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Abstract

We investigate a stochastic (conservative) non-equilibrium jump dy-
namics of interacting particles in continuum. The corresponding evolution
of correlation functions as well as a mesoscopic scaling (Vlasov scaling) is
studied. We derive a kinetic equation for the particle density which is a
Vlasov-type equation for the considered model.

Keywords Interacting particle system, Jump dynamics, Non-equilibrium evo-
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1 Introduction

It is useful to describe the position of particles in continuum by locally finite
subsets of Rd. In that case, the configurations space of a continuous interacting
particle system is given by

Γ ≡ Γ(Rd) := {γ ⊂ Rd
∣∣ |γ ∩K| <∞ for any compact K ⊂ Rd }. (1)

The elements of γ = {x1, x2, . . . } ∈ Γ describe the location of the particles.
In this paper, we present a particular stochastic (conservative) jump dy-

namics in continuum. Generally speaking, the time evolution of a large class of
jump dynamics in continuum is given by the following mechanism: if we fix a
time point t > 0 and assume that the system is at this time point in the config-
uration γ ∈ Γ, every particle x ∈ γ jumps during the infinitesimal time interval
[t, t+dt] to a point y ∈ Rd according to a (probability) rate c(x, y, γ) depending
on x ∈ γ, y ∈ Rd and the actual state γ ∈ Γ. This leads to a change of the
state γ to γ\x∪ y. The transition rates c(x, y, γ) contains all information about
the evolution of the dynamics. The concrete form of these rates appears from
modeling a concrete system. As motivated above, the infinitesimal generator
should have on observables (i.e. functions F on Γ) the following form:

(LF )(γ) =
∑
x∈γ

∫
Rd
dy c(x, y, γ)

(
F (γ\x ∪ y)− F (γ)

)
. (2)

Since this expression involves infinite sums, the generator (2) has at this
place only a heuristic signification. The task is now to give the above gener-
ator a rigorous meaning and to construct a semigroup (etL)t>0 which has L
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as infinitesimal generator. By means of this semigroup it is possible to solve
the Kolmogorov equation, which describes the time evolution of observables
according to the dynamics. The corresponding dual dynamics describes the
time evolution of states (i.e. probability measures on Γ). If this semigroup is a
Markov semigroup, we get even a probabilistic object, namely a stochastic pro-
cess (Xt)t>0 associated to that semigroup. In the equilibrium case, the above
described program can be realized for a quite general class of transition rates
(via the Dirichlet form approach, see [25]). Here, equilibrium case means, that is
only possible to start the dynamics (almost) in some equilibrium, which means,
that the evolution of observables is (almost) time independent. More interesting
(from the point of view of applications) is the construction of a non-equilibrium
dynamics since within the non-equilibrium framework it is possible to start the
dynamics in a state (far away from some equilibrium) and investigate the time
evolution of the dynamics (maybe it approaches some equilibrium after long
time). It turns out that in the non-equilibrium framework, it is demanding to
show that a generator of type (2) induces a semigroup. Indeed this could only be
shown for a system of particles without interactions (see [27]). Nevertheless it is
sometimes still possible to construct the time evolution of correlation functions.
This is the aim of the first part of this work for a particular form of transition
rates. These transition rates have the following form:

c(x, y, γ) := a(x− y)
(
1 + 〈γ, cx,y〉

)
, x, y ∈ Rd, γ ∈ Γ, (3)

where a is a non-negative function in L1(dx) with ‖a‖1 = 1 and 〈γ, cx,y〉 :=∑
x̃∈γ cx,y(x̃). Here, cx,y is a non-negative function in L1(dx) which depends

on x and y. We will assume that cx,y(x̃) is given by on of the following three
expressions:

cx,y(x̃) = κ(x− x̃), (4)

cx,y(x̃) = κ(y − x̃) (5)

or

cx,y(x̃) =
1

2

(
κ(x− x̃) + κ(y − x̃)

)
, (6)

where κ is a bounded and non-negative function in L1(dx). The rates (3) are
linear in γ and for κ ≡ 0 we obtain the free dynamics, i.e. a dynamics of non-
interacting particles. This dynamics is fully studied, see [20]. In the case (6),
the rate are symmetric in x and y. We refer to this case as the symmetric case.
The free dynamics has a Poisson measure as equilibrium state. The symmetric
case has this property as well. In this sense, this model describes particles with
a minimal interaction.

The second part of this paper discusses a mesoscopic scaling of the con-
sidered model, namely Vlasov scaling. The limit of the scaled dynamics leads
to a kinetic equation for the microscopic model. It is worth noting that the
Vlasov scaling coincides with the well-known Lebowitz-Penrose scaling (see e.g.
[36]). This fact as well as the definitions of the corresponding scalings will be
discussed in Section 8. The complex evolution of a many-body system is often
approximately described by kinetic equations, see e.g. [43, 44]. Besides the
Boltzmann equation (which describes the evolution of the particle density of a
dilute gas, see e.g. [30]), the Vlasov equation plays an important role in physics.
This equation is a good approximation in situations where long range forces (i.e.

2



forces caused by the collective effects of a large number of particles over rela-
tively long distance) are present and short range forces (i.e. forces caused by
collisions) are neglectable. Such circumstances are (approximately) valid in a
plasma (due to long range Coulomb forces), see e.g. [17]. One can derive the
Vlasov equation from the BBGKY-hierarchy by assuming that propagation of
chaos holds, see e.g. [16]. In this situation the equation for the particle density
is a closed equation since the second correlation function factorizes and this
yields the Vlasov equation. In [6] the authors have shown that in the mean
field scaling limit for Hamiltonian dynamics the empirical distribution of the
particles has at every time t > 0 a Lebesgue density (if so, for t = 0) and this
density satisfies a Vlasov-type equation. More general deterministic dynamical
systems where considered in [7]. Note that the resulting Vlasov-type equations
for particle densities are considered in the class of finite measures (in the weak
form) or integrable functions (in the strong form). The latter implies, in fact,
that we are restricted to the case of finite-volume systems or systems with zero
mean density in an infinite volume. A detailed analysis of Vlasov-type equations
for integrable functions is presented in the recent work [29].

For the model considered in this work, the approaches mentioned above
are not applicable since a description in terms of proper stochastic evolution
equations for particle motion is, generally speaking, absent. For that reason
we have to follow in this work a general approach, proposed in [9], to study
the Vlasov-type scaling for some classes of stochastic evolutions in continuum.
The first step is to derive hierarchical equations for the evolution of correlation
functions which generalizes the BBGKY-hierarchy from Hamiltonian to the dy-
namics considered here [10]. Then, we perform the scaling, which, roughly
speaking, assures that on the one hand, the interaction gets weaker and on the
other hand, the correlations between particles gets stronger. The limiting hier-
archy posses a chaos preservation property. Namely, if we start with an initial
correlation function which corresponds to a (non-homogeneous) Poisson state of
the system, then this property will be preserved during the time evolution. This
special property of the virtual Vlasov system allows us to derive a non-linear
evolutionary equation for the evolving Poisson state which is the macroscopic
Vlasov-type equation derived from the microscopic infinite-particle system. We
remark, that we are working in an infinite volume with non-zero averaged den-
sity. The zero density case corresponds to a different physical situation of the
underlying microscopic model, see e.g. [4].

2 General Facts and Notations

Let B(Rd) be the family of all Borel sets in the d-dimensional Euclidean space
Rd and Bb(Rd) the subfamily of all bounded Borel sets. The n-particle space is
defined by

Γ
(n)
0 := {η ⊂ Rd

∣∣|η| = n}, n ∈ N = {0, 1, 2, . . . },

where | · | means the cardinality of a finite set. For Λ ∈ Bb(Rd) one defines the

set Γ
(n)
0,Λ ≡ Γ

(n)
Λ analogue. Further, one introduces for every Λ ∈ Bb(Rd) a map

NΛ : Γ
(n)
Λ → N, NΛ(η) := |η ∩ Λ|. For short we write ηΛ := η ∩ Λ. We can
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identify the set Γ
(n)
0 with the symmetrization of

(̃
Rd
)n

:= {(x1, . . . , xn) ∈
(
Rd
)n∣∣xi 6= xj if i 6= j},

i.e. Γ
(n)
0
∼=
(̃
Rd
)n
/Sn, where Sn denotes the permutation group over {1, . . . , n}.

Due to this identification we can introduce a topology T (Γ
(n)
0 ) on Γ

(n)
0 . The

corresponding Borel σ-algebra B(Γ
(n)
0 ) coincides with σ(NΛ|Λ ∈ Bb(Rd)). The

space of finite particle configurations is defined by

Γ0 :=
⊔
n∈N

Γ
(n)
0 .

This set is equipped with the topology T (Γ0) of disjoint unions. The space
Γ0,Λ = ΓΛ, Λ ∈ Bb(Rd) is defined analogue.

The configuration space (space of infinite particle configurations) is defined
by

Γ = {γ ⊂ Rd
∣∣|γ ∩ Λ| <∞, for all Λ ∈ Bb(Rd)}.

The space Γ is equipped with the vague topology, i.e. the smallest topology for
which all mappings

Γ 3 γ 7→ 〈γ, f〉 :=
∑
x∈γ

f(x) ∈ R

are continuous for any function f on Rd with compact support; note that the
summation in

∑
x∈η f(x) is taken over finitely many points of γ which belongs

to the support of f . In [21], it was shown that Γ with the vague topology may be
metrizable and becomes a Polish space (i.e. a complete separable metric space).
Corresponding to this topology, the Borel σ-algebra B(Γ) is the smallest σ-
algebra for which all mappings NΛ : Γ → N, NΛ(γ) = |γ ∩ Λ| are measurable,
i.e.

B(Γ) = σ(NΛ|Λ ∈ B(Rd).

For every Λ ∈ Bb(Rd) one can define a projection

pΛ : Γ→ ΓΛ, pΛ(γ) := γ ∩ Λ

and with respect to this projection, Γ is the projective limit of the spaces
{ΓΛ}Λ∈Bb(Rd), see [1] and the references therein.

On Γ
(n)
0 we introduce a measure λ(n) by

λ(n) :=
1

n!
σ(n),

where σ(n) is the restriction of the Lebesgue product measure (dx)n to

(Γ
(n)
0 ,B(Γ

(n)
0 )). The combinatorial 1

n! factor takes into account the indistin-

guishability of the n particles. We extend the measures λ(n) to a measure λ on
Γ0 by setting

λ|
Γ

(n)
0

= λ(n),

i.e. λ =
∑
n∈N

1
n!σ

(n). The measure λ is called the Lebesgue-Poisson measure.

For any Λ ∈ Bb(Rd) the restriction of λ to ΓΛ will be denoted by λΛ. It holds
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λΛ(ΓΛ) = em(Λ), where m(Λ) denotes the Lebesgue measure of Λ ∈ Bb(Rd).
We define a probability measure πΛ on ΓΛ by πΛ := e−m(Λ)λΛ. The Fourier-
transformation π̂Λ(f), f a smooth function with compact support on R is equals
to

π̂Λ(f) =

∫
Γ

ei〈γ,f〉πΛ(dγ)

= exp

(∫
Λ

ei(f(x)−1)dx

)
.

Since in the above expression there is no need for a restriction to a space of
finite volume Λ, we can extend the measures πΛ to a probability measure π on
Γ, see [1] for details and references therein.

By L0
ls(Γ0) we denote the set of all measurable functions on Γ0 with bounded

support, i.e. G ∈ L0
ls(Γ0) iff G|Γ0\ΓΛ

≡ 0 for some Λ ∈ Bb(Rd). A set

M ∈ B(Γ0) is called bounded if it exists a Λ ∈ Bb(Rd) and N ∈ N such

that M ⊂
⊔N
n=0 Γ

(n)
Λ . We denote the set of all bounded and measurable func-

tions with bounded support by Bbs(Γ0), i.e. G ∈ Bbs(Γ0) if G|Γ0\M ≡ 0 for
some bounded M ∈ Bb(Γ0). We also consider the set Fcyl(Γ) of all cylinder
functions on Γ. Each F ∈ Fcyl(Γ) is characterized by the following prop-
erty: F (γ) = F |ΓΛ(γΛ) for some Λ ∈ Bb(Rd). Further, by FcylP(Γ) we de-
note the subspace of all cylinder functions which are polynomially bounded, i.e.
F ∈ FcylP(Γ), iff F ∈ Fcyl(Γ) (i.e. F (γ) = F |ΓΛ

(γΛ) for some Λ ∈ Bb(Rd) ) and
there exists a polynomial P on R such that |F (γΛ)| ≤ P (|γΛ|).

For any measurable function f : Rd → R we define a Lebesgue-Poisson
coherent state corresponding to the one particle function f by

eλ(f, η) :=
∏
x∈η

f(x), η ∈ Γ0.

Using the Fock space isomorphism between L2(Γ0, dλ), see e.g. [14], [18] one
sees, that, eλ(f, ·) corresponds indeed to the usual Fock coherent state

e(f) :=

(
f⊗n

n!

)
n∈N

.

There is the following mapping from L0
ls(Γ0) to Fcyl(Γ) which plays a key

role in our further considerations:

KG(η) :=
∑
ηbγ

G(η), γ ∈ Γ, (7)

where G ∈ Bbs(Γ0). This mapping can be interpreted as a combinatorial version
of the Fourier transform and is called K-transform, see [19], [31], [32] for details.
The summation in (7) is taken over all finite subconfigurations η ∈ Γ0 of the
(infinite) configuration γ ∈ Γ; we denote this by the symbol η b γ. The K-
transform is linear, positivity preserving and invertible, with

K−1F (η) :=
∑
ξ⊂η

(−1)|η\ξ|F (ξ), η ∈ Γ0. (8)

Here and in the sequel inclusions like ξ ⊂ η holds for ξ = ∅ as well as for ξ = η.
The expression (8) for the inverse K-transform is obtained by an application of
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Möbius inversion formula, see e.g. [45]. Further, the K-transform maps Bbs(Γ0)
into FcylP(Γ).

For two measurable functions G1, G2 on Γ0 we define a convolution by

(G1 ∗G2)(η) :=
∑

(η1,η2,η3)∈P3(η)

G1(η1 ∪ η2)G2(η2 ∪ η3)

=
∑
ξ⊂η

G1(ξ)
∑
ζ⊂ξ

G2((η\ξ) ∪ η), η ∈ Γ0,
(9)

where P3(η) denotes the family of all partitions of η in three parts which may
be empty, see e.g. [19]. It is easy ti verify that the space of all measurable
functions on Γ0 endowed with this product hast the structure of a commutative
algebra with unit element eλ(0, ·). Furthermore, for G1, G2 ∈ L0

ls(Γ0) we have
G1 ∗G2 ∈ L0

ls(Γ0) and

K(G1 ∗G2) = (KG1) · (KG2), (10)

cf. [19].
Let M1

fm(Γ) be the set of all probability measures µ which have finite local
moments of all order, i.e.

∫
Γ
|γΛ|nµ(dγ) < ∞ for all Λ ∈ B(Rd) and n ∈ N.

A measure ρ on Γ0 is called locally finite iff ρ(M) < ∞ for all bounded sets
M ∈ B(Γ0). The set of such measures is denoted byMlf(Γ0). One can define a
transform K∗ : M1

fm(Γ) → Mlf(Γ0) which is dual to the K-transform, i.e. for
every µ ∈M1

fm(Γ), G ∈ Bbs(Γ0) holds∫
Γ

KG(γ)µ(dγ) =

∫
Γ0

G(η)(K∗µ)(dη).

The measure ρµ := K∗µ is called correlation measure of µ. If ρµ has a density
with respect to (w.r.t. for short) the Lebesgue-Poisson measure λ i.e. dρµ =
kµdλ, the functions

k(n)
µ :

(
Rd
)n → R+, n ∈ N,

k(n)
µ (x1, . . . , xn) :=

{
kµ({x1, . . . , xn}) if (x1, . . . , xn) ∈

(̃
Rd
)n

0 otherwise.

are the well-known correlation functions of statistical physics, see e.g. [39], [40].
As shown in [19], for µ ∈M1

fm(Γ) and G ∈ L1(Γ0, ρµ), the series

KG(η) :=
∑
ηbγ

G(η)

is µ-a.s. absolutely convergent. Furthermore, KG ∈ L1(Γ, µ) and∫
Γ

KG(γ)µ(dγ) =

∫
Γ0

G(η)(K∗µ)(dη).

Thus, we can extend the K-transform to a mapping

Kµ : L1(Γ0, dρµ)→ L1(Γ, dµ). (11)

Finally, we recall the so-called Milnos Lemma which plays a very important role
in our calculations (cf. [28])
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Lemma 1 Let n ∈ N, n ≥ 2. Then∫
Γ0

. . .

∫
Γ0

G(η1 ∪ · · · ∪ ηn)H(η1, . . . , ηn)λ(dη1) . . . λ(dηn)

=

∫
Γ0

G(η)
∑

(η1,...,ηn)∈Pn(η)

H(η1, . . . , ηn)λ(dη)

for all measurable functions G : Γ→ R and H : Γ0 × · · · × Γ0 → R with respect
to which both sides of the equality make sense. Here Pn(η) denotes the set of
all ordered partitions of η in n parts, which may be empty.

3 Hierarchical Equations

In this section we derive the hierarchical equations for the considered jump
dynamics which are the analogue of the BBGKY-hierarchy for Hamiltonian
dynamics. These equations describe the time evolution of correlation functions.
We consider the generator L of the jump dynamics, acting on observables F ,
which is heuristically given by

(LF )(γ) =
∑
x∈γ

∫
Rd
dy a(x− y)(1 + 〈γ, cx,y〉)

(
F (γ\x ∪ y)− F (γ)

)
. (12)

In order to give the above generator a rigorous meaning, we proceed in the
following way : As already mentioned, the K-transform can be regarded as a
combinatorial Fourier transform. It is well known that a differential operator on
Rd is in Fourier representation simply given by multiplication with a polynomial.
More general, a pseudo-differential operator is in Fourier representation given by
multiplication with a symbol, see e.g. [41], [13]. Within our framework, we can
proceed in an analog way, since we have an analogue to the Fourier transform,
namely the K-transform. In the sequel, we define an operator L̂ := K−1LK,
which we will also call the symbol corresponding to L. The advantage will
be, that the symbol acts on quasi-observables, i.e. on functions depending
only on finitely many coordinates. The symbol will be a well defined object.
The following informal consideration links the symbol with the infinitesimal
generator for correlation functions:

The evolution of the initial state µ0 ∈ M1(Γ) of the system is of primary
interest. It is informally given by the solution to the following Cauchy problem

dµt
dt

= L∗µt, µt|t=0 = µ0,

where L∗ is an heuristic adjoint to L with respect to the duality

< F, µ >:=

∫
Γ

Fdµ.

As it was shown in [10], the corresponding evolution of the correlation functions
is given by

dkt
dt

= L4kt, kt|t=0 = k0, (13)
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where L4 is the dual operator to L̂ := K−1LK with respect to the duality∫
Γ0

λ(dη)
(
L̂G
)
(η)k(η) =

∫
Γ0

λ(dη) G(η)
(
L4k

)
(η).

The hierarchical structure of (13) is described by the countable infinite system
of equations

∂

∂t
k

(n)
t =

(
L4kt

)(n)
, k

(n)
t := kt|Γ(n)

0
,
(
L4kt

)(n)
:=
(
L4kt

)
|
Γ

(n)
0
, n ∈ N.

It was also shown in [10] that the operator L̂ is given by the following formula

(L̂G)(η) =
∑
x∈η

∫
Rd
dya(x− y)(G(η\x ∪ y)−G(η))

+
∑
x∈η

∑
x̃∈η\x

∫
Rd
dya(x− y)cx,y(x̃)(G(η\{x, x̃} ∪ y)−G(η\x̃))

+
∑
x∈η

∑
x̃∈η\x

∫
Rd
dya(x− y)cx,y(x̃)(G(η\x ∪ y)−G(η)), G ∈ Bbs(Γ0).

(14)

Moreover,

(L4k)(η) =
∑
y∈η

∫
Rd
dx̃

∫
Rd
dx k(x̃ ∪ (η\y) ∪ x)a(x− y)cx,y(x̃)

−
∫
Rd
dx̃k(η ∪ x̃)

∑
x∈η

∫
Rd
dy a(x− y)cx,y(x̃)

+
∑
y∈γ

∫
Rd
dxk((η\y) ∪ x)(a(x− y) +

∑
x̃∈η\y

a(x− y)cx,y(x̃))

− k(η)
∑
x∈η

∫
Rd
dy(a(x− y) + a(x− y)

∑
x̃∈η\x

cx,y(x̃)), η ∈ Γ0.

(15)

In the sequel, we want to construct the time evolution of correlation functions
for the considered model, i.e. we have to solve the Cauchy problem (13).

4 Evolution Equation for Quasi-Observables

The evolutionary equation (13) is analogue to the BBGKY-hierarchy for Hamil-
tonian dynamics, see e.g. [3], [5]. As in the case for (infinite) Hamiltonian dy-
namics, the computation of the n-th correlation function requires the knowledge
of the (n+1)-th correlation function. But the dual evolution equation (which is

given by the symbol L̂), which describes the evolution of quasi-observables, has
the feature that the computation of the n-th component of a quasi-observable
requires the knowledge of the components of order less than n. This makes a
recursive computation of the evolution of the components of quasi-observables
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possible. The duality between quasi-observables and correlation functions allows
us to transfer this evolution to correlation functions.

We consider the following evolution equation (Kolmogorov equation for quasi-
observables) {

d
dtGt = L̂Gt

Gt|t=0 = G0,
(16)

where L̂ is given by (14). In the sequel, we seek a solution of the evolution
equation for quasi-observables with G0 given in some proper space. We recall,
that we denote by λ the Lebesgue-Poisson measure on Γ0. We define for n ∈ N
and a function G on Γ0 a symmetric function G(n) on Rnd by

G(n) := G|
Γ

(n)
0
.

We refer to the sequence (G(n))n∈N as components of the function G and we
also remark, that the space L1(Γ0, dλ) has the following Fock-type structure:

L1(Γ0, dλ) ∼=
⊕
n

L1
sym(Rnd,

1

n!
dnx)

G 7→ (G(n))n∈N,

since for G ∈ L1(Γ0, dλ) holds

‖G‖L1(Γ0,λ) =

∞∑
n=0

1

n!

∫
. . .

∫
|G(n)(x1, . . . , xn)|dx1 . . . dxn.

We observe the following: (L̂G)(n) is given by

(L̂G)(n) = D(n)G(n) +R(n−1)G(n−1) (17)

with

(D(n)G(n))(η)

=
∑
x∈η

∫
Rd
dy a(x− y)(G(n)(η\x ∪ y)−G(n)(η))

+
∑
x∈η

∑
x̃∈η\x

∫
Rd
dy a(x− y)cx,y(x̃)(G(n)(η\x ∪ y)−G(n)(η))

(18)

and

(R(n−1)G(n−1))(η)

=
∑
x∈η

∑
x̃∈η\x

∫
Rd
dy a(x− y)cx,y(x̃)

× (G(n−1)(η\{x, x̃} ∪ y)−G(n−1)(η\x̃)), η ∈ Γ
(n)
0 .

Now equation (16) reads in components as follows:

∂

∂t
G

(n)
t = D(n)G

(n)
t +R(n−1)G

(n−1)
t . (19)
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Due to this observation the following strategy for the construction of a so-
lution of (16) should be reasonable:

Fix n ∈ N and assume that D(n) generates a semigroup (in some proper

Banach space). If G
(n−1)
t is already known, the solution of the system (19) is

given by

G
(n)
t = etD

(n)

G
(n)
0 +

∫ t

0

e(t−s)D(n)

R(n−1)G(n−1)
s ds, t > 0, (20)

where the above integral is to interpret in Bochners sense. Hence, given G0,
we can compute the components of the solution Gt of (16) successively. In the
following we try to realize this approach.

Before we solve equation (16) we have to analyze the operators D(n) and
R(n−1). The solution of (16) should be in a proper L1-space, because in this
case, the corresponding dual evolution will be in a L∞-space (we want to work
in a non-zero density framework). Especially, we will need that the operators
D(n) induce contraction semigroups in proper L1-spaces.

We recall, that we denote by σ(n) the projection of the n · d-dimensional

Lebesgue-measure to Γ
(n)
0 .

Lemma 2 Let cx,y(x̃) = κ(x− x̃) Under the condition∫
Rd
a(x− y)κ(x− x̃)dx ≤ κ(y − x̃), (21)

the operator D(n) generates a contraction semigroup in L1(Γ
(n)
0 , dσ(n)).

Proof: It is easily seen (by means of the Minlos Lemma), that the opera-

tor D(n) is bounded in L1(Γ
(n)
0 , dσ(n)). Thus, D(n) induces a semigroup in

L1(Γ
(n)
0 , dσ(n)). In order to show that this semigroup is contractive, we use the

Lumer-Phillips Theorem, see [35]. Thus, we have to show

• it exists some λ > 0 such that the range of D(n) − λ1 is the whole space
L1(D(n), dσ(n))

• for all λ > 0 holds ‖(D(n) − λ1)G(n)‖ ≥ λ‖G(n)‖.

To the first point: this is obvious since D(n) is bounded an therefore σ(D(n)) ⊂
BD(n)(0). Now to the second point: let λ > 0. We write D(n) = D

(n)
1 + D

(n)
2

with

(D
(n)
1 G(n))(η) := −

(
|η|+ Eκ(η)

)
G(n)(η),

where
Eκ(η) :=

∑
x∈η

∑
x̃∈η\x

κ(x− x̃),

and
D

(n)
2 := D(n) −D(n)

1 .

10



It holds

‖(D(n) − λ1)G(n)‖ = ‖(D(n)
1 +D

(n)
2 − λ1)G(n)‖

≥ ‖(D(n)
1 − λ1)G(n)‖ − ‖D(n)

2 G(n)‖

=

∫
Γ

(n)
0

(
λ+ |η|+ Eκ(η)

)
|G(n)(η)|σ(n)(dη)

− ‖D(n)
2 G(n)‖

(22)

Now we write D
(n)
2 as D

(n)
2 := D

(n)
2,1 +D

(n)
2,2 with

(D
(n)
2,1G

(n))(η) :=
∑
x∈η

∫
Rd
dy a(x− y)G(n)(η\x ∪ y)

and

(D
(n)
2,2G

(n))(η) =
∑
x∈η

∑
x̃∈η\x

κ(x− x̃)

∫
Rd
dy a(x− y)G(n)(η\x ∪ y).

Obviously,

‖D(n)
2,1 ‖ ≤

∫
Γ

(n)
0

σ(n)(dη)|η||G(n)(η)|. (23)

For the norm of D
(n)
2,2 holds (we use Minlos Lemma and (21)):

‖D(n)
2,2 ‖ ≤

∫
Γ

(n)
0

σ(n)(dη)
∑
x∈η

∑
x̃∈η\x

κ(x− x̃)

∫
Rd
dy a(x− y)|G(n)(η\x ∪ y)|

=

∫
Γ

(n)
0

σ(n)(dη)
∑
y∈η

∑
x̃∈η\y

∫
Rd
dx a(x− y)κ(x− x̃)|G(n)(η)|

≤
∫

Γ
(n)
0

σ(n)(dη)Eκ(η)|G(n)(η)|.

(24)

Combining (22), (23) and (24) yields

‖(D(n) − λ1)G(n)‖ ≥ λ‖G(n)‖. �

Lemma 3 Let cx,y(x̃) = κ(y − x̃). Under the condition∫
Rd
a(x− y)κ(y − x̃) ≥ κ(x− x̃), (25)

the operator D(n) generates a contraction semigroup in L1(Γ
(n)
0 , dσ(n)).

Proof: The proof is analogous to Lemma 2. �

Lemma 4 Let cx,y(x̃) = 1
2

(
κ(x − x̃) + κ(y − x̃)

)
. Then D(n) generates a con-

traction semigroup in L1(Γ
(n)
0 , dσ(n)).

11



Proof: The symmetry of cx,y(x̃) in x and y and Minlos Lemma yields

‖(D(n) − λ1)G(n)‖

≥
∣∣∣∣ ∫

Γ
(n)
0

σ(n)(dη)
∑
x∈η

∫
Rd
dy a(x− y)G(n)(η\x ∪ y)−G(n)(η)− λG(n)(η)

∣∣∣∣
≥ λ‖G(n)‖. �

Now we investigate the operators R(n−1) more detailed. To this end we

introduce the notation Xn := L1(Γ
(n)
0 , dσ(n)) and we define for a symmetric

function G(n) on Rnd a function G̃(n) on Γ0 by

G̃(n)(η) =

{
G(n)(x1, . . . , xn) if η = {x1, . . . , xn}
0 else.

Then, we can write the L1-norm of Xn as

‖G(n)‖Xn = n!

∫
Γ0

λ(dη)|G̃(n)(η)|

The next Lemma holds for all the three cases which we want to consider for
cx,y(x̃). We present the proof only for the case cx,y(x̃) = 1

2

(
κ(x− x̃)+κ(y− x̃)

)
.

The other cases are analogue.

Lemma 5 We can regard R(n−1) as an operator

R(n−1) : Xn−1 → Xn.

This operator is continuous, moreover

‖R(n−1)G(n−1)‖Xn ≤ Bn(n− 1)‖G(n−1)‖Xn−1 (26)

for all G(n−1) ∈ Xn−1 where B > 0 is given by

B = 2〈κ〉〈a〉. (27)

Proof: We write R(n−1) = R
(n−1)
1 +R

(n−1)
2 with

(R
(n−1)
1 G(n−1))(η) : =

∑
x∈η

∑
x̃∈η\x

∫
Rd
dya(x− y)cx,y(x̃)

× (G(n−1)(η\{x, x̃} ∪ y)

and

(R
(n−1)
2 G(n−1))(η) :=

∑
x∈η

∑
x̃∈η\x

∫
Rd
dya(x− y)cx,y(x̃)

×G(n−1)(η\x̃).

12



For a bounded function G(n−1) ∈ Xn−1 holds (we use Milnos Lemma):

‖R(n−1)
1 G(n−1)‖Xn

≤ n!

∫
Γ0

λ(dη)1
Γ

(n)
0

(η)
∑
x∈η

∑
x̃∈η\x

∫
Rd
dy a(x− y)

× cx,y(x̃)|G̃(n−1)(η\{x, x̃} ∪ y)|

= n!

∫
Γ0

λ(dη)

∫
Rd
dx 1

Γ
(n)
0

(η ∪ x)
∑
x̃∈η

∫
Rd
dy a(x− y)

× cx,y(x̃)|G̃(n−1)(η\x̃ ∪ y)|

= n!

∫
Γ0

λ(dη)

∫
Rd
dx̃

∫
Rd
dx 1

Γ
(n−1)
0

(η ∪ x̃)

∫
Rd
dya(x− y)

× cx,y(x̃)|G̃(n−1)(η ∪ y)|

= n!

∫
Γ0

λ(dη)
∑
y∈η

1
Γ

(n−2)
0

(η\y)

∫
Rd
dx a(x− y)

×
∫
Rd
dx̃

1

2
(κ(x− x̃) + κ(y − x̃))|G̃(n−1)(η)|

= 〈κ〉n!

∫
Γ0

λ(dη)
∑
y∈η

1
Γ

(n−1)
0

(η)

∫
Rd
dxa(x− y)|G̃(n−1)(η)|

= 〈κ〉〈a〉n!

∫
Γ0

λ(dη)
∑
y∈η

1
Γ

(n−1)
0

(η)|G̃(n−1)(η)|

= 〈κ〉〈a〉n!

∫
Γ0

λ(dη)1
Γ

(n−1)
0

(η)|η||G̃(n−1)(η)|

= 〈κ〉〈a〉(n− 1)n(n− 1)!

∫
Γ0

λ(dη)|G̃(n−1)(η)|

= 〈κ〉〈a〉n(n− 1)‖G(n−1)‖Xn−1 .

(28)

Hence, we obtain

‖R(n−1)
1 G(n−1)‖Xn ≤ 〈κ〉〈a〉n(n− 1)‖G(n−1)‖Xn−1

(29)
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For ‖R(n−1)
2 G(n−1)‖Xn we get:

‖R(n−1)
2 G(n−1)‖Xn

≤ n!

∫
Γ0

λ(dη)1
Γ

(n)
0

(η)
∑
x∈η

∑
x̃∈η\x

∫
Rd

dya(x− y)cx,y(x̃)|G̃(n−1)(η\x̃)|

= n!

∫
Γ0

λ(dη)

∫
Rd
dx 1

Γ
(n)
0

(η ∪ x)
∑
x̃∈η

∫
Rd
dy a(x− y)

× cx,y(x̃)|G̃(n−1)(η\x̃ ∪ x)|

= n!

∫
Γ0

λ(dη)

∫
Rd
dx 1

Γ
(n−1)
0

(η)
∑
x̃∈η

∫
Rd
dy a(x− y)

× cx,y(x̃)|G̃(n−1)(η\x̃ ∪ x)|

= n!

∫
Γ0

λ(dη)1
Γ

(n−2)
0

(η)

∫
Rd
dx

∫
Rd
dy a(x− y)|G̃(n−1)(η ∪ x)|

×
∫
Rd
dx̃

1

2
(κ(x− x̃) + κ(y − x̃))

= n!〈a〉〈κ〉
∫

Γ0

λ(dη)1
Γ

(n−2)
0

(η)

∫
Rd
dx |G̃(n−1)(η ∪ x)|

= n!〈a〉〈κ〉
∫

Γ0

λ(dη)1
Γ

(n−1)
0

(η)
∑
x∈η
|G̃(n−1)(η)|

= n(n− 1) 〈a〉〈κ〉‖G(n−1)‖Xn−1

(30)

i.e.
‖R(n−1)

2 G(n−1)‖Xn ≤ 〈a〉〈κ〉n(n− 1)‖G(n−1)‖Xn−1 (31)

Altogether, we derive by means of (29) and (31):

‖R(n−1)G(n−1)‖Xn ≤ Bn(n− 1)‖G(n−1)‖Xn−1
. (32)

with B = 2〈a〉〈κ〉. This shows the assertions of Lemma 5. �

Now we are able to construct the evolution of quasi-observables. First of all,
we have to introduce the spaces in which the evolution will live.

To this end, let α and C > 0. By Iα,C we denote the functional Banach
space, consisting of all Fock-type vectors G = (G(n))n∈N ∈

⊕
n∈NXn for which

the norm

‖G‖Iα,C := sup
n∈N

‖G(n)‖XnCn

αnn!
(33)

is less than infinite.
The next theorem concerns the evolution of quasi-observables. Since we are

primary interested in the evolution of correlation function, we formulate the
theorem below in a way suitable to transport the dynamics of quasi-observables
to correlation functions. The statement of the next Theorem holds in all the
tree case which we want to consider. In the non symmetric case we have to
assume (21) resp. (25).
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Theorem 1 Consider the evolution problem{
d
dtGt = L̂Gt

Gt|t=0 = G0.
(34)

where L̂ is given by (14) and the component-wise solution

G
(n)
t = etD

(n)

G
(n)
0 +

∫ t

0

e(t−s)D(n)

R(n−1)G(n−1)
s ds, t > 0

G
(0)
t = G

(0)
0 .

(35)

Let α, C > 0 and define Ct, t ∈ R by

Ct :=
C

1 + tBC
α

, (36)

where B is given by (27). Then the following holds: If G0 is an element of Iα,C
then, Gt is an element of Iα,Ct , t > 0 and the bound

‖Gt‖Iα,Ct ≤ ‖G0‖Iα,C (37)

holds for all t > 0.

Proof: We proof by induction that for all n ∈ N holds:

‖G(n)
t ‖Xn ≤ ‖G0‖Iα,Cn!

αn

Cn

(
1 +

tBC

α

)n
, t > 0. (38)

Clearly, from (38) follows (37). Since G0 ∈ Iα,C , it follows

‖G(n)
0 ‖Xn ≤ ‖G0‖Iα,C

(
α

C

)n
n!. (39)

We assume that (38) holds for k < n. By iterating the formula

G
(n)
t = etD

(n)

G
(n)
0 +

∫ t

0

e(t−s)D(n)

R(n−1)G(n−1)
s ds,

we obtain

G
(n)
t =

n∑
k=0

Ak,n(t)G
(n−k)
0

with

Ak,n(t) :=

∫ t

0

∫ s1

0

. . .

∫ sk−1

0

e(t−s1)D(n)

R(n−1)e(s1−s2)D(n−1)

R(n−2) . . .

×R(n−k)ee
skD(n−k)

dsk . . . ds1

A0,n(t) : = etD
(n)

.

By means of the contraction property of D(n) (Lemma 2-Lemma 4) and
Lemma 5 we derive:

‖Ak,n(t)G
(n−k)
0 ‖Xn ≤

tk

k!
Bkn(n− 1)(n− 1)(n− 2) . . .

× (n− k + 1)(n− k)‖G(n−k)
0 ‖Xn−k

=
tk

k!
Bk

n!

(n− k)!

(n− 1)!

(n− k − 1)!
‖G(n−k)

0 ‖Xn−k .
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Thus, we obtain

‖G(n)
t ‖Xn ≤

n∑
k=0

tkBk

k!

n!

(n− k)!

(n− 1)!

(n− k − 1)!
‖G(n−k)

0 ‖Xn−k

=

n∑
k=0

(tB)n−k
n!(n− 1)!

(n− k)!k!(k − 1)!
‖G(k)

0 ‖Xk .

Now we use (39) and obtain

‖G(n)
t ‖Xn ≤ ‖G0‖Iα,Cn!

n∑
k=0

(tB)n−k
(
n

k

)
k

n

αk

Ck

≤ ‖G0‖Iα,Cn!
αn

Cn

n∑
k=0

(
tBC

α

)n−k(
n

k

)
= ‖G0‖Iα,Cn!

αn

Cn

(
1 +

tBC

α

)n
.

This shows (38). �

Remark 1 We can define a propagator P̂t by

P̂t : Iα,C → Iα,Ct , P̂tG := Gt

where Gt is the solution of (34) with initial data G. This propagator describes
the time evolution of quasi-observables.

5 The Evolution of Correlation Functions

In this section we construct the evolution for correlation functions. Since we
are working in a non-zero density framework, the natural spaces in which this
evolution takes place, are of the type

KC := {k : Γ0 → R|k · C−|·| ∈ L∞(Γ0, dλ)}, C > 0,

cf. [22]. The space KC is the dual space of

LC := L1(Γ0, C
|·|dλ),

where the duality is given by the following expression:

〈〈k,G〉〉 :=

∫
Γ0

k ·G dλ, G ∈ LC .

It is clear that KC is a Banach space with the norm

‖k‖C := ‖kC−|·|‖L∞(Γ0,dλ).

Note also, that k · C−|·| ∈ L∞(Γ0, dλ) means that the function k satisfies the
bound

|k(η)| ≤ const C |η| λ− a.e.
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We remind, that the space Iα,C consists of all Fock-type vectors G =
(G(n))n∈N ∈

⊕
n∈NXn , s.t. ‖G‖Iα,C <∞ holds (see. (33)). For α ∈ (0, 1), we

obtain the inclusion
LC
α
⊂ Iα,C ⊂ LC (40)

since it holds firstly:

Cn

n!
‖G(n)‖Xn ≤ αn‖G‖Iα,C , n ∈ N, G ∈ Iα,C ,

which implies

‖G‖LC ≤
1

1− α
‖G‖Iα,C <∞.

Because of that, we obtain
Iα,C ⊂ LC . (41)

Secondly, it holds for G ∈ LC
α

‖G‖Iα,C ≤ ‖G‖LC
α

,

hence
LC
α
⊂ Iα,C .

Altogether, we obtain (40). We consider also a functional space Jα,C , which con-

sists of all Fock-type vectors k = (k(n))n∈N ∈
⊕

n∈NX
∗
n, X∗n := L∞(Γ

(n)
0 , dσ(n))

for which

‖k‖Jα,C :=

∞∑
n=0

αn

Cn
‖k(n)‖X∗n <∞

holds. Let G ∈ Iα,C and k ∈ Jα,C . It follows

|〈〈k,G〉〉| ≤
∞∑
n=0

1

n!

∫
Γ

(n)
0

|k(n)||G(n)|dσ(n)

≤
∞∑
n=0

1

n!
‖G(n)‖Xn‖k(n)‖X∗n

=

∞∑
n=0

Cn

αnn!
‖G(n)‖Xn

αn

Cn
‖k(n)‖X∗n

≤
(

sup
n∈N
‖G(n)‖Xn

Cn

αnn!

)( ∞∑
n=0

αn

Cn
‖k(n)‖X∗n

)
= ‖G‖Iα,C‖k‖Jα,C .

(42)

Hence, G 7→ 〈〈k,G〉〉 is a bounded linear functional on Iα,C and therefore

Jα,C ⊂ (Iα,C)∗.

Next, we observe that for k ∈ Jα,C holds:

αn

Cn
‖k(n)‖X∗n ≤ ‖k‖Jα,C , n ∈ N.
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It follows
‖k‖KC

α

≤ ‖k‖Jα,C

which implies
Jα,C ⊂ KC

α

Otherwise, for k ∈ KC holds

‖k(n)‖X∗n ≤ C
n‖k‖KC , n ∈ N.

Using this, we conclude

‖k‖Jα,C =

∞∑
n=0

αn

Cn
‖k(n)‖X∗n ≤

∞∑
n=0

αn

Cn
Cn‖k‖KC =

1

1− α
‖k‖KC ,

therefore,
KC ⊂ Jα,C ⊂ KC

α
. (43)

Further, by means of (40), we get

KC ⊂ (Iα,C)∗ ⊂ KC
α
. (44)

Altogether,
KC ⊂ Jα,C ⊂ (Iα,C)∗ ⊂ KC

α
.

Now to the construction of the evolution of correlation functions:

Theorem 2 Let C0 > 0, α ∈ (0, 1) and define a time horizon T > 0 by

T :=
α

C0B
,

where B is given by (27). Further, we define C∗t by

C∗t :=
C0

1− C0Bt
α

. (45)

It holds: for all t < T exists a mapping

〈〈P4t · | : KC0 → I∗α,C∗t ⊂ KC∗t
α

with the following properties: for all G ∈ Iα,C∗t holds

〈〈P4t k0|G〉〉 = 〈〈k0, Gt〉〉, (46)

where Gt is the solution (Gs)s≥0 of (34) with initial data G0 = G evaluated at
s = t.

Proof: Let k0 ∈ KC0
⊂ I∗α,C0

and t < T . We define the mapping 〈〈P4t · | :
KC0

→ I∗α,C∗t by

〈〈P4t k0|G0〉〉 := 〈〈k0, Gt〉〉, (47)

where Gt is the solution (Gs)s≥0 of (34) with initial data G0 = G evaluated at
s = t. Since G ∈ Iα,C∗t it follows by Theorem 1 that Gt is an element of Iα,Ct
where

Ct =
C∗t

1 +
tBC∗t
α

.
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By plug in the definition (45) of C∗t together with a simple calculation shows

that Ct = C0. Thus, 〈〈P4t · | is well defined. Moreover, since k0 ∈ KC0 ⊂ Jα,C0

and and Gt ∈ Iα,C0 , we obtain by means of (42) and (37):

|〈〈P4t k0|G0〉〉| = |〈〈k0, Gt〉〉|
≤ ‖k0‖Jα,C0

‖Gt‖Iα,C0

≤ ‖k0‖Jα,C0
‖G0‖Iα,C∗t .

That is why 〈〈P4t k0| ∈ I∗α,C∗t . But since I∗α,C∗t ⊂ KC∗t
α

(cf. (44)), we can regard

〈〈P4t · | as a mapping

〈〈P4t · | : KC0 → KC∗t
α

.

By definition, this mapping has the property

〈〈P4t k0|G〉〉 = 〈〈k0, Gt〉〉. �

Remark 2 The evolution kt := P4t k0, t ∈ [0, T ) describes the time evolution

of the initial correlation function k0. We can regard the mapping P4t as the

dual propagator to P̂t (cf. Remark 1), because it holds

〈〈P4t k0, G〉〉 = 〈〈k0, P̂tG〉〉.

6 Weak Solution

Now, let us consider our model of jumping particles and an initial correlation
function k0 ∈ KC0

. We fix a time point t < T = α
C0B

and consider the above
constructed evolution kt. Let G ∈ Iα,C∗t and (Gs)s≥0 be the solution of (34)
with initial data G0 = G. Using the contractivity of the diagonal part (Lemma

2-Lemma 4) of L̂ and Lemma 5 we get:∫ t

0

∞∑
n=0

1

n!

∫
Rd
. . .

∫
Rd
k

(n)
0 (x1, . . . , xn)

∣∣(L̂Gs)(n)
(x1, . . . , xn)

∣∣dx1 . . . dxnds

≤ ‖k0‖C0

∫ t

0

∞∑
n=0

Cn0
n!
‖
(
L̂Gs

)(n)‖Xnds

≤ ‖k0‖C0

∫ t

0

∞∑
n=0

Cn0
n!

(
‖G(n)

s ‖Xn +Bn(n− 1)‖G(n−1)
s ‖Xn−1

)
ds.

Due to Theorem 1 it holds Gs ∈ Iα,Cs with

Cs =
C∗t

1 +
sBC∗t
α

.

Therefore

‖G(n)
s ‖Xn ≤ ‖G‖Iα,Csn!

αn

Cns
≤ ‖G‖Iα,C∗t n!

αn

Cns
.
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Using this, we conclude:∫ t

0

∞∑
n=0

Cn0
n!

(
‖G(n)

s ‖Xn +Bn(n− 1)‖G(n−1)
s ‖Xn−1

)
ds

≤ ‖G‖Iα,C∗t

∫ t

0

( ∞∑
n=0

(
αC0

Cs

)n
+B

∞∑
n=0

(n− 1)

(
αC0

Cs

)n−1)
ds

<∞.

In the last step we have used C0

Cs
< 1. This is true since Cs is decreasing and

Ct = C0 (cf. the Proof of Theorem 2).
Therefore, we obtain by means of Fubini’s theorem:

〈〈kt, G〉〉 = 〈〈k0, Gt〉〉

=

∞∑
n=0

1

n!

∫
Rd
. . .

∫
Rd
k

(n)
0 (x1, . . . , xn)

(
G

(n)
0 (x1, . . . , xn)

+

∫ t

0

(
L̂Gs

)(n)
(x1, . . . , xn)

)
dx1 . . . dxnds

= 〈〈k0, G〉〉+

∫ t

0

〈〈k0, L̂Gs〉〉ds.

(48)

We remark that the function G depends implicitly on t because G belongs to
the space Iα,C∗t . But for a function

G ∈
⋂

0<t<T−ε
Iα,C∗t = Iα,C∗T−ε , ε > 0,

the relation (48) holds uniformly in t and we can differentiate:

d

dt
〈〈kt, G〉〉 = 〈〈k0, L̂Gt〉〉.

The latter fact means that kt is a weak solution of{
d
dtkt = L4kt

kt|t=0 = k0.
(49)

7 Invariant Distribution

The considerations in this Section are only valid for the symmetric case, cf.
(6). Let us start the dynamics in a Poisson state µ0(dγ) = πz(dγ) with activity
z > 0. The initial correlation function k0 = kπz of πz is given by

k0(η) = z|η|, η ∈ Γ0.

Let us fix t ∈ [0, T ) and G ∈ Iα,C∗t . As in (48), we get:

〈〈kt, G〉〉 = 〈〈k0, G〉〉+

∫ t

0

∫
Γ0

λ(dη)z|η|
(
L̂Gs

)
(η). (50)
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Using the symmetry of cx,y(x̃) in x and y and Milnos Lemma, we conclude∫
Γ0

λ(dη)z|η|
(
L̂Gs

)
(η) = 0. (51)

Combining (50) and (51) yields:

〈〈kt, G〉〉 = 〈〈k0, G〉〉, G ∈ Iα,C∗t .

Thus, kt = k0, t ∈ [0, T ]. This shows that, the time evolution of the jump
dynamics leaves the Poisson measure πz invariant.

Commonly, the measure πz refers to the free case, i.e. a dynamic without
interaction. In a physical context, the measure πz describes an ideal gas in
equilibrium with activity z > 0 which depends on the chemical potential. Since
the jump dynamics still has the state πz as invariant measure, we have an
interacting-particles system with a minimal interaction.

8 Vlasov Scaling

This section is devoted to the study of the Vlasov scaling limit of the dynamics.
We consider the model of jumping particles with rates (3), but we replace the
function κ by εκ. Here, ε > 0 is a scaling parameter which describes the strength
of the interaction. We are interested in the behavior of the system when ε tends
to 0. For small ε, the interaction becomes weaker. To compensate this, we
perform an additional scaling, which assures that the correlations between the
particles become stronger.

A detailed description of the Vlasov scaling for stochastic dynamics of con-
tinuous system is given in [9]. Below some informal considerations to motivate
the scaling: assume that we are interested in the time evolution of an initial
Poison state π% w.r.t. a (inhomogeneous) density %, i.e. we have to study the
evolution of the corresponding correlation function kπ%(η) = eλ(%, η). Now, let

L4ε be the operator given by (15) with κ replaced by εκ. Set P4t, ε to be the
corresponding evolution operator of correlation functions defined by (47). In
order to make the correlations stronger, we replace the density % by ε−1% (i.e.
the system becomes more dense). It holds eλ(ε−1%, η) =

(
Rεeλ(%, ·)

)
(η) where(

Rεk
)
(η) := ε−|η|k(η). Now, we let this dense system with weak interaction

evolve, i.e. we consider
(
etL
4
ε Rε

)
eλ(%, ·), where etL

4
ε is an heuristic notation for

P4t,ε. Afterwards we reverse the effect of increasing the density, i.e. we consider(
R−1
ε etL

4
ε Rε

)
eλ(%, ·) =

(
etR

−1
ε L4ε Rε

)
eλ(%, ·).

Motivated by these heuristic calculations, we introduce an operator

L4ε,ren := R−1
ε L4ε Rε. (52)

It describes (for small ε) a dense and weakly interacting system. Clearly, on
quasi-observables, we have to consider the operator

L̂ε,ren := RεL̂R
−1
ε .
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Remark 3 As mentioned in the introduction, the Vlasov scaling limit coincides
with the Lebowitz-Penrose scaling limit. Let L̃ε be the generator L4 with a and
κ replaced by εda(ε·) and εdκ(ε·), respectively. For a function k, we define an
operator Sεk by

(Sεk)(n)(x1, . . . , xn) := k(n)(εx1, . . . , εxn).

The rescaled dynamics according to the Lebowitz-Penrose scaling (cf. [36]) is
described by the generator Lε,LP, which is defined by

Lε,LP = S−1
ε L̃εSε.

An easy computation shows that Lε,LP = L4
εd,ren

.

In the next section we analyze the Vlasov scaling limit on quasi-observables,
later we transport this scaling to correlation functions.

9 Scaling on Quasi-Observables

We observe that the the components of the operator L̂ε,ren are given by

(Lε,renG)(n) = D(n)
ε G(n) +R(n−1)G(n−1) (53)

where D
(n)
ε is given by

(D(n)G(n))(η)

=
∑
x∈η

∫
Rd
dy a(x− y)(G(n)(η\x ∪ y)−G(n)(η))

+ ε
∑
x∈η

∑
x̃∈η\x

∫
Rd
dy a(x− y)cx,y(x̃)(G(n)(η\x ∪ y)−G(n)(η)),

i.e. D
(n)
ε is given by (18) but κ replaced by εκ. We also introduce an operator

L̂V by

(L̂VG)(η) =
∑
x∈η

∫
Rd
dya(x− y)(G(η\x ∪ y)−G(η))

+
∑
x∈η

∑
x̃∈η\x

∫
Rd
dya(x− y)cx,y(x̃)(G(η\{x, x̃} ∪ y)−G(η\x̃)).

Clearly, the components of LV are given by

(LVG)(n) = L
(n)
0 G(n) +R(n−1)G(n−1)

where L0 is the generator of a free jump dynamics w.r.t. the kernel a (cf. [20]).

The operator L̂V is the componentwise limit of L̂ε,ren for ε→ 0, i.e. the following
holds: (

L̂ε,renG
)(n) →

(
L̂VG

)(n)
in Xn for ε→ 0, G ∈ Xn. (54)
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Since both L
(n)
0 and D

(n)
ε induce contraction semigroups in Xn, we can solve

the equations {
d
dtGt,ε = L̂ε,renGt,ε

Gt,ε|t=0 = G0.
(55)

respectively {
d
dtGt,V = LVGt,V

Gt,V |t=0 = G0.
(56)

The statements of Theorem 1 also holds for the above two evolutionary prob-
lems. We remark that for 0 < ε < 1 and G0 ∈ Iα,C holds Gt,ε ∈ Iα,Ct,ε with

Ct,ε =
C

1 + εBCt
α

and Gt,V ∈ Iα,Ct with

Ct =
C

1 + BCt
α

.

Since Iα,Ct,ε ⊂ Iα,Ct , Gt,ε and Gt,V belong to the same space.
Now we can state the following

Theorem 3 Let G0 ∈ Iα,C and consider the solutions (Gt,ε)t>0, (Gt,V )t>0 of
(55) resp. (56) with initial condition G0. Then, it holds for all n ∈ N, t > 0:

lim
ε→0

G
(n)
t,ε = G

(n)
t,V in Xn. (57)

Proof: Using the representation of G
(n)
t,ε , G

(n)
t,V by the recurrent relation, we

conclude

‖G(n)
t,ε −G

(n)
t,V ‖Xn

≤ ‖etD
(n)
ε G

(n)
0 − etL

(n)
0 G

(n)
0 ‖Xn

+ ‖
∫ t

0

e(t−s)D(n)
ε R(n−1)G(n−1)

s,ε − e(t−s)L(n)
0 R(n−1)G

(n−1)
s,V ds‖Xn

≤ ‖etD
(n)
ε G

(n)
0 − etL

(n)
0 G

(n)
0 ‖Xn

+ ‖
∫ t

0

e(t−s)D(n)
ε R(n−1)(G(n−1)

s,ε −G(n−1)
s,V ) ds‖Xn

+ ‖
∫ t

0

e(t−s)D(n)
ε R(n−1)G

(n−1)
s,V − e(t−s)L(n)

0 R(n−1)G
(n−1)
s,V ds‖Xn .

(58)

Since limε→0D
(n)
ε G

(n)
0 = L

(n)
0 G

(n)
0 in Xn and since L

(n)
0 is the generator of a

contraction semigroup in Xn, it follows (see [35])

lim
ε→0

etD
(n)
ε G(n) = etL

(n)
0 G(n) in Xn.

By the same arguments we get

lim
ε→0

e(t−s)D(n)
ε R(n−1)G

(n−1)
s,V = e(t−s)L(n)

0 R(n−1)G
(n−1)
s,V in Xn. (59)
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Further, using the bound

‖e(t−s)D(n)
ε R(n−1)G

(n−1)
s,V − e(t−s)L(n)

0 R(n−1)G
(n−1)
s,V ‖Xn

≤ 2‖R(n−1)G
(n−1)
s,V ‖Xn

≤ 2Bn(n− 1)‖G(n−1)
s,V ‖Xn−1

≤ 2Bn(n− 1)

(
α

Cs

)n−1

‖G0‖Iα,C ∈ L1([0, t], ds)

(60)

and dominated convergence, we obtain

lim
ε→0
‖
∫ t

0

e(t−s)D(n)
ε R(n−1)G

(n−1)
s,V − e(t−s)L(n)

0 R(n−1)G
(n−1)
s,V ds‖Xn = 0. (61)

Similar reasoning yields

lim
ε→0
‖
∫ t

0

e(t−s)D(n)
ε W (n−1)(G(n−1)

s,ε −G(n−1)
s,V ) ds‖Xn = 0, (62)

if we suppose that,

lim
ε→0
‖G(n−1)

t,ε −G(n−1)
t,V ‖Xn−1

= 0

holds. Thus, the statement follows by induction. �

10 Scaling Limit for Correlation Functions

Now we can investigate the Vlasov scaling limit for correlation functions. We
consider the operator L4ε,ren (see (52)). The limiting operator L4V := limε→0 L

4
ε,ren

is given by(
LV k

)
(η) =

∑
x∈η

∫
Rd
dx̃

∫
Rd
dy k(η\x ∪ {y, x̃})a(x− y)cx,y(x̃)

−
∑
x∈η

∫
Rd
dx̃ k(η ∪ x̃)

∫
Rd
dy a(x− y)cx,y(x̃)

+
∑
x∈η

∫
Rd
dy a(x− y)

(
k(η\x ∪ y)− k(η)

)
.

Now, let k0 ∈ KC0 . Proceeding analog as in the previous sections (Theorem
2), we obtain evolutions kt,ε resp. rt ∈ I∗α,C∗t of k0 which are dual to the

evolutions Gt,ε resp. Gt,V for t ∈ [0, T ). We stress that the time interval is
independent of ε.

Theorem 4 Let k0 ∈ KC0
for some C0 > 0.Then, for fixed t ∈ [0, T ), kt,ε

converges weakly to rt for ε→ 0 i.e.

lim
ε→0
〈〈kt,ε, G〉〉 = 〈〈rt, G〉〉 (63)

for all G0 ∈ Iα,C∗t
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Proof: Let G ∈ Iα,C∗t . Then, according to Theorem 1, Gt,ε, Gt,V ∈ Iα,C0
(cf.

also the proof of Theorem 2). It holds:

|〈〈kt,ε, G〉〉 − 〈〈rt, G〉〉|
= |〈〈k0, Gt,ε〉〉 − 〈〈k0, Gt,V 〉〉

≤
∞∑
n=0

1

n!

∫
Rnd
|k(n)

0 ||G
(n)
t,ε −G

(n)
t,V |d

nx

≤
∞∑
n=0

Cn0
n!

∫
Rnd
|G(n)

t,ε −G
(n)
t,V |d

nx

=

∞∑
n=0

Cn0
n!
‖G(n)

t,ε −G
(n)
t,V ‖Xn .

(64)

Using that Gt,ε, Gt,V ∈ Iα,C0
we obtain

Cn0
n!
‖G(n)

t,ε −G
(n)
t,V ‖Xn ≤ 2‖G‖Iα,C∗t ,

(
α
C0

C0

)n
. (65)

Since α < 1, the right side of the above estimate is summable. This completes
the proof. �

11 The Vlasov Equation

Now we consider a coherent state k0 = eλ(%, ·) as initial correlation function.
Here, % is a (bounded) one particle density. We choose C0 > 0, such that, % ≤ C0

holds. According to Theorem 2, we obtain evolutions kt,ε and rt of k0 = eλ(%, ·)
under the dynamics described by L̂ε,ren resp. LV and rt = limε→0 kt,ε is a weak
solution of the equation {

d
dtrt = L4V rt

rt|t=0 = eλ(%, ·).
(66)

This Cauchy-problem describes the time evolution of a virtual interacting
particle system and has the following chaos preservation property: if %t is a
solution of the non-local equation{

d
dt%t = v(%t)

%t|t=0 = %,

where v(%t) is in the case (4) equals to

v(%t) =
(
κ ∗ %t

)
(x)
(
a ∗ %t

)
(x)− %t(x)

(
a ∗ κ ∗ %t

)
(x) + (%t ∗ a)(x)− 〈a〉%t(x)

v(%t) =

((
κ ∗ %t)%t

)
∗ a
)

(x)− 〈a〉%t(x)
(
κ ∗ %t

)
(x) + (%t ∗ a)(x)− 〈a〉%t(x),

while in the case (5), it is equals to

v(%t) =

((
κ ∗ %t)%t

)
∗ a
)

(x)− 〈a〉%t(x)
(
κ ∗ %t

)
(x) + (%t ∗ a)(x)− 〈a〉%t(x),
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and in the symmetric case (cf. (6)), v(%t) is given by

v(%t) =
1

2

((
κ ∗ %t)%t

)
∗ a
)

(x) +
1

2

(
κ ∗ %t

)
(x)
(
a ∗ %t

)
(x) + (%t ∗ a)(x)

− 1

2
%t(x)

(
a ∗ κ ∗ %t

)
(x)− 1

2
〈a〉%t(x)

(
κ ∗ %t

)
(x)− 〈a〉%t(x),

then rt = eλ(%t, ·) is a solution of (66). This can be seen by using the formula

∂

∂t
eλ(%t, η) =

∑
x∈η

eλ(%t, η\x)
∂

∂t
%t(x),

see also [9]. Thus, we have derived a mesoscopic (deterministic) kinetic equation
from the microscopic (stochastic) particle evolution. The infinite linear chain of
equations (66) reduces to one non-linear equation for %t.
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