑇𝑏] := ( sup
𝑡∈[𝑇𝑎,𝑇𝑏]

∥𝑢𝑡∥22 +
∫ 𝑇𝑏

𝑇𝑎

ℰ𝐴(𝑢𝑡)𝑑𝑡)
1
2 ,

where 0 ≤ 𝑇𝑎 ≤ 𝑇𝑏 ≤ 𝑇 . Fix 𝑇1 sufficiently small such that 𝛾 := 𝑀𝑇 (𝑇 − 𝑇1) < 1.

Then we have :

∥𝐴𝑢− 𝐴𝑣∥2[𝑇1,𝑇 ] < 𝛾∥𝑢− 𝑣∥2[𝑇1,𝑇 ].

Then there exists a unique 𝑢1 ∈ 𝐹[𝑇1,𝑇 ] such that 𝐴𝑢1 = 𝑢1 where 𝐹[𝑇𝑎,𝑇𝑏] :=

𝐶([𝑇𝑎, 𝑇𝑏];𝐿
2) ∩ 𝐿2((𝑇𝑎, 𝑇𝑏);𝐹 ) for 𝑇𝑎 ∈ [0, 𝑇 ] and 𝑇𝑏 ∈ [𝑇𝑎, 𝑇 ].
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By the same method as above, we define the operator 𝐴1 : 𝐹 𝑙 → 𝐹 𝑙 by

(𝐴1𝑢)𝑖(𝑡, 𝑥) = 𝑃𝑇1−𝑡𝑢
𝑖
1(𝑇1, 𝑥) +

∫ 𝑇1

𝑡

𝑃𝑠−𝑡𝑓
𝑖(𝑠, ⋅, 𝑢𝑠, 𝐷𝐴1/2𝑢𝑠)(𝑥)𝑑𝑠, 𝑖 = 1, ..., 𝑙.

Then we have

∥𝐴1𝑢− 𝐴1𝑣∥2[𝑡,𝑇1]
≤𝑀𝑇 (𝑇1 − 𝑡)∥𝑢− 𝑣∥2[𝑡,𝑇1]

.

Now we choose 𝑇2 < 𝑇1 such that 𝑀𝑇 (𝑇1 − 𝑇2) < 1. Then we have that there exists

a unique 𝑢2 ∈ 𝐹[𝑇2,𝑇1] such that 𝐴1𝑢2 = 𝑢2. Define 𝑢 := 𝑢11[𝑇1,𝑇 ] + 𝑢21[𝑇2,𝑇1). By

a similar argument as in the proof of Proposition 2.2.4, 𝑢 is a solution on [𝑇2, 𝑇 ].

Therefore, we construct a solution over the interval [𝑇2, 𝑇 ]. Clearly there exists

𝑛 ∈ ℕ such that 𝑇 < 𝑛(𝑇 − 𝑇1). Hence, the construction is done after 𝑛 steps.

In order to obtain the estimate in the statement, we write

∣
∫ 𝑇

𝑡

(𝑓𝑢,𝑠, 𝑢𝑠)𝑑𝑠∣

≤
∫ 𝑇

𝑡

∣(𝑓 0
𝑠 , 𝑢𝑠)∣𝑑𝑠+ 𝐶

∫ 𝑇

𝑡

∥𝑢𝑠∥22𝑑𝑠+ 𝐶

∫ 𝑇

𝑡

∥∣𝐷𝐴1/2𝑢𝑠∣𝐻∥2∥𝑢𝑠∥2𝑑𝑠

≤1

2

∫ 𝑇

𝑡

∥𝑓0
𝑠 ∥22𝑑𝑠+ (

1

2
+ 𝐶 +

1

2
𝐶2)

∫ 𝑇

𝑡

∥𝑢𝑠∥22𝑑𝑠+
1

2

∫ 𝑇

𝑡

ℰ𝐴(𝑢𝑠)𝑑𝑠.

By relation (3.1.5) of Proposition 3.1.7 it follows that

∥𝑢𝑡∥22 + 2

∫ 𝑇

𝑡

ℰ𝐴(𝑢𝑠)𝑑𝑠 ≤ 2

∫ 𝑇

𝑡

(𝑓𝑢,𝑠, 𝑢𝑠)𝑑𝑠+ ∥𝜙∥22 + 2𝛼

∫ 𝑇

𝑡

∥𝑢𝑠∥22𝑑𝑠

≤ ∥𝜙∥22 +
∫ 𝑇

𝑡

∥𝑓 0
𝑠 ∥22𝑑𝑠+ (1 + 2𝐶 + 𝐶2 + 2𝛼)

∫ 𝑇

𝑡

∥𝑢𝑠∥22𝑑𝑠+
∫ 𝑇

𝑡

ℰ𝐴(𝑢𝑠)𝑑𝑠.

Now by Gronwall’s lemma the desired estimate follows.

[Uniqueness] Let 𝑢1 and 𝑢2 be two solutions of equation (3.2.1). By using (3.1.5)

for the difference 𝑢1 − 𝑢2 we get

∥𝑢1,𝑡 − 𝑢2,𝑡∥22 + 2

∫ 𝑇

𝑡

ℰ𝐴(𝑢1,𝑠 − 𝑢2,𝑠)𝑑𝑠

≤2

∫ 𝑇

𝑡

(𝑓(𝑠, ⋅, 𝑢1,𝑠, 𝐷𝐴1/2𝑢1,𝑠)− 𝑓(𝑠, ⋅, 𝑢2,𝑠, 𝐷𝐴1/2𝑢2,𝑠), 𝑢1,𝑠 − 𝑢2,𝑠)𝑑𝑠+ 2𝛼

∫ 𝑇

𝑡

∥𝑢1,𝑠 − 𝑢2,𝑠∥22𝑑𝑠

≤2

∫ 𝑇

𝑡

𝐶(∣𝐷𝐴1/2𝑢1,𝑠 −𝐷𝐴1/2𝑢2,𝑠∣, ∣𝑢1,𝑠 − 𝑢2,𝑠∣)𝑑𝑠+ (2𝛼+ 𝐶)

∫ 𝑇

𝑡

∥𝑢1,𝑠 − 𝑢2,𝑠∥22𝑑𝑠

≤(2𝛼+ 𝐶2 + 𝐶)

∫ 𝑇

𝑡

∥𝑢1,𝑠 − 𝑢2,𝑠∥22𝑑𝑠+
∫ 𝑇

𝑡

ℰ𝐴(𝑢1,𝑠 − 𝑢2,𝑠)𝑑𝑠.
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By Gronwall’s lemma it follows that

∥𝑢1,𝑡 − 𝑢2,𝑡∥22 = 0,

hence 𝑢1 = 𝑢2. □

3.2.2 The Case of Monotonicity Conditions

Let 𝑓 : [0, 𝑇 ]×𝐸 ×ℝ𝑙 ×𝐻 𝑙 → ℝ𝑙 be a measurable function and 𝜙 ∈ 𝐿2(𝐸, 𝜇;ℝ𝑙) be

the final condition of (3.2.1). In this subsection we impose the following conditions:

(H1) [Lipschitz condition in 𝑧] There exists a fixed constant 𝐶 > 0 such that for

𝑡, 𝑥, 𝑦, 𝑧, 𝑧′ arbitrary

∣𝑓(𝑡, 𝑥, 𝑦, 𝑧)− 𝑓(𝑡, 𝑥, 𝑦, 𝑧′)∣ ≤ 𝐶∣𝑧 − 𝑧′∣𝐻 .

(H2) [Monotonicity condition in 𝑦] For 𝑥, 𝑦, 𝑦′, 𝑧 arbitrary, there exists a function

𝜇 ∈ 𝐿1([0, 𝑇 ];ℝ) such that

⟨𝑦 − 𝑦′, 𝑓(𝑡, 𝑥, 𝑦, 𝑧)− 𝑓(𝑡, 𝑥, 𝑦′, 𝑧)⟩ ≤ 𝜇𝑡∣𝑦 − 𝑦′∣2.

We set 𝛼𝑡 :=
∫ 𝑡

0
𝜇𝑠𝑑𝑠.

(H3) [Continuity condition in 𝑦] For 𝑡, 𝑥 and 𝑧 fixed, the map

ℝ𝑙 ∋ 𝑦 7→ 𝑓(𝑡, 𝑥, 𝑦, 𝑧)

is continuous.

We need the following notation

𝑓 0(𝑡, 𝑥) := 𝑓(𝑡, 𝑥, 0, 0), 𝑓 ′(𝑡, 𝑥, 𝑦) := 𝑓(𝑡, 𝑥, 𝑦, 0)− 𝑓(𝑡, 𝑥, 0, 0),

𝑓
′,𝑟(𝑡, 𝑥) := sup

∣𝑦∣≤𝑟

∣𝑓 ′(𝑡, 𝑥, 𝑦)∣.

(H4) For each 𝑟 > 0, 𝑓
′,𝑟 ∈ 𝐿1([0, 𝑇 ];𝐿2).

(H5) ∥𝜙∥∞ <∞, ∥𝑓 0∥∞ <∞.

As 𝜇(𝐸) <∞ we have ∣𝜙∣ ∈ 𝐿2, ∣𝑓 0∣ ∈ 𝐿2([0, 𝑇 ];𝐿2). The conditions (H1), (H4),

and (H5) imply that if 𝑢 ∈ 𝐹 is bounded, then ∣𝑓(𝑢,𝐷𝐴1/2𝑢)∣ ∈ 𝐿1([0, 𝑇 ];𝐿2). Under

the above conditions, even if 𝐸 is equal to a Hilbert space, it seems impossible to

apply general monotonicity methods to the map 𝒱 ∋ 𝑢 7→ 𝑓(𝑡, ⋅, 𝑢(⋅), 𝐷𝐴1/2𝑢) ∈ 𝒱 ′
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because of lack of a suitable reflexive Banach space 𝒱 such that 𝒱 ⊂ ℋ ⊂ 𝒱 ′.
Therefore, also here we proceed developing a hands-on approach to prove existence

and uniqueness of solutions for equation (3.2.1) as done in [BPS05], [S09] and in

particular, Chapter 2. Then by the same arguments as the proof of Lemma 2.2.5,

the following lemma follows:

Lemma 3.2.5 In (H2) without loss of generality we assume that 𝜇𝑡 ≡ 0.

Lemma 3.2.6 Suppose that conditions (A1)-(A3), (H1) and the following weaker

form of condition (H2) (with 𝜇𝑡 ≡ 0) hold,

(𝐻2′)⟨𝑦, 𝑓 ′(𝑡, 𝑥, 𝑦)⟩ ≤ 0,

for all 𝑡, 𝑥, 𝑦. If 𝑢 is a solution of (3.2.1), then there exists a constant 𝐾 which

depends on 𝐶, 𝑇, 𝛼 such that

∥𝑢∥2𝑇 ≤ 𝐾(∥𝜙∥22 +
∫ 𝑇

0

∥𝑓 0
𝑡 ∥22𝑑𝑡).

Proof Since 𝑢 is a generalized solution of (3.2.1), we have by Proposition 3.1.7

∥𝑢𝑡∥22 + 2

∫ 𝑇

𝑡

ℰ𝐴(𝑢𝑠)𝑑𝑠 ≤ 2

∫ 𝑇

𝑡

(𝑓𝑠, 𝑢𝑠)𝑑𝑠+ ∥𝑢𝑇∥22 + 2𝛼

∫ 𝑇

𝑡

∥𝑢𝑠∥22𝑑𝑠.

Conditions (H1) and (H2’) yield

⟨𝑓𝑠(𝑢𝑠, 𝐷𝐴1/2𝑢𝑠), 𝑢𝑠⟩ =⟨𝑓𝑠(𝑢𝑠, 𝐷𝐴1/2𝑢𝑠)− 𝑓𝑠(𝑢𝑠, 0) + 𝑓 ′
𝑠(𝑢𝑠) + 𝑓 0

𝑠 , 𝑢𝑠⟩
≤∣𝑓𝑠(𝑢𝑠, 𝐷𝐴1/2𝑢𝑠)− 𝑓𝑠(𝑢𝑠, 0)∣∣𝑢𝑠∣+ ⟨𝑓 ′

𝑠(𝑢𝑠), 𝑢𝑠⟩+ ∣𝑓 0
𝑠 ∣∣𝑢𝑠∣

≤(𝐶∣𝐷𝐴1/2𝑢𝑠∣𝐻 + ∣𝑓 0
𝑠 ∣)∣𝑢𝑠∣.

Hence, it follows that

∥𝑢𝑡∥22 + 2

∫ 𝑇

𝑡

ℰ𝐴(𝑢𝑠)𝑑𝑠

≤2

∫ 𝑇

𝑡

∫
(𝐶∣𝐷𝐴1/2𝑢𝑠∣𝐻 + ∣𝑓 0

𝑠 ∣)∣𝑢𝑠∣𝑑𝜇𝑑𝑠+ ∥𝑢𝑇∥22 + 2𝛼

∫ 𝑇

𝑡

∥𝑢𝑠∥22𝑑𝑠

≤
∫ 𝑇

𝑡

ℰ𝐴(𝑢𝑠)𝑑𝑠+ (𝐶2 + 1 + 2𝛼)

∫ 𝑇

𝑡

∥𝑢𝑠∥22𝑑𝑠+
∫ 𝑇

𝑡

∥𝑓 0
𝑠 ∥22𝑑𝑠+ ∥𝑢𝑇∥22.

.

Then Gronwall’s lemma yields

∥𝑢∥2𝑇 ≤ 𝐾(∥𝜙∥22 +
∫ 𝑇

0

∥𝑓 0
𝑡 ∥22𝑑𝑡).
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□

Lemma 3.2.7 Assume that the conditions (A1)-(A3), (H1) and (H2’) hold. If 𝑢

is a generalized solution of (3.2.1) , then there exists a constant 𝐾, which depends

on 𝐶, 𝛼 and 𝑇 such that

(3.2.4) ∥𝑢∥∞ ≤ 𝐾(∥𝜙∥∞ + ∥𝑓 0∥∞).

Proof By Corollary 3.1.13, we have

(3.2.5)

∣𝑢𝑡∣2 + 2

∫ 𝑇

𝑡

𝑃𝑠−𝑡(∣𝐷𝐴1/2𝑢𝑠∣2𝐻)𝑑𝑠 = 𝑃𝑇−𝑡∣𝜙∣2 + 2

∫ 𝑇

𝑡

𝑃𝑠−𝑡⟨𝑢𝑠, 𝑓𝑠(𝑢𝑠, 𝐷𝐴1/2𝑢𝑠)⟩𝑑𝑠.

Follow the same arguments as the proof of Lemma 3.2.6 we deduce

⟨𝑓𝑠(𝑢𝑠, 𝐷𝐴1/2𝑢𝑠), 𝑢𝑠⟩ ≤ (𝐶∣𝐷𝐴1/2𝑢𝑠∣𝐻 + ∣𝑓0
𝑠 ∣)∣𝑢𝑠∣.

By Corollary 3.1.13 (3.1.20) we get

∣𝑢𝑠∣ ≤ 𝑃𝑇−𝑠∣𝜙∣+
∫ 𝑇

𝑠

𝑃𝑟−𝑠(𝐶∣𝐷𝐴1/2𝑢𝑟∣𝐻 + ∣𝑓 0
𝑟 ∣)𝑑𝑟.

Then we have∫ 𝑇

𝑡

𝑃𝑠−𝑡⟨𝑓𝑠(𝑢𝑠, 𝐷𝐴1/2𝑢𝑠), 𝑢𝑠⟩𝑑𝑠

≤
∫ 𝑇

𝑡

𝑃𝑠−𝑡[(𝑃𝑇−𝑠∣𝜙∣+
∫ 𝑇

𝑠

𝑃𝑟−𝑠(𝐶∣𝐷𝐴1/2𝑢𝑟∣𝐻 + ∣𝑓 0
𝑟 ∣)𝑑𝑟)(𝐶∣𝐷𝐴1/2𝑢𝑠∣𝐻 + ∣𝑓0

𝑠 ∣)]𝑑𝑠.

So by (3.2.5) and Lemma 3.1.14 we have

∣𝑢𝑡∣2 + 2

∫ 𝑇

𝑡

𝑃𝑠−𝑡(∣𝐷𝐴1/2𝑢𝑠∣2)𝑑𝑠

≤𝑃𝑇−𝑡∣𝜙∣2 + 2(

∫ 𝑇

𝑡

𝑃𝑠−𝑡[(𝑃𝑇−𝑠∣𝜙∣+
∫ 𝑇

𝑠

𝑃𝑟−𝑠(𝐶∣𝐷𝐴1/2𝑢𝑟∣+ ∣𝑓 0
𝑟 ∣)𝑑𝑟)(𝐶∣𝐷𝐴1/2𝑢𝑠∣+ ∣𝑓 0

𝑠 ∣)]𝑑𝑠)

≤3𝑃𝑇−𝑡∣𝜙∣2 + 2𝐶2

∫ 𝑇

𝑡

∫ 𝑇

𝑠

𝑃𝑠−𝑡(∣𝐷𝐴1/2𝑢𝑠∣𝑃𝑟−𝑠∣𝐷𝐴1/2𝑢𝑟∣)𝑑𝑟𝑑𝑠+ 2

∫ 𝑇

𝑡

∫ 𝑇

𝑠

𝑃𝑠−𝑡(∣𝑓 0
𝑠 ∣𝑃𝑟−𝑠∣𝑓 0

𝑟 ∣)𝑑𝑟𝑑𝑠

+ 2

∫ 𝑇

𝑡

∫ 𝑇

𝑠

𝑃𝑠−𝑡[𝑃𝑟−𝑠(𝐶∣𝐷𝐴1/2𝑢𝑟∣+ ∣𝑓 0
𝑟 ∣)(𝐶∣𝐷𝐴1/2𝑢𝑠∣+ ∣𝑓 0

𝑠 ∣)]𝑑𝑟𝑑𝑠.
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Furthermore,∫ 𝑇

𝑡

∫ 𝑇

𝑠

𝑃𝑠−𝑡[𝑃𝑟−𝑠(𝐶∣𝐷𝐴1/2𝑢𝑟∣+ ∣𝑓0
𝑟 ∣)(𝐶∣𝐷𝐴1/2𝑢𝑠∣+ ∣𝑓0

𝑠 ∣)]𝑑𝑟𝑑𝑠

≤1

2

∫ 𝑇

𝑡

∫ 𝑇

𝑠

[𝑃𝑠−𝑡(𝐶∣𝐷𝐴1/2𝑢𝑠∣+ ∣𝑓0
𝑠 ∣)2] + 𝑃𝑠−𝑡[(𝑃𝑟−𝑠(𝐶∣𝐷𝐴1/2𝑢𝑟∣+ ∣𝑓0

𝑟 ∣))2]𝑑𝑟𝑑𝑠

≤
∫ 𝑇

𝑡

∫ 𝑇

𝑠

𝐶2𝑃𝑠−𝑡∣𝐷𝐴1/2𝑢𝑠∣2 + 𝑃𝑠−𝑡∣𝑓 0
𝑠 ∣2 +

1

2
𝑃𝑟−𝑡(𝐶∣𝐷𝐴1/2𝑢𝑟∣+ ∣𝑓 0

𝑟 ∣)2𝑑𝑟𝑑𝑠

≤2𝐶2(𝑇 − 𝑡)

∫ 𝑇

𝑡

𝑃𝑠−𝑡∣𝐷𝐴1/2𝑢𝑠∣2𝑑𝑠+ 2(𝑇 − 𝑡)

∫ 𝑇

𝑡

𝑃𝑠−𝑡∣𝑓 0
𝑠 ∣2𝑑𝑠.

By Schwartz’s inequality one has∫ 𝑇

𝑡

∫ 𝑇

𝑠

𝑃𝑠−𝑡(∣𝐷𝐴1/2𝑢𝑠∣𝐻𝑃𝑟−𝑠∣𝐷𝐴1/2𝑢𝑟∣𝐻)𝑑𝑟𝑑𝑠

≤
∫ 𝑇

𝑡

∫ 𝑇

𝑠

1

2
(𝑃𝑠−𝑡∣𝐷𝐴1/2𝑢𝑠∣2𝐻)𝑑𝑟𝑑𝑠+

∫ 𝑇

𝑡

∫ 𝑇

𝑠

1

2
(𝑃𝑟−𝑡∣𝐷𝐴1/2𝑢𝑟∣2𝐻)𝑑𝑟𝑑𝑠

≤(𝑇 − 𝑡)

∫ 𝑇

𝑡

𝑃𝑠−𝑡∣𝐷𝐴1/2𝑢𝑠∣2𝐻𝑑𝑠.

Hence we conclude

∣𝑢𝑡∣2 + 2

∫ 𝑇

𝑡

𝑃𝑠−𝑡(∣𝐷𝐴1/2𝑢𝑠∣2𝐻)𝑑𝑠

≤2𝑃𝑇−𝑡∣𝜙∣2 + 6𝐶2(𝑇 − 𝑡)

∫ 𝑇

𝑡

𝑃𝑠−𝑡∣𝐷𝐴1/2𝑢𝑠∣2𝐻𝑑𝑠+ 6(𝑇 − 𝑡)

∫ 𝑇

𝑡

∫ 𝑇

𝑠

𝑃𝑠−𝑡(∣𝑓0
𝑠 ∣2)𝑑𝑟𝑑𝑠.

Hence, we deduce by iteration the estimate over the interval [0, 𝑇 ]. We obtain from

the above estimate:

∣𝑢𝑡∣2 ≤ sup
𝑡∈[0,𝑇 ]

sup
𝑥∈𝐸

�̃�(𝑃𝑇−𝑡∣𝜙∣2 + (𝑇 − 𝑡)

∫ 𝑇

𝑡

𝑃𝑠−𝑡∣𝑓 0
𝑠 ∣2𝑑𝑠)

≤ sup
𝑡∈[0,𝑇 ]

�̃�(∥𝜙2∥∞ + 𝑇 2∥𝑓0∥2∞)

≤𝐾2(∥𝜙∥2∞ + ∥𝑓 0∥2∞),

which implies (3.2.4). □

The proof here is different from the finite dimensional case, i.e. the proof of

Theorem 2.2.8, since a unit ball in 𝐻 is not compact. And it is inspired from

the probabilistic approach to prove the existence of the solution of the BSDE of

[BDHPS03].
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Theorem 3.2.8 Suppose the conditions (A1)-(A3), (H1)-(H5) hold. Then there

exists a unique generalized solution of equation (3.2.1), and it satisfies the following

estimates with constants 𝐾1 and 𝐾2 independent of 𝑢, 𝜙, 𝑓

∥𝑢∥2𝑇 ≤ 𝐾1(∥𝜙∥22 +
∫ 𝑇

0

∥𝑓0
𝑡 ∥22𝑑𝑡),

and

∥𝑢∥∞ ≤ 𝐾2(∥𝜙∥∞ + ∥𝑓0∥∞).

Proof [Uniqueness] Let 𝑢1 and 𝑢2 be two solutions of equation (3.2.1). By using

(3.1.5) for the difference 𝑢1 − 𝑢2 we get

∥𝑢1,𝑡 − 𝑢2,𝑡∥22 + 2

∫ 𝑇

𝑡

ℰ𝐴(𝑢1,𝑠 − 𝑢2,𝑠)𝑑𝑠

≤2

∫ 𝑇

𝑡

(𝑓(𝑠, ⋅, 𝑢1,𝑠, 𝐷𝐴1/2𝑢1,𝑠)− 𝑓(𝑠, ⋅, 𝑢2,𝑠, 𝐷𝐴1/2𝑢2,𝑠), 𝑢1,𝑠 − 𝑢2,𝑠)𝑑𝑠+ 2𝛼

∫ 𝑇

𝑡

∥𝑢1,𝑠 − 𝑢2,𝑠∥22𝑑𝑠

≤2

∫ 𝑇

𝑡

𝐶(∣𝐷𝐴1/2𝑢1,𝑠 −𝐷𝐴1/2𝑢2,𝑠∣𝐻 , ∣𝑢1,𝑠 − 𝑢2,𝑠∣)𝑑𝑠+ 2𝛼

∫ 𝑇

𝑡

∥𝑢1,𝑠 − 𝑢2,𝑠∥22𝑑𝑠

≤(𝐶2 + 2𝛼)

∫ 𝑇

𝑡

∥𝑢1,𝑠 − 𝑢2,𝑠∥22𝑑𝑠+
∫ 𝑇

𝑡

ℰ𝐴(𝑢1,𝑠 − 𝑢2,𝑠)𝑑𝑠.

By Gronwall’s lemma it follows that

∥𝑢1,𝑡 − 𝑢2,𝑡∥22 = 0,

hence 𝑢1 = 𝑢2.

[Existence] The existence will be proved in two steps.

Step 1. Suppose 𝑓 is bounded. We define

𝑀 := sup ∣𝑓(𝑡, 𝑥, 𝑦, 𝑧)∣.

We need the following proposition.

Proposition 3.2.9 If 𝑓 satisfies the condition in Step 1, then for 𝑣 ∈ 𝐹 𝑙, there

exists a unique generalized solution 𝑢 ∈ 𝐹 𝑙 for the equation

(∂𝑡 + 𝐿)𝑢+ 𝑓(⋅, ⋅, 𝑢,𝐷𝐴1/2𝑣) = 0, 𝑢𝑇 = 𝜙.

Following the same arguments as in Lemma 3.2.5, we assume that 2𝐶2+2𝛼+𝜇𝑡 ≤
0.

For each 𝑣 ∈ 𝐹 𝑙, we define 𝐴𝑣 = 𝑢 where 𝑢 is the unique generalized solution
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obtained by Proposition 3.2.9. Let 𝑣1, 𝑣2 ∈ 𝐹 𝑙. By applying (3.1.5) to the difference

𝑢1 − 𝑢2 we obtain

∥𝑢1,𝑡 − 𝑢2,𝑡∥22 + 2

∫ 𝑇

𝑡

ℰ𝐴(𝑢1,𝑠 − 𝑢2,𝑠)𝑑𝑠

≤2

∫ 𝑇

𝑡

(𝑓(𝑠, ⋅, 𝑢1,𝑠, 𝐷𝐴1/2𝑣1,𝑠)− 𝑓(𝑠, ⋅, 𝑢2,𝑠, 𝐷𝐴1/2𝑣2,𝑠), 𝑢1,𝑠 − 𝑢2,𝑠)𝑑𝑠+ 2𝛼

∫ 𝑇

𝑡

∥𝑢1,𝑠 − 𝑢2,𝑠∥22𝑑𝑠

≤2

∫ 𝑇

𝑡

𝐶(∣𝐷𝐴1/2𝑣1,𝑠 −𝐷𝐴1/2𝑣2,𝑠∣𝐻 , ∣𝑢1,𝑠 − 𝑢2,𝑠∣)𝑑𝑠+
∫ 𝑇

𝑡

(2𝛼+ 𝜇𝑠)∥𝑢1,𝑠 − 𝑢2,𝑠∥22𝑑𝑠

≤
∫ 𝑇

𝑡

(2𝐶2 + 2𝛼+ 𝜇𝑠)∥𝑢1,𝑠 − 𝑢2,𝑠∥22𝑑𝑠+
1

2

∫ 𝑇

𝑡

ℰ𝐴(𝑣1,𝑠 − 𝑣2,𝑠)𝑑𝑠

≤1

2

∫ 𝑇

𝑡

ℰ𝐴(𝑣1,𝑠 − 𝑣2,𝑠)𝑑𝑠.

Consequently we have ∥𝐴𝑣1 −𝐴𝑣2∥𝑇 ≤ 1
2
∥𝑣1 − 𝑣2∥𝑇 . Then the fixed point 𝑢 of 𝐴 is

the solution for (3.2.1).

Proof of Proposition 3.2.9 We write 𝑓(𝑡, 𝑥, 𝑦) = 𝑓(𝑡, 𝑥, 𝑦,𝐷𝐴1/2𝑣) and uniqueness

follows as above. Now we prove the existence of the solution.

We regularize 𝑓 with respect to the variable 𝑦 by convolution:

𝑓𝑛(𝑡, 𝑥, 𝑦, 𝑧) = 𝑛𝑙

∫
ℝ𝑙

𝑓(𝑡, 𝑥, 𝑦′)𝜑(𝑛(𝑦 − 𝑦′))𝑑𝑦′

where 𝜑 is a smooth nonnegative function with support contained in the ball {∣𝑦∣ ≤
1} such that

∫
𝜑 = 1. Then 𝑓 = lim𝑛→∞ 𝑓𝑛 and for each 𝑛, ∂𝑦𝑖𝑓𝑛 are uniformly

bounded. Then each 𝑓𝑛 satisfies a Lipschitz condition with respect to both 𝑦 and

𝑧. Thus by Proposition 3.2.4 each 𝑓𝑛 determines a solution 𝑢𝑛 ∈ 𝐹 𝑙 of (3.2.1) with

data (𝜙, 𝑓𝑛). By the same arguments as in [S09, Theorem 4.19], we have that each

𝑓𝑛 satisfies conditions (H1) and (H2’) with 𝐶 = 0 and 𝜇 = 0. Since

∣𝑓𝑛(𝑡, 𝑥, 0, 0)∣ ≤𝑛𝑙

∫
∣𝑦′∣≤ 1

𝑛

∣𝑓(𝑡, 𝑥, 𝑦′)∣∣𝜑(𝑛(−𝑦′))∣𝑑𝑦′

≤𝑀,

one deduces from Lemma 3.2.7 that ∥𝑢𝑛∥∞ ≤ 𝐾 and ∥𝑢𝑛∥𝑇 ≤ 𝐾𝑇 .

Since the convolution operators approximate the identity uniformly on compact

sets, we get for fixed 𝑡, 𝑥,

lim
𝑛→∞

𝑑′𝑛,𝐾(𝑡, 𝑥) := sup
∣𝑦∣≤𝐾

∣𝑓(𝑡, 𝑥, 𝑦)− 𝑓𝑛(𝑡, 𝑥, 𝑦)∣ = 0.
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Next we will show that (𝑢𝑛)𝑛∈ℕ is a ∥ ⋅ ∥𝑇 -Cauchy sequence. By (3.1.5) for the

difference 𝑢𝑙 − 𝑢𝑛, we have

∥𝑢𝑙,𝑡 − 𝑢𝑛,𝑡∥22 + 2

∫ 𝑇

𝑡

ℰ𝐴(𝑢𝑙,𝑠 − 𝑢𝑛,𝑠)𝑑𝑠

≤2

∫ 𝑇

𝑡

(𝑓𝑙(𝑠, ⋅, 𝑢𝑙,𝑠)− 𝑓𝑛(𝑠, ⋅, 𝑢𝑛,𝑠), 𝑢𝑙,𝑠 − 𝑢𝑛,𝑠)𝑑𝑠+ 2𝛼

∫ 𝑇

𝑡

∥𝑢𝑙,𝑠 − 𝑢𝑛,𝑠∥22𝑑𝑠

≤2

∫ 𝑇

𝑡

(∣𝑓𝑙(𝑠, ⋅, 𝑢𝑙,𝑠)− 𝑓(𝑠, ⋅, 𝑢𝑙,𝑠)∣, ∣𝑢𝑙,𝑠 − 𝑢𝑛,𝑠∣)𝑑𝑠

+ 2

∫ 𝑇

𝑡

(∣𝑓𝑛(𝑠, ⋅, 𝑢𝑛,𝑠)− 𝑓(𝑠, ⋅, 𝑢𝑛,𝑠)∣, ∣𝑢𝑙,𝑠 − 𝑢𝑛,𝑠∣)𝑑𝑠

+ 2

∫ 𝑇

𝑡

(𝑓(𝑠, ⋅, 𝑢𝑙,𝑠)− 𝑓(𝑠, ⋅, 𝑢𝑛,𝑠), 𝑢𝑙,𝑠 − 𝑢𝑛,𝑠)𝑑𝑠+ 2𝛼

∫ 𝑇

𝑡

∥𝑢𝑙,𝑠 − 𝑢𝑛,𝑠∥22𝑑𝑠

≤2

∫ 𝑇

𝑡

(𝑑′𝑙,𝐾(𝑠, ⋅) + 𝑑′𝑛,𝐾(𝑠, ⋅), ∣𝑢𝑙,𝑠 − 𝑢𝑛,𝑠∣)𝑑𝑠+ 2𝛼

∫ 𝑇

𝑡

∥𝑢𝑙,𝑠 − 𝑢𝑛,𝑠∥22𝑑𝑠

≤
∫ 𝑇

𝑡

∥𝑑′𝑙,𝐾(𝑠, ⋅)∥22𝑑𝑠+
∫ 𝑇

𝑡

∥𝑑′𝑛,𝐾(𝑠, ⋅)∥22𝑑𝑠+ (2 + 2𝛼)

∫ 𝑇

𝑡

∥𝑢𝑙,𝑠 − 𝑢𝑛,𝑠∥22𝑑𝑠,

and that lim𝑛→∞
∫ 𝑇

𝑡
∥𝑑′𝑛,𝑟(𝑠, ⋅)∥22𝑑𝑠 = 0. Thus, for 𝑙, 𝑛 large enough, we get for an

arbitrary 𝜀 > 0

∥𝑢𝑙,𝑡 − 𝑢𝑛,𝑡∥22 +
∫ 𝑇

𝑡

ℰ𝐴(𝑢𝑙,𝑠 − 𝑢𝑛,𝑠)𝑑𝑠 ≤ 𝜀+ �̃�

∫ 𝑇

𝑡

∥𝑢𝑙,𝑡 − 𝑢𝑛,𝑡∥22𝑑𝑠,

where �̃� depends on 𝐶,𝑀, 𝜇, 𝛼. It is easy to see that Gronwall’s lemma then

implies that (𝑢𝑛)𝑛∈ℕ is a Cauchy-sequence in 𝐹 . Define 𝑢 := lim𝑛→∞ 𝑢𝑛 and take a

subsequence (𝑛𝑘)𝑘∈ℕ such that 𝑢𝑛𝑘
→ 𝑢 a.e. We have

𝑓(⋅, ⋅, 𝑢𝑛𝑘
) → 𝑓(⋅, ⋅, 𝑢) in 𝐿2(𝑑𝑡× 𝑑𝜇).

Since ∥𝑢𝑛𝑘
− 𝑢∥𝑇 → 0, we obtain

∥∣𝐷𝐴1/2𝑢−𝐷𝐴1/2𝑢𝑛𝑘
∣𝐻∥𝐿2(𝑑𝑡×𝑑𝜇) → 0.

We conclude that

lim
𝑘→∞

∥𝑓𝑛𝑘
(𝑢𝑛𝑘

)− 𝑓(𝑢)∥𝐿2(𝑑𝑡×𝑑𝜇)

≤ lim
𝑘→∞

∥𝑓𝑛𝑘
(𝑢𝑛𝑘

)− 𝑓(𝑢𝑛𝑘
)∥𝐿2(𝑑𝑡×𝑑𝜇) + lim

𝑘→∞
∥𝑓(𝑢𝑛𝑘

)− 𝑓(𝑢)∥𝐿2(𝑑𝑡×𝑑𝜇)

≤ lim
𝑘→∞

∥𝑑′𝑛𝑘,𝑟
∥𝐿2(𝑑𝑡×𝑑𝜇) + lim

𝑘→∞
∥𝑓(𝑢𝑛𝑘

)− 𝑓(𝑢)∥𝐿2(𝑑𝑡×𝑑𝜇)

=0.
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By passing to the limit in the mild equation associated to 𝑢𝑛𝑘
with data (𝜙, 𝑓𝑛𝑘

), it

follows that 𝑢 is the solution associated to (𝜙, 𝑓(𝑢,𝐷𝐴1/2𝑣)). □

Step 2. Now we consider the general case. Let 𝑟 be a positive real number such

that

𝑟 ≥ 1 +𝐾(∥𝜙∥∞ + ∥𝑓 0∥∞),

where 𝐾 is the constant appearing in Lemma 3.2.7 (3.2.4). Let 𝜃𝑟 be a smooth

function such that 0 ≤ 𝜃𝑟 ≤ 1, 𝜃𝑟(𝑦) = 1 for ∣𝑦∣ ≤ 𝑟 and 𝜃𝑟(𝑦) = 0 if ∣𝑦∣ ≥ 𝑟+1. For

each 𝑛 ∈ ℕ, we set 𝑞𝑛(𝑧) := 𝑧 𝑛
∣𝑧∣𝐻∨𝑛 and

ℎ𝑛(𝑡, 𝑥, 𝑦, 𝑧) := 𝜃𝑟(𝑦)(𝑓(𝑡, 𝑥, 𝑦, 𝑞𝑛(𝑧))− 𝑓 0
𝑡 )

𝑛

𝑓 ′,𝑟+1 ∨ 𝑛 + 𝑓 0
𝑡 .

We have

∣ℎ𝑛(𝑡, 𝑥, 𝑦, 𝑧)∣ ≤ ∣𝑓(𝑡, 𝑥, 𝑦, 𝑞𝑛(𝑧))− 𝑓(𝑡, 𝑥, 𝑦, 0) + 𝑓(𝑡, 𝑥, 𝑦, 0)− 𝑓0
𝑡 ∣1{∣𝑦∣≤𝑟+1}

𝑛

𝑓 ′,𝑟+1 ∨ 𝑛 + 𝑓0
𝑡

≤ 𝐶∣𝑞𝑛(𝑧)∣𝐻 +
𝑛𝑓

′,𝑟+1

𝑓 ′,𝑟+1 ∨ 𝑛 + 𝑓 0
𝑡

≤ (1 + 𝐶)𝑛+ 𝑓 0
𝑡 .

We easily show that ℎ𝑛 satisfies (H1) and (H3). So, we only need to prove (H2).

For 𝑦, 𝑦′ ∈ ℝ𝑙, if ∣𝑦∣ > 𝑟+1, ∣𝑦′∣ > 𝑟+1, the inequality is trivially satisfied and thus

we concentrate on the case ∣𝑦′∣ ≤ 𝑟 + 1. We have

⟨𝑦 − 𝑦′, ℎ𝑛(𝑡, 𝑥, 𝑦, 𝑧)− ℎ𝑛(𝑡, 𝑥, 𝑦
′, 𝑧)⟩

=𝜃𝑟(𝑦)
𝑛

𝑓 ′,𝑟+1 ∨ 𝑛⟨𝑦 − 𝑦′, 𝑓(𝑡, 𝑥, 𝑦, 𝑞𝑛(𝑧))− 𝑓(𝑡, 𝑥, 𝑦′, 𝑞𝑛(𝑧))⟩

+
𝑛

𝑓 ′,𝑟+1 ∨ 𝑛(𝜃𝑟(𝑦)− 𝜃𝑟(𝑦
′))⟨𝑦 − 𝑦′, 𝑓(𝑡, 𝑥, 𝑦′, 𝑞𝑛(𝑧))− 𝑓0

𝑡 ⟩.

The first term of the right hand side of the previous equality is negative. For the

second term, since 𝜃𝑟 is 𝐶(𝑟)-Lipschitz, we obtain

(𝜃𝑟(𝑦)− 𝜃𝑟(𝑦
′))⟨𝑦 − 𝑦′, 𝑓(𝑡, 𝑥, 𝑦′, 𝑞𝑛(𝑧))− 𝑓 0

𝑡 ⟩ ≤𝐶(𝑟)∣𝑦 − 𝑦′∣2∣𝑓(𝑡, 𝑥, 𝑦′, 𝑞𝑛(𝑧))− 𝑓 0
𝑡 ∣

≤𝐶(𝑟)(𝐶𝑛+ 𝑓 ′
𝑟+1(𝑡))∣𝑦 − 𝑦′∣2,

and thus

𝑛

𝑓 ′,𝑟+1 ∨ 𝑛(𝜃𝑟(𝑦)− 𝜃𝑟(𝑦
′))⟨𝑦 − 𝑦′, 𝑓(𝑡, 𝑥, 𝑦′, 𝑞𝑛(𝑧))− 𝑓 0

𝑡 ⟩ ≤ 𝐶(𝑟)(𝐶 + 1)𝑛∣𝑦 − 𝑦′∣2.

Then each ℎ𝑛 satisfies the assumptions in Step 1, and denote 𝑢𝑛 is the generalized
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solution of (3.2.1) with data (ℎ𝑛, 𝜙). We have

⟨𝑦, ℎ′𝑛(𝑡, 𝑥, 𝑦)⟩ = ⟨𝑦, ℎ𝑛(𝑡, 𝑥, 𝑦, 0)−ℎ𝑛(𝑡, 𝑥, 0, 0)⟩ = ⟨𝑦, 𝑓(𝑡, 𝑥, 𝑦, 0)−𝑓 0
𝑡 ⟩

𝑛𝜃𝑟(𝑦)

𝑓 ′,𝑟+1 ∨ 𝑛 ≤ 0.

Hence, Lemma 3.2.7 implies that ∥𝑢𝑛∥∞ ≤ 𝑟 − 1, ∥𝑢𝑛∥𝑇 ≤ 𝐾𝑇 . So, 𝑢𝑛 is a solution

with data (𝑓𝑛, 𝜙), where 𝑓𝑛(𝑡, 𝑥, 𝑦, 𝑧) = (𝑓(𝑡, 𝑥, 𝑦, 𝑞𝑛(𝑧))− 𝑓 0
𝑡 )

𝑛
𝑓 ′,𝑟+1∨𝑛 + 𝑓 0

𝑡 . For this

function (H2) is satisfied with 𝜇𝑡 = 0. Conditions (H1) and (H2) yield

∣(𝑓𝑙(𝑢𝑙, 𝐷𝐴1/2𝑢𝑙)− 𝑓𝑛(𝑢𝑛, 𝐷𝐴1/2𝑢𝑛), 𝑢𝑙 − 𝑢𝑛)∣
≤𝐶(∣𝐷𝐴1/2𝑢𝑙 −𝐷𝐴1/2𝑢𝑛∣𝐻 , ∣𝑢𝑙 − 𝑢𝑛∣) + ∣(𝑓𝑙(𝑢𝑛, 𝐷𝐴1/2𝑢𝑛)− 𝑓𝑛(𝑢𝑛, 𝐷𝐴1/2𝑢𝑛), 𝑢𝑙 − 𝑢𝑛)∣.

For 𝑛 ≤ 𝑙, we have

∣𝑓𝑙(𝑢𝑛, 𝐷𝐴1/2𝑢𝑛)− 𝑓𝑛(𝑢𝑛, 𝐷𝐴1/2𝑢𝑛)∣ ≤2𝐶∣𝐷𝐴1/2𝑢𝑛∣𝐻1{∣𝐷
𝐴1/2𝑢𝑛∣𝐻≥𝑛}

+ 2𝐶∣𝐷𝐴1/2𝑢𝑛∣𝐻1{𝑓 ′,𝑟+1>𝑛} + 2𝑓
′,𝑟+11{𝑓 ′,𝑟+1>𝑛}.

Then we have

∥𝑢𝑙,𝑡 − 𝑢𝑛,𝑡∥22 + 2

∫ 𝑇

𝑡

ℰ𝐴(𝑢𝑙,𝑠 − 𝑢𝑛,𝑠)𝑑𝑠

≤2

∫ 𝑇

𝑡

(𝑓𝑙(𝑢𝑙,𝑠, 𝐷𝐴1/2𝑢𝑙,𝑠)− 𝑓𝑛(𝑢𝑛,𝑠, 𝐷𝐴1/2𝑢𝑛,𝑠), 𝑢𝑙,𝑠 − 𝑢𝑛,𝑠)𝑑𝑠+ 2𝛼

∫ 𝑇

𝑡

∥𝑢𝑙,𝑠 − 𝑢𝑛,𝑠∥22𝑑𝑠

≤2

∫ 𝑇

𝑡

𝐶(∣𝐷𝐴1/2𝑢𝑙 −𝐷𝐴1/2𝑢𝑛∣𝐻 , ∣𝑢𝑙 − 𝑢𝑛∣)𝑑𝑠+ 2

∫ 𝑇

𝑡

(2𝐶∣𝐷𝐴1/2𝑢𝑛∣𝐻1{∣𝐷
𝐴1/2𝑢𝑛∣𝐻≥𝑛}, ∣𝑢𝑙 − 𝑢𝑛∣)𝑑𝑠

+ 2

∫ 𝑇

𝑡

(2𝐶∣𝐷𝐴1/2𝑢𝑛∣𝐻1{𝑓 ′,𝑟+1>𝑛}, ∣𝑢𝑙 − 𝑢𝑛∣)𝑑𝑠+ 2

∫ 𝑇

𝑡

(2𝑓
′,𝑟+11{𝑓 ′,𝑟+1>𝑛}, ∣𝑢𝑙 − 𝑢𝑛∣)𝑑𝑠

+ 2𝛼

∫ 𝑇

𝑡

∥𝑢𝑙,𝑠 − 𝑢𝑛,𝑠∥22𝑑𝑠

≤(𝐶2 + 2𝛼)

∫ 𝑇

𝑡

∥𝑢𝑙 − 𝑢𝑛∥22𝑑𝑠+
∫ 𝑇

𝑡

ℰ𝐴(𝑢𝑙 − 𝑢𝑛)𝑑𝑠

+ 8𝐶(𝑟 − 1)

∫ 𝑇

𝑡

∫
∣𝐷𝐴1/2𝑢𝑛∣𝐻1{∣𝐷

𝐴1/2𝑢𝑛∣𝐻≥𝑛}𝑑𝜇𝑑𝑠

+ 8𝐶(𝑟 − 1)

∫ 𝑇

𝑡

∣𝐷𝐴1/2𝑢𝑛∣𝐻1{𝑓 ′,𝑟+1>𝑛}𝑑𝜇𝑑𝑠+ 8𝐶(𝑟 − 1)

∫ 𝑇

𝑡

∫
𝑓

′,𝑟+11{𝑓 ′,𝑟+1>𝑛}𝑑𝜇𝑑𝑠.

Since ∥𝑢𝑛∥2𝑇 ≤ 𝐾𝑇 , we have
∫ 𝑇

0
∥∣𝐷𝐴1/2𝑢𝑛∣𝐻∥22𝑑𝑠 ≤ 𝐾𝑇 . Hence,

𝑛2

∫ 𝑇

𝑡

∥1{∣𝐷
𝐴1/2𝑢𝑛∣𝐻≥𝑛}∥22𝑑𝑠 ≤

∫ 𝑇

𝑡

∥∣𝐷𝐴1/2𝑢𝑛1{∣𝐷
𝐴1/2𝑢𝑛∣𝐻≥𝑛}∣𝐻∥22𝑑𝑠 ≤ 𝐾𝑇 .
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As

lim
𝑛→∞

∫ 𝑇

𝑡

∫
{𝑓 ′,𝑟>𝑛}

𝑓
′,𝑟𝑑𝜇𝑑𝑠 = 0,

and∫ 𝑇

𝑡

∫
{𝑓 ′,𝑟>𝑛}

∣𝐷𝐴1/2𝑢𝑛∣𝐻𝑑𝜇𝑑𝑡 ≤ ∥1{𝑓 ′,𝑟>𝑛}∥𝐿2(𝑑𝑡×𝑑𝜇)∥∣𝐷𝐴1/2𝑢𝑛∣𝐻∥𝐿2(𝑑𝑡×𝑑𝜇) → 0,

for 𝑛 big enough we obtain

∥𝑢𝑙,𝑡 − 𝑢𝑛,𝑡∥22 +
∫ 𝑇

𝑡

ℰ𝐴(𝑢𝑙,𝑠 − 𝑢𝑛,𝑠)𝑑𝑠 ≤ (𝐶2 + 2𝛼)

∫ 𝑇

𝑡

∥𝑢𝑙 − 𝑢𝑛∥22𝑑𝑠+ 𝜀.

By Gronwall’s lemma it is easy to see that (𝑢𝑛)𝑛∈ℕ is a Cauchy sequence in 𝐹 𝑙. Hence,

𝑢 := lim𝑛→∞ 𝑢𝑛 is well defined. We find a subsequence such that (𝑢𝑛𝑘
, 𝐷𝐴1/2𝑢𝑛𝑘

) →
(𝑢,𝐷𝐴1/2𝑢) a.e.

𝑓(𝑢𝑛𝑘
, 𝐷𝐴1/2𝑢) → 𝑓(𝑢,𝐷𝐴1/2𝑢),

and conclude that

∣𝑓𝑛𝑘
(𝑢𝑛𝑘

, 𝐷𝐴1/2𝑢𝑛𝑘
)− 𝑓(𝑢,𝐷𝐴1/2𝑢)∣

≤1{𝑓 ′,𝑟≤𝑛𝑘}∣𝑓(𝑢,𝐷𝐴1/2𝑢)− 𝑓(𝑢𝑛𝑘
, 𝑞𝑛𝑘

(𝐷𝐴1/2𝑢𝑛𝑘
))∣

+ 1{𝑓 ′,𝑟>𝑛𝑘}[∣𝑓(𝑢,𝐷𝐴1/2𝑢)− 𝑓 0∣+ ∣𝑓(𝑢,𝐷𝐴1/2𝑢)− 𝑓(𝑢𝑛𝑘
, 𝑞𝑛𝑘

(𝐷𝐴1/2𝑢𝑛𝑘
))∣]

≤∣𝑓(𝑢,𝐷𝐴1/2𝑢)− 𝑓(𝑢𝑛𝑘
, 𝑞𝑛𝑘

(𝐷𝐴1/2𝑢𝑛𝑘
))∣+ 1{𝑓 ′,𝑟>𝑛𝑘}∣𝑓(𝑢,𝐷𝐴1/2𝑢)− 𝑓 0∣

≤∣𝑓(𝑢𝑛𝑘
, 𝐷𝐴1/2𝑢)− 𝑓(𝑢𝑛𝑘

, 𝑞𝑛𝑘
(𝐷𝐴1/2𝑢𝑛𝑘

))∣+ ∣𝑓(𝑢𝑛𝑘
, 𝐷𝐴1/2𝑢)− 𝑓(𝑢,𝐷𝐴1/2𝑢)∣

+ 1{𝑓 ′,𝑟>𝑛𝑘}∣𝑓(𝑢,𝐷𝐴1/2𝑢)− 𝑓0∣
→0 a.e..

Since
∣𝑓𝑛𝑘

(𝑢𝑛𝑘
, 𝐷𝐴1/2𝑢𝑛𝑘

)− 𝑓(𝑢,𝐷𝐴1/2𝑢)∣
≤∣𝑓(𝑢, 0)− 𝑓(𝑢,𝐷𝐴1/2𝑢)∣+ ∣𝑓𝑛𝑘

(𝑢𝑛𝑘
, 𝐷𝐴1/2𝑢𝑛𝑘

)− 𝑓𝑛𝑘
(𝑢𝑛𝑘

, 0)∣
+ ∣𝑓𝑛𝑘

(𝑢𝑛𝑘
, 0)− 𝑓 0∣+ ∣𝑓 0 − 𝑓(𝑢, 0)∣

≤𝐶(∣𝐷𝐴1/2𝑢∣𝐻 + ∣𝐷𝐴1/2𝑢𝑛𝑘
∣𝐻) + 2𝑓

′,𝑟,

we obtain

𝑓𝑛𝑘
(𝑢𝑛𝑘

, 𝐷𝐴1/2𝑢𝑛𝑘
) → 𝑓(𝑢,𝐷𝐴1/2𝑢)

in 𝐿1([0, 𝑇 ], 𝐿2). We conclude that 𝑢 is a generalized solution of (3.2.1) associated

to the data (𝜙, 𝑓).

□
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3.3 Martingale representation for the processes

Some of the basic results on backward equations rely on the following well-known

representation theorem (see, e.g., [FT02]). The Wiener process in a Hilbert space

has the martingale representation property : any martingale with respect to the

filtration generated by the Wiener process can be expressed as an Itô integral against

the Wiener process. Now we extend this martingale representation theorem for the

process associated with the operator 𝐿.

3.3.1 Representation under 𝑃 𝑥

In order to obtain the results for the probabilistic part, we need that ℰ is a quasi-

regular generalized Dirichlet form (Definition 1.3) in the sense of Remark 3.1.1 (iii)

with 𝑐 ≡ 0. There is a Markov process 𝑋 = (Ω,ℱ∞,ℱ𝑡, 𝑋𝑡, 𝑃
𝑥) which is properly

associated in the resolvent sense with ℰ , i.e. 𝑅𝛼𝑓 := 𝐸𝑥
∫∞
0
𝑒−𝛼𝑡𝑓(𝑋𝑡)𝑑𝑡 is ℰ-quasi-

continuous 𝑚-version of the resolvent 𝐺𝛼 of ℰ for 𝛼 > 0 and 𝑓 ∈ ℬ𝑏(𝐸) ∩ 𝐿2(𝐸;𝜇).

The coform ℰ̂ introduced in Section 1.1 is a generalized Dirichlet form with the

associated resolvent (�̂�𝛼)𝛼>0 and there exists an 𝜇-tight special standard process

properly associated in the resolvent sense with ℰ̂ . We always assume that (ℱ𝑡)𝑡≥0 is

the (universally completed) natural filtration of 𝑋𝑡. From now on, we obtain all the

results under the above assumptions.

As mentioned in Remark 3.1.1 (vii), such a process can be constructed by quasi-

regularity ([St2, IV. 1. Definition 1.7]) and a structural condition ([St2, IV. 2. D3]

on the domain ℱ of the generalized Dirichlet form.

We use the spaces ℳ,ℳ̇ which are introduced in Section 1.2.

Define for 𝑘 ∈ 𝐸,

ℰ𝑘(𝑢, 𝑣) :=
∫
∂𝑢

∂𝑘

∂𝑣

∂𝑘
𝑑𝜇, 𝑢, 𝑣 ∈ ℱ𝐶∞

𝑏 .

𝑘 ∈ 𝐸 is called 𝜇-admissible if (ℰ𝑘,ℱ𝐶∞
𝑏 ) is closable on 𝐿2(𝐸;𝜇).

We consider the following conditions:

(A4) There exist constants 𝑐, 𝐶1 > 0 such that 𝑐𝐼𝑑𝐻 ≤ 𝐴(𝑧) ≤ 𝐶1𝐼𝑑𝐻 for all 𝑧 ∈
𝐸. There exists a countable dense subset {𝑒𝑘} of 𝐸 ′, which is an orthonormal basis

of 𝐻, consisting of 𝜇-admissible elements in 𝐸, and 𝑢𝑘(⋅) :=𝐸′ ⟨𝑒𝑘, ⋅⟩𝐸 ∈ ℱ .

(A4’) There exists a countable dense subset {𝑒𝑘} of 𝐸 ′, which is an orthonormal

basis of 𝐻, consisting of 𝜇-admissible elements in 𝐸, and 𝑢𝑘(⋅) =𝐸′ ⟨𝑒𝑘, ⋅⟩𝐸 ∈ ℱ .

Furthermore, 𝐴(𝑧)𝑒𝑘 = 𝜆𝑘(𝑧)𝑒𝑘 for some non-negative Borel measurable functions
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𝜆𝑘.

Remark 3.3.1 Condition (A4) can be replaced by condition (A4’) and all results

below can be proved by the same arguments. For simplicity, we only give the proof

under condition (A4).

By the existence of {𝑒𝑘}, (A1) follows from [MR92, Proposition 3.8]. Set

ℱ𝐶∞
𝑏 ({𝑒𝑘}) := {𝑓(𝐸′⟨𝑒1, ⋅⟩𝐸, ...,𝐸′ ⟨𝑒𝑚, ⋅⟩𝐸)∣𝑚 ∈ ℕ, 𝑓 ∈ 𝐶∞

𝑏 (ℝ𝑚)}.

(A5) The process 𝑋 associated with ℰ above is a continuous conservative Hunt

process in the state space 𝐸 ∪ {∂}, 𝛼�̂�𝛼 is sub-Markovian and strongly continuous

on 𝒱 , and ℰ̂ is quasi-regular. Furthermore, ℱ𝐶∞
𝑏 ({𝑒𝑘}) ⊂ ℱ and for 𝑢 ∈ ℱ , there

exists a sequence {𝑢𝑛} ⊂ ℱ𝐶∞
𝑏 ({𝑒𝑘}) such that ℰ(𝑢𝑛 − 𝑢) → 0, 𝑛→ ∞.

If ℰ satisfies (A2) and (A4), the bilinear form can be written as

ℰ(𝑢, 𝑣) :=
∫

⟨𝐴(𝑧)∇𝑢(𝑧),∇𝑣(𝑧)⟩𝐻𝑑𝜇(𝑧)+
∫

⟨𝐴(𝑧)𝑏(𝑧),∇𝑢(𝑧)⟩𝐻𝑣(𝑧)𝑑𝜇(𝑧), 𝑢 ∈ 𝐹, 𝑣 ∈ 𝑏𝐹.

Again we set 𝐷𝐴1/2𝑢 := 𝐴1/2∇𝑢.

For an initial distribution 𝜇 ∈ 𝒫(𝐸) ( where 𝒫(𝐸) denotes all the probabilities

on 𝐸, ) we will prove that the Fukushima reprensentation property mentioned in

[QY10] holds for 𝑋, i.e. there is an algebra 𝐾(𝐸) ⊂ ℬ𝑏(𝐸) which generates the

Borel 𝜎-algebra ℬ(𝐸) and is invariant under 𝑅𝛼 for 𝛼 > 0, and there are countable

continuous martingales 𝑀 𝑖, 𝑖 ∈ ℕ, over (Ω,ℱ𝜇,ℱ𝜇
𝑡 , 𝑃

𝜇) such that for any potential

𝑢 = 𝑅𝛼𝑓 where 𝛼 > 0 and 𝑓 ∈ 𝐾(𝐸), the martingale part𝑀 [𝑢] of the semimartingale

𝑢(𝑋𝑡) − 𝑢(𝑋0) has a martingale representation in terms of 𝑀 𝑖, that is, there are

predictable processes 𝐹𝑖, 𝑖 ∈ ℕ on (Ω,ℱ𝜇,ℱ𝜇
𝑡 ) such that

𝑀
[𝑢]
𝑡 =

∞∑
𝑗=1

∫ 𝑡

0

𝐹 𝑗
𝑠 𝑑𝑀

𝑗
𝑠 𝑃 𝜇 − 𝑎.𝑒..

By Theorem 1.7, if �̂�𝛼 is sub-Markovian and strongly continuous on 𝒱 , the

Fukushima’s decomposition holds for 𝑢 ∈ ℱ . In this case we set 𝑀𝑘 :=𝑀 [𝑢𝑘], with

𝑢𝑘(⋅) := ⟨𝑒𝑘, ⋅⟩𝐻 . These martingales are called coordinate martingales.

Let us first calculate the energy measure related to ⟨𝑀 [𝑢]⟩, 𝑢 ∈ ℱ𝐶∞
𝑏 . By [Tr2,
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formula (23)], for bounded 𝑔 ∈ 𝐿2(𝐸, 𝜇), we have∫
�̂�𝛾𝑔𝑑𝜇⟨𝑀 [𝑢]⟩

= lim
𝛼→∞

𝛼(𝑈𝛼+𝛾

⟨𝑀 [𝑢]⟩1, �̂�𝛾𝑔)

= lim
𝛼→∞

lim
𝑡→∞

𝐸�̂�𝛾𝑔⋅𝜇(𝛼𝑒
−(𝛾+𝛼)𝑡⟨𝑀 [𝑢]⟩𝑡) + lim

𝛼→∞
𝐸�̂�𝛾𝑔⋅𝜇(

∫ ∞

0

⟨𝑀 [𝑢]⟩𝑡𝛼(𝛾 + 𝛼)𝑒−(𝛾+𝛼)𝑡𝑑𝑡)

= lim
𝛼→∞

lim
𝑡→∞

𝛼⟨𝜇⟨𝑀 [𝑢]⟩, 𝑒
−(𝛾+𝛼)𝑡

∫ 𝑡

0

𝑃𝑠�̂�𝛾𝑔𝑑𝑠⟩

+ lim
𝛼→∞

𝛼(𝛾 + 𝛼)(

∫ ∞

0

𝑒−(𝛾+𝛼)𝑡𝐸�̂�𝛾𝑔⋅𝜇((𝑢(𝑋𝑡)− 𝑢(𝑋0)−𝑁
[𝑢]
𝑡 )2)𝑑𝑡)

= lim
𝛼→∞

𝛼(𝛾 + 𝛼)(

∫ ∞

0

𝑒−(𝛾+𝛼)𝑡𝐸�̂�𝛾𝑔⋅𝜇((𝑢(𝑋𝑡)− 𝑢(𝑋0))
2)𝑑𝑡)

= lim
𝛼→∞

2𝛼(𝑢− 𝛼𝐺𝛼𝑢, 𝑢�̂�𝛾𝑔)− 𝛼(𝑢2, �̂�𝛾𝑔 − 𝛼�̂�𝛼�̂�𝛾𝑔)

=2(−𝐿𝑢, 𝑢�̂�𝛾𝑔)− (−𝐿𝑢2, �̂�𝛾𝑔)

=2ℰ(𝑢, 𝑢�̂�𝛾𝑔)− ℰ(𝑢2, �̂�𝛾𝑔)

=2ℰ𝐴(𝑢, 𝑢�̂�𝛾𝑔)− ℰ𝐴(𝑢2, �̂�𝛾𝑔) + 2

∫
⟨𝐴𝑏,∇𝑢⟩𝐻𝑢�̂�𝛾𝑔𝜇(𝑑𝑥)

−
∫
⟨𝐴𝑏,∇(𝑢2)⟩𝐻�̂�𝛾𝑔𝜇(𝑑𝑥)

=2ℰ𝐴(𝑢, 𝑢�̂�𝛾𝑔)− ℰ𝐴(𝑢2, �̂�𝛾𝑔)

=2

∫
⟨𝐴∇𝑢,∇(𝑢�̂�𝛾𝑔)⟩𝐻𝑑𝜇−

∫
⟨𝐴∇(𝑢2),∇(�̂�𝛾𝑔)⟩𝐻𝑑𝜇

=2

∫
⟨𝐴∇𝑢,∇𝑢⟩𝐻�̂�𝛾𝑔𝑑𝜇.

Then by [Tr2, Theorem 2.5], we have

𝜇⟨𝑀 [𝑢]⟩ = 2⟨𝐴∇𝑢,∇𝑢⟩𝐻 ⋅ 𝑑𝜇.

By [Tr2, Proposition 2.19], for 𝑢 ∈ ℱ𝐶∞
𝑏 and 𝑢 = 𝑓(𝐸′⟨𝑒1, ⋅⟩𝐸, ...,𝐸′ ⟨𝑒𝑚, ⋅⟩𝐸), we

have

𝑀
[𝑢]
𝑡 =

𝑛∑
𝑖=1

∫ 𝑡

0

⟨∇𝑢(𝑋𝑠), 𝑒𝑖⟩𝐻𝑑𝑀 𝑖
𝑠.

Then by the same arguments as in [F90, Theorem 3.1] (see also proof of Theorem

2.3.6 and Lemma 3.3.2), we have that under 𝑃 𝑥 for quasi every point 𝑥 ( where the
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exceptional set depends on 𝑢, 𝑣) , and every 𝑢, 𝑣 ∈ ℱ ,

(3.3.1) 𝑀
[𝑢]
𝑡 =

∞∑
𝑖=1

∫ 𝑡

0

⟨∇𝑢(𝑋𝑠), 𝑒𝑖⟩𝐻𝑑𝑀 𝑖
𝑠,

where
∑∞

𝑖=1

∫ 𝑡

0
⟨∇𝑢(𝑋𝑠), 𝑒𝑖⟩𝐻𝑑𝑀 𝑖

𝑠 = lim𝑛→∞
∑𝑛

𝑖=1

∫ 𝑡

0
⟨∇𝑢(𝑋𝑠), 𝑒𝑖⟩𝐻𝑑𝑀 𝑖

𝑠 in (ℳ̇, 𝑒) and

we have

(3.3.2) ⟨𝑀 [𝑢],𝑀 [𝑣]⟩𝑡 = 2

∫ 𝑡

0

⟨𝐴(𝑋𝑠)∇𝑢(𝑋𝑠),∇𝑣(𝑋𝑠)⟩𝐻𝑑𝑠.

In particular,

(3.3.3) ⟨𝑀 𝑖,𝑀 𝑗⟩𝑡 = 2

∫ 𝑡

0

𝑎𝑖𝑗(𝑋𝑠)𝑑𝑠,

where 𝑎𝑖𝑗(𝑧) := ⟨𝐴(𝑧)𝑒𝑖, 𝑒𝑗⟩𝐻 .

Lemma 3.3.2 Suppose (A4)(A5) hold. For 𝑢 ∈ ℱ and 𝑉𝑡 is a continuous adapted

process, with ∣𝑉𝑡∣ ≤𝑀, ∀𝑡, 𝜔, we have for q.e. 𝑥 ∈ 𝐸,

(3.3.4)

∫ 𝑡

0

𝑉𝑠𝑑𝑀
[𝑢]
𝑠 =

∞∑
𝑖=1

∫ 𝑡

0

𝑉𝑠⟨∇𝑢(𝑋𝑠), 𝑒𝑖⟩𝐻𝑑𝑀 𝑖
𝑠 𝑃 𝑥 − 𝑎.𝑠..

If (A4’), (A5) hold, then for some 𝜓 ∈ ∇̃𝑢, we have for q.e. 𝑥 ∈ 𝐸,∫ 𝑡

0

𝑉𝑠𝑑𝑀
[𝑢]
𝑠 =

∞∑
𝑖=1

∫ 𝑡

0

𝑉𝑠⟨𝜓(𝑋𝑠), 𝑒𝑖⟩𝐻𝑑𝑀 𝑖
𝑠 𝑃 𝑥 − 𝑎.𝑠..

Proof By [Tr2, Remark 2.2], for 𝜈 ∈ 𝑆00 and 𝐵𝑛 :=
∑𝑛

𝑖=1

∫ 𝑡

0
𝑉𝑠⟨∇𝑢(𝑋𝑠), 𝑒𝑖⟩𝐻𝑑𝑀 𝑖

𝑠

we have

𝐸𝜈(𝐵𝑛+𝑚 −𝐵𝑛)2 =𝐸𝜈(
𝑛+𝑚∑
𝑖=𝑛+1

∫ 𝑡

0

𝑉𝑠⟨∇𝑢(𝑋𝑠), 𝑒𝑖⟩𝐻𝑑𝑀 𝑖
𝑠)

2

=𝐸𝜈(
𝑛+𝑚∑

𝑖,𝑗=𝑛+1

∫ 𝑡

0

𝑉 2
𝑠 𝑎𝑖𝑗(𝑋𝑠)⟨∇𝑢(𝑋𝑠), 𝑒𝑖⟩𝐻⟨∇𝑢(𝑋𝑠), 𝑒𝑗⟩𝐻𝑑𝑠)

≤𝐶1𝑀
2𝐸𝜈(

𝑛+𝑚∑
𝑖=𝑛+1

∫ 𝑡

0

⟨∇𝑢(𝑋𝑠), 𝑒𝑖⟩2𝐻𝑑𝑠)

≤𝐶1𝑀
2𝑒𝑡∣�̂�1𝜈∣∞ sup

𝑡

1

𝑡
𝐸𝜇(

𝑛+𝑚∑
𝑖=𝑛+1

∫ 𝑡

0

⟨∇𝑢(𝑋𝑠), 𝑒𝑖⟩2𝐻𝑑𝑠)
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=𝐶1𝑀
2𝑒𝑡∣�̂�1𝜈∣∞

𝑛+𝑚∑
𝑖=𝑛+1

∫
⟨∇𝑢(𝑧), 𝑒𝑖⟩2𝐻𝜇(𝑑𝑧) → 0, as 𝑛,𝑚→ ∞,

where 𝑆00, �̂�1𝜈 are introduced in Section 1.2. Then we define
∑∞

𝑖=1

∫ 𝑡

0
𝑉𝑠⟨∇𝑢(𝑋𝑠), 𝑒𝑖⟩𝐻𝑑𝑀 𝑖

𝑠 :=

lim𝑛→∞𝐵𝑛 in (ℳ̇, 𝑒). Furthermore, we have

𝐸𝜈(

∫ 𝑡

0

𝑉𝑠𝑑𝑀
[𝑢]
𝑠 −

𝑛∑
𝑖=1

∫ 𝑡

0

𝑉𝑠⟨∇𝑢(𝑋𝑠), 𝑒𝑖⟩𝐻𝑑𝑀 𝑖
𝑠)

2

≤𝐸𝜈

∫ 𝑡

0

∞∑
𝑖,𝑗=𝑛+1

𝑉 2
𝑠 𝑎𝑖𝑗(𝑋𝑠)⟨∇𝑢(𝑋𝑠), 𝑒𝑖⟩𝐻⟨∇𝑢(𝑋𝑠), 𝑒𝑗⟩𝐻𝑑𝑠

≤𝑀2𝐶1𝑒
𝑡∣�̂�1𝜈∣∞ sup

𝑡

1

𝑡
𝐸𝜇

∫ 𝑡

0

∞∑
𝑖=𝑛+1

⟨∇𝑢(𝑋𝑠), 𝑒𝑖⟩2𝐻𝑑𝑠

≤𝑀2𝐶1𝑒
𝑡∣�̂�1𝜈∣∞

∫ 𝑡

0

∞∑
𝑖=𝑛+1

⟨∇𝑢(𝑧), 𝑒𝑖⟩2𝐻𝜇(𝑑𝑧) → 0, as 𝑛→ ∞.

So, we have ∫ 𝑡

0

𝑉𝑠𝑑𝑀
[𝑢]
𝑠 =

∞∑
𝑖=1

∫ 𝑡

0

𝑉𝑠⟨∇𝑢(𝑋𝑠), 𝑒𝑖⟩𝐻𝑑𝑀 𝑖
𝑠 𝑃 𝜈 − 𝑎.𝑠..

Then by [Tr2, Theorem 2.5] and Theorem 1.4, the assertions follow. □
Moreover, by a modification of the proof of [QY10, Theorem 3.1] , we have the

martingale representation theorem for 𝑋 which is similar to [BPS05].

Theorem 3.3.3 Suppose that (A4) or (A4’) and (A5) hold. Then there exists

some exceptional set 𝒩 such that the following representation result holds: For

every bounded ℱ∞-measurable random variable 𝜉, there exists predictable processes

𝜙 : [0,∞)×Ω → 𝐻, such that for each probability measure 𝜈, supported by 𝐸 ∖𝒩 ,

one has

𝜉 = 𝐸𝜈(𝜉∣ℱ0) +
∞∑
𝑖=0

∫ ∞

0

⟨𝜙𝑠, 𝑒𝑖⟩𝐻𝑑𝑀 𝑖
𝑠 𝑃 𝜈 − 𝑎.𝑒.,

where 𝑀 𝑖 =𝑀 [𝑢𝑖] with 𝑢𝑖 :=𝐸′ ⟨𝑒𝑖, ⋅⟩𝐸, 𝑖 ∈ ℕ are the coordinate martingales, and

𝐸𝜈

∫ ∞

0

⟨𝐴(𝑋𝑠)𝜙𝑠, 𝜙𝑠⟩𝐻𝑑𝑠 ≤
1

2
𝐸𝜈𝜉2.

If another predictable process 𝜙′ satisfies the same relations under a certain measure

𝑃 𝜈 , then one has 𝐴1/2(𝑋𝑡)𝜙
′
𝑡 = 𝐴1/2(𝑋𝑡)𝜙𝑡, 𝑑𝑡× 𝑑𝑃 𝜈 − 𝑎.𝑒.

Proof Suppose that 𝒩 is some fixed exceptional set. By 𝒦 we denote the class of

bounded random variables for which the statement holds outside this set. We claim
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that if (𝜉𝑛) ⊂ 𝒦 is a uniformly bounded increasing sequence and 𝜉 = lim𝑛→∞ 𝜉𝑛,

then 𝜉 ∈ 𝒦. Indeed, we have 𝐸𝑥∣𝜉𝑛 − 𝜉∣2 → 0. Let 𝜙𝑛 denote the process which

represents 𝜉𝑛. Then

𝐸𝑥

∫ ∞

0

∣𝜙𝑛
𝑠 − 𝜙𝑝

𝑠∣2𝐻𝑑𝑠 ≤
1

𝑐
𝐸𝑥

∫ ∞

0

⟨𝐴(𝑋𝑠)(𝜙
𝑛
𝑠 − 𝜙𝑝

𝑠), 𝜙
𝑛
𝑠 − 𝜙𝑝

𝑠⟩𝐻𝑑𝑠 ≤
1

2𝑐
𝐸𝑥∣𝜉𝑝 − 𝜉𝑛∣2.

Now we want to pass to the limit with 𝜙𝑛 pointwise, so that the limit become

predictable. For each 𝑙 = 0, 1, ... set

𝑛𝑙(𝑥) := inf{𝑛∣𝐸𝑥(𝜉 − 𝜉𝑛)
2 <

1

2𝑙
}

�̄�𝑙 := 𝜉𝑛𝑙(𝑋0).

Then one has �̄�𝑙 = 𝜉𝑛𝑙(𝑥)
on the set {𝑋0 = 𝑥}, and 𝐸𝑥(𝜉 − �̄�𝑙)

2 < 1
2𝑙

for any 𝑥 ∈ 𝒩 𝑐.

The process which represents �̄�𝑙 is simply obtained by the formula �̄�
𝑙
= 𝜙𝑛𝑙(𝑋0).

Then define 𝜙𝑠 = lim𝑙→∞ �̄�
𝑙
𝑠 in 𝐻. By the same arguments as the proof of Lemma

3.3.1, we obtain

𝐸𝑥(
∞∑
𝑖=1

∫ ∞

0

⟨𝜙𝑠 − �̄�
𝑙
𝑠, 𝑒𝑖⟩𝐻𝑑𝑀 𝑖

𝑠)
2 = lim

𝑘→∞
𝐸𝑥(

𝑘∑
𝑖=1

∫ ∞

0

⟨𝜙𝑠 − �̄�
𝑙
𝑠, 𝑒𝑖⟩𝐻𝑑𝑀 𝑖

𝑠)
2

= lim
𝑘→∞

𝐸𝑥(
𝑘∑

𝑖,𝑗=1

∫ ∞

0

𝑎𝑖𝑗(𝑋𝑠)⟨𝜙𝑠 − �̄�
𝑙
𝑠, 𝑒𝑖⟩𝐻⟨𝜙𝑠 − �̄�

𝑙
𝑠, 𝑒𝑗⟩𝐻𝑑𝑠)

≤𝐶1𝐸
𝑥

∫ ∞

0

∣𝜙𝑠 − �̄�
𝑙
𝑠∣2𝐻𝑑𝑠→ 0, as 𝑙 → ∞.

Therefore, we have 𝜉 ∈ 𝒦.
Let 𝐾(𝐸) ⊂ ℬ𝑏(𝐸) be a countable set which is closed under multiplication,

generates the Borel 𝜎-algebra ℬ(𝐸) and 𝑅𝛼(𝐾(𝐸)) ⊂ 𝐾(𝐸) for 𝛼 ∈ ℚ+. Such

𝐾(𝐸) can be constructed as follows. We choose a countable set 𝑁0 ⊂ 𝑏ℬ(𝐸) which
generates the Borel 𝜎-algebra ℬ(𝐸). Since 𝐸 as a separable Banach space is strongly

Lindelöf, such a set 𝑁0 can easily be constructed (see [MR92, Section 3.3]). For 𝑙 ≥ 1

we define 𝑁𝑙+1 = {𝑔1 ⋅ ... ⋅ 𝑔𝑘, 𝑈𝛼𝑔1 ⋅ 𝑔2 ⋅ ... ⋅ 𝑔𝑘, 𝑔𝑖 ∈ 𝑁𝑙, 𝑘 ∈ ℕ ∪ {0}, 𝛼 ∈ ℚ+} and

𝐾(𝐸) := ∪∞
𝑙=0𝑁𝑙 (c.f. [FOT94, Lemma 7.1.1]).

Let 𝒞0 be all 𝜉 = 𝜉1 ⋅ ⋅ ⋅𝜉𝑛 for some 𝑛 ∈ ℕ, 𝜉𝑗 =
∫∞
0
𝑒−𝛼𝑗𝑡𝑓𝑗(𝑋𝑡)𝑑𝑡, where 𝛼𝑗 ∈ ℚ+,

𝑓𝑗 ∈ 𝐾(𝐸), 𝑗 = 1, ..., 𝑛. Since the results in Lemma 2.3.7 also hold in this case, we

see that the universal completion of the 𝜎-algebra generated by 𝒞0 is ℱ∞ . By the

first claim, a monotone class argument reduces the proof to the representation of a

random variable in 𝒞0.
Let 𝜉 ∈ 𝒞0. By Markov property of the process (see e.g. [QY10, Theorem 3.1]) ,
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we have

𝑁𝑡 = 𝐸𝑥(𝜉∣ℱ𝑡) =
∑
𝑚

𝑍𝑚
𝑡

where the sum is finite , and for each 𝑚, 𝑍𝑚 = 𝑍𝑡 has the following form

𝑍𝑡 = 𝑉𝑡𝑢(𝑋𝑡)

(the superscript 𝑚 will be dropped if no confusion may arise), where 𝑉𝑡 =
∏𝑘′

𝑖=1∫ 𝑡

0
𝑒−𝛽𝑖𝑠𝑔𝑖(𝑋𝑠)𝑑𝑠 and 𝑢(𝑥) = 𝑈𝛽1+...+𝛽𝑘(ℎ1(𝑈

𝛽2+...+𝛽𝑘ℎ2...(𝑈
𝛽𝑘ℎ𝑘)...) for 𝛽𝑖 ∈ ℚ+, 𝑔𝑖, ℎ𝑖 ∈

𝐾(𝐸). Obviously, 𝑢 ∈ 𝐾(𝐸). Hence, by Fukushima’s decomposition and Fukushima’s

representation property we have

(3.3.5) 𝑢(𝑋𝑡)−𝑢(𝑋0) =𝑀
[𝑢]
𝑡 +𝐴

[𝑢]
𝑡 =

∞∑
𝑗=1

∫ 𝑡

0

⟨∇𝑢(𝑋𝑠), 𝑒𝑗⟩𝐻𝑑𝑀 𝑗
𝑠+𝐴

[𝑢]
𝑡 𝑃 𝑥−𝑎.𝑠..

Then by Itô’s formula and Lemma 3.3.2, we have

𝑍𝑡 = 𝑍0 +

∫ 𝑡

0

𝑢(𝑋𝑠)𝑑𝑉𝑠 +

∫ 𝑡

0

𝑉𝑠𝑑𝐴
[𝑢]
𝑠 +

∫ 𝑡

0

𝑉𝑠𝑑𝑀
[𝑢]
𝑠

= 𝑍0 +

∫ 𝑡

0

𝑢(𝑋𝑠)𝑑𝑉𝑠 +

∫ 𝑡

0

𝑉𝑠𝑑𝐴
[𝑢]
𝑠 +

∞∑
𝑖=1

∫ 𝑡

0

𝑉𝑠⟨∇𝑢(𝑋𝑠), 𝑒𝑖⟩𝐻𝑑𝑀 𝑖
𝑠.

Hence,

𝑁𝑡 =
∞∑
𝑖=1

∫ 𝑡

0

𝑉𝑠⟨∇𝑢(𝑋𝑠), 𝑒𝑖⟩𝐻𝑑𝑀 𝑖
𝑠 𝑃 𝑥 − 𝑎.𝑠..

Define 𝜙𝑠 = 𝑉𝑠∇𝑢(𝑋𝑠), then the representation holds for 𝜉 ∈ 𝒞0. As (3.3.4) and

(3.3.5) hold for every 𝑥 outside of an exceptional set of null capacity, the exceptional

set 𝒩 in the statement will be the union of all these exceptional sets corresponding

to 𝑢 ∈ 𝐾(𝐸) and the exceptional sets related to 𝑉 in Lemma 3.3.2. □

If in the preceding theorem, 𝜉 is nonnegative, we drop the boundedness assump-

tion.

Corollary 3.3.4 Suppose that (A4) or (A4’) and (A5) hold. Let 𝒩 be the

set obtained in Theorem 3.3.3. Then for any ℱ∞-measurable nonnegative random

variable 𝜉 ≥ 0 there exists a predictable process 𝜙 : [0,∞)× Ω → 𝐻 such that

𝜉 = 𝐸𝑥(𝜉∣ℱ0) +
∞∑
𝑖=0

∫ ∞

0

⟨𝜙𝑠, 𝑒𝑖⟩𝐻𝑑𝑀 𝑖
𝑠 𝑃 𝑥 − 𝑎.𝑒.,
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where 𝑀 𝑖, 𝑖 ∈ ℕ, are as in Theorem 3.3.3, and

𝐸𝑥

∫ ∞

0

⟨𝐴(𝑋𝑠)𝜙𝑠, 𝜙𝑠⟩𝐻𝑑𝑠 ≤
1

2
𝐸𝑥𝜉2,

for each point 𝑥 ∈ 𝒩 𝑐 such that 𝐸𝑥𝜉 <∞.

If another predictable process 𝜙′ satisfies the same relations under a certain

measure 𝑃 𝑥, then one has 𝐴1/2(𝑋𝑡)𝜙
′
𝑡 = 𝐴1/2(𝑋𝑡)𝜙𝑡, 𝑑𝑡× 𝑑𝑃 𝑥 − 𝑎.𝑒.

3.3.2 Representation under 𝑃 𝜇

As usual we set
∫ 𝑡

0
𝜓𝑠.𝑑𝑀𝑠 =

∑∞
𝑖=0

∫ 𝑡

0
⟨𝜓𝑠, 𝑒𝑖⟩𝐻𝑑𝑀 𝑖

𝑠.

Lemma 3.3.5 Suppose that (A1)-(A3), (A5) and (A4) or (A4’) hold. If 𝑢 ∈ 𝒟(𝐿),

𝜓 ∈ ∇̃𝑢 , then

𝑢(𝑋𝑡)− 𝑢(𝑋0) =

∫ 𝑡

0

𝜓(𝑋𝑠).𝑑𝑀𝑠 +

∫ 𝑡

0

𝐿𝑢(𝑋𝑠)𝑑𝑠 𝑃 𝜇 − 𝑎.𝑠..

Proof Corollary 3.3.4 and (3.3.1) imply the assertion. □

Then by the same arguments as the proof of Lemma 2.3.6 we extend this repre-

sentation to time dependent functions 𝑢(𝑡, 𝑥).

Lemma 3.3.6 Suppose that (A1)-(A3), (A5) and (A4) or (A4’) hold. Let 𝑢 :

[0, 𝑇 ]× 𝐸 → ℝ be such that

(i) ∀𝑠, 𝑢𝑠 ∈ 𝒟(𝐿) and 𝑠→ 𝐿𝑢𝑠 is continuous in 𝐿
2.

(ii) 𝑢 ∈ 𝐶1([0, 𝑇 ];𝐿2).

Then clearly 𝑢 ∈ 𝒞𝑇 , and, moreover, for any 𝜓 ∈ ∇̃𝑢 and any 𝑠, 𝑡 > 0 such that

𝑠+ 𝑡 < 𝑇 , the following relation holds 𝑃 𝜇-a.s.

𝑢(𝑠+ 𝑡,𝑋𝑡)− 𝑢(𝑠,𝑋0) =

∫ 𝑡

0

𝜓𝑠+𝑟(𝑋𝑟).𝑑𝑀𝑟 +

∫ 𝑡

0

(∂𝑠 + 𝐿)𝑢𝑠+𝑟(𝑋𝑟)𝑑𝑟.

Theorem 3.3.7 Supppose that (A1)-(A3), (A5) and (A4) or (A4’) hold. Let

𝑓 ∈ 𝐿1([0, 𝑇 ];𝐿2) and 𝜙 ∈ 𝐿2(𝐸) and define

𝑢𝑡 := 𝑃𝑇−𝑡𝜙+

∫ 𝑇

𝑡

𝑃𝑠−𝑡𝑓𝑠𝑑𝑠.
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Then for each 𝜓 ∈ ∇̃𝑢 and for each 𝑠 ∈ [0, 𝑇 ], the following relation holds 𝑃 𝜇-a.s.

𝑢(𝑠+ 𝑡,𝑋𝑡)− 𝑢(𝑠,𝑋0) =

∫ 𝑡

0

𝜓(𝑠+ 𝑟,𝑋𝑟).𝑑𝑀𝑟 −
∫ 𝑡

0

𝑓(𝑠+ 𝑟,𝑋𝑟)𝑑𝑟.

Furthermore, if 𝑢 is a generalized solution of PDE (3.2.1), for each 𝑡 ∈ [𝑠, 𝑇 ] the

following BSDE holds 𝑃 𝜇-a.s.

𝑢(𝑡,𝑋𝑡−𝑠) =𝜙(𝑋𝑇−𝑠) +

∫ 𝑇

𝑡

𝑓(𝑟,𝑋𝑟−𝑠, 𝑢(𝑟,𝑋𝑟−𝑠), 𝐴
1/2∇𝑢(𝑟,𝑋𝑟−𝑠))𝑑𝑟

−
∫ 𝑇−𝑠

𝑡−𝑠

𝜓(𝑠+ 𝑟,𝑋𝑟).𝑑𝑀𝑟.

Proof First assume that 𝜙 and 𝑓 satisfy the conditions in Proposition 3.1.5 (ii).

Then we have that 𝑢 satisfies the conditions in Lemma 3.3.6 and by Lemma 3.3.6,

the assertion follows. For the general case we choose 𝑢𝑛 associated with (𝑓𝑛, 𝜙𝑛) as

in Proposition 3.1.7. Then ∥𝑢𝑛 − 𝑢∥𝑇 → 0 as 𝑛→ ∞. For 𝑢𝑛 we have

(3.3.6) 𝑢𝑛(𝑠+ 𝑡,𝑋𝑡)− 𝑢𝑛(𝑠,𝑋0) =

∫ 𝑡

0

∇𝑢𝑛𝑠+𝑟(𝑋𝑟).𝑑𝑀𝑟 −
∫ 𝑡

0

𝑓𝑛(𝑠+ 𝑟,𝑋𝑟)𝑑𝑟.

As

𝐸𝜇∣
∫ 𝑡

0

(∇𝑢𝑛𝑠+𝑟(𝑋𝑟)−∇𝑢𝑝𝑠+𝑟(𝑋𝑟)).𝑑𝑀𝑟∣2

≤𝐸𝜇

∫ 𝑡

0

⟨𝐴(𝑋𝑟)(∇𝑢𝑛𝑠+𝑟(𝑋𝑟)−∇𝑢𝑝𝑠+𝑟(𝑋𝑟)),∇𝑢𝑛𝑠+𝑟(𝑋𝑟)−∇𝑢𝑝𝑠+𝑟(𝑋𝑟)⟩𝐻𝑑𝑟

≤
∫ 𝑡

0

ℰ𝐴(𝑢𝑛𝑠+𝑟 − 𝑢𝑝𝑠+𝑟)𝑑𝑟,

letting 𝑛→ ∞ in (3.3.6), we obtain the assertions. □

3.4 BSDE’s and Weak Solutions

The set 𝒩 obtained in Theorem 3.3.3 will be fixed throughout this section. By

Theorem 3.3.3, we solve the BSDE under all measures 𝑃 𝑥, 𝑥 ∈ 𝒩 𝑐, at the same

time. We will treat systems of 𝑙 equations, 𝑙 ∈ ℕ, associated to ℝ𝑙-valued functions

𝑓 : [0, 𝑇 ] × Ω × ℝ𝑙 × 𝐻 𝑙 7→ ℝ𝑙, assumed to be predictable. This means that we

consider the map (𝑠, 𝜔) 7→ 𝑓(𝑠, 𝜔, ⋅, ⋅) as a process which is predictable with respect

to the canonical filtration of our process (ℱ𝑡).

Lemma 3.4.1 Suppose that (A4) or (A4’) and (A5) hold. Let 𝜉 be an ℱ𝑇 -
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measurable random variable and 𝑓 : [0, 𝑇 ]× Ω 7→ ℝ an (ℱ𝑡)𝑡≥0-predictable process.

Let 𝐷 be the set of all points 𝑥 ∈ 𝒩 𝑐 for which the following integrability condition

holds

𝐸𝑥(∣𝜉∣+
∫ 𝑇

0

∣𝑓(𝑠, 𝜔)∣𝑑𝑠)2 <∞.

Then there exists a pair (𝑌𝑡, 𝑍𝑡)0≤𝑡≤𝑇 of predictable processes 𝑌 : [0, 𝑇 )×Ω 7→ ℝ, 𝑍 :

[0, 𝑇 ) × Ω 7→ 𝐻, such that under all measures 𝑃 𝑥, 𝑥 ∈ 𝐷, they have the following

properties:

(i) 𝑌 is continuous;

(ii) 𝑍 satisfies the integrability condition∫ 𝑇

0

∣𝐴1/2(𝑋𝑡)𝑍𝑡∣2𝐻𝑑𝑡 <∞, 𝑃 𝑥 − 𝑎.𝑠.;

(iii) the local martingale obtained integrating 𝑍 against the coordinate martingales,

i.e.
∫ 𝑡

0
𝑍𝑠.𝑑𝑀𝑠, is a uniformly integrable martingale;

(iv)

𝑌𝑡 = 𝜉 +

∫ 𝑇

𝑡

𝑓(𝑠, 𝜔)𝑑𝑠−
∫ 𝑇

𝑡

𝑍𝑠.𝑑𝑀𝑠, 𝑃 𝑥 − 𝑎.𝑠., 0 ≤ 𝑡 ≤ 𝑇.

If another pair (𝑌 ′
𝑡 , 𝑍

′
𝑡) of predictable processes satisfies the above conditions (i),(ii),(iii),(iv),

under a certain measure 𝑃 𝜈 with the initial distribution 𝜈 supported by 𝐷, then one

has 𝑌. = 𝑌.′, 𝑃 𝜈 − 𝑎.𝑠. and 𝐴1/2(𝑋𝑡)𝑍𝑡 = 𝐴1/2(𝑋𝑡)𝑍
′
𝑡, 𝑑𝑡× 𝑃 𝜈 − 𝑎.𝑠..

Proof The representations of the positive and negative parts of the random variable

𝜉 +
∫ 𝑇

0
𝑓𝑠𝑑𝑠 give us a predictable process 𝑍 such that

𝜉 +

∫ 𝑇

0

𝑓𝑠𝑑𝑠 = 𝐸𝑋0(𝜉 +

∫ 𝑇

0

𝑓𝑠𝑑𝑠) +

∫ 𝑇

0

𝑍𝑠.𝑑𝑀𝑠.

Then we obtain the desired process 𝑌 by the formula

𝑌𝑡 = 𝐸𝑋0(𝜉 +

∫ 𝑇

0

𝑓𝑠𝑑𝑠) +

∫ 𝑇

0

𝑍𝑠.𝑑𝑀𝑠 −
∫ 𝑡

0

𝑓𝑠𝑑𝑠.

□

Definition 3.4.2 Let 𝜉 be an ℝ𝑙-valued, ℱ𝑇 -measurable, random variable and

𝑓 : [0, 𝑇 ] × Ω × ℝ𝑙 ×𝐻 𝑙 7→ ℝ𝑙 a measurable ℝ𝑙-valued function such that (𝑠, 𝜔) 7→
𝑓(𝑠, 𝜔, ⋅, ⋅) is a predictable process. Let 𝑝 > 1 and 𝜈 be a probability measure sup-

ported by 𝒩 𝑐 such that 𝐸𝜈 ∣𝜉∣𝑝 <∞. We say that a pair (𝑌𝑡, 𝑍𝑡)0≤𝑡≤𝑇 of predictable

processes 𝑌 : [0, 𝑇 ) × Ω 7→ ℝ𝑙, 𝑍 : [0, 𝑇 ) × Ω 7→ 𝐻 𝑙 is a solution of the BSDE in

𝐿𝑝(𝑃 𝜈) with data (𝜉, 𝑓) provided 𝑌 is continuous under 𝑃 𝜈 and it satisfies both the



3.4. BSDE’s and Weak Solutions 131

integrability conditions∫ 𝑇

0

∣𝑓(𝑡, ⋅, 𝑌𝑡, 𝐴1/2(𝑋𝑡)𝑍𝑡)∣𝑑𝑡 <∞, 𝑃 𝜈 − 𝑎.𝑠.,

and

𝐸𝜈(

∫ 𝑇

0

∣𝐴1/2(𝑋𝑡)𝑍𝑡∣2𝐻𝑑𝑡)𝑝/2 <∞,

and the following equation holds

(3.4.1)

𝑌𝑡 = 𝜉 +

∫ 𝑇

𝑡

𝑓(𝑠, 𝜔, 𝑌𝑠, 𝐴
1/2(𝑋𝑠)𝑍𝑠)𝑑𝑠−

∫ 𝑇

𝑡

𝑍𝑠.𝑑𝑀𝑠, 𝑃 𝜈 − 𝑎.𝑠., 0 ≤ 𝑡 ≤ 𝑇.

Let 𝑓 : [0, 𝑇 ] × Ω × ℝ𝑙 × 𝐻 𝑙 7→ ℝ𝑙 be a measurable ℝ𝑙-valued function such that

(𝑠, 𝜔) 7→ 𝑓(𝑠, 𝜔, ⋅, ⋅) is predictable and it satisfies the following conditions:

(Ω1) [Lipschitz condition in 𝑧] There exists a constant 𝐶 > 0 such that for all

𝑡, 𝜔, 𝑦, 𝑧, 𝑧′

∣𝑓(𝑡, 𝜔, 𝑦, 𝑧)− 𝑓(𝑡, 𝜔, 𝑦, 𝑧′)∣ ≤ 𝐶∣𝑧 − 𝑧′∣𝐻 .
(Ω2) [Monotonicity condition in 𝑦] For 𝜔, 𝑦, 𝑦′, 𝑧 arbitrary, there exists a function

𝜇𝑡 ∈ 𝐿1([0, 𝑇 ],ℝ) such that

⟨𝑦 − 𝑦′, 𝑓(𝑡, 𝜔, 𝑦, 𝑧)− 𝑓(𝑡, 𝜔, 𝑦′, 𝑧)⟩ ≤ 𝜇𝑡∣𝑦 − 𝑦′∣2,

and 𝛼𝑡 :=
∫ 𝑡

0
𝜇𝑠𝑑𝑠.

(Ω3) [Continuity condition in 𝑦] For 𝑡, 𝜔 and 𝑧 fixed, the map

𝑦 7→ 𝑓(𝑡, 𝜔, 𝑦, 𝑧)

is continuous.

We use the following notations:

𝑓0(𝑡, 𝜔) := 𝑓(𝑡, 𝜔, 0, 0), 𝑓 ′(𝑡, 𝜔, 𝑦) := 𝑓(𝑡, 𝜔, 𝑦, 0)− 𝑓(𝑡, 𝜔, 0, 0),

𝑓
′,𝑟(𝑡, 𝜔) := sup

∣𝑦∣≤𝑟

∣𝑓 ′(𝑡, 𝜔, 𝑦)∣.

Let 𝜉 be an ℝ𝑙-valued, ℱ𝑇 -measurable, random variable and, for each 𝑝 > 0 let 𝐴𝑝

denote the set of all points 𝑥 ∈ 𝒩 𝑐 such that

(3.4.2) 𝐸𝑥

∫ 𝑇

0

𝑓
′,𝑟
𝑡 𝑑𝑡 <∞, ∀𝑟 ≥ 0,
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and

𝐸𝑥(∣𝜉∣𝑝 + (

∫ 𝑇

0

∣𝑓0(𝑠, 𝜔)∣𝑑𝑠)𝑝) <∞.

Let 𝐴∞ denote the set of points 𝑥 ∈ 𝒩 𝑐 for which (3.4.2) holds and with the property

that ∣𝜉∣, ∣𝑓0∣ ∈ 𝐿∞(𝑃 𝑥).

The method to prove the following proposition is standard, and it is included in

the Appendix.

Proposition 3.4.3 Assume that (A4) or (A4’) and (A5) holds. Under conditions

(Ω1), (Ω2), (Ω3) there exists a pair (𝑌𝑡, 𝑍𝑡)0≤𝑡≤𝑇 of predictable processes 𝑌 : [0, 𝑇 )×
Ω 7→ ℝ𝑙, 𝑍 : [0, 𝑇 ) × Ω 7→ 𝐻 𝑙 that forms a solution of the BSDE (3.4.1) in 𝐿𝑝(𝑃 𝑥)

with data (𝜉, 𝑓) for each point 𝑥 ∈ 𝐴𝑝. Moreover, the following estimate holds with

some constant 𝐾 that depends only on 𝑐, 𝐶, 𝜇 and 𝑇 ,

𝐸𝑥( sup
𝑡∈[0,𝑇 ]

∣𝑌𝑡∣𝑝+(

∫ 𝑇

0

∣𝐴1/2(𝑋𝑡)𝑍𝑡∣2𝐻𝑑𝑡)𝑝/2) ≤ 𝐾𝐸𝑥(∣𝜉∣𝑝+(

∫ 𝑇

0

∣𝑓 0(𝑠, 𝜔)∣𝑑𝑠)𝑝), 𝑥 ∈ 𝐴𝑝.

If 𝑥 ∈ 𝐴∞, then sup𝑡∈[0,𝑇 ] ∣𝑌𝑡∣ ∈ 𝐿∞(𝑃 𝑥).

If (𝑌 ′
𝑡 , 𝑍

′
𝑡) is another solution in 𝐿𝑝(𝑃 𝑥) for some point 𝑥 ∈ 𝐴𝑝, then one has

𝑌𝑡 = 𝑌 ′
𝑡 and 𝐴1/2(𝑋𝑡)𝑍𝑡 = 𝐴1/2(𝑋𝑡)𝑍

′
𝑡, 𝑑𝑡× 𝑃 𝑥 − 𝑎.𝑠..

We shall now look at the connection between the solutions of BSDE’s introduced

in this section and the PDE’s studied in Section 3.2. In order to do this we have to

consider BSDE’s over time intervals [𝑠, 𝑇 ], with 0 ≤ 𝑠 ≤ 𝑇 as done in Section 2.4.

Let us give a formal definition for the natural notion of solution over a time inter-

val [𝑠, 𝑇 ]. Let 𝜉 be an ℱ𝑇−𝑠-measurable, ℝ𝑙-valued, random variable and 𝑓 : [𝑠, 𝑇 ]×
Ω× ℝ𝑙 ×𝐻 𝑙 → ℝ𝑙 an ℝ𝑙-valued, measurable map such that (𝑓(𝑠+ 𝑙, 𝜔, ⋅, ⋅))𝑙∈[0,𝑇−𝑠]

is predictable with respect to (ℱ𝑙)𝑙∈[0,𝑇−𝑠]. Let 𝜈 be a probability measure sup-

ported by 𝒩 𝑐 such that 𝐸𝜈 ∣𝜉∣𝑝 < ∞. We say a pair (𝑌𝑡, 𝑍𝑡)𝑠≤𝑡≤𝑇 of processes

𝑌 : [𝑠, 𝑇 ] × Ω → ℝ𝑙, 𝑍 : [𝑠, 𝑇 ] × Ω → 𝐻 𝑙 is a solution in 𝐿𝑝(𝑃 𝜈) of the BSDE over

the interval [𝑠, 𝑇 ] with data (𝜉, 𝑓), provided they have the property that reindexed

as (𝑌𝑠+𝑙, 𝑍𝑠+𝑙)𝑙∈[0,𝑇−𝑠] these processes are (ℱ𝑙)𝑙∈[0,𝑇−𝑠]-predictable, 𝑌 is continuous

and together they satisfy the integrability conditions∫ 𝑇

𝑠

∣𝑓(𝑡, ⋅, 𝑌𝑡, 𝐴1/2(𝑋𝑡−𝑠)𝑍𝑡)∣𝑑𝑡 <∞, 𝑃 𝜈 − 𝑎.𝑠.,

and

𝐸𝜈(

∫ 𝑇

𝑠

∣𝐴1/2(𝑋𝑡−𝑠)𝑍𝑡∣2𝐻𝑑𝑡)𝑝/2 <∞,
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and the following equation under 𝑃 𝜈 holds

(3.4.3) 𝑌𝑡 = 𝜉 +

∫ 𝑇

𝑡

𝑓(𝑟, 𝑌𝑟, 𝐴
1/2(𝑋𝑟−𝑠)𝑍𝑟)𝑑𝑟 −

∫ 𝑇−𝑠

𝑡−𝑠

𝑍𝑠+𝑙.𝑑𝑀𝑙, 𝑠 ≤ 𝑡 ≤ 𝑇.

The next result gives the probabilistic interpretation of Theorem 3.2.8. Let us

assume that 𝑓 : [0, 𝑇 ]× 𝐸 × ℝ𝑙 ×𝐻 𝑙 → ℝ𝑙 is the measurable function appearing in

the basic equation (3.2.1).

Let 𝜙 : 𝐸 → ℝ𝑙 be measurable and for each 𝑝 > 1, let 𝐴𝑝 denote the set of all

points (𝑠, 𝑥) ∈ [0, 𝑇 )×𝒩 𝑐 such that

𝐸𝑥

∫ 𝑇

𝑠

𝑓
′,𝑟(𝑡,𝑋𝑡−𝑠)𝑑𝑡 <∞, ∀𝑟 ≥ 0,

and

𝐸𝑥(∣𝜙∣𝑝(𝑋𝑇−𝑠) + (

∫ 𝑇

𝑠

∣𝑓 0(𝑡,𝑋𝑡−𝑠)∣𝑑𝑠)𝑝) <∞.

Set 𝐷 := ∪𝑝>1𝐴𝑝, 𝐴𝑝,𝑠 := {𝑥 ∈ 𝒩 𝑐, (𝑠, 𝑥) ∈ 𝐴𝑝}, and 𝐴𝑠 := ∪𝑝>1𝐴𝑝,𝑠, 𝑠 ∈ [0, 𝑇 ).

By the same arguments as Theorem 2.4.4, we obtain the following results.

Theorem 3.4.4 Assume that (A4) or (A4’) and (A5) holds and that the function

𝑓 satisfies conditions (H1),(H2),(H3). Then there exist nearly Borel measurable

functions (𝑢, 𝜓), 𝑢 : 𝐷 → ℝ𝑙, 𝜓 : 𝐷 → 𝐻 𝑙, such that, for each 𝑠 ∈ [0, 𝑇 ) and each

𝑥 ∈ 𝐴𝑝,𝑠, the pair (𝑢(𝑡,𝑋𝑡−𝑠), 𝜓(𝑡,𝑋𝑡−𝑠))𝑠≤𝑡≤𝑇 solves BSDE (3.4.3) in 𝐿𝑝(𝑃 𝑥) with

data (𝜙(𝑋𝑇−𝑠), 𝑓(𝑡,𝑋𝑡−𝑠, 𝑦, 𝑧)) over the interval [𝑠, 𝑇 ].

In particular, the functions 𝑢, 𝜓 satisfy the following estimate, for (𝑠, 𝑥) ∈ 𝐴𝑝,

𝐸𝑥( sup
𝑡∈[𝑠,𝑇 ]

∣𝑢(𝑡,𝑋𝑡−𝑠)∣𝑝 + (

∫ 𝑇

𝑠

∣𝐴1/2𝜓(𝑡,𝑋𝑡−𝑠)∣2𝑑𝑡)𝑝/2)

≤𝐾𝐸𝑥(∣𝜙(𝑋𝑇−𝑠)∣𝑝 + (

∫ 𝑇

𝑠

∣𝑓 0(𝑡,𝑋𝑡−𝑠)∣𝑑𝑡)𝑝).

Moreover, if (A1)-(A3) hold and 𝑓 , 𝜙 satisfy conditions (H4) and (H5), then the

complement of 𝐴2.𝑠 is 𝜇-negligible (i.e. 𝜇(𝐴𝑐
2,𝑠) = 0) for each 𝑠 ∈ [0, 𝑇 ), the class of

𝑢1𝐴2 is an element of 𝐹 𝑙 which is a generalized solution of (3.2.1), 𝜓 represents a

version of ∇𝑢 and the following relation holds for each (𝑠, 𝑥) ∈ 𝐷 and 1 ≤ 𝑖 ≤ 𝑙,

(3.4.4)

𝑢𝑖(𝑠, 𝑥) = 𝐸𝑥(𝜙𝑖(𝑋𝑇−𝑠)) +

∫ 𝑇

𝑠

𝐸𝑥𝑓 𝑖(𝑡,𝑋𝑡−𝑠, 𝑢(𝑡,𝑋𝑡−𝑠), 𝐴
1/2(𝑋𝑡−𝑠)𝜓(𝑡,𝑋𝑡−𝑠))𝑑𝑡.
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3.5 Examples

In this section, we give some examples satisfying our assumptions (A1)-(A5).

Example 3.5.1 (Ornstein-Uhlenbeck semigroup) Given two separable Hilbert

spaces 𝐻 and 𝑈 , consider the stochastic differential equation

(3.5.1) 𝑑𝑋(𝑡) = 𝐴1𝑋(𝑡)𝑑𝑡+𝐵𝑑𝑊 (𝑡), 𝑋(0) = 𝑥 ∈ 𝐻,

where 𝐴1 : 𝐷(𝐴1) ⊂ 𝐻 → 𝐻 is the infinitesimal generator of a strongly continuous

semigroup 𝑒𝑡𝐴1 , 𝐵 : 𝑈 → 𝐻 is a bounded linear operator, and 𝑊 is a cylindrical

Wiener process in 𝑈 . Assume

(i) ∥𝑒𝑡𝐴1∥ ≤𝑀𝑒𝜔𝑡 for 𝜔 < 0, 𝑀 ≥ 0, and all 𝑡 ≥ 0.

(ii) For any 𝑡 > 0 the linear operator 𝑄𝑡, defined as

𝑄𝑡𝑥 =

∫ 𝑡

0

𝑒𝑠𝐴1𝐶𝑒𝑠𝐴
∗
1𝑥𝑑𝑠, 𝑥 ∈ 𝐻, 𝑡 ≥ 0,

where 𝐶 = 𝐵𝐵∗, is of trace class.

(iii) 𝐶𝑒𝑡𝐴
∗
1 = 𝑒𝑡𝐴1𝐶.

𝜇 denotes the Gaussian measure in 𝐻 with mean 0 and covariance operator 𝑄∞.

Then the bilinear form

ℰ(𝑢, 𝑢) := 1

2

∫
𝐻

∣𝐶1/2∇𝑢∣2𝑑𝜇, 𝑢 ∈ ℱ𝐶∞
𝑏 ,

is closable. The closure of ℱ𝐶∞
𝑏 with respect to ℰ1 is denoted by 𝐹 . (ℰ , 𝐹 ) is a

generalized Dirichlet form in the sense of Remark 3.1.1 (iii) with (𝐸1,ℬ(𝐸1),𝑚) =

(𝐻,ℬ(𝐻), 𝜇), (𝒜,𝒱) = (ℰ , 𝐹 ) and Λ = 0. In particular, it is a symmetric Dirichlet

form associated with the O-U process given by (3.5.1) and satisfies conditions (A1)-

(A5) (see [D04, ChapterII]).

Example 3.5.2 Let 𝐻 be a real separable Hilbert space (with scalar product ⟨⋅, ⋅⟩
and norm denoted by ∣ ⋅ ∣) and 𝜇 a finite positive measure on 𝐻. We denote its Borel

𝜎-algebra by ℬ(𝐻). For 𝜌 ∈ 𝐿1
+(𝐻,𝜇) we consider the following bilinear form

ℰ𝜌(𝑢, 𝑣) =
1

2

∫
𝐻

⟨∇𝑢,∇𝑣⟩𝜌(𝑧)𝜇(𝑑𝑧), 𝑢, 𝑣 ∈ ℱ𝐶∞
𝑏 ,

where 𝐿1
+(𝐻,𝜇) denotes the set of all non-negative elements in 𝐿1(𝐻,𝜇). There are

many examples for 𝜌 such that ℰ𝜌 is closable. For example if 𝜌𝑑𝜇 is a ”Log-Concave”

measure in the sense of [ASZ09], and more examples can be found in [MR92]. The
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closure of ℱ𝐶∞
𝑏 with respect to ℰ1 is denoted by 𝐹 . (ℰ , 𝐹 ) is a generalized Dirichlet

form in the sense of Remark 3.1.1 (iii) with (𝐸1,ℬ(𝐸1),𝑚) = (𝐻,ℬ(𝐻), 𝜇), (𝒜,𝒱) =
(ℰ , 𝐹 ) and Λ = 0. In particular, it is a symmetric Dirichlet form and satisfies (A1)-

(A5). Assume that: 𝐴1 : 𝐷(𝐴1) ⊂ 𝐻 → 𝐻 is a linear self-adjoint operator on H

such that ⟨𝐴1𝑥, 𝑥⟩ ≥ 𝛿∣𝑥∣2 ∀𝑥 ∈ 𝐷(𝐴1) for some 𝛿 > 0 and 𝐴−1
1 is of trace class. 𝜇

will denote the Gaussian measure in 𝐻 with mean 0 and covariance operator

𝑄 :=
1

2
𝐴−1

1 .

We are concerned with the following two cases.

1. Choose 𝜌 = 𝑒−2𝑈(𝑥)∫
𝐻 𝑒−2𝑈(𝑦)𝑑𝑦

for a Borel map 𝑈 : 𝐻 → (−∞,+∞] with
∫
𝐻
𝑒−2𝑈(𝑦)𝑑𝑦 ∈

(0,∞). Under some regular condition for 𝑈 , the process associated with ℰ𝜌 is the

solution of the following SPDE

𝑑𝑋(𝑡) = (𝐴1𝑋(𝑡) +∇𝑈(𝑋(𝑡))𝑑𝑡+ 𝑑𝑊 (𝑡), 𝑋(0) = 𝑥 ∈ 𝐻.

2. 𝜌 = 1{∣𝑥∣𝐻≤1}. This case has been studied in [ASZ09], [RZZ] and it is associated

with a reflected O-U process ([RZZ]). The Kolomogorov equation associated with

ℰ has been studied in [BDT09] and the solution corresponds to the Kolomogorov

equation with Neumman boundary condition.

Example 3.5.3 Consider the same situation in Example 3.5.1 and assume that, in

addition we are given a nonlinear function 𝐹 : 𝐻 → 𝐻 such that there exists 𝐾 > 0,

∣𝐹 (𝑥)− 𝐹 (𝑦)∣𝐻 ≤ 𝐾∣𝑥− 𝑦∣, 𝑥, 𝑦 ∈ 𝐻 and ⟨𝐹 (𝑥)− 𝐹 (𝑦), 𝑥− 𝑦⟩ ≤ 0, 𝑥, 𝑦 ∈ 𝐻. 𝐴1 is

an operator which satisfies the condition in Example 3.5.2 and 𝐴−1+𝛿
1 is trace-class

for some 𝛿 ∈ (0, 1
2
). We are concerned with the stochastic differential equation

(3.5.2) 𝑑𝑋(𝑡) = (𝐴1𝑋(𝑡) + 𝐹 (𝑋(𝑡))𝑑𝑡+𝐵𝑑𝑊 (𝑡), 𝑋(0) = 𝑥 ∈ 𝐻.

The Kolomogrov operator associated with (3.5.2) is given by

𝐾0𝜑 =
1

2
𝑇𝑟[𝐶𝐷2𝜑] + ⟨𝑥,𝐴∗

1𝐷𝜑⟩+ ⟨𝐹 (𝑥), 𝐷𝜑⟩, 𝜑 ∈ ℰ𝐴1(𝐻),

where ℰ𝐴1(𝐻) := linear span {𝜑ℎ(𝑥) = 𝑒𝑖⟨ℎ,𝑥⟩ : ℎ ∈ 𝐷(𝐴∗
1)}. Assume the semigroup

𝑒𝑡𝐴1 is analytic. Then by [DZ02, Theorem 11.2.21] there exists a unique invariant

measure 𝜈 for 𝐾0 i.e. ∫
𝐾0𝜑𝑑𝜈 = 0, for all 𝜑 ∈ ℰ𝐴1(𝐻),

and 𝜈 is absolutely continuous with respect to 𝜇 from Example 3.5.1 and for 𝜌 = 𝑑𝜈
𝑑𝜇
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we have that 𝜌 ∈ 𝑊 1,2(𝐻,𝜇) and 𝐷 log 𝜌 ∈ 𝑊 1,2(𝐻, 𝜈;𝐻).

Then by [Tr2, Section 4.2], we know that the bilinear form on 𝐿2(𝐻; 𝜈) associated

with 𝐾0 is a generalized Dirichlet form in the sense of Remark 3.1.1 (iii) with

(𝐸1,ℬ(𝐸1),𝑚) = (𝐻,ℬ(𝐻), 𝜈), (𝒜,𝒱) = (0, 𝐿2(𝐻, 𝜈)) and Λ = 𝐾0. It satisfies

conditions (A1)-(A5). There are even more general conditions on 𝐹 and 𝐴1 which

can be found in [DRW09, Theorem 5.2] such that conditions (A1)-(A5) hold.

The following example is given in [Tr2, Section 4.2].

Example 3.5.4 Assume that 𝐸 is a separable real Hilbert space with inner prod-

uct ∥ ⋅ ∥1/2𝐸 and 𝐻 ⊂ 𝐸 densely by a Hilbert-Schmidt map. Let 𝐵 : 𝐸 → 𝐸 be a

Borel measurable vector field satisfying the following conditions:

(B.1) lim∥𝑧∥𝐸→∞⟨𝐵(𝑧), 𝑧⟩ = −∞.

(B.2) 𝐸′⟨𝑙, 𝐵⟩𝐸 : 𝐸 → ℝ is weakly continuous for all 𝑙 ∈ 𝐸 ′.

(B.3) There exist 𝐶1, 𝐶2, 𝑑 ∈ (0,∞), such that ∥𝐵(𝑧)∥𝐸 ≤ 𝐶1 + 𝐶2∥𝑧∥𝑑𝐸.
Then by [BRS00, Theorem 5.2] there exists a probability measure 𝜇 on (𝐸,ℬ(𝐸))

such that 𝐸′⟨𝑙, 𝐵⟩𝐸 ∈ 𝐿2(𝐸;𝜇) for all 𝑙 ∈ 𝐸 ′ and such that∫
1

2
Δ𝐻𝑢+

1

2𝐸′
⟨∇𝑢,𝐵⟩𝐸𝑑𝜇 = 0 for all 𝑢 ∈ ℱ𝐶∞

𝑏 ,

where Δ𝐻 is the Gross-Laplacian, i.e., Δ𝐻𝑢 =
∑𝑚

𝑖,𝑗=1
∂𝑓

∂𝑥𝑖∂𝑥𝑗
(𝑙1(𝑧), .., 𝑙𝑚(𝑧))⟨𝑙𝑖, 𝑙𝑗⟩𝐻

for 𝑢 = 𝑓(𝑙1, ..., 𝑙𝑚) ∈ ℱ𝐶∞
𝑏 . Assume 𝐵(𝑧) = −𝑧 + 𝑣(𝑧), 𝑣 : 𝐸 → 𝐻. For the

bilinear form associated with 𝐿𝑢 = 1
2
Δ𝐻𝑢 + 1

2𝐸′⟨∇𝑢,𝐵⟩𝐸, 𝑢 ∈ ℱ𝐶∞
𝑏 on 𝐿2(𝐸, 𝜇) is

a generalized Dirichlet form in the sense of Remark 3.1.1 (iii) with (𝐸1,ℬ(𝐸1),𝑚) =

(𝐻,ℬ(𝐻), 𝜈), (𝒜,𝒱) = (0, 𝐿2(𝐻, 𝜈)) and Λ = 𝐿. It satisfies conditions (A1)-(A5).

3.6 A control problem

In this section, we assume conditions (A1)-(A5) and ∥𝐴1/2(⋅)∥𝐿∞(𝐻), ∥𝐴−1/2(⋅)∥𝐿∞(𝐻) ∈
𝐿∞(𝐸, 𝜇) and consider the case 𝑙 = 1.

Proposition 3.6.1 Let (𝛽, 𝛾) be an (ℝ, 𝐻)-valued predictable process, 𝜑 ∈
∩𝑥∈𝒩 𝑐𝑀2

𝑥(ℝ) and 𝜉 ∈ ∩𝑥∈𝒩 𝑐𝐿2(𝑃 𝑥). 𝛽 is assumed to be bounded from above,

∣𝛾∣𝐻 is bounded and 𝜉 ∈ ℱ𝑇 . Then the linear BSDE

−𝑑𝑌𝑡 = [𝜑𝑡 + 𝑌𝑡𝛽𝑡 + ⟨𝐴1/2(𝑋𝑡)𝑍𝑡, 𝛾𝑡⟩𝐻 ]𝑑𝑡− 𝑍𝑡.𝑑𝑀𝑡, 𝑌𝑇 = 𝜉,

has a solution (𝑌, 𝑍) in 𝑀2
𝑥(ℝ) ×𝑀2

𝑥(𝐻),∀𝑥 ∈ 𝒩 𝑐, where 𝑀2
𝑥(ℝ) and 𝑀2

𝑥(𝐻) are
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defined in the appendix. Moreover, 𝑌𝑡 is given by the closed formula

𝑌𝑡 = 𝐸𝑥[𝜉Γ𝑡
𝑇 +

∫ 𝑇

𝑡

Γ𝑡
𝑠𝜑𝑠𝑑𝑠∣ℱ𝑡] 𝑃

𝑥 − 𝑎.𝑠., ∀𝑥 ∈ 𝒩 𝑐,

where Γ𝑡
𝑠 is the adjoint process defined for 𝑠 ≥ 𝑡 by the forward linear SDE

𝑑Γ𝑡
𝑠 = Γ𝑡

𝑠[𝛽𝑠𝑑𝑠+ 𝐴−1/2(𝑋𝑠)𝛾𝑠.𝑑𝑀𝑠], Γ𝑡
𝑡 = 1.

In particular, if 𝜉 and 𝜑 are nonnegative, the process 𝑌 is nonnegative. If, in

addition, 𝑌0 = 0, then, for any 𝑡, 𝑌𝑡 = 0 a.s., 𝜉 = 0 a.s., and 𝜑𝑡 = 0 𝑑𝑃 𝑥 ⊗ 𝑑𝑡 a.s..

Proof By the same arguments as in [BPS02, Lemma 7.1] the assertion follows. □

Theorem 3.6.2 (Comparison Theorem). Let 𝑥 ∈ 𝐴2. Let (𝑓
1, 𝜉1) and (𝑓 2, 𝜉2) be

two standard parameters of BSDE (3.4.1), where 𝑓 1, 𝑓 2 satisfy conditions (Ω1)−(Ω3)

and

𝑓 𝑖(𝑠, 𝜔, 𝑦, 𝑧) := ℎ𝑖(𝑠, 𝜔) + ⟨𝐴1/2(𝑋𝑠)𝑐𝑖(𝑠, 𝜔), 𝑧⟩𝐻 , for 𝑖 = 1, 2,

where (ℎ𝑖, 𝑐𝑖), 𝑖 = 1, 2 are bounded (ℝ, 𝐻)-valued predictable processes. Let (𝑌 1, 𝑍1)

and (𝑌 2, 𝑍2) be the associated square-integrable solutions. We suppose that

(a) 𝜉1 ≥ 𝜉2 𝑃 𝑥-a.s.

(b)𝛿2𝑓𝑡 = 𝑓 1(𝑡, 𝑌 2
𝑡 , 𝐴

1/2(𝑋𝑡)𝑍
2
𝑡 )− 𝑓 2(𝑡, 𝑌 2

𝑡 , 𝐴
1/2(𝑋𝑡)𝑍

2
𝑡 ) ≥ 0, 𝑑𝑃 𝑥 ⊗ 𝑑𝑡-a.s.

Then we have that 𝑃 𝑥-almost surely: 𝑌 1
𝑡 ≥ 𝑌 2

𝑡 , for all 𝑡 ≥ 0.

Proof The pair (𝛿𝑌, 𝛿𝑍) is the solution of the following linear BSDE:

−𝑑𝛿𝑌𝑡 = [⟨Δ𝑧𝑓(𝑡), 𝐴
1/2(𝑋𝑡)𝛿𝑍𝑡⟩𝐻 + 𝛿2𝑓𝑡]𝑑𝑡− 𝛿𝑍𝑡.𝑑𝑀𝑡, 𝛿𝑌𝑇 = 𝜉1 − 𝜉2,

⟨Δ𝑧𝑓(𝑡), 𝑒𝑖⟩𝐻 := ⟨𝐴1/2(𝑋𝑠)𝑐1, 𝑒𝑖⟩𝐻 ,
if ⟨𝐴1/2(𝑋𝑡)(𝑍

1
𝑡 −𝑍2

𝑡 ), 𝑒𝑖⟩𝐻 is not equal to 0, and ⟨Δ𝑧𝑓(𝑡), 𝑒𝑖⟩𝐻 := 0, otherwise. Then

by the same arguments as in [BPS02, Theorem 7.2] and using Proposition 3.6.1, the

assertion follows. □

Now we consider a control problem associated to the Markov process 𝑋. An

admissible control is a process 𝜃(𝑡, 𝜔) which is progressively measurable with respect

to the filtration (ℱ𝑡)𝑡≥0 and which takes values in a compact subset𝐾 of some metric

space. We denote by Θ the class of admissible controls.

A bounded measurable function 𝑐 : [0, 𝑇 ]×𝐸×𝐾 → 𝐻 is given and we suppose

that it is continuous with respect of the last variable. For a given admissible control

𝜃 we define 𝑁 𝜃
𝑡 =

∫ 𝑡

0
𝑐𝑠(𝑋𝑠, 𝜃𝑠).𝑑𝑀𝑠,Γ

𝜃
𝑡 = exp(𝑁 𝜃

𝑡 − 1
2
⟨𝑁 𝜃⟩𝑡), and 𝑃 𝜃,𝑥 = Γ𝜃.𝑃 𝑥. The
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payoff function of the control problem is defined as

𝐽𝜃(𝑥) = 𝐸𝜃,𝑥[𝜙(𝑋𝑇 ) +

∫ 𝑇

0

ℎ(𝑠,𝑋𝑠, 𝜃𝑠)𝑑𝑠],

where 𝜙 and ℎ are bounded measurable functions and ℎ is continuous in 𝜃. One

wants to minimize the payoff function, that is to calculate the value function

𝐽∗(𝑥) = inf
𝜃∈Θ

𝐽𝜃(𝑥),

and to find an optimal control 𝜃∗, that is an admissible control such that 𝐽∗(𝑥) =
𝐽𝜃∗(𝑥).

In what follows we restrict our analysis to points 𝑥 ∈ 𝒩 𝑐. We calculate 𝐽𝜃(𝑥)

by solving the BSDE

(3.6.1) 𝑌 𝜃
𝑡 = 𝜙(𝑋𝑇 ) +

∫ 𝑇

𝑡

𝑔𝑠(𝑋𝑠, 𝐴
1/2(𝑋𝑠)𝑍

𝜃
𝑠 , 𝜃𝑠)𝑑𝑠−

∫ 𝑇

𝑡

𝑍𝜃
𝑠 .𝑑𝑀𝑠,

where 𝑔 : [0, 𝑇 ]× 𝐸 ×𝐻 ×𝐾 → ℝ is the Hamiltonian defined by

𝑔(𝑠, 𝑥, 𝑧, 𝜃) = ℎ(𝑠, 𝑥, 𝜃) + 2⟨𝐴1/2(𝑥)𝑐(𝑠, 𝑥, 𝜃), 𝑧⟩𝐻 .

Then by Itô’s formula and the same arguments as in [BPS02, Section 7] we have

𝐽𝜃(𝑥) = 𝑌 𝜃,𝑥
0 ,

where 𝑌 𝜃,𝑥
0 is the initial value of the solution of the preceding equation (3.6.1) under

𝑃 𝑥.

In order to calculate the value function and to produce the optimal control we

have to solve the following BSDE

(3.6.2) 𝑌 ∗
𝑡 = 𝜙(𝑋𝑇 ) +

∫ 𝑇

𝑡

𝑔∗(𝑠,𝑋𝑠, 𝐴
1/2(𝑋𝑠)𝑍

∗
𝑠 )𝑑𝑠−

∫ 𝑇

𝑡

𝑍∗
𝑠 .𝑑𝑀𝑠,

where 𝑔∗(𝑠, 𝑥, 𝑧) = inf𝜃∈𝐾 𝑔(𝑠, 𝑥, 𝑧, 𝜃).

It is easy to check that 𝑧 → 𝑔∗(𝑠, 𝑥, 𝑧) is Lipschitz continuous, so that there

exists a unique solution (𝑌 ∗, 𝑍∗) of equation (3.6.2). Then we know the initial value

of the solution is a constant: 𝑌 ∗,𝑥
0 = 𝐸𝑥𝑌 ∗

0 .

Since 𝑔 is continuous as a function of 𝜃 and 𝐾 is a compact set, the infimum

is attained at a point 𝜃∗ and one may choose a measurable function (𝑠, 𝑥, 𝑧) →
𝜃∗(𝑠, 𝑥, 𝑧) which realizes the infimum. We construct the optimal control in the

following way: 𝜃∗𝑠 := 𝜃∗(𝑠, 𝜔) = 𝜃∗(𝑠,𝑋𝑠(𝜔), 𝑍
∗
𝑠 (𝜔)).
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Corollary 3.6.3 Under the above hypotheses 𝐽∗(𝑥) = 𝑌 ∗,𝑥
0 and 𝜃∗ is an optimal

control.

Proof Using Theorem 3.6.2 and by the same arguments as in [BPS02, Corollary

7.3], the assertion follows. □

We now may interpret the solution of the Hamilton Jacobi Bellman equation as

the value function of the above control problem. The HJB equation is

(∂𝑡 + 𝐿)𝑢+ 𝑔∗(𝑡, 𝑥,𝐷𝐴1/2𝑢) = 0, 𝑢(𝑇, 𝑥) = 𝜙.

We have proved that this equation admits a unique solution in the sense of mild

equations and it satisfies 𝑢(0, 𝑥) = 𝑌 ∗,𝑥
0 = 𝐽∗(𝑥).

3.7 Appendix

For 𝑝 ≥ 1, let 𝑀𝑝
𝑥(ℝ𝑙) denote the set of all ( equivalent classes of) predictable

processes {𝜙𝑡}𝑡∈[0,𝑇 ] with values in ℝ𝑙 such that

∥𝜙∥𝑀𝑝
𝑥
= (𝐸𝑥[(

∫ 𝑇

0

∣𝜙𝑟∣2𝑑𝑟)𝑝/2])1/𝑝 <∞.

Let 𝑀𝑝
𝑥(𝐻

𝑙) denote the set of all ( equivalent classes of) predictable processes

{𝜙𝑡}𝑡∈[0,𝑇 ] with values in 𝐻 𝑙 such that

∥𝜙∥𝑀𝑝
𝑥
= (𝐸𝑥[(

∫ 𝑇

0

∣𝜙𝑟∣2𝐻𝑑𝑟)𝑝/2])1/𝑝 <∞.

𝒮𝑝
𝑥(ℝ𝑙) denotes the set of all ℝ𝑙-valued, adapted and càdlàg processes {𝜙𝑡}𝑡∈[0,𝑇 ]

such that

∥𝜙∥𝒮𝑝
𝑥(ℝ𝑙) = 𝐸𝑥[sup

𝑡
∣𝑋𝑡∣𝑝]1/𝑝 <∞.

Let 𝜈 be a measure supported by 𝒩 𝑐.

Lemma A.1 Let {𝐾𝑡}𝑡∈[0,𝑇 ] and {𝐻𝑡}𝑡∈[0,𝑇 ] be two progressively measurable pro-

cesses with values in ℝ𝑙 and 𝐻 𝑙 respectively, such that 𝑃 𝜈-a.s.∫ 𝑇

0

(∣𝐾𝑡∣+ ∣𝐴1/2(𝑋𝑡)𝐻𝑡∣2𝐻)𝑑𝑡 <∞.
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We consider the ℝ𝑙-valued semimartingale {𝑌𝑡}𝑡∈[0,𝑇 ] defined by

𝑌𝑡 = 𝑌0 +

∫ 𝑡

0

𝐾𝑠𝑑𝑠+

∫ 𝑡

0

𝐻𝑠.𝑑𝑀𝑠.

Then, for any 𝑝 ≥ 1, we have

∣𝑌𝑡∣𝑝 − 1𝑝=1𝐿𝑡 =∣𝑌0∣𝑝 + 𝑝

∫ 𝑡

0

∣𝑌𝑠∣𝑝−1⟨𝑌𝑠, 𝐾𝑠⟩𝑑𝑠+ 𝑝

∫ 𝑡

0

∣𝑌𝑠∣𝑝−1⟨𝑌𝑠, 𝐻𝑠.𝑑𝑀𝑠⟩

+
𝑝

2

∫ 𝑡

0

∣𝑌𝑠∣𝑝−21𝑌𝑠 ∕=0{(2− 𝑝)(∣𝐴1/2(𝑋𝑠)𝐻𝑠∣2𝐻

−
𝑙∑

𝑗,𝑘=1

⟨𝐴(𝑋𝑠)𝐻
𝑗
𝑠 , 𝐻

𝑘
𝑠 ⟩𝐻𝑌 𝑗

𝑠 𝑌
𝑘
𝑠 /∣𝑌𝑠∣2) + (𝑝− 1)∣𝐴1/2(𝑋𝑠)𝐻𝑠∣2𝐻}𝑑𝑠,

where {𝐿𝑡}𝑡∈[0,𝑇 ] is a continuous, increasing process with 𝐿0 = 0, which increases

only on the boundary of the random set {𝑡 ∈ [0, 𝑇 ], 𝑌𝑡 = 0}.

Proof We consider the function 𝑢𝜀(𝑥) = (∣𝑥∣2 + 𝜀2)1/2. We have

∇𝑢𝑝𝜀(𝑥) = 𝑝𝑢𝑝−2
𝜀 (𝑥)𝑥, 𝐷2𝑢𝑝𝜀(𝑥) = 𝑝𝑢𝑝−2

𝜀 (𝑥)𝐼 + 𝑝(𝑝− 2)𝑢𝑝−4
𝜀 (𝑥)(𝑥⊗ 𝑥).

Then Itô’s formula leads to the equality,

𝑢𝑝𝜀(𝑌𝑡) =𝑢
𝑝
𝜀(𝑌0) + 𝑝

∫ 𝑡

0

𝑢𝑝−2
𝜀 (𝑌𝑠)⟨𝑌𝑠, 𝐾𝑠⟩𝑑𝑠+ 𝑝

∫ 𝑡

0

𝑢𝑝−2
𝜀 (𝑌𝑠)⟨𝑌𝑠, 𝐻𝑠.𝑑𝑀𝑠⟩

+
1

2

∑
𝑗,𝑘

∫ 𝑡

0

𝐷2
𝑗𝑘𝑢

𝑝
𝜀(𝑌𝑠)⟨𝐴(𝑋𝑠)𝐻

𝑗
𝑠 , 𝐻

𝑘
𝑠 ⟩𝐻𝑑𝑠.

It remains to pass to the limit when 𝜀→ 0 in this identity. We have∫ 𝑡

0

𝑢𝑝−2
𝜀 (𝑌𝑠)⟨𝑌𝑠, 𝐾𝑠⟩𝑑𝑠→

∫ 𝑡

0

∣𝑌𝑠∣𝑝−1⟨𝑌𝑠, 𝐾𝑠⟩𝑑𝑠.

and uniformly on [0, 𝑇 ] in 𝑃 𝜈-probability,∫ 𝑡

0

𝑢𝑝−2
𝜀 (𝑌𝑠)⟨𝑌𝑠, 𝐻𝑠.𝑑𝑀𝑠⟩ →

∫ 𝑡

0

∣𝑌𝑠∣𝑝−1⟨𝑌𝑠, 𝐻𝑠.𝑑𝑀𝑠⟩.

This convergence of stochastic integrals follows from the following convergence∫ 𝑇

0

∣𝑌𝑟∣21𝑌𝑟 ∕=0∣𝐴1/2(𝑋𝑠)𝐻𝑟∣2𝐻(∣𝑌𝑟∣𝑝−2 − 𝑢𝑝−2
𝜀 (𝑌𝑟))

2𝑑𝑟 → 0,

which is clear from the dominated convergence theorem.
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We have∑
𝑗,𝑘

𝐷2
𝑗𝑘𝑢

𝑝
𝜀(𝑌𝑠)⟨𝐴(𝑋𝑠)𝐻

𝑗
𝑠 , 𝐻

𝑘
𝑠 ⟩𝐻

=𝑝(2− 𝑝)(∣𝑌𝑠∣𝑢−1
𝜀 (𝑌𝑠))

4−𝑝∣𝑌𝑠∣𝑝−21𝑌𝑠 ∕=0(∣𝐴1/2(𝑋𝑠)𝐻𝑠∣2𝐻

−
𝑙∑

𝑗,𝑘=1

⟨𝐴(𝑋𝑠)𝐻
𝑗
𝑠 , 𝐻

𝑘
𝑠 ⟩𝐻𝑌 𝑗

𝑠 𝑌
𝑘
𝑠 /∣𝑌𝑠∣2)

+ 𝑝(𝑝− 1)(∣𝑌𝑠∣𝑢−1
𝜀 (𝑌𝑠))

4−𝑝∣𝑌𝑠∣𝑝−21𝑌𝑠 ∕=0∣𝐴1/2(𝑋𝑠)𝐻𝑠∣2𝐻 + 𝐶𝜀
𝑠(𝑝),

where 𝐶𝜀
𝑠(𝑝) = 𝑝𝜀2∣𝐴1/2(𝑋𝑠)𝐻𝑠∣2𝐻𝑢𝑝−4

𝜀 (𝑌𝑠). Furthermore, one has

∣𝐴1/2(𝑋𝑠)𝐻𝑠∣2𝐻 ≥
𝑙∑

𝑗,𝑘=1

⟨𝐴(𝑋𝑠)𝐻
𝑗
𝑠 , 𝐻

𝑘
𝑠 ⟩𝐻𝑌 𝑗

𝑠 𝑌
𝑘
𝑠 /∣𝑌𝑠∣2.

Moreover,
∣𝑌𝑠∣
𝑢𝜀(𝑌𝑠)

↑ 1𝑌𝑠 ∕=0,

as 𝜀→ 0. Hence by monotone convergence, as 𝜀→ 0,∫ 𝑡

0

(∣𝑌𝑠∣𝑢−1
𝜀 (𝑌𝑠))

4−𝑝∣𝑌𝑠∣𝑝−21𝑌𝑠 ∕=0{(2− 𝑝)(∣𝐴1/2(𝑋𝑠)𝐻𝑠∣2𝐻

−
𝑙∑

𝑗,𝑘=1

⟨𝐴(𝑋𝑠)𝐻
𝑗
𝑠 , 𝐻

𝑘
𝑠 ⟩𝐻𝑌 𝑗

𝑠 𝑌
𝑘
𝑠 /∣𝑌𝑠∣2) + (𝑝− 1)∣𝐴1/2(𝑋𝑠)𝐻𝑠∣2𝐻}𝑑𝑠

converges to

∫ 𝑡

0

∣𝑌𝑠∣𝑝−21𝑌𝑠 ∕=0{(2− 𝑝)(∣𝐴1/2(𝑋𝑠)𝐻𝑠∣2𝐻 −
𝑙∑

𝑗,𝑘=1

⟨𝐴(𝑋𝑠)𝐻
𝑗
𝑠 , 𝐻

𝑘
𝑠 ⟩𝐻𝑌 𝑗

𝑠 𝑌
𝑘
𝑠 /∣𝑌𝑠∣2)

+ (𝑝− 1)∣𝐴1/2(𝑋𝑠)𝐻𝑠∣2𝐻}𝑑𝑠,

𝑃 𝜈-a.s. for all 0 ≤ 𝑡 ≤ 𝑇 . By the same arguments as in [BDHPS03, Lemma 2.2],

we have {𝐿𝜀
𝑡(𝑝) :=

∫ 𝑡

0
𝐶𝜀

𝑠(𝑝)𝑑𝑠}𝑡∈[0,𝑇 ] converges, as 𝜀→ 0, to a continuous increasing

process {𝐿𝑡(𝑝)}𝑡∈[0,𝑇 ], and 𝐿𝑡(𝑝) ≡ 0 for 𝑝 ∕= 1. Furthermore, 𝐿𝑡(1) increases only on

the boundary of the random set {𝑡 ∈ [0, 𝑇 ], 𝑌𝑡 = 0}. Now the assertions follows. □

Corollary A.2 If (𝑌, 𝑍) is a solution of the BSDE, 𝑝 ≥ 1, 𝑐(𝑝) = 𝑝[(𝑝− 1)∧ 1]/2

and 0 ≤ 𝑡 ≤ 𝑢 ≤ 𝑇 , then

∣𝑌𝑡∣𝑝 + 𝑐(𝑝)

∫ 𝑢

𝑡

∣𝑌𝑠∣𝑝−21𝑌𝑠 ∕=0∣𝐴1/2(𝑋𝑠)𝑍𝑠∣2𝐻𝑑𝑠
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≤∣𝑌𝑢∣𝑝 + 𝑝

∫ 𝑢

𝑡

∣𝑌𝑠∣𝑝−1⟨𝑌𝑠, 𝑓(𝑠, 𝑌𝑠, 𝐴1/2(𝑋𝑠)𝑍𝑠)⟩𝑑𝑠

− 𝑝

∫ 𝑢

𝑡

∣𝑌𝑠∣𝑝−1⟨𝑌𝑠, 𝑍𝑠.𝑑𝑀𝑠⟩.

Now we state some estimates concerning solutions to the BSDE. In the following

we assume that 𝑝 > 1 and make use of the following assumption

(A) : ∀(𝑡, 𝑦, 𝑧) ∈ [0, 𝑇 ]×ℝ𝑙⊗𝐻 𝑙, ⟨𝑦, 𝑓(𝑡, 𝑦, 𝑧)⟩ ≤ 𝑓𝑡+𝜇∣𝑦∣+𝐶∣𝑧∣, 𝑃 𝜈 −𝑎.𝑠.,

where 𝜇 ∈ ℝ, 𝐶 ≥ 0 and {𝑓𝑡}𝑡∈[0,𝑇 ] is a non-negative progressively measurable pro-

cess. Let us set 𝐹 :=
∫ 𝑇

0
𝑓𝑟𝑑𝑟.

Lemma A.3 Suppose assumption (A) holds and that for some 𝑝 > 0, 𝐹 𝑝 is

integrable. Let (𝑌, 𝑍) be a solution to the BSDE. If 𝑌 ∈ 𝒮𝑝
𝜈 , then 𝑍 ∈ ℳ𝑝

𝜈 and

there exists a constant 𝐶𝑝 depending only on 𝑝 such that for every 𝑎 ≥ 𝜇+ 𝐶2,

𝐸𝜈 [(

∫ 𝑇

0

𝑒2𝑎𝑡∣𝐴1/2(𝑋𝑟)𝑍𝑟∣2𝐻𝑑𝑟)𝑝/2] ≤ 𝐶𝑝𝐸
𝜈 [sup

𝑡
𝑒𝑎𝑝𝑡∣𝑌𝑡∣𝑝 + (

∫ 𝑇

0

𝑒𝑎𝑟𝑓𝑟𝑑𝑟)
𝑝].

Proof We note that (𝑌, 𝑍) solves the BSDE with data (𝜉, 𝑓) iff

(𝑌𝑡, 𝑍𝑡) := (𝑒𝑎𝑡𝑌𝑡, 𝑒
𝑎𝑡𝑍𝑡)

solves the BSDE with data (𝑒𝑎𝑇 𝜉, 𝑓 ′), where

𝑓 ′(𝑡, 𝑦, 𝑧) := 𝑒𝑎𝑡𝑓(𝑡, 𝑒−𝑎𝑡𝑦, 𝑒−𝑎𝑡𝑧)− 𝑎𝑦.

We restrict ourselves to the case that 𝑎 = 0 and 𝜇+𝐶2 ≤ 0. For each integer 𝑛 ≥ 1,

let us introduce the stopping time

𝜏𝑛 := inf{𝑡 ∈ [0, 𝑇 ],

∫ 𝑡

0

∣𝐴1/2(𝑋𝑟)𝑍𝑟∣2𝐻𝑑𝑟 ≥ 𝑛} ∧ 𝑇.

By Itô’s formula we get

∣𝑌0∣2+
∫ 𝜏𝑛

0

∣𝐴1/2(𝑋𝑟)𝑍𝑟∣2𝐻𝑑𝑟 = ∣𝑌𝜏𝑛∣2+2

∫ 𝜏𝑛

0

⟨𝑌𝑟, 𝑓(𝑟, 𝑌𝑟, 𝑍𝑟)⟩𝑑𝑟−2

∫ 𝜏𝑛

0

⟨𝑌𝑟, 𝑍𝑟.𝑑𝑀𝑟⟩.

By (A) and since 𝜇+ 𝐶2 ≤ 0, we have

2⟨𝑦, 𝑓(𝑟, 𝑦, 𝑧)⟩ ≤ 2∣𝑦∣𝑓𝑟 + 2𝜇∣𝑦∣2 + 2𝐶2∣𝑦∣2 + ∣𝑧∣2/2 ≤ 2∣𝑦∣𝑓𝑟 + ∣𝑧∣2/2.
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Hence we deduce that

1

2

∫ 𝜏𝑛

0

∣𝐴1/2(𝑋𝑟)𝑍𝑟∣2𝐻𝑑𝑟 ≤ 𝑌 2
∗ + 2𝑌∗

∫ 𝑇

0

𝑓𝑟𝑑𝑟 + 2∣
∫ 𝜏𝑛

0

⟨𝑌𝑟, 𝑍𝑟.𝑑𝑀𝑟⟩∣,

where 𝑌∗ denotes sup𝑡∈[0,𝑇 ] ∣𝑌𝑡∣, and thus

(

∫ 𝜏𝑛

0

∣𝐴1/2(𝑋𝑟)𝑍𝑟∣2𝐻𝑑𝑟)𝑝/2 ≤ 𝑐𝑝(𝑌
𝑝
∗ + (

∫ 𝑇

0

𝑓𝑟𝑑𝑟)
𝑝 + ∣

∫ 𝜏𝑛

0

⟨𝑌𝑟, 𝑍𝑟.𝑑𝑀𝑟⟩∣𝑝/2).

By the BDG inequality, we get

𝑐𝑝𝐸
𝜈 [∣

∫ 𝜏𝑛

0

⟨𝑌𝑟, 𝑍𝑟.𝑑𝑀𝑟⟩∣𝑝/2] ≤𝑑𝑝𝐸𝜈 [(

∫ 𝜏𝑛

0

∣𝑌𝑟∣2∣𝐴1/2(𝑋𝑟)𝑍𝑟∣2𝐻𝑑𝑟)𝑝/4]

≤𝑑𝑝𝐸𝜈 [∣𝑌∗∣𝑝/2(
∫ 𝜏𝑛

0

∣𝐴1/2(𝑋𝑟)𝑍𝑟∣2𝐻𝑑𝑟)𝑝/4]

≤𝑑
2
𝑝

2
𝐸𝜈 [𝑌 𝑝

∗ ] +
1

2
𝐸𝜈 [(

∫ 𝜏𝑛

0

∣𝐴1/2(𝑋𝑟)𝑍𝑟∣2𝐻𝑑𝑟)𝑝/2].

Furthermore, we have

𝐸𝜈 [(

∫ 𝜏𝑛

0

∣𝐴1/2(𝑋𝑟)𝑍𝑟∣2𝐻𝑑𝑟)𝑝/2] ≤ 𝐶𝑝𝐸
𝜈 [𝑌 𝑝

∗ + (

∫ 𝑇

0

𝑓𝑟𝑑𝑟)
𝑝].

Letting 𝑛→ ∞ we obtain

𝐸𝜈 [(

∫ 𝑇

0

∣𝐴1/2(𝑋𝑟)𝑍𝑟∣2𝐻𝑑𝑟)𝑝/2] ≤ 𝐶𝑝𝐸
𝜈 [𝑌 𝑝

∗ + (

∫ 𝑇

0

𝑓𝑟𝑑𝑟)
𝑝].

□

Proposition A.4 Suppose that assumption (A) holds and that for some 𝑝 > 1,

𝐹 belongs to 𝐿𝑝. Let (𝑌, 𝑍) be a solution to the BSDE where 𝑌 belongs to 𝒮𝑝
𝜈 .

Then there exists a constant 𝐶𝑝, depending only on 𝑝, such that for every 𝑎 ≥
𝜇+ 𝐶2/[1 ∧ (𝑝− 1)],

𝐸𝜈 [sup
𝑡
𝑒𝑎𝑝𝑡∣𝑌𝑡∣𝑝 + (

∫ 𝑇

0

𝑒2𝑎𝑡∣𝐴1/2(𝑋𝑟)𝑍𝑟∣2𝐻𝑑𝑟)𝑝/2] ≤ 𝐶𝑝𝐸
𝜈 [𝑒𝑎𝑝𝑇 ∣𝜉∣𝑝 + (

∫ 𝑇

0

𝑒𝑎𝑟𝑓𝑟𝑑𝑟)
𝑝].

Proof We restrict ourselves the proof to the case 𝑎 = 0 and 𝜇+𝐶2/[1∧(𝑝−1)] ≤ 0;

By Corollary A.2 and ⟨𝑦, 𝑓(𝑟, 𝑦, 𝑧)⟩ ≤ 𝑓𝑟 + 𝜇∣𝑦∣+ 𝐶∣𝑧∣, we have

∣𝑌𝑡∣𝑝 + 𝑐(𝑝)

∫ 𝑇

𝑡

∣𝑌𝑟∣𝑝−21𝑌𝑠 ∕=0∣𝐴1/2(𝑋𝑟)𝑍𝑟∣2𝐻𝑑𝑟
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≤∣𝜉∣𝑝 + 𝑝

∫ 𝑇

𝑡

∣𝑌𝑟∣𝑝−1𝑓𝑟 + 𝜇∣𝑌𝑟∣𝑝 + 𝐶∣𝑌𝑟∣𝑝−1∣𝐴1/2(𝑋𝑟)𝑍𝑟∣𝐻𝑑𝑟 − 𝑝

∫ 𝑇

𝑡

∣𝑌𝑟∣𝑝−1⟨𝑌𝑟, 𝑍𝑟.𝑑𝑀𝑟⟩.

Now by the same arguments as in [BDHPS03, Proposition 3.2] the assertion follows.

□

Proof of Proposition 3.4.3 We consider 𝑃 𝑥 for 𝑥 ∈ 𝐴𝑝.

We note that (𝑌, 𝑍) solves the BSDE with data (𝜉, 𝑓) iff

(𝑌𝑡, 𝑍𝑡) := (𝑒𝛼𝑡𝑌𝑡, 𝑒
𝛼𝑡𝑍𝑡)

solves the BSDE with data (𝑒𝛼𝑇 𝜉, 𝑓 ′), where

𝑓 ′(𝑡, 𝑦, 𝑧) := 𝑒𝛼𝑡𝑓(𝑡, 𝑒−𝛼𝑡𝑦, 𝑒−𝛼𝑡𝑧)− 𝜇𝑡𝑦.

We replace (Ω2) by the condition that for 𝑡, 𝜔, 𝑦, 𝑦′, 𝑧 arbitrary,

⟨𝑦 − 𝑦′, 𝑓(𝑡, 𝜔, 𝑦, 𝑧)− 𝑓(𝑡, 𝜔, 𝑦′, 𝑧)⟩ ≤ 0.

Step 1. We assume that 𝑓 is Lipschitz continuous with respect to both 𝑦 and 𝑧,

and that 𝑓, 𝜉 are bounded. We define a mapping Φ from 𝐵2
𝑥 :=𝑀2

𝑥(ℝ𝑙)×𝑀2
𝑥(𝐻

𝑙) into

itself as follows. Given (𝑈, 𝑉 ) ∈ 𝐵2
𝑥, Φ(𝑈, 𝑉 ) := (𝑌, 𝑍), where (𝑌, 𝑍) is the solution

of the BSDE (3.4.1) associated with the data (𝜉, 𝑓(𝑈,𝐴1/2(𝑋)𝑉 )) by Lemma 3.4.1.

As

⟨
∫ ⋅

0

𝜙𝑠.𝑑𝑀𝑠⟩𝑡 =
∫ 𝑡

0

⟨𝐴(𝑋𝑠)𝜙𝑠, 𝜙𝑠⟩𝐻𝑑𝑠,

by Itô’s formula and the BDG inequality, we have

𝐸𝑥[ sup
𝑡∈[0,𝑇 ]

∣𝑌𝑡∣2] <∞.

Let (𝑈, 𝑉 ), (𝑈 ′, 𝑉 ′) ∈ 𝐵2
𝑥, (𝑌, 𝑍) = Φ(𝑈, 𝑉 ), (𝑌 ′, 𝑍 ′) = Φ(𝑈 ′, 𝑉 ′), (�̄� , 𝑉 ) = (𝑈 −

𝑈 ′, 𝑉 − 𝑉 ′), (𝑌 , 𝑍) = (𝑌 − 𝑌 ′, 𝑍 − 𝑍 ′). It follows from Itô’s formula that for each

𝛾 ∈ ℝ,

𝑒𝛾𝑡𝐸𝑥∣𝑌𝑡∣2 + 𝐸𝑥

∫ 𝑇

𝑡

𝑒𝛾𝑠(𝛾∣𝑌𝑠∣2 + ∣𝐴1/2(𝑋𝑠)𝑍𝑠∣2𝐻)𝑑𝑠

≤2𝐾𝐸𝑥

∫ 𝑇

𝑡

𝑒𝛾𝑠∣𝑌𝑠∣(∣�̄�𝑠∣+ ∣𝐴1/2(𝑋𝑠)𝑉𝑠∣𝐻)𝑑𝑠

≤4𝐾2𝐸𝑥

∫ 𝑇

𝑡

𝑒𝛾𝑠∣𝑌𝑠∣2 + 1

2
𝐸𝑥

∫ 𝑇

𝑡

𝑒𝛾𝑠(∣�̄�𝑠∣2 + ∣𝐴1/2(𝑋𝑠)𝑉𝑠∣2𝐻)𝑑𝑠,
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where 𝐾 is the Lipschitz constant of 𝑓 . We choose 𝛾 = 1 + 4𝐾2. Then

𝐸𝑥

∫ 𝑇

0

𝑒𝛾𝑠(∣𝑌𝑠∣2 + ∣𝐴1/2(𝑋𝑠)𝑍𝑠∣2𝐻)𝑑𝑠 ≤
1

2
𝐸𝑥

∫ 𝑇

0

𝑒𝛾𝑠(∣�̄�𝑠∣2 + ∣𝐴1/2(𝑋𝑠)𝑉𝑠∣2𝐻)𝑑𝑠,

from which it follows that Φ is a strict contraction on 𝐵2
𝑥 equipped with the norm:

∣∣∣(𝑌, 𝑍)∣∣∣𝑥𝛾 = (𝐸𝑥

∫ 𝑇

0

𝑒𝛾𝑡(∣𝑌𝑡∣2 + ∣𝐴1/2(𝑋𝑡)𝑍𝑡∣2𝐻)𝑑𝑡)1/2.

We define a sequence (𝑌 𝑛, 𝑍𝑛) by (𝑌 𝑛+1, 𝑍𝑛+1) = Φ(𝑌 𝑛, 𝑍𝑛). For 𝛾 = 1 + 4𝐾2,

we have

𝐸𝑥

∫ 𝑇

0

𝑒𝛾𝑠(∣𝑌 𝑛
𝑠 − 𝑌 𝑛+1

𝑠 ∣2 + ∣𝐴1/2(𝑋𝑠)(𝑍
𝑛
𝑠 − 𝑍𝑛+1

𝑠 )∣2𝐻)𝑑𝑠

≤ 1

2𝑛
𝐸𝑥

∫ 𝑇

0

𝑒𝛾𝑠(∣𝑌 0
𝑠 − 𝑌 1

𝑠 ∣2 + ∣𝐴1/2(𝑋𝑠)(𝑍
0
𝑠 − 𝑍1

𝑠 )∣2𝐻)𝑑𝑠.

Then for any 𝑥 ∈ 𝐴2 we have the a.e. pointwise convergence of (𝑌 𝑛
𝑠 , 𝑍

𝑛
𝑠 ) under 𝑃

𝑥.

We denote the limit by (𝑌𝑠, 𝑍𝑠). Then it is the fixed point of Φ under the norm

∣∣∣(𝑌, 𝑍)∣∣∣𝑥𝛾. So we have (𝑌𝑠, 𝑍𝑠) is the solution of the BSDE.

Step 2. We assume 𝑓, 𝜉 are bounded.

We need the following proposition.

Proposition A.5 Suppose 𝑓, 𝜉 are bounded. Given 𝑉𝑡 ∈ ∩𝑥𝑀
2
𝑥(𝐻

𝑙), there exists

a unique pair of predictable processes (𝑌𝑡, 𝑍𝑡) ∈ 𝑀2
𝑥 ×𝑀2

𝑥(𝐻
𝑙),∀𝑥 ∈ 𝒩 𝑐, satisfying

for all 𝑃 𝑥, 𝑥 ∈ 𝒩 𝑐

𝑌𝑡 = 𝜉 +

∫ 𝑇

𝑡

𝑓(𝑠, 𝑌𝑠, 𝑉𝑠)𝑑𝑠−
∫ 𝑇

𝑡

𝑍𝑠𝑑𝑀𝑠, 0 ≤ 𝑡 ≤ 𝑇.

Using Proposition A.5, we construct a mapping Φ from 𝐵2
𝑥 into itself as follows. For

any (𝑈, 𝑉 ) ∈ 𝐵2
𝑥, (𝑌, 𝑍) = Φ(𝑈, 𝑉 ) is the solution of the BSDE

𝑌𝑡 = 𝜉 +

∫ 𝑇

𝑡

𝑓(𝑠, 𝑌𝑠, 𝑉𝑠)𝑑𝑠−
∫ 𝑇

𝑡

𝑍𝑠𝑑𝑀𝑠, 0 ≤ 𝑡 ≤ 𝑇.

Then as in Step 1, we have

𝑒𝛾𝑡𝐸𝑥∣𝑌𝑡∣2 + 𝐸𝑥

∫ 𝑇

𝑡

𝑒𝛾𝑠(𝛾∣𝑌𝑠∣2 + ∣𝐴1/2(𝑋𝑠)𝑍𝑠∣2𝐻)𝑑𝑠
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=2𝐸𝑥

∫ 𝑇

𝑡

𝑒𝛾𝑠⟨𝑌𝑠, 𝑓(𝑌𝑠, 𝐴1/2(𝑋𝑠)𝑉𝑠)− 𝑓(𝑌 ′
𝑠 , 𝐴

1/2(𝑋𝑠)𝑉
′
𝑠 )⟩𝑑𝑠

≤2𝐾𝐸𝑥

∫ 𝑇

𝑡

𝑒𝛾𝑠∣𝑌𝑠∣ × ∣𝐴1/2(𝑋𝑠)𝑉𝑠∣𝐻𝑑𝑠

≤𝐸𝑥

∫ 𝑇

𝑡

𝑒𝛾𝑠(2𝐾2∣𝑌𝑠∣2 + 1

2
∣𝐴1/2(𝑋𝑠)𝑉𝑠∣2𝐻)𝑑𝑠.

Then by the same argument as in Step 1, the assertion of Proposition 3.4.3 follows,

if 𝑓, 𝜉 are bounded.

Proof of Proposition A.5 We shall write 𝑓(𝑠, 𝑦) for 𝑓(𝑠, 𝑦, 𝑉𝑠) and ∣𝜉∣2+sup𝑡 ∣𝑓(𝑡, 0)∣2 ≤
𝐶 a.s.. We define

𝑓𝑛(𝑡, 𝑦) := (𝜌𝑛 ∗ 𝑓(𝑡, ⋅))(𝑦),
where 𝜌𝑛 : ℝ𝑙 7→ ℝ+, 𝑛 ∈ ℕ is a sequence of smooth functions with compact support

which approximates the Dirac measure at 0, satisfying
∫
𝜌𝑛(𝑧)𝑑𝑧 = 1. Then 𝑓𝑛 is

locally Lipschitz in 𝑦, uniformly with respect to 𝑠 and 𝜔.

Define for each 𝑚 ∈ ℕ

𝑓𝑛,𝑚(𝑡, 𝑦) := 𝑓𝑛(𝑡,
inf(𝑚, ∣𝑦∣)

∣𝑦∣ 𝑦).

Then 𝑓𝑛,𝑚 is globally Lipschitz and bounded, uniformly w.r.t. (𝑡, 𝜔). As in Step 1,

we have a unique pair (𝑌 𝑛,𝑚
𝑡 , 𝑍𝑛,𝑚

𝑡 ) ∈𝑀2
𝑥(ℝ𝑙)×𝑀2

𝑥(𝐻
𝑙) such that

𝑌 𝑛,𝑚
𝑡 = 𝜉 +

∫ 𝑇

𝑡

𝑓𝑛,𝑚(𝑠, 𝑌 𝑛,𝑚
𝑠 )𝑑𝑠−

∫ 𝑇

𝑡

𝑍𝑛,𝑚
𝑠 .𝑑𝑀𝑠, 0 ≤ 𝑡 ≤ 𝑇.

By Itô’s formula, we have

∣𝑌 𝑛,𝑚
𝑡 ∣2 ≤ 𝑒𝑇𝐶, 0 ≤ 𝑡 ≤ 𝑇.

Consequently, for 𝑚2 > 𝑒𝑇𝐶, (𝑌 𝑛,𝑚
𝑡 , 𝑍𝑛,𝑚

𝑡 ) does not depend on 𝑚. Therefore, we

denote it by (𝑌 𝑛
𝑡 , 𝑍

𝑛
𝑡 ). (𝑌 𝑙 − 𝑌 𝑘, 𝑍 𝑙 − 𝑍𝑘) is the solution of BSDE associated with

(𝑓 𝑙(𝑡, 𝑦 + 𝑌 𝑘
𝑡 )− 𝑓𝑘(𝑌 𝑘

𝑡 ), 0). Hence by Proposition A.4, we have

𝐸𝑥( sup
0≤𝑡≤𝑇

∣𝑌 𝑘
𝑡 −𝑌 𝑙

𝑡 ∣2)+𝐸𝑥(

∫ 𝑇

0

∣𝐴1/2(𝑋𝑡)(𝑍
𝑘
𝑡 −𝑍 𝑙

𝑡)∣2𝐻𝑑𝑡) ≤ 𝐾𝐸𝑥[

∫ 𝑇

0

∣𝑓𝑘(𝑡, 𝑌 𝑘
𝑡 )−𝑓 𝑙(𝑡, 𝑌 𝑘

𝑡 )∣2𝑑𝑡].

For fixed (𝑡, 𝜔) we have,

sup
𝑘>𝑙

∫ 𝑇

0

∣𝑓𝑘(𝑡, 𝑌 𝑘
𝑡 )− 𝑓 𝑙(𝑡, 𝑌 𝑘

𝑡 )∣2𝑑𝑡→ 0, as 𝑙 → ∞.
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Then we obtain

sup
𝑘>𝑙

𝐸𝑥

∫ 𝑇

0

∣𝑓𝑘(𝑡, 𝑌 𝑘
𝑡 )−𝑓 𝑙(𝑡, 𝑌 𝑘

𝑡 )∣2𝑑𝑡 ≤ 𝐸𝑥 sup
𝑘>𝑙

∫ 𝑇

0

∣𝑓𝑘(𝑡, 𝑌 𝑘
𝑡 )−𝑓 𝑙(𝑡, 𝑌 𝑘

𝑡 )∣2𝑑𝑡→ 0, as 𝑙 → ∞.

Therefore, we obtain a sequence of representable variables that converges rapidly

enough under all measures 𝑃 𝑥, 𝑥 ∈ 𝒩 𝑐. For each 𝑙 = 0, 1, ... set

𝑛𝑙(𝑥) = inf{𝑛 > 𝑛𝑙−1(𝑥); sup
𝑘≥𝑛

𝐸𝑥[

∫ 𝑇

0

∣𝑓𝑘(𝑡, 𝑌 𝑘
𝑡 )− 𝑓𝑛(𝑡, 𝑌 𝑘

𝑡 )∣2𝑑𝑡] <
1

2𝑙
}.

𝑌 𝑙 = 𝑌 𝑛𝑙(𝑋0), 𝑍 𝑙 = 𝑍𝑛𝑙(𝑋0).

With this sequence one may pass to the limit and define 𝑍𝑠 := lim sup𝑙→∞ 𝑍 𝑙
𝑠 and

the assertion follows.. □

Now we continue the proof of Proposition 3.4.3.

Step 3. Now we assume that 𝜉 and sup𝑡 ∣𝑓0
𝑡 ∣ are bounded random variables. Let

𝑟 be a positive real number such that√
𝑒(1 + 𝐶2)𝑇 (∥𝜉∥∞ + 𝑇∥𝑓 0∥∞) < 𝑟.

Let 𝜃𝑟 be a smooth function such that 0 ≤ 𝜃𝑟 ≤ 1, 𝜃𝑟(𝑦) = 1 for ∣𝑦∣ ≤ 𝑟 and

𝜃𝑟(𝑦) = 0, if ∣𝑦∣ ≥ 𝑟 + 1. For 𝑛 ∈ ℕ, we set 𝑞𝑛(𝑧) := 𝑧 𝑛
∣𝑧∣𝐻∨𝑛 and

ℎ𝑛(𝑡, 𝑦, 𝑧) := 𝜃𝑟(𝑦)(𝑓(𝑡, 𝑦, 𝑞𝑛(𝑧))− 𝑓0
𝑡 )

𝑛

𝑓 ′,𝑟+1 ∨ 𝑛 + 𝑓0
𝑡 .

By [BDHPS03, Theorem 4.2], we have that each ℎ𝑛 satisfies (Ω2) with a positive

constant and (𝜉, ℎ𝑛) are bounded. The BSDE associated to (𝜉, ℎ𝑛) has a unique

solution (𝑌 𝑛, 𝑍𝑛) in the space 𝒮2
𝑥 ×ℳ2

𝑥(𝐻
𝑙). By the same arguments as in [Pa99,

Proposition 2.4] we have ∥𝑌 𝑛∥∞ < 𝑟. By Proposition A.4, ∥𝑍𝑛∥ℳ2
𝑥(𝐻

𝑙) ≤ 𝑟′. Hence
(𝑌 𝑛, 𝑍𝑛) is a solution to the BSDE associated to (𝜉, 𝑓𝑛) where

𝑓𝑛(𝑡, 𝑦, 𝑧) := (𝑓(𝑡, 𝑦, 𝑞𝑛(𝑧))− 𝑓 0
𝑡 )

𝑛

𝑓 ′,𝑟+1 ∨ 𝑛 + 𝑓 0
𝑡 .

Since (𝑌 𝑛+𝑖 − 𝑌 𝑛, 𝑍𝑛+𝑖 − 𝑍𝑛) is the solution of BSDE associated with (𝑓𝑛+𝑖(𝑡, 𝑦 +

𝑌 𝑛
𝑡 , 𝑧 + 𝑍𝑛

𝑡 )− 𝑓𝑛(𝑌 𝑛
𝑡 , 𝑍

𝑛
𝑡 ), 0) and

⟨𝑦, 𝑓𝑛+𝑖(𝑡, 𝑦 + 𝑌 𝑛
𝑡 , 𝑧 + 𝑍𝑛

𝑡 )− 𝑓𝑛(𝑡, 𝑌 𝑛
𝑡 , 𝑍

𝑛
𝑡 )⟩

=⟨𝑦, 𝑓𝑛+𝑖(𝑡, 𝑦 + 𝑌 𝑛
𝑡 , 𝑧 + 𝑍𝑛

𝑡 )− 𝑓𝑛+𝑖(𝑡, 𝑌 𝑛
𝑡 , 𝑍

𝑛
𝑡 )⟩+ ⟨𝑦, 𝑓𝑛+𝑖(𝑡, 𝑌 𝑛

𝑡 , 𝑍
𝑛
𝑡 )− 𝑓𝑛(𝑡, 𝑌 𝑛

𝑡 , 𝑍
𝑛
𝑡 )⟩

≤𝐶∣𝑦∣∣𝑧∣+ ∣𝑦∣∣𝑓𝑛+𝑖(𝑡, 𝑌 𝑛
𝑡 , 𝑍

𝑛
𝑡 )− 𝑓𝑛(𝑡, 𝑌 𝑛

𝑡 , 𝑍
𝑛
𝑡 )∣,
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by Proposition A.4 we have

𝐸𝑥( sup
0≤𝑡≤𝑇

∣𝑌 𝑛+𝑖
𝑡 − 𝑌 𝑛

𝑡 ∣2) + 𝐸𝑥(

∫ 𝑇

0

∣𝐴1/2(𝑋𝑡)(𝑍
𝑛+𝑖
𝑡 − 𝑍𝑛

𝑡 )∣2𝐻𝑑𝑡)

≤𝐾𝐸𝑥[

∫ 𝑇

0

∣𝑓𝑛+𝑖(𝑡, 𝑌 𝑛
𝑡 , 𝑍

𝑛
𝑡 )− 𝑓𝑛(𝑡, 𝑌 𝑛

𝑡 , 𝑍
𝑛
𝑡 )∣2𝑑𝑡].

Since ∥𝑌 𝑛∥∞ ≤ 𝑟, we have

∣𝑓𝑛+𝑖(𝑡, 𝑌 𝑛
𝑡 , 𝑍

𝑛
𝑡 )−𝑓𝑛(𝑡, 𝑌 𝑛

𝑡 , 𝑍
𝑛
𝑡 )∣ ≤ 2𝐶∣𝑍𝑛

𝑡 ∣𝐻1∣𝑍𝑛
𝑡 ∣𝐻>𝑛+2𝐶∣𝑍𝑛

𝑡 ∣𝐻1𝑓 ′,𝑟+1>𝑛+2𝑓
′,𝑟+1(𝑡)1𝑓 ′,𝑟+1>𝑛,

and the above formula converges to 0, uniformly in 𝑖 as 𝑛 → ∞. Follow the same

arguments as in the proof of Proposition A.5, the assertion follows in this case.

Step 4. Consider the general case. For each 𝑛 ∈ ℕ, let us define

𝜉𝑛 := 𝑞𝑛(𝜉), 𝑓𝑛(𝑡, 𝑦, 𝑧) := 𝑓(𝑡, 𝑦, 𝑧)− 𝑓 0
𝑡 + 𝑞𝑛(𝑓

0
𝑡 ).

For each pair (𝜉𝑛, 𝑓𝑛), the BSDE has a unique solution (𝑌 𝑛, 𝑍𝑛) in 𝐿2 by Step 3.

By Proposition A.4, we have

𝐸𝑥( sup
0≤𝑡≤𝑇

∣𝑌 𝑛+𝑖
𝑡 − 𝑌 𝑛

𝑡 ∣𝑝) + 𝐸𝑥(

∫ 𝑇

0

∣𝐴1/2(𝑋𝑡)(𝑍
𝑛+𝑖
𝑡 − 𝑍𝑛

𝑡 )∣2𝐻𝑑𝑡)𝑝/2

≤𝐾1𝐸
𝑥[∣𝜉𝑛+𝑖 − 𝜉𝑛∣𝑝 + (

∫ 𝑇

0

∣𝑞𝑛+𝑖(𝑓
0
𝑡 )− 𝑞𝑛(𝑓

0
𝑡 )∣𝑑𝑡)𝑝].

The right hand side of the last inequality clearly tends to 0, as 𝑛 → ∞, uniformly

in 𝑖 and the assertion follows. □



Chapter 4

Stochastic quasi-geostrophic

equation

In this chapter, we study the 2D stochastic quasi-geostrophic equation in 𝕋2 for

general parameter 𝛼 ∈ (0, 1) and multiplicative noise. We prove it is uniquely

ergodic provided the noise is non-degenerate for 𝛼 > 2
3
. In this case, the convergence

to the (unique) invariant measure is exponentially fast. In the general case, we prove

the existence of Markov selections. In Section 4.1, we introduce some notations and

preliminaries for quasi-geostrophic equation. In Section 4.2, we prove the existence

of Markov selections for the solution of the stochastic quasi-geostrophic equation

with 𝛼 ∈ (0, 1). In Section 4.3, we prove the Markov semigroup associated with the

solution of the stochastic quasi-geostrophic equation is strong Feller and irreducible

if the noise is non-degenerate. Furthermore, it is strongly mixing. In Section 4.4

we prove that the convergence to the (unique) invariant measure is exponentially

fast. In Section 4.5, we prove the above results if the noise is mildly degenerate.

The main results of this chapter have already been submitted for publication, see

[RZZ12].

4.1 Notations and Preliminaries

We consider the usual abstract form of equations (1.7)-(1.9). In the following, we

will restrict ourselves to flows which have zero average on the torus, i.e.∫
𝕋2

𝜃𝑑𝜉 = 0.
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Thus (1.9) can be restated as

𝑢 = (− ∂𝜓

∂𝜉2
,
∂𝜓

∂𝜉1
) and (−△)1/2𝜓 = −𝜃.

Set 𝐻 = {𝑓 ∈ 𝐿2(𝕋2) :
∫
𝕋2 𝑓𝑑𝜉 = 0} and let ∣ ⋅ ∣ and ⟨., .⟩ denote the norm and

inner product in 𝐻 respectively. On the periodic domain 𝕋2, {sin(𝑘𝜉)∣𝑘 ∈ ℤ2
+} ∪

{cos(𝑘𝜉)∣𝑘 ∈ ℤ2
−} form an eigenbasis of −△. Here ℤ2

+ = {(𝑘1, 𝑘2) ∈ ℤ2∣𝑘2 >

0} ∪ {(𝑘1, 0) ∈ ℤ2∣𝑘1 > 0},ℤ2
− = {(𝑘1, 𝑘2) ∈ ℤ2∣ − 𝑘 ∈ ℤ2

+}, 𝑥 ∈ 𝕋2, and the

corresponding eigenvalues are ∣𝑘∣2. Define

∥𝑓∥2𝐻𝑠 =
∑
𝑘

∣𝑘∣2𝑠⟨𝑓, 𝑒𝑘⟩2

and let 𝐻𝑠 denote the Sobolev space of all 𝑓 for which ∥𝑓∥𝐻𝑠 is finite. Set Λ =

(−△)1/2. Then

∥𝑓∥𝐻𝑠 = ∣Λ𝑠𝑓 ∣.

By the singular integral theory of Calderón and Zygmund (cf. [St70, Chapter

3]), for any 𝑝 ∈ (1,∞), there is a constant 𝐶 = 𝐶(𝑝), such that

(4.1.1) ∥𝑢∥𝐿𝑝 ≤ 𝐶(𝑝)∥𝜃∥𝐿𝑝 .

Fix 𝛼 ∈ (0, 1) and define the linear operator 𝐴 : 𝐷(𝐴) = 𝐻2𝛼(𝕋2) ⊂ 𝐻 → 𝐻

as 𝐴𝑢 := 𝜅(−△)𝛼𝑢. The operator 𝐴 is positive definite and selfadjoint with the

same eigenbasis as that of −△ mentioned above. Denote the eigenvalues of 𝐴 by

0 < 𝜆1 ≤ 𝜆2 ≤ ⋅ ⋅ ⋅ , and renumber the above eigenbasis correspondingly as 𝑒1, 𝑒2,....

We also set ∥𝑢∥ := ∣𝐴1/2𝑢∣, then ∥𝜃∥2 ≥ 𝜆1∣𝜃∣2.
First we recall the following important product estimates (cf. [Re95, Lemma

A.4]):

Lemma 4.1.1 Suppose that 𝑠 > 0 and 𝑝 ∈ (1,∞). If 𝑓, 𝑔 ∈ 𝒮, the Schwartz

class, then

(4.1.2) ∥Λ𝑠(𝑓𝑔)∥𝐿𝑝 ≤ 𝐶(∥𝑓∥𝐿𝑝1∥𝑔∥𝐻𝑠,𝑝2 + ∥𝑔∥𝐿𝑝3∥𝑓∥𝐻𝑠,𝑝4 ),

with 𝑝𝑖 ∈ (1,∞), 𝑖 = 1, ..., 4 such that

1

𝑝
=

1

𝑝1
+

1

𝑝2
=

1

𝑝3
+

1

𝑝4
.

We shall use as well the following useful Sobolev inequality (cf [St70, Chapter
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V]):

Lemma 4.1.2 Suppose that 𝑞 > 1, 𝑝 ∈ [𝑞,∞) and

1

𝑝
+
𝜎

2
=

1

𝑞
.

Suppose that Λ𝜎𝑓 ∈ 𝐿𝑞, then 𝑓 ∈ 𝐿𝑝 and there is a constant 𝐶 ≥ 0 such that

∥𝑓∥𝐿𝑝 ≤ 𝐶∥Λ𝜎𝑓∥𝐿𝑞 .

We consider the abstract stochastic evolution equation in place of Eqs (1.7)-(1.9),

(4.1.3)

{
𝑑𝜃(𝑡) + 𝐴𝜃(𝑡)𝑑𝑡+ 𝑢(𝑡) ⋅ ∇𝜃(𝑡)𝑑𝑡 = 𝐺(𝜃(𝑡))𝑑𝑊 (𝑡),

𝜃(0) = 𝜃0,

where 𝑢 satisfies (1.9) and𝑊 (𝑡) is a cylindrical Wiener process in a separable Hilbert

space 𝐾 defined on a probability space (Ω,ℱ , 𝑃 ). Here 𝐺 is a mapping from 𝐻𝛼 to

𝐿2(𝐾,𝐻), where 𝐿2(𝐾,𝐻) denote all the Hilbert-Schmidt operator from 𝐾 to 𝐻.

Consider the following conditions:

(G.1) (i) ∣𝐺(𝜃)∣2𝐿2(𝐾,𝐻) ≤ 𝜆0∣𝜃∣2 + 𝜌, 𝜃 ∈ 𝐻𝛼, for some positive real numbers 𝜆0
and 𝜌.

(ii) If 𝑦, 𝑦𝑛 ∈ 𝐻𝛼 such that 𝑦𝑛 → 𝑦 in𝐻, then lim𝑛→∞ ∥𝐺(𝑦𝑛)∗(𝑣)−𝐺(𝑦)∗(𝑣)∥𝐾 =

0 for all 𝑣 ∈ 𝐶∞(𝕋2).

Remark 4.1.3 Note that, because 𝑑𝑖𝑣𝑢 = 0 for regular functions 𝜃 and 𝑣, we

have

⟨𝑢(𝑠) ⋅ ∇(𝜃(𝑠) + 𝜓), 𝜃(𝑠) + 𝜓⟩ = 0,

so

⟨𝑢(𝑠) ⋅ ∇𝜃(𝑠), 𝜓⟩ = −⟨𝑢(𝑠) ⋅ ∇𝜓, 𝜃(𝑠)⟩.

4.2 Markov selections in the general case

In this section, we will use [GRZ09, Theorem 4.7] to get an almost sure Markov

family (𝑃𝑥)𝑥∈𝐿2 for Eq. (4.1.3). Here we use the same notations as [GRZ09]. Below

we choose

𝐻 = 𝕐 = 𝐿2(𝕋2)

and

𝕏 = (𝐻2+2𝛼)∗, 𝕏∗ = 𝐻2+2𝛼.
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Then 𝕏 is a Hilbert space and 𝕏∗ ⊂ 𝕐 compactly. Let ℰ = {𝑒𝑖, 𝑖 ∈ ℕ} be the

orthonormal basis of 𝐻 introduced in Section 4.1. We define the operator 𝒜 as

follows: for 𝜃 ∈ 𝐶∞(𝕋2)

𝒜(𝜃) := −𝜅(−Δ)𝛼𝜃 − 𝑢 ⋅ ∇𝜃,

where 𝑢 satisfies (1.9). Then by Lemma 4.2.3 below, 𝒜 can be extended to an

operator 𝒜 : 𝐻 → 𝕏. For 𝜃 not in 𝐻 define 𝒜(𝜃) := ∞.

Set

Ω := 𝐶([0,∞);𝕏),

and let ℬ denote the 𝜎-field of Borel sets of Ω and let 𝒫(Ω) denote the set of all

probability measures on (Ω,ℬ). Define the canonical process 𝜉 : Ω → 𝕏 as

𝜉𝑡(𝜔) = 𝜔(𝑡).

For each 𝑡, ℬ𝑡 = 𝜎(𝜉𝑠 : 0 ≤ 𝑠 ≤ 𝑡). Given 𝑃 ∈ 𝒫(Ω) and 𝑡 > 0, let 𝑃 (⋅∣ℬ𝑡)(𝜔)

denote a regular conditional probability distribution of 𝑃 given ℬ𝑡. In particular,

𝑃 (⋅∣ℬ𝑡)(𝜔) ∈ 𝒫(Ω) for every 𝜔 ∈ Ω and for any bounded ℬ-measurable function 𝑓

on Ω

𝐸𝑃 [𝑓 ∣ℬ𝑡] =

∫
Ω

𝑓(𝑦)𝑃 (𝑑𝑦∣ℬ𝑡), 𝑃 − 𝑎.𝑠.,

and there exists a 𝑃 -null set 𝑁 ∈ ℬ𝑡 such that for every 𝜔 not in 𝑁

𝑃 (⋅∣ℬ𝑡)(𝜔)∣ℬ𝑡 = 𝛿𝜔(= Dirac measure at 𝜔),

hence

𝑃 ({𝑦 : 𝑦(𝑠) = 𝜔(𝑠), 𝑠 ∈ [0, 𝑡]}∣ℬ𝑡)(𝜔) = 1.

In particular, we can consider 𝑃 (⋅∣ℬ𝑡)(𝜔) as a measure on (Ω𝑡,ℬ𝑡), i.e.,

𝑃 (⋅∣ℬ𝑡)(𝜔) ∈ 𝒫(Ω𝑡),

where Ω𝑡 := 𝐶([𝑡,∞);𝕏) and ℬ𝑡 := 𝜎(𝜉𝑠 : 𝑠 ≥ 𝑡).

We say 𝑃 ∈ 𝒫(Ω) is concentrated on the paths with values in 𝐻, if there exists

𝐴 ∈ ℬ with 𝑃 (𝐴) = 1 such that 𝐴 ⊂ {𝜔 ∈ Ω : 𝜉𝑡(𝜔) ∈ 𝐻, ∀𝑡 ≥ 0}. The set of such

measures is denoted by 𝒫𝐻(Ω). The shift operator Φ𝑡 : Ω → Ω𝑡 is defined by

Φ𝑡(𝜔)(𝑠) = 𝜔(𝑠− 𝑡), 𝑠 ≥ 𝑡.

Following [GRZ09, Definitions 2.5], we introduce the following notions.
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Definition 4.2.1 A family (𝑃𝑥)𝑥∈𝐻 of probability measures in 𝒫𝐻(Ω), is called

an almost sure Markov family if for any 𝐴 ∈ ℬ, 𝑥 7→ 𝑃𝑥(𝐴) is ℬ(𝐻)/ℬ([0, 1])-
measurable, and for each 𝑥 ∈ 𝐻 there exists a Lebesgue null set 𝑇𝑃𝑥 ⊂ (0,∞) such

that for all 𝑡 not in 𝑇𝑃𝑥 and 𝑃𝑥-almost all 𝜔 ∈ Ω

𝑃𝑥(⋅∣ℬ𝑡)(𝜔) = 𝑃𝜔(𝑡) ∘ Φ−1
𝑡 .

We now introduce the following notion of a martingale solution to Eq. (4.1.3)

and write 𝜉(𝑡) instead of 𝜉𝑡.

Definition 4.2.2 Let 𝑥0 ∈ 𝐻. A probability measure 𝑃 ∈ 𝒫(Ω) is called a

martingale solution of Eq. (4.1.3) with initial value 𝑥0, if:

(M1) 𝑃 (𝜉(0) = 𝑥0) = 1 and for any 𝑛 ∈ ℕ

𝑃{𝜉 ∈ Ω :

∫ 𝑛

0

∥𝒜(𝜉(𝑠))∥𝕏𝑑𝑠+
∫ 𝑛

0

∥𝐺(𝜉(𝑠))∥2𝐿2(𝐾;𝐻)𝑑𝑠 < +∞} = 1;

(M2) for every 𝑙 ∈ ℰ , the process

𝑀𝑙(𝑡, 𝜉) :=𝕏 ⟨𝜉(𝑡), 𝑙⟩𝕏∗ −
∫ 𝑡

0
𝕏⟨𝒜(𝜉(𝑠)), 𝑙⟩𝕏∗𝑑𝑠

is a continuous square-integrable ℱ𝑡-martingale under 𝑃 , whose quadratic variation

process is given by

⟨𝑀𝑙⟩(𝑡, 𝜉) :=
∫ 𝑡

0

∥𝐺∗(𝜉(𝑠))(𝑙)∥2𝐾𝑑𝑠,

where the asterisk denotes the adjoint operator of 𝐺(𝜉(𝑠));

(M3) for any 𝑝 ∈ ℕ, there exist a continuous positive real function 𝑡 7→ 𝐶𝑡,𝑝 (only

depending on 𝑝 and 𝒜, 𝐺), a lower semi-continuous positive real functional𝒩𝑝 : 𝕐 →
[0,∞], and a Lebesgue null set 𝑇𝑃 ⊂ (0,∞) such that for all 0 ≤ 𝑠 ∈ [0,∞)∖𝑇𝑃 and

for all 𝑡 ≥ 𝑠

𝐸𝑃 [ sup
𝑟∈[𝑠,𝑡]

∣𝜉(𝑟)∣2𝑝 +
∫ 𝑡

𝑠

𝒩𝑝(𝜉(𝑟))𝑑𝑟∣ℬ𝑠] ≤ 𝐶𝑡−𝑠(∣𝜉(𝑠)∣2𝑝 + 1).

First, we prove the following lemma.

Lemma 4.2.3 For any 𝜃1, 𝜃2 ∈ 𝐶∞(𝕋2),

∥(−Δ)𝛼𝜃1 − (−Δ)𝛼𝜃2∥𝕏 ≤ 𝐶1∣𝜃1 − 𝜃2∣,
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∥𝑢1 ⋅ ∇𝜃1 − 𝑢2 ⋅ ∇𝜃2∥𝕏 ≤ 𝐶2(∣𝜃1∣+ ∣𝜃2∣)∣𝜃1 − 𝜃2∣,
for constants 𝐶1, 𝐶2. In particular, the operator 𝒜 : 𝐶∞(𝕋2) → 𝕏 extends to an

operator 𝒜 : 𝐻 → 𝕏 by continuity.

Proof We only prove the second assertion, the first can be proved analogously. By

the Sobolev embedding theorem we have

∥𝑢1 ⋅ ∇𝜃1 − 𝑢2 ⋅ ∇𝜃2∥𝕏
= sup

𝑤∈𝐶∞(𝕋2):∥𝑤∥𝐻2+2𝛼≤1

∣⟨𝑢1 ⋅ ∇𝜃1 − 𝑢2 ⋅ ∇𝜃2, 𝑤⟩∣

= sup
𝑤∈𝐶∞(𝕋2):∥𝑤∥𝐻2+2𝛼≤1

∣⟨𝑢1 ⋅ ∇𝑤, 𝜃1⟩ − ⟨𝑢2 ⋅ ∇𝑤, 𝜃2⟩∣

= sup
𝑤∈𝐶∞(𝕋2):∥𝑤∥𝐻2+2𝛼≤1

∣⟨(𝑢1 − 𝑢2) ⋅ ∇𝑤, 𝜃1⟩+ ⟨𝑢2 ⋅ ∇𝑤, 𝜃1 − 𝜃2⟩∣

≤𝐶[ sup
𝑤∈𝐶∞(𝕋2):∥𝑤∥𝐻2+2𝛼≤1

∥∇𝑤∥𝐶(𝕋2)](∣𝑢1 − 𝑢2∣ ⋅ ∣𝜃1∣+ ∣𝜃1 − 𝜃2∣ ⋅ ∣𝑢2∣)

≤𝐶(∣𝜃1∣+ ∣𝜃2∣)∣𝜃1 − 𝜃2∣.

In the last inequality we use (4.1.1) and the constant 𝐶 changes from line to line. □

In order to use [GRZ09, Theorem 4.7], we define the functional 𝒩1 on 𝕐 as

follows:

𝒩1(𝜃) :=

{
∣Λ𝛼𝜃∣2, if 𝜃 ∈ 𝐻𝛼,

+∞, otherwise .

It is obvious that 𝒩1 ∈ 𝔘2, defined in [GRZ09, Section 4]. We recall that a lower

semicontinuous function 𝒩 : 𝕐 → [0,∞] belongs to 𝔘2 if 𝒩 (𝑥) = 0 implies 𝑥 = 0,

𝒩 (𝑐𝑦) ≤ 𝑐2𝒩 (𝑦),∀𝑐 ≥ 0, 𝑦 ∈ 𝕐 and {𝑦 ∈ 𝕐 : 𝒩 (𝑦) ≤ 1} is relatively compact in 𝕐.

Theorem 4.2.4 Let 𝛼 ∈ (0, 1) and assume 𝐺 satisfies (G.1). Then for each

𝑥0 ∈ 𝐻, there exists a martingale solution 𝑃 ∈ 𝒫(Ω) starting from 𝑥0 to Eq. (4.1.3)

in the sense of Definition 4.2.2.

Proof We only need to check (C1)-(C3) in [GRZ09, Section 4] for the above 𝒜 and

𝐺. For the reader’s convenience, we give them as follows:

(C1)(Demi-Continuity) For any 𝑥 ∈ 𝕏∗, if 𝑦𝑛 strongly converges to 𝑦 in 𝕐, then

lim
𝑛→∞ 𝕏⟨𝒜(𝑦𝑛), 𝑥⟩𝕏∗ =𝕏 ⟨𝒜(𝑦), 𝑥⟩𝕏∗ ,

and

lim
𝑛→∞

∥𝐺∗(𝑦𝑛)(𝑥)−𝐺∗(𝑦)(𝑥)∥𝐾 = 0.
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(C2)(Coercivity Condition) There exist 𝜆1 ≥ 0 and 𝑁1 ∈ 𝔘2 such that for all 𝑥 ∈ 𝕏∗

𝕏⟨𝒜(𝑥), 𝑥⟩𝕏∗ ≤ −𝒩1(𝑥) + 𝜆1(1 + ∣𝑥∣2).

(C3)(Growth Condition) There exist 𝜆2, 𝜆3, 𝜆4 > 0 and 𝛾′ ≥ 𝛾 > 1 such that for all

𝑥 ∈ 𝕐
∥𝐴(𝑥)∥𝛾𝕏 ≤ 𝜆2𝒩1(𝑥) + 𝜆3(1 + ∣𝑥∣𝛾′

),

∥𝐺(𝑥)∥2𝐿2(𝐾;𝐻) ≤ 𝜆4(1 + ∣𝑥∣2),
where 𝒩1 is as in (C2).

(C1) holds since Lemma 4.2.3 implies demi-continuity of 𝒜 and 𝐺.

(C2) follows, because noting that for 𝜃 ∈ 𝕏∗

⟨𝑢 ⋅ ∇𝜃, 𝜃⟩ = 0,

we have

⟨𝒜(𝜃), 𝜃⟩ = −𝒩1(𝜃).

Also (C3) is clear since by Lemma 4.2.3

∥𝒜(𝜃)∥𝕏 ≤ 𝐶∣𝜃∣2

and

∥𝐺(𝜃)∥𝐿2(𝐾;𝐻) ≤ 𝐶(∣𝜃∣+ 1).

□

The set of all such martingale solutions with initial value 𝑥0 is denoted by 𝒞(𝑥0).
Using [GRZ09, Theorem 4.7], we now obtain the following:

Theorem 4.2.5 Let 𝛼 ∈ (0, 1). Assume 𝐺 satisfies (G.1). Then there exists

an almost sure Markov family (𝑃𝑥0)𝑥0∈𝐻 for Eq. (4.1.3) and 𝑃𝑥0 ∈ 𝒞(𝑥0) for each

𝑥0 ∈ 𝐻.

4.3 Ergodicity for 𝛼 > 2
3

In this section, we assume that 𝛼 > 2
3
, 𝐾 = 𝐻, and that 𝐺 satisfies:

Assumption 4.3.1 There are an isomophism 𝑄0 of 𝐻 and a number 𝑠 ≥ 1 such
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that 𝐺 = 𝐴− 𝑠+𝛼
2𝛼 𝑄

1/2
0 , and furthermore, 𝐺 satisfies∫

(
∑
𝑗

∣𝐺𝑒𝑗∣2)𝑝/2𝑑𝜉 ≤ 𝐶,

for some fixed 𝑝 ∈ ((𝛼− 1
2
)−1,∞), (which is e.g. always the case if 𝑄0 = 𝐼 ).

For 𝑥 := 𝜃0 ∈ 𝐿𝑝, let 𝑃𝑥 denote the law of the corresponding solution 𝜃 to (4.1.3).

Then by [RZZ12, Theorems 5.4 and 5.5] the measures 𝑃𝑥, 𝑥 ∈ 𝐿𝑝, form a Markov

process. Let (𝑃𝑡)𝑡≥0 be the associated transition semi-group on ℬ𝑏(𝐻), defined as

(4.3.1) 𝑃𝑡(𝜑)(𝑥) := 𝐸𝑥[𝜑(𝜉𝑡)], 𝑥 ∈ 𝐿𝑝, 𝜑 ∈ ℬ𝑏(𝐻),

where 𝐸𝑥 denotes expectation under 𝑃𝑥.

4.3.1 The strong Feller property for 𝛼 > 2
3

In this subsection we prove that its transition semigroup has the strong Feller prop-

erty under appropriate conditions.

Remark 4.3.2 (i) Since in our case 𝛼 < 1, the linear part (−Δ)𝛼 in (1.7) is

less regularizing.As 𝐺 = 𝐴− 𝑠+𝛼
2𝛼 𝑄

1/2
0 , we get the trajectories 𝑧 of the associated O-U

process to be in 𝐶([0,∞), 𝐻𝑠+2𝛼−1−𝜀) for every 𝜀 > 0 (c.f. [DZ92, Theorem 5.16],

[DO06, Proposition 3.1]). However, in order to prove the weak-strong uniqueness

principle (see (4.3.2) and Theorem 4.3.4 below) and the strong Feller property of

the semigroup associated with the solution of the cutoff equation (see Proposition

4.3.5 below), we need 𝑧 ∈ 𝐶([0,∞), 𝐻𝑠+1−𝛼+𝜎1) for some 𝜎1 > 0. Therefore, we

need 𝑠 + 2𝛼 − 1 > 𝑠 + 1 − 𝛼, i.e. 𝛼 > 2
3
. The situation of the 3D-Navier-Stokes

equation is different. While in our case the needed regularity of 𝑧 is higher than the

regularity of our solution space 𝐶((0,∞), 𝐻𝑠) for the cutoff equation (4.3.2), for the

3-D Navier-Stokes equation the needed regularity of 𝑧 is the same as for the solution

of the cutoff equation.

(ii) Since 𝛼 < 1, we can’t use the same type of estimate as in [FR08] (c.f.

[FR08, Lemma D.2]) to obtain our results. We use Lemma 4.1.1 and choose suitable

parameters (𝑠, 𝜎1, 𝜎2) such that the approach in [FR08] can be modified to apply

here (see (4.3.6)-(4.3.10), (4.3.13) and so on ).

(iii) It seems difficult to use the Kolmogorov equation method as in [DD03],

[DO06] or a coupling approach as in [O07] in our situation. In fact, to get a uni-

form 𝐻𝑠-norm estimate for the solutions of the Galerkin approximations of the

equation (1.1) for some 𝑠 > 0, the regularity, needed for the trajectories of the as-
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sociated Ornstein-Uhlenbeck (O-U) process 𝑧 is higher than 𝐻𝑠, which is entirely

different from the situation of the 3-D Navier-Stokes equation. According to the

method in [DD03], DO06] and [O07], we should use the solutions’ 𝐻𝑠+𝛼-norm to

control the 𝐻𝑠+𝛼-norm of the derivative of the solutions as required for the Bismut-

Elworthy-Li formula. In particular, the associated O-U process 𝑧 should be also in

𝐻𝑠+𝛼. However, under Assumption 4.3.1 for the noise, our O-U process 𝑧 is only

in 𝐿2([0, 𝑇 ], 𝐻𝑠+2𝛼−1). As a result, for their method to apply here, we need even

𝛼 ≥ 1.

Fix 𝑠 ≥ 1 as in Assumption 4.3.1 and set 𝒲 := 𝐻𝑠 and ∣𝑥∣𝒲 := ∥𝑥∥𝐻𝑠 .

Now we state the main result of this section.

Theorem 4.3.3 Under Assumption 4.3.1, (𝑃𝑡)𝑡≥0 is𝒲-strong Feller, i.e. for every

𝑡 > 0 and 𝜓 ∈ ℬ𝑏(𝐻), 𝑃𝑡𝜓 ∈ 𝐶𝑏(𝒲).

We shall use [FR08, Theorem 5.4], which is an abstract result to prove the strong

Feller property. In order to use [FR08, Theorem 5.4], we follow the idea of [FR08,

Theorem 5.11] to construct 𝑃
(𝑅)
𝑥 . We introduce an equation which differs from the

original one by a cut-off only, so that with large probability they have the same

trajectories on a small random time interval (see (4.3.3) below). We consider the

equation

(4.3.2) 𝑑𝜃(𝑡) + 𝐴𝜃(𝑡)𝑑𝑡+ 𝜒𝑅(∣𝜃∣2𝒲)𝑢(𝑡) ⋅ ∇𝜃(𝑡)𝑑𝑡 = 𝐺𝑑𝑊 (𝑡),

where 𝜒𝑅 : ℝ → [0, 1] is of class 𝐶∞ such that 𝜒𝑅(∣𝜃∣) = 1 if ∣𝜃∣ ≤ 𝑅, 𝜒𝑅(∣𝜃∣) = 0

if ∣𝜃∣ > 𝑅 + 1 and with its first derivative bounded by 1. Then, if we can prove the

following Theorem 4.3.4 and Proposition 4.3.5, Theorem 4.3.3 follows.

Theorem 4.3.4 (Weak-strong uniqueness) Suppose Assumption 4.3.1 holds. Then

for every 𝑥 ∈ 𝒲 , Eq. (4.3.2) has a unique martingale solution 𝑃
(𝑅)
𝑥 , with

𝑃 (𝑅)
𝑥 [𝐶([0,∞);𝒲)] = 1.

Let 𝜏𝑅 : Ω → [0,∞] be defined as

𝜏𝑅(𝜔) = inf{𝑡 ≥ 0 : ∣𝜔(𝑡)∣2𝒲 ≥ 𝑅},

and 𝜏𝑅(𝜔) = ∞ if this set is empty. If 𝑥 ∈ 𝒲 and ∣𝑥∣2𝒲 < 𝑅, then

(4.3.3) lim
𝜀→0

𝑃
(𝑅)
𝑥+ℎ[𝜏𝑅 ≥ 𝜀] = 1, uniformly in ℎ ∈ 𝒲 , ∣ℎ∣𝒲 < 1.
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Moreover,

(4.3.4) 𝐸𝑃
(𝑅)
𝑥 [𝜑(𝜉𝑡)1[𝜏𝑅≥𝑡]] = 𝐸𝑃𝑥 [𝜑(𝜉𝑡)1[𝜏𝑅≥𝑡]],

for every 𝑡 ≥ 0 and 𝜑 ∈ ℬ𝑏(𝐻), where 𝑃𝑥 is the martingale solution of (4.1.3).

Proof Let 𝑧 denote the solution to

𝑑𝑧(𝑡) + 𝐴𝑧(𝑡)𝑑𝑡 = 𝐺𝑑𝑊 (𝑡),

with initial data 𝑧(0) = 0 and let 𝑣
(𝑅)
𝑥 be the solution to the auxiliary problem

(4.3.5)
𝑑𝑣(𝑅)(𝑡)

𝑑𝑡
+ 𝐴𝑣(𝑅)(𝑡) + 𝑢(𝑅)(𝑡) ⋅ ∇(𝑣(𝑅)(𝑡) + 𝑧(𝑡))𝜒𝑅(∣𝑣(𝑅) + 𝑧∣2𝒲) = 0,

with 𝑣(𝑅)(0) = 𝑥. Here 𝑢(𝑅)(𝑡) = 𝑢𝑣(𝑅)(𝑡) + 𝑢𝑧(𝑡), 𝑢𝑣(𝑅) and 𝑢𝑧 satisfy (1.9) with

𝜃 replaced by 𝑣(𝑅) and 𝑧, respectively. Moreover, define 𝜃(𝑅) := 𝑣(𝑅) + 𝑧, which is

a martingale solution to equation (4.3.2). We denote its law on Ω by 𝑃
(𝑅)
𝑥 . By

Assumption 4.3.1 the trajectories of the noise belong to

Ω∗ :=
∩

𝛽∈(0, 1
2
),𝜅∈[0, 𝑠+𝛼

2𝛼
− 1

2𝛼
)

𝐶𝛽([0,∞);𝐷(𝐴𝜅)),

with probability one. Hence, the analyticity of the semigroup generated by 𝐴 implies

that for each 𝜔 ∈ Ω∗, 𝑧(𝜔) ∈ 𝐶([0,∞), 𝐷(Λ𝑠+2𝛼−1−𝜀)) for every 𝜀 > 0.

Now, for 𝜔 ∈ Ω∗ we prove that Eq. (4.3.5) with 𝑧(𝜔) replacing 𝑧 has a unique

global weak solution in the space 𝐶([0,∞);𝒲). First, we obtain the following a-

priori estimate for suitable 𝜎1, 𝜎2 > 0 with 𝜎2 ≤ 𝑠, 𝜎2 + 𝜎1 = 1, 𝑠 + 𝜎1 − 𝛼 + 1 <

𝑠+ 2𝛼− 1 < 𝑠+ 𝛼, where we used that 𝛼 > 2
3
since 0 < 𝜎1 < 3𝛼− 2:

(4.3.6)

1

2

𝑑

𝑑𝑡
∣Λ𝑠𝑣(𝑅)∣2 + 𝜅∣Λ𝑠+𝛼𝑣(𝑅)∣2

≤𝐶𝜒𝑅(∣𝜃(𝑅)∣2𝒲)∣Λ𝑠−𝛼+1𝑅(𝑢(𝑅)𝜃(𝑅))∣ ⋅ ∣Λ𝑠+𝛼𝑣(𝑅)∣
≤𝐶𝜒𝑅(∣𝜃(𝑅)∣2𝒲)∣Λ𝑠−𝛼+1+𝜎1𝜃(𝑅)∣∣Λ𝜎2𝜃(𝑅)∣ ⋅ ∣Λ𝑠+𝛼𝑣(𝑅)∣
≤𝐶𝜒𝑅(∣𝜃(𝑅)∣2𝒲)(∣Λ𝑠−𝛼+1+𝜎1𝑣(𝑅)∣+ ∣Λ𝑠−𝛼+1+𝜎1𝑧∣) ⋅ ∣Λ𝑠+𝛼𝑣(𝑅)∣
≤𝐶𝜒𝑅(∣𝜃(𝑅)∣2𝒲)(𝐶∣Λ𝑠𝑣(𝑅)∣1−𝑟∣Λ𝑠+𝛼𝑣(𝑅)∣𝑟 + ∣Λ𝑠−𝛼+1+𝜎1𝑧∣) ⋅ ∣Λ𝑠+𝛼𝑣(𝑅)∣
≤𝐶𝜒𝑅(∣𝜃(𝑅)∣2𝒲)(∣Λ𝑠𝑣(𝑅)∣2 + ∣Λ𝑠−𝛼+1+𝜎1𝑧∣2) + 𝜅

2
∣Λ𝑠+𝛼𝑣(𝑅)∣2

≤𝐶𝜒𝑅(∣𝜃(𝑅)∣2𝒲)(𝐶(𝑅) + ∣Λ𝑠−𝛼+1+𝜎1𝑧∣2) + 𝜅

2
∣Λ𝑠+𝛼𝑣(𝑅)∣2,

where 𝑟 := 1−𝛼+𝜎1

𝛼
. Here in the second inequality we used Lemmas 4.1.1 and 4.1.2,
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and in the fourth inequality we used the Gagliardo-Nirenberg inequality and in the

fifth inequality we used Young’s inequality. Let 𝑃𝑛 be the orthogonal projection in

𝐻 onto the space spanned by 𝑒1, ...𝑒𝑛. Consider the ordinary differential equation

𝑑𝑣𝑛(𝑡)

𝑑𝑡
+ 𝐴𝑣𝑛(𝑡) + 𝑃𝑛(𝑢𝑛(𝑡) ⋅ ∇(𝑣𝑛(𝑡) + 𝑧(𝑡))𝜒𝑅(∣𝑣𝑛 + 𝑧∣2𝒲)) = 0,

with initial condition

𝑣𝑛(0) = 𝑃𝑛𝑣0.

Here 𝑢𝑛 satisfies (1.9) with 𝜃 replaced by 𝑣𝑛 + 𝑧. Denote the solution of the fol-

lowing approximate equation by 𝑣𝑛. We obtain that the sequence 𝑣𝑛 is bounded

in 𝐿∞(0, 𝑇 ;𝐻) and in 𝐿2(0, 𝑇 ;𝐻𝛼). It is obvious that there exists an element

𝑣(𝑅) ∈ 𝐿∞(0, 𝑇 ;𝐻) ∩ 𝐿2(0, 𝑇 ;𝐻𝛼) and a sub-sequence 𝑣′𝑚 such that

𝑣′𝑚 → 𝑣(𝑅) in 𝐿2(0, 𝑇 ;𝐻𝑠+𝛼) weakly, and in 𝐿∞(0, 𝑇 ;𝐻𝑠) weak-star, as 𝑚′ → ∞.

In order to prove the strong convergence in 𝐿2(0, 𝑇 ;𝐻𝑠), we need to use [FG95, The-

orem 2.1]. So we just need to prove that ∥𝑣𝑛∥𝑊 𝛾,2(0,𝑇,𝐻−3) is bounded for some 1/2 <

𝛾 < 1, which can be obtained by estimated each term of the approximate equation.

Then by compact embedding, we have 𝑣′𝑚 → 𝑣(𝑅) in 𝐿2(0, 𝑇 ;𝐻𝑠) ∩ 𝐶([0, 𝑇 ];𝐻−𝛽)

strongly for some 𝛽 > 3. Note that 𝑣𝑛 also satisfies

⟨𝑣𝑛(𝑡), 𝜓⟩+
∫ 𝑡

0

⟨𝐴1/2𝑣𝑛(𝑠), 𝐴
1/2𝜓⟩𝑑𝑠−

∫ 𝑡

0

𝜒𝑅(∣𝑣𝑛+𝑧∣2𝒲)⟨𝑢𝑛(𝑠)⋅∇𝜓, 𝑣𝑛(𝑠)+𝑧(𝑠)⟩𝑑𝑠 = ⟨𝑃𝑛𝑣0, 𝜓⟩,

for all 𝑡 ∈ [0, 𝑇 ] and all 𝜓 ∈ 𝐶1(𝕋2). Then taking the limit in above equation, we

obtain that (4.3.5) has a weak solution in 𝐿∞([0, 𝑇 ],𝒲).

[Continuity] For each 𝜔 ∈ Ω∗, 𝜎1 and 𝜎2 as above, since 𝑠−𝛼+1+𝜎1 < 𝑠+2𝛼−1,

we have 𝑧 ∈ 𝐶([0,∞);𝐷(Λ𝑠−𝛼+1+𝜎1)). For 𝑠 > 3− 3𝛼, 𝑠0 = 𝑠− 𝛼, multiplying the

equations (4.3.5) by 𝑑
𝑑𝑡
Λ2𝑠0𝑣(𝑅), we obtain

(4.3.7)
𝜅

2

𝑑

𝑑𝑡
∣Λ𝑠0+𝛼𝑣(𝑅)∣2 + ∣Λ𝑠0 �̇�(𝑅)∣2 ≤𝐶𝜒𝑅(∣𝜃(𝑅)∣2𝒲)∣Λ𝑠0+1𝑅(𝑢(𝑅)𝜃(𝑅))∣ ⋅ ∣Λ𝑠0 �̇�(𝑅)∣

≤𝐶𝜒𝑅(∣𝜃(𝑅)∣2𝒲)∣Λ𝑠0+1+𝜎1𝜃(𝑅)∣∣Λ𝜎2𝜃(𝑅)∣ ⋅ ∣Λ𝑠0 �̇�(𝑅)∣
≤𝐶𝜒𝑅(∣𝜃(𝑅)∣2𝒲)(∣Λ𝑠+𝛼𝑣(𝑅)∣2 + ∣Λ𝑠0+𝛼𝑣(𝑅)∣2 + ∣Λ𝑠0+1+𝜎1𝑧∣2)

+
1

2
∣Λ𝑠0 �̇�(𝑅)∣2.

Here in the second inequality we used Lemmas 4.1.1 and 4.1.2, and in the third

inequality we used the Gagliardo-Nirenberg inequality and Young’s inequality.

As
∫ 𝑇

0
∣Λ𝑠+𝛼𝑣(𝑅)(𝑡1)∣2𝑑𝑡1 can be dominated by the same arguments as (4.3.6),
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we get an a-priori estimate for the time derivative 𝑑
𝑑𝑡
𝑣(𝑅) in 𝐿2(0, 𝑇 ;𝐻𝑠0). Then by

[Te84], we obtain 𝑣(𝑅) ∈ 𝐶([0, 𝑇 ],𝒲).

[Uniqueness] Let 𝜃1, 𝜃2 be two solutions of Eq. (4.3.5) in 𝐶([0,∞);𝒲) and set

𝑤 := 𝜃1 − 𝜃2 and 𝑢𝑤 := 𝑢1 − 𝑢2. Then by a similar argument as in the proof of

[RZZ12, Theorem 5.1], we have for small 𝜀0 > 0

1

2

𝑑

𝑑𝑡
∣Λ𝑠0𝑤∣2 + 𝜅∣Λ𝑠0+𝛼𝑤∣2 =− (𝜒𝑅(∣𝜃1∣2𝒲)− 𝜒𝑅(∣𝜃2∣2𝒲))⟨Λ𝑠0+𝜀0−𝛼(𝑢1 ⋅ ∇𝜃1),Λ𝑠0+𝛼−𝜀0𝑤⟩

− 𝜒𝑅(∣𝜃2∣2𝒲)⟨Λ𝑠0−𝛼(𝑢1 ⋅ ∇𝑤 + 𝑢𝑤 ⋅ ∇𝜃2),Λ𝑠0+𝛼𝑤⟩
=𝐼 + 𝐼𝐼 + 𝐼𝐼𝐼.

As

∣𝜒𝑅(∣𝜃1∣2𝒲)− 𝜒𝑅(∣𝜃2∣2𝒲)∣ ≤ 𝐶(𝑅)∣𝑤∣𝒲 [1[0,𝑅+1](∣𝜃1∣2𝒲) + 1[0,𝑅+1](∣𝜃2∣2𝒲)],

we have for 𝜎1, 𝜎2 as above,

(4.3.8)

𝐼 ≤𝐶[1[0,𝑅+1](∣𝜃1∣2𝒲) + 1[0,𝑅+1](∣𝜃2∣2𝒲)]∣𝑤∣𝒲 ⋅ ∣Λ𝑠0−𝛼+𝜀0+1+𝜎1𝜃1∣∣Λ𝜎2𝜃1∣ ⋅ ∣Λ𝑠0+𝛼−𝜀0𝑤∣
≤𝐶(𝑅, ∣𝜃1∣𝒲 , ∣𝜃2∣𝒲)∣𝑤∣𝒲 ∣Λ𝑠0+𝛼−𝜀0𝑤∣
≤𝐶(𝑅, ∣𝜃1∣𝒲 , ∣𝜃2∣𝒲)∣Λ𝑠0𝑤∣2 + 𝜅

4
∣𝑤∣2𝒲 ,

where 𝑠0 + 𝛼 = 𝑠. Here in the first inequality we used Lemmas 4.1.1 and 4.1.2,

and in the third inequality we used the Gagliardo-Nirenberg inequality and Young’s

inequality. In a similar way, we obtain

𝐼𝐼 ≤𝐶(𝑅, ∣𝜃1∣𝒲)∣Λ𝑠0𝑤∣2 + 𝜅

4
∣𝑤∣2𝒲 ,

and

𝐼𝐼𝐼 ≤ 𝐶(𝑅, ∣𝜃2∣𝒲)∣Λ𝑠0𝑤∣2 + 𝜅

4
∣𝑤∣2𝒲 .

Then we obtain

1

2

𝑑

𝑑𝑡
∣Λ𝑠0𝑤∣2 + 𝜅∣Λ𝑠0+𝛼𝑤∣2 ≤ 𝐶(𝑅, sup

𝑡∈[0,𝑇 ]

∣𝜃1(𝑡)∣𝒲 , sup
𝑡∈[0,𝑇 ]

∣𝜃2(𝑡)∣𝒲)∣Λ𝑠0𝑤∣2 + 3𝜅

4
∣𝑤∣2𝒲 .

By Gronwall’s lemma we have ∣Λ𝑠0𝑤∣ = 0, which implies 𝑤 = 0.

So Eq. (4.3.5) has a unique global weak solution in the space 𝐶([0,∞);𝒲).

Next, we prove (4.3.3). In order to do so, it is sufficient to show that 𝑃
(𝑅)
𝑥 [𝜏𝑅 <

𝜀] ≤ 𝐶(𝜀,𝑅) with 𝐶(𝜀, 𝑅) ↓ 0 as 𝜀 ↓ 0, for all 𝑥 ∈ 𝒲 , with ∣𝑥∣2𝒲 ≤ 𝑅
8
. So, fix

𝜀 > 0 small enough, let Θ𝜀,𝑅 := sup𝑡∈[0,𝜀] ∣Λ𝑠−𝛼+1+𝜎1𝑧(𝑡)∣ and assume that Θ2
𝜀,𝑅 ≤ 𝑅

8
.

Setting 𝜑(𝑡) := ∣𝑣(𝑅)∣2𝒲 + Θ2
𝜀,𝑅, by (4.3.6) we get �̇� ≤ 𝐶(𝑅). This implies, together
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with the bounds on 𝑥 and Θ𝜀,𝑅, that

∣𝜃(𝑅)(𝑡)∣2𝒲 ≤ 2(∣𝑣(𝑅)(𝑡)∣2𝒲 + ∣𝑧(𝑡)∣2𝒲) ≤ 𝑅,

for 𝜀 small enough. In particular, since this holds for all 𝑡 ≤ 𝜀, it follows that 𝜏𝑅 ≥ 𝜀.

Hence

𝑃 (𝑅)
𝑥 [𝜏𝑅 < 𝜀] ≤ 𝑃 (𝑅)

𝑥 [ sup
𝑡∈[0,𝜀]

∣Λ𝑠+1+𝜎1−𝛼𝑧(𝑡)∣2 > 𝑅

8
].

Letting 𝜀 ↓ 0, we have 𝑃
(𝑅)
𝑥 [𝜏𝑅 < 𝜀] → 0, and the claim is proved, since the

probability above is independent of 𝑥.

Finally, the same arguments as in the proof of [RZZ12 Theorem 5.1] imply that

𝜃𝑥(𝑡 ∧ 𝜏𝑅(𝜃(𝑅)
𝑥 )) = 𝜃(𝑅)

𝑥 (𝑡 ∧ 𝜏𝑅(𝜃(𝑅)
𝑥 )) ∀𝑡, 𝑃𝑥 − 𝑎.𝑠..

Moreover, since 𝜃 is 𝐻-valued weakly continuous, we obtain 𝜏𝑅(𝜃
(𝑅)
𝑥 ) = 𝜏𝑅(𝜃). □

In order to apply [FR08, Theorem 5.4], we now only need the following result.

Proposition 4.3.5 For every 𝑅 > 0, the transition semi-group (𝑃
(𝑅)
𝑡 )𝑡≥0 associ-

ated to Eq. (4.3.2) is 𝒲-strong Feller.

Proof We shall provide formal estimates, that can, however, be made rigorous

through Galerkin approximations. Let (Σ,ℱ , (ℱ𝑡)𝑡≥0,ℙ) be a filtered probability

space, (𝑊𝑡)𝑡≥0 a cylindrical Wiener process on 𝐻 and, for every 𝑥 ∈ 𝒲, let 𝜃(𝑅)
𝑥 be

the solution to Eq. (4.3.2). By the Bismut, Elworthy and Li formula,

𝐷𝑦(𝑃
(𝑅)
𝑡 𝜓)(𝑥) =

1

𝑡
𝐸ℙ[𝜓(𝜃(𝑅)

𝑥 (𝑡))

∫ 𝑡

0

⟨𝐺−1𝐷𝑦𝜃
(𝑅)
𝑥 (𝑠), 𝑑𝑊 (𝑠)⟩],

where 𝐷𝑦(𝑃
(𝑅)
𝑡 𝜓) denotes ⟨𝐷(𝑃

(𝑅)
𝑡 𝜓), 𝑦⟩ for 𝑦 ∈ 𝐻, and thus, for ∥𝜓∥∞ ≤ 1, by the

B-D-G inequality

∣(𝑃 (𝑅)
𝑡 𝜓)(𝑥0 + ℎ)− (𝑃

(𝑅)
𝑡 𝜓)(𝑥0)∣ ≤ 𝐶

𝑡
sup

𝜂∈[0,1]
𝐸ℙ[(

∫ 𝑡

0

∣𝐺−1𝐷ℎ𝜃
(𝑅)
𝑥0+𝜂ℎ(𝑠)∣2𝑑𝑠)1/2].

The proposition is proved once we prove that the right-hand side of the above

inequality converges to 0 as ∣ℎ∣𝒲 → 0.

Fix 𝑥 ∈ 𝒲 , 𝑦 ∈ 𝐻 and write 𝜃 = 𝜃(𝑅)
𝑥 , 𝐷𝜃 = 𝐷𝑦𝜃,𝐷𝑢 = 𝐷𝑦𝑢. The term 𝐷𝜃

solves the following equation

𝑑

𝑑𝑡
𝐷𝜃 + 𝜅Λ2𝛼(𝐷𝜃) = −[𝜒𝑅(∣𝜃∣2𝒲)[𝐷𝑢 ⋅ ∇𝜃 + 𝑢 ⋅ ∇𝐷𝜃] + 2𝜒′

𝑅(∣𝜃∣2𝒲)⟨𝜃,𝐷𝜃⟩𝒲𝑢 ⋅ ∇𝜃].



162 Chapter 4. Stochastic quasi-geostrophic equation

Multiplying the above equation with Λ2𝑠𝐷𝜃 and taking the inner product in 𝐿2, we

have

1

2

𝑑

𝑑𝑡
∣Λ𝑠𝐷𝜃∣2 + 𝜅∣Λ𝑠+𝛼(𝐷𝜃)∣2

=− ⟨[𝜒𝑅(∣𝜃∣2𝒲)[𝐷𝑢 ⋅ ∇𝜃 + 𝑢 ⋅ ∇𝐷𝜃] + 2𝜒′
𝑅(∣𝜃∣2𝒲)⟨𝜃,𝐷𝜃⟩𝒲𝑢 ⋅ ∇𝜃],Λ2𝑠𝐷𝜃⟩.

For the first term on the left hand side, we have for ∣𝜃∣2𝒲 ≤ 𝑅

(4.3.9)

∣⟨𝐷𝑢 ⋅ ∇𝜃,Λ2𝑠𝐷𝜃⟩∣
=∣⟨Λ𝑠−𝛼(𝐷𝑢 ⋅ ∇𝜃),Λ𝑠+𝛼𝐷𝜃⟩∣
≤𝐶∣Λ𝑠−𝛼+1+𝜎1𝜃∣ ⋅ ∣Λ𝜎2𝐷𝜃∣ ⋅ ∣Λ𝑠+𝛼𝐷𝜃∣+ 𝐶∣Λ𝑠−𝛼+1+𝜎1𝐷𝜃∣ ⋅ ∣Λ𝜎2𝜃∣ ⋅ ∣Λ𝑠+𝛼𝐷𝜃∣
≤𝜀∣Λ𝑠+𝛼𝐷𝜃∣2 + 𝐶(𝐶(𝑅) + ∣Λ𝑠+𝛼𝑣∣2 + ∣Λ𝑠−𝛼+1+𝜎1𝑧∣2)∣Λ𝑠𝐷𝜃∣2,

for 𝜎1, 𝜎2 as above, where we used Lemmas 4.1.1, 4.1.2 in the first inequality as

well as the Gagliardo-Nirenberg inequality and Young’s inequality in the second

inequality.

The second term can be estimated similarly. For the third term, by Lemmas

4.1.1, 4.1.2 we have

(4.3.10)

∣⟨𝑢 ⋅ ∇𝜃,Λ2𝑠𝐷𝜃⟩∣ =∣⟨Λ𝑠−𝛼(𝑢 ⋅ ∇𝜃),Λ𝑠+𝛼𝐷𝜃⟩∣
≤𝐶∣Λ𝑠−𝛼+1+𝜎1𝜃∣∣Λ𝜎2𝜃∣ ⋅ ∣Λ𝑠+𝛼𝐷𝜃∣
≤𝐶(∣Λ𝑠+𝛼𝑣∣+ ∣Λ𝑠−𝛼+1+𝜎1𝑧∣)∣Λ𝑠𝜃∣∣Λ𝑠+𝛼𝐷𝜃∣.

Then we obtain

1

2

𝑑

𝑑𝑡
∣Λ𝑠𝐷𝜃∣2 + 𝜅∣Λ𝑠+𝛼(𝐷𝜃)∣2 ≤𝜅

2
∣Λ𝑠+𝛼(𝐷𝜃)∣2 + 𝐶(𝐶(𝑅) + ∣Λ𝑠+𝛼𝑣∣2 + ∣Λ𝑠−𝛼+1+𝜎1𝑧∣2)∣Λ𝑠𝐷𝜃∣2.

From Gronwall’s inequality we finally obtain∫ 𝑡

0

∣Λ𝑠+𝛼(𝐷𝜃(𝑙))∣2𝑑𝑙 ≤ exp(𝐶

∫ 𝑡

0

(𝐶(𝑅) + ∣Λ𝑠+𝛼𝑣∣2 + ∣Λ𝑠−𝛼+1+𝜎1𝑧∣2𝑑𝑙))∣Λ𝑠ℎ∣2.

By (4.3.6) we obtain

𝐸

∫ 𝑡

0

∣Λ𝑠+𝛼(𝐷𝜃(𝑙))∣2𝑑𝑙 ≤
∞∑
𝑛=1

exp(𝐶𝑡(𝐶(𝑅) + 𝑐𝑛2))𝑃 (sup
(0,𝑡)

∣Λ𝑠−𝛼+1+𝜎1𝑧∣ > 𝑛)∣Λ𝑠ℎ∣2.

Because of Assumption 4.3.1 and since 𝑧 is a Gaussian process, one deduces that
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there exist 𝜂, 𝐶 > 0 such that

𝑃 [ sup
𝑙∈[0,𝑡]

∣Λ𝑠−𝛼+1+𝜎1𝑧(𝑙)∣2 > 𝑅0] ≤ 𝐶𝑒−𝜂
𝑅2
0
𝑡 ,

(see e.g. [FR07, Proposition 15]). Then for 𝑡20 ≤ 𝜂
𝑐𝐶
, we obtain

𝐸

∫ 𝑡0

0

∣Λ𝑠+𝛼(𝐷𝜃(𝑠))∣2𝑑𝑠 ≤ 𝑐(𝑡0, 𝑅)∣Λ𝑠ℎ∣2,

which, as 𝐺 = 𝑄
−1/2
0 Λ𝑠+𝛼, implies the assertion for 𝑡0. For general 𝑡, by the semi-

group property the assertion follows easily. □

4.3.2 A support theorem for 𝛼 > 2/3

A Borel probability measure 𝜇 on 𝐻 is fully supported on 𝒲 if 𝜇(𝑈) > 0 for every

non-empty open set 𝑈 ⊂ 𝒲 . Set 𝒲1 := 𝐷(Λ𝑠−𝛼+1+𝜎1), where 𝜎1 is the same as in

the proof of Theorem 4.3.4 and we will use it below.

Lemma 4.3.6 (Approximate controllability) Let 𝑅 > 0, 𝑇 > 0. Let 𝑥 ∈ 𝒲 and

𝑦 ∈ 𝒲 , with 𝐴𝑦 ∈ 𝒲1, such that

∣𝑥∣2𝒲 ≤ 𝑅

2
∣𝑦∣2𝒲 ≤ 𝑅

2
.

Then there exist (a control function) 𝜔 ∈ Lip([0,T];𝒲1) and

𝜃 ∈ 𝐶([0, 𝑇 ];𝒲) ∩ 𝐿2([0, 𝑇 ];𝐷(Λ𝑠+𝛼)),

such that 𝜃 solves the equation

(4.3.11) 𝜃(𝑡)− 𝑥+

∫ 𝑡

0

𝐴𝜃(𝑟) + 𝜒𝑅(∣𝜃∣2𝒲)𝑢(𝑟) ⋅ ∇𝜃(𝑟)𝑑𝑟 = 𝜔(𝑡) 𝑑𝑡− 𝑎.𝑒.𝑡 ∈ [0, 𝑇 ],

with 𝜃(0) = 𝑥 and 𝜃(𝑇 ) = 𝑦, and

(4.3.12) sup
𝑡∈[0,𝑇 ]

∣𝜃(𝑡)∣2𝒲 ≤ 𝑅.

Proof First consider 𝜔 = 0. Then by an inequality similar to (4.3.6), we get

𝑑

𝑑𝑡
∣𝜃∣2𝒲 + 𝜅∣Λ𝛼𝜃∣2𝒲 ≤ 𝐶(𝑅)∣𝜃∣2𝒲 .

Hence by Gronwall’s lemma 𝜃(𝑡) ∈ 𝐷(Λ𝑠+𝛼) for almost every 𝑡 ∈ [0, 𝑇 ] and, by



164 Chapter 4. Stochastic quasi-geostrophic equation

solving again the equation with one of these regular points as initial condition, by

Lemma 4.1.1 we have

𝑑

𝑑𝑡
∣Λ𝛼+𝑠𝜃∣2 + 𝜅∣Λ2𝛼+𝑠𝜃∣2𝒲 ≤ 𝐶∣Λ2𝛼+𝑠𝜃∣∣Λ𝑠+1+𝜎𝜃∣∥𝜃∥𝐿𝑝 ≤ 𝐶(𝑅)∣Λ𝑠+𝛼𝜃∣2 + 𝜅

2
∣Λ𝑠+2𝛼𝜃∣2,

where 𝜎 = 2
𝑝
< 2𝛼 − 1 and where we used the 𝐿𝑝-estimate in the same way as

in the proof of [Re95, Theorem 3.3]. Then we find a small 𝑇∗ ∈ (0, 𝑇
2
) such that

∣𝜃(𝑡)∣2𝒲 ≤ 𝑅 and 𝐴𝜃(𝑇∗) ∈ 𝒲1 for all 𝑡 ≤ 𝑇∗. Define 𝜃 to be the solution above for

𝑡 ∈ [0, 𝑇∗] and extended by linear interpolation between 𝑦 and 𝜃(𝑇∗) in [𝑇∗, 𝑇 ]. Then
obviously (4.3.12) follows.

Next, if we set

𝜂 := ∂𝑡𝜃 + 𝐴𝜃 + 𝜒𝑅(∣𝜃∣2𝒲)𝑢 ⋅ ∇𝜃, 𝑇∗ ≤ 𝑡 ≤ 𝑇,

𝜔 := 0 for 𝑡 ≤ 𝑇∗ and 𝜔(𝑡) =
∫ 𝑡

𝑇∗ 𝜂𝑠𝑑𝑠 for 𝑡 ∈ [𝑇∗, 𝑇 ], we also have (4.3.11). It

remains to prove that 𝜂 ∈ 𝐿∞(0, 𝑇 ;𝒲1). For the first two terms of 𝜂 this is obvious.

For the non-linear term we have that

∣𝑢 ⋅ ∇𝜃∣𝒲1 ≤ 𝐶∣Λ2𝛼𝜃∣2𝒲1
,

for any 𝜃 ∈ 𝐷(Λ𝑠+𝜎1+1+𝛼). □

Let 𝑙 ∈ (0, 1
2
) and 𝑝 > 1 such that 𝑙− 1

𝑝
> 0. Under this assumption we see that

for every 𝛼1 <
𝑠+𝛼−1

2𝛼
the map

𝜔 7→ 𝑧(⋅, 𝜔) : 𝑊 𝑙,𝑝([0, 𝑇 ];𝐷(𝐴𝛼1)) → 𝐶([0, 𝑇 ];𝐷(𝐴𝛼1+𝑙− 1
𝑝
−𝜀))

is continuous, for all 𝜀 > 0, where 𝑧 is the solution to the Stokes problem

𝑧(𝑡) +

∫ 𝑡

0

𝐴𝑧(𝑠)𝑑𝑠 = 𝜔(𝑡).

In particular, it is possible to find 𝛼1 ∈ (0, 𝑠+𝛼−1
2𝛼

), 𝑠 and 𝑝 such that the above map

is continuous from 𝑊 𝑙,𝑝([0, 𝑇 ];𝐷(𝐴𝛼1)) to 𝐶([0, 𝑇 ];𝐷(Λ𝑠−𝛼+1+𝜎1)).

Lemma 4.3.7 ( Continuity with respect to the control functions) Let 𝑙, 𝑝 and 𝛼1

be chosen as above, and let 𝜔𝑛 → 𝜔 in 𝑊 𝑙,𝑝([0, 𝑇 ];𝐷(𝐴𝛼1)). Let 𝜃 be the solution

to equation (4.3.11) corresponding to 𝜔 and some initial condition 𝑥, and let

𝜏 = inf{𝑡 ≥ 0 : ∣𝜃(𝑡)∣2𝒲 ≥ 𝑅},

where as usual we set inf ∅ = ∞. For each 𝑛 ∈ ℕ, define similarly 𝜃𝑛 and 𝜏𝑛
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corresponding to 𝜔𝑛 with the same initial condition 𝑥. If 𝜏 > 𝑇 , then 𝜏𝑛 > 𝑇 for 𝑛

large enough and

𝜃𝑛 → 𝜃 in 𝐶([0, 𝑇 ];𝒲).

Proof Set 𝑣𝑛 := 𝜃𝑛 − 𝑧𝑛 for each 𝑛 ∈ ℕ, and 𝑣 := 𝜃 − 𝑧, where 𝑧𝑛, 𝑧 are the

solutions to the Stokes problem corresponding to 𝜔𝑛, 𝜔 respectively. Since 𝜔𝑛 → 𝜔

in 𝑊 𝑙,𝑝([0, 𝑇 ];𝐷(𝐴𝛼1)), we can find a common lower bound for (𝜏𝑛)𝑛∈ℕ and 𝜏 . For

every time smaller than this lower bound 𝑡0, by (4.3.6) we have

sup
(0,𝑡0)

∣Λ𝑠𝜃𝑛∣2 ≤ 𝑅, sup
(0,𝑡0)

∣Λ𝑠𝜃∣2 ≤ 𝑅, sup
(0,𝑡0)

∣Λ𝑠−𝛼+1+𝜎1𝑧𝑛∣ ≤ 𝐶(𝑅),

and

sup
(0,𝑡0)

∣Λ𝑠−𝛼+1+𝜎1𝑧∣ ≤ 𝐶(𝑅),

∫ 𝑡0

0

∣Λ𝑠+𝛼𝑣𝑛(𝑙)∣2𝑑𝑙 ≤ 𝐶(𝑅),

∫ 𝑡0

0

∣Λ𝑠+𝛼𝑣(𝑙)∣2𝑑𝑙 ≤ 𝐶(𝑅),

where 𝐶(𝑅) is a constant depending only on 𝑅. Moreover, we obtain for 𝑡 ≤ 𝑡0

𝑑

𝑑𝑡
∣𝑣 − 𝑣𝑛∣2𝒲 + 2𝜅∣Λ𝛼(𝑣𝑛 − 𝑣)∣2𝒲

=⟨𝑢𝑛 ⋅ ∇𝜃𝑛,Λ2𝑠(𝑣 − 𝑣𝑛)⟩ − ⟨𝑢 ⋅ ∇𝜃,Λ2𝑠(𝑣 − 𝑣𝑛)⟩
=[⟨(𝑢𝑣𝑛 − 𝑢𝑣) ⋅ ∇𝜃𝑛,Λ2𝑠(𝑣 − 𝑣𝑛)⟩+ ⟨𝑢 ⋅ ∇(𝑣𝑛 − 𝑣),Λ2𝑠(𝑣 − 𝑣𝑛)⟩
+ ⟨(𝑢𝑧𝑛 − 𝑢𝑧) ⋅ ∇𝜃𝑛,Λ2𝑠(𝑣 − 𝑣𝑛)⟩+ ⟨𝑢 ⋅ ∇(𝑧𝑛 − 𝑧),Λ2𝑠(𝑣 − 𝑣𝑛)⟩].

For the first term on the right hand side, by using Lemmas 4.1.1, 4.1.2 we have

(4.3.13)

∣⟨(𝑣𝑛 − 𝑣) ⋅ ∇𝜃𝑛,Λ2𝑠(𝑣 − 𝑣𝑛)⟩∣
≤𝐶∣Λ𝑠+𝛼(𝑣 − 𝑣𝑛)∣∣Λ𝑠−𝛼+1+𝜎1(𝑣 − 𝑣𝑛)∣∣Λ𝜎2𝜃𝑛∣
+ 𝐶∣Λ𝑠+𝛼(𝑣 − 𝑣𝑛)∣∣Λ𝑠−𝛼+1+𝜎1𝜃𝑛∣∣Λ𝜎2(𝑣 − 𝑣𝑛)∣

≤𝜅
4
∣Λ𝑠+𝛼(𝑣 − 𝑣𝑛)∣2 + (𝐶(𝑅) + ∣Λ𝑠𝑣𝑛∣2 + ∣Λ𝑠+𝛼𝑣𝑛∣2)∣Λ𝑠(𝑣 − 𝑣𝑛)∣2

+ 𝑐∣Λ𝑠−𝛼+1+𝜎1𝑧𝑛∣2∣Λ𝑠(𝑣 − 𝑣𝑛)∣2.

The other term can be estimated similarly. Then we obtain

𝑑

𝑑𝑡
∣𝑣 − 𝑣𝑛∣2𝒲 + 2𝜅∣Λ𝛼(𝑣𝑛 − 𝑣)∣2𝒲

≤𝜅∣Λ𝛼(𝑣𝑛 − 𝑣)∣2𝒲 + 𝐶(𝐶(𝑅) + ∣Λ𝛼𝑣𝑛∣2𝒲 + ∣Λ𝛼𝑣∣2𝒲)(∣𝑣 − 𝑣𝑛∣2𝒲 + ∣Λ𝑠−𝛼+1+𝜎1(𝑧 − 𝑧𝑛)∣2).

Here 𝜎1, 𝜎2 are as above. Then by Gronwall’s lemma

∣𝑣−𝑣𝑛∣2𝒲 ≤ Θ𝑛 exp(𝐶

∫ 𝑡

0

(𝐶(𝑅)+∣Λ𝛼𝑣𝑛∣2𝒲+∣Λ𝛼𝑣∣2𝒲)𝑑𝑙)

∫ 𝑡

0

(𝐶(𝑅)+∣Λ𝛼𝑣𝑛∣2𝒲+∣Λ𝛼𝑣∣2𝒲)𝑑𝑙,
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where Θ𝑛 = sup[0,𝑇 ] ∣Λ𝑠−𝛼+1+𝜎1(𝑧 − 𝑧𝑛)∣. We conclude 𝜃𝑛 → 𝜃 in 𝐶([0, 𝑇 ];𝒲). Now,

since 𝜏 > 𝑇 , if 𝑆 = sup𝑡∈[0,𝑇 ] ∣Λ𝑠𝜃(𝑡)∣2, then 𝑆 < 𝑅 and we find 𝛿 > 0 (depending

only on 𝑅 and 𝑆) and 𝑛0 ∈ ℕ such that Θ𝑛 < 𝛿 and ∣𝑣𝑛 − 𝑣∣2𝒲 < 𝛿 for all 𝑛 ≥ 𝑛0,

and so

∣𝜃𝑛(𝑡)∣𝒲 ≤ ∣𝑣𝑛(𝑡)− 𝑣(𝑡)∣𝒲 +Θ𝑛 + ∣𝜃(𝑡)∣𝒲 ≤ 2
√
𝛿 +

√
𝑆 ≤ √

𝑅− 𝛿.

Then 𝜏𝑛 > 𝑇 for all 𝑛 ≥ 𝑛0. □

Theorem 4.3.8 Suppose Assumption 4.3.1 holds and for 𝑥 ∈ 𝐻 let 𝑃𝑥 be the

distribution of the solution of (4.1.3) with initial value 𝜃0 = 𝑥. Then for every

𝑥 ∈ 𝒲 and every 𝑇 > 0, the image measure of 𝑃𝑥 at time 𝑇 is fully supported on

𝒲 .

Proof Fix 𝑥 ∈ 𝒲 and 𝑇 > 0. We need to show that for every 𝑦 ∈ 𝒲 and 𝜀 > 0,

𝑃𝑥[∣𝜃𝑇 − 𝑦∣𝒲 < 𝜀] > 0. Let 𝑦 ∈ 𝒲 ∩ 𝐷(𝐴) such that 𝐴𝑦 ∈ 𝒲1 and ∣𝑦 − 𝑦∣𝒲 < 𝜀
2
.

Choose 𝑅 > 0 such that 3∣𝑥∣2𝒲 < 𝑅 and 3∣𝑦∣2𝒲 < 𝑅. Then by Theorem 4.3.4,

𝑃𝑥[∣𝜃𝑇 − 𝑦∣𝒲 < 𝜀] ≥𝑃𝑥[∣𝜃𝑇 − 𝑦∣𝒲 <
𝜀

2
] ≥ 𝑃𝑥[∣𝜃𝑇 − 𝑦∣𝒲 <

𝜀

2
, 𝜏𝑅 > 𝑇 ]

=𝑃 (𝑅)
𝑥 [∣𝜃𝑇 − 𝑦∣𝒲 <

𝜀

2
, 𝜏𝑅 > 𝑇 ].

By Lemma 4.3.6, there is a control �̄� ∈ 𝑊 𝑙,𝑝([0, 𝑇 ];𝐷(𝐴𝛼1)), with 𝑙, 𝑝 and 𝛼1 chosen

as in Lemma 4.3.7, such that the solution �̄� to the control problem (4.3.11) corre-

sponding to �̄� satisfies �̄�(0) = 𝑥, �̄�(𝑇 ) = 𝑦 and ∣�̄�(𝑡)∣2𝒲 ≤ 2
3
𝑅. By Lemma 4.3.7, there

exists 𝛿 > 0 such that for all 𝜔 ∈ 𝑊 𝑙,𝑝([0, 𝑇 ];𝐷(𝐴𝛼1)) with ∣𝜔−�̄�∣𝑊 𝑙,𝑝([0,𝑇 ];𝐷(𝐴𝛼1 )) < 𝛿,

we have

∣𝜃(𝑇, 𝜔)− 𝑦∣𝒲 <
𝜀

2
and sup

𝑡∈[0,𝑇 ]

∣𝜃(𝑡, 𝜔)∣2𝒲 < 𝑅,

where 𝜃(⋅, 𝜔) is the solution to the control problem (4.3.11) corresponding to 𝜔 and

starting at 𝑥. Hence

𝑃 (𝑅)
𝑥 [∣𝜃𝑇 − 𝑦∣𝒲 <

𝜀

2
, 𝜏𝑅 > 𝑇 ] ≥ 𝑃 (𝑅)

𝑥 [∣𝜂 − �̄�∣𝑊 𝑙,𝑝([0,𝑇 ];𝐷(𝐴𝛼1 )) < 𝛿],

where 𝜂𝑡 = 𝜃𝑡 − 𝑥+
∫ 𝑡

0
(𝐴𝜃𝑠 +𝜒𝑅(∣𝜃𝑠∣2𝒲)𝑢 ⋅ ∇𝜃𝑠)𝑑𝑠, hence 𝜃𝑇 = 𝜃(𝑇, 𝜂), and the right

hand side of the inequality above is strictly positive since by Assumption 4.3.1 𝜂 is

a Brownian motion in 𝐷(𝐴𝛼1).
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4.3.3 Existence of invariant measures for 𝛼 > 2
3

In this subsection, we prove the existence of invariant measures. Let 𝜃𝑛 denote the

solution of the usual Galerkin approximation{
𝑑𝜃𝑛(𝑡) + 𝐴𝜃𝑛(𝑡)𝑑𝑡+ 𝑃𝑛(𝑢𝑛(𝑡) ⋅ ∇𝜃𝑛(𝑡))𝑑𝑡 = 𝑃𝑛𝐺(𝜃𝑛(𝑡))𝑑𝑊 (𝑡),

𝜃𝑛(0) = 𝑃𝑛𝑥.

Lemma 4.3.9 Let 𝛼 > 2
3
. If 𝑥 ∈ 𝐻1, 𝑛 ∈ ℕ, 𝑡 > 0, then there exist 𝛿1 > 0 and

𝛾0 > 0 such that

𝐸[

∫ 𝑡

0

∣𝐴𝛿1𝜃𝑛∣2𝛾0
𝒲 𝑑𝑟] ≤ 𝐶(1 + 𝑡)(∣𝑥∣2 + 1),

where 𝐶 is independent of 𝑥 and 𝑅.

Proof We apply Itô’s formula to the function (1+ ∣Λ𝛿𝜃∣2)−𝑝 for 𝛿 > 2− 2𝛼 and get

1

(1 + ∣Λ𝛿𝜃∣2)𝑝 − 1

(1 + ∣Λ𝛿𝑥∣2)𝑝

=2𝑝

∫ 𝑡

0

∣Λ𝛿+𝛼𝜃∣2
(1 + ∣Λ𝛿𝜃∣2)𝑝+1

𝑑𝑟 + 2𝑝

∫ 𝑡

0

⟨Λ𝛿−𝛼(𝑢 ⋅ ∇𝜃),Λ𝛿+𝛼𝜃⟩
(1 + ∣Λ𝛿𝜃∣2)𝑝+1

𝑑𝑟

− 2𝑝

∫ 𝑡

0

⟨Λ𝛿𝜃,Λ𝛿𝐺𝑑𝑊𝑟⟩
(1 + ∣Λ𝛿𝜃∣2)𝑝+1

− 𝑝

∫ 𝑡

0

Tr[GG∗Λ2𝛿]

(1 + ∣Λ𝛿𝜃∣2)𝑝+1
𝑑𝑟

+ 2𝑝(𝑝+ 1)

∫ 𝑡

0

∣Λ𝛿𝐺𝜃∣2
(1 + ∣Λ𝛿𝜃∣2)𝑝+1

𝑑𝑟,

where for simplicity we write 𝜃 = 𝜃𝑛. Choosing 𝜎′
1, 𝜎

′
2 with 𝜎′

2 ≤ 𝛿, 𝜎′
2 + 𝜎′

1 =

1, 𝛿 + 𝜎′
1 − 𝛼+ 1 < 𝛿 + 𝛼 the non-linear part is estimated as follows:

∣⟨Λ𝛿−𝛼(𝑢 ⋅ ∇𝜃),Λ𝛿+𝛼𝜃⟩∣ ≤𝐶∣Λ𝛿−𝛼+1+𝜎′
1𝜃∣ ⋅ ∣Λ𝜎′

2𝜃∣∣Λ𝛿+𝛼𝜃∣
≤𝐶∣Λ𝛿𝜃∣𝑚 + ∣Λ𝛿+𝛼𝜃∣2,

with 𝑚 =
2(3𝛼−1−𝜎′

1)

2𝛼−1−𝜎′
1
.

Then for 𝑝 big enough we obtain

𝐸

∫ 𝑡

0

∣Λ𝛿+𝛼𝜃𝑛∣2
(1 + ∣Λ𝛿𝜃𝑛∣2)𝑝+1

𝑑𝑟 ≤ 𝐶(1 + 𝑡).

Since by Young’s inequality

∣Λ𝛿+𝛼𝜃𝑛∣2𝛾𝑝 ≤ 𝑐[
∣Λ𝛿+𝛼𝜃𝑛∣2

(1 + ∣Λ𝛿𝜃𝑛∣2)𝑝+1
+ 1 + ∣Λ𝛿𝜃𝑛∣2],
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for 𝛿 ≤ 𝛼 we obtain

(4.3.14) 𝐸[

∫ 𝑡

0

∣Λ𝛿+𝛼𝜃𝑛∣2𝛾𝑝𝑑𝑟] ≤ 𝐶(1 + 𝑡)(∣𝑥∣2 + 1).

If 𝛿 > 𝛼, we already know that some power of ∣Λ𝛿𝜃𝑛∣ is integrable with respect to

𝑑𝑡 ⊗ 𝑃 . Then one proceeds as in the previous case to obtain (4.3.14). We choose

𝛿 + 𝛼 > 𝑠 and obtain the assertions. □

Theorem 4.3.10 Let 𝛼 > 2
3
and suppose Assumption 4.3.1 holds. Then there

exists a unique invariant measure 𝜈 on 𝒲 for the transition semigroup (𝑃𝑡)𝑡≥0.

Moreover:

(i) The invariant measure 𝜈 is ergodic.

(ii) The transition semigroup (𝑃𝑡)𝑡≥0 is𝒲-strong Feller, irreducible, and therefore

strongly mixing. Furthermore, 𝑃𝑡(𝑥, 𝑑𝑦), 𝑡 > 0, 𝑥 ∈ 𝒲 , are mutually equivalent.

(iii) There are 𝛿1 > 0 and 𝛾0 > 0 such that∫
∣𝐴𝛿1𝑥∣2𝛾0

𝒲 𝑑𝜈 <∞.

Proof Choose 𝑥0 ∈ 𝐻1 and define

𝜇𝑡 =
1

𝑡

∫ 𝑡

0

𝑃 ∗
𝑟 𝛿𝑥0𝑑𝑟.

Since ∫
∣𝐴𝛿1𝑥∣2𝛾0

𝒲 𝜇𝑡(𝑑𝑥) =
1

𝑡
𝐸𝑥0 [

∫ 𝑡

0

∣𝐴𝛿1𝜃∣2𝛾0
𝒲 𝑑𝑟],

by Lemma 4.3.9 we obtain ∫
∣𝐴𝛿1𝑥∣2𝛾0

𝒲 𝜇𝑡(𝑑𝑥) ≤ 𝐶.

This implies that 𝜇𝑡 is tight on𝒲 . The strong Feller property of 𝑃𝑡 follows from The-

orem 4.3.3. Hence, a limit point of 𝜇𝑡 is an invariant measure for (𝑃𝑡)𝑡≥0. Therefore,

by Doob’s theorem, the strongly mixing property is a consequence of the irreducibil-

ity.

Remark 4.3.11 If we don’t assume that 𝐺 satisfies
∫
(
∑

𝑗 ∣𝐺(𝑒𝑗)∣2)𝑝/2𝑑𝜉 ≤ 𝐶, for

some fixed 𝑝 ∈ ((𝛼 − 1
2
)−1,∞), the solution of equation (4.1.3) may be not unique.

Then we can also prove the above results for each Markov selection 𝑃𝑥, 𝑥 ∈ 𝒲 ,

corresponding to (4.1.3) and the respective semigroup (𝑃𝑡)𝑡≥0 by similar arguments
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as [R08].

Remark 4.3.12 (i) (Mildly degenerate noise) We can also consider the ergodicity

of the equation driven by a mildly degenerate noise as in [EH01]. For this we have

to use an extension of the Bismut-Elworthy-Li formula. We have the same problem

as explained in Remark 4.3.2. So, we can just get the result for 𝛼 > 2/3.

(ii) (Degenerate noise) There are many papers considering 2D Navier-Stokes

equation driven by degenerate noise. Contrary to the 2D Navier-Stokes equation,

no Foias-Prodi type estimate is available for the quasi-geostrophic equation. It

seems impossible to use a coupling approach as in [KS02], [BKL02], [M02] to prove

ergodicity in the case where equation (4.1.3) is driven by a degenerate noise. It also

seems difficult to use the method in [HM06] to prove ergodicity.

4.4 Exponential convergence for 𝛼 > 2
3

First we introduce the same approximation as in the proof of [RZZ12, Theorem 4.3]:

We pick a smooth 𝜙 ≥ 0, with supp𝜙 ⊂ [1, 2],
∫∞
0
𝜙 = 1, and for 𝛿 > 0 let

𝑈𝛿[𝜃](𝑡) :=

∫ ∞

0

𝜙(𝜏)(𝑘𝛿 ∗𝑅⊥𝜃)(𝑡− 𝛿𝜏)𝑑𝜏 ,

where 𝑘𝛿 is the periodic Poisson Kernel in 𝕋2 given by 𝑘𝛿(𝜁) = 𝑒−𝛿∣𝜁∣, 𝜁 ∈ ℤ2, and

we set 𝜃(𝑡) = 0, 𝑡 < 0. We take a zero sequence 𝛿𝑛 and consider the equation:

𝑑𝜃𝑛(𝑡) + 𝐴𝜃𝑛(𝑡)𝑑𝑡+ 𝑢𝑛(𝑡) ⋅ ∇𝜃𝑛(𝑡)𝑑𝑡 = 𝑘𝛿𝑛 ∗𝐺(𝜃)𝑑𝑊 (𝑡),

with initial data 𝜃𝑛(0) = 𝜃0 and 𝑢𝑛 = 𝑈𝛿𝑛 [𝜃𝑛], where 𝑘𝛿 ∗ 𝐺(𝜃) means for 𝑦 ∈ 𝐾,

𝑘𝛿 ∗ 𝐺(𝜃)(𝑦) = 𝑘𝛿 ∗ (𝐺(𝜃)(𝑦)). For a fixed 𝑛, this is a linear equation in 𝜃𝑛 on each

subinterval [𝑡𝑘, 𝑡𝑘+1] with 𝑡𝑘 = 𝑘𝛿𝑛, since 𝑢𝑛 is determined by the values of 𝜃𝑛 on the

two previous subintervals.

As will be seen below, we shall need uniform 𝐿𝑝-estimates, and a crucial in-

gredient to prove them is Krylov’s 𝐿𝑝-Itô formula. In order to obtain a uniform

estimate, the 𝐿𝑝-estimate known from the deterministic case (see e.g. [Re95]) is not

strong enough for our purpose. Therefore, we need the following result, which is an

improved version of the ”positivity lemma” from [Re95, Lemma 3.2].

Lemma 4.4.1 ( Improved positivity Lemma ) For 𝛼 ∈ (0, 1), and 𝜃 ∈ 𝐿𝑝 with

Λ2𝛼𝜃 ∈ 𝐿𝑝, for some 2 < 𝑝 <∞,∫
∣𝜃∣𝑝−2𝜃(Λ2𝛼 − 2𝜆1

𝑝
)𝜃 ≥ 0.
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Proof Denote the semigroup with respect to −Λ2𝛼+ 2𝜆1

𝑝
and −Λ2𝛼 in 𝐿2 by 𝑃 0

𝑡 and

𝑃 1
𝑡 , respectively. Then we have 𝑃 0

𝑡 𝑓 = 𝑒2𝑡𝜆1/𝑝𝑃 1
𝑡 𝑓 . Since

∥𝑃 1
𝑡 𝑓∥𝐿2 ≤ 𝑒−𝜆1𝑡∥𝑓∥𝐿2 ,

and

∥𝑃 1
𝑡 𝑓∥𝐿∞ ≤ ∥𝑓∥𝐿∞ ,

by the interpolation theorem, we have

∥𝑃 1
𝑡 𝑓∥𝐿𝑝 ≤ 𝑒−2𝜆1𝑡/𝑝∥𝑓∥𝐿𝑝 .

Thus,

∥𝑃 0
𝑡 𝑓∥𝐿𝑝 ≤ ∥𝑓∥𝐿𝑝 .

Then we have

𝑑

𝑑𝑡
∥𝑃 0

𝑡 𝜃∥𝑝𝐿𝑝 =

∫
∣𝑃 0

𝑡 𝜃∣𝑝−2(𝑃 0
𝑡 𝜃)(𝑃

0
𝑡 (−Λ2𝛼 +

2𝜆1
𝑝

)𝜃)𝑑𝑥 ≤ 0.

Letting 𝑡→ 0, we obtain our result. □

Proposition 4.4.2 Let 𝛼 > 1
2
. Let 𝜃 denote the solution of equation (4.1.3).

Then for 2 < 𝑝 <∞

𝐸∥𝜃(𝑡)∥𝑝𝐿𝑝 ≤ ∥𝑥∥𝑝𝐿𝑝𝑒−𝜆1𝑡 +
𝐶

𝜆1
(1− 𝑒−𝜆1𝑡).

Proof Using [Kr10, Lemma 5.1] for 𝜃𝑛, we obtain

∥𝜃(𝑡)∥𝑝𝐿𝑝 =∥𝜃(𝑠)∥𝑝𝐿𝑝 +

∫ 𝑡

𝑠

[−𝑝
∫
𝕋2

∣𝜃(𝑙)∣𝑝−2𝜃(𝑙)(Λ2𝛼𝜃(𝑙) + 𝑢(𝑙) ⋅ ∇𝜃(𝑙))𝑑𝜉𝑑𝑙

+
1

2
𝑝(𝑝− 1)

∫
𝕋2

∣𝜃(𝑙)∣𝑝−2(
∑
𝑗

∣𝑘𝛿𝑛 ∗𝐺(𝑒𝑗)∣2)𝑑𝜉]𝑑𝑙

+ 𝑝

∫ 𝑡

𝑠

∫
𝕋2

∣𝜃(𝑙)∣𝑝−2𝜃(𝑙)𝑘𝛿𝑛 ∗𝐺𝑑𝜉𝑑𝑊 (𝑙)

≤∥𝜃(𝑠)∥𝑝𝐿𝑝 − 2𝜆1

∫ 𝑡

𝑠

∫
𝕋2

∣𝜃(𝑙)∣𝑝𝑑𝜉𝑑𝑙

+

∫ 𝑡

𝑠

1

2
𝑝(𝑝− 1)

∫
𝕋2

∣𝜃(𝑙)∣𝑝−2(
∑
𝑗

∣𝑘𝛿𝑛 ∗𝐺(𝑒𝑗)∣2)𝑑𝜉𝑑𝑙

+ 𝑝

∫ 𝑡

𝑠

∫
𝕋2

∣𝜃(𝑙)∣𝑝−2𝜃(𝑙)𝑘𝛿𝑛 ∗𝐺𝑑𝜉𝑑𝑊 (𝑙)
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≤∥𝜃(𝑠)∥𝑝𝐿𝑝 − 2𝜆1

∫ 𝑡

𝑠

∫
𝕋2

∣𝜃(𝑙)∣𝑝𝑑𝜉𝑑𝑙 +
∫ 𝑡

𝑠

(𝜀

∫
𝕋2

∣𝜃(𝑙)∣𝑝𝑑𝜉 + 𝐶(𝜀)

∫
(
∑
𝑗

∣𝑘𝛿𝑛 ∗𝐺(𝑒𝑗)∣2)𝑝/2𝑑𝜉)𝑑𝑙

+ 𝑝

∫ 𝑡

𝑠

∫
𝕋2

∣𝜃(𝑙)∣𝑝−2𝜃(𝑙)𝑘𝛿𝑛 ∗𝐺𝑑𝜉𝑑𝑊 (𝑙),

where we used Lemma 4.4.1 to get the first inequality and our assumption on 𝐺

to get the last inequality. Here for simplicity we write 𝜃(𝑡) = 𝜃𝑛(𝑡, 𝑥). Taking

expectation we obtain

𝐸∥𝜃𝑛(𝑡)∥𝑝𝐿𝑝 ≤ 𝐸∥𝜃𝑛(𝑠)∥𝑝𝐿𝑝 − 𝐸𝜆1

∫ 𝑡

𝑠

∫
𝕋2

∣𝜃𝑛(𝑙)∣𝑝𝑑𝜉𝑑𝑙 + 𝐶(𝜀, 𝑝)(𝑡− 𝑠).

Then by Gronwall’s lemma we have

𝐸∥𝜃𝑛(𝑡)∥𝑝𝐿𝑝 ≤∥𝜃(0)∥𝑝𝐿𝑝𝑒−𝜆1𝑡 +
𝐶

𝜆1
(1− 𝑒−𝜆1𝑡).

Then taking the limit 𝑛→ ∞ in the above inequality we deduce

𝐸∥𝜃(𝑡)∥𝑝𝐿𝑝 ≤ ∥𝑥∥𝑝𝐿𝑝𝑒−𝜆1𝑡 +
𝐶

𝜆1
(1− 𝑒−𝜆1𝑡).

□

Lemma 4.4.3 Let 𝛼 > 2
3
and suppose Assumption 4.1.3 is satisfied with 𝑠 >

3 − 2𝛼. Let 𝜃 denote the solution of (4.1.3) and take 𝑝 as in Assumption 4.1.3.

Then for every 𝑅0 ≥ 1, there exist values 𝑇1 = 𝑇1(𝑅0) and 𝐾1 = 𝐾1(𝑅0) such that

if ∣𝜃0∣ ≤ 𝑅0, sup𝑡∈[0,𝑇1] ∥𝜃∥𝑝𝐿𝑝 ≤ 𝑅0, and sup𝑡∈[0,𝑇1] ∣Λ𝑠−𝛼+1+𝜎1+𝛿𝑧(𝑡)∣2 ≤ 𝑅0 for some

0 < 𝛿 < 3𝛼− 2− 𝜎1, then ∣Λ𝑠+𝛿𝜃(𝑇1)∣2 ≤ 𝐾1.

Proof By Itô’s formula, we obtain that there exists𝐾0 = 𝐾0(𝑅0) > 0 and for 𝑃 -a.s.

𝜔, ∃ 𝑡0(𝜔) > 0 such that

∣Λ𝛼𝜃(𝑡0)∣2 ≤ 𝐾0.

For any 𝑟 > 0, by Lemmas 4.1.1, 4.1.2 we have the following a-priori estimate

for 𝑁 = 𝛼
𝛼− 1

2
− 1

𝑝

and 𝜎 = 2
𝑝
,

(4.4.1)

𝑑

𝑑𝑡
∣Λ𝑟𝑣∣2 + ∣Λ𝑟+𝛼𝑣∣2 ≤∣⟨𝑢 ⋅ ∇𝜃,Λ2𝑟𝑣⟩∣

≤𝐶∣Λ𝑟+𝛼𝑣∣ ⋅ ∣Λ𝑟−𝛼+1+𝜎𝜃∣ ⋅ ∥𝜃∥𝐿𝑝

≤1

4
∣Λ𝑟+𝛼𝑣∣2 + 𝐶∥𝜃∥𝑁𝐿𝑝 ∣Λ𝑟𝑣∣2 + 𝐶∣Λ𝑟−𝛼+1+𝜎𝑧∣2 ⋅ ∥𝜃∥2𝐿𝑞 .

We choose the approximation 𝜃𝑛 as at the beginning of this subsection with initial

time 𝑡 = 0 replaced by the initial time 𝑡 = 𝑡0(𝜔) and 𝜃𝑛(𝑡0) = 𝜃(𝑡0). Set 𝑧𝑛 =
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∫ 𝑡

𝑡0
𝑒−(𝑡−𝑠)𝐴𝑘𝛿𝑛 ∗ 𝐺𝑑𝑊 (𝑠). Then we have the following 𝐿𝑝-norm estimate for 𝑣𝑛 :=

𝜃𝑛 − 𝑧𝑛,
𝑑

𝑑𝑡
∥𝑣𝑛∥𝑝𝐿𝑝 ≤𝑝𝐶∥∇𝑧𝑛∥∞(∥𝑣𝑛∥𝑝𝐿𝑝 + ∥𝑧𝑛∥𝐿𝑝∥𝑣𝑛∥𝑝−1

𝐿𝑝 ).

Thus we have
𝑑

𝑑𝑡
∥𝑣𝑛∥𝐿𝑝 ≤𝐶∥∇𝑧𝑛∥∞(∥𝑣𝑛∥𝐿𝑝 + ∥𝑧𝑛∥𝐿𝑝).

Then by Gronwall’s lemma and since 𝑠 > 3 − 2𝛼, we obtain the desired uniform

𝐿𝑝-norm estimates for 𝑣𝑛. Moreover, by (4.4.1) and Gronwall’s lemma we obtain the

uniform 𝐻𝑟-norm estimates for 𝑣𝑛. By a similar argument as in the proof of [RZZ12,

Theorem 3.4] we have that 𝑣𝑛 converges to some process 𝑣 in 𝐿2([𝑡0, 𝑇 ], 𝐻) such that

𝑣 + 𝑧 is the solution of (4.1.3) in [𝑡0, 𝑇 ]. Then by the uniqueness proof in [RZZ12,

Theorem 5.1] we have 𝑣 = 𝑣 in [𝑡0,∞), which implies that 𝑣 ∈ 𝐿∞([𝑡0,∞), 𝐻𝑟) ∩
𝐿2
loc([𝑡0,∞), 𝐻𝑟+𝛼) 𝑃 -a.s. 𝜔. Therefore, (4.4.1) also holds for 𝑣 with 𝑡 ∈ [𝑡0,∞).

Then by (4.4.1) for 𝑟 = 𝛼, we obtain that there exist 𝐾1 = 𝐾1(𝑅0) > 0 and

𝑡1 = 𝑡1(𝜔) > 𝑡0(𝜔) such that ∣Λ2𝛼𝑣(𝑡1)∣ ≤ 𝐾1. Using (4.4.1) for 𝑟 = 2𝛼 we obtain that

there exists 𝑇0 = 𝑇0(𝑅0) such that ∣Λ2𝛼𝑣(𝑇0)∣ ≤ 𝐾1. Then we proceed analogously

and obtain that there exists 𝑇1 = 𝑇1(𝑅0) such that ∣Λ𝑠+𝛿𝑣(𝑇1)∣ ≤ 𝐾1 for some

0 < 𝛿 < 3𝛼− 2− 𝜎1. □

Lemma 4.4.4 Let 𝛼 > 2
3
and suppose Assumption 4.1.3 holds with 𝑠 > 3 − 2𝛼.

Then for each 𝑅 ≥ 1 there are 𝑇1 > 0 and a compact subset 𝐾 ⊂ 𝒲 such that

inf
∥𝑥∥𝐿𝑝≤𝑅

𝑃𝑇1(𝑥,𝐾) > 0,

for 𝑝 as in Assumption 4.1.3.

Proof Define 𝐾 := {𝑥 : ∣Λ𝑠+𝛿𝑥∣2 ≤ 𝐾1(𝑅0)}, where 𝐾1(𝑅0), 𝛿 comes from the

previous lemma. By Lemma 4.4.3, for 𝑅 ≤ 𝑅0 we have

inf
∥𝑥∥𝐿𝑝≤𝑅

𝑃𝑇1(𝑥,𝐾) ≥ inf
∥𝑥∥𝐿𝑝≤𝑅

(1− 𝑃𝑥[ sup
𝑡∈[0,𝑇1]

∣Λ𝑠−𝛼+1+𝜎1+𝛿𝑧(𝑡)∣2 > 𝑅0]

− 𝑃𝑥[ sup
𝑡∈[0,𝑇1]

∥𝜃∥𝑝𝐿𝑝 > 𝑅0]),

where we used Lemma 4.4.3 in the last step. Under Assumption 4.1.3, since 𝑧 is a

Gaussian process, one deduces that there exist 𝜂, 𝐶 > 0 such that

𝑃𝑥[ sup
𝑡∈[0,𝑇1]

∣Λ𝑠−𝛼+1+𝜎1+𝛿𝑧(𝑡)∣2 > 𝑅0] ≤ 𝐶𝑒
−𝜂

𝑅2
0

𝑇1 ,
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(see e.g. [FR06, Proposition 15]). Also by [RZZ12, Theorem 4.3], we obtain

sup
∥𝑥∥𝐿𝑝≤𝑅

𝑃𝑥[ sup
𝑡∈[0,𝑇1]

∥𝜃∥𝑝𝐿𝑝 > 𝑅0] ≤ sup
∥𝑥∥𝐿𝑝≤𝑅

𝐸𝑥[sup𝑡∈[0,𝑇1] ∥𝜃∥𝑝𝐿𝑝 ]

𝑅0

≤ 𝐶(𝑅)

𝑅0

.

Choosing 𝑅0 big enough, we prove the assertion. □

The exponential convergence now follows from Lemma 4.4.4 and an abstract

result of [GM05, Theorem 3.1]. For 𝑝 in Assumption 4.1.3, let 𝑉 : 𝐿𝑝 → ℝ be a

measurable function and define ∥𝜙∥𝑉 := sup𝑥∈𝐿𝑝
∣𝜙(𝑥)∣
𝑉 (𝑥)

and ∥𝜈∥𝑉 := sup∥𝜙∥𝑉 ≤1⟨𝜈, 𝜙⟩
for a signed measure 𝜈.

Theorem 4.4.5 Let 𝛼 > 2
3
. Suppose that Assumption 4.1.3 holds with 𝑠 > 3−2𝛼

and let 𝑉 (𝑥) := 1 + ∥𝑥∥𝑝𝐿𝑝 for 𝑝 as in Assumption 4.1.3. Then there exist 𝐶exp > 0

and 𝑎 > 0 such that

∥𝑃 ∗
𝑡 𝛿𝑥0 − 𝜇∥𝑇𝑉 ≤ ∥𝑃 ∗

𝑡 𝛿𝑥0 − 𝜇∥𝑉 ≤ 𝐶exp(1 + ∥𝑥0∥𝑝𝐿𝑝)𝑒−𝑎𝑡,

for all 𝑡 > 0 and 𝑥0 ∈ 𝐿𝑝, where ∥ ⋅ ∥𝑇𝑉 is the total variation distance on measures.

Proof By similar arguments as in the proof of Lemma 4.4.3 we obtain 𝑃𝑡(𝑥,𝒲) = 1

for 𝑥 ∈ 𝐿𝑝. By [GM05, Theorem 3.1], we need to verify the following four conditions,

1. the measures (𝑃𝑡(𝑥, ⋅))𝑡>0,𝑥∈𝐿𝑝 are equivalent,

2. 𝑥→ 𝑃𝑡(𝑥,Γ) is continuous in 𝒲 for all 𝑡 > 0 and all Borel sets Γ ⊂ 𝐻,

3. for each 𝑅 ≥ 1 there exist 𝑇1 > 0 and a compact subset 𝐾 ⊂ 𝒲 such that

inf
∥𝑥∥𝐿𝑝≤𝑅

𝑃𝑇1(𝑥,𝐾) > 0,

4. there exist 𝑘, 𝑏, 𝑐 > 0 such that for all 𝑡 ≥ 0,

𝐸𝑃𝑥 [∥𝜃(𝑡)∥𝑝𝐿𝑝 ] ≤ 𝑘∥𝑥∥𝑝𝐿𝑝𝑒−𝑏𝑡 + 𝑐.

Condition 1 can be verified by [GM05, Lemma 3.2] and since 𝑃𝑡(𝑥,𝒲) = 1 for

𝑥 ∈ 𝐿𝑝. The other conditions can be verified by Theorem 4.3.2, Lemma 4.4.4 and

Proposition 4.4.2. □

Remark 4.4.6 (i) For 𝛼 > 3
4
we can get a better result following a similar

argument as in [R08]. Namely, there exist 𝐶exp > 0 and 𝑎 > 0 such that

∥𝑃 ∗
𝑡 𝛿𝑥0 − 𝜇∥𝑇𝑉 ≤ ∥𝑃 ∗

𝑡 𝛿𝑥0 − 𝜇∥𝑉 ≤ 𝐶exp(1 + ∣𝑥0∣2)𝑒−𝑎𝑡,
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for all 𝑡 > 0 and 𝑥0 ∈ 𝐻. Here 𝑃𝑡 could be every Markov selection associated to the

solution of equation (4.1.3).

(ii) The reason why 𝛼 > 3
4
is needed, is as follows: As in Theorem 4.3.3, we can

prove 𝑃𝑡 is 𝐻
𝑠-strong Feller with 𝑠 > 3−3𝛼. And for a solution 𝜃 of equation (4.1.3)

starting from 𝑥 ∈ 𝐻, we can prove that it will enter 𝐻𝛼 only under our condition

on the noise. If the process 𝜃 enters 𝐻𝑠, we can prove that it satisfies the above four

conditions. Hence, to obtain exponential convergence for every 𝑥 ∈ 𝐻, we need the

process starting from 𝑥 ∈ 𝐻 to enter 𝐻𝑠. Hence we need 3−3𝛼 < 𝑠 < 𝛼, i.e. 𝛼 > 3
4
.

4.5 Ergodicity for 𝛼 > 3/4 driven by mildly de-

generate noises

In this section, we assume that 𝛼 > 3
4
, 𝑊 (𝑡) is a cylinder Wiener process on 𝐻

and 𝐺 is additive. We recall here that on the periodic domain 𝕋2, {cos(𝑘𝑥)∣𝑘 ∈
ℤ2

+} ∪ {sin(𝑘𝑥)∣𝑘 ∈ ℤ2
−} form an eigenbasis of −△, which we denote by 𝑒𝑘 in

this section. Here ℤ2
+ = {(𝑘1, 𝑘2) ∈ ℤ2∣𝑘2 > 0} ∪ {(𝑘1, 0) ∈ ℤ2∣𝑘1 > 0},ℤ2

− =

{(𝑘1, 𝑘2) ∈ ℤ2∣− 𝑘 ∈ ℤ2
+}, 𝑥 ∈ 𝕋2 and the corresponding eigenvalues are ∣𝑘∣2. Define

ℤ2
∗ = ℤ2∖{(0, 0)}. Moreover, denote for any 𝑁 > 0, 𝑍𝐿(𝑁) = [−𝑁,𝑁 ]2 ∖ (0, 0) and

𝑍𝐻(𝑁) = ℤ2
∗ ∖ 𝑍𝐿(𝑁).

4.5.1 The strong Feller property for 𝛼 > 3/4

Given 𝑁 ≥ 1, let 𝜋𝑁 : 𝐻 → 𝐻 be the projection onto the subspace of 𝐻 generated

by all modes 𝑘 such that ∣𝑘∣∞ := max ∣𝑘𝑖∣ ≤ 𝑁 . Assume that 𝛼 > 3
4
and 𝐺 satisfies:

Assumption 4.5.1 The operator 𝐺 : 𝐻 → 𝐻 is linear bounded and there are

𝛾 > 1 and an integer 𝑁0 ≥ 1 such that

[A1] (diagonality) 𝐺 is diagonal on the basis (𝑒𝑘)𝑘∈𝑍2∗ ,

[A2] (finite degeneracy) 𝜋𝑁0𝐺 = 0 and ker((𝐼𝑑− 𝜋𝑁0)𝐺) = {0},
[A3] (regularity) (𝐼𝑑− 𝜋𝑁0)𝐴

𝛾+𝛼
2𝛼 𝐺 is bounded invertible on (𝐼𝑑− 𝜋𝑁0)𝐻.

Under Assumption 4.5.1, (G.1) is satisfied obviously and𝑄𝑑𝑊 =
∑

𝑘∈𝑍𝐻(𝑁0)
𝑒𝑘𝑔𝑘𝑑𝑤𝑘,

where (𝑤𝑘)𝑘∈𝑍𝐻(𝑁0) is a sequence of independent 2D Brownian motions. Let (𝑃𝑥)𝑥∈𝐻
be any a.s. Markov process obtained in Theorem 4.2.5, and (𝑃𝑡)𝑡≥0 be the associated

transition semi-group on ℬ𝑏(𝐻), defined as

(4.5.1) 𝑃𝑡(𝜑)(𝑥) = 𝐸𝑥[𝜑(𝜉𝑡)], 𝑥 ∈ 𝐻,𝜑 ∈ ℬ𝑏(𝐻).
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In this subsection we prove it has the strong Feller property under Assumption 4.5.1.

Choose 𝑠 such that 𝛾 < 𝛾 − 𝛼 + 1 < 𝑠 < 𝑠 − 𝛼 + 1 < 𝛾 + 2𝛼 − 1, and set

𝒲 = 𝐷(Λ𝑠) and ∣𝑥∣𝒲 = ∣Λ𝑠𝑥∣. By this choice, we know that 𝛼 > 3
4
is required.

Now we state the main result of this section.

Theorem 4.5.2 Under Assumption 4.5.1. Then (𝑃𝑡)𝑡≥0 is 𝒲-strong Feller, i.e.

for every 𝑡 > 0 and 𝜓 ∈ ℬ𝑏(𝐻), 𝑃𝑡𝜓 ∈ 𝐶𝑏(𝒲).

In order to prove Theorem 4.5.2, we follow the approach of [EH01], [RX10] to

construct 𝑃 𝜌
𝑥 . We introduce an equation which differs from the original one by a

cut-off only, so that with large probability they have the same trajectories on a small

deterministic time interval. We consider the equation

(4.5.2) 𝑑𝜃𝜌(𝑡) + 𝐴𝜃𝜌(𝑡)𝑑𝑡+ 𝜒(
∣𝜃𝜌∣𝒲
3𝜌

)𝑢𝜌(𝑡) ⋅ ∇𝜃𝜌(𝑡)𝑑𝑡 = 𝐺(𝜃𝜌)𝑑𝑊 (𝑡),

where

𝐺(𝜃𝜌) = 𝐺+ (1− 𝜒(
∣𝜃𝜌∣𝒲
𝜌

))�̄�,

and �̄� is non-degenerate operator on 𝜋𝑁0𝐻, and 𝜒 : ℝ → [0, 1] of class 𝐶∞ such

that 𝜒(𝑟) = 1 if 𝑟 ≤ 1, 𝜒(𝑟) = 0 if 𝑟 ≥ 2 and with derivative bounded by 1. We

could choose �̄� is diagonal on the basis (𝑒𝑘) i.e. �̄�𝑒𝑘 = 𝑔𝑘𝑒𝑘, for 𝑘 ∈ 𝑍𝐿(𝑁0). By

the same arguments as in Theorem 4.3.4, we obtain the following results, where we

used 𝑠− 𝛼+ 1 < 𝛾 + 2𝛼− 1.

Theorem 4.5.3 (Weak-strong uniqueness) Under Assumption 4.5.1. For every

𝑥 ∈ 𝒲 , Eq. (4.5.2) has a unique martingale solution 𝑃 𝜌
𝑥 , with

𝑃 𝜌
𝑥 [𝐶([0,∞);𝒲)] = 1.

Let 𝜏 𝜌 : Ω → [0,∞] be defined as

𝜏 𝜌(𝜔) = inf{𝑡 ≥ 0 : ∣𝜔(𝑡)∣𝒲 ≥ 𝜌},

and 𝜏 𝜌(𝜔) = ∞ if this set is empty. If 𝑥 ∈ 𝒲 and ∣𝑥∣𝒲 < 𝜌, then

(4.5.3) lim
𝜀→0

𝑃 𝜌
𝑥+ℎ[𝜏 𝜌 ≥ 𝜀] = 1, uniformly in ℎ ∈ 𝒲 , ∣ℎ∣𝒲 < 1.

Moreover, on [0, 𝜏 𝜌], the probability measure 𝑃 𝜌
𝑥 coincides with any martingale so-

lution 𝑃𝑥 of the equation (4.1.3), namely

(4.5.4) 𝐸𝑃 𝜌
𝑥 [𝜑(𝜉𝑡)1[𝜏𝜌≥𝑡]] = 𝐸𝑃𝑥 [𝜑(𝜉𝑡)1[𝜏𝜌≥𝑡]],
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for every 𝑡 ≥ 0 and 𝜑 ∈ ℬ𝑏(𝐻).

4.5.2 Strong-Feller property of cutoff dynamics

In order to apply [FR08, Theorem 5.4], we need to prove the following result.

Theorem 4.5.4 There is 𝜌0 > 0 such that for 𝜌 ≥ 𝜌0, the transition semi-group

(𝑃 𝜌
𝑡 )𝑡≥0 associated to Eq. (4.5.2) is 𝒲-strong Feller.

Fix 𝑁 ≥ 𝑁0 (whose value will be suitably chosen later). In this and the following

subsection we shall denote with the superscript 𝐿 the quantities projected onto the

modes smaller than 𝑁 and with the superscript 𝐻 those projected onto the modes

larger than 𝑁 . We divide the equation (4.5.2) into the low and high frequency parts

(dropping the 𝜌 in 𝜃𝜌 for simplicity),

(4.5.5)

{
𝑑𝜃𝐿 + 𝐴𝜃𝐿𝑑𝑡+ 𝜒( ∣𝜃∣𝒲

3𝜌
)𝐵𝐿(𝜃, 𝜃)𝑑𝑡 = 𝐺𝐿(𝜃)𝑑𝑊

𝐿
𝑡 ,

𝑑𝜃𝐻 + 𝐴𝜃𝐻𝑑𝑡+ 𝜒( ∣𝜃∣𝒲
3𝜌

)𝐵𝐻(𝜃, 𝜃)𝑑𝑡 = 𝐺𝐻𝑑𝑊
𝐻
𝑡 ,

where 𝜃𝐿 = 𝜋𝑁𝜃, 𝜃
𝐻 = (𝐼𝑑 − 𝜋𝑁)𝑢,𝑊

𝐿 = 𝜋𝑁𝑊, 𝑊
𝐻 = (𝐼𝑑 − 𝜋𝑁)𝑊, 𝐵𝐿 = 𝜋𝑁𝐵,

𝐵𝐻 = (𝐼𝑑− 𝜋𝑁)𝐵 for 𝐵(𝜃, 𝜃) = 𝑢 ⋅ ∇𝜃, 𝐺𝐿(𝜃) = 𝐺(𝜃)𝜋𝑁 and 𝐺𝐻 = 𝐺(𝜃)(𝐼𝑑− 𝜋𝑁).

With the above separation for the dynamics, it is natural to define the Frechet

derivatives for their low and high frequency parts. We will always use the notations

𝐷𝐿 and 𝐷𝐻 to denote the derivatives with respect to 𝐻𝐿 (resp. 𝐻𝐻) of a differen-

tiable function defined on 𝐻. For instance, for any stochastic process 𝑋(𝑡, 𝑥) on 𝐻

with 𝑋(0, 𝑥) = 𝑥, 𝐷𝐻𝑋
𝐿(𝑡, 𝑥) : 𝐻𝐻 → 𝐻𝐿 is defined by

𝐷𝐻𝑋
𝐿(𝑡, 𝑥)ℎ = 𝐷ℎ𝑋

𝐿(𝑡, 𝑥) = lim
𝜀→0

1

𝜀
[𝑋𝐿(𝑡, 𝑥+ 𝜀ℎ)−𝑋𝐿(𝑡, 𝑥)], ℎ ∈ 𝐻𝐻 .

Let 𝐶𝑘
𝑏 (𝒲) be the set of functions on𝒲 with bounded 0-th,...,𝑘-th order derivatives.

Similarly, for 𝜓 ∈ 𝐶1
𝑏 (𝒲), 𝐷𝐿𝜓(𝑥) and 𝐷𝐻𝜓(𝑥) can be defined.

To prove Theorem 4.5.4, we need to approximate (4.5.5) by the following more

regular dynamics

(4.5.6)

{
𝑑𝜃𝛿,𝜌 + 𝐴𝜃𝛿,𝜌𝑑𝑡+ 𝑒−𝐴𝐻𝛿𝜒( ∣𝜃

𝛿,𝜌∣𝒲
3𝜌

)𝐵(𝜃𝛿,𝜌, 𝜃𝛿,𝜌)𝑑𝑡 = 𝐺(𝜃𝛿,𝜌)𝑑𝑊𝑡,

𝜃𝛿,𝜌(0) = 𝑥,

where 𝛿 > 0 and 𝐴𝐻 = (𝐼𝑑− 𝜋𝑁)𝐴 (the existence and uniqueness of weak solution

to equation (4.5.6) is standard).
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Define two maps Φ𝑡(⋅) and Φ𝛿
𝑡 (⋅) from 𝐻 to 𝐻 by

Φ𝑡(𝑥) := 𝜃𝜌(𝑡) and Φ𝛿
𝑡 (𝑥) := 𝜃𝛿,𝜌(𝑡),

where 𝜃𝜌(𝑡), 𝜃𝛿,𝜌(𝑡) are the solutions to (4.5.5) and (4.5.6) respectively.

The key points for the proofs of Proposition 4.5.6 are the following two inequal-

ities and Lemma 4.5.5. For given 𝛽 ≥ 1, there exist constants 𝐶1 > 0, 𝐶2 > 0 such

that for every 𝜃1, 𝜃2 ∈ 𝐷(Λ𝛽+1+𝜎1), 𝜎1 + 𝜎2 = 1,

(4.5.7) ∣Λ𝛽𝐵(𝜃1, 𝜃2)∣ ≤ 𝐶1(∣Λ𝛽+1+𝜎1𝜃1∣∣Λ𝜎2𝜃2∣+ ∣Λ𝛽+1+𝜎1𝜃1∣∣Λ𝜎2𝜃2∣).

(4.5.8) ∣Λ𝛽𝑒−𝐴𝑡𝐵(𝜃1, 𝜃2)∣𝐻 ≤ 𝐶2

𝑡1−
𝜀
2𝛼

∣Λ𝛽𝜃1∣𝐻 ∣Λ𝛽𝜃2∣𝐻 ,

for some 0 < 𝜀 < 2𝛼− 1. (4.5.7) and (4.5.8) can be obtained by Lemma 4.1.1.

Lemma 4.5.5 (c.f. [DZ92]) Let 𝐺 : 𝐻 → 𝐻 be a linear bounded operator

such that Λ𝛾+𝛼𝐺 is also bounded. Then for any 𝜀1 < 1
2
(𝛾 + 2𝛼 − 1 − 𝑠) and

𝛽1 <
1
2
(𝛾 + 2𝛼− 1− 𝑠)− 𝜀1, there exists 𝐶(𝜀, 𝛽, 𝑝, 𝑇 ) > 0 such that

𝐸[ sup
0≤𝑡≤𝑇

∣Λ𝜀
1

∫ 𝑡

0

𝑒−𝐴(𝑡−𝑙)𝐺𝑑𝑊𝑙∣𝑝𝒲 ] ≤ 𝐶(𝜀1, 𝛽1, 𝑝, 𝑇 )𝑇
𝛽1𝑝.

By (4.5.7), (4.5.8) and Lemma 4.5.5 we obtain the following estimates.

Proposition 4.5.6 For every 𝑇 > 0 and 𝑝 ≥ 2, there exist some 𝐶𝑖 = 𝐶𝑖(𝑝, 𝜌, 𝛾, 𝛼) >

0, 𝑖 = 1, 2 such that

(4.5.9) 𝐸[ sup
0≤𝑡≤𝑇

∣Φ𝑡 − Φ𝛿
𝑡 ∣𝑝𝒲 ] ≤ 𝐶1𝑒

𝐶1𝑇 ∣𝑒−𝐴𝛿 − 𝐼𝑑∣𝑝ℒ(𝒲),

(4.5.10) 𝐸[ sup
0≤𝑡≤𝑇

∣𝐷Φ𝑡 −𝐷Φ𝛿
𝑡 ∣𝑝ℒ(𝒲)] ≤ 𝐶2𝑒

𝐶2𝑇 ∣𝑒−𝐴𝛿 − 𝐼𝑑∣𝑝ℒ(𝒲).

For any 𝜓 ∈ 𝐶1
𝑏 (𝒲), ℎ ∈ 𝒲 and 𝑡 > 0,

(4.5.11) lim
𝛿→0+

∣𝐷ℎ𝐸[𝜓(Φ
𝛿
𝑡 )]−𝐷ℎ𝐸[𝜓(Φ𝑡)]∣ = 0

Proof Denote Ψ𝑡 = Φ𝑡 − Φ𝛿
𝑡 , we have
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Ψ𝑡 =

∫ 𝑡

0

𝑒−𝐴(𝑡−𝑟)[𝐵(Φ𝑟,Φ𝑟)𝜒(
∣Φ𝑟∣𝒲
3𝜌

)− 𝑒−𝐴𝛿𝐵(Φ𝛿
𝑟,Φ

𝛿
𝑟)𝜒(

∣Φ𝛿
𝑟∣𝒲
3𝜌

)]𝑑𝑟

+

∫ 𝑡

0

𝑒−𝐴(𝑡−𝑟)[𝐺(Φ𝑟)−𝐺(Φ𝜌
𝑟)]𝑑𝑊𝑟

:=

∫ 𝑡

0

𝐼1𝑑𝑟 +

∫ 𝑡

0

𝐼2𝑑𝑊𝑟.

By (4.5.7) and (4.5.8) we obtain

∣𝐼1∣𝒲 ≤ 𝐶1(𝑡− 𝑟)−1+ 𝜀
2𝛼 ∣𝐼𝑑− 𝑒−𝐴𝛿∣ℒ(𝒲) + 𝐶2(𝑡− 𝑟)−1+ 𝜀

2𝛼 ∣Ψ𝑟∣𝒲 ,

for 𝜀 in (4.5.8). By Lemma 4.5.5 we obtain

𝐸[ sup
0≤𝑡≤𝑇

∣
∫ 𝑡

0

𝐼2𝑑𝑊𝑟∣𝑝] ≤ 𝐶3𝑇
𝛽1𝑝𝐸[ sup

0≤𝑡≤𝑇
∣Ψ𝑡∣𝑝𝒲 ],

with 𝑝 ≥ 2 and 𝛽1 in Lemma 4.5.5. By the above two estimates and induction

argument (4.5.9) follows. (4.5.10) can be obtained by the same method and (4.5.11)

follows by (4.5.9) and (4.5.10). □

Moreover, we obtain the following estimates by using (4.5.7), (4.5.8) and Lemma

4.5.5. We choose 0 < 𝜀0 <
1
2
(𝛾+2𝛼−1−𝑠), 0 < 𝜀1 <

2𝛼−1
2𝛼

and define𝒲 := 𝐷(Λ𝑠+𝜀0)

and ∣𝑥∣𝒲 = ∣Λ𝑠+𝜀0𝑥∣.

Lemma 4.5.7 For any 𝑇 > 0, 𝑝 ≥ 2 and 𝛿 ≥ 0, there exist some 𝐶𝑖 = 𝐶𝑖(𝑝, 𝜌, 𝛾, 𝛼) >

0, 𝑖 = 1, ..., 7 such that

(4.5.12) 𝐸[ sup
0≤𝑡≤𝑇

∣Φ𝛿
𝑡 ∣𝑝𝒲 ] ≤ 𝐶1𝑒

𝐶1𝑇 ∣𝑥∣𝑝𝒲 ,

(4.5.13) 𝐸[ sup
0≤𝑡≤𝑇

∣Φ𝛿
𝑡 ∣𝑝𝒲 ] ≤ 𝐶2𝑒

𝐶2𝑇 ∣𝑥∣𝑝𝒲 ,

(4.5.14) 𝐸[ sup
0≤𝑡≤𝑇

∣𝑡 𝜀0
2𝛼Φ𝛿

𝑡 ∣𝑝𝒲 ] ≤ 𝐶3𝑒
𝐶3𝑇 ∣𝑥∣𝑝𝒲 ,

(4.5.15) 𝐸[ sup
0≤𝑡≤𝑇

∣𝐷ℎΦ
𝛿
𝑡 ∣𝑝𝒲 ] ≤ 𝐶4𝑒

𝐶4𝑇 ∣ℎ∣𝑝𝒲 , ℎ ∈ 𝒲 ,

(4.5.16) 𝐸[

∫ 𝑡

0

∣Λ𝛼+𝛾𝐷ℎΦ
𝛿
𝜏 ∣2𝑑𝜏 ] ≤ 𝐶5𝑒

𝐶5𝑡∣ℎ∣2𝒲 , ℎ ∈ 𝒲 ,
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(4.5.17) 𝐸[ sup
0≤𝑡≤𝑇

∣𝐷ℎ𝐿Φ𝛿,𝐻
𝑡 ∣𝑝𝒲 ] ≤ (𝑇 𝑝𝜀1 ∨ 𝑇 𝜀0𝑝)𝐶6𝑒

𝐶6𝑇 ∣ℎ𝐿∣𝑝𝒲 , ℎ𝐿 ∈ 𝒲𝐿,

(4.5.18) 𝐸[ sup
0≤𝑡≤𝑇

∣𝐷ℎ𝐻Φ𝛿,𝐿
𝑡 ∣𝑝𝒲 ] ≤ (𝑇 𝜀1𝑝 ∨ 𝑇 𝜀0𝑝)𝐶7𝑒

𝐶7𝑇 ∣ℎ𝐻 ∣𝑝𝒲 , ℎ ∈ 𝒲𝐻 .

Proof (4.5.12)-(4.5.14) can be proved by a similar argument as the proof of (4.5.9),

so we omit them here. For (4.5.15), we have that for every ℎ ∈ 𝒲 , 𝐷ℎΦ𝑡 satisfies

the following equation

𝐷ℎΦ𝑡 =𝑒
−𝐴𝑡ℎ+

∫ 𝑡

0

𝑒−𝐴(𝑡−𝑟)(𝐵(𝐷ℎΦ𝑟,Φ𝑟) +𝐵(Φ𝑟, 𝐷ℎΦ𝑟))𝜒(
∣Φ𝑟∣𝒲
3𝜌

)

+ 𝑒−𝐴(𝑡−𝑟)𝐵(𝐷ℎΦ𝑟,Φ𝑟)𝜒
′(
∣Φ𝑟∣𝒲
3𝜌

)
1

3𝜌

⟨𝐷ℎΦ𝑟,Φ𝑟⟩𝒲
∣Φ𝑟∣𝒲 𝑑𝑟

−
∫ 𝑡

0

𝑒−𝐴(𝑡−𝑟)𝜒′(
∣Φ𝑟∣𝒲
𝜌

)
1

𝜌

⟨𝐷ℎΦ𝑟,Φ𝑟⟩𝒲
∣Φ𝑟∣𝒲 𝐺𝐿𝑑𝑊

𝐿
𝑠 ,

By (4.5.7), (4.5.8) and Lemma 4.5.5, (4.5.15) follows. Similarly we obtain (4.5.17)

and (4.5.18).

Let us prove (4.5.16). By Itô’s formula, we have for 𝜎1 + 𝜎2 = 1, 0 < 𝜎1 <

(𝑠− 𝛾 + 𝛼− 1) ∧ (2𝛼− 1),

𝐸∣Λ𝛾𝐷ℎΦ𝑡∣2 + 2

∫ 𝑡

0

𝐸∣Λ𝛾+𝛼𝐷ℎΦ𝑙∣2𝑑𝑙

≤∣Λ𝛾ℎ∣2 + 𝐶

∫ 𝑡

0

𝐸∣Λ𝑠𝐷ℎΦ𝑙∣2𝑑𝑙 + 𝐶

∫ 𝑡

0

𝐸[∣Λ𝛾+𝛼𝐷ℎΦ𝑙∣∣Λ𝛾−𝛼𝐵(Φ𝑙, 𝐷ℎΦ𝑙)∣𝜒( ∣Φ𝑙∣𝒲
3𝜌

)]𝑑𝑙

≤∣Λ𝛾ℎ∣2 + 𝐶

∫ 𝑡

0

𝐸∣Λ𝑠𝐷ℎΦ𝑙∣2𝑑𝑙 + 𝐶

∫ 𝑡

0

𝐸[∣Λ𝛾+𝛼𝐷ℎΦ𝑙∣∣Λ𝛾−𝛼+1+𝜎1Φ𝑙∣∣Λ𝜎2𝐷ℎΦ𝑙∣

+ ∣Λ𝛾+𝛼𝐷ℎΦ𝑙∣∣Λ𝛾−𝛼+1+𝜎1𝐷ℎΦ𝑙∣∣Λ𝜎2Φ𝑙∣)∣𝜒( ∣Φ𝑙∣𝒲
3𝜌

)∣]𝑑𝑙.

Then by 𝛾 − 𝛼+ 1 < 𝑠, 𝛾 − 𝛼+ 1 + 𝜎1 < 𝛾 + 𝛼, we obtain

𝐸∣Λ𝛾𝐷ℎΦ𝑡∣2 + 2

∫ 𝑡

0

𝐸∣Λ𝛾+𝛼𝐷ℎΦ𝑙∣2𝑑𝑙 ≤ ∣Λ𝛾ℎ∣2 + 𝐶

∫ 𝑡

0

𝐸∣Λ𝛾𝐷ℎΦ𝑙∣2𝑑𝑙,

which implies (4.5.16) by Gronwall’s lemma. □

Lemma 4.5.8 There exists some constant 𝑝 > 1 such that for every 𝑥 ∈ 𝒲 ,

ℎ ∈ 𝒲𝐿, 𝜓 ∈ 𝐶1
𝑏 (𝐻)

∣𝐸[(𝐷𝐿𝜓)(Φ
𝛿
𝑡 (𝑥))𝐷ℎΦ

𝛿,𝐿
𝑡 (𝑥)]∣ ≤ 𝐶𝑒𝐶𝑡(1 + ∣𝑥∣𝒲)𝑝

𝑡𝑝
∥𝜓∥∞∣ℎ∣𝒲 .
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The proof of Lemma 4.5.8 will be given in the next section. Now we could prove

Theorem 4.5.4 by using Lemmas 4.5.7, 4.5.8. The proof is a modification of the

proof of [RX10, Theorem 3.1].

Proof of Theorem 4.5.4 Set 𝑆𝑡𝜓(𝑥) = 𝐸[𝜓(Φ𝛿
𝑡 )] for any 𝜓 ∈ 𝐶2

𝑏 (𝒲), we prove the

theorem in the following two steps.

Step 1. Estimate𝐷𝑆𝑡𝜓(𝑥) for all 𝑥 ∈ 𝒲 . By (4.5.16) we know 𝑦𝐻𝑡 = 𝐺−1
𝐻 𝐷ℎ𝐻Φ𝛿,𝐻

𝑡 ∈
𝐻𝐻𝑑𝑡×𝑑𝑃 -a.s.. Hence we could proceed as in the proof of Proposition 5.2 of [EH01]

to get

𝐷ℎ𝐻𝑆𝑡𝜓(𝑥) =
2

𝑡
𝐸[𝜓(Φ𝛿

𝑡 )

∫ 3𝑡
4

𝑡
4

⟨𝑦𝐻𝑠 , 𝑑𝑊𝐻
𝑠 ⟩𝐻 ] + 2

𝑡
𝐸[

∫ 3𝑡
4

𝑡
4

𝐷𝐿𝑆𝑡−𝑠𝜓(Φ
𝛿
𝑠)𝐷ℎ𝐻Φ𝛿,𝐿

𝑠 𝑑𝑠].

Hence, by B-D-G inequality and (4.5.16), we obtain

∣𝐷ℎ𝐻𝑆𝑡𝜓(𝑥)∣ ≤2

𝑡
∥𝜓∥∞(

∫ 3𝑡
4

𝑡
4

𝐸∣𝑦𝐻𝑟 ∣2𝑑𝑟)1/2 + 2

𝑡

∫ 3𝑡
4

𝑡
4

𝐸[∣𝐷𝐿𝑆𝑡−𝑟𝜓(Φ
𝛿
𝑠)∣𝒲 ′∣𝐷ℎ𝐻Φ𝛿,𝐿

𝑟 ∣𝒲 ]𝑑𝑟

≤2

𝑡
𝑐𝑒𝑐𝑡∥𝜓∥∞∣ℎ𝐻 ∣𝒲 +

2

𝑡

∫ 3𝑡
4

𝑡
4

𝐸[∣𝐷𝐿𝑆𝑡−𝑟𝜓(Φ
𝛿
𝑠)∣𝒲 ′∣𝐷ℎ𝐻Φ𝛿,𝐿

𝑟 ∣𝒲 ]𝑑𝑟.

For the low frequency part, according to Lemma 4.5.8, we obtain

∣𝐷ℎ𝐿𝑆𝑡𝜓(𝑥)∣ =∣𝐸[𝐷𝐿𝑆 𝑡
2
𝜓(Φ𝛿

𝑡/2)𝐷ℎ𝐿Φ𝛿,𝐿
𝑡/2 ]∣+ ∣𝐸[𝐷𝐻𝑆 𝑡

2
𝜓(Φ𝛿

𝑡/2)𝐷ℎ𝐿Φ𝛿,𝐻
𝑡/2 ]∣

≤𝐶2𝑒
𝐶2𝑡(1 + ∣𝑥∣𝒲)𝑝𝑡−𝑝∥𝜓∥∞∣ℎ𝐿∣𝒲 + 𝐸[∣𝐷𝐻𝑆 𝑡

2
𝜓(Φ𝛿

𝑡/2)∣𝒲 ′∣𝐷ℎ𝐿Φ𝛿,𝐻
𝑡/2 ∣𝒲 ],

where 𝑝 > 1 is the constant in Lemma 4.5.8.

By this we obtain for 0 < 𝑡 ≤ 𝑇 and 𝑇 sufficiently small, (see e.g. [RX10,

Theorem 3.1])

∣𝐷𝑆𝑡𝜓(𝑥)∣𝒲 ′ ≤
𝐶(1 + ∣𝑥∣𝑝𝒲)𝑝

𝑡𝑝
∥𝜓∥∞,

with 𝐶 = 𝐶(𝑇, 𝜌, 𝛾, 𝛼).

Step 2. Strong Feller property of 𝑃 𝜌
𝑡 . For any ℎ ∈ 𝒲 and 0 < 𝑡 ≤ 𝑇 , we have

∣𝐷ℎ𝑆2𝑡𝜓(𝑥)∣2 =∣𝐸[𝐷𝑆𝑡𝜓(Φ
𝛿
𝑡 )𝐷ℎΦ

𝛿
𝑡 ]∣2 ≤ 𝐸[∣𝐷𝑆𝑡𝜓(Φ

𝛿
𝑡 )∣2𝒲 ′ ]𝐸[∣𝐷ℎΦ

𝛿
𝑡 ∣2𝒲 ]

≤ 𝐶

𝑡2𝑝
∥𝜓∥2∞𝐸[(1 + ∣Φ𝛿

𝑡 ∣𝒲)2𝑝]∣ℎ∣2𝒲 ≤ 𝐶

𝑡2𝑝+𝜀0𝑝/𝛼
∥𝜓∥2∞(1 + ∣𝑥∣𝒲)2𝑝∣ℎ∣2𝒲 ,

where 𝐶 = 𝐶(𝑇, 𝜌, 𝛼, 𝛾). Let 𝛿 → 0, we have

∣𝐷ℎ𝑃2𝑡𝜓(𝑥)∣ ≤ 𝐶

𝑡𝑝+𝜀0𝑝/(2𝛼)
∥𝜓∥∞(1 + ∣𝑥∣𝒲)𝑝∣ℎ∣𝒲 , 0 < 𝑡 ≤ 𝑇.
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This implies that (𝑃 𝜌
𝑡 )𝑡∈(0,𝑇 ] is strong Feller. The extension of the strong Feler

property to arbitrary 𝑇 > 0 is standard.

4.5.3 Malliavin calculus

Proof of Lemma 4.5.8

In this subsection, we will only study the equation (4.5.6), following the idea of

[N85], [EH01] . We will simply write Φ𝑡 = Φ𝛿
𝑡 throughout this subsection since all

the estimates obtained are independent of 𝛿.

Given 𝑣 ∈ 𝐿2
loc(ℝ+, 𝐻), the Malliavin derivative of Φ𝑡 in direction 𝑣, denoted by

𝒟𝑣Φ𝑡, is defined by

𝒟𝑣Φ𝑡 = lim
𝜀→0

Φ𝑡(𝑊 + 𝜀𝑉, 𝑥)− Φ𝑡(𝑊,𝑥)

𝜀
,

where 𝑉 (𝑡) =
∫ 𝑡

0
𝑣(𝑠)𝑑𝑠. The direction 𝑣 can be random and is adapted to the

filtration generated by 𝑊 . The Malliavin derivatives on the low and high frequency

parts, denoted by 𝒟𝑣Φ
𝐿
𝑡 and 𝒟𝑣Φ

𝐻
𝑡 , can be defined in a similar way. 𝒟𝑣Φ

𝐿
𝑡 and

𝒟𝑣Φ
𝐻
𝑡 satisfy the following two SPDEs respectively:

(4.5.19)

𝑑𝒟𝑣Φ
𝐿 + [𝐴𝒟𝑣Φ

𝐿 + �̃�𝐿(𝒟𝑣Φ
𝐿,Φ)𝜒(

∣Φ∣𝒲
3𝜌

) + �̃�𝐿(𝒟𝑣Φ
𝐻 ,Φ)𝜒(

∣Φ∣𝒲
3𝜌

)

+𝐵𝐿(Φ,Φ)𝐷𝐿(𝜒(
∣Φ∣𝒲
3𝜌

))𝒟𝑣Φ
𝐿 +𝐵𝐿(Φ,Φ)𝐷𝐻(𝜒(

∣Φ∣𝒲
3𝜌

))𝒟𝑣Φ
𝐻 ]𝑑𝑡

=[𝐷𝐿𝐺𝐿(Φ)𝒟𝑣Φ
𝐿 +𝐷𝐻𝐺𝐿(Φ)𝒟𝑣Φ

𝐻 ]𝑑𝑊𝐿
𝑡 +𝐺𝐿(Φ)𝑣

𝐿𝑑𝑡,

(4.5.20)

𝑑𝒟𝑣Φ
𝐻 + [𝐴𝒟𝑣Φ

𝐻 + 𝑒−𝐴𝐻𝛿�̃�𝐻(𝒟𝑣Φ
𝐿,Φ)𝜒(

∣Φ∣𝒲
3𝜌

) + 𝑒−𝐴𝐻𝛿�̃�𝐻(𝒟𝑣Φ
𝐻 ,Φ)𝜒(

∣Φ∣𝒲
3𝜌

)

+ 𝑒−𝐴𝐻𝛿𝐵𝐻(Φ,Φ)𝐷𝐿(𝜒(
∣Φ∣𝒲
3𝜌

))𝒟𝑣Φ
𝐿 + 𝑒−𝐴𝐻𝛿𝐵𝐻(Φ,Φ)𝐷𝐻(𝜒(

∣Φ∣𝒲
3𝜌

))𝒟𝑣Φ
𝐻 ]𝑑𝑡

=𝐺𝐻𝑣
𝐻𝑑𝑡,

with 𝒟𝑣Φ
𝐿
0 = 0 and 𝒟𝑣Φ

𝐻
0 = 0, where �̃�(𝑢, 𝑣) = 𝐵(𝑢, 𝑣) + 𝐵(𝑣, 𝑢). Moreover, we

define a flow between 𝑠 and 𝑡 by 𝐽𝑠,𝑡(𝑥), 𝑠 ≤ 𝑡, which satisfies the following equation:

for all ℎ ∈ 𝐻𝐿

(4.5.21)

𝑑𝐽𝑠,𝑡ℎ+ [𝐴𝐽𝑠,𝑡ℎ+ �̃�𝐿(𝐽𝑠,𝑡ℎ,Φ)𝜒(
∣Φ∣𝒲
3𝜌

) +𝐵𝐿(Φ,Φ)𝐷𝐿(𝜒(
∣Φ∣𝒲
3𝜌

))𝐽𝑠,𝑡ℎ]𝑑𝑡

=𝐷𝐿𝐺𝐿(Φ)𝐽𝑠,𝑡ℎ𝑑𝑊
𝐿
𝑡 ,
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with 𝐽𝑠,𝑠(𝑥) = 𝐼𝑑 ∈ ℒ(𝐻𝐿, 𝐻𝐿). The inverse 𝐽−1
𝑠,𝑡 (𝑥) satisfies

(4.5.22)

𝑑𝐽−1
𝑠,𝑡 ℎ+ 𝐽−1

𝑠,𝑡 [𝐴ℎ+ �̃�𝐿(ℎ,Φ)𝜒(
∣Φ∣𝒲
3𝜌

) +𝐵𝐿(Φ,Φ)𝐷𝐿(𝜒(
∣Φ∣𝒲
3𝜌

))ℎ− Tr((DLGL(Φt))
2)h]dt

=− 𝐽−1
𝑠,𝑡 𝐷𝐿𝐺𝐿(Φ)ℎ𝑑𝑊

𝐿
𝑡 .

Simply writing 𝐽𝑡 = 𝐽0,𝑡, clearly 𝐽𝑠,𝑡 = 𝐽𝑡𝐽
−1
𝑠 .

We follow the ideas in Section 6.1 of [EH01] to develop a Malliavin calculus

for (4.5.6). One of the key points for this approach is to find an adapted process

𝑣 ∈ 𝐿2
loc(ℝ+, 𝐻) so that

(4.5.23)

𝐺𝐻𝑣
𝐻(𝑡) = 𝑒−𝐴𝐻𝛿�̃�𝐻(𝒟𝑣Φ

𝐿,Φ)𝜒(
∣Φ∣𝒲
3𝜌

) + 𝑒−𝐴𝐻𝛿𝐵𝐻(Φ,Φ)𝐷𝐿(𝜒(
∣Φ∣𝒲
3𝜌

))𝒟𝑣Φ
𝐿,

which implies that 𝒟𝑣Φ
𝐻
𝑡 = 0 for all 𝑡 > 0.

Proposition 4.5.9 There exists 𝑣 ∈ 𝐿2
loc(ℝ+, 𝐻) satisfying (4.5.23), and

𝒟𝑣Φ
𝐿
𝑡 = 𝐽𝑡

∫ 𝑡

0

𝐽−1
𝑠 𝐺𝐿(Φ𝑠)𝑣

𝐿(𝑠)𝑑𝑠 and 𝒟𝑣Φ
𝐻
𝑡 = 0.

Proof We first claim that

(4.5.24)

𝑒−𝐴𝐻𝛿�̃�𝐻(𝒟𝑣Φ
𝐿,Φ)𝜒(

∣Φ∣𝒲
3𝜌

) + 𝑒−𝐴𝐻𝛿𝐵𝐻(Φ,Φ)𝐷𝐿(𝜒(
∣Φ∣𝒲
3𝜌

))𝒟𝑣Φ
𝐿 ∈ (𝐷(Λ𝛾+𝛼))𝐻 .

Since 𝒟𝑣Φ
𝐿
𝑡 is finite dimensional, 𝒟𝑣Φ

𝐿
𝑡 ∈ 𝒲 . The two terms on the left hand of

(4.5.24) can all be bounded in the same way, for instance

∣Λ𝛾+𝛼𝑒−𝐴𝐻𝛿�̃�𝐻(𝒟𝑣Φ
𝐿,Φ)𝜒(

∣Φ∣𝒲
3𝜌

)∣ =∣Λ𝛾+𝛼𝑒−𝐴𝐻𝛿�̃�𝐻(𝒟𝑣Φ
𝐿,Φ)𝜒(

∣Φ∣𝒲
3𝜌

)∣

≤𝐶1𝛿
−𝛼−𝛾

2𝛼 ∣𝒟𝑣Φ
𝐿
𝑡 ∣𝒲 ∣Φ𝑡∣𝒲 ,

and (4.5.24) follows immediately. Hence by Assumption [A3] for 𝐺, there exists

at least one 𝑣𝐻 ∈ 𝐿2
loc(ℝ+, 𝐻𝐻) satisfying (4.5.23). Thus equation (4.5.20) is a

homogeneous linear equation and has a unique solution

𝒟𝑣Φ
𝐻
𝑡 = 0,
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for all 𝑡 > 0. Then equation (4.5.19) now reads as

𝑑𝒟𝑣Φ
𝐿 + [𝐴𝒟𝑣Φ

𝐿 + �̃�𝐿(𝒟𝑣Φ
𝐿,Φ)𝜒(

∣Φ∣𝒲
3𝜌

) +𝐵𝐿(Φ,Φ)𝐷𝐿(𝜒(
∣Φ∣𝒲
3𝜌

))𝒟𝑣Φ
𝐿]𝑑𝑡

=𝐷𝐿𝐺𝐿(Φ)𝒟𝑣Φ
𝐿𝑑𝑊𝐿

𝑡 +𝐺𝐿(Φ)𝑣
𝐿𝑑𝑡,

with 𝒟𝑣Φ
𝐿
0 = 0. Applying the Itô’s formula to the product 𝐽−1𝒟𝑣Φ

𝐿 we see imme-

diately that

(4.5.25) 𝒟𝑣Φ
𝐿
𝑡 = 𝐽𝑡

∫ 𝑡

0

𝐽−1
𝑠 𝐺𝐿(Φ𝑠)𝑣

𝐿(𝑠)𝑑𝑠.

Let 𝑁 ≥ 𝑁0 be the integer fixed and 𝑀 is the dimension of 𝜋𝑁𝐻. Consider

𝑣1, ..., 𝑣𝐿 ∈ 𝐿2
loc(ℝ+;𝐻) with each of them satisfying Proposition 4.5.9. Set

𝑣 = [𝑣1, ..., 𝑣𝑀 ],

we have

𝒟𝑣Φ
𝐻
𝑡 = 0, 𝒟𝑣Φ

𝐿
𝑡 = 𝐽𝑡

∫ 𝑡

0

𝐽−1
𝑠 𝐺𝐿(Φ𝑠)𝑣

𝐿(𝑠)𝑑𝑠.

Choose 𝑣𝐿(𝑠) = (𝐽−1
𝑠 𝐺𝐿(Φ𝑠))

∗ and define the Malliavin matrix

ℳ𝑡 =

∫ 𝑡

0

𝐽−1
𝑠 𝐺𝐿(Φ𝑠)(𝐽

−1
𝑠 𝐺𝐿(Φ𝑠))

∗𝑑𝑠.

The following two lemmas are crucial for the proof of Lemma 4.5.8. The first

one can be proved by a similar argument as Lemma 4.5.7 and [RX10, Lemma 4.2],

so we omit it here.

Lemma 4.5.10 For any 𝑇 > 0 and 𝑝 ≥ 2, there exist some 𝐶𝑖 = 𝐶𝑖(𝑝, 𝜌, 𝛾, 𝛼) >

0(𝑖 = 1, ..., 4) such that

(4.5.26) 𝐸( sup
0≤𝑡≤𝑇

∣𝐽𝑡(𝑥)ℎ𝐿∣𝑝𝒲) ≤ 𝐶1𝑒
𝐶1𝑇 ∣ℎ𝐿∣𝑝𝒲 ,

(4.5.27) 𝐸( sup
0≤𝑡≤𝑇

∣𝐽−1
𝑡 (𝑥)ℎ𝐿∣𝑝𝒲) ≤ 𝐶2𝑒

𝐶2𝑇 ∣ℎ𝐿∣𝑝𝒲 ,

(4.5.28) 𝐸( sup
0≤𝑡≤𝑇

∣𝐽−1
𝑡 (𝑥)ℎ𝐿 − ℎ𝐿∣𝑝𝒲) ≤ 𝑇 𝑝/2𝐶3𝑒

𝐶3𝑇 ∣ℎ𝐿∣𝑝𝒲 ,
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(4.5.29) 𝐸( sup
0≤𝑡≤𝑇

∣Φ𝑡(𝑥)− 𝑒−𝐴𝑡𝑥∣𝑝𝒲) ≤ (𝑇 𝜀0𝑝 ∨ 𝑇 𝑝𝜀1)𝐶4𝑒
𝐶4𝑇 ,

Suppose that 𝑣1, 𝑣2 satisfy Proposition 4.5.9 and 𝑝 ≥ 2, then

(4.5.30) 𝐸( sup
0≤𝑡≤𝑇

∣𝒟𝑣1Φ
𝐿
𝑡 (𝑥)∣𝑝𝒲) ≤ 𝐶5𝑒

𝐶5𝑇𝐸[

∫ 𝑇

0

∣𝑣𝐿1 (𝑠)∣𝑝𝒲𝑑𝑠],

(4.5.31)

𝐸( sup
0≤𝑡≤𝑇

∣𝒟2
𝑣1𝑣2

Φ𝐿
𝑡 (𝑥)∣𝑝𝒲) ≤ 𝐶6𝑒

𝐶6𝑇 (𝐸[

∫ 𝑇

0

∣𝑣𝐿1 (𝑠)∣2𝑝𝒲𝑑𝑠])1/2(𝐸[
∫ 𝑇

0

∣𝑣𝐿2 (𝑠)∣2𝑝𝒲𝑑𝑠])1/2,

(4.5.32) 𝐸( sup
0≤𝑡≤𝑇

∣𝒟𝑣1𝐷ℎΦ
𝐿
𝑡 (𝑥)∣𝑝𝒲) ≤ 𝐶7𝑒

𝐶7𝑇 ∣ℎ∣𝑝𝒲(𝐸[

∫ 𝑇

0

∣𝑣𝐿1 (𝑠)∣2𝑝𝒲𝑑𝑠])1/2,

with ℎ ∈ 𝒲 and 𝐶𝑖 = 𝐶𝑖(𝑝, 𝜌, 𝛾, 𝛼) > 0, 𝑖 = 5, 6, 7.

Lemma 4.5.11 Suppose that Φ𝑡 is the solution to equation (4.5.6) with initial

data 𝑥 ∈ 𝒲 . Then ℳ𝑡 ∈ ℒ(𝒲𝐿,𝒲𝐿) is invertible almost surely. Denote 𝜆min(𝑡)

the smallest eigenvalue of ℳ𝑡. Then there exists some 𝑞 > 1 such that for every

𝑝 > 0 there is some 𝐶 = 𝐶(𝑝, 𝜌, 𝛼, 𝛾) such that

(4.5.33) 𝑃 [∣1/𝜆min(𝑡)∣ ≥ 1/𝜀𝑞] ≤ 𝐶𝜀𝜀0𝑝(1 + ∣𝑥∣𝒲)𝑝

𝑡𝑝
.

Now we are ready to prove Lemma 4.5.8, which is a modification from [EH01,

Proposition 7.12].

Proof of Lemma 4.5.8 Let us consider for 𝑖, 𝑘 = 1...𝑀 ,

𝜓𝑖𝑘(Φ𝑡) = 𝜓(Φ𝑡)
𝑀∑
𝑗=1

[(𝒟𝑣Φ
𝐿
𝑡 )

−1]𝑖𝑗[𝐷𝐿Φ
𝐿
𝑡 ]𝑗𝑘.

For ℎ ∈ 𝒲𝐿, we obtain

𝐷𝐿𝜓𝑖𝑘(Φ𝑡)𝒟𝑣Φ
𝐿
𝑡 ℎ =𝐷𝐿𝜓(Φ𝑡)𝒟𝑣Φ

𝐿
𝑡 ℎ

𝑀∑
𝑗=1

[(𝒟𝑣Φ
𝐿
𝑡 )

−1]𝑖𝑗[𝐷𝐿Φ
𝐿
𝑡 ]𝑗𝑘

+ 𝜓(Φ𝑡)
𝑀∑
𝑗=1

𝒟𝑣ℎ{[(𝒟𝑣Φ
𝐿
𝑡 )

−1]𝑖𝑗[𝐷𝐿Φ
𝐿
𝑡 ]𝑗𝑘}.

Set ℎ = ℎ𝑖, where ℎ𝑖 is the standard orthonormal basis of ℝ𝑀 and sum over 𝑖, we
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obtain

𝐸[𝐷𝐿𝜓(Φ𝑡)𝒟ℎ𝑘
Φ𝐿

𝑡 ℎ]

=𝐸[
𝑀∑
𝑖=1

𝒟𝑣ℎ𝑖
𝜓𝑖𝑘(Φ𝑡)]− 𝐸[𝜓(Φ𝑡)

𝑀∑
𝑖,𝑗=1

𝒟𝑣ℎ𝑖
{[(𝒟𝑣Φ

𝐿
𝑡 )

−1]𝑖𝑗[𝐷𝐿Φ
𝐿
𝑡 ]𝑗𝑘}].

For the first term on the right hand of the above equality, by Bismut integration by

parts formula( see e.g. [EH01, Proposition 6.1]) and 𝒟𝑣Φ
𝐿
𝑡 = 𝐽𝑡ℳ𝑡,

∣𝐸[
𝑀∑
𝑖=1

𝐷𝐿𝜓𝑖𝑘(Φ𝑡)𝒟𝑣ℎ𝑖
Φ𝐿

𝑡 ]∣

≤
𝑀∑

𝑖,𝑗=1

∣𝐸[𝜓(Φ𝑡)[𝐽
−1
𝑡 ℳ−1

𝑡 ]𝑖𝑗[𝐷𝐿Φ
𝐿
𝑡 ]𝑗𝑘

∫ 𝑡

0

⟨𝑣𝐿ℎ𝑖, 𝑑𝑊𝑟⟩]∣

≤∥𝜓∥∞
𝑀∑

𝑖,𝑗=1

𝐸[
1

𝜆min

∣𝐽−1
𝑡 ℎ𝑗∣[𝐷ℎ𝑘

Φ𝐿
𝑡 ]𝑗𝑘∣

∫ 𝑡

0

⟨𝑣𝐿ℎ𝑖, 𝑑𝑊𝑟⟩∣].

Then by B-D-G inequality, (4.5.33), (4.5.27), we obtain

∣𝐸[
𝑀∑
𝑖=1

𝒟𝑣ℎ𝑖
𝜓𝑖𝑘(Φ𝑡)]∣ ≤ ∥𝜓∥∞𝐶𝑒𝐶𝑡(1 + ∣𝑥∣𝒲)𝑝𝑡−𝑝.

The other term can be estimated similarly, the assertion follows. □

4.5.4 Hörmander’s systems

Let us consider the SPDE for 𝜃𝐿 in Stratanovich form as

(4.5.34)

𝑑𝜃𝐿+𝐴𝜃𝐿𝑑𝑡+𝜒(
∣𝜃∣𝒲
3𝜌

)𝐵𝐿(𝜃, 𝜃)𝑑𝑡−1

2

∑
𝑘∈𝑍𝐿(𝑁0)

𝐷𝑔𝑘(𝜃)𝑒𝑘⋅𝑔𝑘(𝜃)𝑒𝑘𝑑𝑡 =
∑

𝑘∈𝑍𝐿(𝑁)

𝑔𝑘(𝑢)∘𝑑𝑤𝑘(𝑡)𝑒𝑘,

where 𝑔𝑘(𝜃) = (1−𝜒( ∣𝜃∣𝒲
𝜌

))𝑔𝑘 for 𝑘 ∈ 𝑍𝐿(𝑁0) and 𝑔𝑘(𝜃) = 𝑔𝑘 for 𝑘 ∈ 𝑍𝐿(𝑁)∖𝑍𝐿(𝑁0).

For any 𝑥 ∈ 𝒲 , it is clear that if 𝑘 ∈ 𝑍𝐿(𝑁0)

𝐷𝑔𝑘(𝑥)𝑒𝑘 ⋅ 𝑔𝑘(𝑥)𝑒𝑘 = −1

𝜌
𝜒′(

∣𝑥∣𝒲
𝜌

)(1− 𝜒(
∣𝑥∣𝒲
𝜌

))𝑔2𝑘
⟨𝑥, 𝑒𝑘⟩𝒲
∣𝑥∣𝒲 𝑒𝑘.

For any two Banach spaces 𝐸1, 𝐸2, we denote the set of all 𝐶∞ functions 𝐸1 → 𝐸2,

which are polynomially bounded together with all their derivatives by 𝑃 (𝐸1, 𝐸2). If
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𝐾 ∈ 𝑃 (𝐻,𝐻𝐿) and 𝑋 ∈ 𝑃 (𝐻,𝐻), define [𝑋,𝐾]𝐿 by

[𝑋,𝐾]𝐿(𝑥) = 𝐷𝐾(𝑥)𝑋(𝑥)−𝐷𝐿𝑋
𝐿(𝑥)𝐾(𝑥), 𝑥 ∈ 𝐻.

For instance, [𝐴,𝐾]𝐿 ∈ 𝑃 (𝐷(𝐴), 𝐻𝐿) with [𝐴,𝐾]𝐿(𝑥) = 𝐷𝐾(𝑥)𝐴𝑥 − 𝐴𝐿𝐾(𝑥).

Define

𝑋0(𝑥) = 𝐴𝑥+𝜒(
∣𝑥∣𝒲
𝜌

)𝑒−𝛿𝐴𝐻𝐵(𝑥, 𝑥)+
∑

𝑘∈𝑍𝐿(𝑁0)

1

2𝜌
𝜒′(

∣𝑥∣𝒲
𝜌

)(1−𝜒( ∣𝑥∣𝒲
𝜌

))𝑔2𝑘
⟨𝑥, 𝑒𝑘⟩𝒲
∣𝑥∣𝒲 𝑒𝑘.

Definition 4.5.12 The Hörmander’s system K for equation (4.5.34) is defined as

follows: given any 𝑦 ∈ 𝒲 , define

K0(𝑦) ={𝑔𝑘(𝑦)𝑒𝑘 : 𝑘 ∈ 𝑍𝐿(𝑁)},
K1(𝑦) ={[𝑋0(𝑦), 𝑔𝑘(𝑦)𝑒𝑘]𝐿 : 𝑘 ∈ 𝑍𝐿(𝑁)}
K2(𝑦) ={[𝑔𝑘(𝑦)𝑒𝑘, 𝐾(𝑦)]𝐿 : 𝐾 ∈ K1(𝑦), 𝑘 ∈ 𝑍𝐿(𝑁)},

and K(𝑦) = K0(𝑦) ∪K1(𝑦) ∪K2(𝑦).

Proposition 4.5.13 There exist �̄� > 0 and �̄� ≥ 𝑁0 (which depend only on 𝑁0

and 𝐺) such that if 𝜌 ≥ �̄� and 𝑁 ≥ �̄� , then the following property holds : for every

𝑥 ∈ 𝒲 and ℎ ∈ 𝐻𝐿 there exist 𝜎 > 0 and 𝑅 > 0 such that

inf
𝛿>0

sup
𝐾∈K

inf
∣𝑦−𝑥∣𝒲≤𝑅

∣⟨𝐾(𝑦), ℎ⟩𝒲 ∣ ≥ 𝜎∣ℎ∣𝒲 .

Proof The basic idea of the proof follows from [EH01, Theorem 7.8] and [RX10,

Proposition 4.5]. It is sufficient to show that there is a (finite) set K̃ ⊂ K(𝑦) such

that spanK̃ = 𝐻𝐿. We choose 𝑅 ≤ 1
4
𝜌.

Case 1: ∣𝑥∣𝒲 ≥ 𝑅 + 2𝜌. In this case 𝑔𝑘(𝑦) = 𝑔𝑘, we can take K̃ = K0.

Case 2: ∣𝑥∣𝒲 ≤ 𝜌−𝑅. In this case 𝑋0(𝑦) = 𝐴𝑦 + 𝑒−𝛿𝐴𝐻𝐵(𝑦, 𝑦). Since

⟨𝐵(𝑒𝑖𝑙⋅𝑥, 𝑒𝑖𝑚⋅𝑥), 𝑒𝑖𝑘⋅𝑥)⟩ =
{

− 1
∣𝑙∣(𝑙

⊥ ⋅𝑚), if 𝑙 +𝑚 = 𝑘,

0, if 𝑙 +𝑚 ∕= 𝑘,

we could calculate 𝐵(𝑒𝑙, 𝑒𝑚) easily. For instance, for 𝑙,𝑚, 𝑙 −𝑚 ∈ ℤ2
+, we have

𝐵(𝑒𝑙, 𝑒𝑚) = − 1

2∣𝑙∣(𝑙
⊥ ⋅𝑚)𝑒𝑙+𝑚 +

1

2∣𝑙∣(𝑙
⊥ ⋅𝑚)𝑒𝑙−𝑚.
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For 𝑙,−𝑚, 𝑙 +𝑚 ∈ ℤ2
+, we have

𝐵(𝑒𝑙, 𝑒𝑚) = − 1

2∣𝑙∣(𝑙
⊥ ⋅𝑚)𝑒−𝑙−𝑚 +

1

2∣𝑙∣(𝑙
⊥ ⋅𝑚)𝑒𝑚−𝑙.

We have for 𝑙,𝑚 ∈ 𝑍𝐿(𝑁)∖𝑍𝐿(𝑁0), 𝑙 +𝑚 = 𝑘 ∈ 𝑍𝐿(𝑁0),

[𝑔𝑙𝑒𝑙, [𝐵(𝑦, 𝑦), 𝑔𝑚𝑒𝑚]𝐿]𝐿 = −𝜋𝑁𝐵(𝑔𝑙𝑒𝑙, 𝑔𝑚𝑒𝑚)− 𝜋𝑁𝐵(𝑔𝑚𝑒𝑚, 𝑔𝑙𝑒𝑙).

Hence, we choose 𝑁 ≥ 𝑁0 large enough so that for each 𝑘 ∈ 𝑍𝐿(𝑁0) there are

𝑙,𝑚 ∈ 𝑍𝐿(𝑁)∖𝑍𝐿(𝑁0) such that 𝑙 and 𝑚 are linearly independent and 𝑘 = 𝑙 + 𝑚

(or 𝑘 = 𝑙 −𝑚). Then the vectors [𝑔𝑙𝑒𝑙, [𝐵(𝑦, 𝑦), 𝑔𝑚𝑒𝑚]𝐿]𝐿, 𝑔𝑙𝑒𝑙, where 𝑙,𝑚 run over

𝑍𝐿(𝑁)∖𝑍𝐿(𝑁0) span 𝐻
𝐿. Then we can take K̃ = K0 ∪K2.

Case 3: 𝜌−𝑅 ≤ ∣𝑥∣𝒲 ≤ 2𝜌+𝑅. Write 𝑋0(𝑦) = 𝑋01(𝑦)+𝑋02(𝑦) where 𝑋01(𝑦) =

𝐴𝑦 + 𝑒−𝛿𝐴𝐻𝐵(𝑦, 𝑦) and 𝑋02(𝑦) =
∑

𝑘∈𝑍𝐿(𝑁0)
1
2𝜌
𝜒′( ∣𝑥∣𝒲

𝜌
)(1 − 𝜒( ∣𝑥∣𝒲

𝜌
))𝑔2𝑘

⟨𝑥,𝑒𝑘⟩𝒲
∣𝑥∣𝒲 𝑒𝑘. By

Case 2, we obtain [𝑔𝑙𝑒𝑙, [𝑋
01(𝑦), 𝑔𝑚𝑒𝑚]𝐿]𝐿, 𝑔𝑙𝑒𝑙 span the whole 𝐻𝐿. And it is easy

to see ∣[𝑔𝑙𝑒𝑙, [𝑋01(𝑦), 𝑔𝑚𝑒𝑚]𝐿]𝐿∣ ≤ 𝑐
𝜌3
. So, for 𝜌 large enough, [𝑔𝑙𝑒𝑙, [𝑋

0(𝑦), 𝑔𝑚𝑒𝑚]𝐿]𝐿

span 𝐻𝐿. Take K̃ = K0 ∪K2. □

4.5.5 Proof of Lemma 4.5.11

We follow the idea of the proof of [N85, Theorem 4.2] by using Proposition 4.5.13

and the following Norris’s Lemma ([N85, Lemma 4.1]).

Lemma 4.5.14 (Norris’ Lemma). Let 𝑎, 𝑦 ∈ ℝ. Let 𝛽𝑡 be a real-valued pre-

dictable process and 𝛾𝑡 and 𝑢𝑡 be adapted 𝐻-valued processes. Let

𝑎𝑡 = 𝑎+

∫ 𝑡

0

𝛽𝑠𝑑𝑠+

∫ 𝑡

0

⟨𝛾𝑠, 𝑑𝑊𝑠⟩, 𝑌𝑡 = 𝑦 +

∫ 𝑡

0

𝑎𝑠𝑑𝑠+

∫ 𝑡

0

⟨𝑢𝑠𝑑𝑊𝑠⟩,

Suppose that 𝑇 < 𝑡0 is a bounded stopping time such that for some constant 𝐶 <∞:

∣𝛽𝑡∣, ∣𝛾𝑡∣, ∣𝑎𝑡∣, ∣𝑢𝑡∣ ≤ 𝐶 for all 𝑡 ≤ 𝑇.

Then for any 𝑟 > 8 and 𝜈 > 𝑟−8
9

there is 𝐶 = 𝐶(𝑇, 𝑞, 𝜈) such that

𝑃 [

∫ 𝑇

0

𝑌 2
𝑡 𝑑𝑡 < 𝜀𝑟,

∫ 𝑇

0

(∣𝑎𝑡∣2 + ∣𝑢𝑡∣2)𝑑𝑡 ≥ 𝜀] < 𝐶𝑒−
1
𝜀𝜈 .
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Proof of Lemma 4.5.11 Denote 𝒮𝐿 = {𝜂 ∈ 𝒲𝐿; ∣𝜂∣𝒲𝐿 = 1}. As for 𝜂 ∈ 𝒮𝐿,

⟨ℳ𝑡𝜂, 𝜂⟩𝒲 =
∑

𝑘∈𝑍𝐿(𝑁)

1

∣𝑘∣2𝑠
∫ 𝑡

0

∣⟨𝐽−1
𝑠 (𝑔𝑘(Φ𝑠)𝑒𝑘), 𝜂⟩𝒲 ∣2𝑑𝑠,

(4.5.33) is equivalent to

(4.5.35)

𝑃 [ inf
𝜂∈𝒮𝐿

∑
𝑘∈𝑍𝐿(𝑁)

1

∣𝑘∣2𝑠
∫ 𝑡

0

∣⟨𝐽−1
𝑠 (𝑔𝑘(Φ𝑠)𝑒𝑘), 𝜂⟩𝒲 ∣2𝑑𝑠 ≤ 𝜀𝑞] ≤ 𝐶𝜀

𝜀0𝑝
2𝛼 (1 + ∣𝑥∣𝒲)𝑝

𝑡𝑝
,

for all 𝑝 > 0, where 𝑔𝑘(𝜃) = (1 − 𝜒( ∣𝜃∣𝒲
𝜌

))𝑔𝑘 for 𝑘 ∈ 𝑍𝐿(𝑁0) and 𝑔𝑘(𝜃) = 𝑔𝑘 for

𝑘 ∈ 𝑍𝐿(𝑁)∖𝑍𝐿(𝑁0).

Define a stopping time 𝜏 by

𝜏 = inf{𝑠 > 0 : ∣Φ𝑠(𝑥)− 𝑥∣𝒲 > 𝑅, ∣𝐽−1
𝑠 − 𝐼𝑑∣ℒ(𝒲) > 𝑐},

where 𝑅 > 0 is the same as in Proposition 4.5.13 and 𝑐 > 0 is sufficiently small. By

(4.5.29) and the easy fact ∣𝑒−𝐴𝑡𝑥− 𝑥∣𝒲 ≤ 𝐶𝑡
𝜀0
2𝛼 ∣𝑥∣𝒲 , we have for any 𝑝 ≥ 2

𝐸[∣ sup
0≤𝑡≤𝑇

∣Φ𝑡 − 𝑥∣𝑝𝒲 ] ≤𝐸[ sup
0≤𝑡≤𝑇

∣𝑒−𝐴𝑡𝑥− 𝑥∣𝑝𝒲 + sup
0≤𝑡≤𝑇

∣Φ𝑡(𝑥)− 𝑒−𝐴𝑡𝑥∣𝑝𝒲 ]

≤𝐶1(1 + ∣𝑥∣𝒲)𝑝(𝑇
𝑝𝜀0
2𝛼 ∨ 𝑇 𝑝𝜀1).

Combining the above inequality and (4.5.28), we have for 𝜀0 < 𝜀1

(4.5.36) 𝑃 (𝜏 ≤ 𝜀) = 𝐶1𝜀
𝑝𝜀0
2𝛼 (1 + ∣𝑥∣𝒲)𝑝,

for all 𝑝 > 0.

By the same arguments as [N85, p127], (4.5.35) holds as long as for any 𝜂 ∈ 𝒮𝐿,

we have some neighborhood 𝒩 (𝜂) of 𝜂 and some 𝑘 ∈ 𝑍𝐿(𝑁) so that

(4.5.37) sup
𝜂′∈𝒩 (𝜂)

𝑃 [

∫ 𝑡∧𝜏

0

∣⟨𝐽−1
𝑠 (𝑔𝑘(Φ𝑠)𝑒𝑘), 𝜂⟩𝒲 ∣2𝑑𝑠 ≤ 𝜀𝑞] ≤ 𝐶𝜀

𝜀0𝑝
2𝛼 (1 + ∣𝑥∣𝒲)𝑝

𝑡𝑝
.

According to Definition 4.5.12 and Proposition 4.5.13, for any 𝜂 ∈ 𝒮𝐿, there

exists a 𝐾 ∈ K and a neighborhood 𝒩 of 𝜂 in 𝒮𝐿 such that

inf
∣𝑦−𝑥∣𝒲≤𝑅

inf
∣𝑉−𝐼𝑑∣ℒ(𝒲)

inf
𝜂∈𝒩

∣⟨𝑉 𝐾(𝑦), 𝜂⟩𝒲 ∣ ≥ 𝜎

2
.

By this and (4.5.36) we deduce that for any 𝜂 ∈ 𝒮𝐿, we have some neighborhood
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𝒩 (𝜂) of 𝜂

(4.5.38)

sup
𝜂′∈𝒩 (𝜂)

𝑃 [

∫ 𝑡∧𝜏

0

∣⟨𝐽−1
𝑠 𝐾(Φ𝑠), 𝜂⟩𝒲 ∣2𝑑𝑠 ≤ 𝜀𝑞] ≤ 𝑃 [𝜏 ∧ 𝑡 < 2𝜀/𝜎] ≤ 𝐶𝜀

𝜀0𝑝
2𝛼 (1 + ∣𝑥∣𝒲)𝑝

𝑡𝑝
.

Now we prove that (4.5.38) implies (4.5.37). Without loss of generality, assume that

𝐾 ∈ K2, so there exists some 𝑔𝑘𝑒𝑘 and 𝑔𝑙𝑒𝑙 such that

𝐾0(𝑦) := 𝑔𝑘(𝑦)𝑒𝑘, 𝐾1(𝑦) := [𝑋0(𝑦), 𝑔𝑘(𝑦)𝑒𝑘], 𝐾 = 𝐾2 := [𝑔𝑙(𝑦)𝑒𝑙, 𝐾1(𝑦)].

Take 𝑌 (𝑡) = ⟨𝐽−1
𝑡 𝐾1(Φ𝑡), 𝜂⟩, 𝑎(𝑡) = ⟨𝐽−1

𝑡 [𝑋0, 𝐾1](Φ𝑡), 𝜂⟩ and 𝑢𝑖(𝑡) = ⟨𝐽−1
𝑡 [𝑔𝑖𝑒𝑖, 𝐾1](Φ𝑡), 𝜂⟩.

Applying Lemma 4.5.14, we obtain

𝑃 (

∫ 𝑡∧𝜏

0

∣⟨𝐽−1
𝑠 𝐾1(Φ𝑠), 𝜂⟩∣2 ≤ 𝜀𝑟,

∫ 𝑡∧𝜏

0

∣⟨𝐽−1
𝑠 𝐾2(Φ𝑠), 𝜂⟩∣2 ≥ 𝜀) ≤ 𝐶𝑒−

1
𝜀𝜈 .

Hence, by (4.5.38) we obtain

𝑃 [

∫ 𝑡∧𝜏

0

∣⟨𝐽−1
𝑠 𝐾1(Φ𝑠), 𝜂⟩𝒲 ∣2𝑑𝑠 ≤ 𝜀𝑟] ≤ 𝐶𝜀

𝜀0𝑝
2𝛼 (1 + ∣𝑥∣𝒲)𝑝

𝑡𝑝
.

By a similar but simpler arguments we have (4.5.37). □

4.5.6 Controllability and support

In this subsection we prove the support theorem for the solution of the equation

(4.3.1) by the control theory.

Proposition 4.5.15 Suppose that Assumption 4.5.1 holds. Let (𝑃𝑥)𝑥∈𝐻 be the

Markov solution of equaion (4.3.1). For every 𝑥 ∈ 𝒲 and 𝑇 > 0, and every 𝒲-open

set 𝑈 ⊂ 𝒲 , 𝑃𝑥(𝜉𝑇 ∈ 𝑈) > 0.

To prove Proposition 4.5.15, by the proof of Theorem 4.3.8, we only need to

prove the following control problem.

Lemma 4.5.16 Given any 𝑇 > 0, 𝑥, 𝑦 ∈ 𝒲 and 𝜀 > 0, there exist 𝜌0, 𝜃 ∈
𝐶([0, 𝑇 ];𝒲) and 𝜔 ∈ 𝐿∞([0, 𝑇 ];𝐻) such that 𝜃 solves the following equation,

(4.5.39) ∂𝑡𝜃 + 𝐴𝜃 +𝐵(𝜃, 𝜃) = 𝐺𝜔,

with 𝜃(0) = 𝑥 and ∣𝜃(𝑇 )− 𝑦∣ ≤ 𝜀, and sup𝑡∈[0,𝑇 ] ∣𝜃(𝑡)∣𝒲 ≤ 𝜌0.

Proof Let 𝑧 ∈ 𝐷(Λ3𝛼+𝑠) such that ∣𝑦−𝑧∣𝒲 ≤ 𝜀
2
. It suffices to show that there exist
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𝜃, 𝜔 satisfying the conditions of lemma and ∣𝑢(𝑇 )−𝑧∣𝒲 ≤ 𝜀
2
. Decompose 𝜃 = 𝜃𝐻+𝜃𝐿,

then equation (4.5.39) can be written as

(4.5.40) 𝑑𝜃𝐿 + 𝐴𝜃𝐿𝑑𝑡+𝐵𝐿(𝜃, 𝜃)𝑑𝑡 = 0.

(4.5.41) 𝑑𝜃𝐻 + 𝐴𝜃𝐻𝑑𝑡+𝐵𝐻(𝜃, 𝜃)𝑑𝑡 = 𝐺𝜔.

We split [0, 𝑇 ] into the pieces [0, 𝑇1], [𝑇1, 𝑇2], [𝑇2, 𝑇3] and [𝑇3, 𝑇 ] with 𝑇1, 𝑇2, 𝑇3 to be

chosen along the proof.

Step 1: regularization of the initial condition. Set 𝜔 = 0 on [0, 𝑇1]. By the same

arguments as Lemma 4.3.6, we can find a time 𝑇1 such that sup[0,𝑇1] ∣𝜃(𝑡)∣𝒲 ≤ 𝜌0
and 𝜃(𝑇1) ∈ 𝐷(Λ3𝛼+𝑠).

Step 2: high modes led to zero. Choose a smooth function 𝜓 on [𝑇1, 𝑇2] such that

0 ≤ 𝜓 ≤ 1, 𝜓(𝑇1) = 1 and 𝜓(𝑇2) = 0 and set 𝜃𝐻(𝑡) = 𝜓(𝑡)𝜃𝐻(𝑇1) for 𝑡 ∈ [𝑇1, 𝑇2]. As

𝜃𝐿 is finite dimensional, an estimate yields

𝑑

𝑑𝑡
∣𝜃𝐿∣2𝒲 + ∣Λ𝛼𝜃𝐿∣2𝒲 ≤ 𝑐(∣𝜃𝐿∣2𝒲 + ∣𝜃𝐻 ∣2𝒲)2,

and ∣𝜃(𝑡)∣2𝒲 ≤ ∣𝜃𝐿(𝑡)∣2𝒲 + ∣𝜃𝐻(𝑇1)∣2𝒲 ≤ 𝜌0 for 𝑇1 ≤ 𝑡 ≤ 𝑇2 :=
𝑇
2
∧ (𝑇1 + (4𝑐∣𝑥∣2𝒲)−1).

Plug 𝜃𝐿 in (4.5.41), take

𝜔(𝑡) = 𝜓′(𝑡)𝐺−1𝜃𝐻(𝑇1) + 𝜓(𝑡)𝐺−1𝐴𝜃𝐻(𝑇1) +𝐺−1𝐵𝐻(𝜃(𝑡), 𝜃(𝑡)).

As 𝜃(𝑇1) ∈ 𝐷(Λ3𝛼+𝑠), ∣𝐺−1𝐴𝜃𝐻(𝑇1)∣ < ∞ and ∣𝐺−1𝐵𝐻(𝜃(𝑡), 𝜃(𝑡))∣ ≤ 𝑐∣𝐴𝜃(𝑡)∣2𝒲 ≤
𝐶(∣𝐴𝜃𝐻(𝑇1)∣2𝒲 + ∣𝜃𝐿(𝑡)∣2𝒲) for 𝑡 ∈ [𝑇1, 𝑇2]. Hence, 𝜔 ∈ 𝐿∞([𝑇1, 𝑇2], 𝐻).

Step 3: low modes close to 𝑧. Let 𝜃𝐿(𝑡) be the linear interpolation between

𝜃𝐿(𝑇2) and 𝑧
𝐿 for 𝑡 ∈ [𝑇2, 𝑇3]. Write 𝜃(𝑡) =

∑
𝜃𝑘(𝑡)𝑒𝑘, then (4.5.40) is written as

(4.5.42) �̇�𝑘 + ∣𝑘∣2𝛼𝜃𝑘 +𝐵𝑘(𝜃, 𝜃) = 0, 𝑘 ∈ 𝑍𝐿(𝑁0).

Let us choose a suitable 𝜃𝐻 to simplify the above𝐵𝑘(𝜃, 𝜃). Consider the set {(𝑙𝑘,𝑚𝑘) :

𝑘 ∈ 𝑍𝐿(𝑁0)} such that (a) 𝑙𝑘 +𝑚𝑘 = 𝑘.

(b)𝑙𝑘 ∦ 𝑚𝑘 for all 𝑘 ∈ 𝑍𝐿(𝑁0).

(c) For every 𝑘 ∈ 𝑍𝐿(𝑁0), ∣𝑙𝑘∣, ∣𝑚𝑘∣ ≥ 2(2𝑁0+1)2 .

(d) If 𝑘1 ∕= 𝑘2, then ∣𝑙𝑘1 ± 𝑙𝑘2 ∣, ∣𝑚𝑘1 ±𝑚𝑘2 ∣, ∣𝑙𝑘1 ±𝑚𝑘2 ∣, ∣𝑚𝑘1 ± 𝑙𝑘2 ∣ ≥ 2(2𝑁0+1)2 .

Define

𝜃𝐻(𝑡) =
∑

𝑘∈𝑍𝐿(𝑁0)

(𝜃𝑙𝑘(𝑡)𝑒𝑙𝑘 + 𝜃𝑚𝑘
𝑒𝑚𝑘

),
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with 𝜃𝑙𝑘(𝑡), 𝜃𝑚𝑘
to be determined below. By (c) and (d), it is easy to see

𝐵𝑘(𝜃
𝐿, 𝜃𝐻) = 𝐵𝑘(𝜃

𝐻 , 𝜃𝐿) = 0,

𝐵𝑘(𝑒𝑙𝑘1 , 𝑒𝑙𝑘2 ) = 𝐵𝑘(𝑒𝑚𝑘1
, 𝑒𝑚𝑘2

) = 𝐵𝑘(𝑒𝑙𝑘1 , 𝑒𝑚𝑘2
) = 𝐵𝑘(𝑒𝑚𝑘1

, 𝑒𝑙𝑘2 ) = 0.

Then (4.5.40) is simplified to the following equation

(4.5.43) �̇�𝑘 + ∣𝑘∣2𝛼𝜃𝑘 +𝐵𝑘(𝜃
𝐿, 𝜃𝐿) + �̃�𝑘(𝜃𝑙𝑘𝑒𝑙𝑘 , 𝜃𝑚𝑘

𝑒𝑚𝑘
) = 0, 𝑘 ∈ 𝑍𝐿(𝑁0).

One can easily find a solution 𝜃𝐻 for equation (4.5.43) which is smooth in 𝑡 and

by construction 𝜃 is finite dimensional. Hence 𝜃(𝑡) is smooth in space and time for

𝑡 ∈ [𝑇2, 𝑇3] and sup ∣𝜃(𝑡)∣𝒲 can be bounded by ∣𝜃𝐿(𝑇2)∣𝒲 , 𝑧𝐿 and 𝑇3 − 𝑇2. We set

𝜔 = 𝐺−1[�̇�
𝐻
+ 𝐴𝜃𝐻 +𝐵𝐻(𝜃, 𝜃)] and 𝜔 ∈ 𝐿∞([𝑇2, 𝑇3], 𝐻).

Step 4: high modes close to 𝑧. In the interval [𝑇3, 𝑇 ] we choose 𝜃𝐻 as the linear

interpolation between 𝜃𝐻(𝑇3) and 𝑧
𝐻 . Let 𝜃𝐿 be the solution to (4.5.40) on [𝑇3, 𝑇 ]

with the choice of 𝜃𝐻 given above. Since 𝜃(𝑇3) ∈ 𝐷(Λ3𝛼+𝑠) and 𝜃𝐿(𝑇3) = 𝑧𝐿, we

know sup𝑇3≤𝑡≤𝑇 ∣𝜃𝐿(𝑡) − 𝑧𝐿∣𝒲 ≤ 𝜀
2
if 𝑇 − 𝑇3 is small enough. Then as in Step 1,

we can find 𝜔 ∈ 𝐿∞([𝑇3, 𝑇 ], 𝐻) solving (4.5.41). It is clear that sup𝑇3≤𝑡≤𝑇 ∣𝜃(𝑡)∣𝒲 ≤
𝑐∣𝑧∣𝒲 + 𝐶∣𝜃(𝑇3)∣𝒲 . □

We also obtain the following ergodic properties by the same arguments as The-

orems 4.3.12 and 4.4.3.

Theorem 4.5.17 Assume Assumption 4.5.1. There exists a Markov process 𝜃(⋅, 𝜈)
on a probability space (Ω,ℱ , 𝑃𝜈) which is a martingale stationary solution of the

stochastic quasi-geostrophic equation (4.1.3). The law 𝜈 of 𝜃(𝑡, 𝜈) is the unique

invariant measure on 𝒲 of the transition semigroup (𝑃𝑡)𝑡≥0. Moreover

(i) the invariant measure 𝜈 is ergodic,

(ii) the transition semigroup (𝑃𝑡)𝑡≥0 is strong Feller, irreducible, and therefore

strongly mixing.

(iii) there exist 𝐶exp > 0 and 𝑎 > 0 such that

∥𝑃 ∗
𝑡 𝛿𝑥0 − 𝜇∥𝑇𝑉 ≤ ∥𝑃 ∗

𝑡 𝛿𝑥0 − 𝜇∥𝑉 ≤ 𝐶exp(1 + ∣𝑥0∣2)𝑒−𝑎𝑡,

for all 𝑡 > 0 and 𝑥0 ∈ 𝐻.

Remark 4.5.18 We can also prove approximate controllability of the solution of

the stochastic quasi-geostrophic equation for 𝛼 > 1/2 driven by finite dimensional

noise. Since the proof is similar to [S06], we don’t give all the details of the proof.

For more details, we refer to [S06].
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[RZZ] M. Röckner, R.-C. Zhu, X.-C. Zhu, The stochastic reflection problem on an

infinite dimensional convex set and BV functions in a Gelfand triple, to appear

in ”Annals of Probability”
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