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Introduction

The goal of this survey is to give a systematic presentation of the results ob-
tained over the last 10–15 years for elliptic and parabolic equations for measures,
typical examples of which are the Fokker–Planck and Kolmogorov equations. This
direction goes back to Kolmogorov’s works [104], [105]. One of our principal objects
is a second order elliptic operator

LA,bf = trace(Af ′′) + (b,∇f), f ∈ C∞0 (Ω),

where A = (aij) is a mapping on a domain Ω ⊂ Rd with values in the space of
nonnegative symmetric linear operators on Rd and b = (bi) is a vector field on Ω.
In coordinate form, LA,b is given by

LA,bf = aij∂xi
∂xj

f + bi∂xi
f,

where we always assume that summation is taken over all repeated indices.
With this operator LA,b, we associate the weak elliptic equation

L∗A,bµ = 0 (1)
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for Borel measures on Ω, which is understood in the following weak sense:∫
Ω

LA,bf dµ = 0 ∀ f ∈ C∞0 (Ω), (2)

where we assume that |b|, aij ∈ L1
loc(µ). If µ has a density %, then % is some-

times called “an adjoint solution” and the equation is called “an equation in double
divergence form”.

Similarly, one can consider parabolic operators and parabolic equations for mea-
sures on Rd × (0, T ).

A typical feature of the direction discussed in this survey is that equation (1) is
meaningful under very broad assumptions on A and b: only their local integrability
with respect to a solution µ is needed. These coefficients may be quite singular
with respect to Lebesgue measure even if the solution admits a smooth density. For
example, for an arbitrary infinitely differentiable probability density % on Rd the
measure µ = % dx satisfies the above equation with A = I and b = ∇%/%, where we
set ∇%(x)/%(x) = 0 whenever %(x) = 0. This is obvious from the integration by
parts formula∫

Rd

[∆f + 〈∇%/%,∇f〉]% dx =
∫

Rd

%∆f +
∫

Rd

〈∇%,∇f〉 dx = 0.

Since % may vanish on an arbitrary proper closed subset of Rd, the vector field b
can fail to be locally integrable with respect to Lebesgue measure, but it is locally
integrable with respect to µ. Note also that in general our solutions cannot be
more regular than the coefficients (unlike the case of usual elliptic equations). For
example, if d = 1 and b = 0, then for an arbitrary positive probability density %
the measure µ = % dx satisfies the equation L∗A,0µ = 0 with A = %−1; in particular,
for Hölder continuous A, our solution may be just Hölder continuous and nothing
more (and for discontinuous A it may be discontinuous).

In this general setting, a study of weak elliptic equations for measures on finite-
and infinite-dimensional spaces was initiated in [36], [37], [31], [32], [4], [38], [33],
[39], [46], [47]. Actually, the infinite-dimensional case was even a starting point,
which was motivated by investigations of infinite-dimensional diffusion processes and
other applications in infinite-dimensional stochastic analysis; for example, related
problems arose in stochastic quantization in the approach developed by A.I. Kirillov
[99], [100], [101], [102] and in the theory of Dirichlet forms (see [125]). It was
realized in the course of these investigations that even infinite-dimensional equa-
tions with very nice coefficients often require results on finite-dimensional equa-
tions with quite general coefficients. For example, we shall see in §3.2 that the
finite-dimensional projections µn of a measure µ satisfying an elliptic equation on
an infinite-dimensional space satisfy elliptic equations whose coefficients are the
conditional expectations of the original coefficients with respect to the σ-algebras
generated by the considered projection operators. As a result, even for smooth
infinite-dimensional coefficients the only information about their conditional ex-
pectations is related to their integrability with respect to µn, not with respect to
Lebesgue measure; in particular, no local boundedness is given. The theory of el-
liptic and parabolic equations for measures is now a rapidly growing area with deep
and interesting connections to many directions in real analysis, partial differential
equations, and stochastic analysis.

Suppose that ξt is a diffusion process in Rd governed by the following stochastic
differential equation:

dξt =
√

2A(ξt)dWt + b(ξt)dt.
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Then any invariant measure µ of ξt satisfies (1) and the transition probabilities of
ξt satisfy the corresponding parabolic equation. We draw the reader’s attention to
the fact that for the diffusion governed by the stochastic equation

dξt = σ(ξt)dWt + b(ξt)dt,

the generator of the transition semigroup has the form LA,b, where A = σσ∗/2. The
vector field b is called the drift coefficient or just the drift. The matrix A = (aij)
in the operator LA,b will be called the diffusion matrix or diffusion coefficient; this
differs from the standard form of the diffusion generator by the absence of the factor
1/2 at the second order derivatives.

Measures satisfying (1) are called infinitesimally invariant because this equa-
tion has deep connections with invariance with respect to corresponding operator
semigroups.

Let (X,B) be a measurable space and let B(X) be the space of all bounded B-
measurable functions on X equipped with the sup-norm. We recall that if (Tt)t≥0

is a semigroup of bounded linear operators on the space B(X), then a bounded
measure µ on B is called invariant for (Tt)t≥0 (or (Tt)t≥0-invariant) if∫

X

Ttf dµ =
∫
X

f dµ ∀ f ∈ B(X). (3)

Such semigroups extend naturally to L1(µ) and are strongly continuous there in
many cases, e.g., when they are given by transition probabilities of solutions to
stochastic equations. Let L be the corresponding generator with domain D(L).
Then (3) is equivalent to the equality∫

X

Lf dµ = 0 ∀ f ∈ D(L).

Under reasonable assumptions on A and b, the generator of the semigroup
associated with the diffusion governed by the indicated stochastic equation coincides
with LA,b on C∞0 (Rd). As we shall see, invariance of the measure in the sense of (3)
is not the same as (2). The point is that the class C∞0 (Rd) may be much smaller than
D(L). What is important is that the equation is meaningful and can have solutions
under assumptions that are much weaker than those needed for the existence of a
diffusion, so that this equation can be investigated without any assumptions about
the existence of semigroups. On the other hand, there exist very interesting and
fruitful relations between the two equations; such relations will be one of the central
topics in this work.

In the first two chapters we shall consider the following problems on Rd (or,
more generally, on finite-dimensional Riemannian manifolds).

1) Regularity of solutions of equation (2), for example, the existence of densities
with respect to Lebesgue measure, the continuity and smoothness of these densi-
ties, and certain related estimates (such as L2-estimates for logarithmic gradients
of solutions). In particular, we shall see in §§1.1 and 1.2 that the measure µ is
always absolutely continuous on the set {detA > 0} and has a continuous density
from the Sobolev class W p,1

loc with p > d provided that the coefficients aij are in this
class, |b| ∈ Lploc(dx) or |b| ∈ Lploc(µ), and the matrix A is positive. The assumptions
|b| ∈ Lploc(dx) or |b| ∈ Lploc(µ) on the drift are not at all always equivalent. For
example, the first yields the positivity of densities of nonnegative solutions, and
the second can hold even when the density has zeros (the case of a singular drift);
it is interesting, however, that the local µ-integrability of exp(c|b|) already ensures
the positivity of the density. Global properties of solutions of equations with un-
bounded coefficients are studied in §§1.8 and 1.9, where certain global upper and
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lower estimates for densities are obtained. We shall also obtain analogous results
for parabolic equations; with respect to applications to diffusion processes, this
means regularity of transition probabilities. The results about a priori regularity of
solutions play an important role in many other problems related, for instance, to
uniqueness and existence of solutions. Since we are interested in singular coefficients
or coefficients of low regularity, we do not discuss at all the regularity problems for
degenerate operators with smooth coefficients.

2) Existence of solutions to elliptic equation (2) and existence of invariant mea-
sures in the sense of (3) as well as the relations between the two concepts. In
particular, we shall see in §§1.4 and 1.5 that under rather general assumptions, for
a given probability measure µ satisfying our elliptic equation (2) one can construct
a strongly continuous Markov semigroup (Tµt )t≥0 on L1(µ) such that µ is (Tµt )t≥0-
invariant and the generator of (Tµt )t≥0 coincides with LA,b on C∞0 (Rn). For this,
a condition simple for verification is the existence of a Lyapunov function for LA,b.
In the general case (without such additional assumptions), a bit less is true, namely,
µ is only sub-invariant for (Tt)t≥0. We shall see examples where this really occurs,
i.e., where µ is not invariant.

3) Various uniqueness problems; in particular, uniqueness of invariant measures
in the sense of (3) and uniqueness of solutions to (2) in the class of all probabil-
ity measures. Related interesting problems concern uniqueness of associated semi-
groups (Tµt )t≥0 and the essential self-adjointness of the operator LA,b on C∞0 (Rd)
in the case when it is symmetric. These topics are considered in §§1.5–1.7.

First we concentrate on the elliptic case, to which we devote the whole first
chapter. In the second chapter similar problems are studied for parabolic equations.
The last chapter is devoted to a brief discussion of infinite-dimensional analogs of
problems 1)–3). Unlike the finite-dimensional case, where most of the results pre-
sented are obtained in great generality (sometimes in maximal generality), there
does not (and maybe cannot) exist any general infinite-dimensional theory. The
results obtained so far in the infinite-dimensional setting apply to various partic-
ular situations, but it is very important that they cover many concrete examples
arising in applications such as stochastic partial differential equations, infinite par-
ticle systems, Gibbs measures, and so on. Some of the finite-dimensional results
are not valid in infinite dimensions, and the validity of some others (when suitably
formulated) is still unknown. The infinite-dimensional case will be the subject of a
separate survey; the purpose of the last chapter is mainly just to comment on some
developments of infinite-dimensional methods, results, and techniques.

In this survey, we have used our own work (including our joint papers with
a number of other authors, in particular, [24], [26], [30], [41], [42], [43], [48],
[49]), as well as works of many other authors. Due to limitations on the size of
this article, the list of references contains less than a quarter of the bibliography
we collected. A number of new results are given with proofs. We are grateful for
useful discussions to S. Albeverio, G. Da Prato, A. Eberle, D. Elworthy, B. Goldys,
A.I. Kirillov, V.A. Kondratiev, Yu.G. Kondratiev, G. Leha, V.A. Liskevich, P. Malli-
avin, G. Metafune, D. Pallara, E. Pardoux, A. Rhandi, G. Ritter, S.V. Shaposh-
nikov, I. Shigekawa, W. Stannat, N.S. Trudinger, A.Yu. Veretennikov, F.Y. Wang,
J. Zabczyk, M. Zakai, T.S. Zhang, and V.V. Zhikov. This work was supported by
the RFBR projects 07-01-00536, 08-01-91205-JF, 08-01-90431-Ukr, 09-01-12180-ofi-
m, and the SFB 701 at Bielefeld University.



CHAPTER 1

Invariant and infinitesimally invariant measures

1.1. Elliptic equations for measures and existence of densities

Throughout we shall use the following standard notation. The class of all
smooth functions with compact support in an open set U ⊂ Rd is denoted by
C∞0 (U). The class of all bounded functions on U with bounded derivatives of all
orders is denoted by C∞b (U); classes like C2

b (U), C2
0 (U), and so on are defined in

an analogous way.
The term “a Borel measure µ” will normally mean a finite (possibly signed)

countably additive measure on the σ-algebra of Borel sets; the cases where infinite
measures (say, locally finite measures) are considered will always be specified, ex-
cept for Lebesgue measure. The integrability of a function with respect to such a
measure is understood as its integrability with respect to the total variation |µ| of
the measure µ; the corresponding classes will be denoted by Lp(µ) or by Lp(Ω, µ) in
the case where µ is considered on a fixed set Ω. The notation Lp(U) always refers to
Lebesgue measure; sometimes we write Lp(U, dx) in order to stress this. As usual,
for p ∈ [1,+∞) we set p′ := p/(p− 1).

The class of all Borel probability measures on Ω will be denoted by P(Ω).
Given an open set U ⊂ Rd and p ∈ [1,+∞), we denote by W p,1(U) or Hp,1(U)

the Sobolev class of functions f ∈ Lp(U) whose generalized partial derivatives ∂xi
f

belong to Lp(U). This space is equipped with the Sobolev norm

‖f‖p,1 := ‖f‖Lp +
d∑
i=1

‖∂xif‖Lp .

In some places we also use higher-order Sobolev classes W p,k(U) = Hp,k with k ∈ N,
consisting of functions whose partial derivatives up to order k belong to Lp(U), and
fractional Sobolev spaces Hp,r(U); the notation with H will normally be used in
the case of fractional or parabolic Sobolev classes. In a few places we use similarly
defined Sobolev spaces W p,1(µ) with respect to a measure µ on Rd (in such cases the
measure µ has some additional properties, e.g., has a continuous positive density or
a weakly differentiable density, so that the weighted Sobolev classes are well-defined,
see, e.g., [22]).

The symbols like W p,1
loc (Rd), W p,1

loc (U), Lploc(U, µ) etc. denote the classes of
functions f such that ζf belongs to the corresponding class without the index “loc”
for every ζ ∈ C∞0 (U).

In expressions like aijbi the standard summation rule with respect to repeated
indices is meant. The inner product and norm in Rd are denoted by 〈 ·, · 〉 and | · |,
respectively. The identity matrix is denoted by I.

Suppose we are given a locally finite Borel measure µ (possibly signed) on
an open set Ω ⊂ Rd, a Borel vector field b on Ω, and a matrix-valued mapping

5
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A = (aij)i,j≤d on Ω such that the functions aij are Borel measurable. Let us set

LA,bϕ :=
∑
i,j≤d

aij∂xi
∂xj

ϕ+
∑
i≤d

bi∂xi
ϕ, ϕ ∈ C∞0 (Ω).

Given a function c on Ω, we set

LA,b,cϕ = LA,bϕ+ cϕ.

We shall also consider the divergence form operators

LA,bϕ :=
∑
i,j≤d

∂xi
(aij∂xj

ϕ) +
∑
i≤d

bi∂xi
ϕ, ϕ ∈ C∞0 (Ω)

and the correspondingly defined operators LA,b,c.

1.1.1. Definition. We say that µ satisfies the equation

L∗A,bµ = 0 (1.1.1)

in Ω if aij , bi ∈ L1
loc(|µ|) and one has∫

Ω

LA,bϕ(x)µ(dx) = 0 ∀ϕ ∈ C∞0 (Ω).

For a given measure ν on Ω the equation

L∗A,bµ = ν

is defined similarly. Finally, for a given function c ∈ L1
loc(|µ|) the equation L∗A,b,cµ =

ν is defined in the same sense.

The equation
L∗A,bµ = 0

is defined similarly, but it requires additional assumptions either on aij or on µ
(which will be made in appropriate places).

For a fixed domain Ω we set

MA,b
ell :=

{
µ ∈ P(Ω): L∗A,bµ = 0

}
. (1.1.2)

In what follows we shall deal with the case where the matrix A is symmetric
and nonnegative, but this is not needed for the definition (unlike for most of the
results).

In general, equation (1.1.1) can fail to have nonzero solutions in the class of
bounded measures (take Ω = R1, A = 1, b = 0), it can have many solutions even
in the class of probability measures, and its solutions can be quite singular (e.g., if
A = 0 and b = 0, then any measure is a solution). However, even in the generality
under consideration some positive information is available.

The one-dimensional case is much simpler than the multidimensional case.

1.1.2. Proposition. Let d = 1 and let Ω be an interval. Suppose that A > 0
on Ω. Then, any measure µ satisfying the equation L∗A,b,cµ = ν is absolutely con-
tinuous with respect to Lebesgue measure and has a density % of the form % = %0/A,
where %0 is absolutely continuous on every compact subinterval in Ω.

If A = 1, c = 0, ν = 0, Ω = (−1, 1), and b is locally Lebesgue integrable on
(−1, 1), then

%(x) =
(
k1 + k2

∫ x

0

exp
(
−

∫ s

0

b(t) dt
)
ds

)
exp

∫ x

0

b(t) dt,

where k1 and k2 are constants.
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Proof. We have the identity∫
Ω

(Aϕ′′ + bϕ′ + cϕ) dµ =
∫

Ω

ϕdν ∀ϕ ∈ C∞0 (Ω),

which can be written as the equality

(Aµ)′′ − (bµ)′ + cµ = ν

in the sense of distributions. Hence the distributional derivative of (Aµ)′ − bµ
is a locally bounded measure. This shows that the distributional derivative of
Aµ is a locally bounded measure as well. Hence Aµ is absolutely continuous and
has a density %0. Therefore, µ is absolutely continuous. Now it is seen from our
reasoning that (Aµ)′ − bµ is a function of locally bounded variation, hence the
distributional derivative of Aµ is a locally integrable function, so that %0 admits a
locally absolutely continuous version. In the case A = 1, c = 0, ν = 0, we arrive
at the equation µ′′ − (bµ)′ = 0, whence µ′ − bµ = k2 for some constant k2. If b is
locally Lebesgue integrable, this equation can be explicitly solved. �

Even in this simplest one dimensional case we observe that a solution µ can
fail to have a continuous density if A is positive but not continuous. We actually
see that in the case of nondegenerate A (i.e., detA 6= 0) the regularity of solution
is essentially the regularity of A. We shall see below that in higher dimensions the
picture is similar, although the proofs involve much deeper techniques. Another
simple observation is that without any assumptions of nondegeneracy on A we
obtain that the measure A ·µ is absolutely continuous. A highly nontrivial analogue
of this is valid also in the multidimensional case.

Let us consider one more instructive example.

1.1.3. Example. Let % ∈ W 1,1
loc (Rd) and let µ = % dx. Then µ satisfies the

equation L∗I,bµ = 0 with

b :=
∇%
%
, where b(x) := 0 whenever %(x) = 0.

Indeed, |b| is locally |µ|-integrable. For any ϕ ∈ C∞0 (Rd), by the integration by
parts formula we have∫

[∆ϕ+ 〈b,∇ϕ〉] % dx =
∫

[−〈∇ϕ,∇%〉+ 〈b,∇ϕ〉%] dx = 0

since b% = ∇% almost everywhere due to the fact that ∇% vanishes almost every-
where on the set {% = 0}.

The mapping ∇%/% is called the logarithmic gradient of the measure µ or the
density %; it is defined if % ∈W 1,1

loc (Rd).
In this example, we can even choose % to be infinitely differentiable, but b can be

quite singular with respect to Lebesgue measure. For instance, given a proper closed
subset Z ⊂ Rd, we can find a probability density % ∈ C∞(Rd) with Z = {% = 0}; in
this way one can even obtain b that is not Lebesgue locally integrable on a closed
set of positive Lebesgue measure. The simplest example of a singularity is this:

%(x) = x2 exp(−x2/2)/
√

2π, b(x) = x+ 2/x.

Now we formulate our main results on the existence of densities; see [33] for
the proofs.
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1.1.4. Theorem. Suppose that the matrices A(x) are symmetric and nonneg-
ative. Let µ be a locally finite Borel measure on Ω such that aij ∈ L1

loc(Ω, µ), and
for some C > 0 one has∫

Ω

aij∂i∂jϕdµ ≤ C(sup
Ω
|ϕ|+ sup

Ω
|∇ϕ|) (1.1.3)

for all nonnegative ϕ ∈ C∞0 (Ω). Then the following assertions are true.
(i) If µ is nonnegative, then (detA)1/dµ has a density in Ld

′

loc(Ω, dx).
(ii) If A is locally Hölder continuous and detA > 0, then µ has a density which

belongs to Lrloc(Ω, dx) for every r ∈ [1, d′).

We do not know whether assertion (i) remains true for signed measures.

1.1.5. Corollary. Let µ be a locally finite signed Borel measure on Ω and let
aij , bi, c ∈ L1

loc(Ω, µ). Assume that∫
Ω

(LA,bϕ+ cϕ) dµ ≤ 0 for all nonnegative ϕ ∈ C∞0 (Ω). (1.1.4)

Then the following assertions are true.
(i) If µ is nonnegative, then (detA)1/dµ has a density in Ld

′

loc(Ω, dx).
(ii) If A is locally Hölder continuous and detA > 0, then µ has a density which

belongs to Lrloc(Ω, dx) for every r ∈ [1, d′).
In particular, the above statements are true if (1.1.1) holds.

In assertion (ii) of this corollary one cannot expect the density of µ to be Hölder
continuous since for d = 1 and A = 1 one can take µ(dx) = exp(

∫ x
0
b(t) dt) dx with

a suitable function b.
The previous corollary has the following important generalization.

1.1.6. Corollary. Let µ and ν be two locally finite signed Borel measures on
Ω and let aij , bi, c ∈ L1

loc(Ω, µ). Assume that∫
Ω

[
LA,bϕ+ cϕ

]
dµ =

∫
Ω

ϕdν for all nonnegative ϕ ∈ C∞0 (Ω). (1.1.5)

Then the following assertions are true.
(i) If µ is nonnegative, then (detA)1/dµ has a density in Ld

′

loc(Ω, dx).
(ii) If A is locally Hölder continuous and detA > 0, then µ has a density which

belongs to Lrloc(Ω, dx) for every r ∈ [1, d′).

1.1.7. Remark. (i) Assertions (i) of Theorem 1.1.4, Corollary 1.1.5, and Corol-
lary 1.1.6 for nonnegative measures extend to the case when µ is a σ-finite nonnega-
tive Borel measure on Ω (not necessarily locally bounded). Indeed, (1.1.3), (1.1.4),
and (1.1.5) make sense also for σ-finite µ provided that aij , bi, c ∈ L1

loc(Ω, µ). One
can find a probability measure µ0 such that µ = f µ0, where f is a positive Borel
function. Let

aij0 := faij , bi0 := fbi, c0 := fc, A0 = (aij0 )i,j≤d, b0 = (bi0)i≤d.

Clearly, aij0 , b
i
0, c0 ∈ L1

loc(µ0) and µ0 satisfies the hypotheses of the above men-
tioned assertions with A0, b0, and c0 in place of A, b, and c. Hence the measure
(detA0)1/dµ0 has a density % ∈ Ld

′

loc(Ω, dx). Since (detA0)1/d = f(detA)1/d, this
means that (detA)1/dµ has the same density.

(ii) Assume that the hypotheses of Corollary 1.1.5(ii) are fulfilled. Let BR1(x0)
be a ball in Ω of radius R1 > 0 centered at x0. Then, for every R < R1 and r < d′,
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there exists N depending only on R1, R, r, d, infBR1
detA, supi,j supBR1

|aij |, and
the Hölder norm of A on BR1 such that the density % of µ satisfies

‖%‖Lr(BR) ≤ N
∥∥1 + |b|+ |c|

∥∥
L1(BR1 ,µ)

.

In addition, for fixed d, the number N is a locally bounded function of the indicated
quantities. This follows from the proof of Theorem 1.1.4 in [33].

1.2. Local properties of solutions

We now proceed to the regularity results. Throughout the rest of this section
we assume that A(x) is symmetric and positive and A(x) is continuous in x. By the
Sobolev embedding theorem, the continuity assumption is automatically satisfied
for some version of A if aij ∈ W p,1

loc , where p > d. We do not discuss here the case
of smooth coefficients and possibly degenerate A under Hörmander’s condition and
its analogs in the Malliavin calculus (see references in [22]).

First of all we recall a classical result.

1.2.1. Theorem. Suppose that the functions aij , bi, c are infinitely differen-
tiable and detA > 0 in Ω. If ν has a infinitely differentiable density, then any
solution of the equation L∗A,b,cµ = ν possesses an infinitely differentiable density.

Next we consider the case where the coefficients are only Hölder continuous.
The following result was proved in [165].

1.2.2. Theorem. Suppose that the coefficients aij , bi, c are locally Hölder con-
tinuous in Ω and detA > 0. Then any solution µ of the equation L∗A,b,cµ = 0 has a
locally Hölder continuous density.

Note that the solutions in [165] were a priori locally integrable functions, but by
the above results the theorem remains valid for measures. It would be interesting to
study the case where only the coefficients aij are Hölder continuous. The continuity
of all coefficients does not guarantee the Hölder continuity of a solution even if d = 1
and A > 0. However, it is not clear whether densities of solutions are continuous in
the case where the coefficients are just continuous and A is nondegenerate.

We now proceed to the most difficult case where the diffusion coefficient is
somewhat better than Hölder continuous, but is not smooth, and we want to have
some Sobolev regularity of the density of solutions. One of the reasons why this is
important is that, having established the Sobolev regularity of our solution, we can
rewrite the equation L∗A,b,cµ = 0 for µ as a classical equation for its density % in the
sense of weak solutions: indeed, integrating by parts we find that∫

Ω

[aij∂xi
%∂xj

ϕ+ ∂xi
aij∂xj

ϕ%+ bi∂xi
ϕ%+ c%] dx = 0

for all ϕ ∈ C∞0 (Ω).

1.2.3. Theorem. Let d ≥ 2, p ≥ d, q ∈ (1,∞), R1 > 0, let aij ∈ W p,1(BR1)
and let A ≥ λI, where λ > 0. Then there exist numbers R0 > 0 and N0 > 0 with
the following properties. Let R < R0 and let µ be a measure of finite total variation
on BR such that for any ϕ ∈ C2

0 (BR) := C2(BR) ∩
{
u : u|∂BR

= 0
}

we have∣∣∣∣∫
BR

aij∂i∂jϕdµ

∣∣∣∣ ≤ N ||∇ϕ||Lq(BR) (1.2.1)

with N independent of ϕ. Furthermore, assume one of the following:
a) p > d or
b) p = d > q′ and µ ∈

⋃
r>1 L

r(BR).
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Then µ ∈W q′∧p,1
0 (BR) (where we identify µ with its density) and

||µ||
W q′∧p,1

0 (BR)
≤ N0.

In addition, the radius R0 depends only on p, q, d, λ,R1, ‖aij‖Wp,1(BR1 ), and the
rate of decrease of ‖∇aij‖Ld(BR) as R→ 0, and N0 depends on the same quantities
and N .

1.2.4. Remark. The proof of this theorem actually shows that if µ has compact
support in BR1 and (1.2.1) holds for all ϕ ∈ C∞0 (BR1), then µ ∈ W q′∧p,1

0 (BR) for
some R < R1. Moreover, even without the assumption of compactness of support,
one can show that µ ∈W q′∧p,1

loc (BR), but this requires some extra work.

This theorem at once yields a certain low regularity of solutions to our elliptic
equations.

1.2.5. Corollary. Suppose that p > d ≥ 2, aij ∈ W p,1
loc (Ω), detA > 0, and µ

satisfies the equation L∗A,bµ = 0, where b ∈ Lrloc(µ) for some r > 1. Then µ has a
density in the class Wα,1

loc (Ω) for each α < dr/(dr − r + 1).

More can be obtained if b better integrable.

1.2.6. Theorem. Let p > d, r ∈ (p′,∞), µ = % dx, % ∈ Lrloc(Ω, dx), and
aij ∈ W p,1

loc (Ω), and let either β ∈ Lploc(Ω, dx) or β ∈ Lploc(Ω, µ). Suppose that A−1

is locally bounded. Assume that for every ϕ ∈ C∞0 (Ω) we have∣∣∣∣∫
Ω

aij∂i∂jϕµ(dx)
∣∣∣∣ ≤ ∫

Ω

(|ϕ|+ |∇ϕ|)|β| |µ|(dx).

Then % ∈W p,1
loc (Ω).

We shall say that A is locally uniformly nondegenerate if A−1 is locally bounded.

1.2.7. Remark. It should be noted that the assertion of Theorem 1.2.6 is valid
under the following alternative assumptions on aij , β, µ: µ is a locally bounded
Borel measure on Ω (without assumptions on its density), A−1 is locally bounded,
β ∈ Lploc(Ω, µ) or β ∈ L1

loc(Ω, µ)
⋂
Lploc(Ω, dx). This follows by Theorem 1.1.4.

1.2.8. Corollary. Let µ be a locally finite Borel measure on Ω. Let A−1 be
locally bounded in Ω with aij ∈ W p,1

loc (Ω), where p > d, and let either (i) bi, c ∈
Lploc(Ω, dx) or (ii) bi, c ∈ Lploc(Ω, µ). Assume that, for every ϕ ∈ C∞0 (Ω), one has∫

Ω

[
aij∂i∂jϕ+ bi∂iϕ+ cϕ

]
dµ = 0,

where bi and c are also assumed to be locally µ-integrable in case (i). Then µ has a
density in W p,1

loc (Ω) that is locally Hölder continuous.

The following result, proved in [43], is a useful modification of the previous
theorem.

1.2.9. Theorem. Let p > d, r ∈ (p′,∞), and let µ be a measure on BR with a
density % ∈ Lrloc(BR). Let aij ∈W p,1

loc (BR), β1 ∈ Lploc(BR), and β2 ∈ Lploc(µ), where
A−1 is locally bounded on BR. Assume that, for every ϕ ∈ C∞0 (BR), we have∣∣∣∣∫

BR

aij∂xi
∂xj

ϕdµ

∣∣∣∣ ≤ ∫
BR

(
|ϕ|+ |∇xϕ|

)
(|β1%|+ |β2%|) dx.

Then % ∈W p,1
loc (BR), hence % has a locally Hölder continuous version.
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1.2.10. Corollary. Let µ be a locally finite Borel measure on BR. Let A−1

be locally bounded on BR with aij ∈ W p,1
loc (BR), where p > d, ∂xi

aij ∈ Lploc(µ), and
let bi, c ∈ Lploc(µ). Suppose that∫

BR

[
aij∂xi

∂xj
ϕ+ ∂xi

aij∂xj
ϕ+ bi∂xi

ϕ+ cϕ
]
dµ = 0 ∀ϕ ∈ C∞0 (BR).

Then µ has a density in W p,1
loc (BR) that is locally Hölder continuous.

Bensoussan [16, Ch. II, Theorem 5.5] proved W p,1
loc -regularity for probability

measures on Rd satisfying the equation L∗I,bµ = 0 with b = b1 + b2, where b1 is
Lipschitzian and b2 is bounded, under the additional assumption of the existence
of a certain Lyapunov function.

The classical Harnack inequality yields the following.

1.2.11. Corollary. In the situation of Corollary 1.2.8, let bi ∈ Lploc(Ω, dx),
let µ be nonnegative, and let % be its continuous density. Then, for every compact
set K contained in a connected open set U with compact closure in Ω, one has

sup
K
% ≤ C inf

K
%,

where the constant C depends only on ‖aij‖Wp,1(U), ‖b‖Lp(U), infU detA, and K (if
K is a ball, then the dependence on K is through the distance from K to ∂U). In
particular, % does not vanish in U if it is not identically zero in U .

The dependence of C on the indicated quantities will be studied below in §1.9.

1.2.12. Corollary. Suppose that in the situation of Corollary 1.2.8 one has
bi ∈ Lploc(Ω, dx) and that c ≤ 0. Assume also that the continuous density % of µ
is strictly positive on the boundary of a bounded open set U ⊂ U ⊂ Ω. Then % is
strictly positive on U .

Clearly, the assumption that bi ∈ Lploc(Ω, dx) in Corollary 1.2.11 and Corol-
lary 1.2.12 cannot be replaced by the alternative assumption that bi ∈ Lploc(Ω, µ)
from Corollary 1.2.8. Indeed, it suffices to take b = ∇%/% such that % is a proba-
bility density which has zeros, but |b| ∈ Lp(µ) (for example, we can take % which
behaves like exp(−x−2) in a neighborhood of the origin).

Corollary 1.2.8 can be generalized as follows.

1.2.13. Corollary. Let p > d, let aij ∈ W p,1
loc (Ω), bi, f i, c ∈ Lploc(Ω), i, j =

1, . . . , d, and let A−1 be locally bounded in Ω. Assume that µ is a locally finite Borel
measure on Ω such that bi, c ∈ L1

loc(Ω, µ) and, for every function ϕ ∈ C∞0 (Ω), one
has ∫

Ω

[
aij∂i∂jϕ+ bi∂iϕ+ cϕ

]
dµ =

∫
Ω

f i∂iϕdx.

Then µ has a density in W p,1
loc (Ω).

1.2.14. Remark. It is easily seen that in Corollary 1.2.8 one cannot omit the
hypotheses that A−1 is locally bounded and aij ∈W p,1

loc . Indeed, if A and b vanish at
a point x0, then Dirac’s measure at x0 satisfies our elliptic equation. In particular,
if it is not given in advance that µ is absolutely continuous, then one cannot take
an arbitrary Lebesgue version of A. In order to see that µ cannot be more regular
than A (which has already been noted in the introduction), let us take a probability
measure µ with a smooth density that satisfies L∗I,b0µ = 0, e.g., let µ be the standard
Gaussian measure and b0(x) = −x. If now g is any Borel function with 1 ≤ g ≤ 2,
then the measure g ·µ satisfies the equation L∗A,bµ = 0 with A = g−1I and b = g−1b0.



12

In particular, we obtain an example, where A and b are Hölder continuous and A
is uniformly nondegenerate, but the density of µ is not weakly differentiable. Also,
the condition p > d is essential for the membership of µ in a Sobolev class even
if A = I (see the example below). However, if µ is a probability measure on Rd,
then the condition |b| ∈ L2(Rd, µ) implies that µ = % dx with % ∈ W 1,1(Rd) and
|∇%|2/% ∈ L1(Rd) (see §1.8).

1.2.15. Example. Let d > 3 and

L∗F = ∆F + α∂xi(xi|x|−2F )− F,

where α = d − 3. Then the function F (x) = (er − e−r)r−(d−2), r = |x|, is locally
Lebesgue integrable and L∗F = 0 in the sense of distributions, but F is not in
W 2,1

loc (Rd). Here
b(x) = −αx|x|−2 = ∇(|x|−α)/|x|−α

and |b| ∈ Ld−εloc (Rd) for all ε > 0. In a similar way, if the term −F is omitted in the
equation above, then the function F (x) = r−(d−3) has the same properties.

Proof. Observe that ∂xiF , ∂xi∂xjF are locally Lebesgue integrable. Hence
the equation L∗F = 0 follows easily from the equation

f ′′ +
(d− 1 + α)

r
f ′ + α

d− 2
r2

f − f = 0

on (0,∞), which is satisfied for the function f(r) = (er−e−r)r−(d−2). It remains to
note that F , ∇F , and ∆F are locally Lebesgue integrable, since f(r)rd−1, f ′(r)rd−1,
and f ′′(r)rd−1 are locally bounded, but ∇F is not Lebesgue square-integrable at
the origin. If d ≥ 6, then F is also not Lebesgue square-integrable at the origin.
In the case without the term −F in the equation similar calculations show that
F (x) = r−(d−3) has the same properties. �

The following theorem is helpful in the study of local properties of densities,
in particular, for control of various constants that appear in local estimates. It
precises a particular case of a more general result which was formulated by Morrey
in his book [136, p. 156] in a way that is not completely correct (with Ω′ = Ω). The
statement below with Ω′ = Ω would be false, for example, for the Laplace equation
in a ball. A proof of Morrey’s estimate with an investigation of the dependence
of the constant on the coefficients was given in [155] with the same inaccuracy
as in [136]. In fact, the reasoning from [155] yields the estimate given below as
explained in [157], but an estimate with Ω = Ω′ is possible only for solutions with
zero boundary condition on a domain with a sufficiently regular boundary. We note
that in the existing applications of Morrey’s theorem, only the correct assertion
proven below is actually used, although in some papers it is formulated with the
indicated inaccuracy (see, e.g., [38] and [33]). For the proof, see [42] or [157],
where a more general fact is established.

1.2.16. Theorem. Suppose that Ω ⊂ Rd is a bounded domain, A ∈ C0,δ(Ω),
where δ > 0, and there is a number α > 0 such that A(x) ≥ α · I for all x ∈ Ω.
Let hi ∈ Lq(Ω), where q > d. If a function u from W q,1(Ω) satisfies the equation
∂xi(a

ij∂xju+hi) = 0 in the weak sense on Ω, then for every domain Ω′ with closure
in Ω the following estimate holds:

‖u‖W q,1(Ω′) ≤ C
(
‖u‖Lq(Ω) + ‖h‖Lq(Ω)

)
, h := (h1, . . . , hd),

where the number C depends only on d, q, α,Ω,Ω′, and ‖A‖C0,δ .
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Moreover, if u ∈ W q,1(Ω) and ∂xi(a
ij∂xju − biu + hi) = 0 in the weak sense

and bi ∈ Lq(Ω), then a stronger estimate

‖u‖W q,1(Ω′) ≤ C
(
‖u‖L1(Ω) + ‖h‖Lq(Ω)

)
holds, where C depends only on d, q, α,Ω,Ω′, ‖A‖C0,δ , and ‖bi‖Lq(Ω).

1.2.17. Remark. Let a Borel measure µ on a ball BR1 of radius R1 > 0 in Ω
satisfy the equation L∗A,bµ+ cµ = f dx, where aij , bi, c ∈ L1(BR1 , µ), f ∈ Lp(BR1),
and

A ≥ λ1I, ‖aij‖Wp,1(BR1 ) ≤ λ2, ‖bi‖Lp(BR1 ) + ‖c‖Lp(BR1 ) ≤ λ2, p > d.

Then it follows from the above results that, for any R < R1, the measure µ has a
continuous density u ∈W p,1(BR) that satisfies the equation

∂i(aij∂ju+ ∂ja
iju− biu) + cu = f.

Therefore,

‖u‖Wp,1(BR) ≤ Λd,R1(λ1, λ2, R)
[
‖u‖L1(BR1 ) + ‖f‖Lp(BR1 )

]
≤ Λd,R1(λ1, λ2, R)

[
mes(BR1) sup

BR1

|u|+ ‖f‖Lp(BR1 )

]
, (1.2.2)

where Λd,R1(λ1, λ2, R) is a locally bounded function on (0,+∞)2 × (0, R1) and is
independent of u.

1.2.18. Proposition. Let Ak = (aijk ) be a sequence of continuous mappings on
Rd with values in the space of symmetric matrices and let bk = (bik) be a sequence of
Borel vector fields on Rd. Suppose that for every ball Br ⊂ Rd there exist numbers
cr > 0, αr > 0, and p = pr > d such that

Ak ≥ crI, ‖aijk ‖Wp,1(Br) + ‖bik‖Lp(Br) ≤ αr for all i, j, k.

Assume that there exist probability measures µk on Rd such that L∗Ak,bk
µk = 0.

Then the measures µk have continuous strictly positive densities that are uniformly
Hölder continuous on every ball. If, in addition, the sequence {µk} is uniformly
tight, then it has compact closure with respect to the variation norm, and every
measure µ in its closure has a continuous strictly positive density that belongs to
W p,1(Br) for every r > 0.

Proof. It follows from our hypotheses and Theorem 1.2.6 that the measures
µk have continuous densities fk. Since the functions fk are probability densities, we
obtain by (1.2.2) that, for every r > 0, the sequence {fk} is bounded in W p,1(Br).
By the Sobolev embedding theorem (see, e.g., [17]), {fk} is uniformly Hölder con-
tinuous on Br, in particular, has compact closure with respect to the sup-norm.
If {µk} is uniformly tight, then some subsequence {µki

} converges weakly to some
probability measure µ. Passing to a subsequence once again we may assume that
the functions fki

converge uniformly on compacts and are uniformly bounded in
W p,1(Br) for each r > 0. Hence µ has a density f ∈ W p,1(Br). Then we obtain a
continuous and strictly positive version of f . Therefore, the probability measures
µki

converge to µ in the variation norm. This reasoning applies to any subsequence
in {µk}, whence we obtain the desired conclusion. �

1.2.19. Remark. The above proposition can be generalized as follows. Let Ω
be an open set in Rd and let Ω be a union of increasing open sets Ωk such that the
closure of Ωk is compact and contained in Ωk+1. Let µk be probability measures
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on Ωk satisfying the equations L∗Ak,bk
µk = 0 on Ωk, where each Ak is a continu-

ous mapping on Ωk with values in the set of nonnegative symmetric matrices, the
mappings Ak are uniformly bounded on compact sets in the W p,1-norm with some
p > 1, the mappings A−1

k are uniformly bounded on compact sets, and Borel vector
fields bk on the sets Ωk are uniformly bounded in the Lp(Rd)-norm on compact sets.
Then the analogue of the statement of the previous proposition is true. Moreover,
the same is true for Riemannian manifolds of dimension d.

In the case where the diffusion matrix A is infinitely differentiable a somewhat
more special result holds. In its proof we use the following well-known lemma.

1.2.20. Lemma. Suppose that aij ∈ C∞(Ω) and detA > 0.
(i) Let r ∈ (−∞,∞) and p > 1. If u is a distribution such that LAu ∈ Hp,r

loc (Ω),
then u ∈ Hp,r+2

loc (Ω); also if u ∈ Hp,r
loc (Ω), then ∂xiu ∈ H

p,r−1
loc (Ω), 1 ≤ i ≤ d.

(ii) We have Hp,1
loc (Ω) ⊂ L

dp/(d−p)
loc (Ω) and Lploc(Ω) ⊂ H

dp/(d−p),−1
loc (Ω) whenever

1 < p < d, and Hp,1
loc (Ω) ⊂ C

1−d/p
loc (Ω) if p > d, so that in the latter case elements

of Hp,1
loc (Ω) are locally bounded. In addition, for q > p > 1 we have Lploc(Ω) ⊂

H
q,d/q−d/p
loc (Ω).

(iii) If µ is a locally bounded Radon measure on Ω, then µ ∈ Hp,−m
loc (Ω) whenever

p > 1 and m > d(1− 1/p).

Proof. Assertion (i) is well-known. Specifically, its first statement is a well-
known elliptic regularity result and the second statement follows from the bound-
edness of Riesz’s transforms. Assertion (ii) is just the Sobolev embedding theo-
rem. Assertion (iii) follows from this embedding theorem, since for regular sub-
domains U of Ω one has Hq,m(U) ⊂ C(U) if qm > d whence by duality the space
Hq/(q−1),−m(U) = [Hq,m(U)]∗ contains all finite measures on U . �

We formulate the following result for d > 1 just because the case d = 1 is ele-
mentary and has already been discussed. In addition, we include in the formulation
some assertions which follow also from the already mentioned results (the proof is
direct and does not use the results above).

1.2.21. Theorem. Under the same assumptions on A as in the lemma, let
d ≥ 2 and let µ, ν be (possibly, signed) Radon measures on Ω. Let a mapping
b = (bi) : Ω → Rd and a function c : Ω → R be such that |b|, c ∈ L1

loc(Ω, µ).
Suppose that L∗A,b,cµ = ν. Then the following assertions are true.

(i) One has µ ∈ H
p,1−d(p−1)/p−ε
loc (Ω) for any p ≥ 1 and any ε > 0. Here

1−d(p−1)/p > 0 if p ∈ [1, d
d−1 ) and, in particular, µ admits a density F ∈ Lploc(Ω)

for any p ∈ [1, d
d−1 ).

(ii) If |b| ∈ Lγloc(Ω, µ), c ∈ Lγ/2loc (Ω, µ) and ν ∈ Ld/(d−γ+2)
loc (Ω) where d ≥ γ > 1,

then F := dµ/dx ∈ Hp,1
loc (Ω) for any p ∈ [1, d/(d−γ+1)). In particular, F ∈ Lploc(Ω)

for any p ∈ [1, d/(d− γ)), where we set d
d−γ := ∞ if γ = d.

(iii) If γ > d and either
(a) |b| ∈ Lγloc(Ω) and c, ν ∈ Lγd/(d+γ)loc (Ω),
or
(b) |b| ∈ Lγloc(Ω, µ), c ∈ Lγd/(d+γ)loc (Ω, µ), and ν ∈ Lγd/(d+γ)loc (Ω),

then µ admits a density F ∈ Hγ,1
loc (Ω). In particular, F ∈ C1−d/γ

loc (Ω).

Proof. (i) We have in the sense of distributions

∆µ = ∂xi(biµ)− cµ+ ν (1.2.3)
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on Ω. Here by Lemma 1.2.20(iii) the right-hand side belongs to Hp,−m−1
loc (Ω) if

m > d(1− 1/p). By Lemma 1.2.20(i) we conclude µ ∈ Hp,−m+1
loc (Ω), which leads to

the result after substituting m = d(1− 1/p) + ε.
Before we prove (ii) and (iii) we need some preparations. Fix p1 > 1 and assume

that F = dµ/dx ∈ Lp1loc(Ω). Such a number p1 exists by (i). Set

r := r(p1) :=
γp1

γ − 1 + p1
(1.2.4)

and observe that owing to the inequalities 1 < γ and p1 > 1, we have 1 < r < γ.
Next, starting with the formula

|bF |r = (|b||F |1/γ)r|F |r−r/γ

and using Hölder’s inequality (with s = γ
r > 1 and t := s

s−1 = γ
γ−r ) and the

relations |b||F |1/γ ∈ Lγloc(Ω) and F ∈ Lp1loc(Ω), we obtain that biF ∈ Lrloc(Ω). By
Lemma 1.2.20(i) one has

biF ∈ Hr,0
loc(Ω), (biF )xi ∈ Hr,−1

loc (Ω). (1.2.5)

(ii) Set
q := q(p1) :=

γp1

γ − 2 + 2p1
∨ 1, (1.2.6)

and note that q > 1 ⇔ γ > 2 ⇔ q < γ
2 , in particular, q < γ in any case. Hence

repeating the above argument with the triple c, γ/2, q in place of |b|, γ, r, we obtain
that

cF ∈ Lqloc(Ω). (1.2.7)

Fix p1 > 1 such that F := dµ
dx ∈ Lp1loc(Ω) and let r, q be as in (1.2.4), (1.2.6),

correspondingly. Since γ ≤ d, we have q < d, which by (1.2.7) and assertions (ii)
and (iii) of Lemma 1.2.20 implies that cF ∈ H

dq/(d−q),−1
loc (Ω) if q > 1 and that

cF ∈ Hs,−1
loc (Ω) for any s ∈ (1, d/(d− 1)) if q = 1.

It turns out that if p1 < d/(d− γ), then

cF ∈ Hr,−1
loc (Ω). (1.2.8)

Indeed, if q > 1, then (1.2.8) follows from the fact that if p1 ∈ (1, d/(d− γ)), then
the inequality r ≤ dq/(d − q) holds. If q = 1, then γ ≤ 2 and (1.2.8) follows from
the fact that r < d/(d− γ + 1) ≤ d/(d− 1) for p1 < d/(d− γ).

Finally by Lemma 1.2.20 (ii) we have ν ∈ H
d/(d−γ+1),−1
loc (Ω) if γ > 2 and

ν ∈ Hs,−1
loc (Ω) for any s ∈ (1, d/(d − 1)) if γ ≤ 2. In the same way as above,

ν ∈ Hr,−1
loc (Ω) whenever 1 < p1 < d/(d − γ). This along with (1.2.5) and (1.2.8)

shows that the right-hand side of (1.2.3) is now in Hr,−1
loc (Ω). By Lemma 1.2.20(i)

we have
µ ∈ Hr,1

loc(Ω) (1.2.9)
and by Lemma 1.2.20(ii) we have F ∈ Lp2loc(Ω), where

p2 :=
dr

d− r
=

dγp1

dγ − d+ (d− γ)p1
=: f(p1).

Thus, we obtain

p1 ∈
(

1,
d

d− γ

)
and F ∈ Lp1loc(Ω) =⇒ F ∈ Lf(p1)

loc (Ω).

One can easily check that p2 = f(p1) > p1 if p1 < d/(d − γ), and that the only
positive solution of the equation q = f(q) is q = d/(d− γ). Therefore, by taking p1

in (1, d/(d − 1)), which is possible by (i), and by defining pk+1 = f(pk) we obtain
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an increasing sequence of numbers pk ↑ d/(d − γ), which implies that F ∈ Lploc(Ω)
for any p < d/(d− γ).

But as pk ↗ d/(d − γ), the sequence of numbers r(pk) defined according to
(1.2.4) increases to the limit

γd/(d− γ)
γ − 1 + d/(d− γ)

=
d

d− γ + 1
.

By (1.2.9) this proves (ii).
(iii) First we consider case (b). By the last assertion in (ii) we have F ∈ Lp1loc(Ω)

for any finite p1 > 1. Let r := r(p1) be defined as in (1.2.4). Then 1 < r < γ and
(1.2.5) holds. Set

q := q(p1) :=
dγ
d+γ p1

dγ
d+γ − 1 + p1

. (1.2.10)

If 2 ≤ d < γ, then dγ
d+γ > 1. Therefore, since p1 > 1, it follows that 1 < q < dγ

d+γ .
Hence repeating the arguments that led to (1.2.5) with the triple c, dγ

d+γ , q in place

of |b|, γ, r we obtain cF ∈ Lqloc(Ω), thus cF ∈ H
dq/(d−q),−1
loc (Ω) by assertion (ii) of

the lemma. Observe that as p1 →∞ we have

r ↑ γ, q ↑ dγ/(d+ γ), dq/(d− q) ↑ γ.

Therefore, combining this with our assumption that ν is contained in the class
L
dγ/(d+γ)
loc (Ω), which by assertion (ii) of the lemma is contained in Hγ,−1

loc (Ω), and
by taking p1 large enough, we see that the right-hand side of (1.2.3) is inHγ−ε,−1

loc (Ω)
for any ε ∈ (0, γ− 1). By Lemma 1.2.20(ii) we conclude that F ∈ Hγ−ε,1

loc (Ω). Since
γ > d, the function F is locally bounded. Now we see that above we can take p1 = ∞
and therefore the right-hand side of (1.2.3) is in Hγ,−1

loc (Ω), which by assertion (i)
of the lemma gives us the desired result.

In the remaining case (a) we take p1 > γ/(γ− 1) and assume that F ∈ Lp1loc(Ω).
Then instead of (1.2.4) and (1.2.10) we define

r := r(p1) :=
γp1

γ + p1
, q := q(p1) :=

dγ
d+γ p1

dγ
d+γ + p1

∨ 1 (1.2.11)

and observe that since p1 > γ/(γ − 1) we have r > 1, which (because of the
relation p−1

1 + γ−1 = r−1) allows us to apply Hölder’s inequality starting with
|bF |r = |b|r|F |r to conclude that (1.2.5) holds. Since c ∈ L1

loc(Ω, µ),

dγ

d+ γ
> 1 and

(
dγ

d+ γ

)−1

+ p−1
1 = q−1,

we also have that cF ∈ Lqloc(Ω). Obviously, q < d. As in part (ii) this yields that
cF ∈ Hdq/(d−q),−1

loc (Ω) if q > 1 and cF ∈ Hs,−1
loc (Ω) for any s ∈ (1, d/(d−1)) if q = 1.

We assert that (1.2.8) holds (with r = r(p1) as in (1.2.11)) for all p1 > γ/(γ − 1),
p1 6= dγ/(dγ − d− γ).

Indeed, if q > 1, then dq/(d− q) = r. If q = 1, then p1 ≤ dγ/(dγ − d− γ). But
since p1 6= dγ/(dγ − d − γ), we have p1 < dγ/(dγ − d − γ), which is equivalent to
the inequality r < d/(d− 1).

Thus, since ν ∈ L
dγ/(d+γ)
loc (Ω) ⊂ Hγ,−1

loc (Ω) ⊂ Hr,−1
loc (Ω), because r < γ, asser-

tion (i) in the lemma yields the following:(
p1 >

γ

γ − 1
, p1 6=

dγ

dγ − d− γ
, F ∈ Lp1loc(Ω)

)
=⇒ F ∈ Hr,1

loc(Ω). (1.2.12)
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If r < d, then the latter in turn implies by assertion (ii) in Lemma 1.2.20 that
F ∈ Lp2loc(Ω). Let us summarize what has been shown:(

p1 >
γ
γ−1 , p1 6= dγ

dγ−d−γ , r := γp1
γ+p1

< d, F ∈ Lp1loc(Ω)
)

=⇒ F ∈ Lp2loc(Ω), (1.2.13)

where
p2 :=

dr

d− r
=

dγp1

dγ − (γ − d)p1
>

dγ

dγ − (γ − d)
p1.

Also, note that γ/(γ−1) < d/(d−1) < dγ
γd−d−γ , so that by (i) we can find a number

p1 to start with. Then starting with p1 close enough to d/(d − 1), by iterating
(1.2.13) we always increase p by some factor greater than dγ/(dγ − (γ − d)) > 1.
While doing this, we can obviously choose the first p so that the iterated numbers
p will never be equal to dγ/(dγ − d− γ) and the corresponding numbers r will not
coincide with d. After several steps we shall come to the situation where r > d,
and then we conclude from (1.2.12) that F is locally bounded (one cannot keep
iterating (1.2.13) infinitely because of the restriction r < d). As in case (b), we can
now easily complete the proof. �

Example 1.2.15 shows that assertion (iii) of this theorem may fail if γ > d is
replaced by γ = d− ε. Then F does not even need to be in H2,1

loc (Ω).

1.2.22. Proposition. Suppose that the hypotheses of Corollary 1.2.8 are ful-
filled. Let µ be some positive measure on Ω satisfying the equation L∗A,b,cµ = 0.
Then, any other solution µ0 can be written as µ0 = f · µ, where f ∈W p,2

loc (Ω).

Proof. Suppose first that d > 1. Then p > 2. We know that µ and µ0

have continuous densities % and %0, respectively, in the class W p,1
loc (Ω) and that %

has no zeros in Ω. Set f = %/%0. Then µ0 = f · µ and f ∈ W p,1
loc (Ω). We have

ai :=
∑d
j=1 ∂xj

aij ∈ Lploc(Ω). Set a := (ai). Let us verify that f satisfies the elliptic
equation

aij%∂xi
∂xj

f + 〈∇f, 2%a+ 2A∇%− %b〉 = 0

in the sense of weak solutions in the class W p,1
loc (Ω), i.e., in the sense of the identity∫

[−ϕ∂xi
(aij%)∂xj

f − 〈%A∇f,∇ϕ〉+ 〈∇f, 2%a+ 2A∇%− %b〉ϕ] dx = 0 (1.2.14)

for all ϕ ∈ C∞0 (Ω). This will yield the desired inclusion f ∈W p,2
loc (Ω), since we have

%aij ∈ W p,1
loc (Ω), %A is nondegenerate, a%, b%, c% ∈ Lploc(Ω). In order to establish

(1.2.14) we observe that the equality L∗A,b,cµ0 = L∗A,b,cµ = 0 and the integration by
parts formula give the identities∫

[−∂xi
(aij%f)∂xj

ϕ+ 〈f%b,∇ϕ〉+ c%fϕ] dx = 0, (1.2.15)∫
[−∂xi

(aij%)∂xj
ϕ+ 〈%b,∇ϕ〉+ c%ϕ] dx = 0

for all ϕ ∈ C∞0 (Ω). Since aij , %, f ∈ W p,1
loc (Ω) and p > 2, it follows that the second

relation remains true for all functions ϕ of the form ϕ = fψ with ψ ∈ C∞0 (Ω). This
yields the identity∫

[−∂xi
(aij%)f∂xj

ϕ− ∂xi
(aij%)ϕ∂xj

f + 〈%b, f∇ϕ〉+ 〈%b, ϕ∇f〉+ c%fϕ] dx = 0

for all ϕ ∈ C∞0 (Ω). Subtracting the last equality from (1.2.15) and differentiating
the products by the Leibnitz formula we arrive at (1.2.14). In the case d = 1 this
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reasoning does not apply if p < 2, but in this case a simple direct proof works: we
have (Af%)′ = f%b+ψ and (A%)′ = b%+ k, where ψ is the indefinite integral of cf%
and k is constant. Then f ′ = (ψ − kf)(A%)−1. �

We have already seen from Harnack’s inequality that the continuous version of a
density of a nonnegative measure µ satisfying the equation L∗A,bµ = 0 on a ball Ω is
strictly positive provided that aij ∈W p,1

loc (Ω), A is strictly positive, and bi ∈ Lploc(Ω)
with some p > d. Unlike the Sobolev regularity result, the latter condition on b
cannot be replaced by the alternative assumption bi ∈ Lploc(µ). However, the next
result of S.V. Shaposhnikov [156] gives a sufficient condition for the strict positivity
of densities entirely in terms of integrability with respect to µ.

1.2.23. Theorem. Let µ be a nonzero nonnegative Borel measure on a ball Ω
satisfying the equation L∗I,bµ = 0, where exp(ε|b|) ∈ L1

loc(µ) for some ε > 0. Then
µ has a continuous strictly positive density.

In §1.9 below we discuss lower bounds for densities under similar global expo-
nential integrability assumptions.

Let us mention several works containing various results related to weak elliptic
equations for measures (or equations for functions that are satisfied by densities
of solutions to equations for measures): [120], [15], [76], [107], [108], [109], [98].
Finally, let us note that the local regularity results can be used to strengthen the
results on smoothness of invariant measures with respect to a parameter obtained
in [178].

1.3. Some a priori estimates

In this section we establish certain general a priori estimates which will be
useful in proving the existence of solutions. These estimates provide bounds on the
integrals of certain given functions with respect to unknown solutions.

1.3.1. Theorem. Let V ≥ 0 be a continuous function of the class W 2,1
loc (Rd),

let U := {V < c} be bounded, and let µ be a nonnegative Borel measure on U
satisfying the equation L∗A,bµ = 0, where A = (aij) is a mapping on U with values
in the space of positive symmetric linear operators on Rd, aij ∈ W p,1

loc (U) for some
p > d, b = (bi) is a Borel mapping from U to Rd such that either |b| ∈ Lploc(µ)
or |b| ∈ Lploc(U). Suppose that there exist a Borel function Ψ ∈ L1(µ) and a Borel
function Φ ≥ 0 such that

LV ≤ Ψ− Φ µ-a.e. on U.

Then one has ∫
U

Φ dµ ≤
∫
U

Ψ dµ.

If µ is a probability measure on Rd satisfying the equation L∗A,bµ = 0 on the whole
space, where A and b satisfy the above assumptions locally, and if LV ≤ Ψ − Φ
on Rd, where all the sets {V ≤ c} are compact, then∫

Rd

Φ dµ ≤
∫

Rd

Ψ dµ.

Proof. It suffices to prove our assertion for bounded Φ. Indeed, once this is
done, we consider the functions Φk = min(Φ, k), for which LV ≤ Ψ−Φk, and then
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apply Fatou’s theorem. Assuming that Φ is bounded, given ε > 0, we can find a
compact set K ⊂ U such that µ(U) < µ(K) + ε and∫

U

Φ dµ <
∫
K

Φ dµ+ ε.

By the continuity of V there is a number r < c such that

K ⊂ {V < r} ⊂ {V ≤ r} ⊂ U.

We know that µ has a continuous density %. Hence there is a number r1 < r such
that K ⊂ {V < r1} and ∫

{r1≤V≤r}
|〈∇V, b〉| dµ < ε.

In the case d > 1 this follows by the Cauchy–Bunyakowskii inequality, and if d = 1,
then V ′ is locally bounded. Let us take the function ϕ on the real line such that
ϕ(t) = t if t ≤ r1, ϕ(t) = (r1 + r)/2 if t ≥ r, ϕ′′(t) = −1/|r − r1| on [r1, r], and
ϕ′′(t) = 0 outside [r1, r]. Then 0 ≤ ϕ′ ≤ 1, ϕ′′ ≤ 0, and

LA,b(ϕ ◦ V ) = ϕ′′(V )〈A∇V,∇V 〉+ ϕ′(V )LA,bV,

which vanishes outside {V ≤ r} since ϕ ◦ V is constant outside {V ≤ r}, and
LA,b(ϕ ◦ V ) = LA,bV on {V ≤ r1}. Since ϕ ◦ V ∈ W 2,1

loc (U) and ϕ ◦ V is constant
outside {V ≤ r}, we have ∫

U

LA,b(ϕ ◦ V ) dµ = 0.

Taking into account that ϕ′′(V ) ≤ 0 and 0 ≤ ϕ′(V ) ≤ 1, we obtain that s∫
{V≤r1}

[Ψ− Φ] dµ ≥
∫
{V≤r1}

L(ϕ ◦ V ) dµ = −
∫
{r1<V≤r}

L(ϕ ◦ V ) dµ

≥ −
∫
{r1<V≤r}

|〈∇V, b〉| dµ ≥ −ε,

whence ∫
{V≤r1}

Φ dµ ≤
∫
{V≤r1}

Ψ dµ+ ε.

Since ε > 0 was arbitrary and the numbers r and r1 can be chosen as close to c as
we like, the desired estimate is proven. The assertion concerning the whole space
follows at once since we can take increasing sets {V < j} whose union is Rd. �

A function V is called compact if all the sets {V ≤ c} are compact. For a
continuous function V on Rd this is equivalent to lim

|x|→∞
V (x) = +∞. We shall call

a function V quasi-compact if the space can be represented as the union of increasing
compact sets {V ≤ ck} for some increasing sequence of numbers ck. For example,
any even continuous function on the real line which is increasing on [0,+∞) to some
number c but does not assume the value c is quasi-compact.

1.3.2. Theorem. Suppose that we are given mappings Ak = (aijk ) on Rd with
values in the space of positive symmetric linear operators on Rd and Borel vector
fields bk = (bik) on Rd such that, for every R > 0, there exist αR > d, βR > 0, and
γR > 0 for which

κR := sup
k

∫
|x|≤R

[
|bk(x)|αR +

d∑
i,j=1

‖∇aijk (x)‖αR

]
dx <∞, (1.3.1)
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βRI ≤ Ak(x) ≤ γRI ∀ k, ∀x ∈ {y : |y| ≤ R}. (1.3.2)
Suppose also that there exists a continuous quasi-compact (e.g., compact) function
V ∈W 2,1

loc (Rd) such that

lim
|x|→∞

sup
k
LAk,bk

V (x) = −∞. (1.3.3)

Let {µk} be a sequence of probability measures on Rd such that

L∗Ak,bk
µk = 0.

Set UR := {V < R}. Then the following assertions are true.
(i) The measures µk admit continuous densities %k such that, for every fixed

R > 1, the functions %k|UR
are uniformly bounded, uniformly Hölder continuous,

and uniformly bounded in WαR,1(UR−1).
(ii) One has inf

k
inf
x∈UR

%k(x) > 0 for every R > 0.

(iii) The sequence {µk} is relatively weakly compact on Rd.
Furthermore, suppose that for every k a probability measure µk is defined on

Uk = {V < ck}, where ck ↑ ∞, and satisfies the equation L∗Ak,bk
µk = 0 only in Uk.

Then assertions (i)–(iii) remain valid with the following changes: only those k with
ck > R are considered in (i) and (ii).

Proof. Assertions (i) and (ii) follow directly from the results in §1.2. In order
to prove (iii) let us take a compact set E such that

LAk,bk
V (x) ≤ −1, ∀k, ∀x 6∈ E.

Let Ψk := |LAk,bk
V |IE and Φk := −(LAk,bk

V )IRd\E . Then LAk,bk
V ≤ Ψk−Φk and

Φk ≥ 0 since Φk = −LAk,bk
V outside E. Theorem 1.3.1 yields∫

Rd

Φk dµk ≤
∫

Rd

Ψk dµk.

It follows from our assumptions that

S := sup
k

∫
E

|LAk,bk
V | dµk <∞.

Therefore, the previous estimate gives∫
Rd\E

|LAk,bk
V | dµk ≤ S,

whence we find that

sup
k

∫
Rd

|LAk,bk
V | dµk ≤ 2S.

Therefore, given C > 0, we can find a number R such that LAk,bk
V ≤ −C outside

{V ≤ R} for all k. Hence for all k we have

µ(Rd\{V ≤ R}) ≤ 2S/C,

which means the uniform tightness of {µk} and, consequently, relative weak com-
pactness of {µk}.

Let us prove the last assertion in which each measure µk is defined only on the
set {V < ck}. There is no change in the proof of assertions (i) and (ii) except that
now one has to consider only k with ck > R. The same proof of (iii) works also in
this case, we just consider sufficiently large k such that E ⊂ {V < ck}. �

1.3.3. Corollary. In the situation of Theorem 1.3.2, the sequence {µk} is
relatively compact in the variation norm.
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Proof. It follows from Theorem 1.3.2 that every subsequence of this sequence
has a subsequence {νk} such that {νk} converges weakly to some probability mea-
sure ν and the continuous densities %k of the measures νk converge locally uniformly
to a continuous limit %0. Clearly, %0 serves as a density for ν. Therefore, we have
‖%k − %0‖L1(Rd) → 0, which is our claim. �

1.3.4. Corollary. Suppose that the hypotheses of Theorem 1.3.2 are satisfied
except for (1.3.3), which is replaced by

lim
|x|→∞

sup
k
〈bk(x), x〉 = −∞. (1.3.4)

Assume, in addition, that sup
R
γR <∞. Then, for every p ≥ 1, one has

Mp := sup
k

∫
Rd

〈x, x〉p µk(dx) <∞.

Proof. We may assume that p ∈ N. By (1.3.4) the function V (x) = 〈x, x〉p
satisfies condition (1.3.3) since

LAk,bk
V (x) = 4p(p− 1)〈x, x〉p−2

d∑
i,j=1

aijk (x)xixj

+2p〈x, x〉p−1traceAk(x) + 2p〈x, x〉p−1〈x, bk(x)〉

≤ 〈x, x〉p−1
[
4p(p− 1)‖Ak(x)‖+ 2pd‖Ak(x)‖+ 2p〈x, bk(x)〉

]
.

By (1.3.4) and the uniform boundedness of ‖Ak(x)‖ there is R > 0 and two positive
numbers c1 and c2 such that

LAk,bk
V (x) ≤ c1 − c2〈x, x〉p−1 ∀ k ≥ 1

whenever |x| > R. It follows from our assumptions and the above theorem that

sup
k

∫
{|x|≤R}

|LAk,bk
V (x)|µk(dx) <∞.

Hence Mp−1 <∞ by Theorem 1.3.1. �

1.3.5. Remark. (i) We observe that the proof of tightness of {µk} only used
(1.3.3). Hence assertion (ii) of Theorem 1.3.2 is valid under (1.3.3) for measures
µk satisfying equations L∗Ak,bk

µk = 0 with arbitrary coefficients Ak and bk that are
locally µk-integrable.

(ii) Clearly, conditions (1.3.1) and (1.3.2) can be imposed locally, i.e., for every
point x there exist a neighborhood W of x and numbers αW > d, βW > 0, and
γW > 0 such that (1.3.1) and (1.3.2) hold with W , αW , βW , and γW in place of
UR, αR, βR, and γR, respectively.

1.4. Existence of solutions

Here we present sufficient conditions for the existence of solutions expressed in
terms of Lyapunov functions, hence verifiable explicitly in terms of the coefficients
of our operators. This method goes back to R.Z. Hasminskii [92], [93], and the
presented results are borrowed from [38] with some improvements.

1.4.1. Theorem. Suppose that A = (aij)i,j≤d is a mapping on Rd with values
in the space of nonnegative symmetric linear operators on Rd and let b : Rd → Rd



22

be a Borel mapping such that, for every ball UR, there exist numbers αR > d and
βR > 0 such that βRI ≤ A(x) for all x ∈ UR and

aij |UR
∈WαR,1(UR), |b|

∣∣
UR

∈ LαR(UR).

Assume, in addition, that there exists a quasi-compact (e.g., compact) function V ∈
C2(Rd) such that

LA,bV (x) → −∞ as |x| → ∞. (1.4.1)

Then there exists a Borel probability measure µ on Rd such that

|b| ∈ L1
loc(µ) and L∗A,bµ = 0.

Moreover, the measure µ admits a continuous strictly positive density % such that
%|UR−1 ∈WαR,1(UR−1) for every R > 1.

Proof. By our condition on V we have increasing domains Uk = {V < ck}
with compact closures of Uk in Uk+1, whose union is the whole space. Let us
first find a sequence of nonnegative functions pk that are not identically zero and
satisfy our equation in the domains Uk. To this end, take a ball Bk containing Uk.
It is known (see [172, Theorem 3.2 and the remark at the end of §3]) that, for
every k, there exists a nonnegative function pk ∈ Wαk,1(Bk) such that pk = 1 on
the boundary of Bk (in the sense explained in [172]) while in the interior of Bk one
has

∂xi

(
aij∂xjpk − bipk + (∂xja

ij)pk
)

= 0 (1.4.2)

in the weak sense. The fact that these solutions are nonnegative follows by the weak
maximum principle [173, Theorem 7]. Our case corresponds to γ = bi = b = 0 in
the theorem cited (see also [172, Exercise 8.1]). It is worth mentioning that the
existence of functions pk with the aforementioned properties can be derived from the
solvability of the boundary problem for smooth coefficients. Indeed, there exists a
sequence of smooth mappings Am = (aijm)di,j=1 on a larger ball B′k ⊃ Bk with values
in the space of the positive symmetric linear operators on Rd such that the mappings
Am are uniformly nondegenerate and converge to A in the norm of the Sobolev class
Wαk,1(B′k). In addition, there exists a sequence of smooth mappings bm = (bim)di=1

convergent to b in Lαk(B′k,Rd). Let us denote by fm the solution of the boundary
value problem

∂xi

(
aijm(x)∂xj

fm − bimfm + ∂xj
aijmfm

)
= 0

with condition fm = 1 on the boundary of B′k. Such solutions exist according to [89,
Theorem 8.3 and the remark at the end of §8.2]. Let κm be such that the minimum
of f̃m := κmfm on B′k is 1. According to the results in §1.2, the sequence {f̃m}
is uniformly bounded on Bk. In addition, the restrictions of f̃m have uniformly
bounded norms in the space Wαk,1(Bk). Choosing a subsequence from {f̃m} that
is uniformly convergent on Bk, we conclude that its limit after normalization can
be taken for pk since it satisfies equation (1.4.2) in Bk in the weak sense and is
estimated by 1 from below. It follows from our reasoning that pk ∈ Wαk,1(Uk).
Multiplying the solutions pnk

by positive constants and letting pk = 0 outside Uk,
we obtain probability measures µk satisfying the elliptic equation L∗A,bµk = 0 in
Uk. According to Theorem 1.3.2, the sequence {µk} contains a subsequence {µki}
convergent in the variation norm to a probability measure µ with a strictly positive
continuous density %. In addition, for every ball B, there is k0 such that the densities
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%ki of the measures µki with ki ≥ k0 converge uniformly on B. Therefore, for any
ϕ ∈ C∞0 (Rd), we obtain by Lebesgue’s dominated convergence theorem that

0 = lim
i→∞

∫
Rd

LA,bϕ(x)%ki
(x) dx =

∫
Rd

LA,bϕ(x)%(x) dx.

Therefore, µ = % dx is the desired solution. �

1.4.2. Corollary. The assertion of the previous theorem is true if A is a
locally Lipschitzian uniformly bounded mapping with values in the space of positive
symmetric operators on Rd and b is a Borel mapping such that |b| ∈ Lαloc(Rd), where
α > d, and lim

|x|→∞
〈b(x), x〉 = −∞.

Proof. It suffices to take V (x) = 〈x, x〉. �

For example, the previous corollary applies to the situation where A = I and
b(x) = −k(x)x, where k ∈ Lαloc(Rd) is such that

k(x)|x|2 → +∞ as |x| → ∞.

More generally, if A = I, then it suffices to have a weaker relation

lim sup
|x|→∞

〈x, x〉γ−1
[
2(γ − 1) + d+ 〈b(x), x〉

]
= −∞

for some γ ≥ 1 (then the function V (x) = 〈x, x〉γ can be used).
Another example covered by Theorem 1.4.1 is this: A = I and for some γ ≥ 1

one has 〈b(x), x〉 ≤ −r < −d + 2 − 2γ outside some ball (of course, we assume
that |b| is locally integrable to a power bigger than d). Then we take the function
V (x) = 〈x, x〉γ . The same coercivity condition was assumed in [175] for locally
bounded b (in order to get the equation from [175] one should take A = I/2 in our
case). Note that, as shown in [175], one can reduce to this case the more general
case where the diffusion term is continuous, nondegenerate, and satisfies certain
uniform bounds, provided that the drift is locally bounded and coercive and that
the corresponding stochastic differential equation has a unique weak solution.

The next result was proved in [38].

1.4.3. Corollary. Let A = (aij) be a continuous mapping on Rd with values
in the space of positive symmetric linear operators on Rd and let b be a Borel vector
field on Rd. Suppose that there exists a quasi-compact function V ∈ C2(Rd) such
that (1.4.1) is fulfilled. Then the following assertions are true.

(i) If b is continuous, then there exists a probability measure µ satisfying the
equation L∗A,bµ = 0.

(ii) If detA > 0 and b is locally bounded, then there exists a probability measure
µ which has a density in the class Ld/(d−1)

loc (Rd) and satisfies the equation L∗A,bµ = 0.

1.4.4. Remark. It is obvious that in the case of nondegenerate A the Borel
measurability of b can be replaced by its Lebesgue measurability and that our
solution does not depend on a Lebesgue equivalent version of b because any solution
has a density.

Let us observe that (1.4.1) holds if there are positive numbers c1 and c2 such
that

LV (x) ≤ c1 − c2V (x) and lim
|x|→∞

V (x) = +∞.

It should be noted that in general even for A = I the assumption that

lim
|x|→∞

LA,bV (x) = −∞
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cannot be replaced by the weaker assumption that

LA,bV (x) ≤ c < 0 outside some ball U . (1.4.3)

Indeed, let d = 1, A = 1, and b(x) = −signx/(1 + |x|). We have xb(x) → −1 as
|x| → ∞. Assume that µ is a probability measure satisfying the equation L∗1,bµ = 0.
Then µ has a locally absolutely continuous density % such that %′′ + (b%)′ = 0 in
the sense of distributions, whence %′ + b% = 0, since b% is integrable (it suffices
to integrate over the intervals [tk, sk], where tk → −∞, sk → +∞, %(tk) → 0,
%(sk) → 0). In addition, % > 0, so that (ln %)′ = − ln(1 + |x|)′, whence we obtain
that %(x) = c/(1 + |x|), which is a non-integrable function. In [16], the existence of
an invariant probability is established under assumption (1.4.3) and the additional
assumption that |∇V |2/V ≤ c for some number c > 0. However, in this case we
can take a new Lyapunov function W = (2V )α, where α = 1 + c−1, which satisfies
(1.4.1).

It is clear that the presented existence results can be modified for divergence
form operators. For example, if the functions aij are Lipschitzian and 〈b(x), x〉 ≤
c1−c2|x| ln |x| outside some ball, then the extra term in the drift which appears when
we write the equation in non-divergence form does not destroy condition (1.4.1).

For other sufficient existence conditions expressed in terms of A and b, see [50].
Note also that in the case where b is a gradient, more special sufficient con-

ditions are available that guarantee the existence of a probability measure whose
logarithmic gradient is b (see [22, §7.5]), but even in this case the general sufficient
conditions presented above turn out to be very efficient.

1.5. Associated L1-semigroups

Here we discuss semigroups associated with solutions to our elliptic equations
for measures, along with relations between such equations and the proper invariance
of measures with respect to their associated semigroups. We recall that in the Intro-
duction we defined the concept of a measure invariant with respect to a semigroup
(Tt)t≥0 of bounded linear operators on the space Bb(X) of bounded measurable
functions. Similarly one defines invariance in the case where X is a topological
space, µ is a Borel measure on X, and (Tt)t≥0 is a semigroup of bounded linear
operators on the space Cb(X) of bounded continuous functions. An obvious modifi-
cation of the latter concept arises if the operators Tt are just operators from Cb(X)
to L∞(µ), not necessarily forming a semigroup. If for all bounded Borel functions
f and g one has ∫

X

Tt f(x) g(x)µ(dx) =
∫
X

f(x)Tt g(x)µ(dx),

then the semigroup is called symmetric and the measure µ is called symmetric in-
variant. It is clear that this case is characterized by the property that the generator
L of the semigroup is symmetric in L2(µ). If (Tt)t≥0 is the transition semigroup
of a Markov process, then this process is called µ-symmetric. A process is called
symmetrizable if there is a measure µ such that it is µ-symmetric.

We are interested in the case where the semigroup (Tt)t≥0 is in a certain sense
generated by the elliptic operator LA,b for which there exists a probability measure
µ satisfying the equation L∗A,bµ = 0. However, one should be very careful with a
possible interpretation of the term “generated”. We shall use instead the term
“associated” and this will simply mean the following: the semigroup (Tt)t≥0 on
the space of bounded Borel functions will be called associated with LA,b and µ if
it extends to a strongly continuous semigroup on L1(µ) whose generator coincides
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with LA,b on the class of smooth compactly supported functions. Typically, such
a semigroup is not continuous on Bb or Cb. Moreover, in general it is not unique
(we shall see such examples; however, a certain special associated semigroup will
be singled out), and this is closely connected with the non-uniqueness of solutions
to the equation L∗A,bµ = 0 in the class of probability measures. On the other hand,
we shall find conditions that guarantee the uniqueness of an associated semigroup,
and this uniqueness turns out to be equivalent to the proper invariance of µ with
respect to its special associated semigroup in the case where the drift coefficient b
is locally Lebesgue integrable to a power greater than the dimension of the space.
In the latter case, the semigroup is indeed generated by LA,b in the classical sense
that the closure of (LA,b, C∞0 ) in L1(µ) is the generator of the semigroup.

We recall that a bounded operator T on L1(µ) is called sub-Markovian if one
has 0 ≤ Tf ≤ 1 whenever f ∈ L∞(µ) and 0 ≤ f ≤ 1. If, in addition, T1 = 1, then
T is called Markovian.

In general, the operators Tµt in the associated semigroup constructed below are
sub-Markovian, not Markovian. In addition, µ is only sub-invariant for them, i.e.,∫

X

Tµt f dµ ≤
∫
X

f dµ, f ∈ L∞(µ), f ≥ 0.

We observe that if (Tt)t≥0 is a semigroup on L1(µ) and takes L∞(µ) to L∞(µ),
then by the interpolation theorem it takes Lp(µ) to Lp(µ) for all p ∈ [1,+∞), and
its adjoint semigroup also maps each Lp(µ) into itself.

First we discuss the case A = I studied in [4], where the proofs can be found.

1.5.1. Theorem. Suppose that A = I, |b| ∈ Lploc(Rd) for some p > d ≥ 2, and
µ is a probability measure on Rd such that L∗µ = 0, where L = LI,b and % := dµ/dx
is such that |b−∇%/%| ∈ L1(µ). Then the following assertions are true.

(i) There exists exactly one strongly continuous semigroup (Tµt )t>0 on L1(µ)
such that its generator (Lµ, D(Lµ)) extends L, i.e., we have C∞0 (Rd) ⊂ D(Lµ) and
Lµ = L on C∞0 (Rd). In addition, (Lµ, D(Lµ)) is the closure of (L,C∞0 (Rd)) on
L1(µ).

(ii) The semigroup (Tµt )t>0 is Markovian.
(iii) If (Gα)α>0 denotes the corresponding resolvent, then Gαf has a unique

continuous µ-version for all f ∈ Ldp/(d+p)(µ) and all α > 0. In particular, (Gα)α>0

is strongly Feller, i.e., Gαf has a continuous µ-version for all f ∈ L∞(µ), α > 0.
(iv) For every f ∈ C∞0 (Rd) and t > 0, the function Tµt f has a unique continuous

µ-version T̃µt f and µ is the only probability measure ν on Rd such that∫
T̃µt f dν =

∫
f dν for all f ∈ C∞0 (Rd) and all t > 0.

1.5.2. Theorem. Suppose that a probability measure µ on Rd satisfies the equa-
tion L∗µ = 0, where L := LI,b and |b| ∈ L2

loc(µ). Let % be the density of µ.
(i) Assume that

|b−∇%/%| ∈ L2(µ). (1.5.1)
Then there exists a strongly continuous semigroup (Tµt )t≥0 on L1(µ) with generator
(Lµ, D(Lµ)) extending L. Furthermore, (Tµt )t≥0 is Markovian and µ is (Tµt )t≥0-
invariant.

(ii) Assume that |b| ∈ L2(µ). Then |b−∇%/%| ∈ L2(µ), so the conclusion of (i)
holds.

(iii) Assume that |b| ∈ Lploc(Rd) for some p > d ≥ 2 and that

|b−∇%/%| ∈ Lq(µ) for some q ∈ [1,∞].
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Let r := 2 − 2
q+1 , where 1

∞ := 0. Then, the restriction of (Tµt )t≥0 to Lr(µ) is the
unique strongly continuous semigroup on Lr(µ) whose generator extends L. This
generator is the closure of (L,C∞0 (Rd)) on Lr(µ).

1.5.3. Proposition. Suppose that µ1 and µ2 are two probability measures on
Rd satisfying the equation L∗µ = 0 with L = LI,b such that µ2 is absolutely con-
tinuous with respect to µ1 and |b| is µi-square integrable for both measures. Let
(Tµi

t )t≥0 denote the corresponding strongly continuous semigroups on L1(µi) whose
generators (Lµi , D(Lµi)) extend L, i = 1, 2, which exist by the previous theorem.
Then Tµ1

t f = Tµ2
t f µ1-a.e. for all t > 0 and all bounded Borel measurable functions

f on Rd.

This proposition can be proved by a modification of an argument from [119]
based on Duhamel’s formula.

1.5.4. Remark. (i) We would like to point out that all the strongly continuous
semigroups (Tµt )t≥0 above are automatically contractions on all the spaces Lp(µ),
since they are sub-Markovian and since µ is Tµt -invariant.

(ii) In the situation of Theorem 1.5.2(i) there exists a “nice” Markov process on
Rd whose transition probabilities are given by (Tµt )t≥0 and which is a weak solution
to the stochastic equation dξt = dwt + b(ξt)dt. This follows from the paper [168],
to which we refer for details and precise definitions.

Let us consider the symmetric case, i.e., the case where the operator LI,b is
symmetric in L2(µ); it turns out that this corresponds to that b is a logarithmic
gradient; see Example 1.1.3 (a more precise description of this case is given below).

1.5.5. Proposition. Let b = ∇%/%, where % ∈ W 1,1
loc (Rd) is a probability den-

sity, and let µ := % dx. Then there exists a strongly continuous Markovian semigroup
(Tµt )t≥0 on L1(µ) whose generator (Lµ, D(Lµ)) extends L = LI,b and which has µ
as a (Tµt )t≥0-invariant measure. Furthermore, the restriction of (Tµt )t≥0 to L2(µ)
consists of symmetric operators.

1.5.6. Remark. (i) The uniqueness of (Tµt )t≥0 in Proposition 1.5.5 is ensured
by Theorem 1.5.2(ii) provided that |b| ∈ L2(µ). However, by [151, Theorem 3.1],
we can relax the last condition to |b| ∈ L2

loc(µ) and still have uniqueness of (Tµt )t≥0

among all strongly continuous symmetric Markovian semigroups on L2(µ) whose
generators extend L (but we do not know whether the symmetry condition is es-
sential here). We also note that in the present symmetric case we can take r = 2
in Theorem 1.5.2(iii), which was first shown in [32, Corollary 8]). We note that
without extra assumptions the measure µ in this proposition can fail to be a unique
probability measure satisfying the equation L∗I,bµ = 0, even among measures with
a logarithmic gradient b (see Example 1.6.1 below).

(ii) In the situation of Proposition 1.5.5 it follows by its proof and the gen-
eral theory in [125] that there exists a diffusion process on Rd whose transition
semigroup is (Tµt )t≥0.

In his celebrated work [105] Kolmogorov studied the following problem. Let
(ξt)t≥0 be a diffusion in a finite dimensional Riemannian manifold X (in Kol-
mogorov’s case it was compact) with generator L = (∆ + b)/2, where b is a smooth
vector field onX. When is the process ηt = ξT−t governed by the same equation, i.e.,
when does it have the same generator L? The answer found by Kolmogorov says: if
and only if b is the gradient of a function. Earlier this question had been considered
by Schrödinger [154] in the one dimensional-case. In the paper [105], Kolmogorov
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considered only solutions of the Fokker–Planck equations as densities of transition
probabilities; in those days no stochastic integration was developed (the correspond-
ing stochastic equation on Rd would have the form dξt = dwt + 2−1b(ξt)dt). More-
over, it was mostly the case of compact X that was considered, when invariant
probability measures always exist. In this case the property studied by Kolmogorov
is equivalent to the symmetrizability of (ξt)t≥0. Thus, Kolmogorov’s result is a cri-
terion for symmetrizability of a diffusion in a compact manifold. In the noncompact
case, additional conditions are required in order to ensure the existence of invariant
probability measures (see the previous section). The difference between existence
of an invariant measure µ = % dx and symmetrizability of the diffusion (ξt)t≥0 with
generator L = (∆+b)/2 can be seen from Corollary 1.8.2 below, which extends Kol-
mogorov’s theorem to general drifts from L2(µ). According to this corollary, drifts
of symmetrizable diffusions in Rd are logarithmic gradients of measures (an analo-
gous fact is valid also for manifolds, see [48]). If |b| ∈ Lploc(Rd) with some p > d,
then we obtain an exact analog since µ has a positive density % and b = ∇ ln %, i.e.,
b is indeed the gradient of a function.

We now consider the case of nonconstant A studied in [46], [47], where the
proofs can be found. Let us fix an open subset Ω of a Riemannian manifold M
of dimension d. Up to the end of this section we assume that A and b satisfy the
following conditions with some p > d:

(A1) aij ∈ C(Ω) ∩W p,1
loc (Ω), detA(x) 6= 0,

(1.5.2)

(A2) bi ∈ Lploc(Ω).

We shall consider a measure µ ≥ 0 on Ω that satisfies the equation L∗A,bµ = 0;
in some results we deal with the equation L∗A,bµ = 0. Let % be the density of µ. Let

βµ,A := (βiµ,A)di=1, βiµ,A := ∂ja
ij + aij

∂j%

%
.

Then βiµ,A ∈ L
p
loc(Ω). One can write

LA,bϕ = LA,βµ,A
+ 〈b− βµ,A,∇ϕ〉, ϕ ∈ C∞0 (Ω).

In the divergence form case, the mapping Aβµ will be employed instead of βµ,A.
The operator LA,βµ,A

is symmetric on L2(Ω, µ), i.e.,∫
Ω

LA,βµ,A
ϕψ dµ =

∫
Ω

ϕLA,βµ,A
ψ dµ, ∀ϕ,ψ ∈ C∞0 (Ω). (1.5.3)

Indeed, by the integration by parts formula, both sides of (1.5.3) are equal to

−
∫

Ω

〈A∇ϕ,∇ψ〉 dµ.

Similarly, for divergence form operators one has∫
Ω

ψLA,Aβµϕdµ =
∫

Ω

ϕLA,Aβµψ dµ.

Note that if A = I, then bµ,I = βµ and

LI,bϕ = LI,bϕ = ∆ϕ+ 〈b,∇ϕ〉.
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If µ is a nonnegative measure on Ω with a density % ∈W 1,1
loc (Ω), A and b satisfy

conditions (A1) and (A2) in (1.5.2), and βµ and βµ,A are defined as above, then the
equality L∗A,bµ = 0 is equivalent to the identity∫

Ω

〈b− βµ,A,∇ϕ〉 dµ = 0, ϕ ∈ C∞0 (Ω), (1.5.4)

or shortly,
divµ(b− βµ,A) = 0. (1.5.5)

Indeed, it suffices to note that by the integration by parts formula, one has∫
Ω

[∂jaij∂iϕ%+ aij∂iϕ∂j%] dx = −
∫

Ω

aij∂j∂iϕ% dx.

The divergence form analogue of (1.5.4) is∫
Ω

〈b−Aβµ,∇ϕ〉 dµ = 0, ∀ϕ ∈ C∞0 (Ω).

The vector field
b̂ := 2βµ,A − b (1.5.6)

is called the dual drift (in the theory of diffusion processes, this is the drift of the
time-reversed process). In the divergence form case, the dual drift is defined by the
equality

b̃ := 2Aβµ − b.

Clearly, one has

LA,̂b = LA,βµ,A
− (bi − βiµ,A)∂i on C∞0 (Ω)

and obviously LA,̂b is a formal adjoint to LA,b, i.e., one has∫
Ω

ψ LA,bϕdµ =
∫

Ω

ϕLA,̂bψ dµ, ϕ, ψ ∈ C∞0 (Ω).

Similarly, ∫
Ω

ψLA,bϕdµ =
∫

Ω

ϕLA,̃bψ dµ, ϕ, ψ ∈ C∞0 (Ω).

We observe that by (1.5.3) and (1.5.5) one has

µ ∈MA,βµ,A

ell ∩MA,̂b
ell .

1.5.7. Theorem. (i) Let Ω be an open subset of Rd and assume that conditions
(A1) and (A2) in (1.5.2) hold. Let µ ∈MA,b

ell . Then there exists a closed extension(
LµA,b, D(LµA,b)

)
of

(
LA,b, C

∞
0 (Ω)

)
that generates a sub-Markovian contractive C0-

semigroup (Tµt )t≥0 on L1(Ω, µ) with the following properties:
(a) the above mentioned natural extension of the adjoint semigroup to L1(Ω, µ)

has the generator Lµ
A,̂b

which coincides with LA,̂b on C∞0 (Ω);
(b) for any bounded measurable function f with compact support, the function

(I − LµA,b)
−1f is the limit in L1(Ω, µ) of the functions un that are solutions to the

Dirichlet problems (I − LA,b)un = f with zero boundary conditions on domains
Bn with compact closures Bn ⊂ Bn+1 and smooth boundaries ∂Bn such that Ω =⋃∞
n=1Bn. Furthermore, µ is sub-invariant for (Tµt )t≥0.

(ii) The same is true if Ω is an open subset of a complete Riemannian manifold
M and the operator LA,b is replaced by the operator LA,b in the form

LA,bϕ = div(A∇ϕ) + 〈b,∇ϕ〉, ϕ ∈ C∞0 (Ω),
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where b is a vector field on M and A(x) is a positive operator on TxM such that
the hypotheses of (i) are fulfilled in local coordinates.

(iii) Under the hypotheses of (i) or (ii), the semigroup (Tµt )t≥0 has the following
property: for every ψ ∈ C∞0 (Ω) and every t ≥ 0, the function Tµt ψ has a continuous
modification T̃µt ψ such that, for every compact set K ⊂ Ω, one has lim

t→0
T̃µt ψ(x) =

ψ(x) uniformly with respect to x ∈ K.

The semigroup (Tµt )t≥0 constructed in this theorem will play a very important
role below; in general, it is not the only semigroup associated with LA,b in the
sense explained at the beginning of this section, but it is unique among associated
semigroups with property (b). Below the super-index µ at Tµt will indicate this
concrete semigroup. Such a semigroup exists also under weaker assumptions on A
and b (see [168]).

1.5.8. Remark. In assertion (i) of the above theorem, since µ ∈ MA,̂b
ell , also

the “formally adjoint”
(
LA,̂b, C

∞
0 (Ω)

)
of

(
LA,b, C

∞
0 (Ω)

)
has a closed extension(

Lµ
A,̂b
, D(Lµ

A,̂b
)
)

generating a sub-Markovian C0-semigroup (T̂µt )t≥0 on L1(Ω, µ).
By [168, Remark 1.7(ii)] one has∫

Ω

g Tµt f dµ =
∫

Ω

f T̂µt g dµ, f, g ∈ L∞(Ω, µ). (1.5.7)

The same relation holds for the corresponding resolvents (Gµα)α>0 and (Ĝµα)α>0.
Equality (1.5.7), in particular, immediately implies that µ is (Tµt )t≥0-invariant if
and only if for every t ≥ 0 one has T̂µt 1 = 1. Hence, since both semigroups are
sub-Markovian, this is the case if and only if Tµt 1 = 1 for all t ≥ 0, which in turn
is equivalent to the invariance of µ for (T̂µt )t≥0. The equality Tµt 1 = 1 is equivalent
to the inclusion 1 ∈ D(LµA,b) (or 1 ∈ D(Lµ

A,̂b
)), which is not always fulfilled in spite

of the equality LA,b1 = LA,̂b1 = 0.
It is worth noting that for a symmetric operator LA,b (or LA,b) the closed

extension mentioned in the theorem is the Friedrichs extension. The condition
of symmetry of the semigroup (Tµt )t≥0 is seen from (1.5.6). The so called time
reversal for finite and infinite-dimensional diffusions (i.e., the process ξT−t for a
given diffusion ξt) is discussed in [94], [83], [133], [134].

We do not know whether a sub-Markovian strongly continuous semigroup whose
generator extends LA,b is unique (i.e., whether property (b) in (i) holds automati-
cally). As we shall see below, this is true under certain additional assumptions.

Let us recall that an operator L on a dense domain D in a Banach space X is
called dissipative if, for every u ∈ D, there exists lu ∈ X∗ such that ‖lu‖X∗ = ‖u‖X ,
lu(u) = ‖u‖2X and lu(Lu) ≤ 0. A dissipative operator L is called essentially m-
dissipative if it satisfies the following additional condition:

(L− λI)(D) = X ∀λ > 0,

where E denotes the closure of E. In fact, it suffices that the above condition hold
for some λ > 0.

1.5.9. Lemma. Let µ ≥ 0 satisfy the equation L∗A,bµ = 0 with coefficients satis-
fying (A1) and (A2) in (1.5.2). Then the operator LA,b is dissipative on the domain
C∞0 (Ω) in the space L1(Ω, µ). In particular, it is closable. The same is true for the
divergence form operator LA,b in the manifold case.
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Hence LA,b is essentially m-dissipative on the domain C∞0 (Ω) in L1(Ω, µ) if and
only if the set (LA,b − λI)(C∞0 (Ω)) is dense in L1(Ω, µ) for some (and then for all)
λ > 0. In this case the operator

(
LA,b, C

∞
0 (Ω)

)
is called L1(Ω, µ)-unique; see §1.7

for sufficient conditions for this.
Let

(
L
µ

A,b, D(L
µ

A,b)
)

denote the closure of the operator
(
LA,b, C

∞
0 (Ω)

)
in the

space L1(Ω, µ). The closure
(
LµA,b, D(LµA,b)

)
of the operator LA,b is defined analo-

gously.

1.5.10. Proposition. Let µ ∈ MA,b
ell , where A and b satisfy (A1) and (A2) in

(1.5.2). The following assertions are equivalent:
(i)

(
L
µ

A,b, D(L
µ

A,b)
)

generates a C0-semigroup (Tt)t≥0, i.e., a strongly continuous
semigroup of bounded operators Tt on L1(Ω, µ);

(ii) for some (hence for all) λ > 0, the set(
LA,b − λI

)(
C∞0 (Ω)

)
is dense in L1(Ω, µ) (equivalently,

(
LA,b, C

∞
0 (Ω)

)
is essentially m-dissipative on

L1(Ω, µ));
(iii) there exists exactly one C0-semigroup on L1(Ω, µ) which has a generator

extending the operator
(
LA,b, C

∞
0 (Ω)

)
.

If any (hence each) of the assertions (i)–(iii) is true, then the semigroups
(Tµt )t≥0 and (T̂µt )t≥0 are Markovian and µ is invariant for them. Finally, the
same is true for the operator LA,b in divergence form.

1.5.11. Remark. For a bounded domain Ω (with smooth boundary), assertion
(iii) (hence also (i) and (ii)) in Proposition 1.5.10 is not valid even if A = I, b ≡ 0.
So we shall be mainly interested in the case when Ω = M . As we shall see below,
assertions (i)–(iii) are equivalent to the invariance of µ with respect to the semigroup
(Tµt )t≥0.

We shall see below that the operator LA,b on C∞0 (Ω) can have different closed
extensions (even generating strongly continuous semigroups). Hence its closure can
fail to generate a strongly continuous semigroup (i.e., it may not be a generator).
This occurs even if A = I and b is infinitely differentiable.

The next theorem gives useful information about the domain of generator of
(Tµt )t≥0 on Lp(Ω, µ). It is known that, for every r ∈ [1,∞), the restriction of
(Tµt )t≥0 to Lr(Ω, µ) is a strongly continuous semigroup on Lr(Ω, µ). Its generator
will be denoted by

(
Lµ,rA,b, D(Lµ,rA,b)

)
. It is not difficult to verify that

D(Lµ,rA,b) =
{
f ∈ D(LµA,b) ∩ L

r(Ω, µ) : LµA,bf ∈ L
r(Ω, µ)

}
.

1.5.12. Theorem. (i) In the situation of Theorem 1.5.7, one has(
Lµ,pA,b, D(Lµ,pA,b)

)
⊂

{
f ∈ Lp(Ω, µ) ∩Hp,2

loc (Ω): LA,bf ∈ Lp(Ω, µ)
}

(1.5.8)

and Lµ,pA,bf = LA,bf for all f ∈ D(Lµ,pA,b). The same is true for any extension(
L,D(L)

)
of

(
LA,b, C

∞
0 (Ω)

)
with the following property: it is the generator of a

strongly continuous sub-Markovian semigroup (Tt)t≥0 on L1(Ω, µ) such that the
adjoint semigroup (T ′t )t≥0 on Lp

′
(Ω, µ) (which is defined after one extends (Tt)t≥0 to

Lp(Ω, µ) as explained above) has a generator which coincides with LA,̂b on C∞0 (Ω).
If one has an equality in (1.5.8), then µ is invariant for (Tµt )t≥0 (equivalently,
Tµt 1 = 1).
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(ii) If the operator
(
LA,̂b, C

∞
0 (Ω)

)
is essentially m-dissipative on the space

Lp
′
(Ω, µ), i.e., the set (LA,̂b − λI)

(
C∞0 (Ω)

)
is dense in Lp

′
(Ω, µ) for some λ > 0,

then one has an equality in (1.5.8).
Finally, the same assertions are true for LA,b.

The reader should be warned that Theorem 1.5.7 does not assert that a sub-
Markovian semigroup whose generator extends LA,b is unique: we do not know
whether this is true under the indicated hypotheses, and without the sub-Markovian
property (i.e., with the only requirement of strong continuity) this is not true in
general. This is why we always specify the semigroup (Tµt )t≥0. Also, the measure
µ may be only sub-invariant for the semigroup and not invariant. We already
know that these two phenomena are closely related: Proposition 1.5.10 shows that
the uniqueness of an associated strongly continuous semigroup is equivalent to the
essential m-dissipativity of LA,b.

We introduce the following subset of MA,b
ell :

MA,b
ell,md :=

{
µ ∈MA,b

ell : (LA,b − I)
(
C∞0 (Ω)

)
= L1(Ω, µ)

}
. (1.5.9)

The same notation is used for the operator LA,b.
The next result from [47] gives a convenient technical characterization of the

essential m-dissipativity of LA,b and shows that it is equivalent to the invariance
of µ with respect to the associated semigroup (Tµt )t≥0 from Theorem 1.5.7. In the
case Ω = Rd, this result was proved in [168, Proposition 1.9], under more general
assumptions on A, b, and µ (the validity of those assumptions in our case follows
from the results discussed in §1.2).

1.5.13. Theorem. Suppose that conditions (A1) and (A2) in (1.5.2) hold. Let
µ ∈MA,b

ell . Then the following assertions are equivalent:
(i) µ ∈MA,b

ell,md;
(ii) µ is invariant for (Tµt )t≥0;
(iii) there exist functions χn ∈ W 2,1

loc (Ω, µ) and α > 0 such that (1 − χn)+ ∈
L∞(Ω, µ) and (1−χn)+ = 0 outside some compact sets, lim

n→∞
χn(x) = 0 µ-a.e., and

for η = 1 or η = −1 one has∫
〈A∇χn,∇ϕ〉 dµ+ α

∫
χnϕdµ+ η

∫
〈b− βµ,A,∇χn〉ϕdµ ≥ 0

for all nonnegative ϕ ∈ C∞0 (Ω) and all n ∈ N, with the corresponding condition in
the case of LA,b taking the form∫

〈A∇χn,∇ϕ〉 dµ+ α

∫
χnϕdµ+ η

∫
〈b−Aβµ,∇χn〉ϕdµ ≥ 0;

(iv) µ ∈MA,̂b
ell,md (respectively, µ ∈MA,̃b

ell,md in the case of LA,b).

1.5.14. Remark. (i) The operator LA,b is not essentially m-dissipative on do-
main C∞0 (Ω) in Lp(Ω, µ) for some p ∈ [1,∞) precisely when there exists a nonzero
function h ∈ Lp′(Ω, µ) with p′ = p/(p− 1) such that the measure h · µ satisfies the
equation (LA,b − 1)∗(h · µ) = 0. It follows from the proof of Theorem 1.5.12 that
(under our assumptions on A and b, of course) this is equivalent to the following:
there exists a nonzero function h ∈ Lp′(Ω, µ) ∩W p,2

loc (Ω) such that LA,̂bh = h a.e.
(ii) The proof of this theorem employs some properties of our special semigroup

(Tµt )t≥0, and we do not know whether in assertion (ii) one can use any associated
semigroup.
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Our next goal is to study relations between infinitesimal invariance and invari-
ance. As we shall see, these two concepts are different, but under some additional
assumptions they coincide. First we mention a useful technical result which shows
that any reasonable invariant measure ν of the semigroup (Tµt )t≥0 on L1(Ω, µ) asso-
ciated (as explained in Theorem 1.5.7 above) with a probability measure µ satisfying
the equation L∗A,bµ = 0 also satisfies this equation.

1.5.15. Proposition. Let Ω be an open set in M . Assume that conditions
(A1) and (A2) in (1.5.2) are fulfilled and µ ∈ MA,b

ell . Let (Tµt )t≥0 be the associated
semigroup specified in Theorem 1.5.7. Suppose that ν is a probability measure on Ω
such that ν � µ and∫

Tµt f dν =
∫
f dν ∀ f ∈ C∞0 (Ω), ∀ t > 0.

Assume, in addition, that bi ∈ Lqloc(Ω, ν) for some q > 1. Then ν ∈MA,b
ell .

In particular, if |b| is locally bounded, then any absolutely continuous measure
ν that is invariant for (Tµt )t≥0 satisfies our elliptic equation, hence has a positive
continuous density and is equivalent to µ.

It should be noted that this proposition is not true without the assumption
that ν � µ. Indeed, let x0 ∈ Ω be fixed. Let us consider versions of Tµt f , where
f ∈ C∞0 (Ω), such that Tµt f(x0) = f(x0). Then Dirac’s measure at x0 is invariant
for Tµt . We do not know, however, how essential the assumption that bi ∈ Lq(Ω, ν)
is. It will be explained below that in the case when p > d+ 2, there exist uniquely
defined sub-probability kernels Kt( · , · ) such that Ktf is a version of Tµt f for each
f ∈ L1(Ω, µ) and the assertion of this proposition is true for any invariant measure
ν of the semigroup (Kt)t≥0.

The next result, slightly extending [4, Proposition 2.6(ii)], gives a sufficient con-
dition for a solution of the elliptic equation to be invariant for our special associated
semigroup.

1.5.16. Proposition. Let µ ∈ MA,b
ell,md and let (Tµt )t≥0 be the corresponding

semigroup specified in Theorem 1.5.7. Suppose that ν is a bounded Borel measure
on Ω such that L∗A,bν = 0 and the function % := dν/dµ is bounded. Then ν is
(Tµt )t≥0-invariant. The same is true in the case of LA,b.

A criterion for invariance of infinitesimally invariant measures in terms of mar-
tingale problems is obtained in [73].

The next proposition shows that the semigroup (Tµt )t≥0 cannot have invariant
measures with positive densities if µ itself is not invariant.

1.5.17. Proposition. Suppose that T is a sub-Markovian operator on L1(Ω, µ),
where µ is a probability measure on Ω that is sub-invariant with respect to T . Let
ν be a probability measure on Ω equivalent to µ. If ν is invariant for T , then µ is
invariant as well.

1.5.18. Remark. When applied to (Tµt )t≥0 in the case of locally bounded |b|,
this result (along with Proposition 1.5.15 and subinvariance of µ with respect to
(Tµt )t≥0 taken into account) shows that if µ is not invariant for (Tµt )t≥0, then no
measure equivalent to µ can be invariant for (Tµt )t≥0. In §1.7 we return to this
question.

For related results, see also [2], [3]. Concerning the existence of invariant mea-
sures for finite-dimensional diffusions, see [18], [19], [93], [135], [180]. General
problems relating to ergodicity of diffusions and convergence to invariant measures
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are considered in [9], [51], [60], [177], [110], [132], [141], [142], [164], [166],
[175], [176], [180]. Properties of diffusion semigroups in Lp-spaces with respect to
invariant measures and related problems for elliptic operators are studied in [66],
[81], [122], [131]. Hypercontractivity of diffusion semigroups on finite-dimensional
spaces, Poincaré, log-Sobolev, and other related inequalities for them are studied in
[12], [54], [87], [112], [149]. In these works one can find additional references.

1.6. On non-uniqueness of solutions

The problem of uniqueness for solutions of elliptic equations in the class of all
probability measures on the whole space will be addressed in the next section. Here
we present some negative results in the case A = I and infinitely differentiable b. It
is easy to construct such examples for singular drifts b.

1.6.1. Example. Let % be a smooth probability density on the real line such
that %(0) = 0 and %(x) > 0 if x 6= 0. Let b = ∇%/% away from the origin and let
b(0) = 0. Then the probability measure % dx satisfies the equation L∗1,bµ = 0, but
this equation has another solution c%I[0,+∞) dx, where c is a normalization constant.
The function %′/% serves as a logarithmic gradient also for this second solution since
(−∞, 0] has measure zero for it.

In dimension 1, the singularity of b is the only reason for non-uniqueness.

1.6.2. Proposition. Suppose that b is locally Lebesgue integrable on the real
line. Then the equation L∗1,bµ = 0 can have at most one solution in the class of
probability measures.

Proof. According to Proposition 1.1.2 any solution is given by a density(
k1 + k2

∫ x

0

1
ψ(s)

ds

)
ψ(x), ψ(x) :=

∫ x

0

b(t) dt.

Suppose that we have two linearly independent solutions. Hence there are two lin-
early independent vectors (k1, k2) for which the corresponding density is integrable
over the real line. Then it is seen from the above formula that ψ ∈ L1(R1). There-
fore, 1/ψ is not integrable on (−∞, 0] and [0,+∞). Since 1/ψ > 0, the indefinite
integral of 1/ψ tends to +∞ as x → +∞ and tends to −∞ as x → −∞. This
shows that for nonnegative solutions we must have k2 = 0, so there is at most one
solution in the class of probability measures. �

However, in any dimension d > 1 there are examples of non-uniqueness with
smooth b. It is not easy to find such examples, since, as we shall see in the next
section, the existence results presented above always produce unique solutions. For
several years the problem remained open until the following simple example was
constructed in [46], [47].

1.6.3. Example. Let

bi(x) = −xi − 2xσ(i)e
(x2

i−x
2
σ(i))/2,

where σ : {1, 2, 3, . . . , d} → {1, 2, 3, . . . , d} is one-to-one and such that σ(i) 6= i.
Then our equation has at least two solutions: one is the standard Gaussian measure
µ on Rd and another is the measure ν = v · µ with

v(x) = cd

d∑
i=1

∫ xi

−∞
e−s

2/2 ds,

where cd is a normalizing constant.
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More generally, let f ∈ C2(R1) be bounded, with f, f ′ > 0 and f ′, f ′′ ∈ L1(R1).
Define b = (bi) : Rd → Rd by

bi(x) :=
f ′′(xi)
f ′(xi)

+ 2
f ′′(xσ(i))
f ′(xσ(i))

, x = (x1, . . . , xd) ∈ Rd,

and set

µ := c1

d∏
i=1

f ′(xi) dx, ν := c2

d∑
i=1

f(xi)µ(dx),

where c1, c2 > 0 are normalizing constants. Then µ and ν are two different elements
in MI,b

ell .

However, even in this explicit example it remained unknown whether there
exist other linearly independent probabilistic solutions. The phenomenon of non-
uniqueness was investigated by S.V. Shaposhnikov [158], [159], who obtained the
following results.

Until the end of this section we assume that A = I and bi ∈ C∞(Rd) for each
1 ≤ i ≤ d. Then any solution of the equation L∗I,bµ = 0 has a density % ∈ C∞(Rd)
and the equation can be written as the following equation for %:

div
(
∇%− b%

)
= 0.

Let us set
L := LI,b, a := b%−∇%.

Then a ∈ C∞(Rd,Rd) and
div a = 0.

If % is a probability density, then we know that % > 0, hence the coefficient b is
expressed in the following way:

b =
∇%
%

+
a

%
. (1.6.1)

Let us seek another solution of the equation L∗µ = 0 in the form ν = v ·µ. The
measure ν = v · µ satisfies the same equation if and only if the function v satisfies
the equation

Lµv := div
(
%∇v − av

)
= 0. (1.6.2)

Certainly, every constant will be a solution to equation (1.6.2). We would like to
find a sufficient condition for the existence of a bounded positive solution which is
not constant. By analogy with [181] let us introduce the following bilinear skew-
symmetric form on C∞0 (Rd):

[f, g] :=
∫

Rd

〈a,∇f〉g dx.

Note that [f, g] is defined if g is bounded and 〈a,∇f〉 is integrable, but it can fail to
be skew-symmetric. The next theorem gives sufficient conditions for the existence
of a bounded positive solution to (1.6.2) which is not constant.

1.6.4. Theorem. Assume that there exists a function ϕ ∈ C2
b (Rd) such that

〈a,∇ϕ〉 ∈ L1(Rd),
[ϕ, 1] = 0, and [ϕ,ϕ] < 0. (1.6.3)

Then equation (1.6.2) has a bounded positive solution which is not constant.

Obviously, by multiplying v by a positive constant we obtain a probability
measure v · µ satisfying the equation L∗(v · µ) = 0.
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1.6.5. Remark. For the verification of the conditions of Theorem 1.6.4 it is
useful to keep in mind the following expressions for [ϕ,ϕ] and [ϕ, 1]. Let Ωn be
increasing domains with piecewise smooth boundaries and Rd =

⋃∞
n=1 Ωn. Since

div a = 0, we have

[ϕ,ϕ] =
∫

Rd

〈a,∇ϕ〉ϕdx = lim
n→∞

∫
Ωn

〈a,∇ϕ〉ϕdx = lim
n→∞

1
2

∫
∂Ωn

〈a, νn〉ϕ2 ds,

[ϕ, 1] =
∫

Rd

〈a,∇ϕ〉 dx = lim
n→∞

∫
Ωn

〈a,∇ϕ〉 dx = lim
n→∞

∫
∂Ωn

〈a, νn〉ϕds,

where νn is the outward normal on ∂Ωn. Consequently, in order to ensure (1.6.3)
it is enough to have

lim
n→∞

∫
∂Ωn

〈a, νn〉ϕ2 ds < 0, lim
n→∞

∫
∂Ωn

〈a, νn〉ϕds = 0.

To get an example of equation L∗µ = 0 with at least two different probability
solutions, it is sufficient to do the following. First of all, we find a smooth vector field
a with div a = 0 and a function ϕ satisfying the conditions of Theorem 1.6.4. Next,
we fix an arbitrary infinitely differentiable positive function % with ‖%‖L1(Rd) = 1.
Finally, we take the vector field b given by (1.6.1). Then the equation L∗µ = 0 with
this coefficient b has at least two different probability solutions: one is the measure
µ = % dx and another is the measure ν = c1v ·µ, where c1 is a normalizing constant,
and the function v is a (non constant) solution of equation (1.6.2), which exists by
Theorem 1.6.4. Let us present some examples of a and ϕ such that div a = 0 and
conditions of Theorem 1.6.4 are fulfilled.

1.6.6. Example. Let d = 2. Let us take odd functions q, ψ, σ ∈ C2
b (R1) such

that
q, qψ, σ′ ∈ L1(R1), lim

n→∞
σ(n) = 1,

and qψ ≥ 0 does not vanish identically. Clearly, this is possible. Let

a(x, y) := (0,−q(x)), ϕ(x, y) := ψ(x) + σ(y).

Clearly, div a = 0. Let us verify the conditions of Theorem 1.6.4 using Remark
1.6.5. Let Ωn be the square with vertices at the points (n, n), (−n, n), (n,−n), and
(−n,−n). Then∫

∂Ωn

〈a, νn〉ϕ2 ds = −(σ(n)− σ(−n))
∫ n

−n
q(x)(2ψ(x) + σ(n) + σ(−n)) dx,∫

∂Ωn

〈a, νn〉ϕds = −(σ(n)− σ(−n))
∫ n

−n
q(x) dx.

Consequently,

[ϕ,ϕ] = lim
n→∞

1
2

∫
∂Ωn

〈a, νn〉ϕ2 ds = −2
∫ +∞

−∞
q(x)ψ(x) dx < 0,

[ϕ, 1] = lim
n→∞

∫
∂Ωn

〈a, νn〉ϕds = −2
∫ +∞

−∞
q(x) dx = 0.

Hence the conditions of Theorem 1.6.4 are fulfilled. Therefore, choosing an arbi-
trary strictly positive smooth probability density %, we can construct a drift b (as
explained in the remark above) such that the corresponding equation L∗µ = 0 is
satisfied by at least two probability measures, one of which is the given probability
measure µ = % dx.



36

1.6.7. Example. Let d = 2 and let functions q, ψ, σ ∈ C2
b (R1) not vanish

identically and satisfy the following conditions:

q, σ′ ∈ L1(R1), q > 0, lim
n→∞

σ(n) = 1, lim
n→∞

σ(−n) = 0.

Set
a(x, y) := (0,−q(x)), ϕ(x, y) := ψ(x)σ(y).

Again, div a = 0. We calculate [ϕ, 1] and [ϕ,ϕ] by using Remark 1.6.5. Let Ωn be
the square with vertices at the points (n, n), (−n, n), (n,−n), (−n,−n). Then∫

∂Ωn

〈a, νn〉ϕ2 ds = −(σ2(n)− σ2(−n))
∫ n

−n
q(x)ψ2(x) dx,∫

∂Ωn

〈a, νn〉ϕds = −(σ(n)− σ(−n))
∫ n

−n
q(x)ψ(x) dx.

Consequently,

[ϕ,ϕ] = −1
2

∫ +∞

−∞
q(x)ψ2(x) dx, [ϕ, 1] = −

∫ +∞

−∞
q(x)ψ(x) dx.

To satisfy the conditions of Theorem 1.6.4, it is sufficient to require the orthogonality
of the functions ψ and 1 in L2(R1, q dx). Again, Remark 1.6.5 enables us to construct
an equation L∗µ = 0 with different probability solutions, one of which is a given
measure µ = % dx.

It is easy to extend the last example to the case d ≥ 2.

1.6.8. Example. Set x′ := (x1, x2, . . . , xd−1). Let q, ψ ∈ C2
b (Rd−1), and σ ∈

C2
b (R1) not vanish identically and satisfy the following conditions:

q ∈ L1(Rd−1), σ′ ∈ L1(R1), q > 0, lim
n→∞

σ(n) = 1, lim
n→∞

σ(−n) = 0.

Set
ai(x) := 0 if 1 ≤ i ≤ d− 1, ad(x) := −q(x′), ϕ(x) := ψ(x′)σ(xd).

Then div a = 0 and

[ϕ,ϕ] = −1
2

∫
Rd−1

q(x′)ψ2(x′) dx′, [ϕ, 1] = −
∫

Rd−1
q(x′)ψ(x′) dx′.

To satisfy the conditions of Theorem 1.6.4 it is sufficient to require the orthogonality
of the functions ψ and 1 in L2(Rd−1, q dx′).

We fix a with div a = 0 and two different functions ϕ1 and ϕ2 satisfying the
conditions of Theorem 1.6.4, and we construct two solutions v1 and v2 according
to this theorem. This theorem guarantees that 1, v1 and 1, v2 are pairs of linearly
independent functions. Under what conditions on ϕ1 and ϕ2 will the three functions
1, v1 and v2 be linearly independent? The following theorem answers this question
and gives some additional information.

1.6.9. Theorem. Let n ≥ 1. Assume that there exist functions ϕ1, ϕ2, . . .,
ϕn+1 in C2

b (Rd) satisfying the conditions of Theorem 1.6.4. Let v1, v2, . . ., vn+1

be solutions of equation (1.6.2) generated by these functions according to Theo-
rem 1.6.4. Assume also that the functions 1, v1, . . ., vn are linearly independent
and that for every vector α = (α1, . . . , αn) ∈ Rn the following inequality holds:[

ϕn+1 −
n∑
k=1

αkϕk, ϕn+1 −
n∑
k=1

αkϕk

]
< 0. (1.6.4)

Then the functions 1, v1, . . . , vn, vn+1 are linearly independent.
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1.6.10. Remark. Let Φ = (Φij)i,j≤n and h = (hi)i≤n, where

Φij = ([ϕi, ϕj ] + [ϕj , ϕi])/2, hi = [ϕi, ϕn+1] + [ϕn+1, ϕi], 1 ≤ i, j ≤ n.

Let h0 := [ϕn+1, ϕn+1]. Then inequality (1.6.4) can be written as

〈Φα, α〉 − 〈h, α〉+ h0 < 0.

Consequently, to ensure condition (1.6.4) it is enough to have the following: the
matrix Φ is strictly negative and

4h0 < 〈Φ−1h, h〉. (1.6.5)

In particular, if n = 1, then inequality (1.6.5) has the following very simple form:(
[ϕ1, ϕ2] + [ϕ2, ϕ1]

)2
< 4[ϕ1, ϕ1][ϕ2, ϕ2].

1.6.11. Remark. To verify condition (1.6.4) it is useful to keep in mind the fol-
lowing expression for [ϕi, ϕj ]+[ϕj , ϕi]. Let Ωn be increasing domains with piecewise
smooth boundaries and Rd =

⋃∞
n=1 Ωn. Since div a = 0, we have

[ϕi, ϕj ] + [ϕj , ϕi] =
∫

Rd

〈a,∇ϕi〉ϕj dx+ [ϕj , ϕi] =

lim
n→∞

∫
Ωn

〈a,∇ϕi〉ϕj dx+ [ϕj , ϕi] = lim
n→∞

∫
∂Ωn

〈a, νn〉ϕiϕj ds,

where νn is the outward normal on ∂Ωn.

1.6.12. Remark. Suppose that for a given smooth vector field a with div a = 0
there exist functions ϕ1, . . . , ϕn+1 such that the conditions of Theorem 1.6.9 hold.
Assume that we are given a strictly positive infinitely differentiable function % with
‖%‖L1(Rd) = 1. Then the equation L∗µ = 0 with the coefficient b that is expressed
via a and % by formula (1.6.1) has at least n + 1 linearly independent probability
solutions, one of which is the measure µ = % dx, and n others are the measures
νi = civi ·µ, where ci are normalizing constants and the functions vi are nonconstant
solutions of equation (1.6.2) generated by the functions ϕi.

Let us present an explicit example of a, ϕ1, and ϕ2 such that the conditions of
Theorem 1.6.9 are fulfilled.

1.6.13. Example. Set x′ := (x1, x2, . . . , xd−1). Let q, ψ1, ψ2 ∈ C2
b (Rd−1), and

σ ∈ C2
b (R1) not vanish identically. Assume that

q ∈ L1(Rd−1), q > 0, σ′ ∈ L1(R1), lim
n→∞

σ(n) = 1, lim
n→∞

σ(−n) = 0.

Let
ak(x) := 0 if 1 ≤ k ≤ d− 1, ad(x) := −q(x′),

ϕ1(x) := ψ1(x′)σ(xd), ϕ2(x) := ψ2(x′)σ(xd).

Then div a = 0 and, whenever 1 ≤ i, j ≤ 2, we have

[ϕi, ϕj ] + [ϕj , ϕi] = −
∫

Rd−1
ψi(x′)ψj(x′)q(x′) dx′,

[ϕi, 1] = −
∫

Rd−1
ψi(x′)q(x′) dx′.

To satisfy the conditions of Theorem 1.6.9 it is enough to require the orthogonality
of the functions 1, ψ1, ψ2 in L2(Rd−1, q dx′).
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This example can be easily extended to the case of an arbitrary number of
functions ϕi. Moreover, we can give an example of an equation L∗µ = 0 which has
a countable sequence of linearly independent probability solutions. In particular, the
space of solutions to such an equation in the class of bounded measures is infinite-
dimensional. It is enough to find a sequence of positive bounded solutions {vi}i≥1

to (1.6.2) such that the functions 1, {vi}i≥1 are linearly independent. According to
Theorem 1.6.9 and Remark 1.6.10, it suffices to find a vector field a with div a = 0
and a sequence of functions {ϕi}i∈N satisfying the conditions of Theorem 1.6.4 such
that, for each n, the functions ϕ1, ϕ2, . . . , ϕn+1 satisfy condition (1.6.5).

1.6.14. Example. Set x′ := (x1, x2, . . . , xd−1). Let q, ψi ∈ C2
b (Rd−1), where

i ∈ N, and let σ ∈ C2
b (R1). Assume that

q ∈ L1(Rd−1), q > 0, σ′ ∈ L1(R1), lim
n→∞

σ(n) = 1, lim
n→∞

σ(−n) = 0.

Let

ak(x) := 0 if 1 ≤ k ≤ d− 1, ad(x) := −q(x′), ϕi(x) := ψi(x′)σ(xd), i ∈ N.

Then, for any i, j ≥ 1, we have

[ϕi, ϕj ] + [ϕj , ϕi] = −
∫

Rd−1
ψi(x′)ψj(x′)q(x′) dx′,

[ϕi, 1] = −
∫

Rd−1
ψi(x′)q(x′) dx′.

Let 1, {ψi}i∈N be an orthonormal system in L2(Rd−1, q dx′). Then, for each n,
condition (1.6.5) holds for the functions 1, ϕ1, . . . , ϕn+1 because the matrix Φ is
diagonal with Φii = −1/2, hence is negative, h = 0, and h0 = [ψn+1, ψn+1] < 0.

1.6.15. Example. We have already mentioned the example in [46], [47], where
the equation L∗µ = 0 has at least two different probability solutions. We can now
show that it actually has a countable sequence of linearly independent solutions
that are probability measures. We have

bk(x) = −xk − 2xσ(k) exp
(
(x2
k − x2

σ(k))/2
)
, %(x) = (2π)−d/2 exp(−|x|2/2),

where σ : {1, 2, 3, . . . , d} → {1, 2, 3, . . . , d} is one-to-one such that σ(k) 6= k. Then

ak(x) = −2(2π)d/2xσ(k) exp
(
−x2

σ(k) − 2−1
∑
i 6=k

x2
i

)
.

Let Rd−1
+ := Rd−1

⋂
{xσ(d) > 0} and x′ := (x1, x2, . . . , xd−1). Let us take functions

ω, ψ∗∗i ∈ C∞0 (Rd−1
+ ), where i ∈ N, with disjoint supports such that

−
∫

Rd−1
+

ω(x′)ad(x′) dx′ = 1.

Let

ψ∗i (x
′) := ψ∗∗i (x′) + ω(x′)

∫
Rd−1

+

ψ∗∗i (y′)ad(y′) dy′, x′ ∈ Rd−1
+ .

Note that div a = 0 and∫
Rd−1

+

ψ∗i (x
′)ad(x′) dx′ = 0 for each i ≥ 1.

It is easy to see that the functions ψ∗i are linearly independent. We apply the
orthogonalization process in the space L2(Rd−1

+ ,−ad(x′) dx′) to the system {ψ∗i }i≥1
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and obtain functions {ψi}i≥1. We observe that the obtained functions have the
following properties: lim

|x′|→∞
ψi(x′) = 0 and∫

Rd−1
+

ψi(x′)ad(x′) dx′ = 0,
∫

Rd−1
+

ψi(x′)ψj(x′)ad(x′) dx′ = 0 for all i, j ≥ 1.

Let us extend ψi to the whole space Rd−1 by zero outside Rd−1
+ . Clearly, we obtain

functions from C∞0 (Rd−1) since ω and ψ∗∗ are of compact support in Rd−1
+ . Let σ be

a smooth function such that σ′ ∈ L1(R1), lim
n→∞

σ(n) = 1, and lim
n→∞

σ(−n) = 0. Set

ϕi(x) := ψi(x′)σ(xd). According to Theorem 1.6.4, we can construct nonconstant
solutions corresponding to the functions ϕi. Similarly to the previous example, we
obtain a sequence of solutions 1, v1, v2, . . . that are linearly independent.

Finally, we present one more sufficient condition for the existence of a noncon-
stant positive bounded solution of equation (1.6.2).

1.6.16. Proposition. Assume that there exists a function ϕ ∈ C2
b (Rd) such

that

2 sup
x∈Rd

|ϕ(x)|
∫

Rd

|Lµϕ| dx <
∫

Rd

|∇ϕ|2% dx.

Then there exists a bounded positive solution of equation (1.6.2) which is not con-
stant.

The following example demonstrates an application of this proposition.

1.6.17. Example. Let d = 2 and let %1, %2 ∈ C∞(R1)
⋂
L1(R1) be positive

functions such that ‖%1‖L1 = ‖%2‖L1 = 1. Set %(x, y) := %1(x)%2(y),

ϕ(x, y) :=
∫ x

−∞
%1(s) ds+

∫ y

−∞
%2(s) ds,

a1(x, y) := −2%′2(y)%2(y) + c(y)%2(y), a2(x, y) := −2%′1(x)%2(x) + d(x)%1(x).

Then div a = 0 and
Lµϕ(x, y) = (d(x) + c(y))%(x, y).

To satisfy the conditions of Proposition 1.6.16 it is enough to have the following
estimate:

4
∫

R2
|d(x) + c(y)|%(x, y) dx dy <

∫
R2

[
%1(x)2 + %2(y)2

]
%(x, y) dx dy.

1.6.18. Remark. Under the assumptions of Proposition 1.6.16 we have∫
Rd

div(%∇ϕ) dx = 0.

Hence the estimate in the condition of that proposition can be replaced by the
following one:

Lµϕ ≥ 0 and
∫

Rd

|∇ϕ|2% dx+ 2 sup
x∈Rd

|ϕ(x)|
∫

Rd

(a,∇ϕ) dx > 0.

It should be noted that it remains unknown whether the equation L∗µ = 0
can have only finitely many (but more than one) linearly independent probability
solutions in the case of smooth b. For singular b such examples can be easily
constructed on the real line.
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1.7. Uniqueness problems

Here we give sufficient conditions on A and b that ensure that MA,b
ell contains

at most one element (the sets MA,b
ell and MA,b

ell,md are defined in (1.1.2) and (1.5.9),
respectively). For the best possible results it is necessary to separate the issue of
uniqueness from that of existence. We have seen above that in the case d = 1 for
any locally Lebesgue integrable function b the equation L∗I,b = 0 has at most one
solution in the class of probability measures. First we mention a result from [4].

1.7.1. Theorem. Let |b| ∈ Lploc(Rd) for some p > d ≥ 2. Then there exists at
most one measure µ ∈MI,b

ell such that its density % has the property that

|b%−∇%| ∈ L1(Rd).

No examples of non-uniqueness are known for the case A = I if b is smooth and
|b| ∈ L1(µ).

There are also results that do not use any assumptions on the logarithmic
gradient of a solution.

1.7.2. Theorem. Assume that conditions (A1) and (A2) in (1.5.2) are fulfilled
and that Ω is connected. Then

MA,b
ell,md 6= ∅ =⇒ #MA,b

ell = 1.

We note that the converse result is false for d = 1 in any case (see Remark 1.7.19
below).

The importance of this result is seen from the fact that the uniqueness of solu-
tion is ensured by information on some solution.

1.7.3. Corollary. Under the assumptions of Theorem 1.7.2, if there exists a
measure µ ∈ MA,b

ell invariant with respect to the corresponding semigroup (Tµt )t≥0,
then #MA,b

ell = 1.

1.7.4. Remark. Suppose that Ω is connected. Then, under the assumptions of
Theorem 1.7.2, #MA,b

ell ≤ 1 if and only if for any µ, ν ∈ MA,b
ell , one has |µ − ν| ∈

MA,b
ell . Indeed, the indicated condition yields that µ = ν, since otherwise |µ − ν|

must have a strictly positive continuous density. The converse is trivial.
This leads us to the following question: if a signed measure µ satisfies the

equation L∗A,bµ = 0, then does |µ| also satisfy the same equation? In general, this is
not true even if A = I and b is smooth. Indeed, as explained above, in the situation
where any probability measure satisfying the equation L∗A,bµ = 0 possesses a positive
continuous density, which is the case if aij ∈ W p,1

loc (Rd), |b| ∈ Lploc(Rd) with p > d,
and A is nondegenerate, the non-uniqueness of solutions to this equation in P(Rd)
always yields signed solutions whose absolute values are not solutions. Of course,
this is not surprising for locally integrable solutions. For example, the absolute value
of a harmonic function may not be harmonic, but for globally integrable solutions
this phenomenon is more interesting. It is worth noting here that if µ is an invariant
measure for a semigroup (Tt)t≥0 whose generator extends (LA,b, C∞0 ), then |µ| is
also an invariant measure, which again exhibits some difference between invariant
measures for semigroups and infinitesimally invariant measures. As we shall see
below, under our typical assumptions on A and b involving Lyapunov functions, the
equation L∗A,bµ = 0 has one solution in P(Rd). However, we do not know whether
in such a case the space of all solutions in the class of bounded signed measures is
one-dimensional.
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We know from the previous section that it can really happen for Ω = Rd that
#MA,b

ell > 1. The above results give conditions on A and b under which #MA,b
ell = 1.

Other results will be given below. However, the following question (already touched
upon in Remark 1.5.18) arises:

Can the semigroup (Tµt )t≥0 have invariant measures if µ is not invariant or can
it have invariant measures distinct from µ in the case when µ is invariant?

The following result from [33] answers this question in the case p > d+ 2 (this
result complements an earlier result from [4] and under only local assumptions gives
an affirmative answer to a question posed by S.R.S. Varadhan in [174]). The same
is likely to hold with our standard assumption that p > d.

1.7.5. Theorem. Suppose that µ ∈ MA,b
ell and that (A1) and (A2) in (1.5.2)

are fulfilled. Assume also that p > d + 2. Then, there exist sub-probability kernels
Kt( · , dy), t > 0, on Ω such that

Kt(x, dy) = pA,b(t, x, y) dy,

where pA,b(t, x, y) is a locally Hölder continuous nonnegative function defined on
the set (0,+∞)× Ω× Ω, and for every f ∈ L1(Ω, µ), the function

x 7→ Ktf(x) :=
∫

Ω

f(y) pA,b(t, x, y) dy

is a µ-version of Tµt f such that the function (t, x) 7→ Ktf(x) is continuous on the
set (0,+∞)× Ω. The function pA,b is positive if Ω is connected.

In addition, if Ω is connected and ν is a bounded Borel measure on Ω that is
invariant for (Kt)t ≥ 0, i.e.,

ν = K∗
t ν(dy) :=

∫
Ω

Kt(x, dy) ν(dx) ∀ t ≥ 0,

then ν = cµ for some constant c. In particular, if ν 6= 0, then µ is also invariant.
Hence (Kt)t≥0 cannot have invariant probability measures different from µ.

1.7.6. Remark. By this theorem, the semigroup (Tµt )t≥0 is strong Feller: it
takes bounded Borel functions to continuous functions. In addition, it is stochasti-
cally continuous in the sense that lim

t→0
Tµt IB(z,r)(x) = 1 for every z ∈ Ω and r > 0

such that B(z, r) ⊂ Ω. This follows from the last assertion in Theorem 1.5.7 and the
estimate Tµt IB(z,r) ≥ Tµt ψ, where ψ ∈ C∞0 (Ω) is such that 0 ≤ ψ ≤ 1, ψ(z) = 1 and
ψ = 0 outside B(z, r). If Ω is connected, we have the equivalence of all measures

B 7→ Tµt IB(x) = K∗
t δx(B) =

∫
B

pA,b(t, x, y) dy.

Therefore, if µ is invariant for (Tµt )t≥0 (which is not automatically fulfilled in our
situation!), then, by Doob’s theorem (see [69] or [67, §4.2]), for every Borel set
B ⊂ Ω we obtain

lim
t→∞

Tµt IB(x) = µ(B) ∀x ∈ Ω,

where the jointly continuous version of Tµt IB(x) is considered. Certainly, this yields
that lim

t→∞
‖Tµt f − f‖Lp(µ) = 0 for all f ∈ Lp(µ).

1.7.7. Remark. Thus, one of the main results of this section is the follow-
ing alternative under local assumptions (A1) and (A2), in case when the equation
L∗A,bµ = 0 has a solution µ in the class of probability measures: either µ is a unique
probability measure satisfying this equation and its associated semigroup (Tµt )t≥0 is
unique, and if µ is invariant for (Tµt )t≥0 (which is not implied automatically by the
uniqueness of µ even on the real line, see Remark 1.7.19), then there are no other
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invariant probability measures for (Tµt )t≥0; or no probability measure µ satisfying
this equation is invariant for its semigroup (Tµt )t≥0, and then for every such mea-
sure µ necessarily there are different associated semigroups in L1(µ). An important
qualitative conclusion is that, under reasonable local assumptions on A and b, one
has uniqueness of invariant probability measures for our special associated semi-
groups, but not uniqueness for the elliptic equation, and that better smoothness
of the coefficients does not help to obtain uniqueness of solutions for the elliptic
equation.

Let us make a simple observation on extreme points of the convex set MA,b
ell .

Let extMA,b
ell be the set of all µ ∈ MA,b

ell which cannot be written as a nontrivial
convex combination of two other elements of MA,b

ell .

1.7.8. Proposition. Let µ ∈MA,b
ell . Then the following are equivalent:

(i) µ ∈ extMA,b
ell ;

(ii) if % ∈ L∞(Ω, µ) and % · µ ∈MA,b
ell , then % = 1 µ-a.e.

1.7.9. Corollary. Assume that conditions (A1) and (A2) in (1.5.2) hold. Let
µ ∈ extMA,b

ell . Then for all ν ∈MA,b
ell \ {µ} the function dν/dµ is unbounded.

Clearly, it can happen that MA,b
ell = ∅ (for instance, if Ω = Rd, A = I, b ≡ 0).

But even in the case when Ω = Rd, A = I, and b is infinitely differentiable, it can
also happen that #MA,b

ell > 1, and, therefore, MA,b
ell,md is empty (see Example 1.6.3).

We now consider some examples borrowed from [47].

1.7.10. Example. Let conditions (A1) and (A2) in (1.5.2) be fulfilled and let Ω
be connected. Suppose that there exist an unbounded compact function V ∈ C2(Ω),
a number α > 0, and a compact set K such that

LA,bV (x) ≤ αV (x) for a.e. x ∈ Ω\K. (1.7.1)

Then #MA,b
ell ≤ 1. The analogous result holds for the operator LA,b.

For example, considering the function V (x) = ln(|x|2 + 1) on Rd and noting
that

LA,bV (x) =
2traceA(x)
|x|2 + 1

− 4〈A(x)x, x〉
(|x|2 + 1)2

+
2〈b(x), x〉
|x|2 + 1

,

we arrive at the following result.

1.7.11. Example. Let conditions (A1) and (A2) in (1.5.2) be fulfilled. Suppose
that Ω = Rd and that there exists a number C > 0 such that a.e. outside some ball
one has

− 2
1 + |x|2

〈A(x)x, x〉+ traceA(x) + 〈b(x), x〉 ≤ C|x|2 ln |x|.

Then #MA,b
ell ≤ 1. In particular, if A is uniformly bounded, then it suffices to have

the estimate
〈b(x), x〉 ≤ C|x|2 ln |x| a.e. outside some ball.

For example, an estimate
|b(x)| ≤ c+ c|x| ln |x|

is sufficient. However, an estimate |b(x)| ≤ c + c|x|(ln(2 + |x|))r with r > 1 is not
enough: in Example 1.6.3 we take a smooth function f with f ′(s) = |s|−1(ln s)−r

outside [−2, 2]. Here one can take any positive integrable function f ′, which will
give an example of non-uniqueness with |b(x)| ≤ C/f ′(|x|).
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1.7.12. Remark. (i) The same reasoning as in [168, Remark 1.11(ii)] shows
that if there exist a bounded function u ∈ C2(Rd) and a number α > 0 such that
u > 0 and LA,bu ≥ αu, then µ is not invariant for (Tµt )t≥0.

(ii) Let A satisfy condition (A1) and let bi ∈ W p,1
loc (Ω). Let V ∈ C3(Ω) be an

unbounded compact function and let θ(x) = |LA,bV (x)| + 1. Then the operator
LA/θ,b/θ = θ−1LA,b satisfies conditions (A1) and (A2) and condition (1.7.1), since
θ−1LA,bV ≤ 1. This shows that condition (1.7.1) can always be obtained by a
proper scaling of a given operator (with reasonable coefficients). In addition, we see
that there exists at most one probability density f ∈ L1(Ω, µ) such that f ·µ ∈MA,b

ell

and θf ∈ L1(Ω, µ). Indeed, (θ−1LA,b)∗(θf · µ) = 0.

In the next example, some information about µ itself is used to conclude that
µ is the only element in MA,b

ell . This result gives weaker sufficient conditions than
[168, Proposition 1.10(a)] (where the proof requires some corrections).

1.7.13. Example. Let conditions (A1) and (A2) in (1.5.2) be fulfilled. Assume
that Ω = Rd, µ ∈MA,b

ell , and

lim
j→∞

∫
j≤|x|≤j+1

[
|aik|+ |b− βµ,A|

]
dµ = 0

for all i, k. Then #MA,b
ell = 1. In particular, it suffices to have the integrability of

aik and |b− βµ,A| with respect to µ.
In the case of the operator LA,b on a connected complete Riemannian mani-

fold M , a sufficient condition for µ to be a unique measure in MA,b
ell is the relation

lim
j→∞

∫
Bj+1\Bj

[
‖A‖+ |b−Aβµ|

]
dµ = 0.

where Bj is the geodesic ball of radius j centered at a fixed point o ∈ M . In
particular, it suffices to have the integrability of ‖A‖ and |b − Aβµ| with respect
to µ.

Finally, we single out a special case of the above example, in which, however,
knowledge of βµ is not necessary.

1.7.14. Example. Let Ω = Rd and µ ∈ MA,b
ell . Assume that A and A−1 are

uniformly bounded, A is globally Lipschitzian, and let |b| ∈ Lploc(Ω), where p > d.
Let |b| ∈ L2(Rd, µ). Then #MA,b

ell = 1.

1.7.15. Remark. In the last example, one cannot omit the assumption that
|b| ∈ Lploc(Ω, dx), p > d, as is clear from Example 1.6.1. If in that example we take
µ = % dx with %(x) = Cx2 exp(−x2), where C is a normalizing constant, then µ
satisfies the equation L∗1,bµ = 0 with b(x) = 2x−1 − 2x. The probability measure
with density g such that g(x) = f(x)/2 if x < 0 and g(x) = 3f(x)/2 if x ≥ 0 is
another solution. For both solutions the operator L1,b is even symmetric and the
coefficient b is square-integrable with respect to both measures. One can verify that
these two measures are not merely solutions to the same elliptic equation, but are
also invariant for the same Markovian semigroup associated to the operator L1,b (in
the case under consideration such a semigroup is unique).

The results presented above have the following character: either it is asserted
that #MA,b

ell ≤ 1 or it is asserted that #MA,b
ell = 1, but the existence of some

solution is part of the hypotheses. However, the existence results presented in §1.4
in terms of Lyapunov functions yield also the uniqueness of solutions, as is clear
from the results of this section.
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1.7.16. Example. Let Ω = Rd, A = I, bi ∈ Lploc(Rd) and

lim sup
|x|→∞

|x|γ−1
[
2(γ − 1) + d+ 〈b(x), x〉

]
= −∞

for some γ ≥ 1. Then #MA,b
ell = 1.

1.7.17. Example. Suppose that Ω = R1, A is locally absolutely continuous and
positive, and b is locally Lebesgue integrable. If∫ 0

−∞

1√
A(s)

ds = ∞,

∫ +∞

0

1√
A(s)

ds = ∞, (1.7.2)

then #MA,b
ell ≤ 1.

1.7.18. Remark. Let A be a positive locally absolutely continuous function on
R1 such that (1.7.2) does not hold. Then one can show that there exists a locally
integrable function b such that #MA,b

ell = ∞.

1.7.19. Remark. Let Ω = R1, A(x) = 1, and b(x) = −2x − 6ex
2
. Then

MA,b
ell = {µ} with µ(dx) = π−1/2e−x

2
dx, but according to [168, Example 1.12] the

operator
(
LA,b, C

∞
0 (R1)

)
is not essentially m-dissipative on L1(R1, µ). Hence the

converse to Theorem 1.7.2 is not true in the case d = 1.

The presented uniqueness results assumed the Sobolev differentiability of aij .
The case of a general nondegenerate measurable diffusion coefficient has not been
studied. For example, the uniqueness of solutions to the equation L∗A,bµ = 0 with
uniformly bounded Borel A,A−1, b has not been studied. It is worth noting that if
aij and bi are locally Hölder continuous, detA > 0, and a probability measure µ
is invariant for the semigroup (Tµt )t≥0 associated with LA,b, then it has a density
locally uniformly separated from zero and hence is a unique invariant measure (see,
e.g., [122, §8.1]).

Let us briefly discuss the so-called symmetric case, that is, the case b = βA,µ
(or b = Aβµ for operators in divergence form). If A = I, then b is just ∇%/%. This
case has attracted particular attention in the literature since the operator L = LI,b

becomes symmetric nonpositive. In addition to the L1-uniqueness of this operator,
its essential self-adjointness on C∞0 (Ω) has also been intensively studied. Various
results can be found in [32], [53], [71], [72], [103], [117], [119], [151], [168], and in
the references therein. We merely note that, as shown in [32], if Ω = Rd and A = I,
then our usual assumption |b| ∈ Lploc(Rd) with p > d is sufficient for the essential
self-adjointness (if d > 3, then a somewhat weaker local condition is shown to be
sufficient in [117]; for instance, in terms of Lploc it suffices that p = d). Further
improvements are obtained in [103], where the following result is established. Let
% ≥ 0 be such that

√
% ∈W 2,1

loc (Rd) and∇%/% ∈ L4
loc(Rd, % dx). Suppose additionally

that for every ball B0 there is ε > 0 such that

sup
B⊂B0

(
|B|−1

∫
B

%(x)1+ε dx
)(
|B|−1

∫
B

%(x)−1−ε dx
)
<∞,

where sup is taken over all balls B ⊂ B0 and |B| is the volume of B. Then the
operator LI,b with b = ∇%/% is essentially selfadjoint on C∞0 (Rd) ⊂ L2(% dx). It is
still unknown whether the single condition ∇%/% ∈ L4

loc(Rd, % dx) is sufficient (but
such a global condition is sufficient). It was shown in [40] that in the symmetric
case, conditions (A1) and (A2) are sufficient for the essential self-adjointness of
LA,b on C∞0 (M), provided that M is complete with respect to the metric generated
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by A−1. It was also shown in [40] that under the same assumptions the stronger
Lp-uniqueness holds for the symmetric operator LA,b.

Suppose now that in the symmetric case we have A = I. Let b be a fixed
Borel measurable dx-version of the mapping ∇%0/%0 for some probability density
%0 ∈W 1,1

loc (Rd), where ∇%0/%0 := 0 on the set {%0 = 0}, i.e., we take a dx-version of
the logarithmic gradient βµ0 of the measure µ0 := %0 dx. Then µ0 := %0 dx ∈MI,b

ell .
Our precise specification of the character of a version is due to the fact that the
measure µ0 need not be equivalent to Lebesgue measure, so a µ0-version of b may
fail to be a dx-version. Clearly, |b| ∈ L1

loc(µ0). In this case we have the following
result (see [4]) with a much weaker local condition on b than in Theorem 1.7.1, but
again we need the global condition (1.5.1).

1.7.20. Theorem. Let b be of the indicated form and let |b| ∈ L2
loc(µ0).

(i) Let µ ∈ MI,b
ell with |b| ∈ L2

loc(µ) be such that % := dµ/dx satisfies (1.5.1).
Then

∇%
%

= b µ-a.e.

and (L,C∞0 (Rn)) is symmetric on L2(µ).
(ii) If |b| ∈ L1

loc(U) for some connected open set U ⊂ Rd whose complement has
Lebesgue measure zero, then µ0 is the only measure µ ∈MI,b

ell such that |b| ∈ L2
loc(µ)

and % = dµ/dx satisfies (1.5.1).

Assertion (i) gives conditions under which infinitesimally invariant measures are
symmetrizing. However, the following question arises: suppose that a probability
measure µ solves the equation L∗I,b = 0, where b = ∇V for some V ∈ C∞(Rd); is it
true that b coincides with the logarithmic gradient of µ and then µ = c expV dx?
As the following example suggested by S.V. Shaposhnikov shows, this is not true
without additional assumptions.

1.7.21. Example. Let us take the following smooth function on the plane:

V (x, y) = −
(
ln(1 + x2) + ln(1 + y2) + x+ x3/3 + y + y3/3

)
.

Then the measure µ with density %(x) = (1+x2)−1(1+ y2)−1 satisfies the equation
L∗I,bµ = 0 with b = ∇V . Indeed, this equation can be written as div (∇%− %b) = 0,
and for the indicated % we find that ∇% − %b = ((y2 + 1)−1, (x2 + 1)−1), which
obviously has divergence zero.

However, one can show that the answer is positive if either |∇V | ∈ L1(µ) or
expV ∈ L1(Rd).

Concerning uniqueness problems, see also [2], [179].

1.8. Global properties of densities

We now proceed to some global estimates related to the regularity of invariant
measures. Unlike Example 1.2.15, the assumptions on the order of integrability of
the drift may be considerably weakened in the case of the global integrability. The
following result was obtained in [31]. Suppose that a mapping A with values in the
space of positive symmetric matrices is uniformly bounded, uniformly Lipschitzian,
and that there is a number α > 0 such that

〈A(x)h, h〉 ≥ α〈h, h〉, ∀x, h ∈ Rd.
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Set

a := (a1, . . . , ad), aj :=
d∑
i=1

∂ia
ij .

1.8.1. Theorem. Let µ be a Borel probability measure on Rd, let b be a Borel
vector fields such that |b| ∈ L2(µ), and let L∗A,bµ = 0. Then

(1) µ = % dx, where % = ϕ2 and ϕ ∈W 2,1(Rd), in particular, % ∈ Ld/(d−1)(Rd);
(2) one has

1
4

∫
Rd

∣∣∣∇%
%

∣∣∣2% dx =
∫

Rd

|∇ϕ|2 dx ≤ 1
4α2

∫
|b+ a|2 dµ;

(3) the mapping ∇p/p coincides µ-a.e. with the orthogonal projection of the
vector field A−1(b− a) onto the closure of the set {∇u| u ∈ C∞0 (Rd)} in the space
L2(µ,Rd) equipped with the inner product 〈·, ·〉2 defined by

〈F,G〉2 :=
∫

Rd

〈AF,G〉 dµ.

In particular, if A = I, then these assertions hold with α = 1 and a = 0.

1.8.2. Corollary. Let a probability measure µ on Rd satisfy the equation
L∗I,bµ = 0, where |b| ∈ L2(µ). The operator LI,b on domain C∞0 (Rd) in L2(µ)
is symmetric precisely when b coincides µ-a.e. with the logarithmic gradient of µ.

This theorem increases the global integrability of %, but obviously cannot ensure
the uniform boundedness of %. The latter will be obtained below from the inclusion
% ∈ W p,1(Rd) with p > d under additional assumptions, but already now we can
use local estimates in §1.2 to establish a uniform bound on %.

1.8.3. Theorem. Let µ be a probability measure on B(Rd) such that L∗A,bµ = 0,
where A satisfies the conditions listed before the previous theorem and b satisfies the
following condition with some p > d:

either supx∈Rd ‖b‖Lp(B(x,1)) <∞ or supx∈Rd ‖b‖Lp(B(x,1),µ) <∞.

Then the continuous version % of the density of µ is uniformly bounded.
If |b| ∈ Lp(µ), then % ∈W p,1(Rd).

Proof. It follows from §1.2 that the maximum of % on B(z, 1) is estimated by
a number that depends only on supx

[
‖A(x)‖+‖A(x)−1‖

]
, the Lipschitzian constant

for A, and ‖b‖Lp(B(z,1)) (or ‖b‖Lp(B(z,1),µ) in the second case), hence is majorized
by a number independent of z. If |b| ∈ Lp(µ), then the W p,1-norm of % on a cube
K with unit edge length is estimated by C(‖%‖L1(Q) + ‖b‖Lp(Q,µ)), where Q is the
cube with the same center and doubled edge, and C does not depend on the center.
Hence the W p,1-norm of % is finite on the whole space. �

The last assertion will be strenthened below.
Our next global elliptic regularity result employs the following uniform local

condition on A. For aij ∈W 1,1
loc (Rd) we set

ΘA(x) :=
d∑
j=1

∣∣∣ d∑
i=1

∂xi
aij(x)

∣∣∣.
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For given p > 1 and γ > 0 let

q = q(d, p, γ) =


d if p > d/(d− 1),
d+ γ if p = d/(d− 1),
p′ = p/(p− 1) (> d) if p < d/(d− 1).

We say that A satisfies condition (C1) for p > 1 if aij ∈W 1,1
loc (Rd) and

lim
r→0

sup
z∈Rd

∫
B(z,r)

Θq
A(x) dx = 0, (1.8.1)

where q is defined above (in the case p = d/(d − 1) this equality must be fulfilled
with q = d+ γ for some γ > 0).

We observe that this condition is weaker than

lim
r→0

sup
z∈Rd

∫
B(z,r)

Θ̃q
A(x) dx = 0, (1.8.2)

where

Θ̃A(x) :=
d∑
j=1

d∑
i=1

|∂xi
aij(x)|.

It is clear that if there is p0 > d > 1 such that

sup
z∈Rd

∫
B(z,1)

d∑
i,j=1

|∇aij(x)|p0 dx <∞, (1.8.3)

then A satisfies condition (C1) (as well as (1.8.2)) for any p ∈ (1, p0) and is uniformly
continuous (even uniformly Hölder continuous) on all of Rd. In particular, both
properties hold if A is uniformly Lipschitzian.

It is worth noting that although in most of our results we assume that aij ∈
W p,1

loc (Rd), hence one can write LA,b as LA,b0 with bi0 := bi+∂xja
ij , the case of LA,b

does not always reduce to that of LA,b, because the global integrability conditions
on |b| and |∇aij | are different. In some situations, it is easier to deal with divergence
form operators, in others the standard form is more convenient. In the manifold
case, usually divergence form operators lead to more natural geometric objects.
Apparently, the most natural setting for most of the problems discussed should
appeal to the geometry related to A and to weighted Sobolev spaces. However,
the corresponding techniques, in particular, embedding theorems, is less developed
than the classical Sobolev theory.

1.8.4. Theorem. Let µ ∈ M(Rd) be such that L∗A,bµ = ν ∈ W p,−1(Rd) for
some p ∈ (1, d

d−1 ), |b| ∈ L1(|µ|). Suppose that A is uniformly continuous and
c1 · I ≤ A(x) ≤ c2 · I for some constants c1, c2 > 0. Then µ has a density in Lr(Rd)
for every r ∈ [1, p].

In the case of LA,b the same is true under the additional assumption that aij ∈
W 1,1

loc (Rd) for all i, j and ∂xia
ij ∈ L1(|µ|) for every j.

The next result is a generalization of [129, Theorem 3.1] and a partial gener-
alization of a result in [31]. We impose weaker assumptions than in [129], where
A−1 is bounded and |b| ∈ L2(µ) (in addition, in [129] the same local assumptions
as below are imposed along with a condition which is a bit stronger than (1.8.4));
as compared to [31] (where A is uniformly Lipschitzian, A and A−1 are uniformly
bounded, and |b| ∈ L2(µ)), we weaken the assumptions on A, but add an extra
local condition on b. That extra condition is not needed if we know in advance that
µ has a locally bounded density in W 2,1

loc (Rd). It should be noted that unlike most
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other results in this section, this theorem deals with probability measures and fails
for signed measures.

1.8.5. Theorem. Suppose that µ ∈ P(Rd) satisfies the equation L∗A,bµ = 0,
where the mapping A is continuous, detA > 0, aij ∈ W p,1

loc (Rd) with some p > d,
and |b| ∈ Lploc(µ). Suppose in addition that |A−1/2b| ∈ L2(µ) and that

lim inf
r→∞

∫
r≤|x|≤2r

[
r−2‖A(x)‖+ r−1ΘA(x)

]
µ(dx) = 0. (1.8.4)

Then µ has a density % ∈W 2,1
loc (Rd) such that∫

Rd

∣∣∣√A∇%
%

∣∣∣2 dµ ≤ ∫
Rd

|A−1/2b|2 dµ. (1.8.5)

In particular, under the additional assumption that A ≥ ε · I, ε > 0, one has√
% ∈ W 2,1(Rd), % ∈ Ld/(d−2)(Rd) if d > 2 and % ∈ Ls(Rd) for all s ∈ [1,∞)

if d = 2.

1.8.6. Remark. (i) Condition (1.8.4) is fulfilled if

|∇aij(x)| ≤ C0 + C1|x|.
If µ is known to have finite first moment, i.e., |x| ∈ L1(µ), then quadratic growth
of |∇aij | is allowed.

(ii) Condition (1.8.4) can be replaced by the assumption that for some r > 0
one has

lim inf
R→∞

∫
R≤|x|≤R+r

[
‖A(x)‖+ ΘA(x)

]
µ(dx) = 0.

This condition is weaker on the part of ΘA, but is stronger on the part of ‖A‖; for
uniformly bounded A, it is weaker.

(iii) Note also that if A is uniformly bounded and satisfies (C1) with (1.8.1),
then (1.8.4) is ensured by the assumption that lim inf

r→∞
rd−1µ

(
{|x| ≥ r}

)
= 0, which

is fulfilled, e.g., if |x|d−1 ∈ L1(µ). The latter can be effectively verified in terms of
A and b by the Lyapunov function method.

Estimate (1.8.5) can be regarded as the estimate∫ 〈∇%
%
,
∇%
%

〉
dµ ≤

∫
〈b, b〉 dµ

with respect to the Riemannian geometry generated by A. Such an estimate was
indeed obtained in [48], [49] for a broad class of Riemannian manifolds (concerning
diffusion operators on manifolds, see also [115]).

1.8.7. Theorem. Let M be a Riemannian manifold with Riemannian volume
measure λ such that the Ricci curvature is bounded from below and the Riemannian
volumes of balls of any fixed positive radius are bounded away from zero. Let µ be a
Borel probability measure on M such that L∗µ = 0, where Lf = ∆f + 〈b,∇f〉 and
|b| ∈ L2(µ). Then µ = % · λ, where

√
% ∈W 2,1(M) and∫

M

|∇%|2

%2
dµ ≤

∫
M

|b|2 dµ.

If in place of |b| ∈ L2(µ) we have |b| ∈ L2(λ), then∫
M

|∇%|2

%2
dλ ≤

∫
M

|b|2 dλ.
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Actually, the technical conditions imposed on M in [48] are even broader and
are expressed in terms of the heat semigroup. However, as noted in [49, Re-
mark 2.5(ii)], this estimate may fail for general Riemannian manifolds even if b = 0.
Namely, there exist complete connected Riemannian manifolds on which there are
nonconstant positive integrable harmonic functions; such a function defines a mea-
sure satisfying our equation with b = 0, and the above estimates fail for it. In the
situation of Theorem 1.8.5, we do not know whether the natural estimate (1.8.5)
holds without any extra local assumptions on b and without (1.8.4). However, there
is an important special case when (1.8.4) is not needed.

1.8.8. Theorem. Let A be continuous, detA > 0, aij ∈ W p,1
loc (Rd), and |b| ∈

Lploc(Rd) for some p > d. Suppose that there exists a quasi-compact function V ∈
W 2,2

loc (Rd) such that
LA,bV (x) → −∞ as |x| → +∞.

Assume also that there are numbers c1, c2 > 0 such that

LA,bV ≤ c1 − c2|A−1/2b|2

outside some ball. Then there exists a measure µ ∈ P(Rd) with a positive density
% ∈W p,1

loc (Rd) such that L∗A,bµ = 0 and |
√
A∇%|2/% ∈ L1(Rd).

If, in addition, there exists a positive Borel function θ on [0,+∞) such that
lim
t→∞

θ(t) = +∞ and

LA,bV ≤ c1 − c2θ(|A−1/2b|)|A−1/2b|2

outside some ball, then |A−1/2b| ∈ L2(µ) and (1.8.5) holds.

1.8.9. Theorem. Let µ ∈M(Rd) be such that L∗A,bµ = ν. Suppose that
(a) A ≥ εI with some ε > 0,

aij ∈Wα,1
loc (Rd), and either |b| ∈ Lαloc(Rd) or |b| ∈ Lαloc(|µ|), where α > d,

(b) |b|, traceA ∈ Lβ(|µ|), where β > 1,
(c) A satisfies condition (C1) (see (1.8.1)) for the number β in (b) and is uni-

formly continuous.
Assume also that the density % of µ belongs to Lβ0(Rd) for some β0 > 1, which

is automatically the case in (i)–(iii) below if A is bounded and ∂xia
ij ∈ Lβ(|µ|) for

each j.
(i) Let 1 < β < d and let ν ∈W θ,−1 for all θ ∈

(
1, d

d−β+1

)
. Then % ∈W r,1(Rd)

for all r ∈
(
1, d

d−β+1

)
. Moreover, if µ is nonnegative, then the same is true for

r = d
d−β+1 .
(ii) Let β = d and ν ∈W θ,−1(Rd) for all θ ∈ (1, d). Then % ∈W r,1(Rd) for all

r ∈ (1, d).
(iii) Let d < β ≤ α and ν ∈ W θ,−1(Rd) for all θ ∈ (1, β]. Then % ∈ W r,1(Rd)

for any r ∈ (1, β]. In particular, % ∈ L∞(Rd).
The same is true in the case of LA,b provided that one has, in addition, ∂xi

aij ∈
Lβ(|µ|) for each j.

1.8.10. Corollary. Let µ ∈ P(Rd) satisfy the equation L∗A,bµ = 0. Suppose
that there is a number α > d such that |b|, traceA ∈ Lα(µ), aij ∈ Wα,1

loc (Rd) are
uniformly continuous, (C1) and (1.8.4) hold, and A ≥ εI, ε > 0. Then µ = % dx,
where % ∈Wα,1(Rd). In particular, % ∈ L∞(Rd).

In particular, the conclusion holds true if one has (1.8.3) and

A ≥ εI, |b| ∈ Lα(µ), traceA ∈ Lα(µ), (1 + |x|)−1ΘA ∈ L1(µ).
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The case β = 1 in the above theorem has not been studied so far. In particular,
it is unknown whether % ∈ W 1,1(Rd), i.e., |∇%/%| ∈ L1(µ), if |b| ∈ L1(µ) and µ is
a probability measure satisfying the equation L∗I,bµ = 0. If |b| ∈ L2(µ), then this
is true by Theorem 1.8.1. In addition, it is unknown whether in the same case we
have |∇%/%| ∈ Lp(µ) if |b| ∈ Lp(µ) and p 6= 2. Additional sufficient conditions for
this are given in §1.9. So, without any additional assumptions such as the existence
of Lyapunov functions or bounds on the coefficients, the inclusion % ∈ W 1,1(Rd) is
established so far only under the assumption that |b| ∈ L2(µ).

It is clear that % may not belong to the class W p,2 unless we require certain
regularity of b. The following theorem extends [129, Theorem 4.7], where somewhat
stronger assumptions on A were employed.

1.8.11. Theorem. Suppose that α ≥ 2d, A ≥ εI with ε > 0, aij , bi ∈Wα,1
loc (Rd),

A is uniformly continuous and satisfies condition (C1) for α. Let µ ∈ P(Rd) satisfy
L∗A,bµ = ν, where |b|, traceA ∈ Lα(µ) and ν ∈ Lr(Rd) for all r ∈ (1, α]. Assume
also that div b ∈ Lα(µ) and |∇aij | ∈ Lθ(µ), where θ ≥ max(2d2, α). Then µ = % dx,
where % ∈ W r,2(Rd) for all r ∈ (1, α/2). If α > 2d, then % ∈ Wα/2,2(Rd) and
|∇%| ∈ L∞(Rn).

If aij , |∇aij | ∈ L∞(Rd), then these assertions are true for any solution µ from
the class of all measures of bounded variation.

We now turn to pointwise bounds of solutions. The idea is simple: in order
to show that |%(x)| ≤ CΨ(x) for some positive function Ψ, one has to consider the
measure µ0 with density %/Ψ and verify that this measure satisfies an equation of
the type considered in Theorem 1.8.9. This idea was employed in [129] in the case
of exponential functions. For further developments we refer to the paper [34], where
the following results were obtained. Case (iii) of Example 1.8.13 below gives the
bound from [129] under slightly weaker assumptions.

1.8.12. Theorem. Suppose that µ is a probability measure satisfying the equa-
tion L∗A,bµ = 0, where A and b satisfy hypotheses (a)–(b) of Theorem 1.8.9 for some
α = β > d. Let Φ ∈ W 1,1

loc (Rd) be a positive function such that for some θ > d and
all j = 1, . . . , d one has

Φ ∈ L1(µ), |∇Φ| ∈ Lθ(µ), ∂xi
aij ∈ Ld(µ).

Then the density % of µ satisfies the estimate %(x) ≤ CΦ(x)−1 with some constant C.

We shall now see that the existence of polynomial or exponential moments of
solutions yield a corresponding decay of densities at infinity.

1.8.13. Example. Suppose that µ ∈ P(Rd) satisfies the equation L∗A,bµ = 0
and that A is uniformly Lipschitzian and A and A−1 are uniformly bounded. Fur-
thermore, assume that |b| ∈ Lp(µ) for some p > d.

(i) If Ψ ∈W 1,1
loc (Rd) is a positive function such that

Φ ∈ L1(µ), |∇Φ| ∈ Lθ(µ), θ > d,

then %(x) ≤ CΦ(x)−1.
(ii) Let k > 1 and suppose that |x|r ∈ L1(µ) for some r > (k − 1)d. Then,

letting Φ(x) = |x|k, we obtain %(x) ≤ C|x|−k.
(iii) Suppose that

exp(α|x|β) ∈ L1(µ), |b(x)| ≤ C0 + C1 exp(α0|x|β),
where α, β, C0, C1 > 0, and α0 < α/d. Then, for any κ < β/d, there is a number
C > 0 such that one has %(x) ≤ C exp(−κ|x|β).
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It is surprising that the above estimates, very rough at first glance, are in fact
sufficiently sharp. Below we shall see that there are lower bounds of the same order.

In a similar manner one obtains upper bounds on |∇%|.

1.8.14. Proposition. Suppose that in Theorem 1.8.12 we have additionally
Φ ∈W 1,2

loc (Rd) and

%|∇Φ| ∈ L∞(Rd), |b|, |∇Φ|, ∂xi
aij∂xj

Φ, LAΦ, |A∇Φ| ∈ Lr(µ), r > 2d.

Then |∇%(x)| ≤ CΦ(x)−1.

1.8.15. Example. Let µ ∈ P(Rd) satisfy the equation L∗A,bµ = 0, where A is
uniformly Lipschitzian, A and A−1 are uniformly bounded, and |b|,div b ∈ Lp(µ)
for some p > 2d.

(i) Let Φ(x) = |x|k, k ≥ 1, and let |x|m ∈ L1(µ), where m > 2d(k − 1). Then

|∇%(x)| ≤ C(1 + |x|)−k.
(ii) Let Φ(x) = exp(K|x|β) and let exp(M |x|β) ∈ L1(µ), where M > 2dK.

Then
|∇%(x)| ≤ C exp(−K|x|β).

By using the method of Lyapunov functions, one can give effective conditions for
the existence of polynomial or exponential moments for µ. For example, if A(x) ≤
ΛI and 〈b(x), x〉 ≤ −K < −Λd outside some ball, then letting V (x) = 〈x, x〉γ with
1 < γ < 1 + (K − Λd)/2, we obtain outside some ball

LA,bV (x) ≤ 2γ〈x, x〉γ−1
[
Λd+ 2(γ − 1) + 〈b(x), x〉

]
≤ −κ|x|2γ−2,

where κ > 0. Hence |x|2γ−1 ∈ L1(µ). Stronger decay of 〈b(x), x〉, e.g., the estimate
〈b(x), x〉 ≤ c1 − c2|x|r, implies the exponential integrability (see [39], [129]). Cer-
tainly, the required integrability of the coefficients can be also deduced from such
estimates provided we know certain bounds on the coefficients. It is worth noting
that some of the conditions on A employed above can be relaxed by using the results
in [107], [108], [109].

1.9. Lower estimates

In this section, following [42], where the proofs are given, we discuss lower
bounds for densities of solutions to elliptic equations of the form

L∗A,bµ = 0 (1.9.1)

for Borel measures µ on Rd, where L is an elliptic second order operator of divergence
form

Lϕ(x) := ∂xi
(aij(x)∂xj

ϕ(x)) + bi(x)∂xi
ϕ(x).

The interpretation of this equation is as usual: the functions aij and bi must be
integrable on every compact set in Rd with respect to the measure µ and, for every
ϕ ∈ C∞0 (Rd), we must have the equality∫

Rd

Lϕdµ = 0.

However, the latter can be understood in one of the following two ways.
(I) One has aij ∈W 1,1

loc (Rd), the functions aij , ∂xi
aij , and bi are Borel measur-

able and locally integrable with respect to |µ|, and∫
Rd

[aij∂xi∂xjϕ+ ∂xia
ij∂xjϕ+ bj∂xjϕ] dµ = 0. (1.9.2)
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(II) The measure µ possesses a density % in the class W 1,1
loc (Rd) such that the

functions aij∂xi
% and bi% are locally Lebesgue integrable and∫

Rd

[−aij∂xi
%∂xj

ϕ+ bi∂xi
ϕ%] dx = 0. (1.9.3)

Clearly, if the coefficients aij are locally Sobolev and the functions ∂xia
ij% are locally

integrable, then (1.9.3) can be written as (1.9.2). The divergence form of operators
is used only for convenience of formulations; under our standard assumptions on A
all the main results of this section can be easily rewritten for the operator LA,b.

As above, we assume that aij = aji and A(x) is positive.
In the next theorem we suppose that a nonnegative locally bounded measure

µ on Rd has a density % such that % ∈ W 2,1(U) for every ball U ⊂ Rd. Let the
measure µ satisfy equation (1.9.1) on Rd in the sense of (1.9.3), i.e., in Case (II),
where

L = ∂xi
(aij∂xj

) + bi∂xi
,

the matrix-valued mapping A = (aij)1≤i,j≤d is measurable, the functions ‖A(x)‖
and ‖A(x)−1‖ are locally bounded, and the coefficient b = (bi)i≤d is a measurable
locally bounded vector field. We recall that in the case where aij ∈ W p,1

loc (Rd)
and bi ∈ Lploc(Rd) for some p > d and A(x)−1 is locally bounded, any solution of
(1.9.1) in the sense of (1.9.2) automatically has a density in W p,1

loc (Rd), hence it also
satisfies (1.9.3).

Let V be a continuous increasing function on [0,∞) with V (0) > 0.

1.9.1. Theorem. Let |b(x)| ≤ V (|x|/θ), where θ > 1. Set

α(r) := sup
|x|≤r

‖A(x)−1‖, γ(r) := sup
|x|≤r

‖A(x)‖.

Then there exists a positive number K(d) depending only on d such that the contin-
uous version of the function % satisfies the inequality

%(x) ≥ %(0) exp
{
−K(d)(θ − 1)−1α(θ|x|)−1

(
γ(θ|x|) + V (|x|)|x|

)}
.

In particular, if ‖A(x)‖ ≤ γ and ‖A(x)−1‖ ≤ α, then there exists a positive number
K = K(d, α, γ, θ) such that the continuous version of the function % satisfies the
inequality

%(x) ≥ %(0) exp
{
−K

(
1 + V (|x|)|x|

)}
.

1.9.2. Example. Suppose that∑
i,j

|aij(x)|2 ≤ γ2 and A(x) ≥ α · I for all x ∈ Rd.

If, for some numbers c1, c2 > 0, for almost all x one has the estimate

|b(x)| ≤ c1|x|β + c2,

then there exists a constant K such that the following inequality holds:

%(x) ≥ %(0) exp
{
−K

(
1 + |x|β+1

)}
.

If we have
sup
x,i,j

[
‖A(x)‖+ ‖A(x)−1‖+ |∇aij(x)|

]
<∞,

|b(x)| ≤ c1|x|β + c2, lim sup
|x|→∞

|x|−β−1(b(x), x) < 0,

then we obtain the following two-sided estimate:

exp
{
−K1

(
1 + |x|β+1

)}
≤ %(x) ≤ exp

{
−K2

(
1 + |x|β+1

)}
.
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The upper estimate holds if

exp(M |x|β) ∈ L1(µ), |b(x)| ≤ C0 + C1 exp(M0|x|β), 0 ≤M0 < d−1M,

〈b(x), x〉 ≤ c0 − c1|x|β , c1 > Mβ sup
x
‖A(x)‖,

where M > 0 is sufficiently small. For example, if A = I and bi(x) = xi, then
the measure with density %(x) = exp(−|x|2/2) is a solution. The aforementioned
results ensure the estimate

exp(−K1(1 + |x|2)) ≤ %(x) ≤ exp(−K2(1 + |x|2))

with some numbers K1,K2 > 0, which gives a sufficiently adequate description of
the decay at infinity, although it does not yield the precise asymptotics.

It should be noted that the hypothesis that lim sup
|x|→∞

|x|−β−1〈b(x), x〉 < 0 is only

needed to ensure the integrability of exp(M |x|β) and can be replaced by the latter
(however, its advantage is that it is expressed explicitly in terms of A and b).

The presented results generalize the results obtained in [129], where the theory
of nonlinear equations (in particular, well-known results of Bernstein) was employed,
which required certain additional assumptions on A.

By using the obtained estimates we can give effectively verified conditions for the
membership of the logarithmic gradient ∇%/% of the measure µ in Lp(µ). In the case
p = 2 simple sufficient conditions were obtained in [37], [31] and presented above.
The first general result for p > 2 was established in [129] (a special was considered
in [61]). The condition from [42] presented in the theorem below improves this
result since we do not require the differentiability of the drift coefficient and assume
lower regularity of the diffusion coefficient (it is assumed in [129] that aij ∈ C3(Rd)
and b ∈ C2(Rd)). This weakening of the conditions on the coefficients became
possible due to the fact that, unlike in [129], the proof in [42] did not use methods
of the theory of nonlinear equations.

In the next theorem and its corollaries we suppose that µ is a probability mea-
sure on Rd with a continuous positive density % satisfying the elliptic equation (1.9.1)
in the sense of (1.9.2), i.e., we deal with Case (I). In particular, the weighed Sobolev
class W p,1(µ) is well-defined.

1.9.3. Theorem. Let aij ∈ C0,δ(Rd) ∩ W p0,1
loc (Rd), α · I ≤ A ≤ γ · I, where

α, γ, δ > 0 and p0 > d, and let lim
r→0

sup
x
‖∂xia

ij‖Ld(U(x,r)) = 0 (the latter holds if

A is Lipschitzian). Let a positive continuous function Φ ∈ W 1,1
loc (R1) increase on

[0,+∞) such that Φ(N + 1) ≤ CΦ(N)1+ε for some C, ε > 0, and let the functions
Φ(|x|) and Φ′(|x|)p1 with some p1 > d be integrable with respect to the measure µ
on Rd. Suppose also that there exist numbers C0 > 0, θ > 1, p > 1, and γ ∈ [0, 1/d)
such that

|b(x)| ≤ C0Φ(|x| − θ)γ , |∇aij(x)|d ≤ C0Φ(|x|),
∞∑
N=1

Nd−1Φ(N)−q <∞, where q := 1− γ(p+ εd) > 0.

Then ln % ∈W p,1(µ).

1.9.4. Corollary. Let aij ∈ C0,δ(Rd) ∩W p0,1
loc (Rd), α · I ≤ A ≤ γ · I, where

α, γ, δ > 0 and p0 > d > 1, and let lim
r→0

sup
x
‖∂xi

aij‖Ld(U(x,r)) = 0. Let p > 1
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be given. Suppose that for some M > 0 and β > 0 the function exp(M |x|β) is
integrable with respect to the measure µ and that

|b(x)| ≤ C0 exp
{
κ|x|β

}
, |∇aij(x)| ≤ C0 exp

{
κ|x|β

}
, where 0 < κdmax(p, d) < M .

Then ln % ∈W p,1(µ). In particular, if for every κ > 0 there is a number C(κ) such
that

|b(x)|+ |∇aij(x)| ≤ C(κ) exp
{
κ|x|β

}
,

then ln % ∈W p,1(µ) for all p ∈ [1,+∞).

Taking Φ(r) = rβ + 1, one proves the following result.

1.9.5. Corollary. Let aij ∈ C0,δ(Rd) ∩W p0,1
loc (Rd), α · I ≤ A ≤ γ · I, where

α, γ, δ > 0 and p0 > d > 1, and let lim
r→0

sup
x
‖∂xia

ij‖Ld(U(x,r)) = 0. Let p > 1.

Suppose that for some β > d the function |x|βd is integrable with respect to the
measure µ and that

|b(x)| ≤ C0+C0|x|βγ , |∇aij(x)| ≤ C0+C0|x|β/d, where 0 < γ < d−1, γ < 1− dβ−1.

Then ln % ∈W p,1(µ) for every p ∈
[
1, (β − d)β−1γ−1

)
.

We now consider lower bounds without assumptions on the growth of the drift
coefficient, but using instead a certain integrability of the drift with respect to
the solution. Until the end of this section we assume that the matrix A(x) =
(aij(x))1≤i,j≤d is symmetric and satisfies the following condition:

(G1) for some p > d the functions aij belong to the class W p,1
loc (Rd) and there

exist numbers m,M > 0 such that for all x, y ∈ Rd we have

m|y|2 ≤
∑

1≤i,j≤d

aij(x)yiyj ≤M |y|2.

If in addition to Condition (G1) we have bi ∈ Lploc(µ) (or bi ∈ Lploc(Rd)), then µ
is given by a continuous density % ∈W 1,p

loc (Rd), which we shall deal with. Equation
(1.9.1) can be written as the equality

∂xi

(
aij∂xj%

)
− ∂xi(b

i%) = 0,

understood in the weak sense.
The method of obtaining lower bounds discussed above is not applicable in the

case of locally unbounded b. It has been shown in [44] that without any restrictions
on the growth of b one can obtain estimates of the form

%(x) ≥ e−f(c1|x|+ c2), (1.9.4)

where c1, c2 are some positive numbers and the function f ∈ C2
(
[0,∞)

)
satisfies

the conditions
(H1) f(z) > 0, f ′(z) > 0, f ′′(z) > 0 if z > 0;
(H2) the function e−f(z) is convex (that is, (e−f )′′ ≥ 0) on the set z > z0 for

some z0 ≥ 0 and it decreases to 0 as z → +∞.

Namely, for obtaining estimate (1.9.4) it suffices, to require the following con-
ditions in addition to (G1):

(G2) |b| exp(ψ(|b|)) ∈ Lp(µ), where p > min{2, d} and ψ is a nonnegative
strictly increasing continuous function mapping [0,∞) onto [0,∞) such that

(H3) ψ−1(z) ≤ Nf ′(f−1(z)) for some N > 0 and all z > 0.
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Let us give several typical examples of the functions f and ψ. Let δ > 0 be a
given number. If f(z) = ez, then one can take ψ(z) = δ · z. In this case we obtain
the estimate

%(x) ≥ exp(−c̃2 exp(c̃1|x|)).
If f(z) = zr/(r−1) with r > 1, then ψ(z) = δ · zr is suitable. Then

%(x) ≥ c̃2 exp(−c̃1|x|r/(r−1)).

In the case where d = 1, A = 1, and b = %′/% such estimates were obtained in
[140] (and extended to the case d > 1 in [126] still with the assumption that
A = I and b = ∇%/%). It follows from (1.9.4) that the solution density has no
zeros under a condition weaker than the exponential integrability of |b| (sufficiency
of the latter condition was proved in [35]). For example, if we set f(z) = ee

z
and

ψ(z) = δ · z

| ln z|κ
for z > 2 and 0 < κ < 1, then we obtain a condition that is

sufficient for positivity but is weaker than the exponential integrability of |b|. If
d = 1, A = 1, and b = %′/%, then this new sufficient condition for positivity is close
to the one obtained in [153], and in a sense the latter cannot be improved.

Let V = ef/f ′.
Since (e−f )′′ = [(f ′)2 − f ′′]e−f ≥ 0 on [z0,+∞), we have

V ′ = [(f ′)2 − f ′′]e−f (f ′)−2 ≥ 0 on [z0,+∞).

In addition, V increases to +∞ since the function 1/V = f ′e−f cannot be separated
from zero on [0,+∞). It follows from conditions (H1) and (H3) that f ′(y) → +∞
as y → +∞. Therefore, there exists y0 > max{z0, 1} such that f ′(y) ≥ 1 and
V (y) ≥ eψ(0) whenever y > y0. Let τ0 := exp{−f(ln y0)}. Then 0 < τ0 < 1.

We fix a cub Q of unit edge. Let

Λ := min{τ0(2‖%‖L∞(Rd))
−1, 1}.

1.9.6. Theorem. Let µ = % dx be a solution of equation (1.9.1), where the coef-
ficients aij , bi satisfy conditions (G1), (G2) and let conditions (H1), (H2), and (H3)
be fulfilled. Then there exist numbers C > 0 and α > 0 such that for every measur-
able subset E ⊂ Q one has

sup
x∈Q

exp(f−1(| ln(Λ%)|)) ≤ C
(∫

E

exp(−αf(| ln(Λ%)|) dx)
)−1/α

,

where the numbers C and α depend only on the following quantities:

p, N , N1, τ0, m, M , d, ‖%‖L∞(Rd),
∫

Rd

|b|pepψ(|b|)% dx.

1.9.7. Theorem. Let µ = % dx be a solution of equation (1.9.1), where the coef-
ficients aij , bi satisfy conditions (G1), (G2) and let conditions (H1), (H2), and (H3)
be fulfilled. Then there exist numbers c1 > 0 and c2 > 0 such that

%(x) ≥ e−f(c1|x|+ c2), x ∈ Rd.

This result gives lower bounds for the density of the stationary measure of the
diffusion process with diffusion coefficient

√
2A and drift b.

1.9.8. Example. Let condition (G1) be fulfilled and let a number r > 1 be
given.

(i) In order to obtain the estimate

%(x) ≥ c̃2 exp(−c̃1|x|r/(r−1)), (1.9.5)

it suffices to have exp(δ|b|r) ∈ L1(µ) for some δ > 0.
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Indeed, the function ψ(z) = δzr/(2p) satisfies condition (H3) with

f(z) = zr/(r−1).

There exists a number C(δ) > 0 such that |z| ≤ C(δ) exp(δ|z|r/2). Then(
|b| exp(δ|b|r/(2p))

)p ≤ C(δ)p exp(δ|b|r)
and so |b| exp(δ|b|r/(2p)) ∈ Lp(µ), that is, condition (G2) is fulfilled.

(ii) In order to obtain the estimate

%(x) ≥ exp(−c̃2 exp(c̃1|x|)), (1.9.6)

it suffices that exp(δ|b|) ∈ L1(µ) for some δ > 0.
Indeed, whenever 0 < δ1 < δ, the functions ψ(z) = δ1 · z and f(z) = ez satisfy

(H3) with N = 1/δ1 and (G2) is fulfilled as well.

1.9.9. Example. Let µ = % dx be a probability measure and let % ∈W 1,1
loc (Rd).

Then µ obviously satisfies equation (1.9.1) with A = I and b = ∇%/%, where b(x) :=
0 if %(x) = 0. Therefore, to get estimate (1.9.5) it suffices that exp(δ|∇%/%|r) ∈
L1(µ) for some δ > 0, and estimate (1.9.6) follows from the inclusion exp(δ|∇%/%|) ∈
L1(µ) for some δ > 0.

For d = 1 the assertion in the last example was obtained in [140] (where in the
case r = 1 the formulation contains a minor inaccuracy: c̃1 is replaced by 1; but the
function %(x) = exp

(
− exp(2|x|)

)
shows that one cannot get rid of c̃1). For d > 1

and r = 1 the assertion of the last example is given in [22, Exercise 6.8.4]; in [126]
the case r > 1 is considered. However, the methods of [140] and [126] employ in a
very essential way the fact that b is ∇%/%.



CHAPTER 2

Parabolic equations for measures

2.1. A priori estimates

In this chapter we consider parabolic equations of the form

L∗µ = 0 (2.1.1)

for Borel measures µ on Rd × (0, 1). Here L is a second order parabolic operator

Lu(x, t) :=
∂u(x, t)
∂t

+ aij(x, t)∂xi
∂xj

u(x, t) + bi(x, t)∂xi
u(x, t),

where A(x, t) := (aij(x, t))i,j≤d is a nonnegative symmetric matrix of dimension d
and b(x, t) := (bi(x, t))i≤d is a vector in Rd, and the interpretation of our equation
is as follows. We shall say that a family of Radon measures µ = (µt)t∈(0,1) on Rd
satisfies the weak parabolic equation (2.1.1) if the functions aij and bi are integrable
on every compact set in Rd×(0, 1) with respect to the measure µ(dt dx) := µt(dx) dt
on Rd × (0, 1) (below by µ we denote also the measure µt(dx) dt) and, for every
function u ∈ C∞0 (Rd × (0, 1)), one has∫ 1

0

∫
Rd

Lu(x, t)µt(dx) dt = 0. (2.1.2)

Therefore, the interpretation is the same as in the elliptic case. For divergence form
operators

Lu(x, t) :=
∂u(x, t)
∂t

+ ∂xi
(aij(x, t)∂xj

u(x, t)) + bi(x, t)∂xi
u(x, t)

the equation
L∗µ = 0

is defined similarly (here, as in §1.9, two cases are possible).
We shall say that µ satisfies the initial condition µ0 := ν at t = 0 if ν is a

measure on Rd and

lim
t→0

∫
Rd

ζ(x)µt(dx) =
∫

Rd

ζ(x) ν(dx) (2.1.3)

for all ζ ∈ C∞0 (Rd). In this case we write µ = (µt)t∈[0,1).
The same definitions are introduced in the case where Rd is replaced by an open

set Ω ⊂ Rd or by an open set in a Riemannian manifold. In particular, in (2.1.2)
we take u ∈ C∞0 (Ω× (0, 1)) and in (2.1.3) we take ζ ∈ C∞0 (Ω).

Equation (2.1.1) is satisfied for the transition probabilities of the diffusion pro-
cess with the diffusion matrix

√
2A and drift b provided such a diffusion exists and

the coefficients A and b satisfy certain conditions (see, e.g., [170, Chapters 2, 3]; the
conditions there can be further relaxed on the basis of recent progress in the theory
of equations with VMO coefficients, see, e.g., [107], [108], [109]). This diffusion
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process may exist in different settings, for example, as a suitable solution to the
stochastic differential equation

dξt = σ(ξt)dwt + b(ξt)dt, A =
1
2
σσ∗. (2.1.4)

However, (2.1.1) can be considered regardless of any probabilistic assumptions.
Moreover, a study of this equation in a purely analytic setting may be useful for
constructing an associated diffusion (see [168], [169]).

It is worth noting that (2.1.2) can be written as
∂µ

∂t
= ∂xi

∂xj
(aijµ)− ∂xi

(biµ)

in the sense of distributions on Rd× (0, 1). It turns out that under mild restrictions
on A and b specified below, any solution µ admits a density % possessing certain
Sobolev regularity with respect to x such that this equality can be further rewritten
in terms of classical weak solutions.

For a function u on (0, 1)× Rd, we set

∂tu(x, t) := ∂u(x, t)/∂t, ∇u(x, t) = (∂x1u(x, t), . . . , ∂xd
u(x, t)).

This section is devoted to some a priori estimates of solutions; the proofs can
be found in [26].

2.1.1. Lemma. If µ = (µt)t∈[0,1) satisfies (2.1.2) and (2.1.3), then, for every
ζ ∈ C∞0 (Rd), for almost all t ∈ [0, 1) one has∫

Rd

ζ(x)µt(dx)− lim
ε→0

∫ t

ε

∫
Rd

Lζ(x, s)µs(dx) ds =
∫

Rd

ζ(x) ν(dx). (2.1.5)

If, for each ζ ∈ C∞0 (Rd), the function t 7→
∫

Rd

ζ(x)µt(dx) is continuous on [0, 1),

then (2.1.5) holds for all t ∈ [0, 1) and is equivalent to (2.1.1) and (2.1.3). The same
is true in the case when our equation is considered on an open set.

Note that if every µt is a probability measure and there is a µ-integrable function
Θ such that Lζ(x, s) ≤ Θ(x, s) µ-a.e., then the function

h : s 7→
∫

Rd

Lζ(x, s)µs(dx)

is integrable on [0, t] (so that the limit of the integrals over [ε, t] equals the integral
over [0, t]). Indeed, in this case the function h, which coincides with the derivative
of the continuous version of the function

f(s) :=
∫

Rd

ζ(x)µs(dx)

on (0, 1), is majorized by the integrable function s 7→
∫

Rd

Θ(x, s)µs(dx). Since f is

bounded, this implies that the continuous version of f has a finite limit at 0 and is
absolutely continuous on [0, 1]. Certainly, all this is true if the functions aij and bi

are µ-integrable on every set B × [0, 1], where B is a ball in Rd.
It is worth noting that one of the reasons why we require below that all the s

measures µt (and not just almost all) be probabilities is that this is the case when
one deals with transition probabilities. From the analytic point of view, this is
not essential, of course. Another reason is that, as we shall see, this assumption
simplifies certain technical issues.

The following lemma from [26] is a straightforward extension of [24, Lemma
2.2], where M = 0 and Θ is a constant.
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2.1.2. Lemma. Let µ = (µt)t∈[0,1) be a family of probability measures on Rd
satisfying (2.1.1) and (2.1.3), where ν is a probability measure on Rd. Suppose that
there exist a µ-integrable function Θ, a nonnegative function Ψ ∈ C2(Rd), and a
number M such that Ψ ∈ L1(ν), lim

|x|→∞
Ψ(x) = +∞, and

LΨ(x, t) ≤ Θ(x, t) +MΨ(x) µt dt-a.e. (2.1.6)

Then, for a.e. t ∈ [0, 1), one has∫
Rd

Ψ dµt ≤
∫

Rd

Ψ dν +
∫ t

0

∫
Rd

Θ dµs ds

+M exp(Mt)
∫ t

0

exp(−Ms)
[∫

Rd

Ψ dν +
∫ s

0

∫
Rd

Θ dµr dr
]
ds

≤ (MeM + 1)
[
‖Ψ‖L1(ν) + ‖Θ‖L1(µ)

]
. (2.1.7)

If M = 0 and Θ = K is constant, then, for a.e. t ∈ [0, 1), one has∫
Rd

Ψ(x)µt(dx) ≤ tK +
∫

Rd

Ψ(x) ν(dx). (2.1.8)

Furthermore, if the functions

t 7→
∫
ζ(x)µt(dx), where ζ ∈ C∞0 (Rd),

are continuous on [0, 1), then (2.1.7) holds for all t ∈ [0, 1), and in the case M = 0
so does (2.1.8).

If (2.1.1) and (2.1.3) are fulfilled on the open set {Ψ < c}, then the same
assertions hold with Rd replaced by {Ψ < c}. Finally, the assumption that every
µt is a probability measure can be replaced by the assumption that µt ≥ 0 and
‖µt‖ ≤ ‖ν‖.

2.1.3. Corollary. Let µ = (µt)t∈[0,1) be a family of probability measures on
Rd satisfying (2.1.1) and (2.1.3), where ν is a probability measure on Rd. Let Ψ ∈
C2(Rd) be a nonnegative function such that

lim
|x|→∞

Ψ(x) = +∞ and LΨ(x, t) ≤ C +MΨ(x) µt dt-a.e.,

where C ≥ 0 and M ≥ 0 are constants. Then one can find a nonnegative function
Ψ0 ∈ C2(Rd) such that

Ψ0 ∈ L1(ν), lim
|x|→∞

Ψ0(x) = +∞ and LΨ0(x, t) ≤ C +M µt dt-a.e.

Moreover, if M is a uniformly tight family of probability measures on Rd and for
every ν ∈ M there exists a solution µν = (µνt )t∈[0,1) of the problem L∗νµ

ν = 0,
µν0 = ν in the sense of (2.1.1) and (2.1.3), where each operator Lν satisfies the
same conditions as L, and for some nonnegative compact function Ψ ∈ C2(Rd) one
has

LνΨ(x, t) ≤ C +MΨ(x) µνt dt-a.e.,
then one can find a function Ψ0 as above such that

sup
ν∈M

esssup
t∈[0,1)

∫
Rd

Ψ0 dµ
ν
t ≤ C +M + sup

ν∈M

∫
Rd

Ψ0 dν <∞.

If the functions t 7→
∫
ζ dµt, where ζ ∈ C∞0 (Rd), are continuous on [0, 1], then

esssup can be replaced by sup. The same assertions are true in the case where Rd
is replaced by {Ψ < c}.
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Let us consider examples of how (2.1.6) can be verified in terms of the coeffi-
cients of L.

2.1.4. Example. (i) Suppose that

|aij(x, t)| ≤ c1 + c2|x|2, 〈b(x, t), x〉 ≤ c3 + c4|x|2

for some constants ci. Then, letting Ψ(x) := |x|2k, k > 0, we obtain LΨ ≤ C +CΨ
for a sufficiently large number C > 0. Consequently, if a solution µ exists and
|x|2k ∈ L1(µ0), then, for a.e. t, we have∫

Rd

|x|2k µt(dx) ≤ eC
∫

Rd

|x|2k µ0(dx) + CeC .

(ii) Suppose that

|aij(x, t)| ≤ c1 + c2 ln(|x|2 + 1), 〈b(x, t), x〉 ≤ c3 + c4|x|2 + c5|x|2 ln(|x|2 + 1),

for some constants ci. Then, letting Ψ(x) := ln(|x|2 + 1), we find that

∂xi
Ψ(x) = 2xi(|x|2 + 1)−1,

∂xj
∂xi

Ψ(x) = 2δij − 4xixj(|x|2 + 1)−2,

which yields

LΨ(x, t) = 2 traceA(x, t)− 4(|x|2 + 1)−2〈A(x, t)x, x〉+ 2(|x|2 + 1)−1〈b(x, t), x〉
≤ C + CΨ(x)

for a sufficiently large number C > 0. Consequently, if a solution µ exists and
ln(|x|2 + 1) ∈ L1(µ0), then, for a.e. t, we have∫

Rd

ln(|x|2 + 1)µt(dx) ≤ eC
∫

Rd

ln(|x|2 + 1)µ0(dx) + CeC .

Moreover, letting Ψ(x) = | ln(|x|2 + 1)|2, we also have LΨ ≤ C + CΨ, hence∫
Rd

| ln(|x|2 + 1)|2 µt(dx) ≤ eC
∫

Rd

| ln(|x|2 + 1)|2 µ0(dx) + CeC .

(iii) Suppose that

〈A(x, t)x, x〉 ≤ γ1 + α|x|2β , 〈b(x, t), x〉 ≤ γ2 − (2αck + ε)|x|2k+2β−2

with some positive constants γ1, γ2, α, β, c, k, ε. Let Ψ(x) = exp
(
c|x|2k

)
. Then

LΨ(x, t) = 2ck traceA(x, t)|x|2k−2Ψ(x) + 4ck(k − 1)〈A(x, t)x, x〉|x|2k−4Ψ(x)

+ (2ck)2〈A(x, t)x, x〉|x|4k−4Ψ(x) + 2ck|x|2k−2Ψ(x)〈b(x, t), x〉

≤ c0 − ε|x|2k+2β−2Ψ(x)

with some constant c0. Hence, if β ≥ 1 and Ψ ∈ L1(µ0), then

esssup
t∈[0,1)

∫
Rd

exp
(
c|x|2k

)
µt(dx) <∞.

Let us introduce the following conditions on A, b, p ∈ [1,+∞), and a bounded
open set B ⊂ Rd:

(CP1) there exist two numbers M1 = M1(B) > 0 and M2 = M2(B) such that
for all i, j one has

A(x, t) ≥M1 · I ∀ (x, t) ∈ B × (0, 1), sup
t∈(0,1)

‖aij( · , t)‖Wp,1(B) ≤M2.
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(CP2) there exists M3 = M3(B) such that for all i one has

sup
t∈(0,1)

‖bi( · , t)‖Lp(B) ≤M3.

It follows from (CP1) and the Sobolev embedding theorem that if p > d, then
every function aij has a jointly measurable version such that all functions x 7→
aij(x, t), t ∈ (0, 1), are Hölder continuous of order 1 − d/p and bounded on B
uniformly with respect to t (their Hölder and sup-norms on B are estimated by a
constant depending on p, d, B, and M2). Below we use the same notation aij for
these particular versions.

The main existence result presented below is based on the following lemma.
Let

b0 := A−1/2(b− Γ), Γ := (Γ1, . . . ,Γd), Γj = ∂xia
ij .

2.1.5. Lemma. Let Ω be a bounded open set in Rd with a C1-boundary and
volume |Ω| and let the functions aij and bi be uniformly bounded on Ω × (0, 1)
along with their first and second derivatives in the first argument. Suppose that
µ = %(x, t) dx dt, where every function %( · , t), t > 0, is nonnegative on Ω with
bounded second order derivatives in x on Ω× (0, 1), and satisfies

∂%(x, t)
∂t

= ∂xi∂xj (a
ij%)− ∂xi(b

i%)

in Ω×(0, 1). Suppose also that the functions % and ∂xi
% are continuous on Ω×[0, 1],

%(x, 0) = %0(x), where %0 ∈ C1
0 (Ω), and

〈A∇%(x, t) + [Γ(x, t)− b(x, t)]%(x, t),n∂Ω(x)〉 = 0, (x, t) ∈ ∂Ω× (0, 1),

where n∂Ω is the outward unit normal on ∂Ω. Then the following inequalities hold:∫
Ω

%(x, t)2 dx+
∫ t

0

∫
Ω

|
√
A∇%(x, s)|2 dx ds

≤
∫

Ω

%(x, 0)2 dx+
∫ t

0

∫
Ω

|b0(x, s)|2%(x, s) dx ds, (2.1.9)

∫
Ω

%(x, t)2 dx+
∫ t

0

∫
Ω

|
√
A∇%(x, s)|2 dx ds

≤ et/2
∫

Ω

%(x, 0)2 dx+
1
2
et/2‖b0‖4L4(Ω×[0,1]). (2.1.10)

If A(x, t) ≥ α · I for some number α > 0 and each %( · , t), t ∈ [0, 1], is a probability
density or, more generally, 0 < µt(Ω) ≤ µ0(Ω), then∫ 1

0

∫
Ω

|
√
A∇%(x, t)|2%(x, t)−1 dx dt

≤ 2
∫ 1

0

∫
Ω

|b0(x, t)|2 %(x, t) dx dt+ 2
∫

Ω

%0(x) ln %0(x) dx+ 2|Ω|. (2.1.11)

2.1.6. Corollary. In the situation of the above lemma, there is a constant
C(Ω) such that∫ 1

0

(∫
Ω

|%(x, t)|d/(d−2) dx

)(d−2)/d

dt

≤ C(Ω)
α

(∫ 1

0

∫
Ω

|b0(x, t)|2 %(x, t) dx dt+
∫

Ω

%0(x) ln %0(x) dx+ |Ω|
)

+ 2|Ω|(2d−2)/d
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if d > 2. In the case d ≤ 2 a similar estimate holds with any r < ∞ in place
of d/(d− 2).

Finally, for every p > d, there is a constant C(Ω, p) such that∫ 1

0

∫
Ω

|
√
A∇%(x, t)|2%(x, t)−1 dx dt

≤ C(Ω, p) sup
t∈(0,1)

(∫
Ω

|b0(x, t)|p dx
)2d/(p−d)

+ 2
∫

Ω

%0(x) ln %0(x) dx+ C(Ω, p).

2.1.7. Corollary. Suppose that in Lemma 2.1.5 there exist a nonnegative
function Ψ ∈ C2(Rd) and a constant M such that Ω = {x ∈ Rd : Ψ(x) < c} and

LΨ(x, t) ≤M +MΨ(x) and |b0(x, t)|2 ≤ Ψ(x).

Then we have∫
Ω

%(x, t)2 dx+
∫ 1

0

∫
Ω

|
√
A∇%(x, t)|2 dx dt

≤ 2(MeM + 1)
∫

Ω

Ψ(x)%0(x) dx+ 2M(MeM + 1) +
∫

Ω

%0(x)2 dx,

∫ 1

0

∫
Ω

|
√
A∇%(x, t)|2%(x, t)−1 dx dt

≤ 2(MeM + 1)
∫

Ω

Ψ(x)%0(x) dx+ 2M(MeM + 1) + 2
∫

Ω

%0(x) ln %0(x) dx+ 2|Ω|.

In particular, this is true for Ψ(x) = |x|2k with k ≥ 1 provided that

traceA(x, t) ≤ C + C|x|2, |b0(x, t)|2 ≤ C + C|x|2k, 〈b(x, t), x〉 ≤ C + C|x|2.

2.2. Local regularity

Let J be an interval and let U be an open set in Rd. Let Hp,s(U, J) denote the
space of all measurable functions u on U × J such that u( · , t) ∈ Hp,s(U) and the
norm

‖u‖Hp,s(U,J) =
(∫

J

‖u( · , t)‖pHp,s(U) dt

)1/p

is finite. The space Hp,s
0 (U, J) is defined similarly with Hp,s

0 (U) instead of Hp,s(U),
and Hp′,−s(U, J) denotes its dual. In connection with parabolic equations, it is
useful to introduce also the following spaces. Let Hp,1(U, J) be the space of all
functions u ∈ Hp,1(U, J) with ∂tu ∈ Hp,−1(U, J) and finite norm

‖u‖Hp,1(U,J) = ‖∂tu‖Hp,−1(U,J) + ‖u‖Hp,1(U,J).

We denote by BR an open ball of radius R > 0 centered at some point in Rd
(in the case where the center is important we use the notation B(a,R)). Let
Hp,2;1

0 (BR, [0, T ]) denote the closure of the space of smooth functions u on the
cylinder BR,T := BR × [0, T ] that vanish on (∂BR × [0, T ])

⋃
(BR × {0}) (i.e., have

zero limits on this part of the boundary) with respect to the norm

‖u‖Hp,2;1
0 (BR,[0,T ]) = ‖u‖Lp(BR×[0,T ]) + ‖∂tu‖Lp(BR×[0,T ])

+ ‖∇xu‖Lp(BR×[0,T ]) +
d∑

i,j=1

‖∂i∂ju‖Lp(BR×[0,T ]).
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In this section, we extend the local regularity results in the previous chapter
to the parabolic case. The proofs of the presented results are given in [33]. Let us
start again with the existence of densities.

Let ΩT = Ω × (0, T ), T > 0, and let A( · , · ) =
(
aij( · , · )

)d
i,j=1

be a Borel
mapping on ΩT with values in the space of nonnegative symmetric operators on Rd.

2.2.1. Theorem. Let µ be a locally finite Borel measure on ΩT such that one
has aij ∈ L1

loc(ΩT , µ) and∫
ΩT

[
∂tϕ+ aij∂i∂jϕ

]
dµ ≤ C(sup

ΩT

|ϕ|+ sup
ΩT

|∇xϕ|)

for all nonnegative ϕ ∈ C∞0 (ΩT ). Then the following assertions are true.
(i) If µ is nonnegative, then (detA)1/(d+1)µ = % dx dt, where % ∈ L(d+1)′

loc (ΩT ).
(ii) If, on every compact set in ΩT , A is uniformly bounded, uniformly nonde-

generate, and Hölder continuous in x uniformly with respect to t, then µ = % dx dt,
where % ∈ Lrloc(ΩT ) for every r ∈ [1, (d+ 2)′).

2.2.2. Corollary. Let µ be a locally finite Borel measure on ΩT such that aij,
bi, c ∈ L1

loc(ΩT , µ), and∫
ΩT

[
∂tϕ+ aij∂i∂jϕ+ bi∂iϕ+ cϕ

]
dµ = 0 ∀ϕ ∈ C∞0 (ΩT ). (2.2.1)

Then statements (i) and (ii) of Theorem 2.2.1 are true. In addition, in case (ii), if
J = [T0, T1] ⊂ (0, T ), B is a ball with compact closure in Ω, and W is a neighborhood
of B × J with compact closure, then, for each r < (d+ 2)′, one has

‖%‖Lr(B×J) ≤ C(d, r, A,W )
(
|µ|(W ) + ‖c‖L1(W,µ) + ‖b‖L1(W,µ)

)
,

where C(d, r, A,W ) depends only on d, r, the Hölder norms of aij with respect to x
on W , inf

W
detA, sup

i,j
sup
W
|aij |, and the distance from B × J to ∂W . An analogous

statement is true in case (i).

2.2.3. Remark. Assume that in the situation of Corollary 2.2.2, one has, in
addition, that |b|+ |c| ∈ Lploc(ΩT ), where p > r′. Then one has

‖%‖Lr(B×J) ≤ C(d, r, A,W )
(
|µ|(W ) + (‖c‖Lp(W ) + ‖b‖Lp(W ))‖%‖Lp′ (W )

)
.

2.2.4. Remark. (i) If there exists a diffusion process ξ = (ξs,xt ) governed by
the stochastic differentiable equation

dξs,xt =
√

2A(ξs,xt , t)dWt + b(ξs,xt , t)dt, ξs,xs = x,

then the above results apply to the transition probabilities P (s, x; t, dy) of the dif-
fusion ξ. Namely, for any fixed (x, s), the measure µ = P (s, x; t, dy) dt satisfies
(2.2.1) with c = 0. Hence, for almost every t, the measure P (s, x; t, dy) is abso-
lutely continuous. This fact is well known for locally bounded b (see [106, Ch. II,
§2], [170, Ch. 7, Ch. 9]). However, the measure P (s, x; t, dy) can fail to be ab-
solutely continuous for all t. In [80], an example is constructed such that b = 0
and A(x, t) is uniformly continuous, uniformly bounded, and uniformly positive,
but, for some fixed t, the measures P (s, x; t, dy) are purely singular with respect to
Lebesgue measure for all s ∈ (0, t) and all x (a similar example is constructed in
[152]).

(ii) It is worth noting that Portenko [145] employed analogous assumptions
on A and b in his study of generalized diffusion processes. In particular, it is
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shown in [145, Chapter II] that if A is uniformly bounded, uniformly positive, and
uniformly Hölder continuous, and b is a measurable vector field on Rn such that
|b| ∈ Lp(Rd) for some p > d+2, then there exists a continuous function G(s, x, t, y),
0 ≤ s < t ≤ T , x, y ∈ Rd, that is the transition probability density for a continuous
Markov process

(
x(t),Ms

t , Ps,x
)
, where Ps,x is a probability measure generated on

the σ-field Ms
t on the space Ω of continuous paths x( · ) : [0,+∞) → Rd by the

evaluation mappings x( · ) 7→ x(u) with u ∈ [s, t], Ps,x
{
x(s) = x

}
= 1, and Ps,x-

almost surely

x(t)− x(s) =
∫ t

s

b
(
x(τ), τ

)
dτ +

∫ t

s

√
A

(
x(τ), τ

)
dws(τ)

with a certain Wiener process
(
ws(t),Ms

t , Ps,x
)
.

(iii) We also note that parabolic equations considered in Corollary 2.2.2 have
been used in [55] for the study of certain flows of probability measures. The above
results yield the absolute continuity of such measures. Stronger regularity properties
will be established for them below under certain additional assumptions on the
coefficients.

We shall now assume that the functions aij(x, t) are continuous in x uniformly
with respect to t, i.e., one has

lim
δ→0

sup
t

sup
|x−y|≤δ

|aij(x, t)− aij(y, t)| = 0.

Note that aij has a modification with such a property provided that

sup
t
‖aij( · , t)‖Wp,1(BR) <∞, where p > d. (2.2.2)

2.2.5. Theorem. Let d ≥ 2, p > d, q ∈ [p′,+∞). Let A and A−1 be uniformly
bounded and let (2.2.2) hold. Suppose that µ is a finite measure on BR,T such that,
for some N > 0 one has∣∣∣∣∫ [

∂tϕ+ aij∂i∂jϕ
]
dµ

∣∣∣∣ ≤ N‖∇xϕ‖Lq(BR,T ) ∀ϕ ∈ C∞0 (BR,T ). (2.2.3)

Then µ ∈ Hq′,1(BR′ , [t0, t1]) and µ ∈ Hq′,1(BR′ , [t0, t1]) for every R′ < R and
[t0, t1] ⊂ (0, T ).

It should be noted that the proof of this result in [33, Theorem 2.7] contains a
certain inaccuracy: it is asserted at the very beginning that by multiplying a solution
by a compactly supported smooth function ζ one can easily pass to the case of
solutions with compact support. In principle, this is true but is not straightforward
and requires some extra work, because the inequality for the product will be of
somewhat different type (in particular, a term with the integral of 〈∇ζ,∇ϕ〉 with
respect to µ will appear). However, the case of a priori compact support is sufficient
for subsequent applications of this result in [33]. Nevertheless, if one wishes to
justify the result as it is stated, it is necessary first to apply the previous results
and the parabolic embedding theorem in order to ensure that the density % of the
solution belongs to Lq

′

loc (this is done in several iterations) and only then multiply by
a compactly supported function; once the required integrability of % is established,
the term with 〈∇ζ,∇ϕ〉 is easily estimated by Hölder’s inequality, which gives an
estimate of type (2.2.3) for ζ · µ.

2.2.6. Theorem. Let A and A−1 be locally bounded on BR,T and let (2.2.2)
hold, where now p > d+ 2. Let µ be a finite Borel measure on BR,T such that µ ∈
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Lr(BR,T ) with some r > p′. Let β ∈ Lp(BR,T ). Suppose that for all ϕ ∈ C∞0 (BR,T )
one has ∣∣∣∣∫ [

∂tϕ+ aij∂i∂jϕ
]
dµ

∣∣∣∣ ≤ ∫ (
|ϕ|+ |∇xϕ|

)
|βµ| dx.

Then µ has a density that is locally Hölder continuous on BR × (0, T ) and belongs
to the classes Hp,1(BR′ , [T0, T1]) and Hp,1(BR′ , [T0, T1]) for all R′ < R and any
interval [T0, T1] ⊂ (0, T ).

2.2.7. Corollary. Let p > d + 2 and let A and A−1 be locally bounded on
ΩT , and let (2.2.2) hold with p > d + 2 for every ball BR with closure in Ω. Let
bi, c ∈ Lploc(ΩT ). Assume that µ is a locally finite signed Borel measure on ΩT such
that bi, c ∈ L1

loc(ΩT , µ) and∫
ΩT

[
∂tϕ+ aij∂i∂jϕ+ bi∂iϕ+ cϕ

]
dµ = 0 ∀ϕ ∈ C∞0 (ΩT ). (2.2.4)

Then µ has a locally Hölder continuous density that belongs to the spaces Hp,1(U, J)
and Hp,1(U, J) for every interval J and open set U such that U × J has compact
closure in ΩT .

It is worth noting that if µ is nonnegative, then, by Harnack’s inequality, the
continuous version of its density is strictly positive in every component of ΩT in
which it is not identically zero. This will be considered in more detail in §2.4.

2.2.8. Corollary. Assume that, for all ϕ ∈ C∞0 (ΩT ), one has∫
ΩT

[
∂tϕ+ aij∂i∂jϕ+ bi∂iϕ+ cϕ

]
dµ =

∫
ΩT

f i∂iϕdx dt, (2.2.5)

where f i ∈ Lploc(ΩT ) and aij , bi, c satisfy the same hypotheses as in Corollary 2.2.7.
Then the assertion of Corollary 2.2.7 with (2.2.4) replaced by (2.2.5) is still true.

2.2.9. Corollary. Let µ satisfy the hypotheses of Corollary 2.2.7, let BR0 be
an open ball with closure in Ω, and let [t1, t2] ⊂ (0, T ). Then, for every closed
interval [τ1, τ2] ⊂ (t1, t2) and any R < R0, there exists a constant N depending on

t1, t2, τ1, τ2, R0, R, ‖c‖Lp(BR0×[t1,t2]),

inf
BR0×[t1,t2]

detA, sup
t∈[t1,t2]

‖aij( · , t)‖Wp,1(BR0 ), ‖bi‖Lp(BR0×[t1,t2]),

such that N is a locally bounded function of the indicated quantities and one has

‖µ‖Hp,1(BR,[τ1,τ2]) ≤ N‖µ‖Lp′ (BR0×[t1,t2])
.

Moreover, one can choose N so that if µ is nonnegative, then

‖µ‖Hp,1(BR,[τ1,τ2]) ≤ N‖µ‖L1(BR0×[t1,t2]).

2.2.10. Remark. The assumption that p > d + 2 was used in the proof of
Theorem 2.2.6 in order to improve the initial integrability of a solution and also to
guarantee its Hölder continuity (by an appropriate embedding theorem). It is clear
from the first step of that proof (or from Theorem 2.2.5) that if we assume only
that p > d, then we obtain that µ ∈ Hs,1(BR′ , [T0, T1]) and µ ∈ Hs,1(BR′ , [T0, T1])
with s = pr/(p+ r) > d provided that r > pd/(p− d).

We now give a modification of Theorem 2.2.6 obtained in [43], which differs
in that the integrability condition on the coefficient β2 (which was absent in the
above theorem) is expressed in terms of the measure µ and not in terms of Lebesgue
measure.
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2.2.11. Theorem. Let A and A−1 be locally bounded on BR,T and let (2.2.2)
hold, where we assume now that p > d + 2. Let µ be a finite Borel measure on
BR,T with a density % ∈ Lr(BR,T ) with some r > p′. Let β1 ∈ Lploc(BR,T ) and
β2 ∈ Lploc(µ). Suppose that for all ϕ ∈ C∞0 (BR,T ) one has∣∣∣∣∫

BR,T

[∂tϕ+ aij∂xi
∂xj

ϕ] dµ
∣∣∣∣ ≤ ∫

BR,T

(|ϕ|+ |∇xϕ|)(|β1%|+ |β2%|) dx dt.

Then % has a version that is locally Hölder continuous on BR × (0, T ) and belongs
to the classes Hp,1(BR′ , [T0, T1]) and Hp,1(BR′ , [T0, T1]) for every R′ < R and every
interval [T0, T1] ⊂ (0, T ).

2.2.12. Corollary. Let p > d+2 and let A and A−1 be locally bounded on ΩT
and let (2.2.2) hold with some p > d+2 for every ball BR with closure in Ω. Assume
that µ is a locally finite signed Borel measure on ΩT such that bi, c ∈ Lploc(µ) and∫

ΩT

[∂tϕ+ aij∂xi
∂xj

ϕ+ ∂xi
aij∂xj

ϕ+ bi∂xi
ϕ+ cϕ] dµ = 0 ∀ϕ ∈ C∞0 (ΩT ).

Then µ has a locally Hölder continuous density that belongs to the spaces Hp,1(U, J)
and Hp,1(U, J) for every interval J and every open set U such that U × J has
compact closure in ΩT .

Let us return to the stochastic equation (2.1.4). It is known that if A and b are
bounded, A has two bounded derivatives and is nondegenerate on Rd, and b has
a bounded derivative, then there exists a diffusion process ξxt that satisfies (2.1.4)
with ξx0 = x, x ∈ Rd. Its transition probabilities P (t, x, dy) have densities p(t, x, y)
satisfying the following equations:

∂

∂t
p(t, x, y) = aij

∂2

∂xi∂xj
p(t, x, y) + bi

∂

∂xi
p(t, x, y), (2.2.6)

∂

∂t
p(t, x, y) =

∂2

∂yi∂yj

(
aijp(t, x, y)

)
− ∂

∂yi

(
bip(t, x, y)

)
(2.2.7)

for all t > 0, x, y ∈ Rd; in addition, P (0, x, dy) = δx. This means that the measures
P (t, x, dy) dt satisfy (2.1.2). It should be noted that these equations bear many
names in the literature; in particular, they are called the Fokker–Planck equations,
the Fokker–Planck–Kolmogorov equations, the forward and backward Kolmogorov
equations, and so on (Kolmogorov himself in [105] refer to both as the Fokker–
Planck equations). To avoid confusion, in this survey we call (2.2.6) the Kolmogorov
equation and call (2.2.7) the Fokker–Planck equation. The transition semigroup
(Tt)t≥0 of ξxt is defined on Cb(Rd) by the formula

Ttf(x) =
∫
f(y)P (t, x, dy).

If a probability measure µ is invariant for (Tt)t≥0, then µ satisfies the elliptic equa-
tion L∗A,bµ = 0, and, conversely, if µ satisfies this stationary equation, then it is
invariant for (Tt)t≥0. As we know from §§1.5, 1.6, there is no such equivalence in
the case of unbounded coefficients even if we have our semigroup (Tµt )t≥0. Let us
explain how we can consider analogs of equations (2.2.6)–(2.2.7) for this semigroup
in the situation of Theorem 1.7.5. In order to obtain a function of three arguments
(t, x, y), we take K∗

t δx, where δx is Dirac’s measure at x. The next result shows
that K∗

t δx = pA,b(t, x, y)dy if t > 0, where pA,b is the function from Theorem 1.7.5,
and that an analog of equation (2.2.7) holds.
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2.2.13. Theorem. Suppose that in the situation of Theorem 1.7.5 we are given
a bounded measure µ0 on Ω and

K∗
t µ0(dy) :=

∫
Ω

Kt(x, dy)µ0(dx) =
∫

Ω

pA,b(t, x, y)µ0(dx) dy.

Then the measure K∗
t µ0(dy) dt satisfies (2.1.2) for all T > 0. In particular, K∗

t µ0

has a positive continuous density in W p,1
loc (Ω).

2.2.14. Remark. It follows from the proof in [33] that for every compact set
E ⊂ Ω× (0,+∞), there exists a constant C(E) such that

sup
(x,t)∈E

sup
y∈Ω

pt(x, y) ≤ C(E),

where pt(x, y) is the jointly continuous version of the Radon–Nikodym density of the
measure Kt(x, dy) with respect to the measure µ = % dx from Theorem 1.7.5, i.e.,
pA,b(t, x, y) = pt(x, y)%(y). Hence the continuous density of the measure K∗

t µ0(dy)
is given by ∫

Ω

pt(x, y)µ0(dx) %(y).

In [130], under stronger assumptions on the coefficients A and b, useful global
estimates and inclusions in parabolic Sobolev classes are obtained for the transition
density pA,b(t, x, y) from Theorem 1.7.5. In [124] the situation where ∇x%(x, t)
exists even for not necessarily differentiable coefficient A is studied.

Certainly, once the existence of densities is established, in many cases one can
apply the results known for functions (but taking special care of the form of the
equation), in particular, the results from [108], [111], [116], [123].

2.3. Upper estimates for densities

Here we present upper bounds on densities in the case of an unbounded drift.
On the one hand, the assumptions and techniques applied in this situation differ
considerably from those used for obtaining Gaussian decay of densities in the case
of bounded drifts or zero drifts (see [75], [143], [144], [77], [161], and also [8],
where some assumptions on div b are used). On the other hand, the ideas and
methods used for bounded coefficients turn out to be very useful also in the situ-
ation under consideration. First we discuss the case when the initial distribution
has a sufficiently nice density, and then briefly comment on the case of a Dirac
initial distribution (i.e., fundamental solutions or transition densities) studied in
[84], [130], [167] under some additional assumptions. For the proofs of the results
below, see [41].

We shall say that a nonnegative measure µ0 has finite entropy if µ0 has a
density %0 with respect to Lebesgue measure such that %0 ln %0 ∈ L1(Rd), where we
set 0 ln 0 := 0.

2.3.1. Theorem. Suppose that µ, where each µt is a probability measure, sat-
isfies (2.1.1) and (2.1.3) and assume the following hypotheses:

(i) the mapping A be uniformly bounded with A(x, t) ≥ α · I for some con-
stant α > 0, and let the functions x 7→ aij(x, t) be Lipschitzian with constant λ,

(ii) |b| ∈ L2(µ).
Assume also that the function Λ(x) := lnmax(|x|, 1) is in L2(µ) (which is the

case if, e.g., 〈b(x, t), x〉 ≤ C1|x|2Λ(x)+C2 with some constants C1 and C2 and Λ ∈
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L2(µ0)). If µ0 has finite entropy, then µt = %( · , t) dx, where %( · , t) ∈ W 1,1
loc (Rd),

and for each τ < 1 one has∫ τ

0

∫
Rd

|∇%(x, t)|2

%(x, t)
dx dt <∞. (2.3.1)

In particular, we have
√
% ∈ H2,2(Rd× [0, τ ]) and % ∈ Ld/(d−2),1(Rd× [0, τ ]) if d > 2,

and % ∈ Ls,1(Rd × [0, τ ]) for all s ∈ [1,∞) if d = 2.
If

lim sup
t→1

∫
Rd

%(x, t)Λ(x) dx <∞,

which is the case, e.g., if 〈b(x, t), x〉 ≤ C1|x|2 + C2 with some constants C1 and C2

and Λ ∈ L1(µ0), then (2.3.1) is true for τ = 1.

The proof in [41] yields a useful estimate∫ τ

0

∫
Rd

|∇%|2

%
dx dt

≤ α−2
(
‖b‖2,µ + λd3/2√γ

)2

+ 2α−1 ln 2 + 2α−1

∫
Rd

%0(x) ln %0(x) dx

+ 2α−1(d+ 1)
∫

Rd

%(τ, x)Λ(x) dx. (2.3.2)

2.3.2. Remark. It is seen from the proof in [41] that in place of the integra-
bility of the function %(x, 0) ln %(x, 0) it suffices to require only the integrability of
%(x, 0) max(0, ln %(x, 0)). This leads to the effect that in estimate (2.3.2) one obtains
%(x, 0) max(0, ln %(x, 0)) in place of the function %(x, 0) ln %(x, 0). However, the es-
timates obtained and (2.1.10) show that if we keep all other assumptions, then the
entropy of %(x, 0) is finite anyway. But if no µ-integrability of Λ is required, then
the situation may change. For example, if d = 1, b = 0, and a = 1/2, then for
any initial distribution µ0, the solution is given by the convolution µ0 ∗ gt, where
gt(x) = (2πt)−1/2 exp(−x2/(2t)). If µ0 has a density %0 such that |%′0|2/%0 ∈ L1(R1),
but the function %0 ln %0 is not integrable, then for all t the solution %(x, t) does not
have finite entropy, although the quantities∫

|∂x%(x, t)|2%(x, t)−1 dx

are uniformly bounded. The same example shows that for the validity of estimate
(2.3.1) certain conditions on the initial distribution are necessary. It suffices to take
µ0 to be Dirac’s measure at the origin. Then the function |∂x%|2/% is not integrable
on R1 × (0, 1). Some sufficient conditions on A and b ensuring finite entropy of
%( · , t) for t > 0 and Dirac’s initial distribution are mentioned at the end of the
section.

In Example 2.3.9 below one can find conditions on the coefficients A and b
ensuring that |b| ∈ L2(µ).

Estimate (2.3.2) can be improved under additional hypotheses on A and b.
Let

b0 := (bj0), bj0 = bj − ∂xia
ij .

2.3.3. Theorem. Suppose that µ satisfies (2.1.1), (2.1.3), where ν = %0 dx,
and %0 has finite entropy and is locally Hölder continuous. Let A and b satisfy (CP1)
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and (CP2) with some p > d+2. Suppose that |A−1/2b0| ∈ L2(µ), ln(1+|x|) ∈ L4(µ),
and

lim inf
r→∞

∫ 1

0

∫
r≤|x|≤2r

[
r−4‖A(x, t)‖2 + r−2ΘA(x, t)2

]
µt(dx) dt = 0.

Then %( · , t) ∈W p,1
loc (Rd), for almost all τ ∈ [0, 1] one has∫ τ

0

∫
Rd

∣∣∣√A∇%
%

∣∣∣2 dµ
≤

∫ τ

0

∫
Rd

|A−1/2b0|2 dµ+ 2
∫

Rd

[%(x, 0) ln %(x, 0)− %(x, τ) ln %(x, τ)] dx,

and the right-hand side is finite. Under the extra assumption that A ≥ α · I for
some α > 0, one has

√
% ∈ H2,2(Rd × [0, 1]), % ∈ Ld/(d−2),1(Rd × [0, 1]) if d > 2,

and % ∈ Ls,1(Rd × [0, 1]) for all s ∈ [1,∞) if d = 2.

2.3.4. Remark. If A is uniformly bounded, then the assumption that ln(1 +
|x|) ∈ L4(µ) can be relaxed to ln(1 + |x|) ∈ L2(µ).

2.3.5. Theorem. Under the hypotheses of Theorem 2.3.1 suppose that also

sup
t∈[0,1]

‖b( · , t)‖Ld(µt) <∞

and µ0 = %( · , 0) dx, where %( · , 0) ∈ Lp(Rd) for all p ∈ [1,+∞). Then∫ τ

0

(∫
Rd

|%(x, t)|p dx
)q/p

dt <∞

for all p, q ∈ [1,+∞) and τ ∈ (0, 1).

2.3.6. Theorem. Under the hypotheses of Theorem 2.3.1 suppose that |b| ∈
Lβ(µ) for some β > d+ 2 and %( · , 0) ∈ L∞(Rd). Assume that either

sup
t∈[0,1]

‖b( · , t)‖Ld(µt) <∞,

or % ∈ Lp(Rd × [0, τ ]) for all τ < 1 for some p > 1. Then % ∈ L∞(Rd × [0, τ ]) for
every τ < 1.

2.3.7. Remark. (i) In view of Remark 2.3.2, there is no need to require the
integrability of the function %(x, 0) ln %(x, 0) in the last two theorems, since the in-
tegrability of the function %(x, 0) max(0, ln %(x, 0)) follows by the inclusion %( · , 0) ∈
Lp(Rd) with p > 1.

(ii) The assumption in Theorem 2.3.5 and Theorem 2.3.6 that the integrals
of %(x, t) with respect to x equal 1 can be replaced by the assumption that these
integrals are uniformly bounded.

(iii) If in Theorem 2.3.6 it is given in advance that % ∈ Lp(Rd × [0, τ ]) for some
p > 1, then we need not require the integrability of the function | ln(1+ |x|)|2%(x, t),
but the boundedness of %(x, 0) is important.

These theorems enable one to obtain global upper bounds on %. As in the elliptic
case considered above, the idea is this: in order to obtain a pointwise estimate
%(x, t) ≤ Φ(x, t)−1, one has to consider the measure ν := Φ · µ and establish the
boundedness of its density. We shall consider functions Φ that do not depend on t.
If Φ has locally bounded first and second order derivatives, then the measure ν
satisfies the equation

L∗ν = (aij∂xi∂xj Φ)%+ 2∂xiΦ∂xj (a
ij%)− bi∂xiΦ% = −LΦ · %+ 2∂xj (a

ij∂xiΦ%)

understood in the same sense as (2.1.1).
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2.3.8. Theorem. Suppose that all hypotheses of Theorem 2.3.6 are fulfilled
and we are given a function Φ ≥ c > 0 on Rd with locally bounded second order
derivatives such that %(x, 0) ≤ CΦ(x)−1, Φ ∈ L1(µ0), and

Φ1+ε, |LΦ|β/2Φ1−β/2, |A∇Φ|βΦ1−β ∈ L1(µ), sup
t∈[0,1]

∫
Rd

Φ(x)%(x, t) dx <∞

for some ε > 0. Then for every τ < 1 there is a number Cτ such that

%(x, t) ≤ CτΦ(x)−1 for almost all (x, t) ∈ Rd × [0, τ ].

2.3.9. Example. Suppose that A and A−1 are uniformly bounded, A is uni-
formly Lipschitzian in x, and for some β > d+ 2, r > 0, ε > 0, K > 0 one has

|b| ∈ Lβ(µ), exp[(2K + ε)|x|r] ∈ L1(µ),

(2.3.3)

sup
t∈[0,1]

∫
Rd

exp(K|x|r)%(x, t) dx <∞.

Let supt∈[0,1] ‖b( · , t)‖Ld(µt) < ∞. Finally, let the function exp(K|x|r)%(x, 0) be
bounded and integrable on Rd. Then for every τ < 1 there is a number C(τ) such
that

%(x, t) ≤ C(τ) exp(−K|x|r), (x, t) ∈ Rd × [0, τ ].

To ensure condition (2.3.3) and the stated assumptions on b and %( · , 0) it suffices
to have the estimates

|b(x, t)| ≤ C exp(2Kβ−1|x|r), %(x, 0) ≤ C exp(−K ′|x|r)

with some K ′ > K and the estimate

〈x, b(x, t)〉 ≤ c1 − c2|x|r, c2 > 2rK sup
t,x

‖A(x, t)‖. (2.3.4)

Indeed, let Φ ∈ C2(Rd) be such that Φ(x) = exp(K|x|r) if |x| ≥ 1. All hypotheses
of Theorem 2.3.8 hold. Under condition (2.3.4) we pick δ ∈ (0, ε) such that

r(2K + δ) sup
x,t

‖A(x, t)‖ < c2,

and take a function V ∈ C2(Rd) that equals exp[(2K + δ)|x|r] if |x| ≥ 1. Then, for
some c, we have the estimate LV ≤ c. It follows from the existence results in §2.6
below that a solution exists and the norms ‖V %( · , t)‖L1(Rd) are uniformly bounded.
The remaining assumptions of Theorem 2.3.8 also hold. In a similar way, one can
obtain a power bound under weaker conditions.

Under some additional assumptions, time-dependent bounds for solutions are
obtained in the recent papers [84], [130], [167]. For example, the following result
is proved in [130].

2.3.10. Theorem. Suppose that the mappings A and A−1 are uniformly boun-
ded, aij ∈ C1+α(Rd), bi ∈ Cαloc(Rd), and

lim sup
|x|→∞

|x|−β〈x, b(x)〉 ≤ −c, |b(x)| ≤ c1 exp(c2|x|β−ε),

where c, c1, c2 > 0, ε > 0, and β > 2. Then the following estimate holds for the
fundamental density pA,b(t, x, y) in Theorem 1.7.5:

pA,b(t, x, y) ≤ c3 exp
(
c4t

−β/(β−2)
)

exp(−γ|y|β), t ∈ (0, 1), x, y ∈ Rd.
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If |b(x)| ≤ c(1 + |x|q), then

pA,b(t, x, y) ≤ ct−σ(1 + |y|)−θ

for some constants c, σ, θ > 0.

Analogous estimates are established also for ∂tpA,b, DypA,b and D2
ypA,b in the

case where aij ∈ C2
b (Rd), bi ∈ C2(Rd), and |Db(x)| and |D2b(x)| admit the same

bound as |b|. Some of these estimates are refined in [167] by using Lyapunov
functions depending on t. For example, the previous estimate is refined to

pA,b(t, x, y) ≤ c3t
−κ exp(−δtα|y|β),

where θ = αk(β−1)/β−1, k > d+2, α > β/(β−2), δ < c/(Λβ), Λ = supx ‖A(x)‖.
These results have recently been strengthened by S.V. Shaposhnikov.

It would be interesting to study the behavior of solutions at infinity under the
above assumptions on the coefficients in the case where the initial distribution is a
measure; there are many results in this direction for solutions in various classes of
functions and typically in the case of bounded coefficients (see the survey [68]).

2.4. Harnack’s inequality for parabolic equations

We now consider Harnack’s inequality for the parabolic equation. Let Ω be a
bounded domain in Rd, let Q = Ω× (0, 1), and let A = (aij)1≤i,j≤d be a measurable
matrix-valued mapping on Q with aij = aji such that there exist constants γ ≥ 0
and α > 0 such that∑

i,j

|aij(x, t)|2 ≤ γ2 and A(x, t) ≥ α · I for all (x, t) ∈ Q. (2.4.1)

In addition, let b : Q→ Rd be a measurable vector field such that

sup
(x,t)∈Q

|b(x, t)| ≤ B <∞. (2.4.2)

Suppose that a nonnegative function u ∈ H2,1(Q) satisfies the equation

∂tu = ∂xi(a
ij∂xju− biu), (2.4.3)

i.e., for every function ϕ ∈ C1
0 (Q), one has the equality∫ ∫

Q

[
−∂tϕu+ ∂xiϕ

(
aij∂xju− biu

)]
dx dt = 0.

It follows from the general theory of parabolic equations (see, e.g., Theorem 8.1
in §8 and Theorem 10.1 in §10 in Chapter 3 of the book [111]) that under our
assumptions any solution u has a version that is locally Hölder continuous.

Let us fix a point (x̄, t̄) ∈ Ω× (0, 1]. Let R(x̄, r) be the open cube with the edge
length r centered at the point x̄. Let

Q(r) = R(x̄, r)× (t̄− r2, t̄), Q∗(r) = R(x̄, r)× (t̄− 8r2, t̄− 7r2).

The following classical theorem is true (see the paper [10, Theorem 3], gen-
eralizing a result of Moser [137]). Concerning methods of obtaining Harnack’s
inequality, see also [143] and the references there.

2.4.1. Theorem. Let Q(3r) ⊂ Q. Then, for the continuous version of the
function u satisfying equation (2.4.3), we have

sup
(x,t)∈Q∗(r)

u(x, t) ≤ C inf
(x,t)∈Q(r)

u(x, t),

where the number C = C(d, α, γ,Br) depends only on d, α, γ, and Br.
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As in the elliptic case, we are interested in a more precise form of dependence of
C on the indicated parameters from (2.4.1), (2.4.2). The results below are proved
in [42].

2.4.2. Theorem. Let Q(3r) ⊂ Q. Then the following inequality holds for the
continuous version of the function u:

sup
(x,t)∈Q∗(r)

u(x, t) ≤ C inf
(x,t)∈Q(r)

u(x, t),

where

C := C(d, α, γ,B, r) := exp
{
c(d)

[
1 + α−1 + (α−1/2 + α−1)(Br + γ)

]2}
.

Our next result further refines the obtained estimate with respect to dependence
on r. Its advantage as compared to the previous theorem is that now B appears in
the estimate without the factor r.

2.4.3. Theorem. Suppose that B(z0, θr) ⊂ Ω for some θ > 1 and r > 0. Then,
whenever 0 < s < t < 1 and x, y ∈ B(z0, r), the following inequality holds for the
continuous version of u:

u(y, s) ≤ u(x, t) exp
{
K

( |x− y|2

t− s
+ (B + 1)2

t− s

δ2
+ 1

)}
,

where δ = min{(θ − 1)r,
√
s} and the number K depends only on d, α, and γ as

follows, with some number c(d) depending only on d:

K := c(d)
∣∣∣1 + α−1 + (α−1 + α−1/2)γ

∣∣∣2.
2.5. Lower bounds in the parabolic case

We proceed to lower bounds for densities of solutions to parabolic equations
for measures. As we shall see, there are lower bounds similar to the upper bounds
discussed in §2.3; however, the difference between the upper and lower bounds is
more significant than in the elliptic case. The proofs are given in [42].

Let A = (aij)1≤i,j≤d be a measurable matrix-valued mapping on Rd×(0, 1) such
that A(x, t) is positive definite and let b be a measurable vector field on Rd × (0, 1)
with values in Rd. As in the elliptic case, in our study of lower bounds it is more
convenient to consider the divergence form operators L = LA,b.

A Borel measure µ on Rd × (0, 1) satisfies the weak parabolic equation (2.1.1)
if the functions aij and bi are integrable on every compact set in Rd × (0, 1) with
respect to µ and, for every function ϕ ∈ C∞0 (Rd × (0, 1)), we have the equality∫

Rd×(0,1)

Lϕdµ = 0,

which is understood in one of the following two ways.
(I) For every compact interval J ⊂ (0, 1) and every ball U ⊂ Rd, the functions

aij belong to the class H1,1(U × J), the functions aij , ∂xia
ij , and bi are Borel

measurable and locally integrable with respect to |µ|, and∫
Rd×(0,1)

[∂tϕ+ aij∂xi
∂xj

ϕ+ ∂xi
aij∂xj

ϕ+ bj∂xj
ϕ] dµ = 0. (2.5.1)

(II) For every compact interval J ⊂ (0, 1) and every ball U ⊂ Rd, the restriction
of the measure µ to U × J has a density % in the class H1,1(U × J) such that the
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functions aij∂xi% and bi% are locally Lebesgue integrable and∫
Rd×(0,1)

[∂tϕ%− aij∂xi%∂xjϕ+ bi∂xiϕ%] dx dt = 0. (2.5.2)

Below we always specify which case we are considering by referring to (2.5.1) in
Case (I) and to (2.5.2) in Case (II). Our assumption that the matrices A(x, t) =
(aij(x, t))i,j≤d are symmetric and strictly positive guarantees the absolute continuity
of µ in Case (I). For this reason, we consider measures µ represented in the form
µ(dt dx) = µt(dx) dt by means of a family of Borel measures (µt)t∈(0,1) on Rd. In
this case (2.1.1) can be written as∫ 1

0

∫
Rd

Lϕ(x, t)µt(dx) dt = 0,

which is understood in one of the two ways described above. It should be noted
that the alternative assumption in Case (II) that µ has a locally Sobolev density
is fulfilled automatically if, in Case (I), the coefficients A and b satisfy certain
additional assumptions specified in §2.2. For this reason, in some results we consider
solutions a priori possessing locally Sobolev densities and make no assumptions
on the regularity of A; however, in other results, which deal with applications to
transition probabilities, we impose a suitable local Sobolev regularity of A in order
to guarantee that all solutions are Sobolev regular.

Let V be a continuous increasing function on [0,∞) with V (0) > 0.

2.5.1. Theorem. Let sup
t∈(0,1)

|b(x, t)| ≤ V (|x|/θ) for almost all x ∈ Rd, where

θ > 1. Let

α(r) := sup
t∈(0,1),|x|≤r

‖A(x, t)−1‖, γ(r) := sup
t∈(0,1),|x|≤r

‖A(x, t)‖.

Let µ be a nonnegative measure with a density % on Rd × (0, 1) such that

% ∈ H2,1(U × J) (2.5.3)

for any ball U ⊂ Rd and any closed interval J in (0, 1). Suppose that µ satisfies
equation (2.1.1) in the sense of (2.5.2), i.e., we deal with Case (II). Then, there
exists a positive number K = K(d) such that the continuous version of the function
% satisfies the inequality

%(x, t) ≥ %(0, s) exp
{
−K(d)

∣∣1 + α(θ|x|)−1 +
[
α(θ|x|)−1 + α(θ|x|)−1/2

]
γ(θ|x|)

∣∣2×
×

(
1 +

t− s

s
V (|x|)2 +

1
t− s

|x|2
)}
,

where 0 < s < t < 1, x ∈ Rd. In particular, if ‖A(x, t)‖ ≤ γ and ‖A(x, t)−1‖ ≤ α,
then there exists a positive number K = K(d, α, γ, θ) such that the continuous ver-
sion of the function % satisfies the inequality

%(x, t) ≥ %(0, s) exp
{
−K

(
1 +

t− s

s
V (|x|)2 +

1
t− s

|x|2
)}
, 0 < s < t < 1, x ∈ Rd.

2.5.2. Corollary. Suppose that in the situation of Theorem 2.5.1 one has

‖A(x, t)‖ ≤ γ and ‖A(x, t)−1‖ ≤ α

and that for almost all t ∈ (0, 1) the function x 7→ %(x, t) does not vanish iden-
tically. Then, for every closed interval [τ1, τ2] in (0, 1), there exists a number
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K = K(d, α, γ, θ, τ1, τ2) ≥ 0 such that for all t ∈ [τ1, τ2] and x ∈ Rd the follow-
ing inequality holds:

exp
(
−K

(
1 + V (|x|)2 + |x|2

))
≤ %(x, t) ≤ exp

(
K

(
1 + V (|x|)2 + |x|2

))
.

2.5.3. Example. Suppose that in the situation of Theorem 2.5.1 the matrices
A(x, t) and A(x, t)−1 are uniformly bounded and for some constants c1 > 0 and
c2 > 0 the inequality

sup
t∈(0,1)

|b(x, t)| ≤ c1|x|β + c2

holds for almost all x. Then there exists a positive number K such that

%(x, t) ≥ %(0, s) exp
{
−K

(
1 +

t− s

s
|x|2β +

1
t− s

|x|2
)}
, s, t ∈ (0, 1), s < t.

For example, if

L = ∂t +
1
2
∆,

then the measure (2πt)−1/2e−|x|
2/2t dx dt is a solution. For any δ > 0, our results

yield a number K(δ) > 0 such that % ≥ e−K(δ)|x|2/t in the strip Rd×(δ, 1). Similarly,
our lower estimate is sharp in the case of a linear drift coefficient, but it becomes
less precise in the case of quadratic growth of |b|; e.g., if %(x, t) = C exp(−|x|3),
then exp(−K|x|4) appears in our lower bound.

Let us give conditions on the coefficients A and b ensuring two-sided exponential
estimates of the density of the solution in the parabolic case.

2.5.4. Example. Suppose that A(x, t) is symmetric and positive, A(x, t) and
A(x, t)−1 are uniformly bounded, the functions x 7→ aij(x, t) are uniformly Lips-
chitzian with a common constant, and that for some r > 1, σ ≥ 0, K > 0, and
K ′ > K we have

|b(x, t)| ≤ C + C|x|r−1+σ, %(x, 0) ≤ C exp(−K ′|x|r),
〈x, b(x, t)〉 ≤ c1 − c2|x|r, c2 > 2rK sup

x,t
‖A(x, t)‖.

Suppose that a probability measure µ on Rd× (0, 1) satisfies equation (2.1.1) in the
sense of (2.5.1), i.e., we deal with Case (I). Then µ has a continuous density % such
that, for every closed interval [τ1, τ2] ⊂ (0, 1), there exist numbers C1, C2, and K0

for which

C1 exp
(
−K0|x|2r+2σ−2−K0|x|2

)
≤ %(x, t) ≤ C2 exp(−K|x|r), (x, t) ∈ Rd× [τ1, τ2].

The upper bound follows from §2.3, and the lower bound follows from the above
results. Unlike the elliptic case, here there is no coincidence of the powers of |x| in
the lower and upper bounds. We observe that the indicated conditions also give the
existence of a solution µ = µt dt, where every µt is a probability measure, for an
arbitrary initial distribution (see §2.6). The uniqueness problem is also considered
in §2.6.

One more application of our results is concerned with the proof of the existence
of finite entropy for any solution with respect to the space variable at any positive t
for every initial distribution. The existence of finite entropy, which is useful in many
respects, is necessary for applying those results of §2.3 which give integrability of
|∇%(x, t)|2/%(x, t).

Let W be a continuous increasing function on the half-line [0,∞) such that
W (0) > 0 and lim

r→∞
W (r) = +∞.
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2.5.5. Proposition. Suppose that the matrices A(x, t) are positive definite and
uniformly bounded along with the matrices A(x, t)−1 and that, for some θ > 1, the
following inequality holds:

sup
t∈(0,1)

|b(x, t)|2 ≤W (|x|/θ), x ∈ Rd.

Let µ be a measure of the form µ = µt dt, where every µt is a probability measure on
Rd, and let µ satisfy condition (2.5.3) and equation (2.1.1) in the sense of (2.5.2).
Suppose that ∫ 1

0

∫
Rd

[|x|2 +W (|x|)]µt(dx) dt <∞.

Then, for every closed interval [τ1, τ2] ⊂ (0, 1), we have∫ τ2

τ1

∫
Rd

%(x, s)| ln %(x, s)| dx ds <∞.

2.5.6. Corollary. Suppose that aij ∈ H2,1
loc(Rd × (0, 1)), A(x, t) is positive

definite, and that A(x, t) and A(x, t)−1 are uniformly bounded. In addition, suppose
that for some θ > 1 the following inequality holds:

sup
t∈(0,1)

|b(x, t)|2 ≤W (|x|/θ), x ∈ Rd.

Let µ be a measure of the form µ = µt dt, where every µt is a probability measure,
and let µ satisfy condition (2.5.3). Assume that µ satisfies equation (2.1.1) in the
sense of (2.5.2) and has the initial distribution µ0 such that the function W0(x) :=
W (|x|) is integrable with respect to µ0. Finally, let

W (r) ≥ c1 + c2r
2 and LW0(x) ≤ C

for some constants c1, c2, C > 0. Then, for the continuous version % of the density
of µ we have

sup
s∈(0,1)

∫
Rd

%(x, s)| ln %(x, s)| dx <∞.

We emphasize once again that if the functions x 7→ aij(x, t) are locally Lips-
chitzian uniformly with respect to t ∈ (0, 1), then in Theorem 2.5.1, Corollary 2.5.2,
Example 2.5.3, Proposition 2.5.5, and Corollary 2.5.6 any solution µ of (2.1.3) in
the sense of (2.5.1) is a solution in the sense of (2.5.2) as well.

2.5.7. Example. Suppose that in Corollary 2.5.6 it is known additionally that
the functions x 7→ aij(x, t) are uniformly Lipschitzian with a common constant.
Then, for every closed interval [τ1, τ2] ⊂ (0, 1), according to §2.3 we have∫ τ2

τ1

∫
Rd

|∇%(x, t)|2

%(x, t)
dx dt <∞.

2.5.8. Example. Suppose that the matrices A(x, t) and A(x, t)−1 are uniformly
bounded, the functions x 7→ aij(x, t) are uniformly Lipschitzian with a common
constant and that there exist numbers c, c0, c1, c2, r > 0 such that

|b(x, t)| ≤ c0 exp(c|x|r), (b(x, t), x) ≤ c1 − c2|x|r, c2 > 2cr sup
x,t

‖A(x, t)‖.

Let µ be a probability measure on Rd×(0, 1) satisfying equation (2.1.1) in the sense
of (2.5.1) with an initial condition µ0 such that the function exp(c|x|r) is integrable



76

with respect to µ0. Then ∫ τ2

τ1

∫
Rd

|∇%(x, t)|2

%(x, t)
dx dt <∞

for every closed interval [τ1, τ2] ⊂ (0, 1). To prove this, it suffices to take W0(z) =
exp(M |z|r), where M > 2c is sufficiently close to 2c.

We now turn to lower bounds without conditions on the growth of the drift
coefficient; the proofs can be found in [160]. Until the end of this section we
assume that the matrix A(x, t) = (aij(x, t))1≤i,j≤d is symmetric and satisfies the
following conditions:

(GP1) there is a constant λ > 0 such that for all x, y ∈ Rd and t ∈ (0, 1) one
has

|aij(x, t)− aij(y, t)| ≤ λ|x− y|,
(GP2) there are constants m,M > 0 such that for all x, y ∈ Rd and t ∈ (0, 1)

one has
m|y|2 ≤

∑
1≤i,j≤d

aij(x, t)yiyj ≤M |y|2.

If, in addition to (GP1) and (GP2) we have b ∈ Lploc(µ) for some p > d + 2, then
the solution µ has a continuous density % belonging to the class Hp,1(U, J) for each
ball U and each interval J ⊂ (0, 1).

It turns out that without any assumptions of local boundedness or local integra-
bility of the coefficient b with respect to Lebesgue measure one can obtain estimates
of the form

%(x, t) ≥ e−f(c1|x|2 + c2), x ∈ Rd, t ∈ J, (2.5.4)

where J = [τ1, τ2] ⊂ (0, 1) is any closed interval, c1 = c1(J), c2 = c2(J) are some
constants, and f ∈ C2

(
[0,+∞)

)
satisfies the following conditions:

(HP1) f(z) > 0 f ′(z) > 0 and f ′′(z) > 0 for z > 0;
(HP2) for some 0 < γ < 1 the function e−(1−γ)f(z) is convex (its second

derivative is nonnegative) on (z0,+∞) for some z0 ≥ 0.

For obtaining estimate (2.5.4) in addition to conditions (GP1) and (GP2) it
suffices to require the following conditions:

(GP3) |b| exp(ψ(|b|)) ∈ Lp(µ), where p > d+2 and ψ is a nonnegative strictly
increasing continuous function on [0,∞) such that for some N > 0 one has

(HP3) ψ−1(z) ≤ N
√
f ′(f−1(z)) for all z > 0.

According to (HP1) and (HP3), f ′(y) → ∞. Hence there exists a number
y0 > max{z0, 1} such that f ′(y) ≥ 1 and (f ′(y))−1/2ef(y) ≥ eψ(0) whenever y > y0.
Let ω0 = e−f(ln y0). Then 0 < ω0 < 1. Let

Λ = min{ω0(2‖%‖L∞)−1, 1}.

Let us fix a cube Q = Q(y, 1/2) and numbers s1 < s2 < t1 < t2 such that
s1, s2, t1, t2 ∈ [T0, T1], where [T0, T1] ⊂ (0, 1). Let

K− := Q× [s1, s2], K+ := Q× [t1, t2].

2.5.9. Theorem. Let µ = % dx dt satisfy equation (2.1.1), where the coefficients
aij , bi satisfy conditions (GP1)–(GP3) and let conditions (HP1)–(H3) hold. Then

sup
K+

ef
−1(| ln(Λ%)|) ≤ C

(∫
K−

e−λf
−1(| ln(Λ%)|) dx dt

)−1/λ

,
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where C depends only on the following quantities:

s1, s2, t1, t2, p,N, ω0,m,M, γ, d, ‖%‖L∞(Rd×[T0,T1]),∫ T1

T0

∫
Rd

|b|p exp{pψ(|b|)}% dx dt.

2.5.10. Theorem. Let µ = % dx dt satisfy equation (2.1.1), where the coefficients
aij , bi satisfy conditions (GP1)–(GP3) and let conditions (HP1)–(HP3) hold. Let
us fix an interval J = [τ1, τ2] ⊂ (T0, T1). Then there exist positive numbers c1 and
c2 such that

%(x, t) ≥ e−f(c1|x|2 + c2), x ∈ Rd, t ∈ J.

2.6. Fokker–Planck–Kolmogorov equations

Here we discuss sufficient conditions for the existence and uniqueness of solu-
tions to parabolic equations for measures. Our presentation follows [30] and [26].

We shall say that a compact function Ψ ∈ C2(Rd) is nondegenerate if there is a
sequence of numbers cn → +∞ such that the level sets Ψ−1(cn) are C1-surfaces (in
fact, we only need that Lemma 2.1.5 be applicable to the domains {Ψ < cn}). For
example, if Ψ is convex, then it is nondegenerate; the same is true if Ψ(x) = ψ0(|x|2),
where ψ0 ∈ C2([0,+∞) is increasing to +∞.

2.6.1. Theorem. Let p > d+ 2 and let A and b satisfy the conditions

sup
t∈(0,1)

[‖aij( · , t)‖Wp,1(B) + ‖bi( · , t)‖Lp(B)] <∞,

(2.6.1)

A(x, t) ≥M(B) · I ∀(x, t) ∈ B × (0, 1)

for every ball B with some M(B) > 0. Assume that there exist a nondegenerate
nonnegative compact function Ψ ∈ C2(Rd) and a constant C ≥ 0 such that

LΨ(x, t) ≤ C + CΨ(x) a.e. in Rd × (0, 1). (2.6.2)

Then, for every Borel probability measure ν on Rd, there exists a family µ =
(µt)t∈[0,1) of probability measures on Rd satisfying (2.1.1) and (2.1.3) such that

t 7→
∫

Rd

ζ dµt

is continuous on [0, 1) for every ζ ∈ C∞0 (Rd).

Let us note that this theorem (established in [26]) is stronger than the analogous
result of [24] in all respects except that here the Lyapunov function Ψ is supposed
to be nondegenerate. However, this is a rather mild restriction, which is fulfilled in
all interesting cases.

2.6.2. Remark. (i) In the case when the functions bi are bounded on bounded
subsets of Rd × (0, 1), the nondegeneracy condition on A can be slightly relaxed as
follows: it suffices to have

inf
(x,t)∈K×[τ1,τ2]

detA(x, t) > 0

for every [τ1, τ2] ⊂ (0, 1) and every compact set K ⊂ Rd.
(ii) Condition (2.6.2) can be relaxed as follows: there exists a compact set

K ⊂ Rd such that LΨ(x, t) ≤ C a.e. in (0, 1)× (Rd\K).
(iii) For almost every t, the measure µt has a density in the Sobolev class

W p,1
loc (Rd). This is true for any solution of (2.1.1) under our local assumptions on



78

A and b. Hence, under these assumptions, equation (2.1.1) can be written in the
classical weak form after integrating by parts in the term with ∂xi

∂xj
u. Below we

consider more general equations whose solutions do not have such a property.

2.6.3. Corollary. Suppose that there is a constant C such that

‖A(x, t)‖ ≤ C + C ln(|x|2 + 1), (x, t) ∈ (0, 1)× Rd, (2.6.3)

and, for every compact set K ⊂ Rd and every [τ1, τ2] ⊂ (0, 1), one has

inf
(x,t)∈K×[τ1,τ2]

detA(x, t) > 0, sup
(x,t)∈K×(0,1)

|b(x, t)| <∞.

Assume also that there is a constant M such that

〈b(x, t), x〉 ≤M(1 + |x|2) ln(|x|2 + 1), (x, t) ∈ Rd × (0, 1). (2.6.4)

Then, for every Borel probability measure ν on Rd, there exists a family (µt)t∈[0,1)

of probability measures on Rd satisfying (2.1.1) and (2.1.3) such that

t 7→
∫

Rd

ζ dµt

is continuous on [0, 1) for every ζ ∈ C∞0 (Rd). The same is true if we replace (2.6.3)
and (2.6.4) by

‖A(x, t)‖ ≤ C + C|x|2, 〈b(x, t), x〉 ≤ C + C|x|2, (x, t) ∈ Rd × (0, 1).

If the functions bi and aij are continuous in x for a.e. fixed t, then the same is
true without the assumption that detA is strictly positive.

2.6.4. Corollary. Suppose that the functions x 7→ aij(x, t) and x 7→ bi(x, t)
are continuous for each t ∈ (0, 1) and are bounded on bounded sets in Rd × (0, 1).
In addition, suppose that, for every fixed ball U ⊂ Rd, the functions x 7→ aij(x, t),
t ∈ (0, 1), are equicontinuous on U . Finally, assume that there exist a nondegenerate
nonnegative compact function Ψ ∈ C2(Rd) and a constant C ≥ 0 such that

LΨ(x, t) ≤ C + CΨ(x).

Then, for every Borel probability measure ν, there exists a family µ = (µt)t∈[0,1) of
probability measures on Rd satisfying (2.1.1) and (2.1.3) such that

t 7→
∫

Rd

ζ dµt

is continuous on [0, 1) for every ζ ∈ C∞0 (Rd).
Moreover, if detA is bounded away from zero on compact subsets in Rd× (0, 1),

then the continuity of b in x is not needed.

We observe that these results are applicable to degenerate A, in particular, to
A = 0.

2.6.5. Corollary. If ν = %0 dx, then the solution from Theorem 2.6.1 satisfies
inequalities (2.1.9), (2.1.10), and (2.1.11) for any domain Ω ⊂ Rd such that the
right-hand sides are finite. If |b(x, t)| ≤ CΨ(x), Ψ ∈ L1(ν), and %0 ∈ L2(Rd), then
it satisfies (2.4.3) as well.

Under appropriate assumptions it is possible to construct a solution defined for
t in the whole real line.
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2.6.6. Corollary. Suppose that the coefficients A and b are defined on the
whole space Rd × R1 and satisfy condition (2.6.1) on every bounded interval in
place of (0, 1). Suppose also that there exist a nondegenerate nonnegative compact
function Ψ ∈ C2(Rd) and positive numbers c1 and c2 such that

LΨ(x, t) ≤ c1 − c2Ψ(x) for almost all (x, t).

Then, there exists a family µ = (µt)t∈R1 of probability measures on Rd satisfying
(2.1.1) such that µt has a density %( · , t) and % is jointly continuous and positive.

Under some stronger assumptions, there are similar uniqueness results. Let us
introduce the following conditions.

(HU1) There exists p > d+ 2 such that for every open ball B ⊂ Rd one has
(a) inf(x,t)∈B×[0,T ] detA(x, t) > 0, supt∈[0,T ] : 1≤i,j≤d ‖aij( · , t)‖Wp,1(B) <∞,

(b)
∫ T

0

∫
B

|b(x, t)|p dxdt <∞.

We introduce the following set of measures on Rd × (0, T ):

MA,b,ν
par :=

{
µ| µ(dx, dt) = µt(dx)dt, µt ∈ P(Rd) ∀ t ∈ (0, T ) and µ

satisfies (2.1.1), (2.1.3), where |b| ∈ L1(B × (0, T ), µ) for every ball B ⊂ Rd
}
.

2.6.7. Theorem. Assume (HU1). Suppose, in addition, that the following con-
dition holds:
(HU2) each aij is Hölder continuous in t ∈ [0, T ] locally uniformly with respect to
x ∈ Rd.

Let K ⊂MA,b,ν
par be such that K is convex and for all µ ∈ K

(1− L)(C∞0 (Rd × [0, T ))) is dense in L1(Rd × (0, T ), µ).

Then #K ≤ 1.

We now give constructive conditions on the coefficients which enable us to use
the above result.

Define the logarithmic gradient βµ = (β1
µ, . . . , β

d
µ) of µ with respect to the

metric given by A as follows:

βiµ :=
d∑
j=1

(∂xj
aij + aij%−1∂xj

%), i = 1, . . . , d.

2.6.8. Proposition. Assume (HU1) and (HU2) and define K to be the set of
all measures µ ∈MA,b,ν

par satisfying the following three conditions for all 1 ≤ i, j ≤ d:
(i) ∂xj

aij ∈ L1(B × (0, T ), µ) for all open balls B ⊂ Rd,
(ii) aij ∈ L1(Rd × (0, T ), µ),
(iii) bi − βiµ ∈ L1(Rd × (0, T ), µ).
Then #K ≤ 1.

2.6.9. Proposition. Assume (HU1) and (HU2). Let V ∈ C1,2(Rd × [0, T ]) be
such that lim

|x|→∞
V (x, t) = +∞ uniformly with respect to t ∈ [0, T ]. Let K be the set

of all measures µ ∈ MA,b,ν
par satisfying condition (i) in Proposition 2.6.8 and such

that for some α0 = α0(µ) ∈ (0,∞) one has

LA,2βµ−bV − ∂tV ≤ α0V.

Then #K = 1.
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2.6.10. Theorem. Assume (HU1) and (HU2). Suppose that the following global
conditions hold for A, b, and ν:

(iv) the measure ν has finite entropy, i.e., ν = %0 dx and %0 ln %0 ∈ L1(Rd),
(v) there exists ε ∈ (0,∞) such that

εI ≤ A(x, t) ≤ ε−1I for all (x, t) ∈ Rd × [0, T ],

(vi) there exists Λ ∈ (0,∞) such that for all x, y ∈ Rd one has

sup{|aij(x, t)− aij(t, y)| : t ∈ [0, T ], 1 ≤ i ≤ j ≤ d} ≤ Λ|x− y|,
(vii) there exists c ∈ (0,∞) such that for all (x, t) ∈ Rd × [0, T ] one has

〈b(x, t), x〉 ≤ c(1 + |x|2),
and either for some k ∈ N one has

|b(x, t)| ≤ c(1 + |x|2k) and
∫

Rd

|x|2k ν(dx) <∞

or there exist numbers α, γ, δ, c, k ∈ (0,∞) such that for all (x, t) ∈ Rd × [0, T ]

〈b(x, t), x〉 ≤ γ − (2ε−1ck + δ)|x|2k,
with ε as in (v), and

|b(x, t)| ≤ α exp
( c

2
|x|2k

)
,

∫
Rd

exp
( c

2
|x|2k

)
ν(dx) <∞.

Then there exists a unique family {µt, t ∈ (0, T ]} of probability measures on Rd
solving (2.1.1), (2.1.3).

The equations for measures considered above are the Fokker–Planck equations
according to the terminology indicated above. We do not discuss here the closely
related Kolmogorov equations for functions (see, e.g., [29], [28], [62]). Finally,
we note that similar existence results have been recently obtained for nonlinear
equations for measures in [45].



CHAPTER 3

Infinite-dimensional case

3.1. Equations for measures on infinite-dimensional spaces

The problems considered in the previous two chapters arise also in the infinite-
dimensional case; as it was noted in the Introduction, the infinite-dimensional case
even served as one of motivations for the study of such problems. We shall briefly
discuss elliptic equations because a detailed account of the whole area deserves
a separate survey. Moreover, our discussion will be restricted to problems directly
connected with the finite-dimensional case. First of all, it should be noted that many
of the principal objects considered above such as stochastic equations, transition
probabilities, stationary distributions, Fokker–Planck and Kolmogorov equations
are defined on very general spaces and bear no finite-dimensional features. However,
in the infinite-dimensional case new phenomena arise. Partly this is due to the
absence of exact analogs of Lebesgue measure, but there are also other reasons.
One of the starting points is again a Markov process with a state space X whose
transition semigroup (Tt)t≥0 defined on a suitable function space F (such as Cb(X)
or Lp(µ)). If this process has an invariant probability measure µ on X, i.e.,∫

X

f(x)µ(dx) =
∫
X

Ttf(x)µ(dx), f ∈ F ,

then, under broad assumptions, (Tt)t≥0 extends to a strongly continuous semigroup
on L1(µ) which has a generator L on some domain D, and µ satisfies the equation

L∗µ = 0 (3.1.1)

in the sense that the integral of Lf vanishes for all f ∈ D. Typically, there is a
smaller class D0 ⊂ D of functions for which Lf is defined explicitly without any
reference to the semigroup and the domain of its generator. Then we can consider
equation (3.1.1) as the identity∫

X

Lf(x)µ(dx) = 0, f ∈ D0. (3.1.2)

Therefore, questions arise about the relation between (3.1.2) and the invariance of µ
with respect to the semigroup, as well as about the properties of solutions to (3.1.2),
i.e., the same questions that we have discussed in the finite-dimensional case. For
example, let µ be an invariant measure of a diffusion process in l2 or in the space
R∞ of all real sequences governed by the stochastic differential equation

dξt =
√

2dWt + b(ξt)dt, (3.1.3)

where Wt is a Wiener process (in a suitable sense, see [21, Chapter 7]) and b is a
Borel vector field. Then one can take for D0 the class FC∞b of all functions of the
form

f(l1(x), . . . , ln(x)), (3.1.4)
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where f ∈ Cb(Rn) and l1, . . . , ln are continuous linear functionals (e.g., just func-
tions of x1, . . . , xn). Then L has the form

Lf = trace f ′′ + 〈f ′, b〉.

However, as we shall see below in concrete examples, in the infinite-dimensional
case it is often desirable to have a broader setting where b cannot be interpreted as
a vector field with values in the original space (e.g., when dealing with l2 it may
happen that v takes values in R∞). For this reason, the following more general
framework is used.

Suppose that X is a locally convex space with dual X∗ and that H ⊂ X is a
dense separable Hilbert space such that the embedding operator is continuous. The
inner product in H is denoted by (u, v)

H
. This embedding defines the embedding

j
H

: X∗ → H since for each l ∈ X∗ there is a unique element j
H

(l) ∈ H with

〈l, h〉 = (j
H

(l), h)
H

∀h ∈ H.

Suppose also that a family {li} ⊂ X∗ is given such that the vectors en := j
H

(ln)
form an orthonormal basis in H. Let FC∞b ({li}) denote the class of all functions
of the form (3.1.4). Suppose also that we are given Borel functions aij , bi on X.
The infinite matrix with entries aij(x) will be denoted by A(x) and the collection
of scalar functions bi will be denoted by b, although we do not assume that A(x)
and b(x) correspond to some operator or vector. Then we can consider the elliptic
operator

LA,bf(x) =
∑
i,j

aij(x)∂ei∂ejf(x) +
∑
i

bi(x)∂eif(x). (3.1.5)

We shall say that a Radon measure µ on X satisfies equation (3.1.1) with respect
to the class FC∞b ({li}) if aij , bi ∈ L1(µ) for all i, j and (3.1.2) is fulfilled with
D0 = FC∞b ({li}). The parabolic operators and equations are defined similarly in
complete analogy with the finite-dimensional case.

Infinite-dimensional equations for measures have been considerably less studied
so far as compared to the finite-dimensional case. There are sufficient conditions
for the existence and sometimes for the uniqueness of solutions, but not much is
known about their properties and connections between infinitesimal invariance and
proper invariance with respect to the associated semigroups (the very existence of
such semigroups has also been less studied). There exists an extensive literature on
stationary distributions of infinite-dimensional diffusions (see, e.g., the book [67]),
especially connected with stochastic partial differential equations (see [11], [52],
[57], [58], [62], [63], [70], [74], [79], [82], [90], [91], [128], [150], [163]), infinite
gradient systems, Gibbs measures, and stochastic quantization (see [5], [6], [56],
[83], [85], [86], [96], [138]); in these works numerous additional references can
be found. Standard methods of proving the existence of stationary distributions
are based on Prohorov’s theorem and Lyapunov functions combined with a priori
estimates (see, e.g., [59], [113], [114]) or on convergence of transition probabil-
ities (which in turn employs various assumptions of dissipativity and Lyapunov
functions). The same techniques are used for the proof of existence of solutions
to elliptic or parabolic equations. Generally speaking, existence results for elliptic
equations can be obtained under broader assumptions on the coefficients, since they
do not assume the existence of the corresponding diffusions (the latter is usually
more stringent). However, there are cases where there is no direct proof of the
solvability of the elliptic equation for measures, and one has to construct a process
and analyze its transition semigroup.
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For solutions to elliptic and parabolic equations for measures on infinite-di-
mensional spaces we can consider various properties of their finite-dimensional pro-
jections, their mutual absolute continuity or singularity, and directional properties
such as continuity or differentiability. We recall that a Radon measure µ on a locally
convex space X is continuous along a vector h ∈ X if lim

t→0
‖µth − µ‖ = 0, where

µth(B) := µ(B + th) for every Borel set B. If, for every Borel set B, the function
t 7→ µ(B + th) is differentiable, then µ is called Fomin differentiable along h. This
is equivalent to the existence of a function βµh ∈ L1(µ), called the logarithmic de-
rivative of µ along h, such that the following integration by parts formula holds for
all functions f ∈ FC∞b (X):∫

X

∂hf(x)µ(dx) = −
∫
X

f(x)βµh (x)µ(dx).

If X = Rd, then a measure µ is Fomin differentiable along all vectors precisely when
it has a density % ∈W 1,1(Rd); then βµh = 〈∇%, h〉. In the infinite-dimensional case,
only the zero measure is differentiable along all vectors. A detailed account of the
theory of differentiable measures is given in [20], [22]. There is also a reasonable
infinite-dimensional analog of the logarithmic gradient∇%/%, although neither % nor
∇% exist separately. Namely, suppose that we a have a continuously and densely
embedded Hilbert space H ⊂ X generating the embedding j : X∗ → X as explained
above. If there exists a µ-measurable mapping β

H
: X → X such that for each

l ∈ X∗ the measure µ is differentiable along j(l) and

βµj(h) = 〈l, β
H
〉,

then β
H

is called a logarithmic gradient of µ associated with H. However, it can
happen that the measure µ is differentiable along all vectors j(l), where l ∈ X∗,
but there is no logarithmic gradient. Concerning this object, see [22, Chapter 7].

Let {li} ⊂ X∗ be such that for the vectors ei := j(li) we have lj(ei) = δij . We
shall assume additionally that the functionals li separate points in X. Then, under
mild assumptions on X (see [21, Chapter 7]) there is a process Wt in X, called a
Wiener process in X associated with H, such that the scalar processes 〈li,Wt〉 are
independent Wiener processes. It is known (see [7], [22, Chapter 12]) that under
broad assumptions, for a given probability measure µ possessing a logarithmic gra-
dient β

H
, there is a diffusion process in X governed by the stochastic differential

equation (3.1.3) with b = β
H

such that µ is its invariant measure and the corre-
sponding transition semigroup (Tt)t≥0 is symmetric on L2(µ); its generator is given
by

Lf =
∞∑
i

[∂2
ei
f + 〈li, βH

〉∂ei
f ]

on functions f ∈ FC∞b ({li}), where f0 ∈ C∞b (Rn). An efficient method of con-
structing more general processes is based on perturbations of the drift β

H
.

As in the finite-dimensional case, the symmetry of the operator LI,b is equivalent
to b being in some sense of gradient type. The exact result is as follows.

3.1.1. Proposition. Let bi ∈ L2(µ). The operator

Lf =
∞∑
i=1

[∂2
ei
f + bi∂eif ]

is symmetric on FC∞b ({li}) ⊂ L2(µ) precisely when the measure µ is differentiable
along each vector en = j(ln) and βµen

= bn µ-a.e.
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Proof. If βµen
exists, then∫

X

g(x)∂2
en
f(x)µ(dx) = −

∫
X

[∂en
g(x)∂en

f(x) + g(x)∂en
f(x)βµen

(x)]µ(dx),

whence we obtain the equality of the integrals of gLf and fLg for all functions
f, g ∈ FC∞b ({li}). Conversely, suppose that L is symmetric on FC∞b ({li}). Let
f = exp(il), g = exp(itln), where l is a finite linear combination of the functionals li.
Let 〈l, b〉 :=

∑∞
k=1 l(ek)b

k, where the sum is finite since only finitely many numbers
l(ek) are nonzero. Then

Lf = −
∞∑
k=1

l(ek)2eil + i〈l, b〉eil, Lg = −t2eitln + itbneitln ,

whence by the symmetry of L we obtain the equality∫
X

eil+itln
[
−

∞∑
k=1

l(ek)2 + i〈l, b〉
]
µ(dx) =

∫
X

eil+itln
[
−t2 + itbn

]
µ(dx).

Letting ξ := l + tln and replacing l by ξ − tln, we can write this as follows:∫
X

eiξ
[
−

∞∑
k=1

ξ(ek)2 + i〈ξ, b〉
]
µ(dx) = 2

∫
X

eiξ
[
−tξ(en) + itbn

]
µ(dx).

Since the left-hand side is independent of t, the right-hand side must vanish. There-
fore, we obtain

−iξ(en)
∫
X

eiξ µ(dx) =
∫
X

eiξbn µ(dx)

for any functional ξ that is a finite linear combination of the functionals li. Since µ
is a Radon measure and {li} separates points in X, it follows that the same is true
for any ξ ∈ X∗. This identity yields that µ is differentiable along en and βµen

= bn

(see [22, Theorem 3.6.7]). Note that without the assumption that {li} separates
points in X we could obtain the same assertion for µ on the σ-algebra generated by
{li}. �

The case of non-constant A is studied similarly in [121].
The case of gradient-type drifts (this concept in turn admits different inter-

pretations in infinite dimensions) has deep and interesting connections with the
study of Gibbs measures, i.e., measures with given conditional distributions. For
example, for a broad class of models, constructing a Gibbs measure is equivalent
to constructing a measure with a given logarithmic gradient; the latter problem is
studied in [5], [6], [20], [22], [99], [100], [101], [102]; in particular, the method of
reconstructing a measure with a given logarithmic gradient by means of Lyapunov
functions was initiated by A.I. Kirillov. For general elliptic equations for measures
this method was developed in [37], [39], [48]. The uniqueness problem for elliptic
equations for measures becomes especially difficult in infinite dimensions. There are
simple examples where there is no uniqueness even for A = I and drifts b that are
bounded linear operators on Hilbert spaces (see [37], [22, §7.6]). In the framework
of Gibbs measures, such examples arise in cases of phase transitions, i.e., distinct
Gibbs distributions with equal conditional distributions. Concerning existence and
uniqueness of solutions to parabolic equations, see [27], [29], [127].

Let us give a number of typical examples, in which the described framework
is applied to the study of stochastic partial differential equations of the type of
stochastic porous media equations, reaction-diffusion equations, and Burgers and
Navier–Stokes equations. The precise formulations and additional references can be
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found in [39], [25]. A general plan of studying such equations is as follows. The
primary object is a nonlinear partial differential equation of the form

∂ξ(u, t)/∂t = ∆
[
Ψ(ξ)

]
(u, t) + Φ(ξ)(u, t),

where Ψ and Φ are some functions on the real line, e.g., polynomials. The analysis
of this equation usually turns out to be very complicated (e.g., the Navier–Stokes
equation). However, it turns out that adding a stochastic noise in the right-hand side
leads to substantial simplifications (it is even possible that the stochastic equation
has at least the same physical significance). This stochastic partial differential
equation is heuristically written as

dξt =
√

2dWt +
(
∆[Ψ(ξt)] + Φ(ξt)

)
dt.

But a rigorous interpretation in the case of nonlinear functions Ψ and Φ is not ob-
vious. One possible approach to this problem is to consider the associated infinite-
dimensional elliptic operator L on a suitable domain, find an infinitesimally invari-
ant measure µ for L, construct a Markov semigroup on L2(µ) with µ as an invariant
measure in such a way that the generator of this semigroup extends L, and finally
construct a Markov process solving the martingale problem corresponding to this
operator. One can also try to solve the parabolic equation for the transition prob-
abilities of the expected process. The case Ψ(s) = sm and Φ = 0 corresponds to
the porous media equation and the case Ψ(s) = s and Φ(s) = sm to the reaction-
diffusion equation.

Let D ⊂ Rd be a bounded open domain with smooth boundary, let {en} be
the orthonormal basis in L2(D) formed by the eigenfunctions of the Laplacian ∆
with Dirichlet boundary condition, and let λ1 be the minimal (in absolute value)
eigenvalue. Let Ψ be a C1-function with Ψ(0) = 0 such that for some positive
numbers κ0, C0, κ1, and r ≥ 1 we have

κ0|s|r−1 ≤ Ψ′(s) ≤ C0 + κ1|s|r−1 for all s ∈ R1,

and let Φ be a continuous function satisfying the condition

|Φ(s)| ≤ C + δ|s|r,

where 0 < δ < 4κ0λ1(r + 1)−2 and C is a constant. For example, it suffices that
|Φ(s)| ≤ κ2 + κ3|s|q, where q ∈ (0, r), κ2, κ3 ∈ (0,+∞). We are interested in the
existence of infinitesimally invariant measures for the infinite-dimensional elliptic
operator L which is informally given by

Lf := ∆Qf + 〈b,∇f〉, b(x) = ∆Ψ(x) + Φ(x)

on smooth cylindrical functions defined on X := L2(D) or on the negative Sobolev
space H2,−1(D). A rigorous interpretation is as follows. Let

bi(x) :=
∫
D

[
Ψ(x(u))∆ei(u) + Φ(x(u))ei(u)

]
du, x ∈ Lr(D).

Let qi > 0 be such that S :=
∑∞
i=1 qi <∞. The operator

Lf :=
∞∑
i=1

[
qi∂

2
ei
f + bi∂eif

]
where ∂ei

denotes the partial derivative along ei, is well-defined on FC∞b ({li}),
where li(x) = (x, ei)2 and (x, y)2 is the inner product in L2(D). The second order
part in L can be regarded as trace (QD2f), where Q is the operator on X defined
by Qei = qiei. The operator Q is the covariance operator of a Wiener process Wt
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in the indicated stochastic equation. A minor nuance is that the functions bi, hence
also Lf , are defined not on all of X, but only on Lr(D).

3.1.2. Theorem. Under the stated assumptions, there exists a Borel probability
measure on µ on Lr(D) that is infinitesimally invariant for L.

For example, if Ψ(t) = tr, where r is an odd number, then we can take for Φ any
polynomial of degree r with a sufficiently small leading coefficient (the smallness
of which depends on λ1, in particular, one can take Φ(x) = xr provided that λ1

is sufficiently large). Similarly, one considers the parabolic equation with a time-
dependent drift b formally given by b(x, t)(u) = ∆u[Ψ(x(u), t)] + Φ(x(u), t), where
Ψ and Φ are real functions on R1 × [0, 1]. Set

bi(x, t) :=
∫
D

[
Ψ(x(u), t)∆ei(u) du+ Φ(x(u), t)ei(u)

]
du, x ∈ Lr(D).

The corresponding parabolic operator L is given by

Lf = ∂tf +
∞∑
i=1

qi∂
2
ei
f +

∞∑
i=1

bi∂ei
f.

Suppose that Ψ and Φ are continuous functions, Ψ has a continuous partial
derivative ∂sΨ(s, t), and

κ0|s|r−1 ≤ ∂sΨ(s, t) ≤ C1 + κ1|s|r−1, |Φ(s, t)| ≤ C2 + κ2|s|r,
where κ0, κ1, κ2, C1, C2 ∈ (0,+∞) are some constants and r ≥ 1. Under these
assumptions there exists a probability measure µ on Lr(D) × [0, 1) satisfying the
parabolic equation L∗µ = 0 with a suitable initial data.

A stochastic Navier–Stokes type equation is considered in the space X of all
Rd-valued mappings ξ = (ξ1, . . . , ξd) such that ξj ∈ W 2,1

0 (D) and div ξ = 0. The
space X is equipped with a Hilbert norm ‖ξ‖0 defined by ‖ξ‖20 :=

∑d
j=1 ‖∇ξj‖2L2 .

The equation is written formally as

dξ(x, t) =
√

2dW (x, t) +
[
∆xξ(x, t)−

d∑
j=1

ξj(x, t)∂xj
ξ(x, t) + F (x, ξ(x, t), t)

]
dt,

where W is a suitable Wiener process in X and F : D × Rd × (0, 1) → Rd is a
bounded continuous mapping. Since the Laplacian ∆ is not defined on all of X,
this equation requires some interpretation. Our approach suggests the following
procedure. Let {ηn} be the eigenbasis in the closure of X in L2(D,Rd) formed by
the eigenfunctions of ∆, where ηn ∈ X. Let us introduce the functions

bn(ξ, t) := (ξ,∆ηn)2 −
d∑
j=1

(∂xj
ξ, ξjηn)2 +

(
F ( · , ξ( · ), t), ηn

)
2
.

These functions are defined already on the wholeX. It is easily verified that they are
continuous on all balls in X with respect to the topology from L2(D,Rd). Choosing
an appropriate Wiener process we arrive at the parabolic operator

Lf(ξ, t) = ∂tf(ξ, t) +
∞∑
n=1

αn∂
2
ηn
f(ξ, t) +

∞∑
n=1

bn(ξ, t)∂ηn
f(ξ, t).

Here we also have a probability measure µ on X × [0, 1) satisfying the parabolic
equation L∗µ = 0 with any initial distribution µ0 for which ‖ξ‖20‖ξ‖k2 ∈ L1(µ0) for
all k. If F does not depend on t, then one can consider similarly the elliptic equation
and establish the existence of infinitesimally invariant measures of the stochastic
Navier–Stokes equation.
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3.2. Properties of solutions

The results of Chapter 1 yield certain properties of the finite-dimensional pro-
jections of a measure µ, satisfying an infinite-dimensional equation, generated by
the mappings Pnx = (l1(x), . . . , ln(x)). We shall assume that we are given an em-
bedding H ⊂ X generating the embedding j : X∗ → H, and the functionals li are
such that the vectors ei := j(li) have the property li(ej) = δij . Let µ be a probabil-
ity measure satisfying the equation L∗A,bµ = 0 with A = (aij)i,j≥1 and b = (bi)i≥1

in the sense explained above.
Let En denote the conditional expectation with respect to the σ-field generated

by Pn and let
σijn := Enσij , bin := Enbi.

We consider the elliptic operator

Lnf :=
n∑

i,j=1

aijn (x)∂xi
∂xj

f(x) +
n∑
i=1

bin(x)∂xi
f(x)

on Rn. For the measures µn := µ ◦ P−1
n on Rn, where µ ◦ P−1

n (B) := µ(P−1
n (B)),

we obtain
L∗nµn = 0.

Indeed, if f(x) = f(l1(x), . . . , ln(x)), then∫
Rn

Lnϕ(y)µn(dy) =
∫
X

[ ∑
i,j≤n

aijn (x)∂ei
∂ej

ϕ(l1(x), . . . , ln(x))

+
∑
i≤n

bin(x)∂eiϕ(l1(x), . . . , ln(x))
]
µ(dx)

=
∫
X

[ ∑
i,j≤n

aij(x)∂ei
∂ej

ϕ(l1(x), . . . , ln(x))

+
∑
i≤n

bi(x)∂ei
ϕ(l1(x), . . . , ln(x))

]
µ(dx) = 0.

3.2.1. Example. Suppose that the functions aij are constant and the matrices
(aij)i,j≤n are positive and that bi ∈ Lp(µ) for all p < ∞. Then µn has a bounded
continuous density %n of the class W p,1(Rn) for all n.

If we have only that bi ∈ L2(µ), then µn has a density %n ∈ W 1,1(Rn) and
|∇%n/%n|2 ∈ L2(µn).

If we have exp(ci|bi|) ∈ L1(µ) for some ci > 0, then the continuous density %n
is positive.

Other applications of the results in the first two chapters to finite-dimensional
projections of solutions of infinite-dimensional equations for measures are given
in [43]. For some special equations, there are other results, e.g., certain uniform
local estimates for measures of balls and densities, see [14], [1], [163]. However,
the following question remains open. Let a probability measure µ on a separable
Hilbert space satisfy the equation L∗I,b = µ = 0 with a continuous or even locally
Lipschitzian drift b; is it then positive on all balls of positive radius? In a number of
special cases positive results are known; for example, this is the case if the measure
µ is equivalent to some measure possessing the indicated property (say, Gaussian).

It is more difficult to obtain infinite-dimensional properties of solutions which
could be regarded as infinite-dimensional analogs of absolute continuity and dif-
ferentiability. There are results asserting that, under rather special assumptions, a
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stationary distribution of an infinite-dimensional diffusion or a solution to an elliptic
equation is absolutely continuous with respect to a given measure (typically Gauss-
ian) and its density belongs to some Sobolev class; see [23], [31], [36], [37], [64],
[65], [67], [78], [88], [90], [95], and the references in [22, Chapter 12]. It should
be noted that Tolmachev [171] constructed an example of an infinite-dimensional
diffusion with smooth coefficients and bounded and uniformly nondegenerate dif-
fusion coefficient such that its transition probabilities and stationary distribution
have no directions of continuity (in the sense defined above). A long-standing open
problem is whether this can happen if A = I. Some positive results for special drifts
b can be found in the works cited above, here we mention only one typical example,
which is a result in [37] solving a problem raised by Shigekawa [162]. For notational
simplicity we formulate this result for the space R∞, although it is valid for general
locally convex spaces.

3.2.2. Theorem. Let v = (vi) be a Borel vector field on X = R∞ with values
in H = l2 and let µ be a Borel probability measure on R∞ satisfying equation (3.1.1)
with A = I and b(x) = −x + v(x), where |v|

H
∈ L2(µ) and li ∈ L2(µ), li(x) = xi.

Then µ is absolutely continuous with respect to the Gaussian measure γ that is the
countable power of the standard Gaussian measure on the real line.

Related problems for infinite-dimensional manifolds are studied in [48], [49],
[146], [147], [148], [97]. Concerning various problems connected with essential
selfadjointness and uniqueness properties of infinite-dimensional elliptic operators
and their generated semigroups, see [13], [118], [139], and also [22, Chapter 12],
and the references in these works. All these problems will be considered in detail
in a separate survey devoted entirely to the infinite-dimensional case.
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[40] V.I. Bogachev, M. Röckner, On Lp-uniqueness of symmetric diffusion operators on Riemann-
ian manifolds, Sbornik Math., V. 194 (2003), N 7, 15–24 (in Russian); English transl.: Sb. Math.,

V. 194 (2003), N 7, 969–978.

[41] V.I. Bogachev, M. Röckner, S.V. Shaposhnikov, Global regularity and estimates of solutions
of parabolic equations for measures, Teor. Verojatn. Primen., V. 50 (2005), N 4, 652–674 (in

Russian); English transl.: Theory Probab. Appl., V. 50 (2006), N 4, 561–581.
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[48] V.I. Bogachev, M. Röckner, F.-Y. Wang, Elliptic equations for invariant measures on finite
and infinite dimensional manifolds, J. Math. Pures Appl., V. 80 (2001), N 2, 177–221.
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Verlag, Basel, 1995.

[124] T.J. Lyons, W.A. Zheng, Diffusion processes with nonsmooth diffusion coefficients and their

density functions, Proc. Roy. Soc. Edinburgh Sect. A, V. 115 (1990), N 3-4, 231–242.
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